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ABSTRACT 

 The Holistic Situational Awareness - Decision Making (HSA-DM) program is 

researching ways to aid pilots via avionics essential to the Future Vertical Lift (FVL) 

rotor-wing platform. As pilots manage the new avionics that FVL will bring to the 

battlefield, automation assistance will be essential. 

 This study’s goal is to determine to what extent automation reduces pilot 

cognitive workload particularly when performing communication tasks. The quantitative 

analysis is based on cognitive walkthroughs with active-duty helicopter pilots. Pilot 

interviews were also conducted to assess how tasks are completed, and more importantly, 

to ascertain the cognitive workload associated with those tasks. This information is 

implemented into computer models of a routine helicopter flight to accurately predict 

pilot workload during a mission. These models also predict which tasks would add the 

most value to pilots and FVL if automated mission tasks were implemented. 

 The research indicates that by automating communication tasks for the pilot and 

copilot, workload is reduced to an optimal level. Based on these findings, monitor radio 

nets, adjust volume, input channel, select channel, and send JVMF messages should be 

automated. In addition, this analysis establishes a cost-effective, valid, and repeatable 

framework for future workload studies on automated tasks in FVL. 
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EXECUTIVE SUMMARY 

PROJECT SUMMARY 

The purpose of this research was to provide recommendations of which 

communications tasks should be automated to reduce Future Vertical Lift (FVL) aircrew 

cognitive workload during a medical evacuation (MEDEVAC) scenario. The goal of this 

project is to inform future HSA-DM design decisions on task automation. To accomplish 

this goal, we began with a literature review to increase our understanding of cognitive 

workload and the methods that have been used to measure and model this workload. This 

research led us to the Improved Performance Research Integration Tool (IMPRINT), which 

is the tool we used to conduct our analysis. We also researched how automation has been 

used to mitigate workload and how pilots communicate in-flight. We then conducted a task 

analysis by leveraging the UH-60 Aircrew Training Manual (ATM) and cognitive 

walkthroughs and interviews with pilots to identify the critical tasks required to operate a 

UH-60 in a MEDEVAC scenario. Next, we developed a model in IMPRINT using the data 

gathered from our task analysis to realistically replicate the “enroute” phase of flight. We 

analyzed the results of this model to identify which communication tasks contributed most 

to cognitive overload. Finally, we modified the model multiple times to investigate how 

automating the selected communication tasks impacted cognitive workload. Analyzing the 

results of these modified models allowed us to develop recommendations for 

communication task automation and future research.  

BACKGROUND  

Through the FVL program, the Army seeks to develop aviation technology and 

capacity, building new platforms and operational concepts (Department of the Army 2019). 

The Army will use automation and artificial intelligence (AI) to increase aircraft 

capabilities (Department of the Army n.d.). The Future Vertical Lift program needs AI and 

automation to keep up with an increasingly sophisticated battlespace. Their engineers will 

automate pilot activities to lessen cognitive effort. Our study concentrated on aircrew and 

technical system communications during a MEDEVAC flight on an FVL platform. Pilots 
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must monitor the aircraft’s systems, stay vigilant to danger, locate prospective targets, and 

communicate with their aircrew, other aircraft, and ground personnel. Automation may 

help pilots with these tasks, but they must carefully monitor the automated systems.  

FINDINGS AND CONCLUSIONS 

Through our research approach, we identified six communication tasks that 

contributed most to cognitive overload: 

• Monitor radio nets (pilot)  

• Monitor radio nets (copilot) 

• Input channel  

• Select channel  

• Send JVMF message  

• Adjust volume 

Automating these tasks lowered pilot cognitive overload by 55.9%, copilot 

cognitive overload by 14.4%, and overall cognitive overload by 28%. The crew workload 

difference between the two models is statistically significant, as reflected in an ANOVA 

analysis. 

Because the UH-60 ATM emphasized internal communications, the pilot and 

copilot maintain control of those tasks. Additionally, our research emphasized that the 

copilot should maintain the ability to freely transmit externally and take notes as needed. 

Finally, by analyzing individual model runs, we found that workload fluctuations are 

random and have a great deal to do with the degree or multitasking being conducted by 

either the pilot or copilot 

RECOMMENDATIONS FOR FUTURE RESEARCH 

The project’s findings show that the IMPRINT model may be used to simulate 

various tasks and report cognitive workload for individual crewmembers. Data from six 
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MEDEVAC pilots produced the required results. Our first recommendation is to conduct 

interviews with more MEDEVAC pilots to provide a larger sample size to develop more 

accurate cognitive workload values for the model. Based on this additional data, further 

analysis is needed on how to accomplish the recommended automated tasks using current 

or future technology.  

Our second recommendation is to further develop the IMPRINT model to analyze 

more scenarios, such as the remaining MEDEVAC flight, environmental hazards, and night 

flying. Other crew members beyond the pilot and copilot should be included.  

Our third recommendation is to validate this data in a virtual simulation platform. 

This validation would allow researchers to test and assess the new automated mechanics. 

This information will yield information IMPRINT cannot, such as operator confidence in 

automation and pilot fatigue. As automation solutions are developed, we advocate doing 

cost-benefit analyses to assess whether automating certain tasks are worth the investment.  
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I. INTRODUCTION  

A. BACKGROUND 

The Future Vertical Lift (FVL) program is an Army initiative designed to develop 

the next generation of aerial platforms (Department of the Army 2019). Through this 

program, the Army plans to significantly advance aviation technology and capability, 

building the new platforms and operational concepts required to function in an increasingly 

contested and difficult battlespace (Department of the Army 2019). In particular, the Army 

will seek to integrate technological improvements such as automation and artificial 

intelligence (AI), to enhance aviation capabilities (Department of the Army n.d.). AI and 

Automation are necessary in FVL aircraft to cope with the demands of an increasingly 

technological battlespace. The FVL program expects to reduce pilot cognitive workload by 

automating the most appropriate pilot tasks. For the purposes of our research, we will focus 

on the communications activities among aircrew members and technological systems 

during a medical evacuation (MEDEVAC) mission on a FVL platform. 

Careful consideration of the human component is required to design effective 

human-automation systems (Ernst et al. 2020). According to Ernst (2020), Army officials 

seek to facilitate “cognitive offloading while employing human crew intuition and 

situational curiosity to take advantage of leverage points in the battlespace” (8). Aircraft 

designers and aeronautical engineers often create complex software to assist pilots with 

managing aircraft systems. These advances in avionics come with a cost: the cognitive 

workload frequently increases for both the pilot in command and the copilot (Ernst et al. 

2020). Pilots must fly the aircraft while monitoring the aircraft’s systems, being alert to 

any danger, seeking possible targets, and communicating with their aircrew members, other 

aircraft, and ground elements. The critical nature of MEDEVAC missions requires pilots 

to fly their aircraft at night and in various weather conditions. Automation can aid pilots in 

completing these duties; however, the automated systems must be closely monitored by 

pilots.  
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Research is needed to understand the impact of introducing AI into FVL platforms 

on pilot and copilot cognitive workload. In December 2021, a Naval Postgraduate School 

(NPS) capstone team composed mainly of pilots began researching the cognitive workload 

of pilots and the factors that increase their workload (Carter et al. 2021). The goal of their 

research was to inform the Holistic Situational Awareness-Decision Making (HSA-DM) 

project team of those factors that contribute most to cognitive workload. This information 

helped determine which specific tasks should be automated and if that automation would 

reduce or possibly increase pilot workload (Carter et al. 2021). Carter et al. used qualitative 

interview methods and an influence diagram to conduct the study. Their results identified 

the factors that contribute most to cognitive workload: flight profile, primary task 

complexity, and light factors. These factors had a more significant impact on cognitive 

workload in a complex scenario when compared to a simple scenario. During a recent visit 

to NPS, the HSA-DM project director recommended future research focus on the cognitive 

workload associated with communication tasks. In the report by Carter et al. (2021), one 

of the recommendations for future research was to conduct a task analysis to identify which 

tasks contribute most to high workload. The report further suggested developing a model 

to evaluate the impacts that automating those tasks would have on pilot workload.  

That is where we, as a capstone team, pick up the mantle. The focus of our research 

is modeling the communications between the two aircrew members and the envisioned AI 

system in an effort to determine whether the cognitive workload is appropriately distributed 

among the human and AI team members on board the FVL platforms.  

B. PROBLEM STATEMENT 

The research by Carter et al. inspired us to investigate cognitive workload 

associated with communication tasks in a MEDEVAC scenario. We will use modelling 

and simulation to investigate how communication tasks can be distributed between the 

pilot, copilot, and envisioned AI system to mitigate MEDEVAC pilot workload. 
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C. RESEARCH QUESTIONS 

Our overarching research question is as follows: To what extent is a pilot’s 

cognitive workload reduced if communication tasks are automated? To address this 

question effectively, numerous sub-questions emerge:  

• How can communication tasks be distributed between pilot, copilot, and 

the envisioned AI system? 

• How does workload vary over the course of a particular phase of a 

MEDEVAC mission?  

D. STAKEHOLDERS 

Table 1 describes the major stakeholders relative to this research effort. The HSA-

DM project team is part of The U.S. Army Combat Capabilities Development Command 

(DEVCOM) Aviation and Missile Center and is a subsection of Army Futures Command 

(AFC). One of AFC’s missions is to research and develop new weapons systems for 

aircraft, missiles, and unmanned vehicles, providing one-stop technical support capability 

for these systems throughout their life cycles. Shivers and Morony (2021) detail several 

goals for the FVL program: 

1. “Provide optimized task loading for Future Vertical Lift /aviation 

warfighters (pilots, copilots) by developing cognitive workload 

management capabilities” (13).  

2. “Improve combat mission performance of Novice, Busy, Fatigued, and 

Injured pilots by delivering decision aiding algorithms, improved human-

machine interface hardware/software, and implementing autonomous 

flight controls” (13).  

3. “Develop products based on Modular Open Systems Approach (MOSA) 

principles and aligned with the FVL Architecture Framework utilizing 

Model-Based Systems Engineering” (13).  
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Accordingly, the HSA-DM project team needs a cognitive workload prediction 

model to determine FVL task automation requirements. Providing these results through the 

Improved Performance Research Integration Tool (IMPRINT) model is the primary 

purpose of this project. 

Pilots are project stakeholders because they are accountable for ensuring the safe 

and successful functioning of FVL platforms. Their purpose in the scope of this research 

is to minimize cognitive overload. This target will be met through optimizing FVL pilot 

workload management by automating certain tasks and enabling them to focus on tasks 

that demand expert knowledge, competence, and assessment. 

