
NAVAL
POSTGRADUATE

SCHOOL
MONTEREY, CALIFORNIA

DISSERTATION

EXTENDING AND IMPROVING DESIGNS
FOR LARGE-SCALE COMPUTER EXPERIMENTS

by

Jeffrey D. Parker Jr.

June 2022

Dissertation Supervisors: Thomas W. Lucas
W. Matthew Carlyle

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington, DC 20503.

1. AGENCY USE ONLY
(Leave blank)

2. REPORT DATE
June 2022

3. REPORT TYPE AND DATES COVERED
Dissertation

4. TITLE AND SUBTITLE
EXTENDING AND IMPROVING DESIGNS FOR LARGE-SCALE
COMPUTER EXPERIMENTS

5. FUNDING NUMBERS

6. AUTHOR(S) Jeffrey D. Parker Jr.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)
N/A

10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited.

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)
This research develops methods that increase the inventory of space-filling designs (SFDs) for

large-scale computer-based experiments. We present a technique enabling researchers to add sequential
blocks of design points effectively and efficiently to existing SFDs. We accomplish this through a
quadratically constrained mixed-integer program that augments cataloged or computationally expensive
designs by optimally permuting and stacking columns of an initial base design to minimize the maximum
absolute pairwise correlation among columns in the new extended design. We extend many classes of SFDs
to dimensions that are currently not easily obtainable. Adding new design points provides more degrees of
freedom for building metamodels and assessing fit. The resulting extended designs have better correlation
and space-filling properties than the original base designs and compare well with other types of SFDs
created from scratch in the extended design space. In addition, through massive computer-based
experimentation, we compare popular software packages for generating SFDs and provide insight into the
methods and relationships among design measures of correlation and space-fillingness. These results
provide experimenters with a broad understanding of SFD software packages, algorithms, and optimality
criteria. Further, we provide a probability-distribution model for the maximum absolute pairwise correlation
among columns in the widely used maximin Latin hypercube designs.

14. SUBJECT TERMS
computer experiments, design of experiments, mixed integer programming, orthogonality,
optimization, simulation, space-filling designs

15. NUMBER OF
PAGES

277
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited.

EXTENDING AND IMPROVING DESIGNS FOR LARGE-SCALE COMPUTER
EXPERIMENTS

Jeffrey D. Parker Jr.
Lieutenant Colonel, United States Marine Corps

BS, United States Naval Academy, 2006
MS, Operations Research, Naval Postgraduate School, 2015

Submitted in partial fulfillment of the
requirements for the degree of

DOCTOR OF PHILOSOPHY IN OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOL
June 2022

Approved by: Thomas W. Lucas
Department of
Operations Research
Dissertation Chair,
Dissertation Supervisor

Raymond R. Buettner
Department of

W. Matthew Carlyle
Department of
Operations Research
Dissertation Supervisor

Alejandro S. Hernandez
Department of Systems
Engineering Information Sciences

W. David Kelton
Department of
Operations Research

Approved by: W. Matthew Carlyle
Chair, Department of Operations Research

Michael E. Freeman
Vice Provost of Academic Affairs

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

 This research develops methods that increase the inventory of space-filling

designs (SFDs) for large-scale computer-based experiments. We present a technique

enabling researchers to add sequential blocks of design points effectively and efficiently

to existing SFDs. We accomplish this through a quadratically constrained mixed-integer

program that augments cataloged or computationally expensive designs by optimally

permuting and stacking columns of an initial base design to minimize the maximum

absolute pairwise correlation among columns in the new extended design. We extend

many classes of SFDs to dimensions that are currently not easily obtainable. Adding new

design points provides more degrees of freedom for building metamodels and assessing

fit. The resulting extended designs have better correlation and space-filling properties

than the original base designs and compare well with other types of SFDs created from

scratch in the extended design space. In addition, through massive computer-based

experimentation, we compare popular software packages for generating SFDs and

provide insight into the methods and relationships among design measures of correlation

and space-fillingness. These results provide experimenters with a broad understanding of

SFD software packages, algorithms, and optimality criteria. Further, we provide a

probability-distribution model for the maximum absolute pairwise correlation among

columns in the widely used maximin Latin hypercube designs.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. THE DEPARTMENT OF DEFENSE RELIES ON

COMPUTATIONAL MODELS ...1
B. HIGH-DIMENSIONAL COMPUTATIONAL

EXPERIMENTATION ...2
C. RESEARCH QUESTIONS ...3
D. ORGANIZATION OF THE DISSERTATION4

II. BACKGROUND AND LITERATURE REVIEW ...7
A. EXPERIMENTAL SETTING ..7
B. METAMODELS ..7
C. MEASURES OF DESIGN CHARACTERISTICS9

1. What Constitutes a Good Design? ..9
2. Correlation-Based Measures ...9
3. What Makes a Design Space-Filling? ...11
4. Space-Filling Measures (SFMs) ..14

D. LATIN HYPERCUBE DESIGNS (LHDS) ..18
E. ALGORITHMS FOR BUILDING SPACE-FILLING DESIGNS19
F. SOFTWARE PACKAGES FOR CONSTRUCTING SPACE-

FILLING DESIGNS ..21
G. CATALOGS OF SPACE-FILLING DESIGNS26

III. PERMUTE AND STACK—CONSTRUCTING PORTFOLIOS OF
DESIGNS ..29
A. MOTIVATION ..29
B. MATHEMATICAL MODEL ...30
C. PERMUTE AND STACK ALGORITHM: ITERATIVELY

APPLYING MINNU ..35
D. A SEQUENCE OF DESIGNS: AN EXAMPLE OF THE

PERMUTE AND STACK ALGORITHM ..37
1. Extending a Cataloged Uniform Design38
2. Properties of the Extended Uniform Design39

E. PARAMETERS AND TIMING ...43
F. PERMUTE AND STACK SUMMARY ...46

IV. PERMUTE AND STACK: EXTENDING AND IMPROVING
DESIGNS FOR LARGE-SCALE COMPUTER EXPERIMENTS47

viii

A. A BASELINE TO COMPARE RESULTS ..48
B. EXTENDING CATALOGED DESIGNS ..50

1. Extending Cataloged Nearly Orthogonal Latin
Hypercubes (NOLHs) ..51

2. Extending Cataloged Uniform Designs (UDs)56
C. EXTENDING STOCHASTICALLY GENERATED SPACE-

FILLING DESIGNS USING JMP AND R SOFTWARE
PACKAGES ...60
1. Extending JMP’s MmLHDs..60
2. Extending R’s Maximum Projection (MaxPro) Designs71
3. Extending JMP’s Sphere-Packing (Mm distance) Designs75
4. Extending R’s UniDOE Uniform Designs (UDs)78
5. Extending JMP’s Uniform Designs (UDs)81
6. Extending Random Latin Hypercube Designs (LHDs)84

V. LESSONS FROM MASSIVE EXPERIMENTATION ON SPACE-
FILLING DESIGNS OF DIFFERENT TYPES AND SIZES89
A. INTRODUCTION..89
B. APPROACH METHODOLOGY: WHAT WE DID90

1. Software-Generated Constructions ..90
2. Measurement Data ...92

C. BUILDING INTUITION AND WINNOWING DOWN THE
FIELD ...94
1. Some SFMs Can Be Misleading ..94
2. The MaxPro Criterion ...96
3. Measures of Discrepancy ...97
4. Results on LHD and LHS Designs ..98

D. NUMERICAL RESULTS AND MEASURES104
1. Distributions of ρmap for Five Design Classes of Various

Sizes ...105
2. Distributions of Mm Distance for Five Design Classes of

Various Sizes...109
3. Distributions of (ML2)2 Discrepancy for Five Design

Classes of Various Sizes ...112
4. Multiobjective Results on (ML2)2 and ρmap115

E. CORRELATIONS AMONG SELECT MEASURES FOR
MMLHDS, SPHERE-PACKING DESIGNS, AND LHDS120
1. Correlation Analysis Motivation and Approach120
2. Parametric Approach ..122
3. Nonparametric Approach ...125

ix

4. Correlations between Measures for Various Design
Classes and Sizes ..127

F. CHAPTER SUMMARY ..147

VI. A DISTRIBUTION MODEL OF THE MAXIMUM ABSOLUTE
PAIRWISE CORRELATION FOR MMLHDS ...149
A. INTRODUCTION AND APPROACH ..149
B. GENERATING 480,000 MMLHDS OVER MULTIPLE

DESIGN DIMENSIONS ...150

C. THE DISTRIBUTION OF MAP IN MMLHDS152

D. THE MINIMUM MAP OBTAINED BY GENERATING G
MMLHDS ...154

E. DISTRIBUTION MODELS FOR min
map VALUES OF LHDS

AND MMLHDS ...160
F. SUMMARY OF FINDINGS ...169

VII. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE
RESEARCH ...171

APPENDIX A. EXTENDING CATALOGED DESIGNS ...175

APPENDIX B. EXTENDING STOCHASTICALLY GENERATED SPACE-
FILLING DESIGNS USING JMP AND R SOFTWARE PACKAGES.......177

APPENDIX C. PERMUTATIONS FOR THE NOLH DESIGN USING
OPTIMIZATION ...183

APPENDIX D. SCRIPTS AND FUNCTIONS ..185

APPENDIX E. COMPLETE LHD AND LHS COMPARISON189

APPENDIX F. NUMERICAL RESULTS ON MEASURES193

APPENDIX G. CORRELATION TABLES ..197

x

APPENDIX H. CALCULATED min
map VALUE AND STANDARD

DEVIATION (SD) FOR THE SPECIFIED DSE DIMENSIONS AND
G = 10, 25, AND 50 ..225

APPENDIX I. REX ..229

LIST OF REFERENCES ..233

INITIAL DISTRIBUTION LIST ...243

xi

LIST OF FIGURES

Figure 1. An example of a 5×2 LHD (McKay et al. 1979) generated using the
DiceDesign (Dupuy et al. 2015) R software package. Each blue dot
represents a point at which the computer model will be run.12

Figure 2. Two pairwise plots of 16×4 designs: An LHD (McKay et al. 1979)
(left) and a 2k Factorial (right). We see that the LHD has much better
space-fillingness. ..13

Figure 3. Six pairwise plots of 16×4 SFDs: (a) Mm distance, (b) mM distance,
(c) MmLHD, (d) uniform design (UD), (e) MaxProLHD, and (f)
MaxPro. ..24

Figure 4. Two extensions of the 8×7 base uniform design (UD) X0 in matrix
form: The left (grey) results from forward shift-and-stack. The right
(blue) results from the permute_and_stack algorithm.39

Figure 5. Three approaches: (1) Box plot of 1,000 map values for the three-
stack 8×7 UD randomly extended experiment, (2) after three
applications of shift-and-stack (map = 0.137) (orange), and (3)
permute_and_stack (map = 0.048) (blue).42

Figure 6. Three approaches: (1) Box plot (yellow) of 1,000 map values for the
three-stack 33×11 NOLH randomly extended experiment, (2) the
range of map values after three applications of shift-and-stack
(orange), and (3) the results of permute_and_stack (blue)...............43

Figure 7. The 33×11 NOLH design X0 and 110 extended designs using
permute_and_stack (blue) and ten applications of shift-and-
stack (light colors). ...52

Figure 8. Comparative plot between permute_and_stack (blue) and shift-
and-stack (light colors) for 33×11, 65×16, 129×22, and 257×29
space-filling NOLHs. The permute_and_stack designs
dominate shift-and-stack in terms of map. ...53

Figure 9. Multi-objective map and (ML2)2 comparison for extended NOLH
designs up to four applications of shift-and-stack and
permute_and_stack. ..54

Figure 10. Four shift-and-stack and permute_and_stack applications to an
8×7 uniform design (UD) example from Fang et al. (2000b). Jitter is

xii

added to the points so that ties can be identified. The nearly
orthogonal (NO) criterion is marked with a dashed line at 0.05.57

Figure 11. Four applications of shift-and-stack and permute_and_stack to
UDs of size 16×11, 21×11,…, and 30×20 from the UD catalog of
Fang et al. (2000b). ..58

Figure 12. Multi-objective (map and (ML2)2) 30×11 UD comparison and
resultant UDs extended after four applications of shift-and-stack and
permute_and_stack. ..59

Figure 13. Mm, map, and (ML2)2 measures for 100 33×11 MmLHDs from JMP.
Note that map ranges from 0.176 to 0.380. ..61

Figure 14. Strip chart and box plot of map values for 100 33×11 MmLHDs
constructed using JMP. The individual points (left) show the map
values of 100 X0 matrices. We see considerable variably in map,
with none of the designs being nearly orthogonal.63

Figure 15. Four forward shift-and-stack iterations with box plots of map values
for 100 33×11 MmLHDs using the base design configuration (B) of
X0. ..64

Figure 16. Box plots of map values for ten column-reordering heuristics
through four iterations of shift-and-stack for 100 33×11 MmLHDs.64

Figure 17. Box plots of map values at each of four stacks given the 100 33×11
MmLHDs using shift-and-stack for the ten column-reordering
heuristics and permute_and_stack (blue). The
permute_and_stack algorithm dramatically outperforms shift-
and-stack in reducing map values and variability.66

Figure 18. Comparative plot between permute_and_stack (blue), shift-
and-stack (light colors), and 100 new (s+1)33×11 MmLHDs (grey).
The best designs (in terms of map) are the permute_and_stack
designs. None of the software-generated MmLHDs of size
(s+1)33×11 are nearly orthogonal. ...67

Figure 19. 100 33 11 MmLHDs prior to shift-and-stack and
permute_and_stack. The shaded 90 percent ellipse shows an
approximate map range of [0.17, 0.35] and (ML2)2 of [0.75, 0.90].68

Figure 20. 100 33×11 MmLHDs after one application (s = 1) of forward shift-
and-stack (light colors) and permute_and_stack (blue). 100
new 66×11 MmLHD constructions are plotted individually (grey).69

xiii

Figure 21. 100 33×11 MmLHDs with four extensions using shift-and-stack
(colors) and permute_and_stack (blue) compared with 100
165×11 MmLHDs. The shaded ellipses contain 90 percent of the
design measure coordinates for each of the dozen generation
methods. From the 1,200 designs, only six are non-dominated
(darkened). ...70

Figure 22. MaxPro, Mm distance, map, and (ML2)2 distributions for 100 33×11
MaxPro designs from the MaxPro R software package. The average
map is 0.257, and it ranges from 0.176 to 0.378.72

Figure 23. Box plots of map values at each of four stacks given 100 33×11
MaxPro designs using shift-and-stack (with ten column-reordering
heuristics), permute_and_stack (blue), and 100 new
(s+1)33×11 MaxPro designs (grey) for s =1, …, 4. None of the
MaxPro designs satisfy the nearly orthogonal criterion.73

Figure 24. 100 33×11 MaxPro designs with two extensions (s = 2) of shift-and-
stack with the ten column-reordering heuristics (colors) and
permute_and_stack (blue) compared with 100 99×11 MaxPro
designs. None of the 100 99×11 MaxPro designs generations (grey)
in the extended space satisfy the nearly orthogonal criterion.74

Figure 25. Mm, map, and (ML2)2 measures for 100 33×11 sphere-packing
(JMP’s Mm distance) designs. Note that the mean map is 0.229,
ranging from 0.114 to 0.338. ...76

Figure 26. Comparative plot between permute_and_stack (blue), shift-
and-stack (colors), and 100 (s+1)33×11 sphere-packing designs
(grey). The best designs (in terms of map) are the
permute_and_stack designs. ...77

Figure 27. 100 (s+1)33×11 sphere-packing designs with s = 2 extensions using
shift-and-stack (colors) and permute_and_stack (blue), as well
as new generations for the extended space (grey). Note that many of
permute_and_stack designs satisfy the map ≤ 0.05 criteria.78

Figure 28. (CL2)2, Mm distance, map, and (ML2)2 measures for 100 33×11
uniform designs generated from the UniDOE package in R. Note
that map ranges from 0.132 to 0.296. ..79

Figure 29. Comparative box plots of 100 design generations using the UniDOE
R package for the default settings compared to shift-and-stack and
permute_and_stack. Two extensions of the
permute_and_stack algorithm result in an average map < 0.05.80

xiv

Figure 30. Multi-objective (map and (ML2)2) comparative plot for UDs
generated using the R package UniDOE. Note the fraction of
observations that are nearly orthogonal for the ellipses shown.81

Figure 31. (CL2)2, Mm distance, map, and (ML2)2 measures for 100 33×11 JMP
uniform design (UD) constructions. Note that the mean map for
these designs ranges from 0.087 to 0.199. ...82

Figure 32. Comparative plot between permute_and_stack (blue), shift-
and-stack (light colors), and 100 new (s+1)33×11 UDs of JMP
(grey). The best designs (in terms of map) are the
permute_and_stack designs, which are nearly orthogonal on
average after s = 1. ...83

Figure 33. Time diagnostic report to generate one 200×20 UD in JMP.83

Figure 34. 100 33×11 UDs generated using JMP with one extension using shift-
and-stack (colors) and permute_and_stack (blue) compared
with 100 66×11 UDs in the extended space. ...84

Figure 35. MaxPro, Mm, ,map and (ML2)2 measures for 100 33×11 LHDs. The

mean map of these 100 LHDs is 0.441, ranging from 0.301 to 0.585.85

Figure 36. Comparative plot between permute_and_stack (blue), shift-
and-stack (light colors), and 100 (s+1)33×11 LHDs (grey). The best
designs according to map are the permute_and_stack designs.86

Figure 37. 100 33×11 random LHDs after one extension using shift-and-stack
(light colors) and permute_and_stack (blue) compared with
100 66×11 LHDs. Shaded ellipses containing 90 percent of the
66×11 LHDs are barely noticeable (seven o’clock position) behind
the design measure coordinates (and ellipses) of shift-and-stack.
From the 1,200 designs, seven are non-dominated, all of which are
permute_and_stack designs. ...87

Figure 38. An example file folder containing the first ten of 100 32×10 MaxPro
design generations. ...92

Figure 39. Scatter plot matrix for the resolution IV 8×4 Fractional factorial 4 12 
design. This design is column orthogonal and has optimal coverage;
but, it is not generally considered space-filling. ..95

Figure 40. A two-dimensional projection of a 16×4 MmLHD (blue circles),
which provides the starting point for the optimization and the
resultant MaxPro design (red triangles). ..96

xv

Figure 41. A scatter plot of (ML2)2 values and (CL2)2 values from Table 13. The
correlation between these two discrepancy measures is 0.962, though
driven largely by a few outlying points. ..98

Figure 42. Side-by-side box plots of 100 LHSs and 100 LHDs for k = 5 and n =
6 (or k+1). These box plots display the results from 100 LHS and
LHD designs. ...100

Figure 43. Side-by-side box plots of 100 LHSs and 100 LHDs for k = 5 and n =
6, 17, and 50 (columnwise). ...101

Figure 44. Side-by-side box plots of 100 LHSs and 100 LHDs for k = 5, 10, and
20 (rowwise) and n = k+1, 3k+2, and 10k (columnwise). These box
plots display the results from 900 LHS and 900 LHD designs................102

Figure 45. A comparison of discrepancy. Side-by-side box plots of the (ML2)2
discrepancy. ...103

Figure 46. A comparison of distance. Side-by-side box plots of the MaxPro
criterion. ...103

Figure 47. Side-by-side box plots of (ML2)2 discrepancy (left) and MaxPro
criterion (right). ..104

Figure 48. Side-by-side box plots of the empirical map distributions for 100
6×5 LHD, MaxPro, MmLHD, SphereP, and UniDOE designs. The
map values across the designs range from near zero to almost one.106

Figure 49. Box plots of map distributions for 100 6×5, 17×5, and 50×5 LHD,
MaxPro, MmLHD, SphereP, and UniDOE designs. As n increases,
map steadily improves. ..107

Figure 50. Box plots of map distributions for 100 6×5, 17×5,…, 200×20 LHD,
MaxPro, MmLHD, SphereP, and UniDOE designs. For large n and
k; i.e., moving towards the lower right panels, we see that UniDOE
designs do best with respect to map. ..108

Figure 51. Box plots of map distributions for 100 LHD, MaxPro, MmLHD,
SphereP, and UniDOE designs with k = 20. As n increases, map
steadily improves, variability decreases, and UniDOE designs
perform the best. ..109

Figure 52. Mm distances for 100 LHD, MaxPro, MmLHD, SphereP, and
UniDOE designs of various sizes. As n and k increase, SphereP
designs achieve dominant Mm distance behavior, but less so in the
few-factors (k = 5) case. ..110

xvi

Figure 53. Mm distances for 100 LHD, MaxPro, MmLHD, and UniDOE
designs of various sizes. For saturated n and k; i.e., the left column
of panels, MaxPro designs achieve dominant Mm distance, which
changes to MmLHDs for the n = 10k case; i.e., the right column of
panels. ..111

Figure 54. Mm distances for 100 200×20 LHD, MaxPro, MmLHD, and
UniDOE designs. For large-scale computational experimentation,
MmLHDs achieve dominant Mm distance among these.112

Figure 55. (ML2)2 values for 100 LHD, MaxPro, MmLHD, SphereP, and
UniDOE designs of various sizes. For the 21×20 case (bottom left
panel), SphereP designs achieve the highest (ML2)2 discrepancy.113

Figure 56. Side-by-side box plots of (ML2)2 discrepancy of LHD, MaxPro,
MmLHD, and UniDOE designs of sizes 6×5, 17×5, and 50×5.114

Figure 57. Side-by-side box plots of (ML2)2 discrepancy of LHD, MaxPro,
MmLHD, and UniDOE designs of sizes 21×20, 62×20, and 200×20.114

Figure 58. Multiobjective scatter plots comparing (ML2)2 and map for designs
with dimensions n = 50 and k = 5. Five design types are shown in the
scatter plot on the left and four on the right. ..116

Figure 59. Multiobjective scatter plots of map and (ML2)2.117

Figure 60. Multiobjective scatter plots of map and (ML2)2 reduced to four
design classes. ..118

Figure 61. Scatter plots for k = 20 (in terms of map and (ML2)2).118

Figure 62. map and (ML2)2 scatter plots of 400 200×20 designs.119

Figure 63. Scatter plot of | | versus map for the 100 200×20 MmLHDs from

JMP. For the data, r(| | , map) = 0.202 and the p-value ≤ 0.05.121

Figure 64. Two quantile-quantile (q-q) plots and Shapiro-Wilk normality test
results for map (left) and | | (right) for the MmLHD(200, 20) data
series. ...123

Figure 65. Histogram of the 10,000 resampled correlations (i.e., t*) for the

200×20 MmLHD data series. Note r(| | , map) = 0.202 for the
original sample. ..126

xvii

Figure 66. Three scatter plots of MmLHD(n, k) (r(| | , map)) for the 21×20
(left), 62×20 (middle), and 200×20 (right) MmLHD data series. Note
that the right panel is Figure 63. ..129

Figure 67. The combined nine-panel plot of MmLHD(n, k) (r(| | , map))
scatter plots. Note the bottom three-panel-row is k = 20, which is
Figure 66. ...130

Figure 68. The combined nine-panel plot of SphereP(n, k) (r(| | , map)) scatter
plots. Rowwise, the top row is k = 5, middle is k = 10, and bottom k
= 20. Columnwise (left, middle, and right), n is a function of k, i.e., n
= k + 1, 3k + 2, and 10k. ...131

Figure 69. The combined nine-panel plot of LHD(n, k) (r(| | , map)) scatter
plots. ...132

Figure 70. The combined nine-panel plot of MmLHD(n, k) (r((CL2)2, (ML2)2))
scatter plots. ...133

Figure 71. The combined nine-panel plot of SphereP(n, k) (r((CL2)2, (ML2)2))
scatter plots. ...134

Figure 72. The combined nine-panel plot of LHD(n, k) (r((CL2)2, (ML2)2))
scatter plots. ...135

Figure 73. Nine MmLHD(n, k) (r(Mm, MaxPro)) scatter plots.136

Figure 74. Nine scatter plots of LHD(n, k) r(Mm, MaxPro) correlations for the
data. ..137

Figure 75. Nine MmLHD(n, k) (r((ML2)2, map)) scatter plots.139

Figure 76. Nine SphereP(n, k) (r((ML2)2, map)) scatter plots.140

Figure 77. Nine scatter plots of LHD r((ML2)2, map) correlations for the data.141

Figure 78. Nine MmLHD(n, k) (r(Mm, map)) scatter plots.142

Figure 79. Nine SphereP(n, k) (r(Mm, map)) scatter plots.143

Figure 80. Nine LHD(n, k) (r(Mm, map)) scatter plots...144

Figure 81. Nine MmLHD(n, k) (r((ML2)2, MaxPro)) scatter plots.145

Figure 82. Nine LHD(n, k) (r((ML2)2, MaxPro)) scatter plots.146

xviii

Figure 83. 10,000 ρmap values for each of 6×5, 7×6, and 8×7 MmLHDs. Values
range from less than 0.1 to greater 0.9. ..153

Figure 84. Box plots of 10,000 map values for each of 48 MmLHD sizes (e.g.,
6×5, 17×5, 50×5,…, 21×20, 62×20, 200×20). ...154

Figure 85. The “+” symbols show the best-saturated design ρmap values in
10,000 MmLHDs for k = 5, 6, …, 20. ...157

Figure 86. A comparative plot of the min
map values (“■”) in DSE(n=k+1, k, G=10) and

the best observed map values (“+”) from the 10,000 saturated
(k+1)×k MmLHDs over the k levels. ...158

Figure 87. A comparative plot of the min
map values of DSE(n=k+1, k, G) when G =

10, 25, 50, and 100) and the best saturated k+1×k MmLHD (+)
values achieved. ...159

Figure 88. A comparative plot of the min
map values and best ρmap values (“+”) for

each saturated-, medium-, and high-density case and all values of G.160

Figure 89. Three examples of the GEV (Jenkinson 1955, Park and Sohn 2006):
Weibull (left), Gumbel (middle), and Fréchet (right), which all have
the same location and scale parameters (location = 0 and scale = 1).162

Figure 90. Four empirical frequency histograms for the various G and the LHD
DSE(n=200, k=20, G=10, 25, 50, and 100) data. ...163

Figure 91. Side-by-side plots: Density histogram (left) and the empirical CDF

(right) of 200 observations of min
map for LHDs in DSE(n=200, k=20, G=50).

The blue line represents the GEV fit using MLE, which suggests a
Weibull distribution. ..164

Figure 92. Histogram of 100,000 K-S statistic p-values using fitted parameters
(location, scale, and shape) of the GEV function as the null
hypothesis and the p-value we observed. ...166

Figure 93. The MLE fitted GEV distributions (in blue) for MmLHDs in
DSE(n=200, k=20, G) when G = 10, 25, 50, and 100.167

Figure 94. Empirical CDFs of 1,000 (top left), 400 (top right), 200 (bottom

left), and 100 (bottom right) observations of min
map values of

MmLHDs in DSE(n=200, k=20, G). The GEV fits (blue) show a good
match. ...168

xix

Figure 95. Multi-objective map and (ML2)2 comparison for extended NOLH
designs up to ten applications of shift-and-stack and
permute_and_stack..175

Figure 96. Multi-objective map and (ML2)2 comparison for extended uniform
designs up to ten applications of shift-and-stack and
permute_and_stack..176

Figure 97. 100 33×11 MmLHDs after four applications (s = 1, 2, 3, and 4) of
forward shift-and-stack using the ten column reordering heuristics
(light colors) and permute_and_stack (blue). 100 new
(s+1)×11 MmLHD constructions are plotted individually (grey).177

Figure 98. 100 33×11 MaxPro designs after four applications (s = 1, 2, 3, and 4)
of forward shift-and-stack using the ten column reordering heuristics
(light colors) and permute_and_stack (blue). 100 new
(s+1)×11 MaxPro design constructions are plotted individually
(grey). ...178

Figure 99. 100 33×11 sphere-packing designs after four applications (s = 1, 2,
3, and 4) of forward shift-and-stack using the ten column reordering
heuristics (light colors) and permute_and_stack (blue). 100
new (s+1)×11 sphere-packing designs constructions are plotted
individually (grey). ..179

Figure 100. 100 33×11 UniDOE designs after four applications (s = 1, 2, 3, and
4) of forward shift-and-stack using the ten column reordering
heuristics (light colors) and permute_and_stack (blue). 100
new (s+1)×11 UniDOE design constructions are plotted individually
(grey). ...180

Figure 101. 100 33×11 UDs generated using JMP, four application (s = 1, 2, 3,
and 4) of forward shift-and-stack using the ten column reordering
heuristics (light colors), and permute_and_stack (blue). 100
new (s+1)×11 UDs for the extended space are plotted individually
(grey). ...181

Figure 102. 100 33×11 LHDs generated using R, four applications (s = 1, 2, 3,
and 4) of forward shift-and-stack using the ten column reordering
heuristics (light colors), and permute_and_stack (blue). 100
new (s+1)×11 LHDs for the extended space are plotted individually
(grey). We observe that most of the grey observations are plotted
within the shaded ellipses of the shift-and-stack observations.182

xx

Figure 103. Sequentially improving the correlation, imbalance, space-filling, and
subspace-filling properties of a design using a column-based MIP at
each step. ..230

Figure 104. A very poor initial design with map = 1 and a maximal imbalance of
0.875...231

Figure 105. The resultant design after applying REX is orthogonal and perfectly
balanced. ..231

xxi

LIST OF TABLES

Table 1. A partial list of JMP space-filling designs. ..22

Table 2. Examples of R software packages used to construct space-filling
designs..22

Table 3. Comparative table for the eight classes of SFD of Figures 2 and 3 (a
– f) and for ten measures of design characteristics.26

Table 4. The correlation and space-filling properties of the 8×7 uniform
design (UD) and its extensions. Read rowwise to compare forward
shift-and-stack to permute_and_stack. ...40

Table 5. Design property comparison after three iterations of forward shift-
and-stack and permute_and_stack. By extending the base
design using optimization, we decrease map from 0.3095 to 0.0476.
The forward shift-and-stack design has a map value nearly three
times higher. Note: There is no 32×7 in Fang et al.’s (2000b) online
catalog, see http://www.math.hkbu.edu.hk/UniformDesign/.41

Table 6. A partial list of CPLEX parameters and the required interactive
script syntax. ..44

Table 7. Time comparison after three iterations of permute_and_stack
applied to cataloged uniform designs. ...46

Table 8. R for the 8 7 uniform design (UD) from Fang et al. (2000b).49

Table 9. Ten correlation-based column-reordering heuristics using R from
Table 8. ..49

Table 10. X0 (left) and SD reordered X0 (right). ..50

Table 11. Optimal permutations for the 33 11 NOLH through ten stacks and
the corresponding map values for Xs. ..55

Table 12. Ten rows from the final 5,400×14 CSV measurement data file.93

Table 13. Sixteen cataloged n×k UDs (Fang et al. 2000b) with their (ML2)2 and
(CL2)2 values. ...97

Table 14. Pearson correlation coefficients, r(x, y), for six design classes of
dimension 200×20. ...121

xxii

Table 15. Bootstrap CIs of r(| | , map) replications for the 200×20 MmLHD
data. ..127

Table 16. Correlation values, r(x, map), for ten SFMs and six SFDs size 6×5.147

Table 17. The combined data CSV file ..152

Table 18. Calculated min
map value and standard deviation (SD) for the specified

DSE dimensions. ..156

Table 19. The first ten of the m = 200 min
map values with G = 50 for 200×20

LHDs. ...161

Table 20. Read columnwise: the G value, location, scale, and shape parameter
estimates using the GEV function, 95% percentile bootstrap
confidence interval of the shape parameter, K-S statistic, p-value,
and fail to reject (FTR), if appropriate. ..169

Table 21. Permutations for the 65 16 NOLH through 10 stacks.183

Table 22. Permutations for the 129 22 NOLH through 10 stacks.183

Table 23. Permutations for the 257 29 NOLH through 10 stacks.184

Table 24. The mean ρmap and standard deviation (SD) for 100 generations.193

Table 25. The mean (ML2)2 and SD for 100 generations. ..194

Table 26. The mean Mm distance and SD for 100 generations of six design
types for nine different sizes n k195

Table 27. Calculated min
map value and standard deviation (SD) for the specified

DSE dimensions for G =10. ...225

Table 28. Calculated min
map value and standard deviation (SD) for the specified

DSE dimensions for G = 25. ..226

Table 29. Calculated min
map value and standard deviation (SD) for the specified

DSE dimensions for G = 50. ..227

xxiii

LIST OF ACRONYMS AND ABBREVIATIONS

2k Full Factorial Design with Two Levels per Factor

CDF Cumulative Distribution Function

CPU Central Processing Unit

DoD Department of Defense

DOE Design of Experiments

GB Gigabyte

GEV Generalized Extreme Value

GHz Gigahertz

JMP “John’s Macintosh Project” Statistical Package from the SAS
Institute

JSL JMP’s Scripting Language

LH Latin Hypercube

LHD Latin Hypercube Design

LHS Latin Hypercube Sampling

MaxPro Maximum Projection

MaxProLHD Maximum Projection Latin Hypercube Design

MIP Mixed Integer Program

Mm Maximin

mM Minimax

MmLHD Maximin Latin Hypercube Design

NOLH Nearly Orthogonal Latin Hypercube

NOLHD Nearly Orthogonal Latin Hypercube Design

PYOMO Python Optimization Modeling Objects

RAM Random Access Memory

RLH Random Latin Hypercube

SFD Space-Filling Design

SFM Space-Filling Measure

UD Uniform Design

xxiv

THIS PAGE INTENTIONALLY LEFT BLANK

xxv

EXECUTIVE SUMMARY

The mission of the Department of Defense (DOD) is “to provide the military forces

needed to deter war and ensure our nation's security” (Department of Defense 2021). To

do this, the DOD makes choices regarding the composition of our armed forces and how

they should fight, if necessary. Since real-world experimentation is often infeasible or

prohibitively expensive, the DOD’s decision-making process is often underpinned by

computer experiments using complex models. To enhance the information provided to

decision makers through computer experimentation, this research develops methods that

increase the inventory of effective and efficient experimental designs developed for

complex, high-dimensional computer models.

