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ABSTRACT 

Accurate and robust autonomous underwater navigation (AUV) requires the 

fundamental task of position estimation in a variety of conditions. Additionally, the U.S. 

Navy would prefer to have systems that are not dependent on external beacon systems 

such as global positioning system (GPS), since they are subject to jamming and spoofing 

and can reduce operational effectiveness. Current methodologies such as Terrain-Aided 

Navigation (TAN) use exteroceptive imaging sensors for building a local reference 

position estimate and will not be useful when those sensors are out of range. What is 

needed are multiple navigation filters where each can be more effective depending on the 

mission conditions. This thesis investigates how to combine multiple navigation filters to 

provide a more robust AUV position estimate. The solution presented is to blend two 

different filtering methodologies utilizing an interacting multiple model (IMM) 

estimation approach based on an information theoretic framework. The first filter is a 

model-based Extended Kalman Filter (EKF) that is effective under dead reckoning (DR) 

conditions. The second is a Particle Filter approach for Active Terrain Aided Navigation 

(ATAN) that is appropriate when in sensor range. Using data collected at Lake Crescent, 

Washington, each of the navigation filters are developed with results and then 

we demonstrate how an IMM information theoretic approach can be used to 

blend approaches to improve position and orientation estimation. 
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Executive Summary

Within recent years the Department of Defense has directed an accelerated adoption of
artificial intelligence (AI) and the creation of a force that is technologically advanced
and capable of ensuring the security of the United States. A crucial component of future
autonomousmaritime operations is the ability for unmanned autonomous vehicles to operate
without the use of global positioning system (GPS) or other external beacon systems.

In a rapidly evolving technological world, operating in a GPS denied environment or
without the use of systems such as acoustic transponders or even the Positioning System
for Deep Ocean Navigation (POSYDON) system has never been more crucial. The leading
solution is Terrain-Aided Navigation (TAN) and which utilizes an on-board map and a
combination of sensor systems in order to correlate measurements within the known map.
Themost significant drawback to thismethod is the requirement for different filter estimation
methodologies that may not be designed to work together.

This research will be presented in several parts. The first is to implement a new Extended
Kalman Filter (EKF) as a dead reckoning (DR) model on-board the Naval Post Graduate
School’s Remote Environmental Monitoring UnitS 100 (REMUS) vehicle to improve its
estimation during times of inaccurate velocity estimation. Secondly, this research seeks to
build a Particle Filter (PF) for use within Active Terrain-Aided Navigation (ATAN) based on
information theory. Finally, and perhaps most important, this research seeks to implement
a novel information theoretic federation process between the PF and EKF to improve over
all state estimation.

xxi
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CHAPTER 1:
Introduction

1.1 Motivation
As unmanned systems continue to become a more important component of U.S. Naval
strategy, robust and accurate pose estimation remains a fundamental task. Current techniques
often rely on a single filter which is expected to handle multiple and potentially sporadic
sensor measurements. This can create estimation errors, especially when the system and
measurement models have unknown uncertainty. The thesis investigates using multiple
simultaneous filters and the methodology by which to combine these in order to produce a
more robust position estimation approach.

There are many approaches to accurate underwater navigation that include a combination
dead reckoning (DR) and external localization methods. They frequently rely on external
beacon systems such as global positioning system (GPS), long baseline (LBL), and ultra
short baseline (USBL) for position measurements. Despite their reliability and ability to
conduct accurate navigation relative to the positioned beacons, there is growing concern [1]
about their limitations and vulnerabilities.

They fundamentally are subject to jamming and spoofing vulnerabilities. For example,
GPS jamming can be accomplished by producing a radio frequency (RF) signal which
is powerful enough that it may “drown out” the transmissions which are being produced
from the constellation of satellites [2]. This has the impact of increasing the overall noise
level at the GPS receiver can cause a complete loss of GPS estimation. This is significant
as many adversaries and near-peer competitors such as Russia and the People’s Republic
of China (PRC) have demonstrated jamming capabilities [3]. This technique presents the
potential to be utilized both offensively or defensively [2] but would present sudden and
obvious symptoms that indicate something is wrong with the system.

GPS spoofing involves deliberately mimicking transmissions from satellites which can
deceive the receiver into believing that information was sent correctly [4]. This transmission
would be indistinguishable from the true GPS signal and can be used by an adversary to
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provide false position information or even take control of the system by directing it towards
their desired location [5]. Countries such as Iran have used spoofing against the United
States and in 2011 captured a U.S. drone by spoofing its GPS to land in Iran when it was
believed, by the U.S., to have landed in Afghanistan [6].

There are also limitations associated with using LBL and USBL systems to include the
necessity for near-operation installation aswell as error associatedwith the intended position
or watch circle due to installation. Although these systems can provide extremely accurate
estimates, often within 1 m [7], the proximity requirement severely limits flexibility. These
systems would also need to be installed well before an operation and would still require a
precise understanding of their error to be used accurately. It is precisely these vulnerabilities
and limitations that fuel themotivation for theU.S.Navy to reduce its dependence on external
beacon and localization methods for position, navigation, and timing (PNT).

Because of the challenges associated with these system vulnerabilities, the Department
of Defense (DOD) has directed policy, responsibility, and procedures for the DOD PNT
enterprise [8]. The United States Navy’s Program Executive Office Command, Control,
Communications, Computers and Intelligence (PEO C4I) has a program to develop state-of-
the-art capabilities for accurate and assured operational maneuver of surface and subsurface
vehicles [9]. The focus of the program addresses various issues and technologies associated
with PNT with the goal being to provide naval assets with assured PNT alternatives to
GPS [9]. Figure 1.1, adapted from [9], shows the desired focus on non-GPS aided PNT
alternatives for surface and subsurface sensors as an increasing threat environment demands
the need to operate in extended periods of total GPS denial.

2



Figure 1.1. Position, Navigation, and Timing Alternatives Hierarchy. Adapted
from: [9]

At the lowest threat level are environments which are completely Electromagnetic Interfer-
ence (EMI) uncontested. In this environment, the Navy can utilize common navigational
methods such as the shipboard Navigation Sensor System Interface (NAVSSI) which allows
vessels to automatically accept GPS data for real-time velocity, positioning, and time data
to shipboard navigational and combat Command, Control, Communications, Computers,
and Intelligence (C4I) systems [10]. As the threat level increases to that of GPS jamming
and degraded environments, there will be a requirement to use technologies that can defeat
jamming threats such as the NavGuard 502 Multi-platform Anti-jamming GPS Navigation
Antenna (MAGNA) which can place a null in the direction of jamming and reduce jamming
noise. Finally, when GPS is not available, assured PNT alternatives to GPS must be used
such signals of opportunity from systems such as LBL, collaborative PNT, or Terrain-Aided
Navigation (TAN).

Autonomous underwater vehicle (AUV) operations present significant issues for position
estimation techniques. Receipt of a GPS signal requires the vehicle to periodically surface
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and limit operational flexibility. Imaging sensors, such as sound navigation and ranging
(sonar) and cameras, and doppler velocity log (DVL)/acoustic doppler current profiler
(ADCP) have limited range. Figure 1.2, adapted from [5], gives an example from a mission
profile fromLakeCrescent,WAwhere four different regimes can impact the filtering process
at different times during the mission.

Figure 1.2. Regimes where different filtering techniques may be necessary.
Regime 1, AUV operates near the surface and can leverage GPS data. Due to
the depth the AUV is unable to utilize any other sensors and must use a DR
model. Regime 2 is too deep to quickly access GPS data and not yet deep
enough for seafloor-oriented sensors. Regime 3 can use the DVL/ADCP and
inertial navigation system (INS) which can provide more accurate motion es-
timates. Regime 4 can utilize imaging sensors to further improve navigational
accuracy. Adapted from: [5]
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Table 1.1. Scenario Requirements and Limitations: A - Available, NA - Not
Available, L - Limited

Regime GPS DVL/ADCP Camera INS Model

1 A NA NA L A
2 NA NA NA L A
3 NA A NA A A
4 NA A A A A

In regime 1, the AUV operates at or near the surface and can leverage GPS and DR
models for navigation. Within this example, the depth of the water is too deep for the
use of DVL/ADCP since the integrated INS position estimation solution which requires
the DVL/ADCP for velocity measurements. This limits the use of the INS. For AUVs this
regime is a factor of the size of the instrumentation onboard the vehicle as well as its mission
profile. Moving to regime 2, the only available tool for navigation is a model with limited
INS use since surfacing for GPS is time and energy inefficient. Regime 3 becomes within
range of systems such as the DVL/ADCP and the AUV can begin to more accurately use
a model now that there are velocity estimates being provided. In regime 4, the AUV can
begin to fully implement all on-board navigation methodologies as there is a wide variety of
sensor information. Here an AUV can accurately navigate but must do so with any accrued
error from transitioning through the other regimes.

Sensors, such as those listed in Table 1.1, are commonplace for AUVs and provide many
of the measurements that produce accurate motion and localization estimates. When these
sensors are not available, an accurate hydrodynamicmodel can be used to transition between
the intermediate regimes. An accurate model can provide the AUV with estimates for its
forward and side-slip velocity, heading, and heading rate that can be used as a part of an
effective DR filter.

The Lake Crescent bathymetry, an example of which is shown in Figure 1.3, became a prime
candidate of the necessity of an AUV to operate through different regimes.
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Figure 1.3. Multiple Regimes at Lake Crescent

Figure 1.3 shows one section of an operational area at Lake Crescent with altitudes relative
to a datum set at the deepest point of the lake. The depth of water in this figure range from
about 10 m to 55 m from the surface. As the AUV moves from south to north within Figure
1.3, there are points at which it must transition between different regimes and will only
have certain sensor systems available until it reaches the most northern section. Due to the
performance of the DR filter, some of the experiments conducted had final positional errors
nearing one kilometer.

There are many limitations to some of the common filtering methods used for underwater
navigation. Some filtering methods require uncertainty parameters associated with different
measurements, such as depth data from imaging systems or velocity from the DVL/ADCP.
These filter can be rendered inoperable without these. Some filters are designed to input
external localization information to help bound error accumulated by a continuously running
solution. Depending on the regime of operation, external localization signals may not
be available or difficult to acquire within operation. Some AUVs have limited onboard
processing power which can constrain the amount and characteristics of individual filter
solutions. Finally, many AUVs are equipped with filters that are a part of a proprietary

6



solution that cannot be altered by an operator to meet specific issues.

Under the circumstances of the AUV operations discussed, it becomes difficult to implement
only one filter, and so two central questions arise:

1. How many and what type of filters can provide a more robust solution?
2. Do these filters interact and if so, how?

This thesis proposes are general framework that can be usedwith two simultaneous Bayesian
filters that combines the two estimates to provide a more robust and more accurate position
estimation in all regimes of an AUV mission. The questions raised in this thesis stem
from work conducted at Lake Crescent, WA. Because of the lake size and depth the AUV
experiencedmultiple changes in regimes inwhich a single filter solutionwas either degraded
or completely impractical.

The AUV experimentation testing was conducted with Unmanned Underwater Vehicle
Squadron One (UUVRON 1) in preparation for Arctic operations. The NPS REMUS 100
AUV had on board two separate filters for position estimation. Amanufacturer specific EKF
filter was used that provided a proprietary solution that performed as a DR model when the
AUV was out of ADCP/DVL range. The second filter was a PF based on correlation with
NOAA surveyed, lake bathymetry [11]. There are limitations with the DR solution in that
this was a standalone estimate that would accrue large errors over time and could not be
utilized in conjunction with any other non-manufacturer specific filter.

A significant limitation to the Lake Crescent mission was that there was no method by
which each filter could interact with one another or fuse data to provide more accurate
estimates. A federative process, an approach by which two or more filters interact and
combine estimates, will be presented in this thesis as a solution to the second central
question. Filters can interact and fuse estimates in several different ways. Filters can act
in parallel where each is run simultaneously but provides only one aspect of a solution
and does not mitigate filter specific limitations. They can act in series where one filtering
algorithm operates within the other in order to reduce estimation error but is also unable
to mitigate filter specific limitations. They can interact through different logic switches that
can be used to help mitigate the limitations of each filter. Finally, filters can interact through
a model that is able to intelligently determine when to switch and fuse each estimate and
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which mitigates the limitations of each filter providing robust estimates in situations that can
degrade single filter performance. The latter will be investigated in this thesis as it produces
a more robust PNT solution within GPS denied environments.

1.2 Thesis Organization
The thesis is organized as follows: Chapter 2 provides a literature review with a description
of the equipment, necessary background in Bayesian Filtering (BF) and Information Theory,
and an overview of the field experimentation. Chapter 3 will introduce position estimation
filter techniques and an overview of Interacting Multiple Model (IMM). Chapter 4 will
discuss development of the model-based Extended Kalman Filter (EKF). Chapter 5 will
discuss the development and simulation results of the Particle Filter (PF). Chapter 6 will
discuss the development and simulation results of the Information Theoretic Interacting
Multiple Model (IT-IMM). The thesis will conclude and discuss future work in chapter 7.