Table 1. Stakeholder Analysis 

Stakeholder Need Role Goal 
HSA-DM 
Project Team 
(CCDC AvMC) 

Cognitive workload 
prediction model 

Sponsor Determine FVL task automation 
requirements 

Army Helicopter 
Pilots 

Optimized cognitive 
workload 

Operator 
Minimize cognitive overload 

 

E. SCOPE 

The goal of this project is to inform future HSA-DM design decisions on task 

automation. The HSA-DM team has identified seven operational context vignettes for their 

project team to consider (Shivers n.d.). This research project will use the MEDEVAC 

vignette for model verification, with emphasis on communication tasks. This project 

intends to develop a model that provides insight into the cognitive workload of MEDEVAC 

pilots. The tool used to develop this model is IMPRINT. The scope of this project is limited 

to task analysis and IMPRINT model development and verification within the specific 

mission scenario. The portion of the MEDEVAC flight modeled begins after takeoff to an 

objective and ends before entering the hover sequence.  
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F. PROJECT OVERVIEW 

We developed an IMPRINT model for a MEDEVAC mission. The model 

represents pilot tasks and is separated into aviate, navigate, and communication tasks to 

generate an understanding of what subtasks would be most beneficial if automated. This 

research is aligned with the HSA-DM focus area of supervised autonomy of select tasks 

(Shivers 2021).  

We start with a literature review, in which we present previous research on 

cognitive workload (CW), measures and models of workload, and the application of those 

models in human-automation teaming. While there are many modeling techniques for CW, 

we utilized IMPRINT. The IMPRINT modeling tool has been used extensively since the 

1990s, when it was developed by the Army Research Laboratory. IMPRINT has been 

previously used to model aspects of human behavior such as “task analysis, workload 

modeling, embedded personnel characteristics data, and performance-shaping and 

degradation functions and stressors” (Salvi 2001, 2). Before the IMPRINT model was built, 

we established MEDEVAC pilot tasks and conducted a task analysis. The task analysis 

consists of 1) identifying pilot tasks that must be completed throughout the mission, and 2) 

developing a graphical depiction of those tasks and their subjective workload values 

(Bierbaum, Szabo, and Aldrich 1988). The task analysis assists the research team in 

organizing pilot tasks into smaller segments and functions to allow workload variables and 

values to be applied. This analysis aids in the development and organization of our 

IMPRINT model and provides an opportunity to validate our assumptions throughout 

critical steps in our timeline.  

Once the IMPRINT model was complete, we demonstrated our results and 

consulted MEDEVAC pilots at NPS for validation of the model and model outputs. We 

refined our results based on the feedback from the pilots and completed the final chapters 

of this paper. This outcome ensures that all meaningful data are reported to our project 

stakeholders. 
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G. BENEFIT OF STUDY 

Two major benefits result from our research into specific vignettes of automated 

tasks for both the pilot and copilot. First, the research will provide the HSA-DM team a 

model that will include quantitative data on the pilot tasks that lend themselves to be 

automated. Second, FVL pilots will be able to apply our analytical data to the FVL 

platforms so that their cognitive workload is greatly reduced during MEDEVAC missions.  

The first benefit will provide analytical and quantitative data through IMPRINT 

that shows how a pilot’s cognitive workload is reduced when specific tasks are automated. 

The IMPRINT models used during our research will show the pilot’s cognitive workload 

during medical evacuation missions, specifically with communication automation. The 

model will also reveal the increased or decreased cognitive workload associated with 

communication tasks. The simulations through the designed IMPRINT models will assist 

in determining if the tasks are worth automating. 

The second benefit is the data needed to continue future research within the FVL 

program. This research will allow the HSA-DM team to understand which tasks make 

sense to automate and to run those tasks through pilot simulators. Quantitative data will 

inform which tasks are worth automating. Likewise, pilots will be able to select which tasks 

they wish to be automated for a flight based on experience-based preferences.   

Overall, this study will inform the FVL community, specifically the HSA-DM 

team, as they develop an understanding of where AI can be leveraged to assist human teams 

in flying. Next, we will discuss the relevant research that we used to develop our project 

methodology. 
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II. LITERATURE REVIEW 

A. INTRODUCTION 

The research team established a hierarchy of the collected research by theory, 

concepts, indicators, variables, and values (Walliman 2010). The research team developed 

inclusion and exclusion criteria as well as keywords to aid in tailoring the search to those 

sources most relevant to the research problem.  

The research team used a variety of databases including the Dudley Knox Library, 

Google Scholar, and Defense Technical Information Center (DTIC) to locate articles 

covering the topic areas. Key words and phrases used by the team during research included 

“cognitive workload,” “future vertical lift,” “cognitive load measurement,” “human 

performance modeling,” and “improved performance research integration tool.” Criteria 

for disqualification included any literature that was not written in English, was not freely 

available, or potentially biased articles. The inclusion criteria used by the team comprised 

the following: the literature had to be from a scholarly source, peer-reviewed, and provided 

information that supported our research criteria.  

The team used this process to locate and analyze key literature to establish 

background understanding and the concepts relevant to the research problem. The first 

research category we focused on was cognitive workload: what it is, how it is measured, 

and how it can be modeled. We then investigated how this information could be used to 

inform designs of future automation systems.  

B. COGNITIVE WORKLOAD 

In order to appreciate how pilots are affected by flight tasks and how automation 

could affect their flight performance, we needed to understand cognitive workload as a 

concept. This includes how humans manage their workload and how researchers measure 

workload.  
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Cognitive Workload (CW) is a phenomenon that all humans experience and 

manage daily and has been researched extensively since the mid-20th century. As systems 

and machines increase in complexity, we see that humans often are the most limiting factor 

in these systems. This is because they require a significant cognitive workload to operate 

and manage systems as to automation (Chen et al. 2016). 

The definitions of cognitive workload seen in the literature are very similar. These 

definitions all address the idea that workload is a finite resource managed by human 

operators during their task(s):  

• Kantowitz (2000) defines mental workload as an “intervening variable, 

similar to attention, that modulates the tuning between the demands of the 

environment and the capacity of the [operator]” (3-457).  

• NASA (2020) describes cognitive workload as the amount of effort people 

must exert to mentally use a machine interface.  

• In “Workload Measures,” Gawron (2019) describes workload as a “set of 

task demands, as effort, and as activity or accomplishment (3). 

• Young et al. (2007) tells us that workload is the “level of attentional 

resources required to meet both objective and subjective criteria, which 

may be mediated by task demands, external support, and past experience” 

(21). 

• Moray (1979) in “Mental Workload: Theory and Measurement” defines 

workload as “an inferred construct that mediates between task difficulty, 

operator skill, and observed performance” (13). 

The body of research largely agrees on the internal and external variables which 

contribute to lower or higher rates of workload. Some of the factors seen in the definitions 

above are operator skill, the difficulty of the primary task, and environmental factors. Some 

additional variables explored in the literature are time pressure, working memory (Wickens 
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2017), “work ethic, emotional intelligence, anxiety, and conscientiousness” (Guastello 

2015, 21). Gawron (2019) finds human stress response to be a significant factor as well.  

A good example of workload is one the reader should have experienced: driving a 

car. Whenever we prepare to drive, especially in high-traffic or high-stress conditions, we 

feel the psychological effects of cognitive workload. The driver must maintain constant 

awareness of the car’s position in space relative to other cars and obstacles. They manage 

space between their car and other cars, listening to the radio, thinking about life’s 

distractions and what routes to take to the destination. When driving in difficult conditions, 

the driver must make split-second decisions while at very high speeds. They will feel a rise 

in heart rate and stress level the more quickly they must make a decision and the faster they 

are going. The situation described can become stressful very quickly, and that stressful 

feeling is that of high CW. The more tasks that happen at once, the greater the CW. As 

illustrated in Figure 1, the task performance quickly drops when mental workload is too 

high (Kantowitz 2000).  

 
Figure 1. Performance as a Function of Workload Increases. Source: Chen et 

al. (2016). 
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The amount of CW that can be managed by an individual varies from person to 

person as a function of their domain knowledge, familiarity with the activity, amount of 

prior experience, and age (Chen et al. 2016). Workload is a finite resource, constrained by 

the operator’s working memory. Once mental capacity has been maxed, task performance 

will decline as demands and fatigue increase (Gawron 2019). The negative effects of poor 

sleep and stress on performance are well established, and cognitive overload has similar 

consequences on task accomplishment (Wickens 2017).  

In the driving analogy, when the driver reaches cognitive workload capacity, 

performance degradations manifest as swerving, missing a turn, or worse. When the limits 

of capacity are exceeded, operators will resist adding more tasks or changing tasks. This 

resistance, defined by Wickens (2000) as “switch bias,” is driven by the need to make a 

trade-off decision between cognitive capacity and task performance (25). Kantowitz (2000) 

expands this idea, pointing out that workload suffers when the driver is at capacity but also 

when workload is too low, resulting in a lack of focus on the task. Stressed drivers or pilots 

will tend to choose between two options: making a higher-value choice or a lower-effort 

choice (Wickens 2017). The decision is made based on task outcome and the effect that 

choice will have on overall CW. Humans tend to want to stay in a lower effort state, 

sometimes inflating the importance of a decision to maintain steady-state effort (Wickens 

2000). Therefore, special attention must be given to cognitive threshold and the effect that 

overload can have on decision making and performance. It is important to find ways to 

manage workload, reduce stress, and prevent over-tasking and to do this we must be able 

to accurately measure CW. 

C. METHODS TO MEASURE COGNITIVE WORKLOAD 

As technology continues to rapidly evolve, the demand for measuring cognitive 

workload continues to gain importance. The growing interest involves special emphasis on 

understanding human-computer interaction (HCI) and operator performance in situations 

where the work environment affords little room for human error. These types of working 

conditions require accuracy, mental focus, and quick-thinking skills that would normally 

apply to emergency response, aviation, incident management, and military command and 
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control (Chen et al. 2016). Significant research has been conducted to measure cognitive 

workload to reduce human error and increase the safety of the operator. Methods for 

measuring CW range from simple questionnaires to more complex methods such as 

“functional brain imaging techniques” (Chen et al. 2016, 5). The four main methods used 

are as follows: subjective ratings, performance measures, physiological measures, and 

behavioral measures.  

1. Subject Measures 

Traditionally, researchers prefer to measure cognitive workload using subjective 

measures. Subjective ratings are usually accepted as the “ground truth” (Chen et al. 2016, 

05). An example is asking users to provide detailed information using “introspection” as a 

form of self-assessment to determine how much mental capacity the operator exerted 

during the task (Chen et al. 2016). For the purposes of our research, we conducted 

interviews with pilots where they introspectively provided cognitive workload values for 

flight tasks. The information is then weighed against two types of scales: Unidimensional 

and multidimensional. Unidimensional measures the overall cognitive load and 

multidimensional focuses on the different components of load (Chen et al. 2016, 15). One 

method of multidimensional scale is the NASA Task Load Index (NASA-TLX). NASA-

TLX offers a broader evaluation of cognitive workload using six dimensions (performance, 

mental effort, frustration, task demand, physical demand, and temporal demand). Using 

subjective ratings alone to measure cognitive load has some limitations, but they can be 

combined with performance or psychological measures to give researchers a clearer picture 

of workload demands. 

2. Physiological Measures  

Research has proven that there is a direct relationship between certain changes in 

physiological state and a change in cognitive workload (Chen et al. 2016). An advantage 

of this relationship is the ability to measure human data at a high rate with a high degree 

of accuracy. Some physiological behaviors monitored to measure CW include “heart rate 

and heart rate variability, brain activity from ECG and EEG, GSR or skin conductance, and 
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eye activity such as blink rate and pupillary dilation” (Chen et al. 2016, 18). However, 

executing this method comes at a price. The equipment used to measure this data is very 

cumbersome. For example, Chen et al. (2016) explains that using an EEG headset not only 

interferes with the user executing the task, but it is also very costly and difficult to 

implement. 