Before computer models are run, users specify the inputs to the model and the

responses they will collect. The inputs are made via an n×k design matrix X, which

stipulates the computer model’s input settings for n experiments involving k factors (i.e.,

input variables). The insights one can glean depend critically on the properties of X.

Experimenters seek designs that (1) have zero or minimal correlations among columns in

X “to allow independent assessment of the effects of the different inputs” (Moon et al.

2012, p. 378) and improve the performance of many statistical methods; (2) are space-

filling (i.e., sample throughout the input space); (3) enable the fitting of a variety of diverse

metamodels; and (4) minimize metamodel bias and allow us to detect it when it occurs

(Santner et al. 2018). Many of these properties can be attained with special-purpose space-

filling designs (SFDs); therefore, they are extensively used in computer experimentation.

Algorithms that construct SFDs are typically computationally burdensome, contain

randomness in their construction, or require commercial licenses. Thus, researchers often

catalog designs to make them readily available for widespread use.

This dissertation introduces a new technique, which we name

permute_and_stack, which enables experimenters to leverage existing SFDs to add

sequential batches of design points efficiently. We accomplish this through a quadratically

constrained mixed integer program that augments cataloged or computationally expensive

SFDs by optimally permuting and stacking columns of an initial base design matrix (X0)

xxvi

to minimize the maximum absolute pairwise correlation (map) among columns in the new

extended design. Lower map values are preferred, with map = 0 indicating column

orthogonality. The extended designs, with additional design points, provide more degrees

of freedom for building metamodels and assessing fit.

The idea of extending designs by permuting and stacking the columns of X0 is not

original. A straightforward approach, known as shift-and-stack, is a simple algorithm that

extends designs by shifting each of the columns in X0 over by one (forward or backward)

and appends the shifted matrix to X0 (Sanchez and Sanchez 2019). The heuristic shift-and-

stack can be applied iteratively to provide a series of extended designs. This research began

by investigating if using heuristics to reorder the columns of X0 improves the resultant

designs from shift-and-stack when applied to cataloged nearly orthogonal Latin hypercubes

(NOLHs) (Cioppa and Lucas 2007). There are over 1076 possible ten-stack designs ((11!)10)

when the base design X0 is the cataloged 33×11 NOLH. Figure ES1 shows how much

better the permute_and_stack optimization reduces map values than various column-

reordering heuristics using shift-and-stack.

xxvii

Figure ES1. The 33×11 NOLH design X0 and 110 extended designs using
permute_and_stack (blue) and ten applications of shift-and-stack
(light colors) using column reordering heuristics. X1 is the extended design
after one application of permute_and_stack.

To assess the potential of permute_and_stack, this research explored how

permute_and_stack performs in reducing map when sequentially adding batches (or

stacks) of n design points (DPs) for several cutting-edge classes of cataloged and computer-

generated SFDs. The reductions in map are contrasted with values obtained by applying

shift-and-stack to the base designs using several correlation-based column-reordering

heuristics as well as random permutations of the columns. Where feasible, we also evaluate

permute_and_stack against newly generated SFDs in the extended design space. In

all cases, permute_and_stack yields better designs in terms of map than do the

alternatives. However, new designs generated in the extended space may produce better

designs by some of the space-filling measures. For all classes and design dimensions

xxviii

explored, the set of multi-objective (i.e., map and a measure of space-fillingness) non-

dominated designs includes permute_and_stack designs.

In evaluating permute_and_stack’s performance, we generated and assessed

many measures of design quality in nearly a million SFDs of numerous types and sizes. A

wide-ranging review of the literature has found nothing as comprehensive in quantifying

and displaying the relationships (or lack thereof) for so many measures in multiple SFD

classes and sizes as is contained in this dissertation. This directly addresses the knowledge

gap identified by Jin et al. (2003, p. 554) that “[w]hile there are many optimality criteria

available in the literature, the comparison between different design criteria is certainly one

of the most important problems in the field of design of computer experiments and deserves

a thorough future investigation.”

Since almost all of the algorithms that build SFDs have stochastic elements, we

provide summary statistics or plots of the distributions of ten measures of design quality

for several classes and sizes of SFDs. Results include the observation that across the design

classes, for many measures, design-class preference can change with n and k. Moreover,

high variances and outliers in the plots reveal the risks associated with generating one

“optimal” design with the stochastic software used to construct SFDs. Researchers need to

generate many SFDs to ensure they obtain a design with good properties for their

application.

The ultimate goal of this research is to provide experimenters with good designs.

Toward that end, this research provides empirical guidance on the minimum map a

researcher can expect to attain when generating G independent SFDs for numerous classes

and multiple sizes. We also explore the asymptotic distribution of the minimum map as G

increases in Latin hypercube designs (LHDs), as well as LHDs that seek to maximize the

minimum (Mm) distance between any two design points (i.e., MmLHDs) for designs with

k = 20 and n = 200. These may be the two most widely used types of SFDs. The results

suggest that asymptotically, as G gets larger, the minimum map from the G designs

converges to a Weibull distribution. This research only scratches the surface of what is

xxix

possible. The analysis above can be applied to any measure of design characteristics for

any class of SFD.

References

Cioppa TM, Lucas TW (2007) Efficient nearly orthogonal and space-filling Latin

hypercubes. Technometrics 49(1):45–55.

DoD (2021) The Department of Defense releases the president’s fiscal year 2022 defense
budget. US Dep. Def. Retrieved (August 12, 2021), https://www.defense.gov/
Newsroom/Releases/Release/Article/2638711/the-department-of-defense-
releases-the-presidents-fiscal-year-2022-defense-budg/.

Jin R, Chen W, Sudjianto A (2003) An efficient algorithm for constructing optimal
design of computer experiments. Int. Des. Eng. Tech. Conf. Comput. Inf. Eng.
Conf. 545–554.

Moon H, Dean AM, Santner TJ (2012) Two-stage sensitivity-based group screening in
computer experiments. Technometrics 54(4):376–387.

Sanchez PJ, Sanchez SM (2019) Orthogonal second-order space-filling designs with
insights from simulation experiments to support test planning. Qual. Reliab. Eng.
Int. 35(3):854–867.

Santner TJ, Williams BJ, Notz WI (2018) The Design and Analysis of Computer
Experiments, 2nd ed. (Springer, New York).

xxx

THIS PAGE INTENTIONALLY LEFT BLANK

xxxi

ACKNOWLEDGMENTS

To begin, I want to thank those in the Marine Corps leadership who took a risk and

afforded me the opportunity to engage in this research.

Next, I must express my most profound admiration and indebtedness to the faculty

of the Operations Research Department for their invaluable instruction. My deepest

gratitude goes to my advisors, Professors Matthew Carlyle and Thomas Lucas, for guiding

me through this dissertation. I also want to thank Professors Raymond Buettner, Alejandro

Hernandez, and David Kelton for being on my advisory committee and for their expert

direction and recommendations. The patience, assistance, and guidance all of you offered

were crucial in developing this research. I feel blessed to have spent so much quality time

with so many brilliant and distinguished professionals; and I am humbled by your

dedication to serving your students.

I thank my wife, Christina, for her boundless patience and constant love during this

journey. I would not be where I am today without your unwavering support. I would also

like to offer my eternal gratitude to my parents, sister, and in-laws for sacrificing to help

our family—especially given the geographic challenges! Thanks to Sandy and Paul

Terpeluk, I was able to focus, and my kiddos spent months filled with love and memories

on Gobbler Hill Farm despite my absence. Lastly, I send my love to my children—and as

my five-year-old son, Paul, would say, “I love you to God and back.”

Thank you all very much!

xxxii

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

A. THE DEPARTMENT OF DEFENSE RELIES ON COMPUTATIONAL
MODELS

Our mission is to provide the military forces needed to deter war and ensure
our nation's security.

—Department of Defense (2021)

To accomplish the Department of Defense’s (DoD’s) mission during an

environment of increasing great power competition, the DoD has 2.146 million military

personnel operating in over 160 countries and an annual budget of $715 billion—including

$112 billion (the largest ever) for research, development, test, and evaluation (RDT&E)

and $14.7 billion for science and technology (DoD 2021). Large-scale computational

experimentation for knowledge acquisition spans the DoD enterprise. Senior leaders in the

DoD need relevant information quickly and accurately to best use these enormous

resources to create capabilities that enable it to meet its mission. Therefore, DoD employs

many thousands of research analysts to study thousands of variables on how U.S. forces

should be configured, maintained, and, if necessary, fight. Where possible, and because

physical experimentation is often prohibitively expensive or infeasible, the analyses are

frequently underpinned by computer experimentation (Morgan et al. 2018).

Attempting to model something as complex as warfare is a daunting challenge. In

live combat, numerous diverse troops and platforms employ a variety of tactics, techniques,

and procedures (TTPs) to meet mission objectives. The DoD strives to model potential

conflict virtually with numerous simulated entities interacting over time and space in

complex, nonlinear, and stochastic ways. The number of input variables in some DoD

models is measured in the tens of thousands and beyond (Saeger and Hinch 2001). This

modeling-and-analysis challenge is compounded by high levels of uncertainty inherent in

warfare. Moreover, the run times associated with some of these models can be

burdensome—sometimes measured in hours or even days (Lukemire et al. 2021, Morgan

et al. 2018, Sanchez et al. 2012).

2

Efficiently obtaining timely information from complex high-dimensional models

with long run times requires well-designed experiments to get the most information and

best precision out of a fixed run-time budget (or, equivalently to get the required

information at the required precision within the shortest run times). This research increases

the options available to computational experimenters by extending the inventory of space-

filling designs (SFDs). During this study, hundreds of thousands of SFDs were generated

and evaluated using a variety of algorithms, design dimensions, and measures of design

quality. The results provide a broad understanding of SFD software packages, algorithms,

and optimality criteria. Together, the expanded inventory of SFDs, and an improved

understanding of their quality measures, provide DoD analysts and other computational

experimenters with additional tools for use in supporting decision makers.

B. HIGH-DIMENSIONAL COMPUTATIONAL EXPERIMENTATION

Many applications involve a large number of input variables. As such,
finding space-filling designs with a limited number of design points that
provide a good coverage of the entire high dimensional input space is a
hopeless undertaking.

—Lin and Tang (2015)

As computers become ever more powerful and affordable, scientists, engineers,

governments, and businesses increasingly use intricate computational models to better

understand complex systems and phenomena. Computer models often contain large

numbers of input variables, nonlinear relationships, numerous and diverse response

variables, and stochastic (or pseudo-random) elements for the purpose of capturing real-

world complexities and uncertainties. Learning efficiently from such models is facilitated

by sophisticated design of experiments (DOE) created specifically for computer models;

see Santner et al. (2018) and Sanchez et al. (2020).

Over the past few decades, dramatic advances in DOE have been developed

specifically for high-dimensional computer models (Dean et al. 2015, Fang et al. 2006,

Santner et al. 2018). Some of these sophisticated designs are computationally expensive to

create, contain randomness in their construction, or require commercial licenses to generate

or use (e.g., Fang et al. 2000a, 2000b, Joseph et al. 2015, Joseph and Hung 2008,

3

MacCalman et al. 2017, Morris and Mitchell 1995, Wang et al. 2021, Xiao and Xu 2018,

Zhou et al. 2019).

Many computer-generated designs are cataloged and made available online to make

these efficient designs readily available for widespread use. For example,

https://spacefillingdesigns.nl/ contains a collection of L2-maximin (Mm) space-filling

Latin hypercube designs (LHDs) for between 11 and 20 factors and up to seven

design points (van Dam et al. 2009). Fang et al. (2000b) provide nearly 1,000 space-

filling uniform designs (UDs) for up to 29 factors and 30 design points

(https://www.math.hkbu.edu.hk/UniformDesign/). The SEED Center for Data Farming

(https://harvest.nps.edu) provides scores of nearly orthogonal and space-filling LHDs in

easy-to-use spreadsheets. However, these cataloged designs provide experimenters with

only a finite number of design options. Moreover, long processing times associated with

some design-generating software may also limit choices.

This research uses mixed-integer programming (MIP) to construct new designs

from existing designs by adding blocks of new design points sequentially that (nearly)

minimize the maximum absolute pairwise correlation among columns in the new extended

designs. This limits the worst-case aliasing when fitting a first-order model (Steinberg and

Lin 2006). This investigation also empirically explores variability in space-filling measures

(SFMs) for space-filling designs (SFDs) created by the SAS’ JMP (SAS Institute 2018)

software and popular R packages and examines relationships between types of SFDs and

their SFMs—and proposes simple methods to improve the quality of the designs they

create.

C. RESEARCH QUESTIONS

Large-scale computer experimentation is widely used in the DoD. While catalogs

of SFDs or software to create them are available, they may not cover all the design

dimensions needed, especially for a sequential “model-test-model” approach (McCool et

al. 1995). Moreover, many algorithms for generating SFDs have randomness associated

with them. Thus, the quality of the design and subsequent analyses depend on chance. By

understanding and accommodating for stochasticity in design generation, we can improve

4

the quality of the design used and insights gleaned. This research uses mixed-integer

programming (MIP) and the analysis of space-filling and correlation measures from

hundreds of thousands of SFDs of multiple types and sizes to gain insights into the

following research questions.

 In the context of batch sequential designs, what are the relative merits of

column reordering heuristics applied to a base design to improve design

quality?

 How do measures of design quality change with additional blocks of

sequential design points?

 For many classes of SFDs (cataloged or generated), can optimization

techniques provide us with an extended design with better correlation or

space-filling properties than can existing heuristics?

 For many classes of SFDs (cataloged or generated), can optimization

techniques provide us with an extended design that has better correlation

properties than an SFD generated from the beginning in the dimension of

the extended design?

 What is the variability in SFMs when using popular software packages to

construct SFDs?

 What are the relationships among space-filling and correlation measures

for various classes and sizes of SFDs?

 Which design-construction methods and parameter settings efficiently

create high-quality SFDs?

D. ORGANIZATION OF THE DISSERTATION

This dissertation flows as follows. Chapter II provides a literature review and

discusses the experimental setting, metamodeling, and the large body of research on SFDs

5

and the criteria for assessing them. Chapter III contains the motivation, mathematical

model, and a new algorithm that batch sequentially augments existing SFDs by optimally

permuting and stacking columns of the design matrix to minimize the maximum absolute

pairwise correlation (map) among columns in the new extended design. Chapter IV shows

the outcome of applying the new algorithm to sequentially extend several classes of SFDs.

Chapter V explores variability and relationships among different space-filling and

correlation measures, spanning many space-filling design classes and sizes for hundreds of

thousands of designs constructed using JMP and R software packages. Chapter VI fits a

distribution model that describes the maximum absolute pairwise correlation among

columns of Latin hypercube designs constructed using the maximin-distance criterion.

Chapter VII contains conclusions, recommendations, and suggestions for future research.

6

THIS PAGE INTENTIONALLY LEFT BLANK

7

II. BACKGROUND AND LITERATURE REVIEW

The most popular experimental designs for computer experiments are Latin
hypercube designs (LHDs, McKay et al. 1979), which has uniform one-
dimensional projections and avoids replications on every dimension.
According to practical needs, there are various types of efficient LHDs (aka.
optimal LHDs), including space-filling LHDs, maximum projection LHDs
and orthogonal LHDs.

—Wang et al. (2021), p. 1

This chapter introduces the experimental setting, discusses metamodels, defines

key terms and notation, presents measures used to assess space-filling designs (SFDs), and

reviews relevant research designing high-dimensional computer experiments.

A. EXPERIMENTAL SETTING

This research addresses situations involving computer experiments in which users

select the input values for experimental investigations over a rectangular region. The

n×k design matrix, X, specifies the computer model’s input settings for n experiments

involving k continuous factors (i.e., input variables). Row i of X, denoted xi, is called a

design point (DP). DP xi specifies the settings for each of the k factors for which the

computational model will be run, for i = 1,…, n. The cth column of X, which we label as

cX , provides the settings for factor c over the n DPs. xic specifies the value in DP i for

factor c. Furthermore, we always scale column input such that xi[0,1]k, with 

representing the k-dimensional unit cube that comprises the experimental region. Finally,

let yi be the output or response from experiments run at the ith DP xi.

B. METAMODELS

To obtain insight from computer models, researchers often build “cheap

surrogate[s]” or metamodels of the responses as functions of the input variables based on

the results of computational experiments (Law and Kelton 2007, Sacks et al. 1989). The

metamodel can be used to (1) build an understanding of the relationships among factors

and responses of the computer model, (2) predict future outcomes, or (3) design future

8

experiments. When the responses are reasonably smooth, readily interpretable polynomial

metamodels can effectively identify and quantify the most important factors and

interactions (Kleijnen 2015, Sanchez et al. 2020). For more complicated responses,

analytically flexible Gaussian process (GP) metamodels are frequently preferred to

approximate computational models and make predictions (Fang et al. 2006 and Santner et

al. 2018).

The types and accuracy of metamodels that can be fit depend critically on the design

matrix, X. For example, if factor c has only two levels, nonlinear effects are unidentifiable.

For situations with little a priori knowledge of the forms of possibly multiple diverse

responses, we desire designs that “allow one to fit a variety of models and should provide

information about all portions of the experimental region” (Santner et al. 2018, p. 148). We

also prefer designs that minimize metamodel bias and allow us to detect it when it occurs.

In addition, we favor column-orthogonal designs since multicollinearity among the

columns of X hinders many statistical procedures (Ryan 2007). A careful choice of X is

required to address these design objectives. Special-purpose SFDs often possess desirable

design attributes (Sanchez et al. 2012). Therefore, SFDs are widely used by practitioners

conducting high-dimensional computer experiments.

This research focuses on situations in which experimenters seek the ability to fit

many wide-ranging metamodels due to a dearth of prior information on the types of

responses that may be generated. If, on the other hand, there is a single response of interest

and the form of the metamodel is known, one can often construct X to optimize a particular

quality metric of the resultant design. The resulting X’s are typically referred to as optimal

designs or alphabetic optimal designs; see, Atkinson et al. (2007), Guttorp and Lindgren

(2009), Kiefer (1959), Pukelsheim (2006). For example, for so-called I-optimal designs, X

is constructed to minimize the average of the variance of the predicted response. Santner

et al. (2018) caution that model bias occurs when the “assumed model is incorrect” (p.

147). Model bias may result in erroneous conclusions.

9

C. MEASURES OF DESIGN CHARACTERISTICS

Which experiment setup should we choose? Although the question is
straightforward, the answer may not always be easy, as different criteria
have been developed to compare competing designs…

—Hinkelmann and Kempthorne (2008), p. 59

This section discusses commonly used measures of design characteristics for large-

scale computational experimentation. These measures can be grouped into two broad

categories: correlation-based criteria and space-filling measures (SFMs). This section is

organized as follows: a discussion on what constitutes a good design, an overview of

correlation-based measures, an explanation of the concept of a design’s space-fillingness,

and an introduction to measures of space-fillingness.

1. What Constitutes a Good Design?

In the context of computer experimentation, the relationships between multiple

responses and the factors are often unknown, complex, and diverse. Given that we seek

designs for a breadth of varied metamodels, we primarily evaluate designs based on

properties of X. Indeed, Lucas et al. (2015) argue that there are risks to successfully

addressing real problems when “model assumptions and structure” (p. 297) are introduced

at the expense of realism. Extending ideas from Sacks et al. (1989) and Santner et al. (2003,

2018), Moon et al. (2012, p. 378) explain that we prefer designs that (1) have zero or

minimal correlations among columns in X “to allow independent [or nearly independent]

assessments of the [main] effects of the different inputs” and (2) are space-filling “to

[e]nsure all regions of the input space are explored.”

2. Correlation-Based Measures

Measures of correlation have been used in evaluating designs since the science of

design of experiments began (Box 1978; Fisher 1926, 1971; Montgomery 2013). Minimal

correlations among the columns in X provide uncorrelated estimates of the coefficients

(i.e., avoids confounding) for a main effects metamodel, increases the precision of effects

estimates, and enhances the performance of many statistical procedures (Kim and Loh

10

2003, Ryan 2007). This subsection introduces the measures we use to quantify correlations

in candidate designs. The correlation between columns cX and dX of X is given by

Equation (1):

 1
,

2 2

1 1

()()

() ()

n

ic id
i

c d
n

c

c d

c d

n

i id
i i

x X x X

x X x X

 

 

  


   
   

 


 


 



 
. (1)

Here cX and dX are the means of columns c and d, respectively. We express the

maximum absolute pairwise (map) correlation as

  max | |, .map cd c d   (2)

The value map quantifies how close to orthogonal the columns of X are, with

map = 0 indicating column orthogonality. An objective of many design construction

algorithms is to minimize map given a set of constraints (Cioppa and Lucas 2007). Kleijnen

(2015, p. 47) explains, “zero correlation…simpli[fies] the statistical analysis.” By

minimizing map, we bound the worst-case pairwise correlation between input factors. A

design with map ≤ 0.05 is called nearly orthogonal (NO); see Hernandez (2008) and

Hernandez et al. (2012a). Others, such as Owen (1994) and Sun et al. (2019), use the

average squared or average absolute correlation as their measure of a design’s correlation.

For a design with k columns, let  ,

1

1 1
)| (| / 1

c c

k

c d

k

d
k k 

  
   be the average of

absolute correlations between columns in X (Sun et al. 2019, Wang et al. 2021) and let

 
1

2 1 2
,1

/ (1)
k k

c dc d c
k k 

  
   (Owen 1994) be the average squared correlation

between the columns. As with map, lower values of | | and 2 are preferred and X is

orthogonal when they are equal to zero. Researchers who have developed space-filling

designs that seek to minimize correlations include: Cioppa and Lucas (2007), Dean et al.

(2015), Joseph and Hung (2008), Little et al. (2019), MacCalman (2013), Sanchez and

Sanchez (2019), Vieira et al. (2013), and Wang et al. (2020).

11

For designs with many factors, a low average absolute or average squared

correlation does not guarantee that all pairwise correlations are small. For example, Ye

(2021) provides a 33×11 Latin hypercube design (LHD) with an | | of 0.015, but a map

of 0.417. Because we do not want even one highly correlated pair of columns in X, we

chose map as our preferred measure of correlation. Other measures, such as | | , for

example, can allow one bad correlation to be masked by a low average value (Savage

2002). One formal justification for this worst-case objective as a general evaluation

criterion (as opposed to a seemingly more comprehensive metric, e.g., average- or median-

case approach) is that map ensures a low aliasing value (Steinberg and Lin 2006) across

the design matrix. For example, consider two designs that we denote A and B, each having

the same | | or 2 values. On the one hand, the alias matrix of A, for fitting a first-order

model; i.e., the columns 1, 2,…, k−1, k, has correlations between each pair of its columns

less than 0.05. On the other hand, the alias matrix of B, for fitting the same model, has

orthogonal columns for all but two columns, which are perfectly correlated (confounded);

i.e.,  = ± 1.0. A concern with a seemingly more comprehensive metric is that it can change

with size k.

3. What Makes a Design Space-Filling?

There are several qualitative descriptions of space-filling. Joseph (2016, p. 29)

writes that an SFD has design “points everywhere in the experimental region with as few

gaps or holes as possible.” Santner et al. (2018, p. 149) state that space-filling intuitively

means “evenly spread,” with the design points (DPs) becoming “increasingly dense” in the

experimental region as more samples are taken. It follows that an SFD is more likely to

identify interesting, localized effects.

We will extensively use scatter plots to visualize space-fillingness. That is, are there

“gaps or holes” in the design space and are the design points (DPs) “evenly spread”? Figure

1 shows the DPs in a 5×2 design matrix and the corresponding design matrix, X. Each blue

dot represents a coordinate pair (i.e., DP) in the two-dimensional . Each DP corresponds

to an input combination of the two factors where the computer model will be run. This

12

design is a 5×2 Latin hypercube design (LHD) (McKay et al. 1979) generated using the

DiceDesign (Dupuy et al. 2015) R software package. LHDs and other design types and

generating software are discussed later in this chapter.

Figure 1. An example of a 5×2 LHD (McKay et al. 1979) generated using
the DiceDesign (Dupuy et al. 2015) R software package. Each blue dot

represents a point at which the computer model will be run.

As in Figure 1, for a design with two dimensions, we can visualize the entire design

space. For k > 2, we will use scatter plot matrices to visualize the projections into all of the

2

k 
 
 

 two-dimensional subspaces defined by all pairs of factors. Figure 2 shows side-by-

side pairwise plots for two 16×4 designs of different types. In this case, there are six two-

dimensional subspaces. Each pairwise plot has two subpanels (i.e., scatter plots) for each

pair of factors, with the factors identified along the diagonal. The left plot is an LHD

(McKay et al. 1979), and the right plot is a 2k factorial design (Box and Wilson 1951). The

DiceDesign (Dupuy et al. 2015) and AlgDesign (Wheeler 2019) R software packages

generated these designs, respectively.

13

Figure 2. Two pairwise plots of 16×4 designs: An LHD (McKay et al. 1979)
(left) and a 2k Factorial (right). We see that the LHD has much better

space-fillingness.

From Figure 2, the LHD (left) has more of its 16 DPs scattered throughout the

design space, with less “white space.” Conversely, the 2k factorial design (Box and Wilson

1951) (right) samples only at the corners; i.e., the low and high settings for each factor.

Each of the projections into the 2k factorial design’s two-dimensional subspaces has DPs

at only four places, with four DPs “stacked” at each dot in the scatter plots. If it is known

that the response contains “only linear main effects and interactions,” the 2k factorial design

may be the “most efficient” design (Sanchez et al. 2020, p. 1132). If we use the LHD design

when the response is, in fact, only linear main effects and interactions, we lose statistical

power. However, if there are nonlinear responses, especially for localized effects in the

interior, they cannot be identified with a 2k factorial design, while the LHD enables an

analyst to fit a breadth of diverse and complex models to multiple different responses

(Hinkelmann and Kempthorne 2008, Santner et al. 2018). As Santner et al. (2018, p. 148)

caution, “[b]ecause one does not know the true relationship between the response and

inputs, designs should allow one to fit a variety of models.” That is, SFDs can be

advantageous when the true relationship between the model’s responses and inputs are

unknown.

14

4. Space-Filling Measures (SFMs)

There are multiple approaches to quantifying the space-fillingness of a design. The

approaches generally fall into two broad classes, measures of distance and discrepancy (or

uniformity). This section introduces the SFMs used in this research.

Using distance measures is the most common approach to quantifying the space-

fillingness of a design (Joseph 2016). Intuitively, for a fixed number of design points in ,

large inter-point distances are desirable. The pth order distance between any two design

points ix and jx is defined as

  1/

1
(,) | |p

pk

ci j ic jcpd x x x x


  , (3)

where p = 1 is the Manhattan distance and p = 2 is the Euclidean distance.

The nearest neighbor (NN) distance of the ith DP, ix , is i = min (,)p i ji j
d x x


. The

value  is the average of the i values over all n DPs. Designs obtained using distance

criteria, such as  , usually strive to spread out (i.e., maximize ) DPs within the

bounded  .

One way to measure the largest gap or “white space” in X is to calculate the

maximum distance of any point x in  from its nearest DP; that is max min (,)p iix
d x x


. A

common design goal is to find the design that minimizes this “worst” distance for all

possible designs of the same dimension (i.e., n and k). The design mMX that achieves this

is called the minimax (mM) distance design (Johnson et al. 1990).

Finding mMX is computationally challenging for large designs, as we must consider

distances to all possible points in  (Joseph 2016). Thus, maximin (Mm) distance designs

(Johnson et al. 1990) are more common in practice since they need to compute only the

distances among the n design points (Joseph 2016, p. 30). However, finding an Mm

distance design is still challenging for large designs. MmX is called an Mm distance design

15

if it achieves the maximum min (,)p i ji j
d x x


 among all possible designs of the same

dimension (Johnson et al. 1990).

Morris and Mitchell (1995) introduced the p criterion, another popular distance

measure that converges to the Mm distance criterion in the limit; i.e., as p → ꝏ of Equation

(3), which is to be minimized. Let d1,…, ds be the ordered list (smallest to largest) of the s

unique distances between design points. Additionally, let J1,…, Js be an index list that

counts the occurrences of di. That is, Ji is the number of inter-sited distances of size di.

Finally, p is defined as:

1

1

/ p

p
p i i

s

i

J d 



    
 . (3)

Morris and Mitchell (1995) purport that their criterion is less “cumbersome” (p. 387) than

the Mm distance in searching for MmLHDs. Concerning p, Morris and Mitchell (1995, p.

390) explain that values of p as large as 50 can be required for larger designs, while Wang

et al. (2021) write “[i]n practice, p = 15 often suffices” (p. 4). Morris and Mitchell (1995)

recommend their criterion for “situations of ‘effect sparsity’ and in situations where all or

most inputs are important” (p. 397).

However, as Joseph (2016) points out, Mm and mM distance designs can have

projections onto subspaces that “can be poor” (p. 31). Having good space-filling properties

in low-dimensional subspaces is especially desirable in situations in which only a small

number of input columns have a significant effect on the response.

There are several other distance measures of space-fillingness in the literature, as

discussed in Santner et al. (2018). Of note are the distance measures that consider the space-

fillingness of projections of a design into low-dimensional subspaces, such as the maximum

projection (MaxPro) designs of Joseph et al. (2015) and the uniform projection designs of

Sun et al. (2019). The MaxPro distance measure of space-fillingness is defined as

16

 

1/

1

2
1 1

1

1 1
()= .

2

k

n n

k
i j i

ic jc
c

n
x x




  



 
 
 
 
      




X (4)

The MaxPro design goal is to find the design that minimizes () X as defined in Equation

(4). We see from (4) that for any factor c, if there exists i and j such that xic = xjc, () X

will evaluate to infinity. Moreover, when any xic ‒ xjc is close to zero, the MaxPro distance

measure will be large and subject to numeric instability. Thus, for all factors c, this distance

measure severely penalizes having two input values close. Ba and Joseph (2018) construct

MaxPro (Joseph et al. 2015) designs with and without restricting X to be an LHD. The

latter are called MaxProLHDs.

Coverage (Cov) is a unitless space-filling distance criterion that measures the

dissimilarity between X and a regular mesh grid (i.e., coverage equals zero for a mesh grid

X), which is defined as

  
1/2

1

21 1
coverage()=

n

i
in

 
 

 
 

 
X , (5)

where i and  are the nearest-neighbor distance and average-nearest-neighbor distance

defined previously (Dupuy et al. 2015, p. 4). Citing Dupuy et al. (2015), Sanchez and

Sanchez (2019) explain that “smaller [coverage] values are indicative of better space-filling

behavior” (p. 861).

Another approach to measuring the space-fillingness of a design is to quantify how

uniformly the design points are spread throughout the experimental region (Fang 1980).

To be precise, let 1{ , }, kz z z  be a point in [0,1]k  , Rz the region 1[0,) ,)[0 kz z ,

vol(Rz) the volume of region Rz, and N(X, Rz) the number of design points of X within Rz.

Then, the joint cumulative distribution function of the multivariate uniform distribution

over  is ()F z =
1

k

cc
z

 = vol(Rz). The star discrepancy (also known as the L

discrepancy) of design X is defined as

17

(,)
() max ()z

z
z

N R
D vol R

n




 

X
X

. (6)

D*(X) measures the discrepancy between the empirical joint cumulative

distribution function of the DPs in X and the joint cumulative distribution function of a

multivariate uniform distribution. It is equivalent to the Kolmogorov-Smirnov statistic

commonly used as a “test of goodness of fit” (Massey 1951, p. 68). The objective is to

construct a design of fixed dimensions with D*(X) as close to zero as possible.

Since D*(X) is computationally burdensome, following Hickernell (1998), we use

the modified 2L discrepancy (ML2)2 to quantify the uniformity of a design. A nice feature

of this measure is that “projection uniformity over all subdimensions can be considered”

(Fang et al. 2000a, p. 243). Formally,

   2

1 1 11 1

1
2

2 2

4 2 1
3 2 max(,) .

3

k kn n n

ic ic jc
i i jc c

k k

ML x x x
n n  





           
   (7)

Another commonly used measure of discrepancy (e.g., JMP design generation

software) is the (CL2)2 or centered L2 discrepancy, Hickernell (1998), which is defined as

 2

2

2

2
2

1 1

1 1 1

13

12

2 1 1
1 | 0.5 | | 0.5 |

2 2

1 1 1 1
1 | 0.5 | | 0.5 | | | .

2 2 2

k

kn

i
i

i

c

kn n

ic c

ic jc c j
i j c

c

CL

x x
n

x x x x
n

 

  

   
 

      
 

        
 





 (8)

The design goal for both the (ML2)2 and (CL2)2 measures of discrepancy is to find

the design X that minimizes their values.

Design imbalance is a measure used to assess columns of X containing categorical

or discrete factors. Nearly orthogonal-and-balanced (NOAB) designs (Vieira et al. 2011,

2013) combine nearly orthogonal Latin hypercube (NOLH) lattice sampling with discrete

or categorical input. Citing Bathke (2004), Vieira et al. (2013) explain that one-dimensional

18

balanced designs are suitable and capable of efficiently exploring various response surfaces

containing discrete input.

For column cX , with n DPs containing cl levels 1, , cl and counts of occurrences

of a particular group ,()i cw , the maximum imbalance for cX is the following:

,

, ,1

()
max .

c

c
i

li
c

c

c
nw l

n
l





 (9)

D. LATIN HYPERCUBE DESIGNS (LHDS)

Wang et al. (2021) state that “[t]he most popular experimental designs for computer

experiments are Latin hypercube designs (LHDs).” McKay et al. (1979) introduced LHDs

in their seminal paper on designing computer experiments. LHDs guarantee good (or even

optimal) one-dimensional space-fillingness for each input factor by dividing its range into

n equally spaced intervals and obtaining one observation from each interval. The interval

observations can be a fixed value, such as the center of the interval, or chosen randomly

according to a user-specified distribution (often a uniform) within the interval. We call the

latter approach Latin hypercube sampling (LHS). Simple LHD variants can be easily

constructed for most any n and k; for example, having each Xc be an independent random

permutation of the integers 1 through n scaled to the factor’s range. In such cases, all design

points reside on a k-dimensional lattice. For designs of size n and k, there are a total of

(n!)k–1 possible LHDs.

Due to their ease of construction and flexibility in fitting metamodels, LHDs are

widely available in many simulation software packages. However, randomly created LHDs

can have very poor overall space-fillingness or high correlations among columns (Lin and

Tang 2015). Thus, there have been many efforts to build or improve upon the correlation

or space-filling properties of LHDs.