1.3 Contributions of This Thesis
• Introduction of a novel IT-IMM estimation that federates the model-based EKF and
PF through the combined use of Shannon entropy from the posterior probability
distribution and a measure of terrain suitability for predictive PF performance.

• A model-based EKF for estimating forward and sideslip velocities when the AD-
CP/DVL is not available.

• A PF algorithm that implements an information theoretic framework for particle
redistribution.
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CHAPTER 2:
Background

This thesis seeks to build on the work done by Darren Kurt and Douglas Horner, who
implemented Monte Carlo localization (MCL) for use in Active Terrain-Aided Navigation
(ATAN). ATAN combines reinforcement learning (RL) with TAN to greatly reduce the
dependency on an a priori bathymetry map [12]. Their focus was on the problem of
exploration versus exploitation in that the simulated AUV had to balance “the desire to
explore all map areas while being able to exploit known areas in order to minimize the
positional error” [5].

During times when the AUV is exploiting known areas on a map, there will be instances
when the terrain is outside the range of the acoustic and imaging sensor systems. Therefore,
this thesis will focus on two techniques for position estimation; a model-based EKF and
a PF, that can provide robust estimates in many different circumstances. This thesis will
also focus on the development of an IT-IMM algorithm to intelligently mix the position
estimates. This chapter provides the background for remaining thesis chapters and includes
a literature review, AUV equipment and sensor overview, an introduction to Generalized
Bayesian Filtering (GBF), and field experimentation.

2.1 Related Works
Although there are many applications to the filters discussed in this thesis [13]–[24], this
section covers literature review on position estimation filters and methods that are pertinent
to this thesis. The review includes literature on the PF, model-based EKF, and IMM
estimation.

2.1.1 Particle Filters
The PF is a state estimation algorithm that can be used when the dynamics of the observed
system are non-linear and non-Gaussian. They, belong to the class of mean-field type
interacting particle methodologies which are a class of Monte Carlo algorithms [25]. These
algorithms are methods that use random sampling to obtain numerical results. Unlike other
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filters, the strength of the PF is in its ability to handle these types of systems without
requiring model assumptions. The limitation associated with this ability is that there is
much higher computational complexity when compared to other methods.

One of first instances of the PF was in a statistical methodology proposed by Hammersley
et al., in 1954 [26]. In the context of underwater navigation, the PF is a numerical method
that utilizes a large number, on the order of up to the tens of thousands, of samples of a state
vector according to its probability density function (PDF) [27]. Palmier presents a survey
paper on PFs for underwater TANwith multi-sensor fusion and presents important concepts
directly related to the unique challenge of TAN-based PF implementation [28].

An early implementation of the PF comes from a team at the Robotics Institute at Carnegie
Mellon University conducted research for the International Conference on Robotics and Au-
tomation (ICRA) on MCL for mobile robotics. The team explored probabilistic approaches
as they believed that these to be the most promising in providing a real-time localization
solution. The team presented the MCL method using a PF which provided the ability to
handle multi-modal distributions and thus the robot could globally localize its position, in
real time, without any prior knowledge of its starting position. This was an improvement in
accuracy, time, and required processing computation then earlier grid-based methods and
provided the bases of the algorithm used in this thesis [29].

Gustafsson et al. implemented for the first time a MCL framework with a map matching
technique for aerial navigation. They introduce non-linear models and non-Gaussian noise,
which yield an improvement in estimation accuracy of the PF. Real-time implementation
yielded accurate results comparable with satellite navigation [30]. Perez-Grau et al. improve
uponMCL for aerial vehicles but more importantly, utilize visual odometry and a prior map
which demonstrate strong system performance for navigation in a 3-D space [31]. As
it applies to future work, Perez-Grau show that camera depth information can be used
effectively within the PF algorithm.

Donovan describes autonomous AUV navigation using a PF framework without the use of
GPS or LBL localization methods. The novelty of Donovan’s work was the implementation
of PF resampling which allowed the PF to “consistently recover a positional fix over a search
area” and highlights the importance of re-sampling within MCL [32].
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Karlsson andGustafsson propose a PF for underwater navigation and implement the Cramér-
Rao Lower Bound (CRLB), the lower bound an estimator must achieve to be considered
fully efficient, along an experimental trajectory. Rao-Blackwellization is applied and was
found to decrease the overall computational complexity of the filter [33], [34]. Alexander
Bachmann and Stefan Williams at the University of Sydney propose a method for TAN in
underwater environments using a PF and a digitized seafloor map with sonar measurements.
In order to increase the performance of the PF, they used an adaptive particle sample size,
which changed the size of the particle distribution depending on the state uncertainty [35].

Salavasidis et al. were one of the first to consider energy conversation in developing a
PF-based TAN algorithm designed for a deep-rated, long-range, underwater navigation.
Since energy-expensive, dense ranging, multi-beam sonar and high-grade INS use must
be limited, the team implemented simple DŖ sensors such as an ADCP which they found
provided sufficient measurements for PF implementation [36]. These works on PF-based
TAN provided foundational knowledge in the development of the PF.

Osertman and Rhén propose a PF-based TAN algorithm using DVL altitude data fused with
forward looking sonar (FLS) information to explore the sensor requirements for robust PF
estimation. They conclude that dedicated TAN-sensors are undesirable and that accurate
PF estimates can be made with common on-board equipment such as a DVL and FLS [37].
Lager et al also highlight the effectiveness of utilizing affordable sensor systems, both
navigational and perceptive, as well as publicly available charts and bathymetry maps
within a robust PF-based TAN algorithm with sensor fusion [38]. The work done on sensor
fusion provides important insight as the PF will be developed to be utilized onboard an
AUV without dedicated TAN imagery sensors.

2.1.2 Model-based Extended Kalman Filters
The EKF is also a state estimation algorithm that uses a Taylor Series expansion to extend
the Kalman Filter (KF) to non-linear process and observation models. The EKF, belongs to
a family of optimal estimators for systems in which the model dynamics are well known.
The strength of the filter, however, is the ability to make state estimates with much lower
computational complexity when compared to PFs giving it an advantage when an AUVs
processing power is limited.
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A model-based EKF is one that utilizes an accurate model of the system dynamics. Dard-
anelli shows that such an approach can more accurately estimate state variables [39]. Ranjan
et al. use a model-based EKF to merge altitude, velocity, heading, and GPS information
in order to produce a single state vector utilizing a sensor model that helps reduce the
overall error [40]. As it pertains to this thesis, a hydrodynamic model will be developed for
estimating forward and sideslip velocities that provides more accurate estimates when the
ADCP/DVL is not available.

There has been a tremendous amount of research into the development of hydrodynamic
models for undersea vehicles. Fossen developed the 6 degrees of freedom (DOF) model for
undersea vehicles, of which many of the simplified equations will be used in this thesis.
Work done by Taylor [41] builds an accurate 6DOF hydrodynamic model of a Remote
Environmental Monitoring UnitS 100 (REMUS) 100 AUV which will be the platform for
testing within this thesis. Prestero and Sgarioto developed the hydrodynamic coefficients
and equations from which the hydrodynamic model is formulated [42], [43].

2.1.3 Interacting Multiple Model Estimation
The IMM approach, or Classical Interacting Multiple Model (C-IMM), developed by Bar-
Shalom and Li, is a sub-optimal model for system estimation for combining together two
or more filtering methods into a single estimate [44]–[49]. C-IMM has seen success when
combined with a PF for state estimation. Li and Dou utilize a C-IMM with two PFs for
visual tracking based on multiple switching cue states of a dynamic system and blends
three models: Corrected Background Weighted Histogram (CBWH), Completed Local
Ternary Patterns (CLTP) and Histogram of Oriented Gradients (HOG) [50]. Kim and Jeong
developed a tracking algorithm utilizing IMM PF that can process crash probability data as
a priori knowledge and use that with Monte Carlo simulations to track vehicles [51].

Genovese provides a robust C-IMM algorithm that fuses five filter models and shows that
the overall performance of the state estimates improved as the complexity and number of
the filter models increased. This work provides significant insight into the fundamental
algorithm of the C-IMM [52]. Johnston and Krishnamurthy developed an Re-weighted
Interacting Multiple Model (R-IMM) which is a recursive implementation of a maximum a
posteriori state sequence and presented as an improvement in computational speed over the
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C-IMM [53]. Li and Jia develop an IT-IMM approach for combining state estimates which
this thesis will use [54].

2.2 Equipment
This section provides an overview of the Naval Postgraduate School (NPS) REMUS 100
AUV and its associated sensor systems that was used during field experimentation at Lake
Crescent, WA, in December 2022.

2.2.1 Remote Environmental Monitoring UnitS 100
The NPS REMUS is a modified REMUS 100 AUV with fore and aft cross-tunnel thrusters,
which permit hovering, translation, and rotation. It has the flexibility to add module sensors
on the front section of the vehicle and features a backseat driver architecture for testing new
autonomy concepts. The backseat driver provides commands to the main vehicle control
system which executes the commands. A description of the system and its capabilities are
shown in Table 2.1.

Figure 2.1. REMUS 100 Vehicle. Source: [5]

Work by Eric Bermudez [55] and Ian Taylor [41] on the hydrodynamic characteristics of a 6
DOF model were adapted for this thesis to model the movement of the REMUS to improve
the accuracy of the EKF. The equations and coefficients adapted from Bermudez and Taylor
will be discussed in more detail in Chapter 4. Table 2.1, adapted from [5, Table 1.1] and
shown below, was adapted from the work done by Darren Kurt [5].

13



Table 2.1. REMUS Configuration Parameters. Source: [5]

Part/Module Used Setup/Utilized Implementation

Robot REMUS 100. Length 2.28 m. Diameter
0.19 m. Weight 40 kg. Speed 0.25-2.57
m/s. Depth range 3 m-100 m. Battery

duration 9 hours [56].
Propulsion Direct drive DC brush-less motor directly

connected to open three bladed propeller
[56].

Locomotion Control (2) coupled yaw and pitch fins. CTT [56].
INS SeaDeViL INS navigational uncertainty

equal to 0.43 percent distance traveled
[56].

ADCP 900 kHz, four downward-looking,
transducers measure forward velocity, side

velocity, and heave of vehicle [56].
Sonar BlueView MB2250-N downward-looking,

ultra-high resolution sonar
3DX Camera Embedded IMU and GPU. NVIDIA’s

Jetson TX2 embedded AI-engine. Built-in
ROS based data and control interfaces. An

on-board RUI for local setup and
management as well as NEPI for remote
data and system management over a
secure smart IoT Backbone [57].

Computational Resources (2) intel Core i9 processors for the
secondary controller and sensor

processing. (2) Hydroid CPUs and hard
drives for the main controller and the side

scan sonar.

14



2.2.2 Sensors
Pertinent to this thesis, the modified REMUS utilizes a Kearfott SeaDeViL INS system, and
either the BlueView MB2250 FLS, the Numurus 3DX camera system or the ADCP/DVL
for TAN.

2.2.3 Kearfott SeaDeViL INS
The Kearfott SeaDeViL INS is an integrated system and merges accelerometer sensors, the
ADCP/DVL, and GPS into a pose estimate [55]. While surfaced, this system uses GPS to
obtain position and velocity estimates. While submerged, the system uses the ADCP/DVL
to obtain the speed over ground of the REMUS. A description of the system specifications
are shown in Table 2.2:

Table 2.2. Kearfott SeaDeViL INS System. Adapted from: [55]

Attribute Specification

Size 8850 m3

Weight < 7.25 kg
Power < 30 watts Vdc

Operational Range

Acceleration > 30 g’s
Attitude Unlimited
Attitude Acceleration > 10,000 deg/s2

Temperature -40◦C to +55◦C

Performance

Position Accuracy 0.5% DT CEP

Heading Accuracy 5.0 mils RMS

Roll/Pitch 0.5 mils RMS
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BlueView MB2250 Sonar
The BlueView MB2250 sonar is mounted to the REMUS via a “wet-mateable, power
ethernet connection” [56]. The sonar mounted to REMUS is the BlueView 900 kHz FLS and
BlueView 2250 kHz downward-looking, ultra-high resolution sonar. Each system employs
methods that “turn a single acoustic signal into a larger swath of beams” [58]. A description
of MB2250 sonar is shown in Table 2.3, from [56] .

Table 2.3. BlueView MB2250 Sonar Package. Source: [5]

Attribute Specification

FOV 76◦x1◦

Minimum Range 0.5 m
Maximum Range 10 m
Beam Width 1◦x1◦

Number of Beams 256
Horizontal Sonar Angles [-30◦, -15◦, 0◦, 15◦, 30◦]
Vertical Sonar Angles [-15◦, -7.5◦, 0◦, 7.5◦, 15◦]
Max Update Rate 40 Hz

Frequency 2.25 MHz

Figure 2.2, from [5], shows an example of a BlueView MB2250 downward-looking image.