3. Behavioral Measures  

Behavioral measures track human biological activity that is performed to 

accomplish a task. Some examples of behavioral observations include eye-gaze tracking, 

mouse pointing and clicking, gait patterns, and gestures (Chen et al. 2016, 21). Chen et al. 

point out that behavioral measures can reflect mental states, including cognitive load. An 

example is eye-tracking to measure learning and speech cues associated with high 

cognitive load (Chen et al. 2016).  

Measuring and understanding CW is a large field of study. With increased 

understanding of CW, researchers and engineers can optimize systems to lower workload 

for human operators. A very popular method for mitigating workload for the Department 

of Defense is the automation of operator tasks. 

D. HOW AUTOMATION CAN REDUCE PILOT COGNITIVE WORKLOAD 

One of the critical duties for a MEDEVAC pilot is to facilitate the effective and 

efficient evacuation of injured warfighters. To help pilots achieve this objective, we seek 

to utilize computational methods to develop more efficient human-machine interaction. 

Automation can help the human counterpart lower the cognitive burden of dynamic 

missions by executing a task previously performed by the human operator (Parasuraman 

1992). The level of automation can vary based on the needs of human operators. 

Automation assistance can range from a simple task, such as calculation, organizing, and 

storing information, or as complex as carrying out an entire action previously performed 

by a human, including aspects of flight. In each of these cases, automation serves to help 

the human operator at different levels of the given task. 
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By understanding cognitive workload and the factors that contribute to it, system 

designers can optimize systems for human performance (Knisely, Joyner, and Vaughn-

Cooke 2021). Doing so requires solutions that address the human-machine system 

components together and find ways to enhance the total system performance. Humans must 

be present to make difficult decisions based on risk and multiple information inputs 

because algorithms and artificial intelligence cannot yet reliably make those decisions 

(Chen et al. 2016). Therefore, we must understand ways to manage workload to understand 

the variables that affect it and find ways to assist human operators and reduce the amount 

of information they must manage.  

As technology develops, human’s work becomes increasingly more cognitive than 

manual in nature. We must now manage our mental workload just as we manage physical 

workload (Parasuraman 1992). Parasuraman (1992) discusses some methods of managing 

cognitive workload such as avoiding tasks, prioritizing tasks, and getting computer/

machine assistance. He further discusses various approaches for automation. These include 

adaptive aiding of the human operator and shared task allocation from human to machine. 

Adaptive assistance can be described as those tasks where a computer and human operator 

trade tasks at appropriate times, in such a way as to maximize human performance 

(Parasuraman 2001). 

Figure 2 shows the concept behind adaptive automation (assistance); the computer 

assumes tasks from the operator when cognitive workload is too high. When the operator’s 

attention is available, tasks can be reallocated back to the human. 
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Figure 2. Adaptive Automation Task Trade-off. Source: Parasuraman 

(2001). 

Automation has a role in the technology of modern-day aircraft systems. There is 

some debate on the optimal degree of automation for pilots. The amount of automation in 

a system exists on a spectrum, with advantages and disadvantages to be weighed depending 

on how much is applied. For example, “automation not only improves safety by reducing 

human error, but also increases” task performance reliability and precision, and reduces 

operator workload (Billings 1991; Hart and Sheridan 1984). Furthermore, operator fatigue 

accumulates at a reduced rate, and the “human operator has a greater capacity to perform 

more critical tasks” because of the reduced workload resulting from automation (Secarea 

1990, 767).  

Depending on how automation is implemented, it can sometimes have the opposite 

effect from what was intended, increasing CW for human operators. Research shows “that 

the increase in workload can degrade performance as the pilot reaches cognitive saturation” 

(De Visser et al. 2008). By studying these relationships, system designers can fine-tune the 

level of workload best suitable for future human-agent relationships. “The ultimate 

objective is to reduce system complexity and enhance operator performance by leveraging 

automation where it can be most beneficial and appropriate” (De Visser et al. 2008, 221). 
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Since automation has the potential to significantly reduce workload, it is beneficial 

to explore possible uses for its implementation. This must be done in a way that benefits 

the operator and does not cause more work or stress to them. Modeling and simulation 

methods allow researchers to analyze system tasks and how automation can provide the 

most benefit. 

E. MODELING COGNITIVE WORKLOAD 

There are many modeling and simulation tools available, each with various benefits 

and weaknesses. For the purpose of our capstone project, the most suitable tools are human-

performance modeling tools. Wu, Rothrock, and Bolton (2019) explains that human 

performance modeling aims to examine human behavior and cognition to help develop a 

system’s design to maximize user experience and engagement. This aligns precisely with 

our objective of analyzing cognitive workload to determine which tasks to automate, and 

ultimately to improve the pilot’s performance.  

Although we were able to narrow our list of modeling methods by focusing on 

human performance modeling, there were still several human performance modeling tools 

to evaluate. The tools we considered included human-in-the-loop, mathematical modeling, 

computer modeling and simulation, and discrete event simulation. 

1. Human-in-the-Loop Modeling 

Human-in-the-loop (HITL) modeling involves “building and testing multiple 

system designs and subjectively measuring the amount of workload experienced by each 

test subject” (Andrews et al. 2020b, 46). It is very informative because the operator is 

physically experiencing the workload and can detect changes in workload when the system 

design is changed. This information can be invaluable to researchers; however, it was not 

feasible for our study because it requires multiple prototypes which would have been 

expensive and time-consuming. Additionally, the operator data is subjective and may not 

generalize to the user population (Andrews et al. 2020). 
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2. Mathematical Modeling 

Mathematical models quantify relationships between human behavior variables 

(Wu, Rothrock, and Bolton 2019). They are used to “predict, quantify, and analyze human 

performance, workload, brain waves, and other indices of human behavior” (Wu, 

Rothrock, and Bolton 2019, 470). Wu, Rothrock, and Bolton describe some of the benefits 

of using mathematical modeling, including its accuracy, ability to identify otherwise 

unknown variable relationships, and ability to easily integrate with other models. 

Additionally, they assert that there are complete mathematical models of the entire 

cognitive system in existence, which affords researchers the ability to extract portions for 

their needs. That said, mathematical models cannot stand alone, because they do not 

simulate behaviors. They are more beneficial in research focused on the relationships 

between variables. For our purposes, we want to simulate cognitive workload under various 

scenarios, so mathematical models were not sufficient to accomplish our goal. 

3. Computer Modeling and Simulation 

While computer modeling and simulation are not new concepts, developing 

“predictive models of human performance rather than simply descriptive models” has 

gained traction only in recent years (Laughery 1999, 816). Computer modeling and 

simulations allow researchers to measure human performance and to investigate the 

implications of manipulating various factors. For example, we can use computer algorithms 

to replicate cognitive workload (Laughery 1999). Likewise, Laughery (1999) asserts that 

simulations allow human factors to gain traction in popular design engineering disciplines 

that rely heavily on the use computer models, adding focus and credibility to the human 

factors discipline. Simulation, for our purposes, can be used to develop environmental 

conditions in which computer algorithms predict human cognitive workload.  

Because all simulation is done in a virtual environment, it is less resource intensive 

than acquiring special equipment. Simulation also provides the flexibility to replicate 

various conditions that would be difficult to achieve in human-in-the-loop studies. 

Replicating these conditions allow us to simulate human behavior, which mathematical 
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models fail to do. For our project, we used computer modeling, specifically discrete-event 

simulation software, to predict pilot workload. 

4. Discrete Event Simulation and Multiple Resource Theory 

Discrete-event simulation allows us to develop a virtual scenario in which one or 

more humans perform functions in a particular order, which helps us to model human 

behavior (Laughery 1999). Laughery describes this element of discrete-event simulation 

as task network modeling. He emphasizes that this has been used to model human 

performance in increasingly complex systems. Some benefits of task network modeling 

include the ability to map human tasks and system functions and the interoperability of 

these models with other complex models. Additionally, these models aid engineers in 

analyzing human-systems integration.  

Multiple resource theory (MRT) is often used as the foundation of discrete-event 

simulations when studying cognitive workload (Laughery 1999). The main premise of 

MRT is that “humans have …several different resources which can be tapped 

simultaneously” (Laughery 1999, 819). Laughery explains that these resources may be 

used sequentially or in parallel. He also describes four channels that these resources can be 

broken into: visual, auditory, cognitive, and psychomotor (VACP). Additionally, MRT 

provides standard scales for each resource channel that can be used to measure workload 

(Laughery 1999).  

This theory, and the use of discrete-event simulation, aligns with our goal of 

applying computer modeling to measure cognitive workload and analyze what should be 

automated. The next step was to find a tool that provided these capabilities. 

F. IMPROVED PERFORMANCE RESEARCH INTEGRATION TOOL 

(IMPRINT) 

IMPRINT is a computational human performance modeling tool that provides the 

ability to analyze multiple designs (Andrews et al. 2020a). It is a proven system used by 

ARL since the 1990s to model aspects of human behavior such as “task analysis, workload 

modeling, embedded personnel characteristics data, amongst others” (Salvi 2001, 2). It 
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uses Multiple Resource Theory to develop discrete event simulations (Andrews et al. 

2020b). IMPRINT was developed to analyze human performance as an element of the 

system acquisition process and has been heavily used by National Aeronautics and Space 

Administration (NASA) for similar purposes (Foyle and Hooey 2008). The capabilities of 

IMPRINT have been used to model a variety of elements, such as manning considerations 

for a production line (Powers and Gacy 2018) and performance degradation of different 

clothing and equipment factors (Salvi 2001). Recently, however, it has been heavily used 

to model different aspects of human-automation teaming for a variety of different systems 

to study the possibilities of autonomous or semi-autonomous systems (Pop 2018; Andrews 

et al. 2020a). 

For the purposes of our research, IMPRINT has many relevant aspects. First, it 

provides the ability to model human performance tasks. This begins with a task network, 

which is a graphical depiction of the various task’s humans conduct to achieve a given 

mission (Rusnock and Borghetti 2016). This task network is precisely what we developed 

from our pilot interviews. From this task network, a variety of tools are available to model 

specific elements of human behavior.  

IMPRINT also uses the MRT VACP scale to model workload by simulating 

different configurations of variables and analyzing their effects (Andrews et al. 2020a). 

Andrews et al. (2020a) describe how VACP can be used to forecast the pilot workload 

associated with piloting an aircraft while simultaneously controlling UAVs. They 

identified tasks using a HITL evaluation, but this could also be accomplished by survey or 

other research method, as our research team. Each task was assigned a “VACP workload 

value, task time, and decision probability” based on the data derived from the evaluation 

(Andrews et al. 2020a, 174). In their study, Andrews et al. developed and compared an 

aircraft-only model with a manned-unmanned team incorporating a piloted aircraft and 

UAVs. In each model, they evaluated the overall mission performance and the cognitive 

workload of the pilot to determine how manned-unmanned teaming affected mission 

outcome. Andrews et al. concluded that mission performance increased with the human-

automation teaming and that the cognitive workload of the pilot was manageable until the 

pilot received communication tasks. This increase in communication tasks caused a spike 
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in cognitive workload (2020a). This research indicates that communication tasks require 

significant workload and provides room for future research on how to reduce that 

workload. We used this study as inspiration to investigate workload associated with 

communication tasks and potential impacts of automation on communication tasks.  