Algorithms that reduce correlations among columns of LHDs include Florian

(1992), Hernandez et al. (2012a), Iman and Conover (1982), Little et al. (2019),

MacCalman et al. (2017), and Owen (1994). Beginning with Ye (1998), several researchers

19

have developed algebraic methods to construct column orthogonal LHDs (OLHDs),

including Bingham et al. (2009), Butler 2001, Georgiou (2009), Georgiou and Efthimiou

(2014), Lin et al. (2009), Pang et al. (2009), Steinberg and Lin (2006, 2015), Sun et al.

(2009), and Sun and Tang (2017a, 2017b). These algorithms can be good for

mathematically “identifying efficient LHDs” for large n and k (Wang et al. 2021).

However, a limitation of many of these algebraic approaches is severe constraints on

possible n and k combinations.

As noted above, designs optimized for space-filling distance measures may not

have good space-filling in low-dimensional projections. Conversely, LHDs have excellent

one-dimensional projections for all factors but are not guaranteed to have good high-

dimensional space-fillingness. Consequently, in attempts to obtain the benefits of both

approaches, many researchers have developed algorithms to optimize space-filling

measures with X constrained to be an LHD.

E. ALGORITHMS FOR BUILDING SPACE-FILLING DESIGNS

This subsection provides an overview of several space-filling design (SFD)

construction algorithms. Constructing large-scale designs that optimize the space-filling

measures (SFMs) above is typically extremely challenging due to nonlinear objective

functions, integer constraints, and many decision variables. Most often, heuristic stochastic

search algorithms do not guarantee that an optimal design will be found within a practical

amount of time (Jin et al. 2003 and Lin and Tang 2015). Depending on the random-number-

generator seed, initial conditions for the search, stopping criteria, processing time allotted,

computing power, and search-algorithm input parameters, different “optimal” solutions

with substantially disparate measures of design quality can be obtained. As Jin et al. (2003)

write, “[s]earching the optimal design of experiments within a class of designs (e.g., LHD),

even though more tractable than searching in the entire sample space without any

restrictions, is still difficult to solve exactly” (p. 546). Moreover, there may be multiple

optimal solutions with respect to a given criterion, e.g., maximin distance, especially for

lattice restricted designs. For example, through an exhaustive search of small 5×3 LHDs,

Joseph and Hung (2008) “found that there are 142 different designs according to the

20

maximin criterion” (p. 179). These multiple “optimal solutions” may exhibit substantially

different values for other design quality measures.

One widely used stochastic optimization method in SFD construction is simulated

annealing (SA) (Bohachevsky et al. 1986, Kirkpatrick et al. 1983). For example, Morris

and Mitchell (1995) used SA to search for an LHD that maximizes the minimum Euclidean

distance between design points, which they call a maximin LHD (MmLHD). Their

procedure begins with a randomly generated LHD and stochastically looks for

improvement through random exchanges of two entries from a randomly chosen column.

However, as Lin and Tang (2015, p. 600) note, “these designs are approximate maximin

Latin hypercube designs. No general method is available to construct exact maximin Latin

hypercube designs of flexible run sizes.” Ba and Joseph (2018) also used SA based

algorithms to search for LHDs that optimize their MaxPro criterion (Joseph et al. 2015).

Joseph and Hung (2008) incorporated both Mm distance and correlation into their SA

algorithm. Other SA-based algorithmic methods that leverage stochastic optimization

include Ba (2015), Ba et al. (2015), Leary et al. (2003), Qian (2012), and Sun et al. (2019).

Another commonly used stochastic optimization approach for constructing SFDs is

genetic algorithms (GAs), also known as evolutionary algorithms. Wang et al. (2021, p. 7)

explain that a GA is “a nature-inspired meta-heuristic optimization algorithm which

mimics Charles Darwin’s idea of natural selection” (Goldberg and Holland 1988 and

Holland 1992). As one example, MacCalman et al. (2017) used a GA involving selection,

crossover, mutation, and fitness of the new population as well as “many thousands of

hours” on high-performance computing equipment to find and catalog LHDs that are nearly

orthogonal for a complete second-order regression model. Liefvendahl and Stocki (2006)

used a GA to generate MmLHDs that incorporated a distance criterion from Audze and

Eglais (1977) in their fitness function. In the context of GA applied to experimental design,

other examples of leveraging the effectiveness and efficiency of GA include Goldfarb et

al. (2005), Heredia-Langner et al. (2003), and Heredia-Langner et al. (2004).

Optimization algorithms for generating SFDs containing stochastic elements are

also found in proprietary commercial software. For example, JMP generates space-filling

21

designs using a coordinate-exchange algorithm (Meyer and Nachtsheim 1995) to “optimize

one of several optimality criteria” (SAS Institute 2018). Citing JMP’s DOE Guide,

Each iteration of the algorithm involves testing every value of every factor
in the design to determine if replacing that value increases the optimality
criterion. If so, the new value replaces the old. This process continues until
no replacement occurs for an entire iteration. To avoid converging to a local
optimum, the whole process is repeated several times using a different
random start. (SAS Institute 2018, p. 99)

The parameter Number of Starts controls the number of design regenerations to improve

the overall design for a desired “optimality” criterion.

Lin and Tang (2015) and Wang et al. (2021) provide excellent reviews of SA, GAs,

and other stochastic search algorithms used in constructing LHDs and other space-filling

designs and show many comparison results. The big takeaways are that solutions are

usually not guaranteed to be optimal and there is tremendous variability in design measures

from one random generation to the next.

F. SOFTWARE PACKAGES FOR CONSTRUCTING SPACE-FILLING
DESIGNS

This subsection lists software packages used to construct SFDs in this research,

beginning with the commercial software package JMP (SAS Institute 2018). The space-

filling design command below DOE in JMP’s interface can generate numerous possible

design classes. Table 1 lists JMP SFDs that this research explores (SAS Institute 2018). A

list of R software packages investigated during this research is in Table 2.

22

Table 1. A partial list of JMP space-filling designs.

Design title in JMP Goal Design class

Sphere Packing Maximize the minimum Euclidean
(L2) distance between DPs

Mm-distance

Latin hypercube Maximize the minimum Euclidean
(L2) distance between DPs and adds
column constraints to ensure even
spacing between the levels; i.e.,
constrained sphere packing

Mm-distance LH

Uniform Minimize the 2
2()CL discrepancy

(Hickernell 1998)
Uniform

Table 2. Examples of R software packages used to construct space-filling
designs.

R Package Description Design class

DiceDesign Constructs multiple design types:
maximin distance designs; Latin
hypercube designs (LHD), either
randomly sampled, maximin, or
minimal discrepancy

Mm-distance,

random LHD, or

MmLHD

maximin Sun et al. (2019) and Sun and
Gramacy (2021) generate designs
under the Mm distance criterion.

Mm-distance

MaxPro Recommended construction creates
maximum projection (MaxPro)
distance designs

MaxPro

minimaxdesign Constructs minimax (mM) designs
and minimax projection designs
using PSO (particle swarm
optimization) (Chen 2013)

mM-distance

MOLHD Hou and Lu (2018) generate “the
optimal Maximin Latin hypercube
designs”

MmLHD

UniDOE Minimize a given discrepancy (e.g.,
2

2()CL of Hickernell (1998))
Uniform

23

As we have seen, there are many different approaches to creating and assessing

SFDs. There are also helpful R software packages, e.g., AlgDesign (Wheeler 2019) for

generating comparative factorial designs, which are usually not considered space-filling.

Figure 3 displays six 16×4 SFDs constructed to optimize a variety of space-filling

measures (SFMs) using multiple R software packages. The design classes are labeled: (a)

Mm distance, (b) mM distance, (c) MmLHD, (d) uniform design (UD), (e) MaxProLHD,

and (f) MaxPro. The R software packages are: (a) maximin (Sun et al. 2019 and Sun and

Gramacy 2021), (b) minimaxdesign (Mak 2021), (c) MOLHD (Hou and Lu 2018), (d)

DiceDesign (Dupuy et al. 2015), and (e) - (f) MaxPro (Ba and Joseph 2018 and Joseph et

al. 2015). The names of R software packages are italicized in this dissertation.

24

a b

c d

e f

Figure 3. Six pairwise plots of 16×4 SFDs: (a) Mm distance, (b) mM
distance, (c) MmLHD, (d) uniform design (UD), (e) MaxProLHD, and (f)

MaxPro.

25

Looking visually across the six design types in Figure 3, we see that some of the

SFDs are qualitatively different—at least in their two-dimensional space-fillingness. The

comparative scatter plots of Figure 3 reveal that (a) and (b) do not fill all portions of the

experimental space like designs (c) - (f) do, with many large gaps in the two-dimensional

projections. The last four designs visually appear comparable (evenly spreading the design

points) in the two-dimensional projections. However, for larger designs, measures of

design characteristics (e.g., correlation, distance, discrepancy, and projectivity) are

required to compare properties and identify high-quality designs.

Quantitative measures provide another tool that complements visual assessments,

especially when comparative plots lose their fidelity, e.g., large n and k (as typically

encountered in large-scale computational experimentation). This research uses several

measures to assess design quality for multiple SFD classes of different design sizes. Table

3 contains ten measures on a representative design from each of eight design classes when

n = 16 and k = 14. The columns specify the design type, number of DPs (n), number of

columns (k), and ten quality measures. The first five quality measures include two

correlation-based measures (map and | |), two discrepancy-based measures (the

modified L2-discrepancy (ML2)2 and the centered L2-discrepancy (CL2)2), and coverage

(Cov). The last five columns of Table 3 are distance-based measures, which include

MaxPro, p (Morris and Mitchell 1995) for p = 15 and p = 50 (Wang et al. 2021), maximin

(Mm) distance (Johnson et al. 1990), and lastly  (Dupuy et al. 2015, Sanchez and

Sanchez 2019). For each measure, the best and worst designs are respectively identified by

italics and bolding.

26

Table 3. Comparative table for the eight classes of SFD of Figures 2 and 3
(a – f) and for ten measures of design characteristics.

Lower values are preferred for all the measures except for the last two from the

right; i.e., Mm and  . Low correlation, discrepancy, coverage, and the MaxPro criterion

are desirable in practice. However, larger values are preferred in the context of the design’s

Mm distance and average nearest neighbor. When these values are large, typically good

inter-point (and average inter-point) spread exists. There is large variation across the design

classes for most measures. Interestingly, a design class can perform superbly for some

measures and quite poorly for others.

Most of the literature creates designs based primarily on one measure. However, a

few formal multi-criteria efforts focused on both space-filling and column-correlation

measures. Cioppa and Lucas (2007) used massive random generation and correlation

reduction techniques to find and catalog nearly orthogonal LHDs that minimize (ML2)2 in

design dimensions where orthogonal LHDs were known to exist. Joseph and Hung (2008)

applied simulated annealing to construct designs that optimized a weighted combination of

a distance and correlation measure. Wang et al. (2018) and Wang et al. (2020) show

connections between maximin distance, projection uniformity, and column orthogonality.

G. CATALOGS OF SPACE-FILLING DESIGNS

To make computationally expensive SFDs readily available for widespread use,

many computer-generated designs are cataloged and typically made available online. For

example, https://spacefillingdesigns.nl/ contains a collection of L2-maximin (Mm) space-

filling Latin hypercube designs (LHDs) for between 11 and 20 factors and up to seven

27

design points (van Dam et al. 2009). Fang et al. (2000b) provide nearly 1,000 space-filling

uniform designs (UDs) for up to 29 factors and 30 design points

(https://www.math.hkbu.edu.hk/UniformDesign/). To create this library of uniform

designs, Fang et al. (2000b) used a stochastic threshold-accepting heuristic procedure that

strives to find designs that minimize measures of discrepancy where the (unscaled)

columns of the design matrix correspond to a permutation of the first n natural numbers,

as in lattice LHDs. The SEED Center for Data Farming (https://harvest.nps.edu) provides

scores of nearly orthogonal and space-filling LHDs, as well as other designs, constructed

by a host of stochastic heuristic optimization methods and mathematical programming in

easy-to-use spreadsheets. Of course, even extensive catalogs provide experimenters with

comparatively few design options given the vastness of the potential application space.

28

THIS PAGE INTENTIONALLY LEFT BLANK

29

III. PERMUTE AND STACK—CONSTRUCTING PORTFOLIOS
OF DESIGNS

Since we will never have the correct model, we cannot expect to run a single
experiment and learn all that we need to learn from that experiment. Indeed,
[George] Box (1993) quoted R. A. Fisher: “The best time to design an
experiment is after you have done it.” Thus, experimentation should
(ideally) be sequential…

—Ryan (2007), p. 4

The cataloged space-filling designs (SFDs) available from several sources have

been created for a limited number of design point and factor combinations. We can extend

these designs by adding more design points, with the goal of extracting more information

from our experimentation. The question then becomes, “how can we extend a given design

to best improve its measures of correlation and space-fillingness?” This chapter introduces

a mixed-integer programming (MIP) algorithm that enables experimenters to sequentially

add blocks of n design points to an original n×k base design to minimize map in the new,

extended designs.

A. MOTIVATION

The motivation for this research is to find a better way to extend computationally

expensive or cataloged designs than the heuristic approaches currently in use. The key idea

is that any reordering (or permutation) of the columns of an n×k base design matrix, X0,

will generate a column reordered n×k design with equivalent space-filling and correlation

properties. By appending (or stacking) the column reordered design under the base design,

we can create a new 2n×k design matrix. The challenge is how best to permute the columns

for large designs since there are k! possible orderings of the columns of X0. For example,

assuming the base design has 16 factors, then there are 16! (i.e., 20.9 trillion) possible

orderings.

A straightforward approach, known as shift-and-stack, is a simple algorithm to

extend designs by shifting each of the columns in X0 over by one (forward or backward)

30

and appending the shifted matrix to X0 to form an extended design matrix. When shifting

columns forward, the first column of X0 rotates to the last column in the shifted matrix.

When shifting columns backward, the last column of X0 rotates to the first column in the

shifted matrix. Sanchez and Sanchez (2019) use the shift-and-stack method (p. 859) to form

“seven stacks of a seven-factor optimal frequency-based design (FBD)” to improve its

space-filling characteristics (p. 861). Others using this approach include Lin (2018), Kesler

et al. (2019), and Sanchez et al. (2020). Throughout this work, unless otherwise specified,

forward shift-and-stack is used.

B. MATHEMATICAL MODEL

This section introduces a new sequential optimization method based on a

quadratically constrained mixed integer program (MIP) that improves design stacking by

matching columns of a given base design to the columns of a design being extended. The

matching is done in a manner that minimizes the maximum absolute pairwise correlation

(map) among columns in the new extended design. Our mathematical model is based on a

reformulation of the quadratic assignment problem (Lawler 1963). The relationship to the

quadratic assignment problem makes our problem NP-hard; see Garey and Johnson (1979).

The process begins with a given base n×k SFD, which we label X0. Each column

specifies the settings for a given input factor over the n runs. For any permutation p of the

column indices 1,…, k, pi is the column in the ith position in the permutation. Let pX be

the n×k matrix resulting from permuting the columns of X0 according to p. Next, consider

the 2n×k matrix, X1, resulting from appending (or stacking) pX below X0; see Equation

(10):

0

1

p

 
 
 


X

X
X

. (10)

Column c of this stacked design consists of column c of X0 on top of column c of pX or,

equivalently, on top of column pc of X0. We label these columns 0
cX , p

cX , and 0

cpX ,

respectively. Column c of X1 is as follows:

31

00

1
0

c

cc
c p

c p

XX
X

XX

  
  
    

  . (11)

The larger one-stack SFD, X1, has twice as many DPs, thereby making the experimental

region  denser and providing more degrees of freedom for fitting metamodels.

The !k possible pX matrices make an exhaustive search for the X1 with the best

properties difficult for large k. In what follows, 0
cX and

0
fX denote columns c and f of X0

and p
dX and

p
gX denote columns d and g of pX . If permutation p places column d in

position c (i.e., if cp d , so that
0 0

c

p
c p dX X X ) and, similarly, places column g in

position f, we use (,),(,)c d f g to denote the pairwise correlation of columns c and f in the

resulting stacked design. Here, (c, d) denotes the resultant stacked column c when the

column 0
dX is appended below column 0

cX and (f, g) represents the resultant stacked

column f when the column
0
gX is appended below column

0
fX . We calculate (,),(,)c d f g by

applying Equation (1) to the stacked columns.

Consider the following simple example. For k = 3, each column c has three columns

that can be stacked under it. This results in k2 = 9 possible column pairs. For example, if

(c, d) = (1, 3), the first stacked column in X1 consists of 0
3X appended below 0

1X .

Furthermore, if (f, g) = (2, 1), the second stacked column in X1 consists of 0
1X appended

below 0
2X . This particular stacking is the result of permutation 3,1,2p  .

For a particular permutation, p1, the ith entry is written as 1
ip (e.g., 1

2 1p  in the

previous example). Moreover, this stacking idea can be applied iteratively. For a sequence

of S permutations
1p ,…, sp ,…, Sp , where 1S  , write ps

X for the sth stack as specified

by the sth permutation of the columns of X0. That is, ps
X is X0 with its columns reordered

according to sp .

Given the sn×k stacked design, 1sX , define sX recursively as

32

1

.
ps

s
s

 
 
 




X
X

X
 (12)

By appending ps
X to 1sX , we create design matrix sX with (s+1)n rows (i.e., DPs) and k

columns.

Of course, the recursion process begins by adding the first stack:

0

1

1p

 
 
 




X
X

X
, (13)

where X0 is our given n×k base design.

For iteration s, building sX involves assigning each column of the base design X0

to a position in the new, extended stacked design. At each step, we minimize the objective

function map and equate its value to the variable . We express the linearized formulation

of this optimization problem in model MINNU.

Model MINNU:

INDICES

c columns (alias d, f, g) c = 1,…, k

DATA

X0 base design matrix

1sX stacked design matrix to be extended

CALCULATED DATA

(,),(,)c d f g correlation ,c f , for columns c and f in the resulting stacked design, if base

design column d is stacked into position c and base design column g is
stacked into position f

DECISION VARIABLES:

33

(,)c dW equals 1 (0 otherwise) if column d is assigned to position c

(,),(,)c d f gY equals 1 (0 otherwise) if both columns d and g are assigned to positions c and

f, respectively

 a variable representing the value map

OBJECTIVE and CONSTRAINTS

 min  (A0)

s.t. (,) 1c d
c k

W


 d k  (A1)

 (,) 1c d
d k

W


 c k  (A2)

)(,),(, ,) (c dc d f gY W , , ,c d f g k  (A3)

)(,),(, ,) (f gc d f gY W , , ,c d f g k  (A4)

 ,(,), ,)((,)) (1fc d f c d ggY W W  , , ,c d f g k  (A5)

)(,),(,) (,),(,c d c d f gf g Y  , , , ,c d f g k f c   (A6)

 ,(,),(,) (),(,)c d f g c d f gY   , , , ,c d f g k f c   (A7)

 (,) {0,1}c dW  ,c d k  (A8)

 (,),(,) {0,1}c d f gY  , , ,c d f g k  (A9)

The objective (A0) represents the maximum absolute correlation between any pair

of columns in the resulting stacked design (i.e., sX) given by the solution to the model.

Each constraint (A1) ensures that base design column d is assigned to precisely one

position in the stacked design. Each constraint (A2) ensures that each position c in the

stacked design is assigned to exactly one column from the base design. For a particular pair

34

of positions c and f, and for a particular pair of base design columns d and g, constraints

(A3-A5) ensure that:

 (,),(,) (,) (,)c d f g c d f gY W W , (14)

using a standard linearization technique that takes advantage of the fact that all variables

involved are binary (Bazaraa et al. 2004, Bertsimas and Tsitsiklis 1997, Lawler 1963).

Constraints (A6) and (A7) guarantee that the objective value will be at least as large as the

absolute value of any single pairwise correlation; coupled with the fact that the objective

is to be minimized, this guarantees that the optimal value will be equal to the maximum

absolute pairwise correlation, map.

The linearization we use in Equation (14) is well known in the literature. Its primary

drawback is that it introduces a large number of auxiliary variables (,),(,)c d f gY into the model

(on the order of k4). However, for moderate values of k, our models easily fit into memory

and can be solved to a small optimality gap in a reasonable amount of time. The model

MINNU has
4 2k k binary variables and one continuous variable. MINNU also contains

3 2(5 2 2)k k k  constraints. The model size does not depend explicitly on either n or s

because we precalculate all (,),(,)c d f g values.

Solutions to the model use the variables introduced in Equation (14) to linearize the

pairwise correlation ,c f , where

 , (,),(,) (,) (,) (,),(,) (,),(,), ,c f c d f g c d f g cd g fd g c d g d f gW W Y      , (15)

given the precalculated data (,),(,)c d f g . The computational requirements to compute

(,),(,)c d f g grow linearly with n (and the number of stacks, S). Therefore, the time to solve

MINNU is driven primarily by the number of columns, k. The solution provided; i.e., the

(,),(,)c d f gY values, gives the measurably optimal permutation solution sp , which

determines ps
X .

35

C. PERMUTE AND STACK ALGORITHM: ITERATIVELY APPLYING
MINNU

We apply this stacking idea sequentially, where each added stack is designed to

minimize map and improve the space-filling properties of the resulting design at the cost

of extra runs. Our algorithm takes as input a base design X0 and an integer number of

stacks, S, to create, and applies the model MINNU sequentially, first to the base design and

then to each resulting stacked design in turn to yield a sequence of designs from one stack

to S stacks. These stacks are output as the sequence of permutations ps that indicate the

measurably optimal column assignments for each successive stack s.

To solve MINNU for a particular stack, we must first calculate all of the (,),(,)c d f g

values that can result from each of the pairs of possible column-to-position assignments.

We provide a subroutine calculate_rho_dict that takes as input an n×k base design

X0 and the sn×k stacked design matrix to be extended 1sX , and returns a dictionary,

rho_dict, of the resulting pairwise correlations.

Our main routine is given in the permute_and_stack algorithm, which

successively solves MINNU for an increasing sequence of designs and calls

calculate_rho_dict as a subroutine before each model solve. We summarize each

of these algorithms below.

The algorithm (Algorithm 1) subroutine calculate_rho_dict is as follows.

36

The algorithm (Algorithm 2) permute_and_stack for iteratively solving

MINNU is as follows.

An application of permute_and_stack takes as input a base design X0 and the

number of stacks to be created, S. It then iteratively determines rho_dict and solves

37

MINNU, generating a sequence of permutations sp and stacked designs sX , for

s = 1,…, S. Each iteration consists of (1) finding and storing the column arrangement sp

of X0 (i.e., ps
X) that minimizes map and (2) extending the 1sX matrix by appending the

n rows of ps
X to create the sth stacked design sX .

For each stack, the resulting problem MINNU is sufficiently difficult that there is

no guarantee that we will find an optimal solution within a finite time limit. However, the

software to solve this model uses the branch-and-bound algorithm, which keeps track of

both an upper and lower bound on the value of an optimal solution. The difference between

the upper and lower bound is referred to as the optimality gap, and we can specify an

acceptable gap as one of the inputs to the software. If the software terminates with a

solution within this gap, we have a nearly optimal solution. We use the CPLEX solver

(CPLEX 2009), which has a default optimality gap value that stops when a feasible integer

solution has been proven to be within ten percent of the optimal solution value. We use the

software package PYOMO (Bynum et al. 2021, Hart et al. 2011) to construct our models,

and we also use it to set parameters, such as the optimality gap, to other values (e.g., 1%,

5%, and 10%).

D. A SEQUENCE OF DESIGNS: AN EXAMPLE OF THE PERMUTE AND
STACK ALGORITHM

All the above arguments point to the desirability of a sequence of
moderately sized designs and reassessment of the results as each group of
experiments becomes available.

—Santner et al. (2018), p. 148

This section illustrates permute_and_stack extending a cataloged 8×7

uniform design (UD). We show how the correlation and space-filling measures improve

with successive stacks and compare permute_and_stack with simple forward shift-

and-stack and UDs in the stacked dimensions.

38

1. Extending a Cataloged Uniform Design

We consider a cataloged 8×7 uniform design (UD) from Fang et al. (2000b), see

http://www.math.hkbu.edu.hk/UniformDesign/. With k = 7, there are 5,040 unique

orderings of the columns. Thus, this example is for explanatory purposes since an

exhaustive search over all possible stacks (i.e., permutations) is feasible.

Figure 4 shows the UD matrix (i.e., X0) and two extensions of it. On the left side of

Figure 4 (grey) are two stacks resulting from the simple forward shift-and-stack heuristic

applied to the columns of X0 as specified by the catalog. Original column labels in the

stacks are kept for explanatory purposes. Forward shift-and-stack starts by shifting the

columns of X0 to the left one column to make the shifted design that is appended under X0

(Sanchez and Sanchez 2019). The column in the 1st position cannot be shifted left; thus, it

is placed in the last (i.e., 7th) position. Next, the shifted design is appended (or stacked)

below X0. We label the resultant 2n×k forward shift-and-stack design as 1()sX . This

process may be repeated k times before replicating X0—resulting in k – 1 possible stacks

before the original ordering of X0 is obtained. The 2nd extended design resulting from

another application of forward shift-and-stack is denoted 2()sX .

39

Figure 4. Two extensions of the 8×7 base uniform design (UD) X0 in matrix
form: The left (grey) results from forward shift-and-stack. The right

(blue) results from the permute_and_stack algorithm.

On the right side of Figure 4, we show two extensions to the base UD, X0, using

the permute_and_stack algorithm (blue). Column labels are kept for explanatory

purposes. These stacks are permutation solutions, where the chosen column concatenations

minimize map. Here, permutations [4,6,5,1,3,2,7] and [7,1,6,3,4,5,2] result from two solves

of MINNU for the first and second stacks, respectively. The designs (X1 and X2) result

from one execution of the permute_and_stack algorithm.

2. Properties of the Extended Uniform Design

This section shows how some key SFD quality measures improve after using

forward shift-and-stack and permute_and_stack. Reading row-wise, Table 4 shows

two correlation (map and | |) and two space-filling ((ML2)2 and (CL2)2) measures for the

UD extensions constructed in Figure 4. For the given cataloged X0, we have map = 0.3095,

 | |  = 0.0930, (ML2)2 = 0.5143, and (CL2)2 = 0.1870. Lower values are desired for all of

40

these measures. After one stack, by using the permute_and_stack optimization, we

achieve a 69.2 percent decrease in map for X1. Similarly, after one stack, using the heuristic

forward shift-and-stack, we obtain a 34.6 percent reduction in map for (Xs)1. In this two-

extension example, with S = 2 (i.e., 24×7 stacked designs), permute_and_stack

decreases map by 82.0 percent while shift-and-stack reduces this measure by 53.8 percent.

We also observe that the extended designs from permute_and_stack also yield better

performance in the other measures; i.e., | | , (ML2)2, and (CL2)2—though by only a small

amount for the discrepancy measures.

Table 4. The correlation and space-filling properties of the 8×7 uniform
design (UD) and its extensions. Read rowwise to compare forward shift-

and-stack to permute_and_stack.

In this illustrative case, Fang et al. (2000b) provide 16×7 and 24×7 UDs. However,

they provide no UDs with 30n  . In the context of a sequential “model-test-model”

application, the desired design dimensions can quickly exceed their catalog’s limits (e.g.,

three stacks yield n = 32).

Table 5 shows the properties of the forward shift-and-stack and

permute_and_stack designs resulting from three extensions. The resultant

permute_and_stack design, X3, is nearly orthogonal; i.e., map = 0.0476 ≤ 0.05

(Hernandez et al. 2012a). The map = 0.1369 obtained from two applications of the simple

forward shift-and-stack heuristic is nearly three times larger. Moreover, X3 is constructed

41

with one execution of the permute_and_stack algorithm, and the optimal

permutations can be stored to effectively extend the catalog to many more designs. These

added DPs provide additional degrees of freedom in fitting metamodeling, detecting bias,

and gaining insights.

Table 5. Design property comparison after three iterations of forward shift-
and-stack and permute_and_stack. By extending the base design

using optimization, we decrease map from 0.3095 to 0.0476. The forward
shift-and-stack design has a map value nearly three times higher. Note:

There is no 32×7 in Fang et al.’s (2000b) online catalog, see
http://www.math.hkbu.edu.hk/UniformDesign/.

Another possibility is to reorder the columns of X0 randomly (with all possible

reorderings equally likely) and append them to the base design. To obtain a good sequence

in a multiple-stack design, one would need to arrive at good random matchings with each

stack. Here, good means a low or high value specific to the performance measure of

interest—in this case a low map. The likelihood of achieving a near-optimal map decreases

with additional stacks as the possible combinations grow. To show this, 1,000 random

three-stack designs were made to extend the 8×7 UD analyzed above. Figure 5 shows the

results of this three-stack experiment, with each stack being a random permutation of the

columns of X0. None of the 1,000 arrived-at randomly-stacked designs achieve the map

value from permute_and_stack, the blue line; moreover, the average is nearly three

times higher.

42

Figure 5. Three approaches: (1) Box plot of 1,000 map values for the three-
stack 8×7 UD randomly extended experiment, (2) after three applications

of shift-and-stack (map = 0.137) (orange), and (3)
permute_and_stack (map = 0.048) (blue).

The odds of obtaining a near-optimal design (in terms of map) by stacking random

permutations of the columns of X0 are extremely low and will almost certainly decrease as

k increases given that there are k! possible random permutations for each stack. If there are

s stacks, there are (k!)s possible random extensions. Figure 6 presents an additional three-

stack experiment for the 33×11 NOLH (nearly orthogonal Latin hypercube) design (Cioppa

and Lucas 2007) and the results under permute_and_stack (blue line). The benefits

of permute_and_stack can be seen, as the minimum map for 1,000 random three-

stack 33×11 NOLH designs extended is more than double that obtained through

optimization. We also see that ten heuristic variations of shift-and-stack (detailed in

Chapter IV) outperform randomly extended 33×11 NOLH designs, but by not nearly as

much as permute_and_stack.

43

Figure 6. Three approaches: (1) Box plot (yellow) of 1,000 map values for
the three-stack 33×11 NOLH randomly extended experiment, (2) the range
of map values after three applications of shift-and-stack (orange), and (3)

the results of permute_and_stack (blue).

E. PARAMETERS AND TIMING

This subsection touches on the CPLEX optimization parameters and some

experiments on the processing time of the permute_and_stack algorithm. The

experiments were run on a Microsoft Surface Studio 2 with four 7th Generation Intel ®

Core™ i7-7820HQ @2.9GHz processors, 32 Gb of RAM, and the Windows 10 Enterprise

operating system. The program software used for the optimization is the Python

Optimization Modeling Objects (Pyomo) software. Pyomo is a capable mathematical

modeling language with rich libraries (Bynum et al. 2021, Hart et al. 2011). Custom

libraries produced for this research include the column reordering heuristic, shift-and-

stack, and measures of design characteristics, which can all be imported.

Table 6 provides a partial list of input parameters for the CPLEX solver. Read

columnwise, for a brief purpose description, default value, and example syntax for

interactive scripting (e.g., Pyomo).

44

Table 6. A partial list of CPLEX parameters and the required interactive
script syntax.

The optimization was accomplished using the CPLEX solver, Version 12.10

(CPLEX 2009). However, other solvers are possible, e.g., Gurobi (Gurobi Optimization,

LLC 2022) and COIN-OR (COIN-OR 2016). The parameter emphasis mip has five

possible values that adjust the trade-off between feasibility, optimality, best bound, and

hidden feasible solutions. If no value is provided, the default is zero, balancing feasibility

and optimality to find a measurably optimal solution. To prioritize feasibility over

optimality, optimality over feasibility, best-bound optimality (feasible solutions receive

less emphasis), or high-quality hidden feasible solutions the user sets emphasis mip to

1, 2, 3, or 4, respectively. For large-scale computational experiments, we recommend

setting this parameter to 1. Setting the value of mip strategy heuristicfreq to -

1 turns off the periodic heuristic, to 0 (zero) applies the heuristic frequency at a rate chosen

by CPLEX, and to any ℤ+ (e.g., 10) calls the heuristic every ten nodes (i.e., 0, 10, 20, …).

We mostly left this at zero.

Concerning termination conditions (outside integer optimality), there are two

tolerance options absmipgap and mipgap. The gap is computed as: (best integer

- best node) * objsen / (abs (best integer) + 1e-10), see CPLEX

(2009) for details. The gap is the difference between the best integer feasible solution and

a bound on the optimal solution. Option absmipgap is an absolute tolerance on the gap.

The default value of absmipgap is 1e-6. The more common option is mipgap, a relative

45

tolerance on the gap, and the default value is 1e-4. Note objsen specifies whether the

optimization is a minimization (as in this case) or a maximization.

We use default options in preprocessing symmetry. The default symmetry

breaking is set to a value of –1, allowing CPLEX to decide the level of symmetry breaking.

Symmetry-breaking reductions can be turned off (value set to 0) or increased for five

possible levels of aggressiveness (i.e., 1-5). Option timelimit; i.e., optimizer time limit,

can be set for any number of seconds. For example, two hours of solver time is shown in

Table 6, which implies that if s = 3, then the resultant optimizer effort is for at most six

hours. We set timelimit to two hours (7,200 seconds) for most of the optimization

routines. For more information regarding additional parameters or options, see CPLEX

(2009). We remark that more experimentation on how CPLEX’s parameters affect

permute_and_stack’s performance and processing times would be valuable.

Solve time and final map results are shown in Table 7 as a function of mipgap for

three extensions of uniform designs (UDs) for a dozen design sizes using CPLEX Version

12.10 (CPLEX 2009) as the solver. For k ≤ 10, solve times are minimal (on the order of 30

seconds or less) regardless of the size of n or mipgap setting. For larger k, solve times

increase dramatically if the algorithm is allowed to run until the mipgap tolerance is

achieved. For example, three extensions of the 200×20 UD were solved within a mipgap

of 0.10 after 1.08 days. The resultant 800×20 UD extended reduces the map value for X0

of 0.040 to a map of 0.008 for X3. For a timing comparison, JMP reports that it will take

over 21 hours to generate one 200×20 UD. Importantly, CPLEX provides the best-found

solution (and design) if stopped before the mipgap is attained. In most of our experiments,

the timelimit option was set to 7,200 (two hours), and we have obtained low map

values in designs for k as large as 30. In all cases looked at, the solutions found (i.e., final

map values) are relatively insensitive to mipgap.