16



Figure 2.2. BlueView MB2250 Sonar image taken from the NPS REMUS
100. The light blue indicates the ocean floor. Source: [5]

2.2.4 Numurus 3DX-CI-1K-MKS Camera System
The Numurus 3DX-CI-MKS Camera System, shown in Figure 2.3.

Figure 2.3. Numurus 3DX-CI-MKS Camera System

The 3DX is mounted as a downward-facing unit on the REMUS and can provide imagery,
depth maps, and point clouds [59]. An example from data collected at Lake Crescent is
shown in Figure 2.4.
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Figure 2.4. Camera imagery (left) and Point Cloud Image (right).

The 3DX sensors combine 2D/3D imaging/mapping within an IMU and GPU that is housed
with a compact underwater housing. This system gives the REMUS the ability for on-board
bathymetric data collection to be used within the PF while reducing the overall acoustic
footprint of the system. The 3DX uses the ROS sensor message type PointCloud2. The
message contains a collection an N-dimensional points which is organized as either a 2D or
1D collection of data. A system description for the 3DX is provided in Table 2.4.
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Table 2.4. Numurus 3DX-CI-1K-MKS Camera Specifications. Source: [57]

Hardware Specification

Sensor Angles Air: 90◦ (H) x 60◦ (V), Water: 67◦ (H) x
45◦ (V)

Image Resolution 2.2K/1080p/720p/VGA
Image Rates Up to 20 fps (Resolution bandwidth

dependent)
Depth Range 0.1 - 15 m
Point Cloud Rates Up to 30 fps (Resolution Dependent)
LEDs Up to 3500 Lumens
IMU Translation 1.0% Rotation 0.013◦/m
Internal Storage 256 GB SD Card
Interface I/O Ethernet 100 or 1000 Gbps
Supply Voltage Range 10 - 36 VDC
Power Estimates 12 - 17 W
Connector Options Impulse MKS 310 (100 Mbits/s) SubConn

DBCR2013M (GigE)
Housing Dimensions 18 cm x 143 cm x 76 cm
Weight in Air/Water 1.11 kg/0.363 kg
Depth Rating 1 km
Operating Range -20◦C to +65◦C

2.3 State Space Representation
The following information provides the state space representation that will be implemented
into the filters developed in this thesis. This provides the dynamics of our system as a set of
first-order differential equations with state variables and algebraic equations [60]. The state
space model, given time : , is presented as:

19



¤x(:) = �x(:) + �u(:) + 8(:), (2.1)

z(:) = �x(:) + �u(:) + 4(:), (2.2)

where

• � is the state matrix
• � is the input matrix
• � is the output matrix
• � is the direct transmission matrix
• x(k) is the vehicle position and orientation state vector
• u(k) is the control vector using rudder deflection
• z(k) is the measurement vector
• 8(k) is the zero mean, white process noise ∼ N(0,Q)
• 4(k) is the zero mean, white process noise ∼ N(0,R)

The state space model is linear time invariant (LTI) so at any time : the input relates to the
output. The block diagram for the state space representation is shown in Figure 2.5.
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Figure 2.5. State space model block diagram. The state vector is a stochastic
variable representing the estimate of the state of the vehicle. � relates the
state vector to the state estimate. � = 0 for this case as it is a feed through
term. � relates the state vector to the measurement vector and, if only one
filter is implemented, must be able to change over time to accommodate
different measurements.

The state space of a linear system is represented by Figure 2.5. Since the dynamic system is
LTI and finite-dimensional then the algebraic equations can be written in matrix form. This
will be the model implemented within this thesis. The input matrix and control vector are
significant to the implementation of the state space model to the model-based EKF. This
pair will provide the hydrodynamic changes of the REMUS due to the deflection in the
rudder. Specific implementation will be discussed in further detail in Chapter 4.

2.4 Generalized Bayesian Filtering
This section describes Bayesian techniques that underlie the remaining thesis for position
estimation and Optimal Spatial Estimation (OSE). In prior ATAN work, the OSE is used to
calculate a stochastic estimate of the terrain. It permits the ability to plan dynamic, optimal
paths based on evaluation of rewards associated with exploration (conducting the main
coverage mission) and exploitation (using good undersea features for position localization)
[5].
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2.4.1 Position Estimation
The prediction, Equation 2.3, determines the probability of a vehicle’s state, xk , given
previous measurements as a function of time.

GBF uses the a priori probability distribution ?(xk−1 |`k−1) and a state transition model
represented by ?(xk |xk−1, uk). The prediction is then used by the correction step, Equation
2.4, along with the measurement probability given all previous measurements, represented
by ?(zk |`k−1), as well as the current measurement probability given the current state,
represented by, ?(xk−1 |`k−1) [56]. The GBF approach are represented by:

?(xk |`k−1) =
∫

?(xk |xk−1, uk)?(xk−1 |`k−1), (2.3)

?(xk |`k) =
?(zk |xk)?(xk |`k−1)

?(zk |`k−1)
, (2.4)

where:

• ?(xk−1) is the probability of the vehicle pose at time : − 1.
• ?(xk |xk−1, uk) is the state transition probability.
• ?(zk |xk) is the measurement probability, observing zk at state xk
• `k = {I8 : 8 = 1, ..., :} is the set of all measurements until time : .

Although this general framework for state estimation cannot be used directly, there are
recursive solutions such as the model-based EKF and PF that will be developed in this
thesis for position estimation that adhere to this Bayesian approach.

2.4.2 Optimal Spatial Estimation
Optimal Spatial Estimation (OSE) is used by ATAN to build a stochastic “terrain map based
on the sensor measurements” of the REMUS [61]. This process of OSE is a technique
that can be used to map a bathymetric surface using only a limited number of points [61].
Tydingco uses Kriging, a method of spatial interpolation of a scattered set of data around an
unknown point to produce an optimal estimate, within OSE to improve terrain estimation
for use within TAN.
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Underlying the approach is a Bayesian estimator of the semivariogram function that is
combined together with the distance of the measurements from the estimation point to
determine the influence of the measurement on the overall estimate. The advantage of
Kriging for OSE is that it provides a variance estimate for each point of interest in the
stochastic map. [61].

The prediction of the estimation point is represented by:

�∗ =
#∑
8=1

,8� (B8), , (2.5)

where # is the number of observed values, _8 is the weighted value at the 8Cℎ location, and
/ (B8) is the measured value at the 8Cℎ location [61]. In order to determine Kriging weights
the relationship,  _ = k is used where  is the matrix covariance between data points, k
is the vector covariance between data points and the estimation points, and , is the Kriging
weight vector for known data points [61].  and k are represented as:

 =


_ (3 (21, 21)) · · · _ (3 (21, 28))

...
. . .

...

_ (3 (28, 21)) · · · _ (3 (28, 28))

 , , (2.6)

: =


_ (3 (21, 2

∗))
...

_ (3 (28, 2∗))

 , (2.7)

where  is an = × = matrix, based on the number of points used in estimation, _ can
be derived from the semivariogram, 2∗ is the estimation point, and 3

(
28, 2 9

)
is distance

between two points.

Once the Kriging weights have been calculated, the prediction can be made:
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� =

#∑
8=1

� (B8). (2.8)

This process continues until the map is fully known. As it applies to this thesis, it is
assumed that the IMM developed in this thesis is running on a fully known terrain map and
can therefore have an expectation of the information within that terrain.

2.5 Information Theory
This thesis will develop a PF using Shannon Entropy for re-distribution of its particle popu-
lation as well as an IT-IMM that will use Shannon and Boltzmann Entropy for determining
when to shift between filter estimates.

2.5.1 Shannon Entropy
Information entropy was first introduced by Claude Shannon in 1948 and describes the
“average of uncertainty of a random variable as the entropy, or information, which are
characteristic to the variable’s possible outcomes” [62]. This is also referred to as Shannon
Entropy, �. Given a discrete random variable, - , the entropy can be defined below where
G1, ..., G= represent the possible outcomes that occur with probability %(G1), ..., %(G=) [62]:

� (-) = −
=∑
8=1

?(G8) log2 ?(G8). (2.9)

This thesis seeks to implement the Shannon entropy of the particle distribution as a metric
to inform state estimation combination of the IT-IMM.

2.5.2 Boltzmann Entropy
The work by Darren Kurt [5] explored Boltzman Entropy (BE) and how it could be used for
the classification of terrain. Kurt showed that BE is directly proportional to the variability
of the ocean floor that a sensor can detect. BE was shown to compute the number of
permutations of a sample and can be defined as [5]:
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, = :1 log(,), (2.10)

where, are the number of permutations and :1 is the Boltzmann constant. In Kurt’s work,
as in this thesis, the BE at position b (<=), is proportional to the number of permutations:

b (<=) ∝ log(,). (2.11)

The two-dimensional discrete cosine transform (DCT) is calculated from a small section
of the bathymetry map and then assigned as a part of the particle distribution. The DCT
expresses the bathymetry data as a sum of the sinusoidal functions with different frequencies
and amplitudes and, like a discrete Fourier transform (DFT), the DCT can only operate as
a function of discrete data points [63]. The 2-D DCT or DCT-II is defined over the domain
for : = 0, ..., # − 1:

-C =

#−1∑
==0

G=2>B[
c

#
(= + 1

2
)C] . (2.12)

Figure 2.6, from [5], shows a terrain map and DCT-BE map.
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(a)

(b)

Figure 2.6. Ocean Floor Bathymetry Map (a) and Boltzmann Entropy Map
(b). Source: [5]
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As shown, significant changes within the terrain yield much higher DCT-BE values. Terrain
that shows little to no changes in topology yields significantly lower values of DCT-BE.
Values of 6 are considered high DCT-BE while values close to 0 are considered very low.
This highlights the significance of the DCT-BE map and the motivation for its use within
this thesis.

2.5.3 Kullback–Leibler Divergence
The Kullback-Leibler Divergence (KLD) is a part of Ali-Silvey class information theoretic
measures [64] and is used to compute the difference of mutual information between two
probability distributions [65]. The KLD can be used to determine which probability distri-
bution best approximates a candidate probability distribution by minimizing the KLD [54].
The KLD between distribution ?(G) and @(G) is defined as:

� ! (? | |@) =
∫
R=
?(G) log

?(G)
@(G) 3G, (2.13)

where � ! (? | |@) is the divergence of @(G) from ?(G) over R=.

Li and Jia utilize a weighted KLD defined given # probability density functions ?8 (G) with
relative weights _8 which satisfies [54]:

#∑
8=1

_8 = 1, _ ≥ 0, (2.14)

with a weighted Kullback-Leibler average (KLA), ?(G) defined as:

?(G) = arg inf
?∈P

#∑
8=1

_8� ! (? | |?8), (2.15)

where the set of probability density functions, P, are over R=.

Li and Jia utilize a weighted KLD as the metric by which the IT-IMM algorithm switches
from different filters.
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2.6 Field Experimentation
Field experimentation and data collection occurred at Lake Crescent, Olympic National
Forest, Port Angeles, Washington in 2022 shown in Figure 2.7 [11]. Data was collected
on-board the REMUS which will be the focus in this thesis.

Figure 2.7. Bathymetric Map of Lake Crescent. Source: [11]

There were several different operational areas (OPAREA) chosen within the lake, shown in
Figure 2.8. The centrally located OPAREA was chosen due as it provided a similar mission
format to under-ice-conditions. The southern OPAREA was chosen for PF testing as the
depth of water were within the constraints of the vehicle. Finally, the northern OPAREA
was chosen for 3DX camera experimentation. Bathymetric ground truth was provided by a
survey conducted by the United States Geological Survey (USGS) [11].
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Figure 2.8. Lake Crescent Area of Operation

For further discussion in Chapter 4, the most northern OPAREA will be designated OA1,
the mid area as OA2, and the most southern OPAREA as OA3.

Data was collected from the NPS REMUS over several runs, shown in Appendix A. This
data included all available state information outputs from the REMUS conductivity temper-
ature and depth (CTD) sensor, the ADCP/DVL, and the Kearfott SeaDeViL INS. The data
collected from the missions at Lake Crescent will be used as inputs into the filters developed
in this thesis.
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CHAPTER 3:
Review of Position Estimation Filters

This chapter provides an overview on position estimation filters that highlight techniques for
increasingly non-linear, non-Gaussian estimation problems. The computational complexity
of these algorithms, however, increases as the dynamics of the systems that they observe
becomemore non-linear and non-Gaussian. These filters are the core selection of estimation
techniques that can be used within a Markov jump process and include the KF, EKF,
Unscented Kalman Filter (UKF), and PF. In relation to this thesis, the goal is to develop an
EKF and PF and a method of switching between each.

3.1 Kalman Filter
The KF is an iterative process that uses consecutive inputs in order to estimate the true state
of a vehicle when the state data contains uncertainties. The KF algorithm follows four main
steps [66]:

• State Extrapolation.
• Error Covariance Extrapolation.
• Kalman Gain Matrix calculation.
• State Estimate and Error Covariance Update.

The KF operates on several significant assumptions; that the dynamics of the true state
are linear, and that the probability distribution is Gaussian. Specifically the process noise
and the measurement noise are considered to be zero-mean Gaussian (l: ∼ N(0,Q: |: ),
h: |: ∼ N(0,R: |: )) [67].