IMPRINT was chosen as our modeling tool of choice because it is a proven tool in 

CW research. Rusnock and Borghetti (2016) discuss how many aspects of IMPRINT 

models have been validated by various methods throughout the years. they discuss how 

verification, validation, and accreditation (VV&A) was used to validate IMPRINT’s 

predecessor, and how performance degradation factors and other elements have also 

undergone validation efforts. In addition to validating the tools, Rusnock and Borghetti 

(2016) describe how multiple studies have been conducted to validate various workload 

models that have been produced by IMPRINT, observation studies, experiments, and 

comparisons of models to subjective data collections, such as surveys and interviews. 

Based on these data, they conclude that IMPRINT tools such as the cognitive analytic 

workload profile (CAWP) accurately capture and model human behavior more beneficial 

than more subjective models. Furthermore, CAWP are less biased, more objective, and can 

provide additional data such as workload associated with various resource channels and 

workload over time (Rusnock and Borghetti 2016). Prior validation efforts as described 

above add a level of credibility to IMPRINT’s tools that helped substantiate its use in this 

capstone project. Additionally, it emphasizes the benefits of possible follow-on efforts to 

verify the models produced by the capstone team.  

While IMPRINT can be beneficial in modeling and analyzing pilot tasks and 

automation considerations, it does have some limitations. IMPRINT incorporates several 

tools to provide human performance modeling solutions, but it does not contain embedded 

model processes, such as cognitive or psychological processes. (Foyle and Hooey 2008). 

As Foyle and Hooey point out, the modeler is required to “specify and implement these 

constructs” (2008, 71). It does not contain templates for every scenario, so the modeler 

must be able to manipulate IMPRINT to account for specific variables. Adequate training 

is required to fully utilize IMPRINT’s capabilities and properly manipulate the settings to 

operate as required. 
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IMPRINT is also extremely reliant on the modeler to develop accurate models 

because the accuracy of the model is dependent on the model inputs (Rusnock and 

Borghetti 2016). IMPRINT is not a measurement tool, but a modeling tool, so those 

measurements, tasks, or other variables must be manually input into the software to be 

modeled and analyzed. There is always human error associated with manual inputs. 

Additionally, while IMPRINT can capture many aspects of task workload, including task 

difficulty and quantity, “it does not inherently account for time-on-task fatigue, experience, 

and learning” (Rusnock and Borghetti 2016). These elements may have a large impact on 

cognitive workload but are not directly accounted for in the model. Some of these elements 

can be indirectly accounted for through analysis of different factors. This could include 

inferring time availability through analysis of task success or failure percentages and 

inferring the impact of environmental factors through analysis of task accuracy and timing 

(Rusnock and Borghetti 2016).  

These limitations do not outweigh the benefits and capabilities of the IMPRINT 

software. With proper training on IMPRINT and in-depth analysis of the outputs, this 

research team overcame the limitations and properly modeled and analyzed tasks to meet 

our objective.  

To demonstrate how IMPRINT directly applies to our capstone project, we 

reviewed an analysis of the optimally crewed vehicle (OCV) that utilized IMPRINT 

modeling. This analysis, like the Andrews et al. study, informed the use of task networking 

for our model. It also provided the idea to use elements of established models, create sub-

models, and reallocate tasks to investigate workload reduction techniques. The research, 

undertaken by Militello et al. (2019a), explored the concept of human-machine teaming 

with various aircraft, which was inspired by the research on the FVL program. The research 

followed an FVL case study that aimed to identify the optimal crewing configuration for 

the Future Attack Reconnaissance Aircraft (FARA) (Militello et al. 2019a). The research 

took place in three phases. In the first phase, Militello et al. (2019a) developed an initial 

optimal crewing strategy. In the second phase, they conducted task analysis through 

interviews and functional analysis through cognitive work analysis (CWA). They also 

developed an IMPRINT model and a trade space framework to analyze workload. They 
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used five interview techniques to conduct task analysis, which included the critical decision 

method (CDM), task diagram technique, a knowledge audit, technology-focused 

interviews, and envisioner interviews. Critical decision method focuses on interviewees 

recollecting challenging issues rather than answering specific questions and identifying 

cognitive analyses from those recollections to gain key information (Militello et al. 

2019a).Militello further pointed out that the task diagram technique focuses on asking the 

interviewee to break down specific tasks into steps and identify challenging elements . 

Knowledge audits are like CDM, they explained, in that they elicit recollections from the 

interviewees, but they use probes from expert literature to gain more information. 

Technology-focused interviews focus on alternative technologies and how these 

technologies could impact interviewees based on their experiences . Militello’s final point 

is that envisioner interviews focus on how the SME interviewees perceive the future in the 

context of the envisioned technologies, in this case the FVL . The researchers compiled the 

results from these interviews to identify cognitive challenges and used to inform CWA. 

Rather than start from nothing, Militello et al. (2019a) modified a similar, 

previously used, Apache IMPRINT model to analyze FARA pilot workload. They added 

specific tasks, based on the outcome of task analysis, and used various distributions of task 

and function allocations for the models. A task network was developed from these tasks, 

using VACP scales to analyze cognitive workload. The models incorporated various 

technologies, such as automated tracking and takeoff, and various scenario variables, such 

as number of crew members, environmental factors, and type of flight (Militello et al. 

2019a). An attention model was incorporated throughout the model to determine where the 

pilot and copilot focus their attention and how long before they transition their attention 

(Militello et al. 2019a). These sub-models ran for the entirety of the input scenario. Once 

the main model was developed, Militello et al. incorporated and compared several 

configurations with various degrees of human-automation involvement. They also 

evaluated alternative task allocations by reassigning tasks between the human and machine 

elements to analyze the impacts on workload. This research informed how we approached 

our research, highlighting how specific conditions may warrant different task automation 
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techniques. Our research can inform a menu of task automation options, which may be 

tailored to different mission or environmental conditions.  

Militello et al. provided important insight into how to approach IMPRINT 

modeling. Our literature review showed us how starting with a task analysis is the most 

useful path. We modeled our task analysis process after a study from the Army Research 

Institute (ARI). In 1988, the ARI published a series of task analyses for UH-60 and CH-47 

helicopters. The purpose of these studies was to establish a baseline for pilot cognitive 

workload during basic flight and in different conditions (Bierbaum, Szabo, and Aldrich 

1988). While this work is aged, the authors used a simple and practical methodology for 

their task analysis that was easily adapted to this team’s work. Bierbaum, Szabo, and 

Aldrich first developed a mission scenario and divided the mission into phases. In the case 

of our work, we focused on the phase of steady flight, after take-off and prior to entering 

approach. They then divided their phases into segments. We organized our tasks by type: 

Aviate, Navigate, and Communicate tasks. From there, the authors identified and analyzed 

the individual tasks within each function. We identified our tasks using the 2021 UH-60 

Aircrew Training Manual from the Aviation Center of Excellence at Fort Rucker, AL and 

by interviewing UH-60 pilots. With the tasks identified, Bierbaum, Szabo, and Aldrich 

interviewed pilots to assign workload values to each individual task. We did this as well 

but using the VACP values. We also developed a pilot interview format which introduces 

the subject to our purpose and research question and explained how VACP data would 

inform our model. We utilized the task diagram interview technique to elicit subtasks and 

challenge areas. The pilot then walked us through each task and provided their subjective 

values based on what they believe a pilot would experience for that task during flight. Once 

we interviewed six pilots, we were able to combine the workload values and insert them 

into the tasks we built in IMPRINT. 

G. PILOT COMMUNICATION 

IMPRINT can simulate various pilot tasks that affect cognitive workload, including 

the ability of the pilots to communicate. In a 2021 presentation at the Naval Postgraduate 

School, HSA-DM project director Mr. Matt Shivers discussed his interest in the 
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communication elements of a flight. We decided to focus on these tasks specifically 

because of this interest from our stakeholders. It is also supported in the research literature. 

We have already seen in the 2020 Andrews et al. article that communication tasks cause a 

spike in pilot workload. We are focused on two types of communication tasks in our 

research: internal and external. Internal communication encompasses the communication 

between the pilot and copilot. External communication occurs between either pilot and an 

entity outside of the aircraft, which could include air traffic control, the pilot’s unit, or the 

unit requesting the MEDEVAC. Pilots and copilots have almost the same functional 

abilities within the cockpit and generally decide who will do what prior to the flight. 

MacIsaac (1998) explains that “crews must agree on what each will each bring to the 

cockpit workload, and then cooperate verbally” (5). 

Communication between pilots is crucial to the safe operation of the aircraft. There 

have been several crashes that were attributed to a lack of pilot communication (MacIsaac 

1998). MacIsaac discusses a 1983 crash in which poor visibility and inadequate internal 

communication led to the pilot unintentionally descending into the sea. In this case, the 

communication breakdown was due to the pilot and copilot not communicating the need to 

cover different sectors of view outside the aircraft’s environment to improve navigation. 

MacIsaac also discusses a Portland crash in 1978 that was caused by the pilots not 

monitoring the fuel state, or not communicating it, and running out of fuel. This case 

resulted in the FAA Air Carrier Operations requiring “interpersonal communications 

training for air carrier flight crews” (MacIsaac 1998, 5–6). As a result, “crew resource 

management programs have since made their way into helicopter crew training in both the 

military and civilian sectors” (6). 

Crew communication is vital. In fact, it is so important that the UH-60 series 

Aircraft Training Manual (ATM) has a tab hyperlinked to “Aircrew Coordination 

Training” at the top of every page for quick reference (ATM 2022). A key component of 

this aircrew coordination is communication. The ATM provides detailed guidance on 

internal communication: 

• Communicate Positively 



24 

• Be explicit 

• Announce Actions 

• Acknowledge Actions 

• Direct Assistance 

• Offer Assistance 

• Coordinate action sequence and timing 

• Provide aircraft control and obstacle advisories (ATM 2022, 7 – 2).  

These guidelines stress the importance of maintaining situational awareness 

through communication. This means that the pilot and copilot are constantly 

communicating throughout the flight, providing announcement and acknowledgement for 

each subtask (ATM 2022).  

Internal communication tasks occur in addition to the external communication 

requirements, which are primarily conducted by the copilot (ATM 2022). The 2022 ATM 

specifies that the primary focus of the pilot is flying the aircraft, scanning instrument 

displays, and monitoring the radios. Pilots are required to maintain communications with 

an air traffic control facilities and may have additional requirements with their unit (ATM 

2022). They may transmit as required, but the copilot generally handles most of the external 

communications. The copilot manages the rest of the flight operations. These tasks include 

tuning the radios, navigating, communicating with external entities, completing fuel and 

power checks, and adjusting internal systems as required (ATM 2022). In a real-world 

MEDEVAC mission, it is easy to see the complexity of internal and external 

communication requirements. 