46

Table 7. Time comparison after three iterations of permute_and_stack
applied to cataloged uniform designs.

F. PERMUTE AND STACK SUMMARY

This chapter introduced the permute_and_stack optimization algorithm that

enables experimenters to sequentially add blocks of n design points to an original n×k base

design (X0) to minimize map in the new, extended designs. The added DPs also increase

the space-fillingness of the extended designs. There are k! unique permutations of the

columns at each stack, with (!)sk total possible designs sX . Therefore, total enumeration

is not viable for building large stacked designs. It is also unlikely that random permutations

will produce a near-optimal sX . In addition, a series of easy-to-implement heuristics,

building off of the shift-and-stack method, also failed to produce near-optimal extended

designs. Hence, the value of permute_and_stack as shown above for the 8×7 UD.

In the following chapter, we apply permute_and_stack to eight design types (a mix

of cataloged and software-generated) for nine design sizes (i.e., n and k values) and assess

the resultant designs using ten measures.

47

IV. PERMUTE AND STACK: EXTENDING AND IMPROVING
DESIGNS FOR LARGE-SCALE COMPUTER EXPERIMENTS

Our sequential customized designs are no longer LHDs (even though the
first stage may be a LHD)… . In sequential designs we learn about the
behavior of the underlying system as we experiment with this system and
collect data.

—Kleijnen (2015), p. 203

This chapter explores how permute_and_stack performs in reducing map

when sequentially adding batches (or stacks) of n design points (DPs) to space-filling

designs (SFDs). The reductions in map are contrasted with values obtained by applying

shift-and-stack to several correlation-based column-reordering heuristics. Where feasible,

we also evaluate permute_and_stack against newly generated SFDs in the extended

design space. The extended design space refers to the dimensions of the design matrix sX

after s extensions (or stacks), which now has (s+1)n rows and k columns.

The approach we take depends on whether we are extending a fixed cataloged

design or a software-generated design. For cataloged designs, we compare several design

sizes of the nearly orthogonal Latin hypercube (NOLH) designs (Cioppa and Lucas 2007)

and uniform designs (UDs) (Fang et al. 2000a, 2000b). For software-generated designs,

since there is a stochastic component, following Wang et al. (2020), we generate 100 base

SFDs for each type. A sample size of 100 provides reasonable estimates of the distributions

of performance measures studied, including small estimated standard errors of their means.

The performance comparisons are made on designs containing 33 DPs and 11 factors (or

columns). This allows us to compare measures among design classes. While not shown,

similar results are obtained for other design sizes. The software-generated SFD types we

extend and assess include MmLHDs (Morris and Mitchell 1995); maximum projection

(MaxPro) designs (Joseph et al. 2015, Ba and Joseph 2018); sphere-packing Mm distance

designs (Johnson et al. 1990); uniform designs (UDs) (Fang et al. 2000a, Zhang et al. 2018)

48

using both JMP and R software packages (e.g., the UniDOE R package of Zhang et al.

(2018)); and random Latin hypercube designs (LHDs) (McKay et al. 1979).

A. A BASELINE TO COMPARE RESULTS

To assess the potential of permute_and_stack, this chapter explains how it

performs (in terms of reducing map) in extending space-filling designs (SFDs) in

comparison to shift-and-stack for several correlation-based column-reordering heuristics.

We do this since we saw in Chapter III, Section D.2 that random permutations of the

columns of X0 in constructing stacked designs were unsuccessful at obtaining the minimum

map. This subsection defines the column-reordering heuristics used.

There is little documentation on how column-reordering heuristics may affect the

properties of the resultant shift-and-stack design. The simple forward shift-and-stack

approach from Sanchez and Sanchez (2019) uses the given ordering of the columns of X0,

which we label as configuration B for the base ordering. Since the order of the columns

does not change the design’s correlation and space-filling measures, we investigated

whether a simple easy-to-implement heuristic reordering of the columns of X0 could

improve upon the designs constructed using shift-and-stack. Cioppa (2002) originally

suggested this method. We define and examine nine correlation-based column-reordering

heuristics to improve map values for stacked designs after applying shift-and-stack.

Let R be the k×k correlation matrix of X0. We use the non-diagonal values in R to

reorder the columns before applying shift-and-stack. For each column, we calculate its

maximum or average pairwise correlation as well as the maximum or average pairwise

absolute correlation. We use the term “signed correlation” for reorderings using the raw

correlation values (which can be positive or negative). Since the correlation values involve

pairs of columns, we use random selection to break ties in selecting the order. We then

arrange the columns of X0 by these values, either ascending, descending, or alternating.

For example, the column-reordering heuristic labeled AD (for Absolute Descending)

arranges the columns of X0 according to the descending maximum absolute pairwise

correlation values of the columns of R. The column-reordering heuristic labeled AA (for

49

Absolute Ascending) arranges the columns of X0 using the ascending maximum absolute

correlation values of the columns of R.

Table 8 shows R for the 8×7 cataloged uniform design (UD) from Fang et al.

(2000b), which serves as X0 in this example. Table 9 shows the labels and values of the

heuristics used to reorder the columns of X0. For example, for SD (Signed Descending),

the values are arranged from the largest to the smallest of the columns’ signed pairwise

correlations. In this case, columns 4 and 5 of X0 are randomly assigned to positions 1 and

2 in the new reordering corresponding to SD. When shift-and-stack is applied to SD, a

column with the lowest signed correlation is appended under a column with the highest

signed correlation. Table 10 shows the column reordering of X0 corresponding to SD.

Table 8. R for the 8 7 uniform design (UD) from Fang et al. (2000b).

Table 9. Ten correlation-based column-reordering heuristics using R from
Table 8.

50

Table 10. X0 (left) and SD reordered X0 (right).

X0 with its given column ordering, which

we label case (B)

 X0 with its columns reordered by the

Signed Descending (SD) heuristic

The SD column reordering of X0 (Table 10 right) shows an example of one of the

column-reorderings of the design. The correlation values used to generate SD are 0.309,

0.309, 0.190, 0.190, 0.166, 0.095, and 0.071. The first two columns of the SD reordered

X0 contain X5 and X4 from the original X0. These columns contain the maximum signed

correlation value of 0.309. Thus, there can be several orders for a given column-reordering

heuristic. In this case, due to tied pairwise correlations, four reorderings satisfy the SD

column reordering configuration. We select one of those four reorderings at random, with

each having the same likelihood of being chosen.

B. EXTENDING CATALOGED DESIGNS

This subsection shows how well permute_and_stack does in extending

cataloged designs. A fundamental limitation of cataloged designs is that they may not be

available in the desired dimensions. For example, the uniform designs (UDs) from Fang et

al. (2000b) have a maximum DP size (n) of 30. Also, the maximin L2 distance designs from

van Dam et al. (2009) are for limited n and k.

51

1. Extending Cataloged Nearly Orthogonal Latin Hypercubes (NOLHs)

Despite the tremendous amount of uncertainty about potential future
conflicts, decisions must be made (such as what equipment to purchase, how
to organize units, and how to use future forces) that will affect large sums
of money and affect many lives.

—Kleijnen et al. (2005), p. 269

Providing computer experimenters with more options by extending the catalog of

space-filling and nearly orthogonal Latin hypercubes (NOLHs) at https://harvest.nps.edu

was the genesis of this research. Due to their ability to allow analysts to explore a breadth

of diverse metamodels and an easy-to-use design spreadsheet (Sanchez 2005), these

designs have underpinned scores of simulation-based national security studies (Kleijnen et

al. 2005, MacCalman 2013, Sanchez et al. 2012). Thousands of computing hours were used

to create space-filling NOLHs of the following sizes: 17×7, 33×11, 65×16, 129×22, and

257×29 (Cioppa and Lucas 2007). While these designs have proven useful, they allow

relatively few options compared to potentially useful n and k combinations. Hence, shift-

and-stack has been extensively used to leverage the work that went into constructing these

designs to increase the number of design points (DPs), see Lin (2018), Kesler et al. (2019),

and Sanchez et al. (2020, p. 1137), for example.

With the 33×11 NOLH in the spreadsheet as the base design X0, Figure 7 plots map

values for up to ten extensions using permute_and_stack and the ten correlation-

based column-reordering heuristics defined above. We see that permute_and_stack

yields extended designs of size 33(s+1)×11 that have lower map values than every shift-

and-stack alternative for all s. We also observe that none of the heuristics consistently

outperforms the others and that map can increase in an extension. We observe the latter in

the nonmonotonic behavior of map for the absolute ascending (AA) and absolute

descending (AD) shift-and-stack column-reordering heuristics. For s = 1, the extended

design X1 obtained through permute_and_stack has a map of 0.010, while the ten

(Xs)1 designs from shift-and-stack have map values ranging from 0.015 to 0.022. As

52

additional stacks (i.e., batches of DPs) are added, the map values seem to be converging

towards zero.

Figure 7. The 33×11 NOLH design X0 and 110 extended designs using
permute_and_stack (blue) and ten applications of shift-and-stack

(light colors).

Figure 8 plots map values for up to ten extensions using permute_and_stack

and shift-and-stack with the ten column-reordering heuristics for 33×11, 65×16, 129×22,

and 257×29 space-filling NOLHs. We omit the 17×7 NOLH since it is column-orthogonal;

thus, any stacking of a permutation of its columns yields an orthogonal design. For all four

53

initial base designs, permute_and_stack outperforms all the alternatives at all

extensions, with greater improvement occurring with smaller NOLHs.

Figure 8. Comparative plot between permute_and_stack (blue) and
shift-and-stack (light colors) for 33×11, 65×16, 129×22, and 257×29

space-filling NOLHs. The permute_and_stack designs dominate
shift-and-stack in terms of map.

We have seen previously that good correlation does not necessarily mean good

space-filling (recall the 2k designs). What follows is a multi-criteria comparison, map and

(ML2)2 discrepancy, for NOLH designs extended. Figure 9 shows 44 extensions for up to

four stacks resulting from permute_and_stack and applying shift-and-stack to the ten

column reorderings of X0. Preferred outcomes are in the bottom left of the figure; i.e., lower

54

map and (ML2)2 values. The improvement sequences can be described as beginning in the

top right and ending towards the bottom left. We see that additional stacks tend to improve

both measures. For each stack number, we see that permute_and_stack obtains a

lower map and all of the designs have similar (ML2)2 values.

Figure 9. Multi-objective map and (ML2)2 comparison for extended NOLH
designs up to four applications of shift-and-stack and

permute_and_stack.

For each of the 33×11, 65×16, 129×22, and 257×29 space-filling NOLHs,

permute_and_stack has been applied to obtain ten optimal extensions. Appendix A

shows the map and (ML2)2 results for these four designs for up to ten stacks. In applying

permute_and_stack to larger designs (e.g., k = 22 or 29), the optimization was limited

to two hours of search time for each stack, even if the MIP gap tolerance had not been met.

The results show that permute_and_stack can produce excellent design extensions

55

(in terms of map) even when the optimization doesn’t have time to run to completion—as

evidenced by the fact that permute_and_stack has produced good results for k as

large as 29. How well it performs for even larger designs as a function of the allotted search

time is left for future research.

While the stacked designs are no longer Latin hypercubes, for each factor, the DPs

are balanced across n values (or levels). That is, each of the n input values for every factor

appears exactly 1 + s times in a column of Xs. This property holds for any shifted-and-

stacked LHD.

Given X0, storing the NOLH extended designs, 1 10, ,X X , is straightforward

using the corresponding permutations p1,…, p10 for the ten new designs. Specifically, the

permutation sequence specifies the optimal stacks to be appended,
101

, ,p pX X , for each

stack. Table 11 lists the optimal permutations and the resultant map values for the ten

extensions (i.e., appended stacks) of the cataloged 33 11 NOLH designs. The final

stacked design’s map value in Table 11 is approximately seven percent of the map value

of
0X . With ten added stacks, the final design has 363 DPs. It is worth noting that the

original base NOLHs all have a point in the center of . Thus, there are s replicates of the

center point in Xs, which can be removed. Appendix C provides the optimal permutations

and the resultant map values for up to ten extensions for the other NOLHs in the catalog.

Table 11. Optimal permutations for the 33 11 NOLH through ten stacks and
the corresponding map values for Xs.

Optimal permute_and_stack permutations 1p ,…,
10p :

1: '[9,8,4,1,10,3,2,0,5,6,7]', 2: '[2,7,10,8,1,0,4,9,5,6,3]',
3: '[10,5,2,0,7,9,1,6,4,8,3]', 4: '[3,0,7,10,8,6,9,4,1,2,5]',
5: '[8,4,10,9,6,0,5,1,2,7,3]', 6: '[10,0,4,3,2,9,6,7,8,1,5]',
7: '[3,5,10,4,1,6,9,0,7,8,2]', 8: '[1,8,3,9,7,5,2,4,10,0,6]',
9: '[2,6,5,9,1,3,0,10,8,7,4]', 10: '[8,7,0,6,5,2,1,4,9,10,3]'.

map :

1: [0.0100], 2: [0.0064], 3: [0.0050], 4: [0.0038], 5: [0.0031], 6: [0.0024],
7: [0.0022], 8: [0.0020], 9: [0.0018], 10:[0.0017].

56

2. Extending Cataloged Uniform Designs (UDs)

This section extends cataloged, discrepancy-based, uniform designs (UDs) (Fang

et al. 2006, Fang et al. 2000a, 2000b) to sequentially add batches of n DPs that achieve

superior correlations in the extended space using permute_and_stack. Figure 10

presents the cataloged 8×7 UD example of Chapter III and four applications of shift-and-

stack for the ten column-reordering heuristics and permute_and_stack, as was

discussed previously. We see that constructing a design to minimize discrepancy does not

guarantee low correlation, as the map value of X0 is greater than 0.30. However, just one

extension with permute_and_stack reduces map to 0.0952. As before,

permute_and_stack outperforms all the column-reordering heuristics by a

substantial amount at each stack. After adding three stacks, the extended design satisfies

the nearly-orthogonal criterion.

57

Figure 10. Four shift-and-stack and permute_and_stack applications to
an 8×7 uniform design (UD) example from Fang et al. (2000b). Jitter is
added to the points so that ties can be identified. The nearly orthogonal

(NO) criterion is marked with a dashed line at 0.05.

Figure 11 shows various n×k cataloged UDs and four applications of shift-and-

stack and permute_and_stack. For each design size, permute_and_stack

dramatically exceeds all of the column-reordering shift-and-stack heuristics in reducing

map. All of the X1 designs in Figure 11 surpass the UD catalog’s limit of 30 DPs. These

new extended designs allow researchers to leverage the extensive effort that went into

making the cataloged UDs.

58

Figure 11. Four applications of shift-and-stack and permute_and_stack
to UDs of size 16×11, 21×11,…, and 30×20 from the UD catalog of

Fang et al. (2000b).

Figure 12 shows how the permute_and_stack and shift-and-stack heuristics

do with respect to the correlation measure map and the discrepancy measure (ML2)2.

Ideally, we would use a 33×11 base UD to match the size of our previous NOLH example.

However, since n > 30, no such design is available at Fang et al. (2000b). Therefore, we

use a cataloged 30×11 UD for the multi-objective assessment to provide a relatively close

comparison. We see that permute_and_stack always yields the lowest map and the

(ML2)2 values are similar at each stack.

59

Figure 12. Multi-objective (map and (ML2)2) 30×11 UD comparison and
resultant UDs extended after four applications of shift-and-stack and

permute_and_stack.

Constructing a UD (Fang et al. 2000a) is nontrivial. It involves stochastically

searching for the optimum UD by applying a threshold-accepting algorithm to minimize

(CL2)2 (Fang et al. 2000b). After considerable computational effort, the UD that minimizes

(CL2)2 was added to the catalog (Fang et al. 2000b). Although these designs achieve

extraordinary discrepancy measures, the limited number of DPs constrain their utility. In

addition, since the optimization algorithm does not consider correlation, some higher-than-

desired correlations may result. Generally, we expect permute_and_stack to be of

greater value in reducing map for SFDs that do not consider correlation in their

construction, like UDs.

60

C. EXTENDING STOCHASTICALLY GENERATED SPACE-FILLING
DESIGNS USING JMP AND R SOFTWARE PACKAGES

This section extends several classes of SFDs obtained from JMP and R software

packages. Since there is stochasticity in the construction process, we create 100 designs for

each class as Wang et al. (2020, p. 2) did. As before, the design dimensions are 33×11.

After empirically assessing the distribution of important measures of design characteristics,

we extend all 100 base designs by applying permute_and_stack and shift-and-stack

for the ten column-reordering heuristics. We also assess how permute_and_stack

performs in comparison to designs created in the extended design space.

1. Extending JMP’s MmLHDs

This subsection flows as follows. We first discuss why and how we create 100

MmLHDs in JMP. Then, we show design-generation stochasticity for multiple design

characteristic measures. After that, we see how shift-and-stack performs (with respect to

map) for our ten correlation-based column-reordering heuristics. Next, we compare the

map values obtained by using the shift-and-stack heuristics to permute_and_stack for

both a sequence of stacks and designs generated by JMP in the extended space. Finally, we

look at how permute_and_stack affects both the correlation measure map and the

space-filling measure (ML2)2 for multiple stacks.

We study the MmLHD first because it “seems to be the most commonly used

experimental design for computer experiments in practice because of its simplicity and

availability in software packages” (Joseph 2016, p. 31). When using a design generator that

includes randomness, how should an experimenter select the design to use? One approach

is to select the best design from many randomly generated designs, such as the “100

maximin L2-distance LHD(n,k)’s by the R package SLHD [Sliced LHD] (Ba 2015) with

default settings” as Wang et al. (2020, p. 2) did. Moreover, there can be multiple optimal

solutions for a given design size. Citing Morris and Mitchell (1995), Joseph and Hung

(2008, p. 179) “found that there are 142 different designs according to the maximin

criterion” in MmLHDs of size 5×3.

61

To generate 100 MmLHDs efficiently, we utilize JMP’s Scripting Language (JSL),

save the designs and their random-number-generator seeds, and collect space-filling

measures (SFMs) for follow-on data analysis. We compare 100 space-filling MmLHDs for

n = 33 and k = 11 using JMP and its default settings.

Figure 13 summarizes multiple key design measures for the 100 33×11 MmLHDs.

The Mm distance criterion is “maximized” during construction. The map value provides

information on the design’s correlation. The (ML2)2 value measures the design’s

discrepancy. The histograms in Figure 13 show the empirical distributions of the Mm, map,

and (ML2)2 measures. Of note is the variability in these measures, in particular for map.

Figure 13. Mm, map, and (ML2)2 measures for 100 33×11 MmLHDs from
JMP. Note that map ranges from 0.176 to 0.380.

JMP built all 100 designs intending to maximize the minimum Euclidean distance

between any two DPs (i.e., the Mm criterion) while the DPs are constrained to an LHD.

The best design has an Mm distance of 1.088. Here, the Mm distances for the 100 randomly

constructed 33 11 MmLHDs range from 1.022 to 1.088, with a mean value of 1.063 and

a 95 percent confidence interval (CI) on the mean of [1.059, 1.065]. The estimated standard

error on the mean of Mm distance is 0.0015. The map values vary between 0.176 and 0.380,

62

with a mean value of 0.261 and 95 percent CI on the mean of [0.253, 0.270]. The estimated

standard error on the mean of map is 0.0042. Concerning map, the worst-case design has

more than double the map of the best-case design. The (ML2)2 discrepancy ranges from

0.770 to 0.933, with a mean value of 0.825 and a 95 percent CI on the mean of [0.818,

0.831]. The estimated standard error on the mean of (ML2)2 discrepancy is 0.0033. These

results empirically display the consequence of randomness in design generation, as only

the random-number-generator seeds were varied. We also see that a sample size of 100 is

sufficient to obtain an understanding of the distributions of design measures. Moreover,

Figure 14 shows that none of the 100 33×11 MmLHDs even approach the nearly

orthogonal standard of map ≤ 0.05, even though such an LHD is possible (Cioppa and

Lucas 2007).

Figure 14 displays the map values for the 100 33×11 MmLHDs constructed by JMP

in two plots (left and right). Low map values are preferred. The strip chart shows individual

points (left), visually reinforcing the 100 random executions of JMP. There are 87 unique

map values. An important takeaway from Figure 14 is the observed variability of map. An

experimenter needs to understand this to ensure that they generate enough designs to obtain

one with good properties. The box plot (right) displays the variability of map using

quartiles. We will use box plots for most of our visualizations below.

63

Figure 14. Strip chart and box plot of map values for 100 33×11 MmLHDs
constructed using JMP. The individual points (left) show the map values

of 100 X0 matrices. We see considerable variably in map, with none of the
designs being nearly orthogonal.

Figures 15–17 show how adding sequential stacks generally reduces map. We

explain how sequential stacking improves these 100 designs by seeing how map values

tend to decrease as additional stacks are added using forward shift-and-stack with the base

design configuration (B); i.e., without applying our column-reordering heuristics.

Figure 15 shows the distributions of map for up to four iterations of forward shift-and-stack

for 100 33×11 MmLHDs. A knee of the curve appears to be located near the second or

third iteration. There also appears to be a decrease in variability (in terms of map) as the

number of stacks (s) increases. This may follow from the increased number of DPs; i.e.,

(s+1)n, and the fact that the decreasing map values are bounded below by zero.

64

Figure 15. Four forward shift-and-stack iterations with box plots of map
values for 100 33×11 MmLHDs using the base design configuration (B)

of X0.

Figure 16 shows four iterations of shift-and-stack for the ten column-reordering

heuristics in Table 9, starting with 100 33×11 MmLHDs constructed using JMP.

Figure 16. Box plots of map values for ten column-reordering heuristics
through four iterations of shift-and-stack for 100 33×11 MmLHDs.

65

Figure 16 shows box plots of map values for the 4,000 new designs resulting from

the ten heuristics and four iterations of shift-and-stack on 100 33 11 MmLHDs. The big

takeaways are: (1) all ten heuristics have similar performance in terms map, (2) map tends

to decrease as additional stacks are appended, and (3) there is substantial variability in map

values at all stages.

Our inability to find a simple column-reordering heuristic drove us to consider an

optimal matching of columns when stacking, ultimately leading to the

permute_and_stack algorithm. Figure 17 shows how much better

permute_and_stack performs in reducing map and its variability compared to all the

shift-and-stack heuristics. By the third optimal permute and stack, the average map is

0.047, which is nearly orthogonal (i.e., ≤ 0.05)—this is an 82 percent reduction in

correlation from the average of the 100 original 33×11 MmLHDs. The knee in the map

permute_and_stack curve looks to be at roughly the third or fourth stack.

Additionally, the “worst” permute_and_stack design is almost always better than the

best shift-and-stacked design. Finally, we see that map’s variability is significantly lower

when applying permute_and_stack.

66

Figure 17. Box plots of map values at each of four stacks given the 100 33×11
MmLHDs using shift-and-stack for the ten column-reordering heuristics

and permute_and_stack (blue). The permute_and_stack
algorithm dramatically outperforms shift-and-stack in reducing map values

and variability.

For many classes of designs, we cannot easily create designs of the new larger

dimension, such as, the cataloged UDs or NOLHs. However, for MmLHDs generated by

JMP, we can readily construct designs in the new dimensions. How will these new

software-generated designs compare to permute_and_stack? To assess this, we use

JMP to create 100 MmLHDs of size (s+1)33×11 for s=1,…, 4 to compare to

permute_and_stack. That is, we collect the map measures for 100 constructed

MmLHDs of sizes 66×11, 99×11, 132×11, and 165×11. Figure 18 shows a comparative

plot for four iterations of our ten shift-and-stack heuristics (light colors),

permute_and_stack (blue), and the newly constructed MmLHDs of like size (grey)

using JMP’s default settings. We see that permute_and_stack dominates the newly

constructed MmLHDs of like size with respect to map.

67

Figure 18. Comparative plot between permute_and_stack (blue), shift-
and-stack (light colors), and 100 new (s+1)33×11 MmLHDs (grey). The
best designs (in terms of map) are the permute_and_stack designs.
None of the software-generated MmLHDs of size (s+1)33×11 are nearly

orthogonal.

While permute_and_stack considers only correlation, we desire designs with

low column correlations and good space-filling properties. To determine better designs for

multiple objectives, we present a multi-objective (i.e., map and (ML2)2) empirical study of

the effectiveness of shift-and-stack, permute_and_stack, and using software to create

a new design in the extended space. Non-dominated multi-objective observations are

shown for a given design size to help inform on the Pareto front (Lu et al. 2011, Pareto

1906) of these measures for JMP’s MmLHDs.

Figure 19 plots the map and (ML2)2 values from the 100 33×11 MmLHDs JMP

created. The y-axis (map) ranges from 0.00 to 0.40 and the x-axis ((ML2)2) from 0.00 to

0.95. We desire lower values for each measure. Thus, designs in the lower left of the plot

are preferred. The nearly orthogonal (NO) cutoff value, map = 0.05, is labeled to denote

the desired target. Observations in Figure 19 range from [0.16, 0.38] for map and [0.75,

0.95] for (ML2)2, which provide a relative reference prior to adding stacks with shift-and-

68

stack and permute_and_stack. There is a lot of variability in these “optimal”

software-generated designs. An ellipse containing 90 percent of the observations is added.

Figure 19. 100 33 11 MmLHDs prior to shift-and-stack and
permute_and_stack. The shaded 90 percent ellipse shows an
approximate map range of [0.17, 0.35] and (ML2)2 of [0.75, 0.90].

Subsequent figures show map and (ML2)2 values as stacks are appended using

permute_and_stack and the shift-and-stack heuristics as well as those of 100 new

design generations in JMP of size (s+1)33×11. We begin with a single stack; i.e., s = 1.

Figure 20 displays the map and (ML2)2 statistics for the 100 X1 designs obtained by

permute_and_stack (in blue), the 1,000 (Xs)1 designs from our ten shift-and-stack

heuristics (in a variety of colors), and the 100 new 66×11 MmLHDs from JMP. To help

69

visualize the distributions, we display ellipses that contain 90 percent of the observations.

We see that all shift-and-stack heuristics are comparable, as most ellipses overlap. As we

have seen above, permute_and_stack consistently produces the lowest map values.

As expected, with a finer lattice, the 66×11 MmLHDs have the best (ML2)2 space-filling

measures. Which design is preferred depends on how a practitioner values these two

measures. Both permute_and_stack and the 66×11 MmLHDs show less variability

(i.e., smaller ellipses).

Figure 20. 100 33×11 MmLHDs after one application (s = 1) of forward shift-
and-stack (light colors) and permute_and_stack (blue). 100 new

66×11 MmLHD constructions are plotted individually (grey).

Figure 21 displays the map and (ML2)2 values for the 100 Xs designs obtained by

permute_and_stack and the 1,000 (XS)s designs from our shift-and-stack heuristics

70

when s = 4. The plot also includes the 100 “big new designs,” i.e., the 100 165×11

MmLHDs developed directly in JMP. Looking across the figures, we see improvement in

each measure with more stacks (i.e., added DPs). Designs constructed using

permute_and_stack perform far better than the ten shift-and-stack heuristics and the

165×11 MmLHDs with respect to map. All of the designs that are nearly orthogonal result

from permute_and_stack. As expected, with five times more levels for each factor,

the 165×11 MmLHDs have the best (ML2)2 values. From the 1,200 designs, only six are

non-dominated—three of which were obtained by permute_and_stack. Appendix B

contains the full sequence of four extensions.

Figure 21. 100 33×11 MmLHDs with four extensions using shift-and-stack
(colors) and permute_and_stack (blue) compared with 100 165×11
MmLHDs. The shaded ellipses contain 90 percent of the design measure

coordinates for each of the dozen generation methods. From the 1,200
designs, only six are non-dominated (darkened).

71

Empirically, Figure 21 reveals the trade-off possibilities for this difficult problem.

For such situations, Jin et al. (2003, p. 546) write that it “is more practical to solve optimal

design (of experiments) problems approximately.” Here, only the six non-dominated

designs (darkened) need to be considered if the goal is attaining a best (in terms of map

and (ML2)2) 33×11 MmLHD extended in four batches or a 165×11 MmLHD. From the

non-dominated designs, the best non-permute_and_stack map is 207% higher than

the lowest map achieved using permute_and_stack. From the non-dominated

designs, the best non-permute_and_stack (ML2)2 is 28% lower. For a given design

type, size n×k, and set of properties, we observe that the edge of the envelope created by

the non-dominated points bound the multi-criteria Pareto front (Lu et al. 2011, Pareto

1906).

2. Extending R’s Maximum Projection (MaxPro) Designs

Maximum projection (MaxPro) designs are a relatively new approach to generating

SFDs that strive to “maximize space-filling properties to all subsets of factors.” (Joseph et

al. 2015, p. 371). The MaxPro optimality criterion of Equation (4) is a distance-based

measure that “fav[o]r[s] more points towards the boundaries than at the cent[er]” (Joseph

et al. 2015, p. 376), which can result in poor uniformity. This subsection explores how

permute_and_stack, shift-and-stack using the ten column-reordering heuristics, and

MaxPro designs generated in the extended space perform in reducing map. The MaxPro

designs are generated by the R software package MaxPro (Ba and Joseph 2018) using the

default settings.

Ba and Joseph (2018) recommend using a two-step approach in generating MaxPro

designs. The first step is to use simulated annealing (SA) to build a MaxPro design with

the design matrix constrained to an LHD. The result is an initial MaxProLHD, which serves

as the starting point for the second step, an SA optimization without the LHD restriction.

We follow Ba and Joseph’s (2018) advice in constructing these designs and use the name

MaxPro to denote the resultant design. We note that MaxPro designs typically have

unevenly spaced levels, unlike the MaxProLHDs.

72

Figure 22 summarizes the distributions of multiple key design measures for 100

33×11 MaxPro designs produced by the R package MaxPro. As with MmLHDs in the

previous section, we see substantial variability in the measures resulting from the 100

“optimal” 33×11 MaxPro designs. The best (minimum) MaxPro value achieved has a

MaxPro value of 15.556. The mean MaxPro value is 16.025, and the 95 percent CI on the

mean is [15.985, 16.025]. The worst (maximum) MaxPro value obtained is 16.553. Having

explored the variability in the criterion for optimizing the designs, we consider other key

quality measures. The Mm distance criterion for the 100 33×11 MaxPro designs ranges

from 0.881 to 1.091. The worst map encountered is map = 0.378. The best map obtained is

0.176. The average map is 0.257. The (ML2)2 discrepancy ranges from 1.467 to 1.927, with

a mean value of 1.648 and a 95 percent CI on the mean of [1.632, 1.663]. These results

empirically illustrate the variability in multiple design properties resulting from the

MaxPro R software package, as only the random-number-generator seeds were varied.

Figure 22. MaxPro, Mm distance, map, and (ML2)2 distributions for 100
33×11 MaxPro designs from the MaxPro R software package. The

average map is 0.257, and it ranges from 0.176 to 0.378.

Figure 23 displays the map values for 100 33×11 MaxPro designs after applying

permute_and_stack, shift-and-stack using the ten column-reordering heuristics, and

MaxPro designs generated in the extended space of size (s+1)33×11 for s = 1,…, 4 stacks.

The permute_and_stack designs have consistently lower map values than the shift-

73

and-stack heuristics and the new designs built in the extended space. A majority of the

permute_and_stack designs achieve near orthogonality by s = 3 (i.e., three

extensions). We also see much less variability in map values with permute_and_stack

designs.

Figure 23. Box plots of map values at each of four stacks given 100 33×11
MaxPro designs using shift-and-stack (with ten column-reordering

heuristics), permute_and_stack (blue), and 100 new (s+1)33×11
MaxPro designs (grey) for s =1, …, 4. None of the MaxPro designs satisfy

the nearly orthogonal criterion.

Figure 24 shows multiple design criteria (i.e., map and (ML2)2) considered together

after applying permute_and_stack and shift-and-stack using the ten column-

reordering heuristics for s = 2. The plot also contains 100 MaxPro designs constructed by

the MaxPro R software package in the extended space. As before, designs in the lower-left

corner are preferred. Once again, all of the shift-and-stack heuristics perform similarly. The

permute_and_stack designs have by far the best map values, while the 99×11

74

MaxPro designs have the best (ML2)2 statistics. There are a total of 14 non-dominated

designs, seven from permute_and_stack and seven from the 99×11 MaxPro designs.

The best (ML2)2 value in the non-dominated set of MaxPro designs is 34.8 percent less (i.e.,

better) than the best (ML2)2 in the non-dominated set of permute_and_stack designs.

However, this same non-dominated MaxPro design has a 207.1 percent higher map than

the permute_and_stack design with the best map and 122.4% greater map than the

permute_and_stack design with the best (ML2)2. The non-dominated points provide

information on the tradespace and to what is possible for these two measures for SFDs of

this size.

Figure 24. 100 33×11 MaxPro designs with two extensions (s = 2) of shift-
and-stack with the ten column-reordering heuristics (colors) and

permute_and_stack (blue) compared with 100 99×11 MaxPro
designs. None of the 100 99×11 MaxPro designs generations (grey) in the

extended space satisfy the nearly orthogonal criterion.

75

3. Extending JMP’s Sphere-Packing (Mm distance) Designs

This section compares the performance of permute_and_stack and shift-and-

stack in another design class—the sphere-packing design, which is JMP’s Mm distance

design. We compare 100 space-filling sphere-packing designs for n = 33 and k = 11 using

JMP and its default settings for up to four stacks. We also see how

permute_and_stack performs relative to sphere-packing designs created in the

extended design space.

Figure 25 summarizes the distributions of multiple key design measures for 100

33×11 sphere-packing designs. We see that the Mm distances here are larger (as this is the

design goal) than for the other SFDs of similar size. For example, the greatest MmLHD

Mm distance achieved has a Euclidean distance of only 1.088, which is 43.33 percent lower

than the best sphere-packing design, with a minimum Euclidean distance of 1.920. These

results make sense, as other design classes optimize different criteria (e.g., MaxPro or UD)

or have additional constraints (e.g., MmLHD). Of note is that map ranges from 0.114 to

0.338. We also see that the (ML2)2 values are much higher than in the other software-

generated SFDs we study. This follows from the optimization criterion, where the DPs are

pushed to the boundaries of the design space, which results in gaps in the interior and

higher-than-desired uniformity values. For the 100 sphere-packing designs, the minimum

(ML2)2 value is 8.923, whereas for the MmLHD the maximum (ML2)2 value is 0.933,

almost an order of magnitude lower.