The general discrete KF algorithm, shown in Algorithm 1 [66], follows two stages: a
prediction stage in which the state estimate and error covariance are predicted, and an
update stage at which the Kalman gain is calculated and the state and its error covariance
are updated.

The goal of the KF is to estimate of the posterior state vector at time : +1, x̂:+1|:+1 [66]. The
nomenclature that will be used for the remainder of this thesis reflects Bayesian conditional
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probability. This notation is a common way to show the conditional probability as the output
for the update. It is important to note that 8: will also use this subscript notation. This
could be deceiving as 8 will hold constant, however, has the flexibility to change. This is
important because of the fact that the IMM algorithm can estimate what the error parameters
are without prior knowledge.

State Extrapolation
The KF first extrapolates the state estimate, x:+1|: , using the state transition matrix, �, the
control-input matrix �, the control vector u: and the previous estimate x̂: |: .

x:+1|: = �x̂: |: + �uk + l: . (3.1)

The measurement state vector is represented by:

z: |: = � x̂: |: + 4: , (3.2)

where � is the measurement transition matrix.

Error Covariance Extrapolation
Using the previous posterior error covariance matrix, %: , �, and � transpose, along with
covariance of the process noise Q: , the error covariance matrix %:+1|: can be found.

%:+1|: = �%:�
) + Q: . (3.3)

Kalman Gain Matrix Calculation
The Kalman Gain matrix  : is then calculated using %:+1|: , �: and its transpose, and the
covariance of the measurement noise R: .

 : = %:+1|:�
)
: [�:%:+1|:�

) + R: ]−1. (3.4)
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State Estimate and Error Covariance Update
Finally, the state estimate and error covariance matrix are updated using the measurement
vector z: [66].

x̂:+1|:+1 = x:+1|: +  : [z: − �:x:+1|: ], (3.5)

%:+1|:+1 = [� −  :�: ]%:+1|: . (3.6)

Algorithm 1 Kalman Filter
1: Input: x̂: |: , z: , u:
2: x:+1|: = state extrapolation(�, �, x̂: |: , u: )
3: %:+1|: = error covariance extrapolation(�, %: ,Q: )
4:  : = Kalman gain(%:+1|: , �,R: )
5: x̂:+1|:+1 = state est. update(x:+1|: ,  : , z: , �: )
6: %:+1|:+1 = error covariance update(�,  : , �: , %:+1|: )
7: Output: x̂:+1|:+1, %:+1|:+1

The complexity of an algorithm is the amount ofmemory, time, and computational resources
required to run it. The complexity of an algorithm can be found by analyzing the complexity
of each step within it. The state prediction consists of multiplying two matrices, < × =
and = × ?, and adding two < × = matrices. The complexity for each as O(=?) and O(<=)
respectively. The total time is therefore, O(2=2 + 3=) [68].

The error covariance prediction consists of multiplying two = × = matrices which run at
O(=2.376). A transpose operations runs at O(=2) and with the addition of a matrix the total
time is therefore, O(2=2.376 +2=2. The Kalman Gain can be represented in the same manner
as O(5=2.376 + 3=2). The state estimate update is represented as O(2=2 + 2=) and the error
covariance update as O(2=2.376 + =2) [68].

Therefore the total time complexity of the KF is represented as O(9=2.376 + 10=2 + 5=) [68].

The KF is a simple algorithm that is appropriate when the representation of the errors are
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linear and Gaussian. In many situations, especially those associated with underwater TAN
these assumptions are not always true. This is the most significant limitation of the KF, that
when a systems dynamics are non-linear, the KF will not produce accurate estimates. The
advantage of this filter is the computational simplicity which make it favorable in systems
with limited processing power whose dynamics are known to be linear.

3.2 Extended Kalman Filter
The formulation of the EKF is almost identical to the KF with the exception that the
system and measurement models are non-linear. Since the EKF can handle non-linear state
dynamics the system and measurement model become differential functions. Since 5 and ℎ
cannot be directly applied to the covariance, the Jacobians � and � are computed at each
time step : [69]. The equations governing the EKF are a non-linear implementation of the
equations of the KF.

State Extrapolation
x:+1|: = 5 (x̂: |: + u: ) + 8k , (3.7)

z: |: = ℎ(x̂: |: ) + 4: , (3.8)

� =
m 5

mx

���
x̂: |: ,u:

, (3.9)

� = mℎ
mx

���
x̂: |:

. (3.10)

Error Covariance Extrapolation
%:+1|: = �: (x̂: |: )%: + �): (x̂: |: ) + Q: . (3.11)
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Kalman Gain Matrix Calculation
The other significant difference in the EKF, shown in Algorithm 2, is that innovation
covariance, (: , is calculated to be utilized in the computation of the near optimal Kalman
gain [69]. This step will be done within the Kalman Gain Matrix calculation in Algorithm
2.

(: = �: (x̂: |: )%:+1|:�): (x̂: |: ) + R: , (3.12)

 : = %:+1|:�
)
: (x̂: |: )(

−1
: . (3.13)

State Estimate and Error Covariance Update
The state estimate and covariance updates remain the same but now a function of the
non-linear state.

x̂:+1|:+1 = x̂:+1|: +  : [z: − ℎ: (x̂:+1|: )], (3.14)

%:+1|:+1 = [� −  :�: (x̂:+1|: )]%:+1|: . (3.15)

Algorithm 2 Extended Kalman Filter
1: Input: x̂: |: , z: , u:
2: x:+1|: = state extrapolation(x̂: |: , u: )
3: %:+1|: = error covariance extrapolation(�: , %: ,Q: )
4:  : = Kalman gain calculation(%:+1|: , �: , (−1

:
) ⊲ near optimal

5: x̂:+1|:+1 = state update(x̂:+1|: ,  : , z: )
6: %:+1|:+1 = error covariance update(x̂:+1|: , �,  : , �: , %:+1|: , )
7: Output: x̂:+1|:+1, %:+1|:+1

As the algorithm of the EKF follows the algorithm for the KF, so too does it com-
plexity. The key difference within its complexity, however, are that the non-linear func-
tions 5 and ℎ are system dependent. This means that it cannot be exactly stated
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what the computational complexity is, rather that the complexity can be represented by
O(=2.376,O(x̂: |: + u: ),O(z:+1|: ) [68].

As the dynamics of the system move from linear to non-linear, as in the case of the
dynamics of an AUV model, the EKF becomes a more appropriate algorithm. Although
more complex than the KF, due to the calculation of system dependent Jacobians, the EKF
can still provide state estimations with a favorable level of computational complexity. The
limitation associated with the EKF is that is linearizes about a non-linear system which can
still produce inaccurate estimates if the dynamics become highly non-linear.

3.3 Unscented Kalman Filter
When the dynamics of the system become more highly non-linear, the EKF can have poor
performance due to the fact that the covariance is propagated through linearization of the
non-linear model [70]. An UKF is a filter technique which addresses this limitation by
using a deterministic sampling function that picks a minimal set of sigma points (sample
points) around a mean. This technique is called the unscented transform (UT) [70]. These
sigma points are propagated through 5 and ℎ and a new mean and covariance estimation is
calculated.

Julier et al. discuss that the sigma points should be chosen so that they “capture the same
mean and covariance irrespective of the choice of matrix square root which is used” [70].
The UKF bears a resemblance to a PF in that sigma points are a similar concept to particles.
The underlying difference is that while particles are drawn at random, sigma points are
drawn according to a deterministic algorithm [70] not discussed in this thesis. The UKF is
available at [70] and will not be discussed in subsequent chapters of this thesis. Although
not used, it is provided for completeness of the continuum of position estimation filters. An
outline of the algorithm UKF is as follows [71]:

• Define System and Measurement model.
• Sigma Point Selection and Transformation
• State Estimate and Error Covariance extrapolation
• Second Sigma Point Selection and Transformation
• Kalman Gain Matrix calculation
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• State Estimate and Error Covariance Update

Amore complete discussion on sigma points can be found inANewExtension of the Kalman
Filter to Nonlinear Systems [70].

An advantage of the UKF is that it removes the need to explicitly calculate Jacobians which
can be costly due to the nature of some complex functions. A drawback, however stems
from the use of UT in that the filters performance is highly dependent on how exactly the
transformed information of the UT is calculated as well as which sigma points are used [70].
Although more computationally efficient than the PF, a limited number of sigma points give
a limited representation and understanding of the probability density function.

3.4 Particle Filter
Unlike the previous filters, the PF is not limited by assumptions of the model dynamics and
can be used for estimation within a much wider range of filtering problems. The PF uses a
distribution of particles, as a candidate probability distribution for the true state of a system.
Due to this flexibility, the PF can be used for non-linear, non-Gaussian state estimation.

A general PF algorithm is given in Algorithm 3 and follows the general steps:

• Initialization and Particle Generation
• Motion Model
• Sensor Model and Particle Weight Normalization
• Re-sampling
• Posterior Estimation and Localization
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Algorithm 3 Particle Filter. Adapted from: [5]

1: Initialization: H: = H: = 0, ",TM
2: Input: (H:−1, a: , z: , ")
3: b [=]

:
= motion model(a: , b [=]:−1)

4: |[=]
:
= sensor model(z: , b [=]: ,T)

5: |̃[=]
:
= normalize weights(|[=]

:
)

6: H: = H:+ < b [=]
:
, |
[=]
:
>

7: if �(( < V" then
8: resample from multi-modal sample N(=o, f2

o=
)

9: add to b8: to H:

10: end if
11: draw i from multi-modal sample N(=o, f2

o=
)

12: %: = error covariance(|̃8
:
, x̂: , x

[=]
:
])

13: add b [=]
:

to H:

14: Output: H: , %:

Initialization and Particle Generation
The initialization of the PF begins with the particle generation and the initial belief state [5],
b:0, which is a state vector of the vehicle that may include any combination of position,
velocity, and acceleration. Also initialized is an a priori terrainmap,TM to be utilizedwithin
the sensor model, a particle distribution of size " with belief states, (1:1, ..., 1:") ∈ �: ,
and the posterior probability density of the current belief state [5]. For further discussion,
the superscript [=] will indicate a value of the particle distribution from 1 to" . The particle
generation is initiated with a random sampling around an initial position estimate to produce
a Gaussian distribution and initial equal weights.

The input to the PF algorithm is the prior belief state, H:−1, the action of the vehicle, a: ,
the sensor system input, z: , and an a priori map.

Motion Model
The input to the motion model function is an action vector determined, in our case, by the
motion of the AUV and the belief vector representing the particle distribution. The output
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of the function is the updated belief vector b [=]
:
. The motion model mimics the actions of

the vehicle through the particle distribution so that each particle is a hypothesis of the state
at time : .

Sensor Model and Particle Weight Normalization
The input to the sensor model function is the measurement vector z: , and the updated
belief state from the previous step b [=]

:
. Each particle has an associated map measurement

that is compared with the actual sensor measurements of the vehicle. As each particle is
correlated with the sensor measurement a weight is calculated and assigned to the particle.
Each particle’s weight is then normalized such that:

∑
8=0

|
[=]
:
= 1. (3.16)

The effect of this process over time is that, particles that are not consistent with the vehicle’s
observations are given reduced weights and more particles are generated that are perceived
as more consistent with its state. The output to the sensor model are normalized weights
that are added to the belief state.

Re-sampling
Next, the PF determines if re-sampling must occur using a re-sampling metric V that is
compared with the effective sampling size (ESS), shown in Equation 3.17. If the conditions
for re-sampling are met, then a new random sample of particles is drawn based on the
particles weights.

�(( =
1∑"

8=1(|̃8C)2
. (3.17)

If re-sampling occurs, the output is a newly sampling particle distribution.
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Posterior Estimation and Localization
The input to the final step is the particle distribution and from it, the highest weighted
particle to be used as the estimate of the true belief state. Finally, the covariance is found
given equation 3.18 [72]. The final output of the PF is the state estimate and the covariance.

%: =

"∑
8=1

|̃8: [H: − b [=]
:
] [H: − b [=]

:
]) . (3.18)

It is not as easy to compare the complexity of the PF algorithm with the KF and EKF due to
the size of the state, " . The number of particles that are needed, grow exponentially with
the size of the state space and so the complexity can be represented as O("=).

The PF has a unique ability to handle non-linear, non-Gaussian distributions which is a
critical advantage over other filtering methods. Through particle correlation, the PF can
generate particles that are more consistent with the true state of the system and thus con-
verge the true probability distribution including multi-model distributions. The drawback,
however, is in the size of the distribution necessary to achieve this. The accuracy of the
PF approximation is a function of the particle distribution size. The higher " , the higher
the likelihood of good particle correlation. As " increases, however, the computational
cost necessary to run the PF also increases. This can become an issue for the on-board
processing power of many unmanned systems when performing real-time localization [28].
For these reasons, the PF has become a favorite for underwater near-bottom navigation as
the topology of the seafloor is often “highly dynamic, non-linear, and non-Gaussian” [36].