In a MEDEVAC scenario, pilots would ideally be in communication with the 

patient’s unit, air traffic control station and the pilot’s operations channel. According to 

UH-60 Flight Instructor CW3 Alexander Wilson, communication requirements increase 

the closer the aircraft gets to the patient (Wilson 2022). Additionally, CW3 Wilson explains 
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that in current UH-60 models, when monitoring multiple frequencies simultaneously, radio 

traffic may overlap. It is up to the pilot to listen for their call-sign for key information. 

Managing all these frequencies can become chaotic in dynamic situations where pilots are 

communicating with numerous entities, such as when approaching a patient’s location.  

External communications also lead to more internal communication requirements 

because the copilot must announce any information that the pilot is not monitoring and vice 

versa, but also includes copying down key information (ATM 2022). Likewise, 

communication is not strictly voice communications, because some external 

communication entities may be outside of radio frequency range. UH-60s are equipped 

with blue force tracker (BFT) capabilities using the Global Positioning System (GPS) to 

provide situational awareness of the UH-60’s exact location beyond line-of-sight 

messaging (ATM 2022). CW3 Wilson describes how sending messages using the BFT can 

be cognitively challenging, because the keyboard does not follow the traditional QWERTY 

format but is in alphabetical order (Wilson 2022). This need to focus on typing a time-

sensitive message adds a layer of complexity to an already complex communication 

situation. A crew may be required to monitor five external frequencies, a BFT, and the ICS 

for internal communications, all while executing aviation and navigation tasks (Wilson 

2022). Because of the complexity of communication tasks and the associated potential 

cognitive workload, we focused most of our efforts on identifying opportunities for 

automation within these tasks. 

H. SUMMARY 

This discussion on pilot communications brings us back to the question at hand: To 

what extent is workload reduced if specific pilot communication tasks are automated? This 

literature review provides the basis to answer this question by delving into key topic areas 

that support this research question. We began by discussing the premise of our capstone 

project, which builds on the research and efforts of a prior capstone team. We then 

discussed the goal and purpose of the FVL and HSA-DM to provide background 

information on the system and key stakeholders. We discussed the complexities of 

cognitive workload, potential effects of automation on cognitive workload, various ways 
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to measure cognitive workload, and various methods used to model cognitive workload. 

This extensive research served to narrow our focus on specific aspects of workload to 

measure and model to answer our research question. This research led us to the IMPRINT 

tool, which is a proven human performance modeling tool and is best suited to model 

workload for the purposes of our capstone. This is due to the variety of tools available, the 

lack of extensive resources and costs required, and its overall credibility. Using IMPRINT 

to model the effects of automation on pilot communication tasks will help our stakeholders 

determine what tasks should be automated on the next generation FVL and potentially 

inform follow-on projects as a result. In the next section we outline the methods and 

approach that we utilized to analyze these tasks, develop an IMPRINT model, and assess 

potential automation opportunities. 
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III. METHODS 

A. OVERVIEW 

The primary purpose of this capstone project is to develop a human performance 

model to assess whether the automation of certain communication tasks will mitigate pilot 

cognitive workload in the FVL. In this chapter, we will discuss the participants of the study, 

equipment used, and the procedures we followed to answer our research question. Our 

general approach was to use input from active rotary-wing pilots and current literature on 

cognitive workload to develop a task analysis. We built the task analysis into IMPRINT to 

generate models with cognitive workload values assigned to each task. The models were 

modified to simulate automation of high-workload tasks, and then analyzed for model 

validity, impact on workload, and feasibility of recommended solutions. We then generate 

recommendations of tasks to automate for the HSA-DM team. 

B. PARTICIPANTS 

Rotary-wing pilots provided the data and expert knowledge required to build our 

IMPRINT models. We conducted pilot interviews, cognitive walkthrough of all tasks, and 

received support from an IMPRINT subject matter expert (SME) to build our models. The 

pilot interviews and cognitive walkthrough helped the team develop an understanding of 

flying rotary-wing helicopters and how to accurately depict tasks performed during a 

routine flight within our model. We were also able to validate our assumptions made about 

tasks performed during a flight with accurate VACP values assigned to each task.  

Prior to conducting interviews and walkthroughs, the researchers submitted a 

determination request to the NPS Institutional Review Board (IRB). Because we 

interviewed pilots, we were required to request IRB approval before interviews were 

conducted. The IRB determined that the study did not require an IRB review and approval 

because our results are not intended to be generalizable.  

To start our research, we needed to gain a better understanding of how pilots operate 

their aircraft and the associated cognitive workload. We recruited and collected data from 



28 

six certified U.S. Army rotary-wing aircraft pilots. The pilots’ experience in their 

respective aircraft ranged from 500 to over 2,100 flight hours. Table 2 provides the 

breakdown of each pilot’s experience. The details of how we leveraged the pilot’s 

experiences are presented in Section C, Procedures. 

Table 2. Pilot Flight Hours and Experience  

 
 

C. EQUIPMENT 

IMPRINT, described in detail in Chapter II, is the primary tool that we used for our 

analysis. To understand IMPRINT and use it to its full potential, we engaged in IMPRINT 

training with a subject matter expert, Bob Sargent of Huntington Ingalls Industry. This 

training provided us with a baseline understanding of IMPRINT, the foundational theory 

behind IMPRINT’s workload analysis – Multiple Resource Theory, and a hands-on 

exercise to develop a workload model. Sargent also continued to provide advice throughout 

the development and testing of our model. The IMPRINT tools used in our study include 

task analysis, human performance modeling, VACP scaling, and various reports to analyze 

the data. Further details about the specific IMPRINT procedures are explained in Section. 

D. PROCEDURES 

Developing our IMPRINT cognitive workload model required several steps. Bob 

Sargent (2021) outlined a 10-step process for building an IMPRINT analysis during his 

initial IMPRINT training session at the Naval Postgraduate School:  

1. Defining the objective 
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2. Designing the study 

3. Collecting input data 

4. Defining the mission 

5. Developing the task data  

6. Debugging the model  

7. Running the study 

8. Collecting output data  

9. Analyzing the data  

10. Presenting the results 

Our analysis follows this approach but instead is broken down into three phases. In 

Phase I of this project, we began with a broad analysis of literature to inform the direction 

of our research. This phase comprised steps one through four of Sargent’s approach. Phase 

II is task analysis, which includes steps four and five. Phase III includes the development, 

validation, and results analysis of the IMPRINT models, covering steps six through nine. 

Chapter IV of this report covers step 10, presenting the results. The following sections 

present an in-depth discussion into the methodology for each of these phases. 

1. Task Analysis 

The task analysis approach we followed was the task analysis/workload (TAWL) 

methodology outlined in a research report by Bierbaum and Hamilton (1991). Bierbaum 

and Hamilton conducted their research on the MH-47E aircraft to develop a cognitive 

workload model, similar to our project. While the research and report are relatively old, the 

methodology is still a valid technique to conduct task analysis. The methodology began by 

collecting pilot estimates of cognitive workload associated with a specific mission, in our 

case, the MEDEVAC mission. Next, we broke the mission down into phases, segments, 

functions, and tasks (Bierbaum and Hamilton 1991, x). We initially began by using the 

2021 UH-60 Series Aircrew Training Manual to gather this information and select tasks to 

model. Based on conversations with the UH-60 pilots, we realized that these tasks were 
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too broad to allow us to provide recommendations for automation. At this point, we decided 

to conduct the cognitive walkthrough interviews to identify lower-level tasks that would 

provide us a detailed picture of the steps required to fly a UH-60 and the flexibility to 

experiment with automation.  

We followed an approach similar to Militello et al. (2019) previously described in 

Chapter II to elicit information from the pilots. In particular, we used both the task diagram 

and knowledge audit approach, or cognitive walkthrough, to collect the data. We conducted 

interviews with pilots for two reasons: first, to gain an understanding of the individual tasks 

they performed during flight, and second, to record their subjective CW values using the 

VACP scale. Our knowledge audit interviews provided extensive, first-person descriptions 

of how pilots operate their aircraft, the tasks and subtasks involved, and the VACP values 

associated with each task. The conversations with these pilots were invaluable for our 

research, allowing us to gain understanding of flight tasks. These conversations enabled us 

to develop the most accurate model possible. The development of our model is explored in 

depth in Section C.2.  

Each interview began with collection of general background data on the pilot’s 

training, years of flying and flight hours depicted in Table 2. These data were compiled to 

ensure each pilot had a sufficient amount of flight experience and diverse knowledge. Next, 

we conducted the knowledge audit or cognitive walkthrough portion of the interview by 

asking the pilots to describe each step of their flight as if they were in the cockpit. Based 

on the cognitive walkthroughs, we generated a task analysis of all tasks conducted during 

routine flight. We then had the pilots describe the VACP workload values associated with 

each task, along with the time required to complete the task, standard deviation of each 

task, and frequency of each task per flight. They also identified the primary holder of each 

task based on current task ownership. The three primary task holders among whom tasks 

are divided are the pilot, copilot, and automated system. For the purposes of this project, 

the pilot is the one on the flight controls, the copilot is generally off-controls. To identify 

which VACP values to assign to the tasks in our IMPRINT model, we consolidated all 

information from the pilots and evaluated each task individually. When assigning workload 

values, our primary approach was to use the consensus values or mode of the pilots’ 
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responses. If there were any discrepancies between the pilot answers, we would take the 

mean value. During the IMPRINT class, Bob Sargent stressed the importance of making 

sure to avoid double accounting for workload. For example, in Task 13 “scan external 

environment,” there is significant visual workload involved, and there is some cognitive 

workload associated with that task as well. Some of the pilots were double accounting for 

the visual workload in the cognitive workload values, by providing larger values for 

cognitive workload than would be realistic. In these scenarios, we discussed if each of the 

values was realistic, and then went back to the pilots to determine if our understanding was 

accurate. This information allowed us to input accurate data into the IMPRINT model to 

generate a realistic depiction of pilot and copilot workload in flight.  

 

 

 

 

 

 

 

 

 

 



32 

Table 3. Task Analysis 
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At this point, our methodology veers from that of the Bierbaum and Hamilton 

(1991) report. This is because Bierbaum and Hamilton used the TAWL Operator 

Simulation System (TOSS) software to develop workload predictions. We instead used 

IMPRINT to develop workload models for the reasons discussed in our literature review. 

Our next step was to use the task analysis to develop an IMPRINT model. 

2. IMPRINT Model Development and Validation  

a. Method 

Our IMPRINT model was built based on the task analysis performed in Phase II. 

We began by inputting the tasks and values derived from our task analysis into a sequential 

model. The next step was to “debug” the model by ensuring that all elements of the model 

were linked correctly and by verifying task components for accuracy with MEDEVAC 

pilots. Once the model was “bug-free” and the contents verified for accuracy, we could run 

the model.  

To meet our research objectives, we ran several models in which we variously 

allocated the tasks that were owned by the pilot, copilot, and automated system. This 

method allowed us to collect the output data on the workload for the pilot and copilot when 

certain tasks were automated. We then analyzed the results of these models and developed 

a list of communication tasks that exceeded a cognitive workload value of 60. The value 

of 60 is the threshold for cognitive overload gleaned from IMPRINT and indicates reduced 

performance beyond this level (Sargent 2021). To validate our model, we submitted it and 

the results to Bob Sargent and multiple MEDEVAC pilots to provide feedback on how well 

the model aligned with reality.  