76

Figure 25. Mm, map, and (ML2)2 measures for 100 33×11 sphere-packing
(JMP’s Mm distance) designs. Note that the mean map is 0.229, ranging

from 0.114 to 0.338.

Figure 26 illustrates how much better permute_and_stack performs in

reducing map and its variability compared to shift-and-stack and new sphere-packing

designs created by JMP in the extended space. Once again, by the third stack, most of the

permute_and_stack designs are nearly orthogonal.

77

Figure 26. Comparative plot between permute_and_stack (blue), shift-
and-stack (colors), and 100 (s+1)33×11 sphere-packing designs (grey).

The best designs (in terms of map) are the permute_and_stack
designs.

Figure 27 is a comparative plot of the distributions of map and (ML2)2 for 100

permute_and_stack (blue), 1,000 shift-and-stack with the column-reordering

heuristics (colors), and 100 new sphere-packing designs in the extended space (grey) for

s = 2. Once again, permute_and_stack yields the lowest map values, and the sphere-

packing designs created in the extended space have the best (ML2)2 values. From these

1,200 designs, there are only five non-dominated ones. Which design is preferred depends

on the experimenter’s goals. These results provide trade-off options. The lowest map value

in the non-dominated set of 99×11 sphere-packing designs is 86.1 percent higher than the

minimum in the non-dominated set achieved by extending the 33×11 sphere-packing

designs twice using permute_and_stack. Conversely, the minimum (ML2)2 value in

the non-dominated set of 99×11 sphere-packing designs is 14.8% better than the minimum

(ML2)2 value in the non-dominated set achieved using two applications of

permute_and_stack to extend the 33×11 sphere-packing designs.

78

Figure 27. 100 (s+1)33×11 sphere-packing designs with s = 2 extensions
using shift-and-stack (colors) and permute_and_stack (blue), as well

as new generations for the extended space (grey). Note that many of
permute_and_stack designs satisfy the map ≤ 0.05 criteria.

4. Extending R’s UniDOE Uniform Designs (UDs)

Zhang et al. (2018) introduced the R package UniDOE, which generates uniform

designs (UDs) for a variety of distance and discrepancy criteria, including Mm distance,

(CL2)2 discrepancy, and the mixture 2L discrepancy. Of these, the mixture 2L discrepancy

defined by Zhou et al. (2013) is the default optimality criterion value for the software as

the criterion is “more reasonable” (Ke et al. 2015, p. 741) than other uniformity criteria.

Thus, the UniDOE package in R for the default settings was used to create 100 33×11 UDs.

Figure 28 shows the distributions of measures of design quality that result. UniDOE

builds UDs from a stochastic and adaptive threshold accepting algorithm that augments

79

integer LHDs, optimizing the mixture 2L discrepancy for uniformity, which Ke et al.

(2015) explain overcomes some of the limitations of the (CL2)2. Ke et al. (2015) write that

the (CL2)2 “covers the points near the center insufficiently and this measurement will cause

some problems when data is high dimensional…lead[ing] to some unreasonable results”

(p. 742) compared to the mixture 2L discrepancy measure.

Figure 28. (CL2)2, Mm distance, map, and (ML2)2 measures for 100 33×11
uniform designs generated from the UniDOE package in R. Note that map

ranges from 0.132 to 0.296.

The (CL2)2 measure distribution ranges from 0.114 to 0.134. The lowest mean

(ML2)2 discrepancy (compared to MaxPro, MmLHD, and sphere packing) is achieved by

the R package UniDOE, which generates designs that have an (ML2)2 value of 0.624, on

average. The mean values of (ML2)2 for MaxPro, MmLHD, and sphere-packing designs

are 1.648, 0.825, and 9.887, respectively. Interestingly, the MaxPro optimization results in

poorer uniformity than does the Mm optimization of the MmLHD.

Figure 29 shows four extensions of shift-and-stack’s ten configurations,

incorporating the column-reordering heuristics, permute_and_stack, and new UD

generations for the extended space using the R package UniDOE. Note that by the second

stack permute_and_stack’s average map measure is less than 0.05. It is apparent from

the figure that the UniDOE R software package reduces the average value of map and its

80

variability as n increases, even though the optimality criterion deals with measures of

uniformity. In fact, after four extensions, a 165×11 UniDOE UD is very competitive with

permute_and_stack with respect to map.

Figure 29. Comparative box plots of 100 design generations using the
UniDOE R package for the default settings compared to shift-and-stack

and permute_and_stack. Two extensions of the
permute_and_stack algorithm result in an average map < 0.05.

A comparative plot of map and (ML2)2 for two extensions (s = 2) using

permute_and_stack and shift-and-stack is given in Figure 30. The figure also

includes 100 UDs constructed in the extended space (grey). The R package UniDOE

generates the base 100 33×11 and 100 99×11 UDs for the extended space. Design

extensions of the base 100 33×11 UDs are shown for permute_and_stack (blue) and

shift-and-stack using the ten column-reordering heuristics (colors). The nine darkened

observations in Figure 30 are the non-dominated set of observations. Note that all of the

non-dominated designs are nearly orthogonal. From the non-dominated set, the best

UniDOE 99×11UD has an (ML2)2 value 37 percent lower than the best obtained by

permute_and_stack. Also, from the non-dominated set, the best UniDOE 99×11 UD

81

has a map value 21 percent higher than the best obtained by permute_and_stack.

Across the 100 99×11 UDs, the average map is 0.085, while it is 0.047 after two extensions

of the base 100 33×11 UDs using permute_and_stack.

Figure 30. Multi-objective (map and (ML2)2) comparative plot for UDs
generated using the R package UniDOE. Note the fraction of observations

that are nearly orthogonal for the ellipses shown.

5. Extending JMP’s Uniform Designs (UDs)

Santner et al. (2018) explain that JMP constructs uniform designs using “the (CL2)2

discrepancy measure of Hickernell (1998)” (p. 200). Creating 100 JMP uniform designs

(UDs) is less straightforward and requires JMP’s scripting language (JSL). Figure 31

summarizes four measures of design characteristics for 100 33×11 UDs generated by JMP.

The optimality criterion minimized during construction is the (CL2)2. JMP provides this

value in each design’s diagnostic report.

82

Figure 31. (CL2)2, Mm distance, map, and (ML2)2 measures for 100 33×11
JMP uniform design (UD) constructions. Note that the mean map for these

designs ranges from 0.087 to 0.199.

Comparing the uniformity achieved between UDs constructed using the two

different software packages—the R package UniDOE and JMP—we observe similar

results for (CL2)2. Specifically, the mean value of (CL2)2 for UniDOE UDs is 0.120 and for

JMP 0.118. However, when uniformity is measured using (ML2)2, these measures are less

close. The mean (ML2)2 discrepancy achieved using the R package UniDOE is 0.624,

whereas the average (ML2)2 for JMP’s UDs is 0.755, which is noticeably worse.

Figure 32 presents a comparative plot for three iterations of shift-and-stack (using

ten column-reordering heuristics) (colors), permute_and_stack (blue), and JMP UD

generations in the extended space (grey) using default settings. While JMP generates UDs

to optimize (CL2)2, it also improves the average map values for designs as n increases,

similar to the R package UniDOE.

83

Figure 32. Comparative plot between permute_and_stack (blue), shift-
and-stack (light colors), and 100 new (s+1)33×11 UDs of JMP (grey). The
best designs (in terms of map) are the permute_and_stack designs,

which are nearly orthogonal on average after s = 1.

Both software packages successfully achieve steady improvement in these

measures; however, there is also a steady increase in the time required to construct these

designs. Figure 33 is the time estimate (21 hours and 48 minutes) for JMP to complete the

calculations necessary to generate one 200×20 UD, which can be terminated early to

“deliver the best design found so far.”

Figure 33. Time diagnostic report to generate one 200×20 UD in JMP.

84

A portfolio of batch-sequential designs can be generated with one execution of

permute_and_stack, which takes less time than designs generated from scratch for

the extended space or large n (e.g., n = 363). The time required to generate 100 200×20

large-scale UDs in JMP (see Figure 33) is 88.06 days.

Figure 34 shows a comparative plot of map and (ML2)2 for two extensions (s = 2).

From the 1,200 design observations of Figure 34, only ten coordinates are non-dominated,

including four from permute_and_stack. The mean map in the

permute_and_stack designs is 0.048. The mean map in the 66×11 UDs is 0.057.

Figure 34. 100 33×11 UDs generated using JMP with one extension using
shift-and-stack (colors) and permute_and_stack (blue) compared

with 100 66×11 UDs in the extended space.

6. Extending Random Latin Hypercube Designs (LHDs)

Latin hypercube designs (LHDs) (McKay et al. 1979) are ubiquitous in

computational experimentation as constructing an n×k LHD is straightforward. Moreover,

“when a discrete uniform is used on the [columns], the one-dimensional projections are

optimum space-filling designs” (Cioppa and Lucas 2007, p. 47). All 100 Latin hypercube

85

(LH) designs (LHDs) constructed in this section result from custom functions developed

in R; however, online code exists for generating LHDs (e.g., the rLHD() function in the

R software package LHD).

Figure 35 displays several measures of design quality for 100 33×11 random LHDs.

The histograms show the empirical distributions of the MaxPro, Mm distance, map, and

(ML2)2 measures of the designs. As expected, since there is a vast number of candidate

designs (33!11) and these designs are not optimizing any criterion, we observe significant

variability across all measures. The MaxPro criterion values vary between 35.71 and

107.01, with a mean value of 55.34 and a 95 percent CI on the mean of [52.90, 57.78]. The

mean MaxPro measure for LHDs is over three times that for MaxPro designs. The average

Mm distance is 0.644, 60.6 percent of the mean achieved by the MmLHD. The map values

range between 0.301 and 0.585, with a mean value of 0.441 and a 95 percent CI on the

mean of [0.428, 0.453]. These are the highest values of all the designs we considered in

this chapter. All 100 of these 33×11 LHDs have map values greater than ten times the

equivalent-sized NOLH. The (ML2)2 discrepancy ranges from 0.875 to 1.387, with a mean

value of 1.009 and a 95 percent CI on the mean of [0.993, 1.025]. This is 61.7 percent

greater than the average (ML2)2 value for UniDOE’s 33×11 UDs.

Figure 35. MaxPro, Mm, ,map and (ML2)2 measures for 100 33×11 LHDs.

The mean map of these 100 LHDs is 0.441, ranging from 0.301 to 0.585.

86

Figure 36 shows how map tends to decrease when an original LHD is extended by

permute_and_stack and shift-and-stack (with the ten column-reordering heuristics)

for s = 1,2,…, 10. We see that map generally declines with the number of DPs for LHDs

generated in the extended space (i.e., 66×11, 99×11,…, 363×11). Interestingly, for our

largest designs, 363×11, all stacking methods outperform the one big design. The quickest

and most significant reductions in map occur when permute_and_stack is used.

However, it takes seven extensions for the average map in the 264×11 LHDs extended to

meet the nearly orthogonal criterion. We also observe that permute_and_stack also

decreases the variability in map far more than all other approaches.

Figure 36. Comparative plot between permute_and_stack (blue), shift-
and-stack (light colors), and 100 (s+1)33×11 LHDs (grey). The best
designs according to map are the permute_and_stack designs.

Figure 37 displays a multi-objective comparative plot of map and (ML2)2 after one

extension of 100 33×11 LHDs. Observation data for 100 66×11 LHDs constructed in the

extended design space also appear comparable (90 percent ellipses mostly overlapped) to

shift-and-stack (with ten column-reordering heuristics) for these measures. None of the

designs in the figure are nearly orthogonal.

87

Figure 37. 100 33×11 random LHDs after one extension using shift-and-stack
(light colors) and permute_and_stack (blue) compared with 100

66×11 LHDs. Shaded ellipses containing 90 percent of the 66×11 LHDs
are barely noticeable (seven o’clock position) behind the design measure

coordinates (and ellipses) of shift-and-stack. From the 1,200 designs,
seven are non-dominated, all of which are permute_and_stack

designs.

88

THIS PAGE INTENTIONALLY LEFT BLANK

89

V. LESSONS FROM MASSIVE EXPERIMENTATION ON
SPACE-FILLING DESIGNS OF DIFFERENT TYPES AND SIZES

While there are many optimality criteria available in the literature, the
comparison between different design criteria is certainly one of the most
important problems in the field of design of computer experiments and
deserves a thorough future investigation.

—Jin et al. (2003), p. 554

Despite the call from Jin et al. (2003) nearly two decades ago, there remains a dearth

of knowledge on the relationships among design criteria for computer experiments. This

chapter highlights lessons from massive experimentation on correlation and space-filling

measures (SFMs) for many classes and sizes of designed computer experiments. The need

for such experimentation became apparent to the author when accessing how well

permute_and_stack does across many classes and sizes of SFDs. The plots in this

chapter reveal higher than expected variances and significant outliers. This highlights the

risks associated with generating only a single “optimal” design with stochastic software.

Researchers need to generate many SFDs to ensure they obtain a design with good

properties for their application.

A. INTRODUCTION

There are many classes of space-filling designs (SFDs) and measures to assess

them. In these experiments, particular emphasis is given on the variability in space-filling

and correlation measures in popular software-generated designs as well as relationships

among them.

Finding optimal space-filling designs (SFDs) for large n and k is extremely

challenging. Lin and Tang (2015) explain that due to the complexity of the optimization

problem of creating large space-filling designs, most design-generation software contains

stochastic aspects. Jin et al. (2003) write, “[s]earching the optimal design of experiments

within a class of designs (e.g., LHD), even though more tractable than searching in the

entire sample space without any restrictions, is still difficult to solve exactly” (p. 546).

90

Thus, stochastic search algorithms are almost always used in generating complex SFDs.

Simulated annealing (SA) (Bohachevsky et al. 1986), threshold-accepting (TA) (Winker

and Fang 1998), and genetic algorithms (GAs) (Goldberg and Holland 1988) all generate

resultant designs that are “approximate” or “near-optimal” solutions. Moreover, the

arrived-at designs’ properties can vary significantly based on random-number-generator

seeds, starting points, or search-algorithm parameter settings.

The research questions that drove this experimentation are:

(1) What is the variability in SFMs when using popular software packages to
construct SFDs?

(2) What are the relationships among space-filling and correlation measures for
various classes and sizes of SFDs?

(3) Which design software, construction methods, and parameter settings
efficiently create quality SFDs?

To address these research questions, popular software packages are used to

construct SFDs to inform on the variability and relationships among space-filling and

correlation measures for various design classes and sizes. Many thousands of SFDs of

different dimensions are created using JMP and R software packages. The design classes

include random Latin hypercube designs (LHDs) (McKay et al. 1979); sphere-packing

(Mm distance) designs in JMP (Johnson et al. 1990); MmLHDs in JMP (Morris and

Mitchell 1995); MaxPro designs (Joseph et al. 2015) with the MaxPro R package (Ba and

Joseph 2018), and uniform designs (UDs) using the UniDOE R package, see Fang et al.

(2000a) and Zhang et al. (2018).

B. APPROACH METHODOLOGY: WHAT WE DID

1. Software-Generated Constructions

Extending the research of Lin and Tang (2015) and Wang et al. (2021), we present

a comparative study to examine the stochastic aspects of SFD construction. For each design

class, following Wang et al. (2020), we generate 100 designs using JMP or R (at their

default settings) for k = 5, 10, and 20 and n = k+1, 3k+2, and 10k to investigate our research

questions. This allows us to explore the effects of the number of factors (k) as well as the

91

number of design points (DPs) per factor. When n = k+1, the designs are fully saturated

and quite sparse; i.e., few DPs relative to k. Designs with n = 3k+2 are similar in DPs per

factor as those evaluated in Chapter IV. In cases where n = 10k, there are more degrees of

freedom for fitting metamodels. Having n = 10k matches the rule-of-thumb guidance “to

use a sample size of 10d when the input space is of dimension d.” noted in Santner et al.

(2018, p.149). With more DPs, the density or space-fillingness of points in the experimental

region  can be greater. For each design generated, measurements were recorded for ten

design criteria.

The SFDs were constructed using JMP and several R packages. The generation was

facilitated by writing scripts in R and JMP’s scripting language (JSL). Using the “space-

filling designer” in JMP (SAS, 2021), sphere-packing (Mm distance) designs and

MmLHDs were constructed. In JMP, MmLHDs refers to a sphere-packing design

constrained to an LHD (Latin hypercube design) with evenly spaced levels for each factor.

In R, we generated MaxPro designs, uniform designs (UDs), and random LH sampling

(LHS) designs using the software packages MaxPro, UniDOE, and lhs, respectively.

Following the recommendation of Ba and Joseph (2018), the MaxPro designs are initialized

with a MaxProLHD (i.e., first optimizing the MaxPro criterion with design matrix X

constrained to an LHD). The R package lhs is used to construct designs using LHS as

initially defined by McKay et al. (1979), which samples within strata as opposed to random

LHDs in which the design points are constrained to a lattice. Custom R functions were used

to generate LHDs.

Appendix D provides example scripts for generating 100 sphere-packing designs

in JMP using JSL (JMP’s Scripting Language) and constructing MaxPro designs using the

MaxProLHD() function and R software package MaxPro. Since there is randomness in

the construction algorithm, following Wang et al. (2020), 100 designs were created for

each of k = 5, 10, and 20, and n = k+1, 3k+2, and 10k. Thus, a total of 900 sphere-packing

designs were generated. The other five classes of designs studied also had 100 instances

created at each of the same design dimensions.

92

Figure 38 shows the first ten entries of an output folder containing MaxPro designs

of size 32×10. We label each construction with an ID from 1-100 (only 1-10 are shown) to

facilitate analysis. For example, our first MaxPro design file is named

MaxPro_32_10_1.CSV. We also store the random-number-generator seeds so that all

designs can be reconstructed. This process is repeated for six types of SFDs, yielding

6×9×100 = 5,400 SFDs. In actuality, the number of designs created and evaluated is a bit

larger, as some fractional and full factorial designs (which are typically not considered

space-filling) were also constructed for comparison purposes. Figure 38 shows an example

file that illustrates how these designs are stored for future research and the approach used

to save stochastically generated designs with their random-number seed.

Figure 38. An example file folder containing the first ten of 100 32×10
MaxPro design generations.

2. Measurement Data

For each of the 5,400 SFDs created, we computed and collected ten measures of

design characteristics. The results are stored in a single CSV (comma-separated values)

file. Table 12 shows the first ten rows from the final 5,400×14 CSV data file. The first

column specifies the design replication number (used in the design ID), which varies from

one to 100. The second column contains the design class. Columns three and four specify

the number of DPs (n) and factors (k), respectively. The next ten columns (columns E-N)

93

contain the design’s characteristic measures. Columns E and F are measures of correlation.

Columns G and H are measures of discrepancy. The design’s coverage is given in column

I. Columns J through N are distance measures. For the measures in columns E through L,

lower values are preferred. For the measures in columns M and N, greater values are

favored. That is, designs optimizing for map, | | , (ML2)2, (CL2)2, coverage, MaxPro, and

p select the X with the lowest value—while Mm- and  - distance designs search for the

X with the largest values.

Table 12. Ten rows from the final 5,400×14 CSV measurement data file.

Consider the first row of output for a MaxPro design (label ID is 1) of Table 12.

This is the first construction out of 100 total. This MaxPro design is of size 100×10. The

design’s measurements are as follows: Correlation measurements (map = 0.090 and | | =

0.041); discrepancy measurements ((ML2)2 = 0.362 and (CL2)2 = 0.071); coverage (cov =

0.105); and distance measurements (MaxPro criterion = 27.61, 15p  = 1.738, 50p  =

1.561, Mm = 0.648, and  = 0.842).

Measures are calculated directly using R functions, where possible. JMP provides

diagnostic reports that contain measures such as the MaxPro criterion and Mm distance;

however, while these values can be used to check custom R functions, they are not suited

for subsequent analysis when measuring/comparing thousands of designs across ten

measures because of the manual effort required to pull each value from JMP’s diagnostic

report. To overcome these challenges, the author automated a four step process: (1)

94

generate designs in JMP and store them using a label identifier (e.g., a CSV file) using

JMP's scripting language (JSL), (2) leverage R (or other software package, e.g., MatLab)

to import the designs, (3) compute measures of design characteristics, and (4) save

measures to an output file for assessment. Interestingly, there are differences between the

discrepancy function in R, discrepancyCriteria() (Dupuy et al. 2015), and JMP’s

discrepancy reported in the diagnostic. Thus, custom functions in R (to compute the (ML2)2

and (CL2)2 values) were created to facilitate the analysis. The custom functions match

JMP’s discrepancy measure; see the example script in Appendix D.

The author has not found any studies that compare more than a couple of measures,

types, and dimensions. Here, we calculate ten of the most common metrics for some of the

most popular designs and compare their properties. The author has found nothing nearly as

comprehensive in the literature.

C. BUILDING INTUITION AND WINNOWING DOWN THE FIELD

Before displaying the results of our experiments, this section shows a few cases that

help build intuition and focus the comparisons we look at. First, we look at coverage as a

measure of space-fillingness and see that, by itself, it can be misleading. Then, we see the

effect that optimizing using the MaxPro criterion has on the positioning of design points

(DPs). Finally, we compare LH designs when the DPs are restricted to a lattice (LHDs) and

when they are not (LHS designs).

1. Some SFMs Can Be Misleading

Coverage can be misleading as a measure of space-fillingness for some design types.

For illustrative purposes, Figure 39 shows a scatter plot matrix of all the pairwise scatter

plots of DPs of the resolution IV 8×4 fractional factorial 4 12  design with n = 8 and k = 4.

95

Figure 39. Scatter plot matrix for the resolution IV 8×4 Fractional factorial
4 12  design. This design is column orthogonal and has optimal coverage;

but, it is not generally considered space-filling.

The 4 12  design has excellent coverage (i.e., cov = 0, which is the desired value),

as defined by Dupuy et al. (2015). Nevertheless, the “white space” or gaps in the center of

the pairwise scatter plots reveals that the design is not space-filling in terms of density or

discrepancy in two-dimensional subspaces. The Mm distance criteria and average nearest-

neighbor distance are also “optimal” for this design size (i.e., Mm = 1.414 and  = 1.414),

resulting from the DPs being pushed to the corners. We also observe that the design’s

correlation measures are also optimal, with map = 0.00 and | | = 0.00. Finally, the

MaxPro criterion = ∞, its worse possible value, due to replicated column entries in X. The

MaxPro measure is designed to provide good space-fillingness in lower-dimensional

spaces; therefore, it penalizes column entries that are close to each other. For some design

classes, e.g., sphere-packing designs or stacked LHDs, the potential exists to encounter

numeric instability with the MaxPro distance measure.

96

2. The MaxPro Criterion

An initial design is used as the starting point for the simulated-annealing search

algorithm in the software generating MaxPro designs (Ba and Joseph 2018). Figure 40

shows a scatter plot for two factors from both an initial 16×4 MmLHD (blue circles) and

the resultant MaxPro design (red triangles). Optimizing the MaxPro criterion appears to

push DPs towards the boundaries. This behavior was also observed when using other

designs as the starting point for the optimization using the MaxPro criterion. It is not clear

how this affects other measures.

Figure 40. A two-dimensional projection of a 16×4 MmLHD (blue circles),
which provides the starting point for the optimization and the resultant

MaxPro design (red triangles).

Joseph et al. (2015) explain that MaxPro augmentations can arrive at designs with

higher-than-desired discrepancy, which results from points’ being pushed to the boundary

space; however, they have improved projectivity for dimensions 2,…, k–1. The authors

97

recommend initializing design generation using a MaxProLHD (i.e., a design maximizing

the MaxPro criterion constrained to be an LHD) when using the MaxPro R package. Joseph

et al. (2015) explain, “the Latin hypercube restriction only makes the spacing of the levels

equal, but somehow it improves the uniformity in all subspaces” (p. 376).

3. Measures of Discrepancy

In response to the challenges with using distance criteria, Fang et al. (2000a)

recommend using discrepancy (i.e., (ML2)2 and (CL2)2), as initially defined by Hickernell

(1998), for constructing uniform designs (UDs) and cataloged their best ones (Fang et al.

2000b). Similar to MaxProLHDs, Fang et al.’s (2000b) UDs leverage LHD structure.

Table 13 presents sixteen cataloged UDs and their associated discrepancy measures for

(ML2)2 and (CL2)2.

Table 13. Sixteen cataloged n×k UDs (Fang et al. 2000b) with their (ML2)2
and (CL2)2 values.

98

Figure 41 plots the (ML2)2 values from Table 13 on the x-axis and the (CL2)2 on the

y-axis. It shows a strong correlation across the design dimensions between (ML2)2 and

(CL2)2 for the sixteen cataloged UDs (Fang et al. 2000b) of varying sizes. The author is

unaware of any documentation on the degree of correlation between these measures used

in arrived-at UDs using R software packages (e.g., UniDOE). Since both measures are used

as surrogates for star discrepancy (see Equation [6]), it is of interest as to how well they

match in quantifying the uniformity of a design.

Figure 41. A scatter plot of (ML2)2 values and (CL2)2 values from Table 13.
The correlation between these two discrepancy measures is 0.962, though

driven largely by a few outlying points.

4. Results on LHD and LHS Designs

Wang et al. (2021) write, “[t]he most popular experimental designs for computer

experiments are Latin hypercube designs (LHDs, McKay et al. (1979)” (p. 1). This

99

subsection investigates LHD and LHS design properties using correlation, discrepancy,

and distance measures. The widespread popularity of Latin hypercube sampling (LHS)

(McKay et al. 1979) and LHDs in computational experimentation result in numerous

extensions and variations that utilize LH structure (Cioppa and Lucas 2007, Fang et al.

2000a, Helton and Davis 2003, Johnson et al. 1990, Joseph et al. 2015, MacCalman et al.

2017, McKay et al. 1979, Morris and Mitchell 1995, Shields and Zhang 2016, Sun and

Tang 2017b, Wang et al. 2021, Ye 1998) and then take steps to improve space-fillingness.

In their seminal paper on LHS, McKay et al. (1979) propose independently sampling within

n strata for each input variable; that is, the points are not restricted to a lattice. We refer to

this as Latin hypercube sampling. In our LHS designs, we sample from a uniform

distribution in each stratum. In practice, a fixed value is often chosen in each stratum, such

as the median. Doing so results in the DPs falling on a lattice, which we call Latin

hypercube designs (LHDs) (Satterthwaite 1959). LHDs provide optimum space-fillingness

(by many measures) in projections into each factor’s subspace (Joseph 2016, p. 31).

In the context of LH structure, little is documented about how these two sampling

methods affect correlation or space-filling measures (SFMs). We can see that neither

method guarantees good SFMs, e.g., uniformly distributed DPs over the reverse diagonal

(Hernandez et al. 2012a, p. 4). To see if we can limit the design classes we investigate to

just one of these, we compare LHSs and LHDs over our nine design sizes. Specifically,

which implementation, LHSs or LHDs, leads to the best results by our ten measures, or

does it matter?

Figure 42 compares side-by-side box plots of map values for 100 LHSs and LHDs

of size 6×5. There is very little difference between the two box plots.

100

Figure 42. Side-by-side box plots of 100 LHSs and 100 LHDs for k = 5 and
n = 6 (or k+1). These box plots display the results from 100 LHS and LHD

designs.

Figure 43 (read columnwise) compares side-by-side box plots of 100 map values

for LHSs and LHDs of size 6×5, 17×5, and 50×5. The map values decrease as n increases.

The box plots in each panel are similar.

101

Figure 43. Side-by-side box plots of 100 LHSs and 100 LHDs for k = 5 and
n = 6, 17, and 50 (columnwise).

The first row (top three panels) of Figure 44—read columnwise—compares side-

by-side box plots of map values for 100 LHSs and LHDs of size 6×5, 17×5, and 50×5; i.e.,

n = k+1, 3k+2, and 10k for k = 5. Subsequent three-panel-rows plot k = 10 and k = 20.

Figure 44 shows that when n and k are small, the arrived-at LHSs and LHDs can have very

poor map values. Roughly speaking, both LHSs and LHDs result in the same map

distributions, which improves as n increases; however, interesting numerical behaviors do

exist in other measures that ultimately caused us to limit our explorations to LHDs.

102

Figure 44. Side-by-side box plots of 100 LHSs and 100 LHDs for k = 5, 10,
and 20 (rowwise) and n = k+1, 3k+2, and 10k (columnwise). These box

plots display the results from 900 LHS and 900 LHD designs.

Figures 45 and 46 illustrate two different numerical measures: Discrepancy (ML2)2

(Figure 45), and the MaxPro distance criterion (Figure 46), each containing side-by-side

box plots. Smaller values are preferred for each. These figures reveal more outliers and

larger values (i.e., underperformers) for LHS designs than LHDs. Note the outliers in the

lower-left, 21×20, panel of Figure 45 and the top-right, 50×5, panel of Figure 46. We

remark that each of the nine panels in the plots have the same y-axes. In general, similar

performance is seen visually for the two data series (LHD and LHS) for these measures.

103

Figure 45. A comparison of discrepancy. Side-by-side box plots of the (ML2)2
discrepancy.

Figure 46. A comparison of distance. Side-by-side box plots of the MaxPro
criterion.

104

A closer examination of the 6×5 panel in Figures 45 and 46 (i.e., (ML2)2 and

MaxPro) is presented in Figure 47. For these two measures, at these two design sizes, LHDs

are generally preferred over LHS designs. Empirically, the LHS box plots in Figure 47

show greater spread, contain a higher sample mean, and generally lead to designs with

higher (poorer) (ML2)2 discrepancy and MaxPro distance.

Figure 47. Side-by-side box plots of (ML2)2 discrepancy (left) and MaxPro
criterion (right).

Experimentalists should know that, although both LHSs and LHDs result in sets of

experimental points with good one-dimensional projections, LHSs can result in designs

with DPs close to one another, which can affect discrepancy and the space-fillingness of

projections into subspaces. Fang et al. (2000a), write “these designs are similar in one

dimension but can be very different in higher dimensions” (p. 238). In sum, for most

measures and design sizes there is little discernable difference between LHDs and LHSs.

Where there is, LHDs generally perform a bit better. Thus, in what follows, we use LHDs.

Appendix E contains the remaining LHD and LHS comparison.

D. NUMERICAL RESULTS AND MEASURES

This section is organized into two parts: The first part compares box plots of the

distributions of a few key measures of design characteristics for popular design classes of

various sizes. The second part provides scatter plots and correlations for a partial list of

pairs of the most used measures from some of the most popular designs. Given that we

105

have ten measures, there are
10

45
2

 
 

 
pairs of design measures. Thus, while data have

been collected for all of them, we analyze only a few in this chapter. Appendix G contains

correlation data for each pair of our ten measures for six design classes of nine different

sizes.

Designs are typically constructed based on one measure and might not fare well for

other measures. To limit the combinations, we collect properties across five design classes,

including LHDs, MaxPro augmented MaxProLHDs (labeled MaxPro), MmLHDs, sphere-

packing designs (labeled SphereP), and UDs (labeled UniDOE). To make it clear, UniDOE

without italics refers to a uniform designed experiment resulting from the UniDOE R

package. These design classes are among the most used by practitioners. The LHDs were

built using custom R functions that the author built. The MmLHDs and sphere-packing

designs were created using JMP. The MaxPro and UDs were made using the R packages

MaxPro (Ba and Joseph 2018) and UniDOE (Zhang et al. 2018), respectively. All

calculations were done with the software packages’ default settings. Much more can be

done in exploring the parameters of the various search algorithms. An interesting insight

from this section is that design preference varies by SFM and can change with design size

(i.e., for different n and k).

1. Distributions of ρmap for Five Design Classes of Various Sizes

Figure 48 shows side-by-side box plots for 500 6×5 designs—100 of each

experimental design type. By this measure, for this size of design, sphere-packing designs

tend to provide the lowest map values and have the least variability. The intuition is that

JMP’s sphere-packing algorithm uses the Mm Euclidean distance criterion and can achieve

low map values by placing points in the corners of , similar to a fractional factorial design.

The highest map values occur in LHDs. The ranges in map values obtained within each

class highlight the need to generate multiple designs for each of these design types when

generating a design. It is worth noting that none of these design construction methods

explicitly consider correlation properties. Despite this, some of the sphere-packing designs

are nearly orthogonal.

106

Figure 48. Side-by-side box plots of the empirical map distributions for 100
6×5 LHD, MaxPro, MmLHD, SphereP, and UniDOE designs. The map

values across the designs range from near zero to almost one.

Figure 49 shows the empirical distributions of map measurements in our five design

classes for k = 5 and n = 6, 17, and 50. Figure 48 is the leftmost plot in this graphic. As n

increases, map values generally trend lower, as does their variance. There are exceptions

though, as 17×5 sphere-packing designs have generally higher map values than 6×5 sphere-

packing designs. We also see that the best design class by this measure switches as n

increases. For n = 50, the R software package UniDOE designs perform best, with a

majority of them being nearly orthogonal. When n = 5 or 17, the sphere-packing designs

have the lowest map values. For all design sizes, LHDs fare worst. Interestingly, the third-

best medianmap value switches from MaxPro to MmLHD between design sizes 17×5 and

50×5.

107

Figure 49. Box plots of map distributions for 100 6×5, 17×5, and 50×5 LHD,
MaxPro, MmLHD, SphereP, and UniDOE designs. As n increases, map

steadily improves.

Figure 50 appends two rows (for k = 10 and k = 20) to what is displayed in the

previous figure, forming nine total panels of side-by-side box plots. These panels cover all

the combinations of the three number of factors we explore and the three design points

(DPs) density per factor. Specifically, shown are box plots of 100 observations for each

design type for sizes 6×5, 17×5,…, 62×20, and 200×20. Rows of three panels (top, middle,

and bottom rows) are for factors k =5, 10, and 20, which increase from top to bottom.