Presented in this thesis are a continuum of options for filtering techniques for position
estimation. Beginning with simple linear assumptions and going to non-linear, from Gaus-
sian to non-Gaussian, and from the computationally simple to complex, this continuum
provides candidate filters that are application dependent. For the application of this thesis,
a model-based EKF and a PF are the best tools for position estimation of underwater TAN.

3.4.1 Rao-Blackwellized Particle Filter
Due to the potentially large number of particles used in the PF, an approached called the
Rao-Blackwellized Particle Filter (RBPF) focuses on sampling the probability distribution
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as efficiently as possible. In order to improve sampling within RBPF, some of the variables
within the PF must be marginalized according to the Rao-Blackwell Theorem (RBT).

The basis of the RBT is a process that can improve the efficiency of an estimator by taking
its conditional expectation with respect to a sufficient statistic [73], [74]. More importantly,
however, the improved estimator is better than the original. The RBPF uses the RBT in
order to find an estimator of the conditional distribution with the intended goal of reducing
the amount of particles necessary to reach the same level of accuracy as a conventional
PF. The RBPF provides a significant advantaged over general PF algorithms in that it can
greatly reduce the computational demand required to run [75].

The algorithm for RBPF differs from the conventional PF with respect to its Sequential
Importance Sampling (SIS), selection, and transition steps [75]:

• Initialization and Particle Generation
• Motion Model
• Sensor Model
• Particle Weight Normalization.
• Sequential Importance Sampling
• Selection
• Markov chain Monte Carlo step

The distribution of " particles is sampled, the weights of each particle are then calculated,
normalized and re-sampled based on the weights determined in previous step. The selection
step is applied which eliminates the hypotheses with low importance and multiplies those
with high importance. Finally, a Markov chain Monte Carlo (MCMC) step is applied [28]
which applies a Markov transition kernel, a type of Markov transition matrix, that reduces
the total variation of the current distribution [28], [75]. The RBPF will not be discussed
further in this thesis, however, is presented here for completeness as it is an extremely robust
method for higher dimensional systems.

3.4.2 Cramér-Rao Lower Bound
It is important to utilize efficient estimators and equally as important to understand if an
estimator is fully efficient. The CRLB expresses a lower bound on the estimation error
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covariance of unbiased estimators of a deterministic parameter [76]. This calculated covari-
ance is greater than or equal to the inverse of the information of the distribution [76]. Work
done by Cramér and Rao show that if an unbiased estimator that achieves this lower bound,
it is considered efficient.

The CRLB has been used to describe the limitations in navigational uncertainty of a PF for
state estimation within underwater navigation [33]. Karlsson interprets the CRLB in terms
of the INS error. Using methods by Niclas Bergman [77] a standard INS system can be
modeled according to the following:

x:+1 = x: + u: + l: , (3.19)

~: = ℎ(x: ) + 4: , (3.20)

where x:+1 is the horizontal position state estimate at : +1, x: nR2 is the horizontal position
state vector, u: is the velocity vector, and l: is the process noise due to drift. ~: is the
measurement vector, ℎ(x: ) is the measurement function at the current position, and 4: is
the measurement noise [33]. Karlsson et al derived the covariance for the CRLB as:

%'−1/ (x)% = &, (3.21)

where % is the covariance matrix, / (x) is the expectation of the stationary pose of the
vehicle, ' is the measurement noise matrix, and & is the process noise matrix [33]. The
significance of finding the CRLB of a PF is howmuch terrain or depth information is needed
for use in positioning and navigation [33].

3.4.3 Sequential Importance Sampling
The goal of SIS is to estimate the properties of the probability distribution of the PF,
however, it is assumed that there are only samples generated from a different distribution
than the one of interest [78]. SIS has been shown to become impractical when applied
within a PF due to the variance of the normalized particle weights becoming too large
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and consequently, one normalized weight within the particle distribution will dominate
while the other particle weights are approximately zero [79]. This phenomenon is called
particle degeneracy. The danger in this phenomenon is having a distribution that is entirely
dominated by one hypothesis which may inaccurate.

3.4.4 Sequential Importance Sampling with Re-sampling
Sequential Importance Sample with Re-sampling (SIR) was a later derivative of SIS which
added a re-sampling step which facilitates the PF in avoiding particle degeneracy by re-
moving particles that have negligible weights and concentrating on the particles with more
significant weights [56].

When re-sampling occurs, the PF re-distributes the same number of particles but with an
emphasis on states that had high correlations. The combination of sampling and re-sampling
will consequently result in the particle distribution converging on the true belief state of
the system. SIR PF can experience convergence on an incorrect belief state which this
thesis will discuss in further detail in Ch 5. The re-sampling step is essential for the PF and
can prevent a degenerating distribution. For this reason, particle re-sampling has become
standard in most MCL algorithms [80].

The adverse effect of re-sampling is that if the estimate of the belief state was correct and
the algorithm re-sampled, then the PF must continue with a distribution of a much wider
variance. The difficulty then becomes to balance the need to re-sample the distribution
with how often it is deemed appropriate for the PF to experience distributions with large
variances.

3.5 Federated Filtering Methods
This thesis has highlighted situations in which multiple filters are maintained. The funda-
mental task then becomes, how to combine multiple estimates to create a single best output.
The method of combining two or more estimates through a designated process is called
filter federation [52], [81]–[88]. A summary of federated filtering techniques can be broken
down into three subcategories:

• Meta-Filters
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• Selective Logic Filters
• IMM Estimation

For further discussion of federated filtering methods, the following nomenclature will be
utilized where subscript : refers to time, and superscripts 1 and 2 denote each filter.

• x̂ is the state vector.
• M is the innovation.
• a is an action vector.
• l is a Boolean logic vector.
• ˆ are estimated quantities.
• - is the conditional model probability.
• Λ is the likelihood function of the filter.

The innovation is the difference between the measurement and the measurement prediction.
A Boolean logic vector is a vector containing only either 1 or 0. The conditional model
probability is a weighted vector quantity calculated from a state switching matrix which is
defined a priori. The likelihood function of a filter indicates the likelihood of the filter to
produce an observation given certain parameters [52].

The following nomenclature will be used within block diagram discussions for eachmethod:

• State Interaction
• Filter
• Action Detection
• Rule-based logic
• Model Probability Update
• State Estimate Combination

The State Interaction uses the current state and applies a weighted matrix entry which
mixes the state and covariance estimate. These new mixed state estimates are the input to
each Filter block which updates the state estimate. The Action Detection block provides an
action vector from a separate sensor. The purpose of this sensor is solely to identify certain
actions or states of the system and is not used as an input to any filter. The Selective Logic
block is codified Boolean logic that receives the action vector and outputs a Boolean logic
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vector which is used to inform the State Estimate Combination. The Model Probability
Update block, updates the conditional model probability based on the filter probability
distributions and is also be used to inform the State Estimate Combination. The State
Estimate Combination uses the updated filter state estimates and either the Boolean logic
vector or the conditional model probability to output a single best state estimate.

3.5.1 Meta-Filters
AMeta-Filter (MF) is a combination of two or more filters placed in either series or parallel.
The filters used within a MF are run continuously regardless of the systems state or sensor
status. An attribute of this method is that the accuracy of the estimate can improve since
filters can be used for different aspects of the state estimation. A limitation, however, is that
the quality of this state estimate requires accurate performance of both filters.

Parallel
AparallelMF uses two ormore filters run independent of each other andwhose estimates are
combined into a single state estimate. Won et al. proposed a parallel MF that implemented a
KF and PF. The KF was used to estimate the three-dimensional position, while the PF was
used to estimate orientation. An attribute of this parallel MF is the computational efficiency
as each filter was used for a specific type of estimate. Won et al. showed that a federated
KF and PF had a significant decrease in estimation error when compared with a single
EKF [88]. Figure 3.1 shows a block diagram of a MF with two filters in parallel.
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Figure 3.1. Block Diagram of a Meta-Filter with Two Filters in Parallel

A parallel MF begins with the current state estimates and the innovation as inputs to each
filter which output an updated state estimate. The state estimate combination block uses the
output of each filter and produces a single best estimate.

Series
A series MF has an initial filter output that is used by a subsequent filter as an input. The
subsequent filter’s output, in the case of only two filters, is the final estimate. The limitation
of this method is that if a filter outputs a bad estimate, that estimate will be used by any
subsequent filters. Shariati et al. proposed a series MF which utilized a PF whose particles
were updated using an EKF [89]. A limitation of the series MF developed by Won et al.
is the computational effort as the number of particles updated by the EKF was 1000. The
attribute, however, was a more accurate state estimate when compared to a single EKF.
Figure 3.2 shows a block diagram of a MF with two filters in series.
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Figure 3.2. Block Diagram of a Meta-Filter with Two Filters in Series

The change from a parallel MF to series is that the state estimate from Filter 1 is the input
to Filter 2. Filter 2 then outputs its state estimate which is the final estimate of the MF.

3.5.2 Selective Logic Filtering
The filters used in a Selective Logic Filter (SLF) continue to run simultaneously and a
“rule-based logic system” [82] is used to inform the state estimation combination step. A
SLF may be used, for example, when two filters are used to estimate a dynamic state of
a system that is stationary as a part of its the normal mode of operation. Also necessary
within a SLF is a system used for action detection which provides an action vector to inform
the “rule-based logic” [82]. The limitation of a SLF is that the federation relies heavily on a
robust “rule-based logic system” [82]. The attribute, however, is the ability for this system
to federate estimates depending on the actions of the system.

Won et al. utilized a rule-based logic system in order to federate a KF and PF. The logic sys-
tem had the ability to identify a stationary state and inform the KF and PF accordingly [82].
Figure 3.3 shows a block diagram of a SLF with two filters.

47



Figure 3.3. Block Diagram of a Selective Logic Filter with Two Filters

The SLF block diagram flows similarly to the parallel MF diagram. The addition is the
action detection block that outputs an action vector. The rule-based logic uses this action
vector to output a Boolean logic vector. The state estimate combination block uses the filter
estimates, and the Boolean logic, to output a single state estimate.

3.5.3 Interactive Multiple Model Estimation
The IMM federative process developed by Bar-Shalom and Li [44], implements a Bayesian
framework for state estimation through a conditional model probability represented as:

- 9 (:)
Δ
= %

{
# 9 |`:

}
= %

{
# 9 |z(:), `:−1

}
, (3.22)

where, after implementation of Bayes’ formula yields [44]:

- 9 (:) =
? [z(:) |`:−1, # 9 ]-(: − 1)∑A
8=1 ? [z(:) |`:−1, #8]-8 (: − 1) , (3.23)

where the filter # 9 is one of A possible filters within a system of A modes:
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# ∈
{
# 9

}A
9=1 , (3.24)

and where the likelihood function of the model 9 , Λ 9 is represented by:

Λ 9 (:) = ? [z(:) |`:−1, # 9 ] . (3.25)

The IMM provides a sub-optimal approach to the estimation of a Markov jump process
that only uses a certain number of filters and is an extremely cost effective algorithm
in managing hypothesis [54]. For Markov jump systems, “dynamics are represented by a
number ofmodes”,M, “governed by a finite stateMarkov chain” [54].Within eachmode the
continuous state is “described by a set of stochastic differential or difference equations” [54].
An optimal filter becomes impractical for state estimation of a Markov jump system since
“the number of possible mode sequences exponentially increase” [54].

Consider the following Markov jump system:

¤x: = �:−1(A: )x: + �:−1(A: )u: + 8: (A: ), (3.26)

z: = �: (A: )x: + 4: (A: ), (3.27)

where �: (A: ), �:−1(A: ), and �: (A: ) are the system matrices that correspond to the mode
A: at time : . x: ∈ R= and z: ∈ R< are the state and measurement vectors of the system
respectively. = and < are positive integers and A: is a finite state Markov chain where
A: = {1, 2, ...,M}. 8: (A: ) and 4: (A: ) are the state and measurement noise, respectively,
that correspond to mode A: , and are “assumed to be a zero-mean Gaussian” process with
covariance matrices &:−1(A: ) and ': (A: ) [54]. For further discussion, the notation �: (A: )
will be shortened to � 9

:
for A: = 9 [54].

The conditional probability density function for an “optimal state estimate for a Markov
jump system” is given by [54]:
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?(x: |`: ) =
":∑
8=1

?(x: |M8
: , `: )?

{
M8

: |`:
}
, (3.28)

whereM8
:
denotes the 8-th possible mode sequence, and where `: = {I1, I2, .., I: } denotes

the cumulative set of measurements.

The IMM estimator has been shown to be “an extremely cost effective federative filter
methodology for Markov jump systems” [54]. The attribute of the IMM algorithm is the
conditional mode probability, which can be dynamically calculated. This ability gives the
IMM the advantage over other federated filteringmethods in that it can dynamically adjust its
estimation combination. Figure 3.4, adapted from Genovese [52], shows the block diagram
of the IMM algorithm with two filters.

Figure 3.4. Block diagram of an IMM With Two Filters. Adapted from: [52]
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The IMM begins with the state estimates and the conditional model probability estimate as
inputs to the state interaction. The likelihood functions are input into the model probability
update which outputs an updated model probability. The state estimate combination block
uses each updated state estimates and the model probability update to produce a single best
state estimate [52].