Figure 3 depicts our overall model. Our model organizes all pilot tasks into three 

groupings: aviate, navigate, and communicate. These are the high-level task categories that 

pilots must conduct to operate an aircraft. While our focus is on communication, to develop 

a realistic, robust model, we wanted to highlight the other two high-level task categories as 

well. All tasks are color coded based on who performs each task. Blue tasks represent 

actions performed by the pilot and green tasks represent actions performed by the copilot. 
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Black tasks show the tasks assigned to an “automation” operator. The baseline model does 

not incorporate automated tasks, but black tasks are incorporated in the modified models, 

as depicted in Figure 3. Purple tasks are model tasks, which provide structure and flow to 

the model but are not executed by an operator and have no CW values. The following 

sections explain how we organized tasks to develop the model. All model decisions, such 

as path logic, VACP values, and sequencing, were made based on the pilot interviews and 

validated by IMPRINT SME, Bob Sargent, and the six pilots upon completion of the 

model. 
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Figure 3. Complete IMPRINT Model View 
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b. Aviate 

Figure 4 shows the breakdown of aviate tasks according to our pilot interviews. In 

aviate, the pilot and copilot are scanning their pre-coordinated sectors in space. While 

scanning, the pilot is manipulating the three flight controls (cyclic, collective, foot pedals) 

to maintain the aircraft in the flight. Occasionally, each pilot may quickly scan their 

instrument panel to verify their position in space (speed, torque, altitude, pitch). During 

flight, the pilot has the primary job of flying the aircraft. The copilot conducts all cockpit 

administration tasks such as fuel and power checks and monitoring communications 

(comms). The pilot monitors comms also, but it is primarily the job of the copilot to respond 

and manage the helicopter’s comms. The methods of modeling communications is further 

explained in the communicate phase of the model. 

To build this phase into IMPRINT, we used groupings of tasks to model the flight. 

We began with creating individual tasks that were derived from our task analysis. For each 

task, we assigned primary operators (pilot, copilot, or automation), as well as values for 

task frequency, time to complete task, standard deviation of that time, and VACP values. 

All task duration, frequency, and value assignments can be found in Appendix B of this 

report. The MRT workload demand values were averaged from discrete quantitative data 

received from licensed Blackhawk helicopter pilots. 
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Figure 4. Aviate Section of IMPRINT Model
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The next step was to sequence each task with path logic that accurately models 

those tasks in real life. Our first challenge in modeling was understanding how to model 

tasks that happen at random or irregular intervals. In our pilot interviews, one interviewee 

explained that much of what pilots perform is “METT-C dependent” – an Army jargon 

way of saying “it depends.” To account for the “it depends” in our model, we assigned 

variability to routine tasks. We modeled this variability and randomness in many places 

using probabilistic path logic. The logic follows a random path each time it is run, based 

on a probabilistic percentage that we assigned to the task (Sargent 2021). The probabilistic 

path allows us to simulate tasks happening sometimes individually or any combination of 

tasks executed simultaneously. The probabilistic path is displayed in Task 1: Manipulate 

flight controls in Figure 4. In Task 1, the pilot performs an action on one, two, or all three 

flight controls with varying combinations and probabilities. Any combination of the three 

flight controls could be manipulated at any given time.  

Additionally, there are two other types of path logic used in our model: multiple 

and tactical. A multiple path can be used to execute multiple model tasks simultaneously. 

An example is Task 75: Initiate Model Conditions depicts a multiple path. This task allows 

the model to start simulating the aviate, navigate, communicate phases simultaneously; 

effectively directing the performance of the overall model. A tactical path allows us to 

demonstrate “either-or” scenarios in which it evaluates which task takes precedence and 

will flow through the highest value task or the first created task if all are true (or false). 

Task 86: rejoinAviateLoop depicts a tactical path that either continues the “manipulate 

flight controls” loop or ends the model depending on whether the “distance to zero >0” 

condition is true or false. In our model, we use tactical paths to ensure the model stops 

running when the distance variable reaches zero. In other words, when the mission is 

complete, all tasks will stop. This also depicts how we used task loops for task sequencing. 

For tasks that happen routinely over time, we assigned those tasks timing and frequency 

derived from pilot interviews. We sometimes looped several similar tasks so the sequence 

would occur multiple times throughout the flight, as seen in the “manipulate flight 

controls” and “InstrumentScanFrequency” task loops. We also included “ending logic” to 

end the tasks when the aircraft arrives at the destination. 
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Once we completed the aviate tasks and sequencing, we also created a goal, which 

is a scenario that can be triggered in the model as needed (Sargent 2021). Goals model 

human behavior based on priorities and conditions built into the goal. They are represented 

in the model by red blocks, as shown in Figure 3. The goal for aviate is the “shift 

announcement,” which allows us to demonstrate what happens when the pilot needs to shift 

focus internally to the cockpit. The goal is triggered randomly throughout the flight to 

model the variable frequency with which it may occur. When triggered, the shift 

announcement goal “interrupts” the rest of the flight tasks, so that the only tasks conducted 

are those within the goal, to prevent unrealistic and excessive workload values. When the 

“shift announcement” goal is triggered, the model simulates the pilot transitioning to 

operate the multifunctional display. The copilot takes over flight controls and scans the 

entire external environment. We wanted to ensure we modeled the scenario where the two 

pilots effectively shift roles periodically. To ensure that we did not overlook the 

communication tasks that were happening at the same time, we also created a higher 

priority “communication” goal. The communication goal runs throughout the flight, 

including when the “shift announcement” goal is triggered, since it is a higher priority goal. 

c. Navigate 

In Aviate, we explained how the helicopter copilot is responsible for cockpit 

administrative tasks while the pilot focuses on flying the aircraft. In the navigate phase, the 

pilot and copilot continue scanning their sectors and the copilot performs navigation tasks. 

The navigate phase also involves the copilot operating the digital map throughout the flight. 

In our model, operating the map includes three interactions described in Figure 5: operate 

bezel keys, operate collective curser slew controller, and operate multifunction slew 

controller.  
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Figure 5. Navigate Section of the IMPRINT Model 
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We designed the primary task in navigation, “Manage Flight Operations” as a 

probabilistic node. Using a probabilistic node allows us to let the model determine which 

task is executed next based on the probability value it was assigned. Operate digital map 

has three subfunctions with equal distribution across the three subtasks to operate the 

digital map. We used an equal distribution of 33% across all three subtasks, because any 

task is as likely to be used by the pilot as another based on pilot preference. Once the 

“operate digital map” task is executed, one of the three subtasks is triggered. After the 

subtask has executed, it will loop back to start another loop of Manage Flight Operations. 

This looping continues throughout the model to simulate how the copilot is constantly 

juggling these tasks during flight. When the pilot chooses to operate the digital map, the 

model executes the “pilot shift internal” goal described in Aviate. 

d. Communicate 

The communication phase was the most difficult to model because we needed to 

simulate both internal communication between the pilot and copilot as well as external 

communications between the pilots and outside entities. External communications are 

usually with a sister aircraft, ground unit, control tower, or headquarters. Additionally, the 

model captures how each pilot monitored four external communication nets as well as the 

blue force tracker capability built into the aircraft’s Joint Variable Messaging Format 

(JVMF). Communications tasks are the focus of our research. We therefore created a 

“goal” for the communications tasks to ensure that these tasks continued running 

throughout the model, even when the “pilot internal focus” goal triggered. We also created 

time-delays to ensure that tasks were not happening at the same time unless that 

combination of tasks would happen in real flight. For example, the copilot could not be 

transmitting and receiving communications at the same time.  

Our approach to modeling communications is illustrated in Figure 6 and comprises 

three branches: pilot external communications, copilot external communications, and 

helicopter internal communications. For pilot external communications, we assumed that 

the pilot is only listening to the radios and not responding during this phase, since 

responding to external comms is the copilot’s responsibility. This assumption is valid for 
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the phase of flight we are modeling according to our pilot interviews. Task 103_3 

PilotExternalReceiveComms starts a chain of tasks that model the pilot listening to external 

transmissions in their headset, while Task 103_22 Receive is associated with some auditory 

cognitive workload only. After a short delay, the pilot may adjust volume (103_28) if they 

want to listen more closely, or they may look at the display (103_29) to see which net is 

transmitting. Sometimes they do nothing at all and continue monitoring and flying. 

The challenge to modeling copilot external comms was making the model work 

such that the copilot can monitor the internal net plus four external radios simultaneously 

but only transmits back on one net at a time. 103_15 Comms starts the chain of tasks that 

accomplishes this idea for us. Task 103_10 CoPilotExternalTransmit is a probabilistic node 

that chooses one task at a time when triggered. After a short delay, 103_10 

CoPilotExternalTransmit gives the copilot the option of manually inputting a channel 

(103_24 input channel) and transmitting a message (5% probability), select a 

preprogrammed channel (103_25 select channel) and transmitting a message (80% 

probability), or sending a JVMF message (15% probability). These probabilistic values 

were derived from pilot interviews. Task 103_18 Co-PilotExternalReceiveComms 

includes tasks for the copilot to monitor the various nets and sometimes recording a note 

on their kneeboard. 
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Figure 6. Communications Goal from the IMPRINT Model 
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The third part of the comms model is internal comms between the pilot and copilot. 

We learned from the pilot interviews and the ATM how critical communication is between 

the pilot and copilot. One pilot explained that if the cockpit is silent for more than 10 – 15 

seconds, there isn’t enough communication. Whenever either pilot is accomplishing a task, 

they verbally announce what they are doing. In Chapter II, we highlighted some examples 

of when internal communication should happen, primarily announcing actions with 

acknowledgement and directing and assisting. We modeled these interactions starting with 

task 103_1 Internal Comms. We assumed here that every time the pilot speaks, the copilot 

will respond, and vice versa. Each exchange includes a workload value for the listening 

and verbal response. We included a 10% probability that there were no communications to 

account for those times when there was nothing said, based on pilot interviews. The 

communication goal continues to loop until the model ends to reflect continuous 

communications throughout the mission. 

e. Modifying the Model 

Once we had a functioning model that depicted the flight tasks and task workload 

as described by the pilots, we used IMPRINT’s reporting function to visualize that 

workload. We primarily used the operator workload detail report, the operator workload 

graph, and the operator overload report to review which tasks and combination of tasks 

caused workload spikes. The operator workload graph provides a visual depiction of the 

workload across one flight. We investigated anything that caused a workload spike over 60 

on the graph and then analyzed the operator workload detail report to identify which tasks 

caused the spikes. The operator overload report quantitatively summarized the spikes and 

filtered the mission for any workload over 60, providing a quick reference for tasks to 

investigate. We ran the model 50 times to simulate different mission scenarios, ensuring 

we see nearly all combinations of tasks in the probabilistic nodes and their interactions. 

During this process, we identified a weakness in IMPRINT that only allows the software 

to generate results for viewing one run at a time. 