Columns of three panels (left, middle, and right columns) are for DPs n = k+1, 3k+2, and

10k per factor, which increases from saturated to higher-density designs from left to right.

For large designs, those with higher n and k, we observe that the UniDOE R software

package generates designs with the lowest map values, and are often nearly orthogonal. No

other design type at any size produces more than an occasional nearly orthogonal design.

108

Figure 50. Box plots of map distributions for 100 6×5, 17×5,…, 200×20
LHD, MaxPro, MmLHD, SphereP, and UniDOE designs. For large n and

k; i.e., moving towards the lower right panels, we see that UniDOE
designs do best with respect to map.

Looking across the nine panels, map ranges from near zero to almost one. Since we

are most interested in designs with many factors, as many computer models have many

input variables, we extract and display the bottom row (i.e., when k = 20) to identify better

differences obscured by plot size in Figure 50. Figure 51 shows the box plots of map for

each design type for designs of sizes 21×20, 62×20, and 200×20. We see that map values

are greater than 0.30 for all these design-construction methods for saturated designs. Of

note, nearly orthogonal LHDs of this dimension have been constructed by Hernandez et al.

(2012a). Of course, their algorithm explicitly minimized map. As n increases, map values

trend lower for all design classes and the variability decreases. We also see that UniDOE

designs perform substantially better than the other methods for our largest designs. Having

looked at a measure of correlation, we next look at a measure of distance.

109

Figure 51. Box plots of map distributions for 100 LHD, MaxPro, MmLHD,
SphereP, and UniDOE designs with k = 20. As n increases, map steadily
improves, variability decreases, and UniDOE designs perform the best.

2. Distributions of Mm Distance for Five Design Classes of Various Sizes

Mm distance criteria (such as Euclidean, Manhattan, p) are widely used in

constructing and assessing SFDs. Figure 52 presents comparative box plots for the

Euclidean Mm distance (Johnson et al. 1990) across nine design dimension panels. Panels

in the same row show box plots for designs with the same number of columns. For example,

the top row of three panels presents designs with k = 5 columns. Panels in the same column

display box plots for designs with the same number of DPs per factor. Smaller designs are

towards the top left and larger designs are towards the bottom right. Higher Mm distances

are generally preferred for a given design size, as it means no two DPs are “close.” As

expected, the sphere-packing designs, which optimize over this measure without any

constraints, other than that all DPs are in , perform best for all design sizes with respect

to Mm Euclidean distance. The MmLHDs have the second-highest average Mm distance,

110

except for the saturated designs with k = 10 and 20, in which cases the MaxPro designs

beat them. The LHDs generally have the lowest Mm distances.

Figure 52. Mm distances for 100 LHD, MaxPro, MmLHD, SphereP, and
UniDOE designs of various sizes. As n and k increase, SphereP designs
achieve dominant Mm distance behavior, but less so in the few-factors

(k = 5) case.

We have seen that sphere-packing designs perform best with respect to Mm

distance for all design sizes explored, often by a considerable amount. Thus, to get more

discrimination for the other design classes, Figure 53 shows the Mm distance distributions

without the sphere-packing designs. When n = 10k, we see that MmLHDs perform best by

this measure. A larger Mm distance is expected since MmLHDs are developed to optimize

this measure (constrained to an LHD). However, somewhat surprising is that in fully

saturated situations, the left column, the MaxPro designs have the largest Mm distances. In

most panels, UniDOE designs are third and LHDs last.

111

Figure 53. Mm distances for 100 LHD, MaxPro, MmLHD, and UniDOE
designs of various sizes. For saturated n and k; i.e., the left column of

panels, MaxPro designs achieve dominant Mm distance, which changes to
MmLHDs for the n = 10k case; i.e., the right column of panels.

In the 200×20 case, our largest design, with sphere-packing designs removed, the

MmLHDs outperform MaxPro designs in this measure by a considerable amount, see

Figure 54. We also see that there is much less variability in this measure for MmLHDs.

The following section looks at the distributions of (ML2)2 discrepancy for five classes at

nine design dimensions.

112

Figure 54. Mm distances for 100 200×20 LHD, MaxPro, MmLHD, and
UniDOE designs. For large-scale computational experimentation,

MmLHDs achieve dominant Mm distance among these.

3. Distributions of (ML2)2 Discrepancy for Five Design Classes of
Various Sizes

(ML2)2 measures the disagreement (discrepancy) between the empirical distribution

derived from the design points (DPs) compared to a theoretical uniform distribution, which

is very different from a distance-based criterion. Figure 55 presents nine panels of side-by-

side box plots for the (ML2)2 measure. Again, read rowwise for k = 5, 10, and 20 and

columnwise for n = k+1, 3k+2, and10k. From the bottom row, it is seen that optimizing for

the Mm distance criterion (only) can result in a higher (poorer) discrepancy. The insight is

that spreading-out DPs using the Mm distance criterion can increase the number of DPs

near the boundary of the design space, resulting in an uneven empirical distribution of

points, especially in the interior. This effect is most apparent with large designs (here for k

= 20). Focusing on the bottom row, for the other design construction methods, we see that

(ML2)2 values decrease rapidly as n increases. Finally, the difference in (ML2)2 values

113

between the sphere-packing designs and MmLHDs shows the impact of imposing an LH

structure.

Figure 55. (ML2)2 values for 100 LHD, MaxPro, MmLHD, SphereP, and
UniDOE designs of various sizes. For the 21×20 case (bottom left panel),

SphereP designs achieve the highest (ML2)2 discrepancy.

To better discern differences among the other design classes, we remove sphere-

packing Mm distance designs and consider rows one and three of Figure 55; i.e., k = 5 and

k = 20, respectively. The results are displayed in Figures 56 and 57. Note the difference in

the y-axes between Figure 56 and Figure 57. It is far more challenging to have DPs

uniformly cover  when n is small or k is large. UniDOE designs consistently achieve the

lowest (ML2)2 value for our data, as they are constructed to minimize a discrepancy

measure. We provide the exact values in Appendix F.

114

Figure 56. Side-by-side box plots of (ML2)2 discrepancy of LHD, MaxPro,
MmLHD, and UniDOE designs of sizes 6×5, 17×5, and 50×5.

Figure 57. Side-by-side box plots of (ML2)2 discrepancy of LHD, MaxPro,
MmLHD, and UniDOE designs of sizes 21×20, 62×20, and 200×20.

115

We also observe from these figures that MaxPro designs generally have poor

(ML2)2 measures. The goal of the MaxPro criterion is design matrices with increased

projectivity into factor subspaces; however, poorer (ML2)2 values can result, which can

even be worse than the discrepancy reached randomly with LHDs. Joseph et al. (2015, p.

376) write:

Uniformity is not as important as the maximin and minimax distance
measures in a computer experiment, because the primary objective of a
computer experiment is approximation and not integration. Thus, the poor
performance of maximum projection designs under the uniformity measure
is not of great concern.

4. Multiobjective Results on (ML2)2 and ρmap

As we have seen above, design classes can perform well in some measures and

poorly in others. Experimenters may desire designs that perform well in multiple measures,

such as Joseph and Hung (2008). Here, we look at (ML2)2 and map for different design

classes and sizes. The combination results in one correlation measure and one discrepancy

measure. These two measures are the ones that Cioppa and Lucas (2007) sought to

minimize in LHDs; i.e., space-filling NOLHDs. Before moving to the figures with nine

sizes, we begin with one design size to highlight how poorly sphere-packing designs

perform in terms of (ML2)2 to show why they are omitted from subsequent plots. Figure 58

presents multiobjective scatter plots for comparing (ML2)2 and map for 100 observations

from each of five design classes when n = 50 and k = 5. The scatter plot on the left includes

sphere-packing designs, which have by far the largest (ML2)2 values. The scatter plot on

the right excludes them to obtain more resolution on the remaining four classes. Since we

seek low (ML2)2 and map values, designs in the lower left of the plots are preferred.

116

Figure 58. Multiobjective scatter plots comparing (ML2)2 and map for designs
with dimensions n = 50 and k = 5. Five design types are shown in the

scatter plot on the left and four on the right.

Figure 58 shows that 50×5 sphere-packing designs can have a low map, even

sometimes meeting the nearly-orthogonal standard, but consistently have the largest

(ML2)2. Once removed, we see clear patterns when comparing the other design classes. In

terms of (ML2)2 values, UniDOE designs are the best, followed by MmLHDs, LHDs, and

MaxPro designs, respectively. UniDOEs also have the best map values, followed by

broadly comparable results for MmLHDs and MaxPro Designs. The highest map values

occur in LHDs. All of the nondominated DPs at this design size are UniDOE designs. What

about other design sizes?

Figure 59 presents scatter plots for a multiobjective comparison of map and (ML2)2

of five design types over nine design dimensions. Note that the x-axis is (ML2)2 and the

y-axis is map in each panel. Design observations plotted in the lower-left corner of each

chart contain the best-performing designs by these measures. As we have seen previously,

(ML2)2 values are greatest in large, saturated designs. We see that sphere-packing designs

have substantially higher (ML2)2 values than in comparably-sized other design classes,

especially for large k—so much so that differences among the measures for other design

classes are obscured. For k = 5 or 10, the highest map values occur in LHDs for all n.

117

Figure 59. Multiobjective scatter plots of map and (ML2)2.

To obtain more resolution in our comparisons, Figures 60 and 61 highlight various

portions of Figure 59. First, Figure 60 repeats Figure 59 with the sphere-packing designs

removed, thereby zooming in on the x-axis. Here we see that the (ML2)2 values for MaxPro

designs can also be large enough to hide differences among the other design classes or

sizes. We also see UniDOE designs appearing more in the preferred lower left regions of

the plots, especially for large k. This is seen more clearly in Figures 61 and 62, which

respectively show the three panels when k = 20 and just the scatter plot for the largest

design size (i.e., 200×20). For the latter figure, we see that all UniDOE designs beat all

other designs in these two measures, even though it optimizes for only the discrepancy.

118

Figure 60. Multiobjective scatter plots of map and (ML2)2 reduced to four
design classes.

Figure 61. Scatter plots for k = 20 (in terms of map and (ML2)2).

119

Figure 62. map and (ML2)2 scatter plots of 400 200×20 designs.

In large-scale computational experimentation, the UniDOE R software package

consistently arrives at designs with low map and discrepancy ((ML2)2), as seen in Figure

62. For large degrees of freedom (DOF) (i.e., when n = 10k), the MaxPro criterion improves

projectivity and lowers discrepancy. While they have significantly overlapping map values

for most design sizes, the top performer between MaxPro designs and MmLHDs with

respect to (ML2)2 changes dramatically as n increases when k = 20. Specifically, when n =

k+1 or 3k+2, the MmLHDs almost always have lower (ML2)2 values, while this ordering

reverses when n = 10k.

This exploration focused on just one pair of measures (map and (ML2)2). There are

10
1

2

 
 

 
 = 44 other combinations of two measurement relationships we could have looked

at to understand better the quality of SFDs resulting from the differing algorithms for

multiple design sizes. Next is an assessment of the relationships among a few pairs of

measures (e.g., map and | |) for a subset of the designs.

120

E. CORRELATIONS AMONG SELECT MEASURES FOR MMLHDS,
SPHERE-PACKING DESIGNS, AND LHDS

The design-quality measures we have looked at fall into three broad categories;

correlation, discrepancy, and distance. For each category, several options are available; for

example, map, | | , and 2 have been used by various authors to minimize or assess a

design’s correlation. Does it matter which we use? What about relationships among

measures in different categories? Do designs with low discrepancy measures also tend to

have good distance and correlation measures? If so, does this depend on the design class

and dimensions? There is a dearth in the literature addressing such questions. As a first

step towards answering questions such as these, this section explores correlations among a

subset of our design metrics for three classes of SFDs. Appendix G tabularizes all

correlations examined; that is, between all ten measures (yielding 45 pairwise comparisons)

for six classes of designs of nine sizes. Appendix G includes both LHSs and LHDs.

1. Correlation Analysis Motivation and Approach

Jin et al. (2003 p. 554) write, “there are many optimality criteria available in the

literature, the comparison between different design criteria is certainly one of the most

important problems in the field of design of computer experiments and deserves a thorough

future investigation.” With so many measures, types, and sizes of SFDs, these explorations

use simple correlation to measure linear dependence.

Table 14 shows Pearson’s correlation coefficients (Pearson 1895 and Pearson and

Filon 1898) between map and itself (top row), | | (middle row), and (ML2)2 (bottom row)

for each of six SFD types of size 200×20. For example, we see that r(| | , map) = 0.202

for MmLHDs of this size. Since this empirical outcome is the result of a random process,

we need to determine if this positive association is likely real or simply the result of chance.

121

Table 14. Pearson correlation coefficients, r(x, y), for six design classes of
dimension 200×20.

Figure 63 plots all 100 observations of the | | and map pairs for the 200×20

MmLHDs. We see a very weak linear relationship, as expected with r(| | , map) = 0.202.

It turns out that this weak positive correlation is statistically significant at the 0.05 level;

more on this later. The lack of a strong positive correlation means that these two correlation

measures can yield dramatically different rankings of these designs.

Figure 63. Scatter plot of | | versus map for the 100 200×20 MmLHDs from

JMP. For the data, r(| | , map) = 0.202 and the p-value ≤ 0.05.

122

We show many similar plots in what follows, so some explanation is worthwhile.

Following Wang et al. (2020, p. 10), a shorthand notation for the design’s correlation

between variables x and y is MmLHD(n, k) (r(x, y)), which is Figure 63’s main title. That

is, MmLHD(200, 20) (0.202) denotes that the design examined is the MmLHD class for

n = 200 and k = 20—and the resultant r(x, y) is 0.202. In this case, x and y are paired vectors

corresponding to the | | and map values of the 100 MmLHDs, respectively. In this work,

we append significance stars to denote the level of statistical significance (if any) when

testing the null hypothesis that r(x, y) = 0 versus the alternative hypothesis that r(x, y) ≠ 0.

Lastly, the scatter plot shown in Figure 63 is scaled to the observational data; i.e., the ranges

of the variables x and y. Subsequent scatter plots are labeled and rescaled following this

format.

2. Parametric Approach

This subsection discusses Pearson’s correlation coefficient in evaluating linear

relationships among design measures and applies a commonly used parametric significance

test (Pearson 1895 and Pearson and Filon 1898). The test uses Pearson’s correlation

coefficient (i.e., Equation [1]) and assumes that the two random variables are normally

distributed. In such a case, when X and Y are independent; i.e., (X, Y) = 0, then the test

statistic t =
2

(,) 2

1 (,)

r x y n

r x y




 has a t distribution with n – 2 degrees of freedom, where r(x, y)

is the sample correlation coefficient (Fisher 1925). Since | | and map are both limited to

[0, 1], they cannot have a bivariate normal distribution. The question is, are they close

enough to being normally distributed that Pearson’s test will provide reliable results? To

assess this, we inquire as to the robustness of the procedure and we test for normality.

As for the robustness of the procedure, Kowalski (1972, p. 2) quotes E. S. Pearson

on the robustness of the normality assumption:

[A]fter studying samples of sizes 20 and 30 from two “considerably non-
normal distributions” (each a mixture of bivariate normal distributions) with
respective correlation coefficients of 0.5346 and 0.4626, concluded that
“the normal bivariate surface can be mutilated and distorted to a remarkable
degree without affecting the frequency distribution of r.”…“these results

123

emphasize the insensitivity of the distribution of r to change in the
population form.”

Additionally, Hey (1938) concluded: “considerable non-normality in the original

distribution will not affect the distributions of correlation” (Kowalski 1972, p. 2).

Therefore, this parametric statistic appears to be an appropriate statistical method even if

the data are not perfectly normally distributed.

To evaluate how close | | and map are to being normally distributed, we use

quantile-quantile (q-q) plots and the Shapiro-Wilk test for normality (Shapiro and Wilk

1965). Figure 64 shows the q-q plots for map (left) and | | (right) for the 200×20

MmLHD data series using the stats R software package (R Core Team 2021). The

numerical results (test statistic and associated p-value) of the Shapiro-Wilk normality test

are given below each q-q plot.

Shapiro-Wilk normality test

W = 0.9794, p-value = 0.1193 W = 0.9793, p-value = 0.1174

Figure 64. Two quantile-quantile (q-q) plots and Shapiro-Wilk normality test
results for map (left) and | | (right) for the MmLHD(200, 20) data series.

The visual comparison of the empirical quantiles against the theoretical quantiles

and the results from the Shapiro-Wilk normality test; i.e., fail to reject at classically used

124

significance levels, are evidence that the data are “nearly” normally distributed. Given the

q-q plots and the results of the Shapiro-Wilk normality test, we find distributions of map

and | | to be appropriately close enough to normal to apply the test, especially given the

robustness of the procedure.

In the context of the parametric test, we provide the values for “significance stars,”

which we put after r(x,y) values in the main titles of our plots. If the p-value falls within

the range of alpha in parentheses (e.g., 0.01 – 0.05), then we append the corresponding

symbol (e.g., “*”) to indicate one of the following significance levels:

 Alpha (0.000 - 0.001): symbol is “***”

 Alpha (0.001 - 0.01): symbol is “**”

 Alpha (0.01 - 0.05): symbol is “*”

 Alpha (0.05 - 0.10): symbol is “.”

 Alpha (0.10 - 1.00): (no symbol),

Interpreting correlation, e.g., r(| | , map) = 0.202* (see Figure 63), is dependent

on statistical significance. Here, the significance star (*) after the correlation value

indicates the level of statistical significance alpha is in the interval (0.01 - 0.05). The 95

percent confidence interval (CI) on the population correlation coefficient is: [0.005, 0.383],

which notably does not contain zero.

Concerning the categorical statements about the value r(x,y), Schober et al. (2018,

p. 1765) explain that “most researchers would probably agree that a coefficient of < 0.1

indicates a negligible and > 0.9 a very strong relationship, values in between are disputable.”

We like the stratifications (cutoff points) and qualitative interpretations provided by

Schober et al. (2018, p. 1765) for values of |r(x,y)|. Specifically,

 |r(x,y)| = 0.00-0.10 is negligible,

 |r(x,y)| = 0.10-0.39 is weak,

125

 |r(x,y)| = 0.40-0.69 is moderate,

 |r(x,y)| = 0.70-0.89 is strong, and

 |r(x,y)| = 0.90-1.00 is very strong correlation.

Thus, MmLHD(200, 20) (0.202)* means a weak statistically significant correlation at the

0.05 level for map and | | (per the interpretations above). The absence of a stronger

correlation was a bit surprising to the author, given that r(x, y) in this case consists of two

measures (map and | |) that both use the pairwise correlations in X. The bottom line is

that for the 100 200×20 MmLHDs JMP generated, while there is a small positive

correlation, map and | | yield very different rankings of which designs are preferred.

3. Nonparametric Approach

We can avoid distributional assumptions like multivariate normality by leveraging

a nonparametric framework. Casella and Berger (2002) explain that the bootstrap is a

“simple, general technique for obtaining a standard error of any statistic” (p. 519). The R

software package boot (Canty and Ripley 2021 and Davison and Hinkley 1997) uses

resampling to generate nonparametric bootstrap (Efron 1992) samples. Resampling aims

to approximate the sampling distribution of the statistics of interest and quantify the

uncertainty of an estimate (e.g., standard deviation) by repeatedly resampling (with

replacement) from the observed data.

Consider the 100 observed | | and map pairs from the 200×20 MmLHD data series

represented by the blue dots in Figure 63. Our point estimate of the correlation is r(| | ,

map) = 0.202. Of course, there is uncertainty associated with this measure that we would

like to quantify. To do so, we use the bootstrap method to estimate the sampling distribution

of r(| | , map) by the following:

1. Resample from the original data (i.e., 100 observed | | and map pairs)
with replacement,

2. Compute the estimate of r(| | , map) using the 100 resampled pairs, and

126

3. Repeat steps (1) and (2) 10,000 times to approximate the sampling

distribution of r(| | , map). To distinguish resampled correlations from the
original sample, label the 10,000 resampled correlations as t*.

A histogram of the 10,000 bootstrap estimates (i.e., t*) gives us an estimate of the

sampling distribution of r(| | , map) and can be used to construct an approximate

confidence interval on (| | , map) (Efron 1992). Figure 65 shows a histogram of the

computed r(| | , map) values based on 10,000 bootstrap samples and a q-q plot. The values

of t* range from –0.132 to 0.488, with a mean of 0.200 and a standard error of 0.0836. 98

of the 10,000 resampled correlations are less than or equal to zero. The histogram and q-q

plot show that the t* values are very close to a normal distribution.

Figure 65. Histogram of the 10,000 resampled correlations (i.e., t*) for the

200×20 MmLHD data series. Note r(| | , map) = 0.202 for the original
sample.

Table 15 presents four bootstrap CIs on (| | , map) that the R function boot

produces; see Canty and Ripley (2021) for a discussion. We highlight the percentile

127

interval (PI) that is defined by the middle 2.5 and 97.5 percentiles of t* and the bias-

corrected and accelerated (BCa) interval that accounts for bias and skewness (Efron and

Tibshirani 1986). The 95% bootstrap PI is [0.033, 0.362] and the 95% BCa interval is

[0.038, 0.367]. Recall that the 95 percent CI from the parametric method is [0.005, 0.383].

The bootstrap CIs are a bit shorter, as often occurs in practice (Efron and Tibshirani 1986,

p. 62). The parametric test is the most conservative (i.e., widest) of our intervals. Thus, we

will use the parametric test to provide p-values and significance stars in our plots below.

Table 15. Bootstrap CIs of r(| | , map) replications for the 200×20 MmLHD
data.

4. Correlations between Measures for Various Design Classes and Sizes

This subsection displays scatter plots and provides the correlation values between

a subset of measures for MmLHDs, sphere-packing designs, and LHDs. For all of them,

we present information on nine design sizes. First, we look at relationships between

measures of the same category for several design classes, specifically, the following:

 Correlation-based measures:

 MmLHD(n, k) (r(| | , map))

 SphereP(n, k) (r(| | , map))

 LHD(n, k) (r(| | , map))

128

 Discrepancy-based measures:

 MmLHD(n, k) (r((CL2)2, (ML2)2))

 SphereP(n, k) (r((CL2)2, (ML2)2))

 LHD(n, k) (r((CL2)2, (ML2)2))

 Distance-based measures:

 MmLHD(n, k) (r(Mm, MaxPro))

 SphereP(n, k) (r(Mm, MaxPro))

 LHD(n, k) (r(Mm, MaxPro))

Next, we look at combinations of measures of different types, e.g., discrepancy-

and correlation-based measures. The following pairs of measures are plotted for three

design classes.

 Correlation- and discrepancy-based measures (i.e., (ML2)2, map):

 MmLHD(n, k) (r((ML2)2, map))

 SphereP(n, k) (r((ML2)2, map))

 LHD(n, k) (r((ML2)2, map))

 Correlation- and distance-based measures (i.e., Mm, map):

 MmLHD(n, k) (r(Mm, map))

 SphereP(n, k) (r(Mm, map))

 LHD(n, k) (r(Mm, map))

129

 Discrepancy- and distance-based measures (i.e., (ML2)2, MaxPro):

 MmLHD(n, k) (r((ML2)2, MaxPro))

 SphereP(n, k) (r((ML2)2, MaxPro))

 LHD(n, k) (r((ML2)2, MaxPro))

We continue this exploration by looking at two correlation measures (| | and map)

in MmLHDs. Figure 66 builds on Figure 63 by including two additional scatter plot panels

for MmLHD(21, 20) and MmLHD(62, 20) (left and middle). Each panel consists of 100

observations, all with k =20. Note that each panel’s x-axis, | | , and the y-axis, map, are

rescaled as these values vary significantly by design size). As described above, the panel

main titles follow Wang et al. (2020, p. 10); i.e., MmLHD(n, k) (r(| | , map)) and include

significance stars. We see that the small positive r(| | , map) values for the 21×20 and

62×20 designs are not statistically significant. Perhaps a larger sample size would bring

out a statistically significant correlation; however, if correlated, the linear association will

be very weak.

Figure 66. Three scatter plots of MmLHD(n, k) (r(| | , map)) for the 21×20
(left), 62×20 (middle), and 200×20 (right) MmLHD data series. Note that

the right panel is Figure 63.

130

Figure 67 builds rowwise on top of Figure 66 by including two additional three-

panel rows of scatter plots for k = 10 (middle row) and k = 5 (top row). For example, the

top left panel of the nine-panel plot is 100 | | and map observations for MmLHDs of size

6×5. All nine correlations are positive, and the strongest correlations occur when k = 5. For

larger designs (k = 10 or 20), the empirical correlation between | | and map increases in

n. When n is small (e.g., 6), some of the measures only have a limited number of possible

outcomes.

Figure 67. The combined nine-panel plot of MmLHD(n, k) (r(| | , map))
scatter plots. Note the bottom three-panel-row is k = 20, which is

Figure 66.

131

Figure 68 presents the combined nine-panel plot for the sphere-packing (Mm

Euclidean distance) designs; i.e., SphereP(n, k) (r(| | , map)) from JMP. Pearson’s

correlation coefficient, r(| | , map), for the SphereP(6, 5) data series is 0.994, which is the

highest of any correlation found. In this case, the two measures are in almost perfect

agreement in design ranking. Here too, all nine panels have a positive correlation. All

correlations are statistically significant at the 0.01 level except for JMP’s 62×20 sphere-

packing design. For fixed k, as n increases, the value of r(| | , map) decreases, except in

the 62×20 case.

Figure 68. The combined nine-panel plot of SphereP(n, k) (r(| | , map))
scatter plots. Rowwise, the top row is k = 5, middle is k = 10, and bottom k

= 20. Columnwise (left, middle, and right), n is a function of k, i.e.,
n = k + 1, 3k + 2, and 10k.

132

Figure 69 shows LHD(n, k) (r(| | , map)) for the nine design sizes. Here again, all

the correlations are positive. They are all also statistically significant at the 0.05 level. The

strongest correlations occur when k = 5.

Figure 69. The combined nine-panel plot of LHD(n, k) (r(| | , map)) scatter
plots.

133

Correlations of discrepancy-based measures, r((CL2)2, (ML2)2), are presented in

Figure 70 for MmLHD(n, k)s. When k = 5 or 10, there is a significant correlation for all

panels that increases with n. Interestingly, for designs with lots of factors; i.e., k = 20, none

of the correlations are statistically significant, with two of them being negative. Thus,

(CL2)2 and (ML2)2 result in very different orderings of design quality for large k.

Figure 70. The combined nine-panel plot of MmLHD(n, k) (r((CL2)2, (ML2)2))
scatter plots.

134

Figure 71 presents the nine-panel plots of SphereP(n, k) (r((CL2)2, (ML2)2)). When

k = 5 or 10, all correlations are positive and strong or very strong. When k = 20, the

correlation is even negative when n = 21; i.e., SphereP(21, 20) (-0.018), but not statistically

significant. As n increases, we see an increasingly positive correlation.

Figure 71. The combined nine-panel plot of SphereP(n, k) (r((CL2)2, (ML2)2))
scatter plots.

135

Figure 72 presents the nine-panel plots of LHD(n, k) (r((CL2)2, (ML2)2)). All

correlations between these two discrepancy measures are positive, with the strongest being

for k = 5 and n = 50 at 0.877. As n increases, the correlations also tend to increase for each

row. For each column, as k increases, the correlations tend to decrease.

Figure 72. The combined nine-panel plot of LHD(n, k) (r((CL2)2, (ML2)2))
scatter plots.

136

We now compare the linear relationship of two distance measures; i.e., Euclidean

Mm distance and MaxPro values. The sphere-packing design is omitted due to infinite

values resulting from DP replication in subspaces. Concerning MmLHD(n, k) (r(Mm,

MaxPro)) in Figure 73, none of the nine panels yield a significant correlation. Seven of the

nine panels are negative, not surprising since larger Mm values and smaller MaxPro values

are desired.

Figure 73. Nine MmLHD(n, k) (r(Mm, MaxPro)) scatter plots.

137

Figure 74 shows nine LHD(n, k) (r(Mm, MaxPro)) scatter plots. All of the design

sizes yield a significant negative correlation. As noted above, higher Mm values and lower

MaxPro values are preferred. The correlations are strongest for k = 5.

Figure 74. Nine scatter plots of LHD(n, k) r(Mm, MaxPro) correlations for
the data.

138

Next, we examine the linear relationship between different types of design

measures. Almost nothing in the literature compares design measures of different types

over different design classes and sizes. Wang et al. (2020, p. 10) show six comparative

scatter plots. Three show the linear relationship between discrepancy and orthogonality

measures for 100 randomly generated LHDs of sizes 19×6, 19×12, and 19×18. The other

three show uniform projectivity (Sun et al. 2019) versus orthogonality for the same LHDs.

Our measures for each category are map, (ML2)2, and Mm distance. We continue with our

three classes of design (MmLHD, sphere packing, and LHD) and nine design dimensions.

Figure 75 shows nine MmLHD(n, k) (r((ML2)2, map)) scatter plots. When k = 5,

all the design sizes have a significant but weak positive correlation. When k = 10, all

correlations are positive, but only one is significant. For larger designs, when k = 20, none

of the correlations are significant; in fact, two are slightly negative.

139

Figure 75. Nine MmLHD(n, k) (r((ML2)2, map)) scatter plots.

Figure 76 presents nine SphereP(n, k) (r((ML2)2, map)) scatter plots. Only the

saturated, small Mm distance design shows a strong positive correlation; i.e.,

SphereP(6, 5) (0.720)***.

140

Figure 76. Nine SphereP(n, k) (r((ML2)2, map)) scatter plots.

Figure 77 presents nine LHD(n, k) (r((ML2)2, map)) scatter plots. All of the

correlations are positive, but not all are significant. For designs with fewer factors; i.e.,

k = 5 (top row), highly significant moderate positive correlations are observed. Consider k

= 10 (middle row), as n increases, the three LHD(n, 10) (r((ML2)2, map)) scatter plots show

an increasing weak correlation and increasing significance.

141

Figure 77. Nine scatter plots of LHD r((ML2)2, map) correlations for the data.

Figure 78 shows nine MmLHD(n, k) (r(Mm, map)) scatter plots that illustrate the

correlation between distance- and correlation-based measures for the data. Negative

correlations are expected since higher Mm distances and lower map values are favorable.

Negative correlation behavior is observed for the saturated design when k = 5; see the top-

left panel. However, the other eight panels are either not significantly correlated or are

weakly negatively correlated.

142

Figure 78. Nine MmLHD(n, k) (r(Mm, map)) scatter plots.

Figure 79 shows nine SphereP(n, k) (r(Mm, map)) scatter plots. For saturated

designs, note the significant negative correlation that decreases with k. For all other design

dimensions, there are no statistically significant correlations.

143

Figure 79. Nine SphereP(n, k) (r(Mm, map)) scatter plots.

From Figure 80, we see little to no linear relationship between Mm and map; i.e.,

negligible correlation, which intuitively makes sense given neither of these measures is

used when generating an LHD. The only significant correlations, which are weakly

negative, occur in the 6×5 and 17×5 LHDs.

144

Figure 80. Nine LHD(n, k) (r(Mm, map)) scatter plots.

Figure 81 shows the results of the experiments on the correlation between the

discrepancy measure (ML2)2 and the distance measure MaxPro, as we present the

MmLHD(n, k) (r((ML2)2, MaxPro)) case. We see weak positive correlations for k = 5 and

10, though not all are significant. For k = 20, none of the correlations are significant. In

fact, two are negative. Several plots contain outliers, which illustrates the risk of creating

a single of these stochastic designs.

145

Figure 81. Nine MmLHD(n, k) (r((ML2)2, MaxPro)) scatter plots.

We omit the SphereP(n, k) (r((ML2)2, MaxPro)) case due to infinite MaxPro values

resulting from replicated design points in subspace projections that occur in sphere-packing

designs. Figure 82 presents nine LHD(n, k) (r((ML2)2, MaxPro)) scatter plots. The only

significant correlations occur in the smaller saturated designs, which are weakly positive.

We also see some outliers, as in the previous figure.

146

Figure 82. Nine LHD(n, k) (r((ML2)2, MaxPro)) scatter plots.

This section introduces correlation analysis between some of the most used

correlation and space-filling measures for popular SFDs. Here, we have shown the results

only for up to four measures in three design classes of nine sizes. In total, we ran

experiments and collected data for ten measures of design quality (resulting in 45 pairwise

correlations) for nine design sizes in each of six design classes. The observed correlations

for all 45 combinations for the 54 design types and sizes are provided in Appendix G. For

147

illustrative purposes, Table 16 shows the empirical correlations between map and the other

measures for six design classes of size 6×5.

Table 16. Correlation values, r(x, map), for ten SFMs and six SFDs size 6×5.

F. CHAPTER SUMMARY

To address Jin et al.’s (2003, p. 554) call for a “thorough future investigation” of

the “many optimality criteria available in the literature,” this chapter reviewed,

summarized, compared, and provided insights regarding quality measures of many popular

design classes of multiple sizes. Several algorithms, formulas, and optimization tools were

required to generate and assess these designs using R and JMP software packages.

A wide-ranging review has found nothing in the literature as comprehensive in

quantifying and displaying the relationships (or lack thereof) for so many measures in

multiple SFD classes. Across the design classes, for many measures, design preference can

change with n and k. High variances and outliers in the plots reveal the risks associated

with generating one “optimal” design with stochastic software. Researchers need to

generate many SFDs to ensure they obtain a design with good properties for their

application. Thus, practitioners may require departing from a single initial random-

number-generator seed choice, such as the one provided by JMP. However, without JSL

148

(JMP’s scripting language) this needs to be done manually. Further, Chapter V shows that,

although measures may be of the same category and seem similar, such as map and | | ,

their linear association is less than what was expected and they can provide very different

rankings on which designs are preferred. This is also true for the two discrepancy measures

(ML2)2 and (CL2)2 explored. In addition, the strengths of linear associations can change

dramatically, even disappear, with n and k.

An additional contribution of this work is the creation of tools that (1) automate

creating many SFDs with cutting-edge software (e.g., JMP and R packages) and (2)

facilitate assessing designs with multiple measures. Although we provide visualizations for

only a few of the vast number of possibilities, researchers can use the tabled results in

Appendix G for specific inquiries and the tools developed for more comprehensive

evaluations of many design classes, sizes, and measures. Finally, this chapter provides

evidence for including multiple measures together, e.g., a mixture of a discrepancy-,

distance-, and correlation-based measures, when assessing the goodness of a design.