The criterion for state estimate combination can be divided into “local and global meth-
ods” [54]. Local methods only consider “lower order statistics” of the filters when evaluating
their similarity such as mean and covariance. Global methods consider all available infor-
mation of the mixture such as the KLD implemented by Li and Jia [54]. As it applies to this
thesis, a global method will be applied as a criteria for component selection.
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CHAPTER 4:
Extended Kalman Filter Results

This chapter presents a model-based EKF that is used for position estimation on data
collected from Lake Crescent. In the context of the overall thesis, the model-based EKF will
utilize a hydrodynamic model as the system model. Since the system dynamics within an
EKF are non-linear, a more accurate system model will yield more accurate estimation. The
mission profile for the collected data that was used by the model-based EKF was in deep
water out of range of the ADCP/DVL. This impacted the normal position estimates because
the Kearfott Sea DeViL INS relied on accurate velocity inputs from these sensors. This
profile was being tested because it represented conditions similar to those expected during
under ice operations in the arctic. In the expected arctic area of operations, the depth of the
water is too great for velocity estimates. Testing in Lake Crescent was used to investigate
the anticipated behavior of the position estimates without velocity estimates.

For the remainder of this thesis, Table 4.1 shows the standard Society of Naval Architects
and Marine Engineers (SNAME) terminology for vehicle position, orientation, velocities,
forces, and moments from [90]. These variables will be used to discuss the state of the
REMUS within the model-based EKF, the PF, and the IMM developed in this work.
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Table 4.1. Notion of SNAME for variables. Source: [90]

Linear Variables Positions Linear Velocities Forces

Surge G D -

Sway ~ { .

Heave I | /

Angular Variables Euler angles Angular velocities Moments

Roll q ?  

Pitch \ @ "

Yaw k A #

4.1 Model-based Extended Kalman Filter
The model-based EKF developed here is intended to function under conditions in which the
ADCP/DVL are not available. The solution presented in this chapter is to estimate forward
velocity (D) and sideslip velocity ({) using a model-based approach. This combines the
propeller turns and the hydrodynamic properties of the REMUS derived by Taylor [41].

The first implementation of the model-based EKF utilized a basic thrust model derived by
Bermudez [55] represented as:

D = 9.54−14 ∗ A4 − 9.924−10 ∗ A3 + 2.044−6 ∗ A2 + 4.194−5 ∗ A − 0.000539, (4.1)

where A is the propeller turns in revolutions per minute (RPM). The limitation associated
with this model is that it was derived using empirical data by Bermudez [55]. The hydrody-
namics of the REMUS are impacted by the vehicle configuration and this model does not
account for the 3DX camera which was used for most of the Lake Crescent missions. This
is a model that can be improved and is an area for future work.

The second implementation of the model-based EKF will utilize a linear approximation of
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D and estimate { based on rudder deflection. Although this approximation for D is mission
specific, it does take into account the 3DX camera. The linear approximation provided by
the REMUS, 6.07 cm/rev, was calculated during missions at Lake Crescent. An estimate
for sideslip velocity can then be found using simplified equations of motion (EOM) from
Taylor [41] and Bermudez [55].

Estimation of Sideslip Velocity
First, the horizontal motions of the REMUS are decoupled from the vertical plane which
results in:

[|, ?, @, /, q, \] = 0. (4.2)

This simplifies the AUV EOM from Taylor and Bermudez [41], [55] to:

<¤{ = −<DA + .¤{ ¤{ + .{{ + .¤A ¤A + .AA + .XXA (:), (4.3)

�II ¤A = #¤{ ¤{ + #{{ + # ¤A ¤A + #AA + #XXA (:), (4.4)

¤k = A, (4.5)

where the following are hydrodynamic coefficients derived by Taylor [41]:

• .{ and .A are the coefficients of sway force induced by slip and yaw.
• #{ and #A are the coefficients of yaw moment induced by slip and yaw.
• .¤{ is the added mass in sway.
• .¤A and # ¤A is the added mass induced by yaw motion.
• .XXA (:) and #XXA (:) are the force and moment produced by the action of the rudder.

These EOM can be re-written in state space form and solved for in terms of ¤{, ¤A, and ¤k:
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
< − .¤{ −.¤A 0
−#¤{ −�II − # ¤A 0

0 0 1



¤{
¤A
¤k

 =

.{ .A − <D 0
#{ #A 0
0 0 1



{

A

k

 +

.X

#X

0

 XA (C), (4.6)


¤{
¤A
¤k

 = �

{

A

k

 + �XA (C), (4.7)

� =


< − .¤{ −.¤A 0
−#¤{ −�II − # ¤A 0

0 0 1


−1 

.{ .A − <D 0
#{ #A 0
0 0 1

 , (4.8)

� =


< − .¤{ −.¤A 0
−#¤{ −�II − # ¤A 0

0 0 1


−1 

.X

#X

0

 , (4.9)

where � is the state input matrix, � is the control input matrix, and XA is the control vector.
The above set of equations will be used to estimate forward and sideslip velocity based on
the propeller turns and hydrodynamic coefficients. The EOM use a North-East and Down
(NED) three-axis convention: north (G-direction), east (~-direction), and down (I-direction).
The Jacobians � and � for the system and measurement model are represented as:

� =



1 0 D2>B(k) − {B8=(k) B8=(k) 2>B(k) 0
0 1 −{2>B(k) − DB8=(k) 2>B(k) −B8=(k) 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


, (4.10)
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� =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1


. (4.11)

The model-based EKF is designed to provide state estimates without inputs from external
positioning sources or the ADCP/DVL and so � will only consider heading and heading
rate. This EKF will be federated within the IMM and so it has the ability to adapt � if there
are position or velocity measurements available. In the presence of these measurements, �
will change in the following manner:

%>B8C8>= : � (1, 1) = � (2, 2) = 1, (4.12)

+4;>28C~ : � (4, 4) = � (5, 5) = 1. (4.13)

For this chapter, the model-based EKF will still use the following sensor measurement
vector, however, only heading and heading rate will be non-zero values:

z: |: = [G!�! , ~!�! , k, D, {, A]) + 4k |k . (4.14)

Q: |: and R: |: are assumed represented as:

Q: |: = 380�(21, ..., 26), 2 = 0.001, (4.15)

R: |: = 380�(31, ..., 36), 3 = 0.01. (4.16)
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The values chosen were kept consistent for all runs and were chosen according to the system
and measurement model. First, the state is extrapolated following the form:

x:+1|: = 5 (x̂: |: , u: ) + 8k , (4.17)

where non-linear equations governing the motion of an AUV represented as:



G

~

k

D

{

A


=



Ĝ: |:

~̂: |:

k̂: |:

D̂: |:

{̂: |:

Â: |:


+



D ∗ 2>B(k) − { ∗ B8=(k)
{ ∗ 2>B(k) + D ∗ B8=(k)

A

0
¤{
0


, (4.18)

where the state vector, x:+1|: , is a function of the non-linear state, x̂: |: , and the velocity
control vector which includes the effects of rudder deflection on {. Since, forward velocity
is a function of the linear approximation discussed earlier, it is not updated with any change
in these equations. Heading rate is also not updated as it can be measured directly from the
vehicle. Then the covariance is extrapolated and the Kalman gain is calculated. Finally, the
state and covariance estimate are updated.

The first iteration of the model-based EKF utilized only the forward velocity derived by
Bermudez while the second uses the linear approximation and estimation of sideslip. The
results for each implementation are discussed with an emphasis on the improvement of the
model-based EKF compared to the manufacturer specific estimates. For further discussion
the first iteration of the model-based EKF will be EKF 1 and the second iteration will
be EKF 2. It is expected that a more accurate thrust and hydrodynamic model will yield
improved estimation performance.

4.2 Results of Model-based EKF
Figure 4.1 shows two REMUS missions that were conducted within OA2 of Lake Crescent
as shown in Figure 2.8. A complete set of REMUS missions are available in Appendix B.
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(a) Northing Parallel Track 1

(b) Northing Parallel Track 2

Figure 4.1. Lake Crescent Coverage Missions

During the these two mission sets, the REMUS did not receive velocity estimates. This
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was due to the fact that the REMUS ADCP/DVL was out of range. This resulted a large
amount of accrued error and inaccurate estimates from the INS. Under normal conditions,
the Kearfott INS can produce accurate estimates of position using a manufacturer filter.
Without velocity estimates, the Kearfott INS could only rely on heading and heading rate
which resulted in a final position extremely distant from the intended surfacing position. In
both missions this error was between 800m −1000m.

EKF 1 Results
Figure 4.2 show the performance of the manufacturer DR model, �''�"*(, the manu-
facturer filter, �8;C4A'�"*(, and the first iteration of the model-based EKF, �'� � . The
distance between the surfaced point, designated with an asterisk, and the final point of the
model-based EKF was reduced to below 200m. Tables 4.2 and 4.3 show the significant
decrease the final positional error for both missions.
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(a) Northing Parallel Track 1

(b) Northing Parallel Track 2

Figure 4.2. Lake Crescent EKF 1 Results

The performance of the ordered thrust command, the actual thrust command, and the

61



estimated forward velocity are shown in Figure 4.3.

(a) Northing Parallel Track 1

(b) Northing Parallel Track 2

Figure 4.3. Thrust and Model Velocity Estimation
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Table 4.2. Lake Crescent Northing Mission 1 EKF 1 Results

Estimation
Model

UTM North
(10) [m]

UTM East
(10) [m]

Dist. from
True [m]

% of Dist.
Traveled

REMUS DR 5324303.359 441341.304 918.30 39.91
REMUS Filter 5324329.200 441445.089 845.53 36.75

EKF 5325269.427 441781.738 186.06 8.09

Table 4.3. Lake Crescent Northing Mission 2 EKF 1 Results

Estimation
Model

UTM North
(10) [m]

UTM East
(10) [m]

Dist. from
True [m]

% of Dist.
Traveled

REMUS DR 5324304.420 441369.953 1205.44 26.65
REMUS Filter 5324337.434 441430.436 1157.09 25.58

EKF 5325772.593 441731.333 316.14 6.99

EKF 2 Results
Figure 4.4 shows the significant improvement of EKF 2 using a model-based estimate for
sideslip. The important distinction is that within EKF 1, the system model did not account
for sideslip ({) was assumed to be zero. It is clear from the results of EKF 2 that a more
accurate model yields more accurate results in positional estimation.
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(a) Northing Parallel Track 1

(b) Northing Parallel Track 2

Figure 4.4. Lake Crescent EKF 2 Results

The performance of the ordered thruster command, the actual thruster command, and the
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estimated forward and sideslip velocities for each mission are shown in Figure 4.5 and
Figure 4.6 respectively.

(a) Thrust Commands

(b) Estimated Forward and Sideslip Velocity

Figure 4.5. Northing Parallel Track 1
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(a) Thrust Commands

(b) Estimated Forward and Sideslip Velocity

Figure 4.6. Northing Parallel Track 2
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Table 4.4. Lake Crescent Northing Missions EKF 2 Results

Northing
Parallel Track

UTM North
(10) [m]

UTM East
(10) [m]

Dist. from
True [m]

% of Dist.
Traveled

1 5325074.847 441755.038 65.75 3.07
2 5325506.122 441691.634 59.51 1.42

EKF 2 increased the positional estimation accuracy for each mission by approximately 5%
and 5.6% respectively. This result highlights the utility of the model-based EKF developed
in this thesis. The strength of this filter is in its ability to adapt to operating either with
or without position and velocity inputs. The greatest limitation of the model-based EKF
operating under these conditions, however, is that it is not an observable system. This
system is not observable because then we cannot determine the state vector solely from the
measurements. This means that although the model-based EKF can be a good approach
under these conditions, there is no guarantee of its performance. Chapter 6 will federate
this filter within an IMM which will create situations in which the model-based EKF will
be observable.
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CHAPTER 5:
Particle Filter Results

In the last chapter, it was shown how a model-based EKF can be effective when an
ADCP/DVL is not available. This chapter presents results based on a PF simulation us-
ing a BlueView Sonar input. In the context of the IMM, this is a second filter which is
expected to work effectively when there is highly informative bathymetry. It is assumed that
that PF is running while an AUV is operating within a regime in which its sensor systems are
within range of the bottom topology. It is assumed that because of this, the AUV is receiving
accurate velocity estimates. These sensor systems that are effective within a regime like this
can include the ADCP/DVL, sonar, and camera systems such as the 3DX.

Within the context of underwater navigation the PF will generate hypotheses (particles)
about its state that are scattered randomly based on an initial, Gaussian distribution. At each
iteration, these particles are moved based on the motion model and are meant to represent a
discretized version of the probability density function for position. After the motion model
there is a correlation step where each of the hypotheses are compared to a bathymetric map
and assigned weights based upon the strength of their correlation. The PF then makes a
determination on which hypothesis represents the true belief state of the AUV.