Based on the results, we identified the combination of tasks that caused cognitive 

overload and investigated the feasibility of automating those tasks. To accomplish 
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automation in IMPRINT, we changed the role of the tasks from the crewmember to an 

automated crew member, which removed the workload of that task from the pilot or 

copilot. Automation does not completely remove workload because the pilot must still 

monitor that task (Shivers 2021). When a task was automated, we added a pilot monitoring 

task to the model. Monitoring was assigned to either the pilot or copilot depending on who 

previously owned the task that was automated. We experimented with automation in 

different combinations until we eliminated significant workload spikes in the model. These 

automated tasks in the model serve as the recommendations for the HSA-DM team. Table 

4 provides the list of communication tasks that caused cognitive workload spikes over 60 

across 50 runs of the baseline model. We used this table to select five communication tasks 

to automate: monitor radio nets (pilot), adjust volume, input channel (copilot), select 

channel (copilot) and send JVMF message (copilot). While receive internal comms (pilot) 

had the most spikes above 60, we opted not to automate this task, because of how important 

internal communications are to the safety and operation of the aircraft. Likewise, 

transmitting messages is an essential task, and while it is possible to use presets, this is 

very mission dependent and cannot eliminate the need to transmit messages. Visual 

confirmation of radio nets is a monitoring task, and we therefore increased the frequency 

of this task to compensate for the automation. We decided not to automate Record 

Information (CoPilot) since this is a function pilots perform on their kneeboard and may 

want to maintain the ability to take manual notes. After eliminating those tasks from the 

automation list for the reasons provided, we began experimenting with shifting roles and 

including automation for the remaining five communication tasks associated with cognitive 

overload. These tasks are discussed in further detail in Chapter IV. To validate the 

feasibility of our recommendations, we also presented the model and our results to the 

pilots to garner feedback.
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Figure 7. Baseline Workload Analysis: Communication Task
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IV. RESULTS 

A. OVERVIEW 

Using the methods described in Chapter III, this research team generated multiple 

cognitive workload models. This chapter provides the key findings from the results and 

analysis of these models. Throughout this chapter, we provide the answers to the research 

questions in Chapter I:  

• To what extent is a pilot’s cognitive workload reduced if communication 

tasks are automated?  

• How are communication tasks distributed between pilot, copilot, and an 

envisioned AI system?  

• How does workload vary over the course of a particular phase of the 

MEDEVAC mission? 

We found that automating communication tasks reduces cognitive workload with 

different levels of impact for the pilot and the copilot. Additionally, certain communication 

tasks, such as internal communications, must be maintained by the pilot and copilot to 

effectively operate the aircraft. Finally, cognitive workload fluctuates by frequency and 

degree of multitasking rather than time. 

B. BASELINE MODEL 

To address the primary research question, we developed a baseline cognitive 

workload model of a routine MEDEVAC flight based on the pilot interviews to which we 

could compare automation modifications. This is the model depicted in Chapter III. Figure 

8 depicts the results of 50 runs of the baseline model. It portrays the frequency with which 

each of the communication tasks contributed to workload values over 60. We refer to each 

instance above 60 as a workload “spike.” From these results, we identified six 

communication tasks that contributed to cognitive overload spikes:  

• Monitor radio nets (pilot)  
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• Monitor radio nets (copilot) 

• Input channel  

• Select channel  

• Send JVMF message  

• Adjust volume 

These are the tasks that we selected to automate. The justification for why we 

selected these tasks is described in Chapter III, section D.
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This figure depicts the number of times individual tasks exceed workload threshold 60 across 50 trial runs of the baseline model 

Figure 8. Baseline Model Results 
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C. AUTOMATED MODELS 

The next step was to modify the baseline model by automating individual tasks, 

adding “monitor automation” tasks for those tasks, and analyzing the results. The 

individual modified models (see Appendix B) include four individual models with either 

one or two tasks automated, depending on whether they fall under the same overarching 

task. We modified the models in this way to analyze the effects of minor changes to the 

baseline model. We then incorporated all six changes into one final model to analyze the 

cumulative effect. Figure 9 depicts this final modified model. Each automated task is 

followed by a “Monitor AI” task to account for the pilots’ cognitive workload as they 

monitor automation. We ran each individual model and the combined automation model 

50 times each to assess the individual and cumulative effects of automation and to provide 

a large enough sample for analysis. 

Figure 10 compares the total overload count between the baseline model and each 

individual modified model, along with the combined automation model. The overload 

count includes frequency of overload arising from all tasks, not just communication tasks, 

across 50 runs.
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Figure 9. Baseline with Automation Model
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Figure 10. Overload Spike Count, All Models
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Of these six tasks, automating external comms for the pilot (monitor radio nets and 

adjust volume) shows the most significant impact from automation, reducing the 

occurrence of pilot cognitive overload by 55%. Automating “monitor radio nets” for the 

copilot has the second most significant impact, reducing copilot overload spikes by 14.1%. 

The remaining three tasks do not have a significant impact. Automating “Send JVMF 

message” appears to increase copilot overload spikes by .01%, but this percentage is within 

the margin of error and not significant. Similarly, automating “input channel and select 

channel” appears to increase copilot overload spikes by .06%, which is also within the 

margin of error and not significant. Figure 11 depicts the baseline overload spikes 

compared to the combined model for the pilot and copilot. 

Figure 11. Pilot/Copilot Overload Spike Comparison, Baseline versus 
Combined Model 

Figure 12 shows the total (combined pilot and copilot) workload difference between 

the unautomated and automated models. We see 572 fewer instances of net overload across 

50 runs of the combined model. With all automation modifications incorporated, the pilot 

overload is reduced by 55.9%, the copilot overload is reduced by 14.4%, and total overload 

is reduced by 28%. Based on our analysis, the answer to the primary research question “To 
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what extent is a pilot’s cognitive workload reduced if communication tasks are automated” 

is approximately 56% for the pilot and approximately 14.5% for the copilot. 

 
Figure 12. Total Overload Spike Comparison, Baseline versus Combined 

Model 

To address the research sub-question “How are communication tasks distributed 

between pilot, copilot, and envisioned AI system?” we reviewed the roles assigned to the 

pilot, copilot, and automated system after the six tasks were automated in the combined 

model. This role distribution is shown in Figure 13, where the y-axis represents the total 

number of overload spikes across 50 model runs. The x-axis shows the comparison 

between baseline model and combined model. The pilot and copilot retain the internal 

communications functions and have additional tasks to monitor the automated system. The 
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internal communication tasks contribute to cognitive overload frequently, however, as 

discussed in Chapter II, these tasks are essential to flight operations. For the pilot, AI 

monitoring is now the most frequent task that contributes to cognitive overload. The copilot 

also retains the tasks of transmitting messages externally and recording information. Even 

with these tasks being retained by the pilot and copilot, the overall workload for both 

operators decreased.
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Figure 13. Distribution of Task 
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Figure 14 depicts the proportion of tasks conducted by the pilot and copilot for the 

baseline model. Figure 15 depicts the proportion of tasks for the combined automation 

model. Automation takes over about 25% of the tasks from the pilot and copilot, reducing 

pilot tasks by 20% and copilot tasks by 5%. This illustrates that by adding the six AI tasks, 

automation replaces a significant portion of tasks, removing the associated workload. This 

reinforces our findings in Figure 13. 

 
Figure 14. Task Proportion for Baseline 

 
Figure 15. Task Proportion for Combined Model 
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To address the research sub-question “How does workload vary over the course of 

the enroute phase of the MEDEVAC mission?” we analyzed the graph of workload over 

time for individual baseline runs and compared the graph to the combined automation 

model graph. Figure 16 depicts an example of a workload graph for a single run of the 

baseline model, while Figure 17 depicts a workload graph for the same run within the 

combined automation model. Comparing the models, we see a decrease in overload spikes 

in the combined automation model, which is consistent with the results above. 

Additionally, the workload observed in the combined automation model is lower than the 

baseline model. This can be observed by looking at the y-axis difference between Figure 

16 and Figure 17. Within the “enroute” phase of a MEDEVAC flight, workload is minimal 

until multiple tasks occur simultaneously, which is where the overload spikes occur. This 

breakdown is shown in Figure 18, which depicts the tasks associated with individual spikes 

of a single run. Because the tasks occur randomly based on the variation between flights, 

it is difficult to say that there is a pattern of workload variation within this phase of flight. 

Rather, workload varies based on how often pilots are multitasking. Future research should 

be conducted, however, to analyze and compare how workload varies between phases of 

flight. 
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Figure 16. Individual Run Baseline Workload Graph 
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Figure 17. Individual Run Combined Automation Workload Graph 
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Table 4. Workload Spike Analysis 

(HH:MM:SS.mm) Operator Function Name Task Name Overall Workload
Single 
Task 

Demand
0:05:35 Co-Pilot (Root) Fuel Management Procedures 86.495 7.28
0:05:35 Co-Pilot Communications Monitor Radio Nets 86.495 2.59
0:05:35 Co-Pilot Communications Transmit (Internal) 86.495 12.33
0:08:30 Co-Pilot (Root) Fuel Management Procedures 138.602 7.28
0:08:30 Co-Pilot Communications Record information 138.602 12.12
0:08:30 Co-Pilot Communications Transmit (Internal) 138.602 12.33
0:01:01 Pilot (Root) Scan Secondary Flight Display 7.69 7.69
0:01:46 Pilot (Root) Operate Cyclic Control 6.67 6.67
0:03:39 Pilot Communications Monitor Radio Nets (Pilot) 80.34 4.22
0:03:39 Pilot Communications Transmit (Internal_Pilot) 80.34 8.68
0:03:39 Pilot Communications Visual Confirmation of Radio Net (Pilot) 80.34 4.41
0:06:00 Pilot (Root) Operate Cyclic Control 81.08 6.67
0:06:00 Pilot Communications Receives (Internal_Pilot) 81.08 8.05
0:06:00 Pilot Communications Visual Confirmation of Radio Net (Pilot) 81.08 4.41
0:00:33 Co-Pilot (Root) Scan Primary Flight Display 5.92 5.92
0:01:21 Co-Pilot Communications Select Channel 4.28 4.28



62 

D. SUMMARY  

We successfully answered the primary and subordinate research questions by 

following the methods discussed in Chapter III. We analyzed the results of our baseline 

model to identify the six communication tasks that lend themselves to automation. 

Automating these tasks reduced pilot cognitive overload by 55.9%, copilot cognitive 

overload by 14.4%, and total cognitive overload by 28%, even after adding a supervisory 

task. The ANOVA analysis shown in Figure 19 highlights that the difference between crew 

workload between the two models is statistically significant, F(1, 60478) = 102.92, p < 

.001. 