149

VI. A DISTRIBUTION MODEL OF THE MAXIMUM ABSOLUTE
PAIRWISE CORRELATION FOR MMLHDS

A defined probability model incorporating the variables n, k, and G becomes
a powerful tool for planning better experiments.

—Hernandez (2016), p. 1

Due to randomness in generating “optimum” space-filling designs (SFDs), many

practitioners generate multiple designs from which they can select the best one according

to some criterion. This chapter provides guidance on the minimum ρmap an experimenter

can expect to obtain when they generate multiple MmLHDs of various design dimensions.

The organization of this chapter is as follows: introduction and approach, design-data

generation, insights on minimum ρmap, insights on G (number of designs generated),

distribution modeling, and chapter summary of findings.

A. INTRODUCTION AND APPROACH

Not all arrived-at “optimal” SFDs possess the best properties when there is

randomness in design generation. Given the randomness in the vast majority of algorithms

that generate SFDs, how does an experimenter choose the design they will use? A common

practice is to generate several designs and then select the one that optimizes some measure

(e.g., Fang et al. [2000a], Hernandez et al. [2012b], Joseph and Hung [2008], MacCalman

et al. [2017], Santner et al. [2018], Wang et al. [2020]). This simple practice improves the

likelihood of obtaining a preferable SFD.

We have studied several design classes and ten measures of design quality. To focus

this portion of the research, we limit the analysis to MmLHDs and ρmap. MmLHDs are

chosen since they are widely used. As Joseph (2016, p. 31) writes, MmLHDs seem “to be

the most commonly used experimental design for computer experiments in practice.”

Similarly, Wang et al. (2021, p. 1) write that “[e]fficient Latin hypercube designs (LHDs),

including maximin distance LHDs, maximum projection LHDs, and orthogonal LHDs, are

widely used in computer experiments.” Our measure of choice is ρmap, as orthogonality

150

has been a foundational principle in experimental design from the beginning (Box 1978;

Fisher 1926, 1971; Montgomery 2013) and ρmap is a bounding measure of how close X is

to being orthogonal. Sun and Tang (2017a, p. 683) write, “orthogonality is of importance

when polynomial modeling is considered, and can also be viewed as a simple device to get

closer to space-filling designs [SFDs].”

Let min
map be the minimum ρmap obtained when an experimenter generates G

independent designs. Since each design’s ρmap is the result of a stochastic process, so too is

the min
map attained after creating G designs. To better understand how min

map depends on G

for MmLHDs, we generated 10,000 MmLHDs in JMP for each of the following design

sizes: k = 5, 6, …, 20 and n = k+1, 3k+2, and 10k. In sum, for each k, we have 10,000

saturated designs, a similar number with two more than three DPs per factor, and 10,000

designs with ten DPs per factor. This process yields a total of 480,000 MmLHDs. From

each of these designs, we extracted ten measures of design quality.

Borrowing from Hernandez (2016), we study min
map as a function of the design size

environment (DSE), which we denote as DSE(n, k, G). In this notation, n is the number of

DPs, k is the number of factors, and G is the number of MmLHDs (of size n×k) generated

to obtain min
map . Specifically, we investigate min

map as a function of DSE(n, k, G), with a

primary interest in how min
map changes with G. We also study the asymptotic distribution of

min
map as G increases.

B. GENERATING 480,000 MMLHDS OVER MULTIPLE DESIGN
DIMENSIONS

Space-filling Maximin Euclidean distance Latin hypercube designs (MmLHDs) are

generated using JMP’s DOE (Design of Experiments) software (SAS 2021). JMP’s

scripting language (JSL) facilitates the creation of thousands of designs found under the

following tabs: DOE > Special Purpose > Space-filling Design (Latin Hypercube with

Optimal Spacing), which is JMP’s MmLHD. The goal of the software is to generate the

design with the largest possible maximin (Mm) Euclidean distance constrained to an n×k

151

matrix using LHD structure; i.e., evenly spaced levels. Due to randomness in JMP’s

stochastic optimization algorithm, an optimal design is not guaranteed. To generate one

200×20 MmLHD, our largest design, on the author’s MacBook Pro with a 3.1GHz

processor, Intel Core i7, and a memory of 16GB requires (on average) approximately three

minutes. The operating system used was Microsoft Windows 10 Pro.

Software scripts were systematically executed to generate 10,000 MmLHDs for

each of k = 5, 6, …, 20 and n = k+1, 3k+2, and 10k using JMP’s default parameters. As the

number of DPs per factor increases, so does the design’s density (i.e., DPs per unit volume

of ). We refer to these three levels of design density as low, medium, and high—with low-

density designs being fully saturated (i.e., no degrees of freedom remaining when a main

effects linear regression with an intercept term is fit). Constructing multiple MmLHDs can

be time-consuming. Generating 10,000 200×20 MmLHDs requires about three weeks on

the author’s MacBook Pro. Thus, the design construction was done in parallel across 23

computers. It took a total of fourteen days to create the 480,000 MmLHDs. Storing the

resultant designs requires over 10.5 GB, spread across 1,024,003 files in 124 folders.

The author had to overcome challenges when conducting these large-scale

computational experiments. Specifically,

 Commercial software can restrict the number of simultaneously open files;

e.g., JMP (SAS 2021) limits the number of panels (or windows) open to

582, which impedes one’s ability to make thousands of SFDs when each

requires a new window for each design table.

 Edge computing platforms, e.g., computer labs connected to the cloud, can

easily store a generated design locally; however, deploying statistical

analysis software on the design when saved to the cloud can encounter

complications with storing, opening, and analyzing—all employed in

sequence. For example, the analysis software may halt prematurely when a

locally generated design (i.e., stored locally) has not been saved fully to

the cloud.

152

 Consolidating ten measures of design characteristics across 480,000

designs saved to the cloud has to be done carefully, using design labels

and functions to ensure traceability.

Table 17 shows the last 12 rows of the combined CSV data file. We generated over

480,000 designs for this study and collected ten design measures for each MmLHD

constructed, for a total of 4.8 million values.

Table 17. The combined data CSV file

C. THE DISTRIBUTION OF MAP IN MMLHDS

To see the variability in ρmap from JMP’s MmLHD generation algorithm, consider

when k is 5, 6, and 7 and n = k + 1. Though the design measure we explore is ρmap, any of

the other nine measures could be chosen and will exhibit variability. Figure 83 shows box

plots of 10,000 ρmap values of MmLHDs for three design dimensions (6×5, 7×6, and 8×7).

The ρmap values range from under 0.1 to over 0.9. We also see that for these saturated

designs, the ρmap values tend to increase with k.

153

Figure 83. 10,000 ρmap values for each of 6×5, 7×6, and 8×7 MmLHDs.
Values range from less than 0.1 to greater 0.9.

Figure 84 displays the variability of ρmap for the low-, medium-, and high-density

designs as the number of factors (k) goes from five to 20. This figure contains 48 box plots

for the 16 levels of k and the three design densities. Each box plot summarizes the results

of 10,000 MmLHDs. The red diamonds show the mean ρmap value for each of the 48 design

sizes. For all k, higher-density designs tend to have lower ρmap values. ρmap values tend to

increase with k, especially for low-density designs when k is towards the bottom of the

range investigated. For all k, the variability in ρmap values decreases with design density.

Variability decreases with density because more DPs (i.e., large n) reduces the likelihood

of any two columns having a high correlation (Hernandez et al. 2012b). As a reminder,

design correlation is not considered when JMP constructs MmLHDs.

154

Figure 84. Box plots of 10,000 map values for each of 48 MmLHD sizes
(e.g., 6×5, 17×5, 50×5,…, 21×20, 62×20, 200×20).

D. THE MINIMUM MAP OBTAINED BY GENERATING G MMLHDS

This section uses the 480,000 MmLHDs generated and their property data to

investigate how min
map depends on DSE(n, k, G), with an emphasis on providing guidance on

how G effects min
map . The best performing design from the G generated ones is the one that

minimizes ρmap, though ties are possible. To assess the effect of G on min
map , we use the

10,000 MmLHDs built for each n and k to get samples of min
map for multiple levels of G.

For example, when G = 10, we can empirically obtain 1,000 independent min
map values.

More generally, for any G that evenly divides 10,000, we can get m = 10,000/G

independent min
map values. We did this for G = 10, 25, 50, and 100—i.e., for m = 1,000, 400,

200, and 100. With more time or processing power, we could generate many more designs

and extend this initial investigation to more k, n, and G. Moreover, this approach can also

be applied to the other nine measures and other design classes.

155

Let min
map be the empirical mean of the m min

map values obtained in DSE(n, k, G). This

is an estimate of the min
map an experimenter can expect to achieve by selecting the design

with the lowest ρmap from G independently generated n×k MmLHDs. min
map is the ρmap of

the design the researcher would use for computer experimentation if selecting based on the

ρmap criterion from G MmLHDs in DSE(n, k, G=100). Table 18 presents the 48 min
map values for

G = 100 and the estimated standard deviations based on the m = 100 min
map values for each

design size. With m = 100, the estimated standard error of the mean is the estimated

standard deviation divided by ten.

There are clear trends in this table. For each design density, as k increases, min
map

values tend to increase. For each k, min
map decreases as the design density (i.e, n) increases.

We also see that the estimated standard deviation decreases as k increases for each design

density. Furthermore, for each k, the estimated standard deviation decreases as design

density increases. The lowest min
map value in Table 18 corresponds to DSE(n=50, k=5, G=100),

which is a high-density design with few factors. MmLHDs of size 50×5 is the only DSE(n,

k, G=100) explored that yields a nearly orthogonal design on average. The largest min
map values

are for DSE(n=21, k=20, G=100) and DSE(n=20, k=19, G=100), which are sparse, fully-saturated, low-

density designs with many factors. Appendix H contains similar tables for G = 10, 25,

and 50.

156

Table 18. Calculated min
map value and standard deviation (SD) for the

specified DSE dimensions.

This section’s primary goal is to provide guidance to the experimenter on the

expected value of min
map for JMP MmLHDs in DSE(n, k, G), with an emphasis on G. To begin,

let’s look at the minimum ρmap that was obtained from the 10,000 runs for each of the 16

saturated designs. This provides information on what may reasonably be attained, at least

for the G values explored. Figure 85 presents the min
map value obtained for each (k+1)×k

saturated-design dimension. There is a clear knee in the curve. We see that ρmap increases

rapidly with k until about k = 13, at which point the increasing trend substantially reduces.

157

Figure 85. The “+” symbols show the best-saturated design ρmap values in
10,000 MmLHDs for k = 5, 6, …, 20.

Figure 86 builds on Figure 85 by adding a red square (“■”) for the min
map value when

G = 10 for each k. This shows the min
map value the experimentalist can expect to attain when

selecting the best of ten (k+1)×k MmLHDs, as well as a comparison to the best found after

10,000 generations. Here too, min
map steadily increases with k, and there is a knee in the

curve at about k = 12 or 13.

158

Figure 86. A comparative plot of the min
map values (“■”) in DSE(n=k+1, k, G=10)

and the best observed map values (“+”) from the 10,000 saturated (k+1)×k
MmLHDs over the k levels.

Figure 87 adds a red circle, triangle, and diamond (“●, ▲, and ♦”) for the min
map

values corresponding to G=25, 50, and 100 for each of our 16 saturated-design sizes. This

gives an estimate of how much additional benefit, in terms of map, the experimenter can

expect as G increases. For example, the min
map value for DSE(n=8, k=7, G=100) is approximately

0.207. This is 0.061 lower than what to expect for DSE(n=8, k=7, G=10), though still far higher

than the lowest (0.143) of our 10,000 8×7 MmLHDs. There appears to be a stabilization or

“knee” in the min
map values for each of the G curves (for G =10, 25, 50, and 100) near

k = 12 or 13. Saturated MmLHDs present a challenge to software in obtaining a low ρmap

value, especially for large k.

159

Figure 87. A comparative plot of the min
map values of DSE(n=k+1, k, G) when G =

10, 25, 50, and 100) and the best saturated k+1×k MmLHD (+) values
achieved.

Figure 88 adds the medium- and high-density designs to Figure 87. The medium-

density designs; i.e., n = 3k+2, are shown with blue symbols—a blue square, circle, triangle,

and diamond (“■, ●, ▲, and ♦”) for the min
map values of G=10, 25, 50, and 100, respectively.

The high-density designs; i.e., n = 10k, are shown with dark green symbols—a dark green

square, circle, triangle, and diamond (“■, ●, ▲, and ♦”) for the min
map values of G=10, 25,

50, and 100, respectively. The higher-density designs have significantly lower min
map values

than the medium-density designs, which perform much better than the low-density designs.

As k increases, the min
map values tend to increase within all three density categories, though

by a lesser amount as design density increases. For low design densities, there is a greater

reduction in min
map as G increases than for medium- and high-design densities.

160

Figure 88. A comparative plot of the min
map values and best ρmap values (“+”)

for each saturated-, medium-, and high-density case and all values of G.

This subsection provides the minimum ρmap an experimenter can expect to attain

using MmLHDs for various n, k, and G combinations. The following section explores the

asymptotic probability distribution of min
map in 200×20 LHDs and 200×20 MmLHDs as G

increases. Note that these are the largest designs explored in this chapter in terms of

n and k.

E. DISTRIBUTION MODELS FOR min
map VALUES OF LHDS AND MMLHDS

The previous section explores how min
map depends on DSE(n, k, G). Can we say more

about min
map beyond its expectation? Specifically, can we determine the limiting probability

distribution of min
map as G increases? This section takes a first step toward answering that

question by looking at the probability distributions of min
map in 200×20 LHDs and 200×20

MmLHDs as G increases. LHDs and MmLHDs are among the most widely used SFDs.

They are most valuable to computer experimenters when n and k are large.

161

This research builds on Hernandez (2016), who found that for large G, min
map in

LHDs is reasonably well fit by a Gumbel distribution (Gumbel 1935). We investigate the

distributional fit within the broader generalized extreme value (GEV) distribution

(Jenkinson 1955, Park and Sohn 2006) and attain a better fit with a Weibull distribution.

The above process is then applied to 200×20 MmLHDs. The best fit for the distribution of
min
map in 200×20 MmLHDs as G increases also appears to be a Weibull distribution.

To assess the limiting distribution of min
map in LHDs, we generate 10,000 200×20

LHDs and compute ρmap for each. We use these results to find min
map for G = 10, 25, 50, and

100. The G values result in sample sizes of m = 1,000, 400, 200, and 100, respectively.

Table 19 shows the first ten (of m = 200) rows of the DSE(n=200, k=20, G=50) data.

Table 19. The first ten of the m = 200 min
map values with G = 50 for 200×20

LHDs.

A single probability model known as the generalized extreme value (GEV)

distribution can be used to broaden Hernandez’s (2016) approach. The GEV distribution

combines the three possible extreme value distributions for the minimum of G independent

and identically distributed (iid) observations from a continuous distribution; see Jenkinson

(1955) and Park and Sohn (2006) for details. Citing Park and Sohn (2006), “extreme value

statistics (EVS) focus on modeling those extreme points near the tails without prior

knowledge of the parent distributions. The extreme values can asymptotically follow one

162

of only three possible extreme value distributions: Gumbel, Weibull, or Frechet” (p. 376).

For a comprehensive treatment of extreme value distributions, see David and Nagaraja

(2004). The R software package extRemes (Gilleland and Katz 2016) implements the GEV.

Figure 89 shows three examples of the three-parameter GEV distribution

(Jenkinson 1955, Park and Sohn 2006) in three separate charts, each with the same location

and scale parameters (location = 0 and scale = 1). The shape parameter’s value aids in

determining whether the GEV distribution is a Gumbel, Fréchet, or Weibull. Specifically,

a shape value of zero, positively valued, or negatively valued yields the Gumbel, Frechet,

or Weibull distribution, respectively.

Figure 89. Three examples of the GEV (Jenkinson 1955, Park and Sohn
2006): Weibull (left), Gumbel (middle), and Fréchet (right), which all

have the same location and scale parameters (location = 0 and scale = 1).

Figure 90 shows four empirical frequency histograms of min
map for LHDs in

DSE(n=200, k=20, G=10, 25, 50, and 100). For example, the bottom left plot is for 200 observations of

G = 50 data. As G increases, we expect the histograms to converge to one of the three

limiting distributions in the GEV family. Beginning when G=25 (top right of Figure 90),

the left tail becomes more prominent as G increases, suggestive of a Weibull distribution.

163

Figure 90. Four empirical frequency histograms for the various G and the
LHD DSE(n=200, k=20, G=10, 25, 50, and 100) data.

A benefit of fitting the single GEV function to data, as implemented in the R

software package extRemes (Gilleland and Katz 2016), is that it combines the three possible

extreme value distributions (Jenkinson 1955, Park and Sohn 2006) to arrive at parameters

for any of the distributions (Weibull, Gumbel, or Frechet) without selecting one a priori.

Using numerical maximum likelihood estimation (MLE), the fitted distribution for LHDs

in DSE(n=200, k=20, G=50) has location, scale, and shape parameters of 0.159024, 0.007740, and

−0.272185, respectively. Notably, the shape parameter’s value (−0.272185) suggests that,

in this case, the GEV converges to a Weibull distribution (i.e., has a negative shape

parameter). The blue line in Figure 91 is the fitted distribution using the GEV function in

the extRemes (Gilleland and Katz 2016) R software package, which reasonably matches

both the empirical density (histogram) and the cumulative distribution function (CDF).

164

Figure 91. Side-by-side plots: Density histogram (left) and the empirical CDF

(right) of 200 observations of min
map for LHDs in DSE(n=200, k=20, G=50). The

blue line represents the GEV fit using MLE, which suggests a Weibull
distribution.

To quantify the goodness of fit, we perform the one-sample Kolmogorov-Smirnov

(K-S) test (Massey 1951). The K-S test statistic is D = sup () ()m
x

F x F x , where Fm(x) is

the empirical CDF from the m min
map values, and F(x) is the CDF of the null-hypothesis

distribution. The K-S test statistic is the largest vertical gap between the data-generated

empirical CDF and the null-hypothesis distribution’s CDF, with lower D values indicating

a better fit. The null hypothesis in our exploration is that F(x) is a GEV with location, scale,

and shape parameters of 0.159024, 0.007740, and −0.272185, respectively—i.e., the best

fitting GEV, which is a Weibull distribution. The results of the K-S test are D = 0.06865,

p-value = 0.3024, and we fail to reject (FTR) the null hypothesis at classic levels of

significance.

165

In this exploration, we use an approximate test since the null hypothesis CDF was

fit from data rather than being specified. In such cases, “[t]he distribution tested will be

rejected far less than it should be” (Kotz et al. 1983, p. 400). That is, p-values obtained

using the fitted distribution will tend to be higher than they would be when testing a given

distribution. To assess the effect of using a fitted distribution rather than a specified one as

the null hypothesis, we apply the K-S fitting approach to obtain 100,000 K-S test statistics

when simulated samples are drawn from a known GEV distribution (of size m = 200 with

the parameters from above), but the fit and test are to the MLE parameter estimates of the

samples. When testing a fully-specified continuous distribution, when the null hypothesis

is true, the p-value is distributed uniform [0, 1] (Casella and Berger 2002, p. 398).

Figure 92 displays a histogram of the simulated K-S test-statistic values when the

approach is applied to a fitted GEV distribution rather than to a specified one. The black

dashed and solid blue lines represent the p-values 0.05 and 0.3024—the first’s being a

classic significance level and the latter’s being the p-value obtained above when testing the

goodness of fit of the best-fitting GEV. As expected, our approach's distribution of

empirical p-values generally has increasing probability in intervals moving up the domain

than one would expect from a uniform. Also, fewer than five percent of the simulated

K-S stats are below 0.05, showing that the test will fail to reject a bit more than its stated

significance level. More precisely, of the 100,000 simulated p-values, 4,808 are less than

0.05. The 95% CI on the true proportion less than 0.05 for our approach is [0.0468, 0.0494].

This, and the nearly uniform shape of the histogram in Figure 92, show that the method

works reasonably well at estimating the significance of the test statistics—though it will

slightly understate the significance level.

166

Figure 92. Histogram of 100,000 K-S statistic p-values using fitted
parameters (location, scale, and shape) of the GEV function as the null

hypothesis and the p-value we observed.

To see if the shape parameter is significantly less than zero, we bootstrap the shape

parameter of the GEV distribution function using the R software package boot (Canty and

Ripley 2021 and Davison and Hinkley 1997). That is, we resample 100,000 times, with

replacement, the data series (i.e., the m = 200 min
map values for LHDs in DSE(n=200, k=20, G=50))

to obtain 100,000 bootstrap estimates of the shape parameter. The resultant bootstrap 95%

percentile bootstrap confidence interval is [−0.4703, −0.1848], which does not contain

zero; i.e., the shape-parameter value that suggests that the limiting distribution tends to the

Gumbel. The negative interval is strong evidence that the shape-parameter value is negative

(e.g., −0.2606), and the data are converging to the Weibull distribution.

The approach above on LHDs is now applied to MmLHDs. Figure 93 shows the

fitted theoretical GEV (blue) distributions for MmLHDs in DSE(n=200, k=20, G) when G = 10,

167

25, 50, and 100 overlaid on histograms of the empirical data. The fitted GEV distributions

(blue) seem to be reasonably good fits.

Figure 93. The MLE fitted GEV distributions (in blue) for MmLHDs in
DSE(n=200, k=20, G) when G = 10, 25, 50, and 100.

Figure 94 shows the empirical CDF plots (in black) of min
map values for MmLHDs

in DSE(n=200, k=20, G) for G = 10, 25, 50, and 100. The figure also contains the best fitting

GEV CDF (in blue) for each G. The empirical CDF and the best-fitting CDF closely match,

showing an excellent GEV fit.

168

Figure 94. Empirical CDFs of 1,000 (top left), 400 (top right), 200 (bottom

left), and 100 (bottom right) observations of min
map values of MmLHDs in

DSE(n=200, k=20, G). The GEV fits (blue) show a good match.

Table 20 summarizes the results of the GEV fits for G = 10, 25, 50, and 100 for

LHDs and MmLHDs in DSE(n=200, k=20, G). In all eight cases, the estimated shape parameter

is significantly negative, suggesting that the limiting distribution on min
map is the Weibull.

The result is stronger for the MmLHDs.

169

Table 20. Read columnwise: the G value, location, scale, and shape
parameter estimates using the GEV function, 95% percentile bootstrap

confidence interval of the shape parameter, K-S statistic, p-value, and fail
to reject (FTR), if appropriate.

F. SUMMARY OF FINDINGS

This chapter provides guidance on the min
map value experimenters can expect to

obtain when they generate G MmLHDs for k = 5, 6, …, 20 and n = k+1, 3k+2, and 10k.

We also explore the limiting distribution of min
map in LHDs and MmLHDs for our largest

designs; i.e., k = 20 and n = 200. The results suggest that asymptotically, as G gets larger,
min
map converges to a Weibull distribution. The research in this section only scratches the

surface of what is possible. The analysis above can be applied to other design sizes in LHDs

and MmLHDs. Moreover, the approach can also be applied to any of our ten measures for

the other classes of SFDs. Finally, with more experimentation, it might be useful to fit a

regression of min
map in MmLHDs to n, k, and G as Hernandez et al. (2012b) did for LHDs.

If so, more G and design density levels (i.e., n) would be valuable.

The ultimate goal of this research is to provide experimenters with good designs.

The experiments within this chapter are only the beginning of what is possible in terms of

understanding how the distributions of design measures depend on the class of design, n,

k, and G—with an initial investigation of the distribution of min
map for LHDs and MmLHDs.

With more experimentation, in addition to utilizing asymptotic fits, experimenters can use

the empirical distributions of min
map (and other measures) from the experiments to better

170

understand the quality of design they can obtain as functions of the class of design, n, k,

and G.

171

VII. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE
RESEARCH

Large-scale computer-based experimentation underpins much of the analysis the

DOD (Department of Defense) uses to keep the nation safe. This research develops

methods that increase the inventory of space-filling designs (SFDs) available for those

experiments. The new permute_and_stack method uses a quadratically constrained

mixed integer program to enable researchers to efficiently add sequential blocks of design

points to existing SFDs that minimize map. SFDs extended in this work include both

cataloged designs and computationally expensive software-generated designs.

To evaluate permute_and_stack’s potential, this research explored how

permute_and_stack reduces map when successively adding batches (or stacks) of n

design points (DPs) for several state-of-the-art classes of cataloged and computer-

generated SFDs. The reductions in map are contrasted with values obtained by applying

shift-and-stack, a current approach used by practitioners, to base designs using several

correlation-based column-reordering heuristics as well as random permutations of the

columns. We also evaluate permute_and_stack against newly generated SFDs in the

extended design space. In all cases, permute_and_stack yields better designs in terms

of map than do the competing methods. However, new designs generated in the extended

space may produce better designs with respect to some of the measures of space-fillingness.

For every class and design dimension explored, the set of multi-objective (i.e., map and

(ML2)2) non-dominated designs includes permute_and_stack designs.

There are many classes of SFDs and measures to assess them. However, finding an

“optimal” SFD is no easy task, with stochastic search algorithms almost always used in

their construction. Moreover, the arrived-at designs’ properties can vary significantly based

on random-number-generator seeds, starting points, or search-algorithm parameter

settings. To better understand the variability in design characteristic measures and their

relationships, nearly a million SFDs of several types and sizes were created using JMP and

R software packages. Across the design classes, for many measures, design preference can

172

change with the number of DPs (n) and factors (k). High variances and outliers in the plots

reveal the risks of generating just one “optimal” design with stochastic software.

Researchers need to generate many SFDs to ensure they obtain a design with good

properties for their application.

With the goal of helping experimenters obtain good designs, this research provides

guidance on the minimum map (denoted min
map) value they can expect to obtain when

generating G independent maximin Latin hypercube designs (MmLHDs) for multiple n

and k. We also explore the limiting distribution of min
map in Latin hypercube designs (LHDs)

and MmLHDs for our largest designs; i.e., k = 20 and n = 200. The results suggest that as

G increases, min
map converges to a Weibull distribution.

The research in this dissertation only scratches the surface of what is possible.

Investigators can extend the analysis approaches and can apply them to any measure of

design characteristics for any class of SFD. Exciting research areas that would benefit from

further study include:

 The permute_and_stack algorithm optimizes one measure of design

quality, map. Can sequential optimization approaches simultaneously

improve a design’s correlation, balance, and higher-dimensional space-

fillingness properties? To improve correlation, balance (Bathke 2004,

Vieira et al. 2011), and space-fillingness for mixes of factor types

(continuous and discrete), some initial analysis has been done. Row

Enhanced eXperiments (REX) is an algorithm that expands upon the ideas

of permute_and_stack to sequentially improve a design’s

correlation, balance, and two-dimensional space-fillingness properties.

Initial thoughts and scatter plots are provided in Appendix I.

 To better understand the many criteria in the literature assessing SFDs, we

ran nearly a million experiments. From them, we collected data for ten

measures of design quality for nine design sizes in each of six SFD

173

classes. At present, only a small fraction of them have been investigated in

detail.

 This investigation examined the asymptotic behavior of one design

measure (min
map) as G increases in only two design types of one size.

However, we have the designs generated, measurement data, and software

scripts to apply the methods of this dissertation to many measures of

design characteristics, classes, and sizes.

174

THIS PAGE INTENTIONALLY LEFT BLANK

175

APPENDIX A. EXTENDING CATALOGED DESIGNS

Extending cataloged nearly orthogonal Latin hypercubes (NOLHs)

Figure 95 shows map and (ML2)2 discrepancy measures for up to ten stacks for all

the cataloged NOLH designs. This is the motivation that originated Chapters III and IV of

this research. We significantly improve with permute_and_stack in terms of map at

each stage and observe that the (ML2)2 values are similar.

Shift-and-stack (for ten column reorderings) and permute_and_stack for size n×k
33 × 11 165 × 16

129 × 22 257 × 29

Figure 95. Multi-objective map and (ML2)2 comparison for extended NOLH
designs up to ten applications of shift-and-stack and

permute_and_stack.

176

Extending cataloged uniform design (UDs)

Figure 96 shows map and (ML2)2 discrepancy measures for up to ten stacks for

select cataloged uniform designs (UDs). We significantly improve with

permute_and_stack in terms of map at each stage and observe that the (ML2)2 values

are similar.

Figure 96. Multi-objective map and (ML2)2 comparison for extended uniform
designs up to ten applications of shift-and-stack and

permute_and_stack.

177

APPENDIX B. EXTENDING STOCHASTICALLY GENERATED
SPACE-FILLING DESIGNS USING JMP AND R SOFTWARE

PACKAGES

Extending JMP’s MmLHDs

Figure 97 shows map and (ML2)2 discrepancy measures for up to four stacks of

stochastically generated MmLHDs constructed using JMP.

Figure 97. 100 33×11 MmLHDs after four applications (s = 1, 2, 3, and 4) of
forward shift-and-stack using the ten column reordering heuristics (light
colors) and permute_and_stack (blue). 100 new (s+1)×11 MmLHD

constructions are plotted individually (grey).

178

Extending R’s maximum projection (MaxPro) designs

Figure 98 shows map and (ML2)2 discrepancy measures for up to four stacks of

stochastically generated MaxPro designs.

Figure 98. 100 33×11 MaxPro designs after four applications (s = 1, 2, 3, and
4) of forward shift-and-stack using the ten column reordering heuristics
(light colors) and permute_and_stack (blue). 100 new (s+1)×11

MaxPro design constructions are plotted individually (grey).

179

Extending JMP’s sphere-packing (Mm distance) designs

Figure 99 shows map and (ML2)2 discrepancy measures for up to four stacks of

stochastically generated sphere-packing (Mm distance) designs constructed using JMP.

Figure 99. 100 33×11 sphere-packing designs after four applications (s = 1, 2,
3, and 4) of forward shift-and-stack using the ten column reordering

heuristics (light colors) and permute_and_stack (blue). 100 new
(s+1)×11 sphere-packing designs constructions are plotted individually

(grey).

180

Extending R’s UniDOE uniform designs

Figure 100 shows map and (ML2)2 discrepancy measures for up to four stacks of

stochastically generated UniDOE designs constructed using the UniDOE R software

package.

Figure 100. 100 33×11 UniDOE designs after four applications (s = 1, 2, 3, and
4) of forward shift-and-stack using the ten column reordering heuristics
(light colors) and permute_and_stack (blue). 100 new (s+1)×11

UniDOE design constructions are plotted individually (grey).

181

Extending JMP’s uniform designs (UDs)

Figure 101 shows map and (ML2)2 discrepancy measures for up to four stacks of

stochastically generated uniform designs constructed using JMP.

Figure 101. 100 33×11 UDs generated using JMP, four application (s = 1, 2, 3,
and 4) of forward shift-and-stack using the ten column reordering

heuristics (light colors), and permute_and_stack (blue). 100 new
(s+1)×11 UDs for the extended space are plotted individually (grey).

182

Extending random Latin hypercube designs (LHDs)

Figure 102 shows map and (ML2)2 discrepancy measures for up to four stacks of

stochastically generated random Latin hypercube designs (LHDs) constructed using R.

Figure 102. 100 33×11 LHDs generated using R, four applications (s = 1, 2, 3,
and 4) of forward shift-and-stack using the ten column reordering

heuristics (light colors), and permute_and_stack (blue). 100 new
(s+1)×11 LHDs for the extended space are plotted individually (grey). We

observe that most of the grey observations are plotted within the shaded
ellipses of the shift-and-stack observations.

183

APPENDIX C. PERMUTATIONS FOR THE NOLH DESIGN USING
OPTIMIZATION

Table 21. Permutations for the 65 16 NOLH through 10 stacks.

Optimal permute_and_stack permutations
1p ,…,

10p :

1: [1,0,4,12,2,10,7,3,9,5,8,13,11,6,15,14],
2: [6,1,2,11,13,12,10,8,7,14,15,4,3,5,0,9],
3: [14,4,12,10,9,13,15,2,0,8,1,3,7,5,11,6],
4: [12,1,11,9,5,13,10,7,3,15,8,0,6,2,4,14],
5: [15,1,9,7,12,2,8,14,11,13,5,6,0,4,3,10],
6: [12,11,4,1,7,0,9,2,8,5,13,3,10,15,6,14],
7: [13,4,7,8,12,14,11,9,2,1,15,0,10,6,5,3],
8: [14,3,15,0,12,11,1,9,10,8,6,13,2,4,7,5],
9: [3,5,1,8,9,10,2,4,6,7,11,0,13,15,12,14],
10:[0,14,7,3,10,2,12,6,9,11,1,5,13,8,4,15].

map :

1: [0.0069], 2: [0.0041], 3: [0.0032], 4: [0.0026], 5: [0.0021], 6: [0.0018],
7: [0.0016], 8: [0.0014], 9: [0.0013], 10: [0.0012].

Table 22. Permutations for the 129 22 NOLH through 10 stacks.

Optimal permute_and_stack permutations
1p ,…,

10p :

1: [10,12,19,7,13,6,20,15,18,9,11,3,16,14,21,8,0,5,17,2,4,1],
2: [5,15,4,9,21,10,1,16,6,0,18,11,3,20,7,17,12,14,2,13,8,19],
3: [3,2,12,15,11,0,6,10,20,18,1,14,13,19,7,17,5,21,16,9,4,8],
4: [12,3,7,1,18,9,2,5,10,15,6,20,17,4,0,13,21,16,19,11,8,14],
5: [12,7,4,11,3,16,9,1,20,10,13,5,6,0,21,18,2,17,14,15,19,8],
6: [6,21,12,11,17,1,20,5,13,3,15,7,18,19,8,4,0,14,10,16,9,2],
7: [4,21,13,15,3,11,5,6,18,19,9,0,8,16,17,10,2,12,20,1,14,7],
8: [9,8,6,19,17,5,2,4,16,12,15,7,14,0,11,3,13,1,20,21,10,18],
9: [10,5,12,21,20,0,18,4,17,15,8,1,16,14,13,19,9,7,3,11,6,2],
10:[11,1,16,15,9,18,10,5,19,17,4,6,3,14,21,0,8,2,20,12,13,7].

map :

1: [0.0033], 2: [0.0023], 3: [0.0019], 4: [0.0017], 5: [0.0015], 6: [0.0013],
7: [0.0012], 8: [0.0010], 9: [0.0010], 10: [0.0009].