Within this chapter, an emphasis will be placed on the aspects of this PF that are significant
within underwater navigation and are important within the IMM. This includes the particle
correlation, when particle re-sampling should occur, how many particles are ideal for
estimation, and an introduction of Shannon entropy re-distribution. Figure 5.1, adapted
from Salavasidis [36], shows how the Shannon entropy can describe the uncertainty of the
particle distribution.
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Figure 5.1. On-board water-depth and imaging sensors provide measurements
that are correlated against the particle distribution. The Shannon entropy of
this distribution shows the uncertainty within the particle distribution with
high values indicating that the distribution is uncertain about the position.
Since there is a time delay from when the AUV experiences the terrain and
when the Shannon entropy is calculated, the scalar value will not be perfectly
aligned. It will, however, give good indication that the distribution has a low
level of uncertainty. Adapted from [36]

Figure 5.1 shows the non-linearity of the seafloor and how there may be multiple instances
of near-identical terrain can be present within the map. Given frequent changes in terrain,
a low Shannon entropy can be used to describe the uncertainty of the particle distribution.
Conversely, flat or unchanging terrain will yield a high Shannon entropy representing a
higher level of uncertainty within the PF distribution. The PF developed in this thesis is an
extension of the work done by Darren Kurt [5].

5.1 Particle Filter Methodology
The algorithm consists of the following steps:
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• Initialization and Particle Generation
• Motion Model
• Sensor Model and Particle Weight Normalization
• Re-sampling
• Re-distribution
• Posterior Estimation and Localization

Algorithm 4MCL With Entropy Redistribution

1: Initialization: H: = H: = 0, ",TM
2: Input: (H:−1, a: , z: , ")
3: b [=]

:
= motion model(a: , b [=]:−1)

4: |[=]
:
= sensor model(z: , b [=]: ,TM)

5: |̃[=]
:
= normalize weights(|[=]

:
)

6: H: = H:+ < b [=]
:
, |̃
[=]
:
>

7: if �(( < V# | | (�(( > Z then
8: re-sample from distribution
9: add to b [=o]

:
to H:

10: end if
11: if �: < �!� then
12: H: = particle re-distribution(H: , a: )
13: end if
14: draw particle 8 from distribution
15: add b8: to H:

16: %: = error covariance(|̃[=]
:
, H: , b

[=]
:
)

17: Output: H: , %:

Initialization
The PF initializes the belief state of the particle distribution, b:0, which is a vector containing
the three-dimensional position of the REMUS. The particle generation utilizes the bootstrap
method [5] in which a Gaussian particle distribution is initialized about the belief state,
∼ N(b:0, f

2). The REMUS action is initialized with the heading and velocity components
of the vehicle.
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Motion Model
The inputs to the motion model are a: and b [=]

:
. The motion model outputs an updated

belief state, b [=]
:
, using the control action, a: , of the vehicle.

Sensor Model and Particle Weight Normalization
The input to the sensor model is measurement vector, z: , and the updated belief state. The
sensor model used within this work is a model of the BlueView MB2250 forward looking
bathymetry sonar and utilizes the parameters shown in Table 5.1:

Table 5.1. Particle Filter System Model Settings

Attribute Specification

Array Size 10 m
Array Resolution 0.01 m
Horizontal FOV 60◦

Vertical FOV 30◦

Mounting Angle 45◦ Downward
Max Range 30 m

The sensor model correlates the map measurement associated with each particle with the
observation. A weight is computed from this correlation process. There are many different
correlation methods to include cross-correlation (XCOR), normalized cross-correlation
(NXCOR), mean absolute difference (MAD), and mean square difference (MSD). Juriga
gives a more in-depth discussion of these methods [56] but the PF developed here will
implement MAD as the correlation method shown below:

"�� (b [=]
:
) = 1

"

"∑
8=1

���z:,8 − b [=]
:+1

��� , (5.1)

where theMAD is calculated between the current sensor measurement and themeasurement
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associated with each particle. There are limitations associated with each correlation method
but Juriga shows that “NXCOR, MAD, and MSD perform similarly well” [56]. XCOR was
shown to be “ill-suited for correlation” as it is not scale variant which is to say that the
“values from the prior map influence the result of the correlation” [56]. The particle weight
is applied to the belief state. The weights |[=]

:
are then normalized, |̃[=]

:
. The final state of

each particle is represented as:

Re-sampling
An important aspect of this PF is when re-sampling should occur. Traditional PFs utilize
the �(( of the particle distribution and a re-sampling parameter, V, in order to determine
if re-sampling should occur. In this method the PF will re-sample the distribution if the
�(( < V" , where V ∈ (0, 1) [5], [75], [80]. This standard method is implemented within
this PF as this re-sampling can help bound the error of a distribution that is too small.

A second method introduced in this PF utilizes the covariance of the particle distribution,
(�((, with respect to the northing and easting position. If the distribution grows too large,
(�(( > Z where Z ∈ (0, 1), then re-sampling occurs. Both parameters, V and Z , are chosen
a priori and are important in tuning this PF. Values that are not tuned well can cause
re-sampling either too often or not often enough and can result in degraded performance of
the PF.

Informational Entropy Re-distribution
This thesis implemented a newmetric into the PF algorithmwhich utilizes Shannon entropy,
�, as a lower bound to determine when re-distribution should occur. As the particle distribu-
tion converges on an estimate, and the covariance decreases, there is always the possibility
that the particle distribution converges on an incorrect state. This could occur because of
how the particles are correlated or calculated. The limitation associated with this method is
that if the PF estimate was correct and re-distribution occurs, the particle population is then
re-initialized and the PF must begin estimation from an initial distribution.

Shannon entropy can be applied to the particle distribution as a metric to describe its
uncertainty. When � decreases, the uncertainty of the particle distribution also decreases.
When the distribution falls below a certain threshold,�!�, the particles can be re-distributed.
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The Shannon entropy of the particle distribution will be utilized at each time : represented
by:

�: = −
"∑
==1

?(|[=]
:
);=

(
?(|[=]

:
)
)
. (5.2)

The range of the Shannon entropy of the particle distribution is a function of both the
terrain as well as the number of particles. As an example, when " = 5000, a value of
Shannon entropy that represents a probability distribution of high covariance is � ≈ 700
bits. Conversely, a value of Shannon entropy that represents a probability distribution of
low covariance is � ≈ 35 bits. An understanding of � can help tune the re-distribution step
in the same way that the re-sampling parameters can be tuned.

Localization and Posterior Estimation
The final step within the algorithm is the determination of the posterior belief state, H: .
The PF must be able to make this determination in the best manner possible given either
uni-modal or multi-modal distributions. When a PF experiences a uni-modal distribution,
the particle weights or mean position of the distribution may be sufficient in determining
H: . For multi-modal distributions, the PF may also have to take into account other metrics
such as the vehicle dynamics and which distribution is actually more likely given how far
the vehicle could have reasonably traveled.

The PF developed in this thesiswas run in simulation using terrain data sets forMontereyBay
and Lake Crescent. Verification of the PF was conducted in several parts: its performance as
a filter for localization given an a priorimap (discussed in this chapter), and its performance
within the IT-IMM (discussed in Chapter 6).

5.2 Monterey Bay Simulation
The simulation forMonterey Bay utilized a bathymetry map, shown in Figure 5.2 and Figure
5.3 [56], and utilizes the Universal Transverse Mercator (UTM) coordinate system with a
map resolution of 1m. Figure 5.3 is the two-dimensional overhead view of Figure 5.2 and
will be used in further discussion for the missions within the simulation.
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Figure 5.2. Monterey Bay Bathymetry Map

Figure 5.3. Monterey Bay Bathymetry Map
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Several full coverage missions were used in the simulation in order to gain a better under-
standing of the performance of the PF as a function of the terrain and informational entropy.
A north/south parallel track mission, an east/west parallel track mission, and a shrinking
square mission were chosen for testing. The north/south parallel track is shown in Figure
5.4 with the latter two tracks shown in Appendix A. The PF was run with the following
settings:

Table 5.2. Particle Filter Settings

Nomenclature Setting Value

M Number of Particles 2000
V Re-sampling Parameter 0.5
Z Re-sampling Parameter 0.003
�!� Shannon Entropy

Re-distribution Parameter
15

Sensor Model BlueView MB2250

The north/south parallel track mission was chosen for continued PF testing as it provided a
slightly higher mean DCT BE shown in Figure 5.4. It is important to note that each mission
experienced significant altitude and DCT BE changes, in both frequency and magnitude.
The change in altitude andDCT-BE experienced by the simulatedREMUS for each coverage
mission is shown in Appendix A.
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(a) North/South Parallel Track

(b) North/South Parallel Alt and BE

Figure 5.4. North/South Parallel Track Change in Altitude

It is important to note that the change in in altitude is only in one dimension while the
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DCT-BE takes into account the change in terrain in two dimensions. Figure 5.4 shows the
significant changes in terrain which is extremely important for the PF’s correlation process.
If the REMUS experiences terrain that does not have any significant changes then there will
be a higher level on uncertainty within the particle distribution. Both the change in terrain
and frequency of change improve the PF performance.

5.3 Results of PF Performance
Simulations were then conducted according to the coverage mission in Figure 5.4 with
an increasing amount of particles in order to determine the ideal number. The number of
particles is a function of each step of the PF algorithm. It is important to determine an ideal
number as the PF is the most computationally dense within the IMM. Every effort must
be made to appropriately save on computational cost within the PF, to include the size of
the distribution, without sacrificing performance. An ideal number of particles will be such
that any increase does not yield any significant improvement in state estimates.

Eachwas runwas conducted 30 times in order to build a normal distribution of PF estimation
error data for proper analysis [91]. Following the Central Limit Theorem (CLT), a sample
size over 30 begins to develop a population of data whose mean and standard deviation are
more accurate to the true estimation error. The CLT shows that the distribution of the data
will be normal even if the population is not necessarily normal [91].

The results in Figure 5.5 show that as " increases the accumulated error decreases to
approximately 800 m and the mean error converges to about 0.4 m. No significant accuracy
is gained in the PF performance, given this simulation, when " > 5000. As the complexity
of belief state increases in future testing, this should increase" required to achieve accurate
results. For the PF developed here further testing will be conducted at " = 5000.
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Figure 5.5. PF Estimation Error

Accumulated error also drops approximately 87% from " = 25 to " = 5000 and only
8% from " = 5000 to " = 10000. Again this is significant because there is tremendous
change in the accumulated error up until " = 5000 and computational efficiency can be
maintained by fixing M at 5000.

There is also significant decrease in the variability of the estimation error as shown in figure
5.6. At low values of " , the PF estimates have a relatively high variance which shows that
the estimates that the PF is choosing is more disperse from the mean value its estimates over
the entire simulation. This is significant because at higher values of " the PF estimates are
much closer to the mean and thus are more consistently accurate over time.
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Figure 5.6. PF Estimation Variability

The interquartile range (IQR), when shown with the variance, is a strong indicator of the
variability of the data [92]. The IQR shows that as " increases there is a greater amount
of estimates that are more concentrated about the mean. Figure 5.7 shows a single iteration
the covariance of the particle distribution at each " .
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(a) Small Distributions

(b) Large Distributions

Figure 5.7. Particle Filter Covariance Prior to Re-distribution

Within this iteration, the particles start at an initial distribution and thus have a large
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covariance. As the PF converges on an estimate, the covariance decreases up until the point
that the PF determines that re-distribution is necessary. This highlights one of the limitations
associated with the Shannon entropy re-distribution. If the PF has an accurate estimate with
a low covariance, it will need to begin this process over again and incur a large covariance.

Figure 5.8 shows the increase in the minimum Shannon entropy of the particle distribution
as a function of " and were derived through simulation. These values are used as the
threshold for re-distribution. As " increases, so does this approximate minimum value.

Figure 5.8. Minimum Shannon Entropy of Particle Distribution

The PF developed in this thesis verified, through simulation, that the" proposed byKurt [5]
of " = 1000 provided an accurate state estimation for the AUV. The PF will be run at
" = 5000 for the IT-IMM testing in Chapter 6 as it is more ideal. The PF focused on
re-sampling, re-distribution, and an ideal particle size in order to provide the best estimates
while saving on computational cost.

This filtering technique requires the AUV to operate within a regime in which its sensors are
in range of the ocean floor. This filter was developed because it provides accurate position
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estimation for underwater navigation which has a covariance that is bounded. Unlike the
model-based EKF, an attribute of this filter is that the error can be bounded throughout
a mission so long as there are accurate sensor measurements. As discussed earlier, it is
common for AUVs to operate within or through several regimes in which not all sensor
systems on-board are within range to provide the required inputs for these types of filters.
It is necessary then to federate both the model-based EKF and the PF in order to provide a
single best output throughout multiple regimes. In the next chapter, these two filters will be
brought together using an IT-IMM.
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CHAPTER 6:
IT-IMM Results

In the previous chapters it was shown how a model-based EKF and a PF can be used
for position estimation. The IT-IMM algorithm developed in this chapter will federate
the estimates of each of these filters. Presented in this chapter is an information theoretic
methodology that can inform aMarkov Jumpmatrix (model probability update), to facilitate
this federation. The information theoretic approach uses a combination of two measures
to determine when to switch between the two filters. The first uses Shannon entropy of
the AUV posteriori probability density function and the second uses a measure of terrain
information (DCT-BE) for determining the ability of the filter to provide better position
estimates. The chapter concludes with results from simulated runs using the USGS surveyed
bathymetry from Lake Crescent, WA.

6.1 IT-IMMMethodology
Figure 3.4 from Chapter 3 shows a general IMM federation approach. Li and Jia extend this
approach using the KLD to inform the federation process. The novel approach presented in
this chapter takes into consideration the virtue of the AUV position estimate and the terrain
variability for determining when to use the PF solution as a synthetic measurement for a
second EKF. The block diagram is shown in Figure 6.1.
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Figure 6.1. IT-IMM Block Diagram

For further discussion of Figure 6.1, the following new nomenclature will be utilized:

• ,��) is the DCT-BE Map.
• ; is the synthetic federated position vector.

Two model-based EKFs and the PF are used and are labeled with a filter number for
clarification. EKF (1) is run continuously during a mission is not impacted by any other
filter. As discussed in Chapter 4 this can provide good estimates but will have significant
unbounded error given time. The PF will be run when the AUV is within sensor range of the
bottom topology and therefore will be used intermittently within certain regimes. Finally,
EKF (3) will also be run throughout the mission but will obtain a federated output from the
state estimation combination block which should bound its error. This output is in the form
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of a synthetic position measurement to be used within the measurement model of the EKF.
The term synthetic refers to the fact that this is not a true sensor measurement but one that
will be used as such within the EKF.

The diagram begins with the State Interaction block which inputs the state estimates as
well as a weighted matrix from the Model Probability Update. A simplification within this
implementation is that this weighted probability matrix only contains either 1s or 0s to
inform the interaction. Within the simulation run using the IT-IMM developed here, only
0s were used and so no mixing of the state or covariance estimates occurred. Next, the state
estimates as well as the innovations input into each respective filter. For the model-based
EKF this is the current state estimate and for the PF this is the previous belief state. The
likelihood functions from each filter as well as the Shannon entropy from the PF are input
into theModel Probability Update. The DCT-BE is also an input into this step. The Markov
Jump matrix that is used for this Markov Jump process is output from theModel Probability
Update which is used to inform the state estimation combination. The Markov Jump matrix
is a weighted 2 × 2 probability matrix where the rows add to 1 with values (0,1) and the
number of columns are the number of models in consideration. Within this thesis, however,
only 1s and 0s will be utilized within the matrix. When the IT-IMM algorithm determines,
through entropy, that there is a high level of confidence in the PF estimation, the Markov
jump matrix shown below is used:

[
0 1
0 1

]
, (6.1)

For all other iterations in which there is a low level of confidence then the matrix is
represented as:

[
1 0
1 0

]
. (6.2)

When thematrix in 6.2 is chosen, the State Estimate Combinationwill not federate estimates,
and EKF (3) will only utilize its previous estimate. The attribute of this IT-IMM is its ability
to combine Gaussian and non-Gaussian estimates using terrain information, to make future
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predictions about how well the PF will work. A limitation of this current implementation,
however, is that this Markov Jump matrix utilizes only the conditional probabilities of 1s
or 0s. This creates a federative process that is either all or nothing. An investigation into a
Markov Jump matrix that is more robust is an area for future work.

6.2 Entropy Behavior
The model probability update within this IT-IMM will be informed through Shannon
entropy, �, and DCT-BE, , . It is important to understand the behavior of � and its
relationship with DCT-BE. As described in Chapter 2, the Shannon entropy and DCT-BE
are scalar values which can be used to describe the uncertainty of the particle distribution
and the value of terrain respectively. An assumption within the testing of this simplified
IT-IMM, is that an OSE is fully known, and can be used to inform an expectation of �. An
area for future work is further investigation when there is a stochastic spatial estimate.

Two samples of terrain, shown in Figure 6.2,were chosen from theLakeCrescent bathymetry
map to show the different behavior of � as a function of DCT-BE.

Figure 6.2. Terrain Selection of Lake Crescent
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Figure 6.3 and 6.4 show each selection of terrain chosen and its corresponding DCT-BE
map. The track in each bathymetry view was used to investigate the behavior � over time
given a high and low level of information.

(a) Bathymetry View (b) DCT W View

Figure 6.3. Informative Terrain

(a) Bathymetry View (b) DCT W View

Figure 6.4. Non-Informative Terrain

The informative bathymetry in Figure 6.3 may only have a difference in its actual terrain of
10m, but theDCT-BEmap gives amore illuminating viewof the high amount of information
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within the terrain itself. This is in contrast to Figure 6.4 which has a difference in elevation
of only about 0.25 m and shows a much lower and much more uniform distribution of
terrain information. When the particle distribution is over informative terrain there will
be a significant difference in particle weights as there will be better map correlation. In
non-informative terrain, particle correlation is more difficult will generate a higher degree
of uncertainty within the distribution.

As the PF experiences terrain with high quality information there is an exponential decrease
in�, shown in Figure 6.5. This is in contrast to terrain with poor information which presents
a chaotic behavior. Figure 6.5 shows the relationship between the Shannon entropy of the
particle distribution and the DCT-BE of the terrain.
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(a) Change in Shannon Entropy

(b) Change in altitude (top) and DCT-BE (bottom)

Figure 6.5. Informative Terrain

As shown in Figure 6.5, as the AUV experiences informative terrain, and as this information
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increases, � maintains a very low value indicating that the more informative the terrain, the
less uncertainty there is within the particle distribution. The behavior of the Shannon entropy
within non-informative terrain is chaotic and does not follow the exponential decrease shown
in Figure 6.6.
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(a) Change in Shannon Entropy

(b) Change in altitude (top) and DCT-BE (bottom)

Figure 6.6. Non-Informative Terrain

The interesting relationship within the non-informative terrain is that for very small and
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constant values of DCT-BE, � will experience random behavior. From Figure 6.5 it can
be seen that, within informative terrain, we can build an expectation of the behavior of �
given changes in DCT-BE. With this behavior, we can have a strong level of confidence
within the correlation process of the PF and thus inform the Markov Jump matrix in order
to facilitate federation.

Several different expectations were investigated that informed the Markov jump matrix. The
first, IT-IMM 1, implemented a future expectation of � as a threshold value. The second,
IT-IMM 2, used an expectation of the of the change in � up until time : . IT-IMM 3, is
a combination of 1 and 2. All three implementations also considered the DCT-BE as the
change in � was shown to be a function of the information within the terrain. IT-IMM 3
is hypothesized to have a higher performance, in terms of reducing navigational error, then
IT-IMM 1 or 2 as it is the most robust in informing the algorithm of the PFs confidence.

6.3 Results
The IT-IMM developed in this thesis was implemented over a section of informative terrain
from Lake Crescent, shown in Figure 6.3, and was chosen because of its realistic application
to the overarching underwater navigational problem. The selected track, shown in Figure
6.7, was chosen as the simulated REMUS will experience different regimes in which its
sensors will not always be in range. Next, upon conditions that inform the Markov jump
matrix, the IT-IMM will begin to combine the estimates of both filters. This will continue
throughout the coverage mission and highlight the utility of the IT-IMM.
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Figure 6.7. Lake Crescent IT-IMM Simulation Waypoints

The PF used within each IT-IMM implementation was tuned with the settings shown in
Table 6.1.
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Table 6.1. IT-IMM PF Settings

Nomenclature Setting Value

M Number of Particles 5000
V Re-sampling Parameter 0.5
Z Re-sampling Parameter 0.003
�!� Shannon Entropy

Re-distribution Parameter
35

Sensor Model BlueView MB2250

The results from each simulation are shown in Table 6.2. The EKF estimation model
is estimate from EKF (1) from the block diagram. As expected, this filter accumulated
a significant amount of error over time. IT-IMM 1, 2, and 3 estimation models are the
estimates from EKF (3) in the block diagram. There is significant improvement in both the
final positional error and the overall accumulated error from these estimates.

Table 6.2. Lake Crescent Northing Mission 2 Results

Estimation Model Accumulated
Error [m]

Dist. from True
[m]

% of Dist. Traveled

EKF 44,940 55.67 3.5
IT-IMM 1 8,040 1.68 0.1058
IT-IMM 2 6,670 2.02 0.1268
IT-IMM 3 6,123 1.5 0.0946

Figure 6.8 show the results of the error of the simulated REMUS at each time step. The
error of the EKF is shown building over time, and is corrected slightly after each turn due to
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the bias in the heading. The error of the PF is much lower then the EKF but is intermittent
because of the REMUS traveling through regimes in which the sensors are out of range.
Finally, the error of the IT-IMM 3 show an overall lower estimation error then the EKF
with no intermittent sections like the PF. The error plots of IT-IMM 1 and 2 are shown in
Appendix C.
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(a) EKF

(b) PF

(c) IT-IMM

Figure 6.8. Simulation Error Results for IT-IMM 3
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These results highlights the ability of the IT-IMM to make intelligent decisions about
federating each filter. Although simplified, the IT-IMM is a promising candidate solution
for filter federation within underwater navigation and within GPS denied environments. The
greatest limitation of this algorithm is that there are significant simplifications within the
State Interaction and Model Probability Update. Given those simplifications, however, the
results highlight a significant attribute of this algorithm which is its ability to federate two
different filtering methods to provide a single best output.
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CHAPTER 7:
Conclusions and Future Work

The vulnerabilities and limitations of external localization methods are extremely apparent
and are driving the U.S. Navy’s desire for technologies that do not rely of these systems.
Current underwater localization methodologies have limitations with sensor systems due to
many of the regimes associated with AUV operations. This thesis proposes the solution of
two different filtering methodologies federated by an IT-IMM estimation approach.

7.1 Thesis Conclusions
This thesis provides a model-based EKF that can provide position estimates during times
that an AUV is outside of the range of its sensors. Although this method does provide
accurate state estimates, it can accrue a significant amount of error if it operates under these
conditions for an extended period of time.

Also developed is a PF for position estimation within ATANwhich implements an informa-
tion theoretic methodology for particle re-distribution. Re-sampling and an ideal number of
particles were also investigated within this thesis.

Finally, a simplified IT-IMM estimation method was developed to intelligently blend two
different filtering estimates. It was found that the IT-IMM improves state estimation accuracy
while leveraging the attributes of each filtering method within its algorithm. The limitations
of this IT-IMM are the simplifications within it.

7.2 Future Work
This thesis covers multiple aspects of underwater localization to include equipment, filtering
methods, and filter federation. The areas for future work are organized into sections that
mirror this thesis.
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7.2.1 Numurus 3DX Camera System
The Numurus 3DX camera presents a promising sensor system that can be used to provide
depth information into the PF. Future work will focus on field experimentation utilizing the
3DX as the main depth sensor system. Work must also be conducted on implementing the
camera system within the PF. Finally, a more accurate estimation of velocity can be found
considering the drag force added by the camera system. This can improve the estimates of
the model-based EKF.

7.2.2 Model-based EKF
An area for future work within the model-based EKF developed in this thesis is the hy-
drodynamic model. Currently, the model only considers hydrodynamic forces in a two
dimensional plane based on the deflection of the rudder. A more complete 6 DOF model
within the EKF will yield more accurate state estimates due to more accurately modeling
the non-linear system.

7.2.3 IT-IMM Implementation
Two major areas for future work within the IT-IMM are in removing several of the sim-
plifications and assumptions. The simplifications within the State Interaction and Model
Probability Update sections of the algorithm must be investigated. Removing these sim-
plifications can create a more robust IT-IMM algorithm. The assumption of a fully known
OSE can also be investigated.

7.2.4 Applications Outside of the Undersea Domain
The IT-IMM developed in this model has applicable approaches within other robotics
localization and state tracking problems. A second aspect of future work is to incorporate
the IT-IMM into different types of Unmanned Vehicles (UV)s.

7.3 Concluding Remarks
An IT-IMM estimation takes advantage of the advantages of many of the attributes within
its algorithm while mitigating their limitations. In this thesis we provide a contribution to
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Bayesian filtering federation and a more robust AUV position estimation algorithm within
GPS denied environments.
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APPENDIX A:
Monterey Bay AUV Mission Patterns

(a) East/West Parallel Track

(b) East/West Parallel Alt and BE

Figure A.1. Coverage Missions
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(a) Shrinking Square Track

(b) Shrinking Square Alt and BE

Figure A.2. Coverage Missions
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APPENDIX B:
Lake Crescent Mission Patterns

Figure B.1. Lake Crescent North/South Parallel Track 1
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Figure B.2. Lake Crescent North/South Parallel Track 2
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Figure B.3. L

ake Crescent ADCP TestLake Crescent ADCP Test
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Figure B.4. Lake Crescent Triangle Mission
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Figure B.5. Lake Crescent Box Mission
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APPENDIX C:
IT-IMM Results

(a) PF

(b) IT-IMM

Figure C.1. Simulation Error Results for IT-IMM 1

115



(a) PF

(b) IT-IMM

Figure C.2. Simulation Error Results for IT-IMM 2
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