184

Table 23. Permutations for the 257 29 NOLH through 10 stacks.

Optimal permute_and_stack permutations
1p ,…,

10p :

1:[10,5,28,12,0,3,9,1,4,14,2,8,19,7,20,17,6,15,21,13,22,11,27,26,24,23,16,25,18],
2:[13,5,4,23,0,11,14,6,3,25,27,1,17,7,2,8,15,16,22,21,10,20,12,18,24,26,19,9,28],
3:[13,20,24,12,2,17,4,1,3,6,18,8,14,9,7,16,10,11,28,21,22,26,19,0,25,27,5,15,23],
4:[10,23,9,18,0,4,5,12,19,6,2,28,15,16,20,13,14,1,21,26,22,8,7,3,25,11,17,24,27],
5:[12,7,2,19,5,4,13,3,20,9,1,18,25,6,28,15,14,10,27,23,21,0,11,26,22,16,8,24,17],
6:[10,27,5,12,0,13,11,1,4,8,17,7,6,18,25,22,14,3,21,9,2,24,16,26,15,23,28,20,19],
7:[20,27,5,23,1,9,12,4,6,22,7,18,15,17,0,16,14,3,19,13,2,11,28,26,24,10,25,8,21],
8:[13,7,19,12,0,3,2,1,4,6,28,18,5,9,20,17,14,8,15,22,26,11,27,25,24,16,10,21,23],
9:[13,5,8,19,2,12,11,0,14,16,1,24,15,6,26,4,20,3,21,9,22,10,23,17,28,25,27,18,7],
10:[27,5,7,12,6,1,2,28,4,14,20,18,13,9,10,0,15,3,19,17,22,11,16,24,25,23,21,26,8].

map :

1: [0.0019], 2: [0.0016], 3: [0.0013], 4: [0.0011], 5: [0.0009], 6: [0.0009],
7: [0.0009], 8: [0.0010], 9: [0.0008], 10:[0.0007].

185

APPENDIX D. SCRIPTS AND FUNCTIONS

This appendix gives a sampling of the many scripts underpinning this research. For

example, generating many designs in JMP, R (e.g., MaxPro) or computing measures (e.g.,

(ML2)2 and (CL2)2).

// Sphere Packing //
For(k=1, k<=100, k++,
//‐‐‐
dim = 5;
dpts= 50;
 temp = Random Integer(1000000);
//‐‐‐
 path = "C:\Users\jdparker8\Box\00 Dissertation\07
100_SFSP\5\50\";
 path2 = "C:\Users\jdparker8\Box\00 Dissertation\07
100_SFSP\5\50\SEEDs\";
//‐‐‐
 d = DOE(
 Space Filling Design,
 {Add Response(Maximize, "Y", ., ., .), Add Factor(Contin‐
uous, 0, 1, "X1", 0),Add Factor(Continuous, 0, 1, "X2", 0), Add
Factor(Continuous, 0, 1, "X3", 0),Add Factor(Continuous, 0, 1,
"X4", 0), Add Factor(Continuous, 0, 1, "X5", 0),
Set Random Seed(temp),
Space Filling Design Type(Sphere Packing, dpts), Simulate Responses(
0),Set Run Order(Randomize)}
);
 design = d << Make Table;
 design2 = d << Make Table;
//‐‐
 design:Y << Set Selected;
 design2:Y << Set Selected;
 Wait(2);
 design << Delete Columns();
 design2:Y << Set Selected;
//‐‐
 final = design << Make Table;
 final2= design << Make Table;
 final << Save(path ||
"SF_SphereP"||"_"||char(dpts)||"_"||char(dim)||"_"||char(k)||".csv");
 final2<< Save(path2||
"SF_SphereP"||"_"||char(dpts)||"_"||char(dim)||"_"||char(k)||"_"||char
(temp)||".csv");
);

186

------------------------ MaxPro ------------------------#

install.packages("MaxPro")

library(MaxPro)

num_facs = 5; num_dps = 6

#size_list = c(6,99,132,165,198,231,264,297,330,363) # DPs

size_list = c(num_dps)

for (size in size_list) {

 dp=size

 k=num_facs

 num_calls = 5

 for (i in 1:num_calls)

 {

 # The initial design matrix, which we recommend

 # to be a MaxPro Latin hypercube design

 # generated by the MaxProLHD function

 temp_init_des <- MaxProLHD(n = dp, p = k)$Design #design

 temp <- MaxPro(temp_init_des)$Design

 tt <- data.frame(temp)

 write.csv(tt, file =

 paste("MaxPro_",size,"_",k,"_",i,"_SEED",

 x,".csv", sep = ""),

 row.names=FALSE)

 }

}

187

------------------ ML_2_function -----------------------#

ML_2_function <- function(df) {
 k = ncol(df) # cols
 n = nrow(df) # rows
 sum_2 <- 0
 sum_3 <- 0
 for(d in 1:n){
 prod_2 <- 1 # a product
 sum_32 <- 0
 for(j in 1:n){
 prod_3 <- 1
 for(i in 1:k){
 if(j == 1){
 num1 = (3 - (df[d, i])**2)
 prod_2 <- num1*prod_2
 }
 num_3 <- (2.0 - max(df[d,i] , df[j,i]))
 prod_3<- num_3*prod_3
 }
 sum_32 <- sum_32 + prod_3
 }
 sum_2 <- sum_2 + prod_2
 sum_3 <- sum_3 + sum_32
 }
 term_1 <- (4/3)**k
 term_2 <- ((2**(1-k))/n)*sum_2
 term_3 <- (1/(n**2))*(sum_3)
 ml2_disc <- term_1 - term_2 + term_3
 return(as.numeric(ml2_disc)) # max function X16 and a value
}
Eg.,
ML_2_function(apply(read.csv("nolhcioppa_n33k11.csv") ,
MARGIN = 2, FUN = function(X) (X - min(X))/diff(range(X)))) #[1]
0.7318222
or... w/ scaler function
ML_2_function(scaler_func(read.csv("nolhcioppa_n33k11.csv"
))) #[1] 0.7318222

188

--------------------- CL_2_function -----------------------#

CL_2_function <- function(df) {
 # CL_2 Function
 k = ncol(df) # cols
 n = nrow(df) # rows
 sum_2 <- 0
 sum_3 <- 0
 for(d in 1:n){
 prod_2 <- 1
 sum_32 <- 0
 for(j in 1:n){
 prod_3 <- 1
 for(i in 1:k){
 if(j == 1){
 num1 = (1.0 + abs(df[d, i] - 0.5)/2.0 - abs(df[d, i] -
0.5)**2/2.0)
 prod_2 <- prod_2*num1
 }
 num_3 = (1.0 + abs(df[d,i]-0.5)/2.0 + abs(df[j,i]-
0.5)/2.0 - abs(df[d,i] - df[j,i])/2.0)
 prod_3 <- num_3*prod_3}
 sum_32 <- sum_32 + prod_3
 }
 sum_2 <- sum_2 + prod_2
 sum_3 <- sum_3 + sum_32
 }
 term_1 <- (13/12)**k
 term_2 <- (2/n)*(sum_2)
 term_3 <- (1/(n**2))*(sum_3)
 cl2_disc <- term_1 - term_2 + term_3
 return(as.numeric(cl2_disc))
}
Eg.,
CL_2_function(read.csv("uniform_n33k11_09508.csv"))
CL_2_function(apply(read.csv("nolhcioppa_n33k11.csv") , MARGIN
= 2, FUN = function(X) (X - min(X))/diff(range(X))))
CL_2_function(df) # [1] 0.09058806 * <-----matches JMP! }
}

189

APPENDIX E. COMPLETE LHD AND LHS COMPARISON

We compare Latin hypercube sampling (LHS) (McKay et al. 1979) and Latin

hypercube designs (LHDs) on a lattice i.e., natural numbers 1,…, n.

190

191

192

193

APPENDIX F. NUMERICAL RESULTS ON MEASURES

We compare the mean and standard deviation (SD) values for a partial list of SFMs

for six design classes—each size k = 5, 10, and 20 and n = k+1, 3k+2, and 10k. The tables

that follow present an SFM for correlation, discrepancy, and distance criterion (i.e., ρmap,

(ML2)2, Mm distance). We italicize the best and bold the worst values for each design

size—for the sphere packing, MmLHD, MaxPro, and UniDOE designs. An asterisk (*) is

placed next to nearly orthogonal averages.

Table 24. The mean ρmap and standard deviation (SD) for 100 generations.

194

Table 25. The mean (ML2)2 and SD for 100 generations.

JMP sphere packing (Mm distance) designs are dominated by all design types (in terms of (ML2)2), which
includes randomly sampled LHDs.

195

Table 26. The mean Mm distance and SD for 100 generations of six design
types for nine different sizes n k .

R UniDOE uniform designs are dominated (in terms of Mm distance), which changes for k = 20 and n = k+1
to the JMP MmLHD.

196

THIS PAGE INTENTIONALLY LEFT BLANK

197

APPENDIX G. CORRELATION TABLES

Correlation data for each pair of ten measures for six design classes and nine sizes.

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

THIS PAGE INTENTIONALLY LEFT BLANK

225

APPENDIX H. CALCULATED min
map VALUE AND STANDARD

DEVIATION (SD) FOR THE SPECIFIED DSE DIMENSIONS AND
G = 10, 25, AND 50

These are additional tables resulting from the experiments of Chapter VI.

Table 27. Calculated min
map value and standard deviation (SD) for the

specified DSE dimensions for G =10.

226

Table 28. Calculated min
map value and standard deviation (SD) for the

specified DSE dimensions for G = 25.

227

Table 29. Calculated min
map value and standard deviation (SD) for the

specified DSE dimensions for G = 50.

228

THIS PAGE INTENTIONALLY LEFT BLANK

229

APPENDIX I. REX

This section introduces some research ideas on sequentially using mathematical

programming to construct designs with good balance, correlation, and space-filling

properties. Towards that end, we are developing and experimenting with the Row

Enhanced eXperiments (REX) algorithm. REX builds on previous approaches using mixed

integer programming (MIP) to construct nearly orthogonal or balanced designs; see

Hernandez et al. (2012a), Vieira et al. (2013), and Little et al. (2019). REX applies to

designs with continuous and discrete level columns.

The idea behind REX is to incorporate design characteristics (e.g., correlation,

balance, and space-filling measures) in the objective function or constraints and iteratively

optimize the values in one column at a time until no more improvement is possible or a

specified standard has been met. This process can be repeated with an adjusted objective

function and/or updated constraints to iterate towards a design that performs well in

multiple criteria. Figure 103 shows one possible iterative approach that focuses on one

design measure at a time.

230

Figure 103. Sequentially improving the correlation, imbalance, space-filling,
and subspace-filling properties of a design using a column-based MIP at

each step.

We show the potential of REX with a small example. Figure 104 shows an initial

design with two continuous factors, one two-level discrete factor and one four-level

discrete factor. This initial design has very poor correlation (map = 1.0), balance (a

maximum imbalance of 0.875), and space-filling properties. We first iterated through a

series of single-column mixed integer programs to construct designs with minimal

imbalance. Next, we iterated through the discrete columns to improve the correlations.

Finally, we minimize correlations associated with the continuous columns. The final design

of Figure 105 is perfectly balanced and orthogonal. Perhaps additional iterations could

improve upon the space-filling properties.

231

Figure 104. A very poor initial design with map = 1 and a maximal imbalance
of 0.875.

Figure 105. The resultant design after applying REX is orthogonal and
perfectly balanced.

232

An extension of this research can explore the ability of various objective functions,

constraints, and sequencing to construct designs with good column-correlation, balance,

and space-filling measures.

233

LIST OF REFERENCES

Atkinson A, Donev A, Tobias R (2007) Optimum Experimental Designs, with SAS
(Oxford University Press, Incorporated, Oxford, UK).

Audze P, Eglais V (1977) New approach to planning out of experiments. Probl. Dyn.
Strengths 35:104–107.

Ba S (2015) SLHD: Maximin-distance (sliced) Latin hypercube designs (CRAN).
Accessed May 10, 2022, https:// CRAN.R-project.org/package=SLHD.

Ba S, Joseph VR (2018) MaxPro: Maximum projection designs (CRAN). Accessed May
9, 2022, https://CRAN.R-project.org/package=MaxPro.

Ba S, Myers WR, Brenneman WA (2015) Optimal sliced Latin hypercube designs.
Technometrics 57(4):479–487.

Bathke A (2004) The ANOVA F test can still be used in some balanced designs with
unequal variances and nonnormal data. J. Stat. Plan. Inference 126:413–422.

Bazaraa M, Sherali H, Shetty C (2004) Nonlinear Programming: Theory and Algorithms.
(John Wiley & Sons).

Bertsimas D, Tsitsiklis JN (1997) Introduction to Linear Optimization (Athena Scientific
Belmont, MA).

Bingham D, Sitter RR, Tang B (2009) Orthogonal and nearly orthogonal designs for
computer experiments. Biometrika 96(1):51–65.

Bohachevsky IO, Johnson ME, Stein ML (1986) Generalized simulated annealing for
function optimization. Technometrics 28(3):209–217.

Box GEP (1978) Statistics for Experimenters: An Introduction to Design, Data Analysis,
and Model Building (Wiley, New York).

Box, GEP (1993) George’s column. Qual. Eng. 5(2), 321–330.

Box GEP, Wilson KB (1951) On the experimental attainment of optimum conditions. J.
R. Stat. Soc. Ser. B Methodol. 13(1):1–45.

Butler NA (2001) Optimal and orthogonal Latin hypercube designs for computer
experiments. Biometrika 88(3):847–857.

Bynum ML, Hackebeil GA, Hart WE, Laird CD, Nicholson BL, Siirola JD, Watson JP,
Woodruff DL (2021) Pyomo–optimization Modeling in Python, 3rd ed. (Springer
Science & Business Media).

234

Canty A, Ripley BD (2021) Boot: Bootstrap functions (CRAN). Accessed May 8, 2022,
https://CRAN.R-project.org/package=boot.

Casella G, Berger R (2002) Statistical Inference, 2nd ed. (Belmont, CA, Duxbury).

Chen RB, Hsieh DN, Hung Y, Wang W (2013) Optimizing Latin hypercube designs by
particle swarm. Stat. Comput. 23(5):663–676.

Cioppa TM (2002) Efficient nearly orthogonal and space-filling experimental designs for
high-dimensional complex models. Doctoral dissertation. (Naval Postgraduate
School, Monterey, CA).

Cioppa TM, Lucas TW (2007) Efficient nearly orthogonal and space-filling Latin
hypercubes. Technometrics 49(1):45–55.

COIN-OR (2016). Accessed May 12, 2022, http://www.coin-or.org/.

CPLEX (2009) V12. 1: User’s Manual for CPLEX. Int. Bus. Mach. Corp. 46(53):157.

van Dam ER, Rennen G, Husslage B (2009) Bounds for maximin Latin hypercube
designs. Oper. Res. 57(3):595–608.

David HA, Nagaraja HN (2004) Order Statistics (John Wiley & Sons).

Davison AC, Hinkley DV (1997) Bootstrap Methods and Their Applications (Cambridge
University Press, Cambridge).

Dean A, Morris M, Stufken J, Bingham D (2015) Handbook of Design and Analysis of
Experiments (Boca Raton, FL, CRC Press).

DoD (2021) The Department of Defense Releases the President’s Fiscal Year 2022
Defense Budget. US Dep. Def. Accessed August 12, 2021,
https://www.defense.gov/Newsroom/
Releases/Release/Article/2638711/the-department-of-defense-releases-the-
presidents-fiscal-year-2022-defense-budg/.

Dupuy D, Helbert C, Franco J (2015) DiceDesign and DiceEval: Two R packages for
design and analysis of computer experiments. J. Stat. Softw. 65(11):1–38.

Efron B (1992) Bootstrap methods: another look at the jackknife. Breakthr. Stat. 569–
593.

Efron B, Tibshirani R (1986) Bootstrap methods for standard errors, confidence intervals,
and other measures of statistical accuracy. Stat. Sci. 1(1):54–75.

Fang KT (1980) Uniform design: application of number-theoretic methods in
experimental design. Acta Math Appl Sin 3:363–372.

235

Fang KT, Lin DKJ, Winker P, Zhang Y (2000a) Uniform design: Theory and application.
Technometrics 42(3):237–248.

Fang KT, Ma CX, Winker P (2000b) The Uniform Design - Hong Kong Baptist
University Mathematics Department. Accessed January 29, 2021,
http://www.math.hkbu.edu.hk/UniformDesign/.

Fang KT, Runze L, Sudjianto A (2006) Design and Modeling for Computer Experiments
(Chapman and Hall CRC).

Fisher RA (1925) Statistical Methods for Research Workers, 10th ed. (Oliver and Boyd,
Edinburgh).

Fisher RA (1926) On the capillary forces in an ideal soil; correction of formulae given by
WB Haines. J. Agric. Sci. 16(3):492–505.

Fisher RA (1971) The Design of Experiments, 8th ed. (Hafner).

Florian A (1992) An efficient sampling scheme: Updated Latin hypercube sampling.
Probabilistic Eng. Mech. 7(2):123–130.

Garey MR, Johnson DS (1979) Computers and Intractability: A Guide to the Theory of
NP-Completeness (WH Freeman and Company).

Georgiou SD (2009) Orthogonal Latin hypercube designs from generalized orthogonal
designs. J. Stat. Plan. Inference 139(4):1530–1540.

Georgiou SD, Efthimiou I (2014) Some classes of orthogonal Latin hypercube designs.
Stat. Sin. 24(1):101–120.

Gilleland E, Katz RW (2016) ExtRemes 2.0: An extreme value analysis package in R. J.
Stat. Softw. 72(8):1–39.

Goldberg DE, Holland JH (1988) Genetic Algorithms and Machine Learning (Reading,
MA: Addison-Wesley).

Goldfarb HB, Borror CM, Montgomery DC, Anderson-Cook CM (2005) Using genetic
algorithms to generate mixture-process experimental designs involving control
and noise variables. J. Qual. Technol. 37(1):60–74.

Gumbel EJ (1935) Les valeurs extrêmes des distributions statistiques. Ann. Inst. Henri
Poincaré. 115–158.

Gurobi Optimization, LLC (2022) Gurobi optimizer reference manual, Accessed May 12,
2022, https://www.gurobi.com.

236

Guttorp P, Lindgren G (2009) Karl Pearson and the Scandinavian school of statistics. Int.
Stat. Rev. 77(1):64–71.

Hart WE, Watson JP, Woodruff DL (2011) Pyomo: modeling and solving mathematical
programs in Python. Math. Program. Comput. 3(3):219–260.

Helton JC, Davis FJ (2003) Latin hypercube sampling and the propagation of uncertainty
in analyses of complex systems. Reliab. Eng. Syst. Saf. 81(1):23–69.

Heredia-Langner A, Carlyle WM, Montgomery DC, Borror CM, Runger GC (2003)
Genetic algorithms for the construction of D-optimal designs. J. Qual. Technol.
35(1):28–46.

Heredia-Langner A, Montgomery DC, Carlyle WM, Borror CM (2004) Model-robust
optimal designs: A genetic algorithm approach. J. Qual. Technol. 36(3):263–279.

Hernandez AS (2008) Breaking barriers to design dimensions in nearly orthogonal Latin
hypercubes. Doctoral dissertation. (Naval Postgraduate School, Monterey, CA).

Hernandez AS (2016) A Gumbel distribution model to describe correlation values in
random Latin hypercube experimental designs for model and simulation based
systems engineering. J. Eng. Archit. 4(2).

Hernandez AS, Lucas TW, Carlyle M (2012a) Constructing nearly orthogonal Latin
hypercubes for any nonsaturated run-variable combination. ACM Trans. Model.
Comput. Simul. 22(4):1–17.

Hernandez AS, Lucas TW, Sanchez PJ (2012b) Selecting random Latin hypercube
dimensions and designs through estimation of maximum absolute pairwise
correlation. Proc. 2012 Winter Simul. Conf. WSC. 1–12.

Hey GB (1938) A new method of experimental sampling illustrated on certain non-
normal populations. Biometrika 30(1/2):68–80.

Hickernell FJ (1998) A generalized discrepancy and quadrature error bound. Math.
Comput. Am. Math. Soc. 67(221):299–322.

Hinkelmann K, Kempthorne O (2008) Introduction to Experimental Design (Wiley-
Interscience).

Holland JH (1992) Genetic algorithms. Sci. Am. 267(1):66–73.

Hou R, Lu L (2018) MOLHD: multiple objective Latin hypercube design. Accessed May
20, 2022, https://cran.r-project.org/web/packages/MOLHD/MOLHD.pdf.

Iman RL, Conover WJ (1982) A distribution-free approach to inducing rank correlation
among input variables. Commun. Stat. - Simul. Comput. 11(3):311–334.

237

Jenkinson AF (1955) The frequency distribution of the annual maximum (or minimum)
values of meteorological elements. Q. J. R. Meteorol. Soc. 81(348):158–171.

Jin R, Chen W, Sudjianto A (2003) An efficient algorithm for constructing optimal
design of computer experiments. Int. Des. Eng. Tech. Conf. Comput. Inf. Eng.
Conf. 545–554.

Johnson ME, Moore LM, Ylvisaker D (1990) Minimax and maximin distance designs. J.
Stat. Plan. Inference 26(2):131–148.

Joseph VR (2016) Space-filling designs for computer experiments: A review. Qual. Eng.
28(1):28–35.

Joseph VR, Gul E, Ba S (2015) Maximum projection designs for computer experiments.
Biometrika 102(2):371–380.

Joseph VR, Hung Y (2008) Orthogonal-maximin Latin hypercube designs. Stat.
Sin.:171–186.

Ke X, Zhang R, Ye HJ (2015) Two-and three-level lower bounds for mixture L2-
discrepancy and construction of uniform designs by threshold accepting. J.
Complex. 31(5):741–753.

Kesler G, Lucas TW, Sanchez PJ (2019) A data farming analysis of a simulation of
Armstrong’s stochastic salvo model. Proc. 2019 Winter Simul. Conf. WSC. 2443–
2454.

Kiefer J (1959) Optimum experimental designs. J. R. Stat. Soc. Ser. B Methodol.
21(2):272–319.

Kim H, Loh WY (2003) Classification trees with bivariate linear discriminant node
models. J. Comput. Graph. Stat. 12(3):512–530.

Kirkpatrick S, Gelatt Jr CD, Vecchi MP (1983) Optimization by simulated annealing.
science 220(4598):671–680.

Kleijnen JPC (2015) Design and Analysis of Simulation Experiments, 2nd ed. (Springer
International Publishing, Cham).

Kleijnen JPC, Sanchez SM, Lucas TW, Cioppa TM (2005) State-of-the-art review: A
user’s guide to the brave new world of designing simulation experiments. Inf. J.
Comput. 17(3):263–289.

Kotz S, Balakrishnan N, Read CB, Vidakovic B (1983) Encyclopedia of Statistical
Sciences, vol. 4 (John Wiley & Sons).

238

Kowalski CJ (1972) On the effects of non-normality on the distribution of the sample
product-moment correlation coefficient. J. R. Stat. Soc. Ser. C Appl. Stat. 21(1):1–
12.

Law AM, Kelton WD (2007) Simulation Modeling and Analysis, 3rd ed. (McGraw-Hill,
New York).

Lawler EL (1963) The quadratic assignment problem. Manag. Sci. 9(4):586–599.

Leary S, Bhaskar A, Keane A (2003) Optimal orthogonal-array-based Latin hypercubes.
J. Appl. Stat. 30(5):585–598.

Liefvendahl M, Stocki R (2006) A study on algorithms for optimization of Latin
hypercubes. J. Stat. Plan. Inference 136(9):3231–3247.

Lin CD, Tang B (2015) Latin hypercubes and space-filling designs. Handb. Des. Anal.
Exp.:593–625.

Lin CD, Mukerjee R, Tang B (2009) Construction of orthogonal and nearly orthogonal
Latin hypercubes. Biometrika 96(1):243–247.

Lin T (2018) Unmanned surface logistics concept of support. Master’s thesis. Naval
Postgraduate School, Monterey, CA.

Little ZC, Weir JD, Hill RR, Stone BB, Freels JK (2019) Second-order extensions to
nearly orthogonal-and-balanced (NOAB) mixed-factor experimental designs. J.
Simul. 13(3):226–237.

Lucas TW, Kelton WD, Sánchez PJ, Sanchez SM, Anderson BL (2015) Changing the
paradigm: Simulation, now a method of first resort. Nav. Res. Logist. 62(4):293–
303.

Lu L, Anderson-Cook CM, Robinson TJ (2011) Optimization of designed experiments
based on multiple criteria utilizing a Pareto frontier. Technometrics 53(4):353–
365.

Lukemire J, Xiao Q, Mandal A, Wong WK (2021) Statistical analysis of complex
computer models in astronomy. Eur. Phys. J. Spec. Top. ArXiv210207179,
https://doi.org/10.1140/epjs/s11734-021-00204-y.

MacCalman AD (2013) Flexible space-filling designs for complex system simulations.
Doctoral dissertation. Naval Postgraduate School, Monterey, CA.

MacCalman AD, Vieira H, Lucas T (2017) Second-order nearly orthogonal Latin
hypercubes for exploring stochastic simulations. J. Simul. 11(2):137–150.

239

Mak S (2021) Minimaxdesign: Minimax and minimax projection designs, Accessed May
20, 2022, https://cran.r-project.org/web/packages/minimaxdesign/
minimaxdesign.pdf.

Massey FJ (1951) The Kolmogorov-Smirnov test for goodness of fit. J. Am. Stat. Assoc.
46(253):68–78.

McCool B, Lyman J, Ferguson LJ (1995) Evolution of the model-test-model concept for
use in operational testing & advanced warfighting experiments. US Army Conf.
Appl. Stat. 18-20 Oct. 1995. 93.

McKay MD, Beckman RJ, Conover WJ (1979) A comparison of three methods for
selecting values of input variables in the analysis of output from a computer code.
Technometrics 21(2):239–245.

Meyer RK, Nachtsheim CJ (1995) The coordinate-exchange algorithm for constructing
exact optimal experimental designs. Technometrics 37(1):60–69.

Montgomery D (2013) Design and Analysis of Experiments, 8th ed. (John Wiley &
Sons).

Moon H, Dean AM, Santner TJ (2012) Two-stage sensitivity-based group screening in
computer experiments. Technometrics 54(4):376–387.

Morgan BL, Schramm HC, Smith JR, Lucas TW, McDonald ML, Sánchez PJ, Sanchez
SM, Upton SC (2018) Improving u.s. navy campaign analyses with big data.
Interfaces 48(2):130–146.

Morris MD, Mitchell TJ (1995) Exploratory designs for computational experiments. J.
Stat. Plan. Inference 43(3):381–402.

Owen AB (1994) Controlling Correlations in Latin Hypercube Samples. J. Am. Stat.
Assoc. 89(428):1517–1522.

Pang F, Liu MQ, Lin DKJ (2009) A construction method for orthogonal Latin hypercube
designs with prime power levels. Stat. Sin. 19(4):1721–1728.

Pareto V (1906) Manuale di economica politica, societa editrice libraria. Man. Polit.
Econ. 1971.

Park HW, Sohn H (2006) Parameter estimation of the generalized extreme value
distribution for structural health monitoring. Probabilistic Eng. Mech. 21(4):366–
376.

Pearson K (1895) VII. Note on regression and inheritance in the case of two parents.
Proc. R. Soc. Lond. 58(347–352):240–242.

240

Pearson K, Filon LNG (1898) Mathematical contributions to the theory of evolution. iv.
on the probable errors of frequency constants and on the influence of random
selection on variation and correlation. Philos. Trans. R. Soc. Lond. Ser. Contain.
Pap. Math. Phys. Character 191:229–311.

Pukelsheim F (2006) Optimal design of experiments (Philadelphia, PA, SIAM).

Qian PZG (2012) Sliced Latin hypercube designs. J. Am. Stat. Assoc. 107(497):393–399.

R Core Team (2021) R: A Language and Environment for Statistical Computing (R
Foundation for Statistical Computing, Vienna, Austria).

Ryan TP (2007) Modern Experimental Design, 1st ed. (John Wiley & Sons).

Sacks J, Welch WJ, Mitchell TJ, Wynn HP (1989) Design and analysis of computer
experiments. Stat. Sci. 4(4):409–423.

Saeger KJ, Hinch JH (2001) Understanding instability in a complex deterministic combat
simulation. Mil. Oper. Res. 6(4):43–55.

Sanchez PJ, Sanchez SM (2019) Orthogonal second-order space-filling designs with
insights from simulation experiments to support test planning. Qual. Reliab. Eng.
Int. 35(3):854–867.

Sanchez SM (2005) NOLHdesigns spreadsheet. Softw. Accessed May 20, 2022,
https://nps.edu/web/seed/software-downloads.

Sanchez SM, Lucas TW, Sanchez PJ, Nannini CJ, Wan H (2012) Designs for large-scale
simulation experiments, with applications to defense and homeland security.
Design and Analysis of Experiments, vol. 3. Hinkelmann K, ed. (John Wiley &
Sons, Hoboken, NJ), 413–441.

Sanchez SM, Sanchez PJ, Wan H (2020) Work smarter, not harder: a tutorial on
designing and conducting simulation experiments. Proc. 2020 Winter Simul.
Conf. WSC. 1128–1142.

Santner TJ, Williams BJ, Notz WI (2003) The Design and Analysis of Computer
Experiments, 1st ed. (Springer, New York).

Santner TJ, Williams BJ, Notz WI (2018) The Design and Analysis of Computer
Experiments, 2nd ed. (Springer, New York).

SAS (2018) Design of Experiments Guide (SAS Publishing, Cary, NC).

SAS (2021) JMP Pro 15. Accessed May 20, 2022, https://www.jmp.com/
en_us/home.html.

241

Satterthwaite FE (1959) Random balance experimentation. Technometrics 1(2):111–137.

Savage S (2002) The flaw of averages. Harv. Bus. Rev. 80(11):20–21.

Schober P, Boer C, Schwarte LA (2018) Correlation coefficients: appropriate use and
interpretation. Anesth. Analg. 126(5):1763–1768.

Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete
samples). Biometrika 52(3/4):591–611.

Shields MD, Zhang J (2016) The generalization of Latin hypercube sampling. Reliab.
Eng. Syst. Saf. 148:96–108.

Steinberg DM, Lin D (2015) Construction of orthogonal nearly Latin hypercubes. Qual.
Reliab. Eng. Int. 31(8):1397–1406.

Steinberg DM, Lin DKJ (2006) A construction method for orthogonal Latin hypercube
designs. Biometrika 93(2):279–288.

Sun F, Gramacy RB (2021) Maximin: Space-filling design under maximin distance
(CRAN). Accessed May 20, 2022, https://CRAN.R-project.org/
package=maximin.

Sun F, Gramacy RB, Haaland B, Lu S, Hwang Y (2019) Synthesizing simulation and
field data of solar irradiance. Stat. Anal. Data Min. ASA Data Sci. J. 12(4):311–
324.

Sun F, Liu MQ, Lin DKJ (2009) Construction of orthogonal Latin hypercube designs.
Biometrika 96(4):971–974.

Sun F, Tang B (2017a) A method of constructing space-filling orthogonal designs. J. Am.
Stat. Assoc. 112(518):683–689.

Sun F, Tang B (2017b) A general rotation method for orthogonal Latin hypercubes.
Biometrika 104(2):465–472.

Sun F, Wang Y, Xu H (2019) Uniform projection designs. Ann. Stat. 47(1).

Vieira H, Sanchez SM, Kienitz KH, Belderrain MCN (2011) Improved efficient, nearly
orthogonal, nearly balanced mixed designs. Proc. 2011 Winter Simul. Conf. WSC.
(IEEE, Phoenix, AZ), 3600–3611.

Vieira H, Sanchez SM, Kienitz KH, Belderrain MCN (2013) Efficient, nearly orthogonal-
and-balanced, mixed designs: an effective way to conduct trade-off analyses via
simulation. J. Simul. 7(4):264–275.

242

Wang H, Xiao Q, Mandal A (2021) Musings about constructions of efficient Latin
hypercube designs with flexible run-sizes. ArXiv Prepr. ArXiv201009154.
Accessed May 20, 2022, http://arxiv.org/abs/2010.09154.

Wang Y, Sun F, Xu H (2020) On design orthogonality, maximin distance, and projection
uniformity for computer experiments. J. Am. Stat. Assoc.:1–11.

Wang Y, Yang J, Xu H (2018) On the connection between maximin distance designs and
orthogonal designs. Biometrika 105(2):471–477.

Wheeler B (2019) AlgDesign: Algorithmic experimental design. Accessed May 20, 2022,
https://cran.r-project.org/web/packages/AlgDesign/AlgDesign.pdf

Winker P, Fang KT (1998) Optimal U-type designs. Monte Carlo Quasi-Monte Carlo
Methods 1996. (Springer), 436–448.

Xiao Q, Xu H (2018) Construction of maximin distance designs via level permutation
and expansion. Stat. Sin. 28(3):1395–1414.

Ye KQ (1998) Orthogonal column Latin hypercubes and their application in computer
experiments. J. Am. Stat. Assoc. 93(444):1430–1439.

Ye KQ (2021) Orthogonal Latin hypercubes. Accessed May 21, 2021,
http://www.ams.sunysb.edu/~kye/olh.html.

Zhang A, Li H, Quan S, Yang Z (2018) UniDOE: Uniform design of experiments
(CRAN). Accessed May 21, 2021, https://CRAN.R-project.org/
package=UniDOE.

Zhou X, Lin DKJ, Hu X, Ouyang L (2019) Sequential Latin hypercube design with both
space-filling and projective properties. Qual. Reliab. Eng. Int. 35(6):1941–1951.

Zhou YD, Fang KT, Ning JH (2013) Mixture discrepancy for quasi-random point sets. J.
Complex. 29(3–4):283–301.

243

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

	22Jun_Parker_Jeffrey_First8
	22Jun_Parker_Jeffrey Body