 
Figure 18. ANOVA Comparison of Baseline Model versus Combined Model 

The UH-60 ATM specified the importance of maintaining internal 

communications, therefore the pilot and copilot retain the internal communication tasks in 

our model. Similarly, our research revealed that the copilot should retain the freedom to 

transmit externally and take notes based on input from the pilot interviews. Finally, by 

analyzing individual runs of each model, we identified that workload fluctuations in this 

phase of flight occur randomly. Cognitive overload, however, is associated with the amount 

of multitasking conducted by either the pilot or the copilot. 
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V. DISCUSSION

A. OVERVIEW

Chapter IV provided the results that answer our research questions. In this chapter,

we analyze these results, discuss our interpretations of them, and discuss the implications 

of these findings. Understanding individual task workload, sequencing, and timing when 

creating our model yielded interesting workload results that helped us identify which tasks 

may provide pilots the most relief if automated. This chapter explores these results further, 

discusses the limitations of our research, and discusses where this work could benefit from 

further study. Overall, the limitations and recommendations for further research generally 

revolve around the rapid timeline to complete the project. This led us to focus on a simpler 

phase of flight, without environmental and behavioral considerations included, providing 

significant opportunity for future research. Even so, our research is still beneficial. We 

have demonstrated how cognitively intensive flight operations can be, even during the 

simplest phase of flight, and how automation can be used to mitigate this workload. 

Additionally, single task automation seemed to create more workload for the copilot for 

specific tasks. This phenomenon highlights the fact that automation is not an easy button 

for solving overload problems. Automation must be targeted and deliberate, accomplishing 

the task in a way that is useful to the human operator while reducing overall workload. 

B. PRIMARY RESEARCH QUESTION: TO WHAT EXTENT IS
COGNITIVE WORKLOAD REDUCE IF COMMUNICATION TASKS 
ARE AUTOMATED?

We found that automation reduced total copilot overload from 1240 total overload

spikes to 1061, a 14% decrease in overload spikes. Pilot overload spikes were reduced from 

622 to 274, a 56% decrease. These results suggest that our method of identifying tasks to 

automate and assessing the effect of their implementation has potential for future use. One 

issue, however, is the increase in workload seen in Figure 10, in Chapter IV, for the copilot 

in models 2, 4, and 5. A possible explanation for why workload increased for the copilot 

in those models is that for each automated task, we assigned an associated AI monitoring 

task. This monitoring task represents the fact that automation is not as simple as giving 
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tasks to a computer: the operator must still observe that the automation is producing the 

desired outcome. It is possible that monitoring automation takes more workload than 

simply completing the task manually. This finding reinforces what De Visser et al. (2008) 

found, as discussed in Chapter II. For simple or less frequent tasks such as adjust volume, 

input channel, and select channel, the workload created by those tasks was relatively small 

or occurred so infrequently that it did not contribute to many overload spikes. The workload 

associated with the smaller tasks was very similar to the workload created by the 

monitoring task, resulting in minimal impact to overall workload. This idea will be 

explored more in our limitations, but we believe these similar workload values could be 

due to the normalization process. We had a small sample size, and there were significant 

differences in VACP workload values elicited between pilots for many tasks. Therefore, 

the values we used may not have been precise enough to produce more significant 

differences in pilot workload when automation was added to the model.  

C.      SUB-QUESTION 1: HOW ARE COMMUNICATION TASKS DISTRIBUTED
BETWEEN PILOT, COPILOT, AND ENVISIONED AI SYSTEM?

When we analyzed the frequency distribution of communications tasks performed

before and after automation was implemented, we saw that monitor tasks became the most 

significant workload tasks for the pilot. Internal communications were the next most 

significant tasks for both pilots, as discussed in Chapter IV and seen in Figure 13. This 

finding aligns with the ATM’s discussion on the frequency and importance of 

communication between the two crew members (Aviation Center of Excellence 2022). 

Additionally, the frequency of monitoring external nets by both crew members confirms 

HSA-DM’s focus on communication as the best place to start implementing task 

automation (Shivers 2021). This finding also reinforces what Andrews et al. (2020) found 

in their study, that communication tasks greatly increase cognitive workload. Additionally, 

we analyzed the differences in proportions between the baseline and combined models as 

seen in Figure 14 and 15. Twenty five percent of tasks previously completed by the pilot 

and copilots were now completed by AI. This reduction in tasks for the pilot and copilot, 

results in an increase of spare cognitive capacity, which is one of HSA-DM’s goals (Shivers 

2021). This cognitive capacity can now be shifted to other tasks.  
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D. SUB-QUESTION 2: HOW DOES WORKLOAD VARY OVER THE 
COURSE OF THE ENROUTE PHASE OF THE MEDEVAC MISSION? 

In Chapter IV, we explained how pilot workload is constantly changing as the 

mission progresses. Most of the time, combinations of one or two tasks do not exceed the 

cognitive workload threshold. Figure 18 depicts how single task demand is minimal, but 

when performed together, two or more tasks create overload well over the 60 threshold. 

Spikes being produced by simultaneous tasks is supported by Wickens’ (2008) Multiple 

Resources Theory. Overall workload appeared to decrease over the course of the mission 

when automation was introduced to the model. On average, we saw the total spikes in a 

single run fall from six to four. Seeing this helps explain the decrease in total spikes across 

all 50 runs, which also helped answer our primary research question. 

E. LIMITATIONS 

The narrow scope of this project, and the challenging timeline we had available to 

complete our research, resulted in several limitations to our research. The following are 

areas that our research team may have included given more time, resources, and 

experience.  

One limitation is that our model was developed to simulate the easiest phase of 

flight (routine flight after take-off and before landing). Some of our pilot interviews 

included remarks relating to ease of this phase. This fact helped us develop a basic model 

of flight, but it does not capture how workload varies during more complex activities such 

as hoist operations that include hover, or patient pickup. It also does not consider 

behavioral factors such as fatigue, emotional stress, or pilot experience. This model should 

serve as a good starting point for researchers who are interested in analyzing more complex 

flight scenarios.  

Another key limitation is that the research group has no prior experience flying UH-

60 helicopters or developing computer-based modeling. We worked hard to ensure that our 

task organization and model logic made sense and had our model verified by pilots and an 

IMPRINT SME. We recognize, however, that there may be flaws in parts of our approach 
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in terms of our modeling or the manner in which we interpreted the pilots’ explanations. 

There is likely room for improvement on this model from both perspectives.  

Finally, our data was limited in two ways. First, we initially believed that 

interviewing six pilots would provide sufficient data to inform our task analysis. When we 

compared interview results to determine which values would be used in our model, we 

found more variance in the responses than expected. We suspect that this variance could 

be due to different levels of flight experience, different UH-60 models (L vs M), or their 

inexperience participating in a subjective feedback interview. Additionally, while we 

attempted to explain the concept of double accounting for workload and how it should be 

avoided, based on some of the results, we believe that some of the pilots did just that. In 

order to treat all data the same, we simply normalized all values rather than potentially 

adding bias by adjusting values that seemed unrealistic. A greater pool of interview 

subjects and more structured interviews could greatly refine the data. Second, we would 

have preferred to execute significantly more simulations than 50 runs. Originally, we 

believed 1,000 simulation runs would be ideal, enough to see every permutation of the 

model more than a few times. Unfortunately, IMPRINT is not built to provide more than 

one workload report at a time, making it very difficult to combine data for 1,000 

simulations. We attempted using R scripts to help make up for this limitation but were 

unable to come up with a satisfactory solution. We discuss the potential for future research 

into issues like these in the next chapter. 

F. SUMMARY 

While there were limitations to our research, the results still are beneficial to the 

HSA-DM team. The results reinforce that their focus on communication tasks is warranted. 

Communication tasks significantly contribute to cognitive overload, and automation has 

the potential to reduce this overload and free up cognitive capacity for other tasks. 

Likewise, our research provides several opportunities for future studies. 
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VI. CONCLUSION AND RECOMMENDATIONS 

A. OVERVIEW 

The purpose of this project was to investigate how automation can be used to 

mitigate the pilot cognitive overload associated with communication tasks in a MEDEVAC 

scenario. This study has examined three research questions:  

• To what extent is a pilot’s cognitive workload reduced if communication 

tasks are automated?  

• How can communication tasks be distributed between pilot, copilot, and 

the envisioned AI system?  

• How does workload vary over a particular phase of a MEDEVAC 

mission?  

To address these questions, we developed a baseline IMPRINT model to mirror and 

analyze the tasks involved in the “enroute” phase of MEDEVAC flight. We gathered the 

data to develop this model by reviewing scholarly literature and conducting cognitive 

walkthroughs and structured interviews with MEDEVAC pilots. The model was simulated 

several times to ensure that it resembled reality and was verified by pilots and an IMPRINT 

SME before analysis was conducted. We analyzed how specific communication tasks 

contribute to cognitive overload within this phase of flight and identified those 

communication tasks that contributed most to this overload. We developed multiple models 

automating various tasks and combination of tasks and assigned monitoring tasks for that 

automation to either the pilot or copilot. We ran each model 50 times and analyzed the 

results. Finally, we analyzed individual runs of the baseline and modified models to 

determine how workload varied across this phase of flight. We discovered that workload 

did not vary by time but rather by conditions when multitasking was warranted, which 

varies each flight.  

Based on these findings, we developed recommendations for the HSA-DM team 

regarding what communication tasks should be automated to mitigate cognitive overload. 
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These automation recommendations include monitor radio tasks for both the pilot and 

copilot; adjust volume for the pilot; and input frequency, change frequency, and send 

JVMF message for the copilot. We also identified the communication tasks that should be 

retained by the pilot and copilot to effectively operate the aircraft, including internal 

communications for both pilots and external transmit and writing tasks for the copilot. 

B. CONCLUSIONS 

This research verified that both pilot and copilot cognitive workload is excessive at 

times during routine flight and that automation can mitigate some of this overload. This 

research also demonstrates that IMPRINT is an effective tool to model cognitive workload 

and to analyze how automation can be used to mitigate some of this workload. It also 

provides the HSA-DM team with a process to gain insight into similar issues with future 

research. This model can be used in other scenarios to develop automation suggestions.  

The process for task analysis allowed us to elicit critical task information from the 

pilots. The variation between pilot description of the workload involved in various tasks 

indicated that pilots encounter different levels of workload for tasks based on their 

experience. The cognitive walkthrough demonstrated the value of using pilot experience 

rather than simply reviewing literature to gain an in-depth understanding of the tasks 

involved in flight. The literature did not adequately break the tasks down into subtasks to 

provide enough data to effectively model flight. By listening to the pilots describe their 

actions in real time as if they were flying, we were able to elicit subtasks that were crucial 

to our model.  

The process of developing the model demonstrated the importance of leveraging 

SMEs. While we engaged in 24 hours of IMPRINT training, this training was not sufficient 

to provide the detailed knowledge required to develop the model. We spent over 20 hours 

consulting the IMPRINT SME to work through bugs in the model and learn IMPRINT 

techniques that were not covered in training. Developing the model also revealed the 

importance of using accurate VACP data to model cognitive workload. Unrealistic values 

caused significant spikes in workload, over 1,000, which did not accurately represent a 

routine MEDEVAC flight.  
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The baseline model revealed that communication tasks significantly contribute to 

cognitive overload spikes during routine flight. It also revealed a significant difference 

between pilot and copilot workload distribution. The copilot is far more cognitively taxed 

during routine flight. In scenarios where environmental conditions are not perfect, 

however, the pilot workload would likely increase, because their primary task is to fly the 

aircraft. The model can be modified to account for such conditions by increasing the VACP 

values and frequencies associated with the affected tasks. This would require additional 

pilot interviews to elicit accurate workload values for conducting tasks under those 

conditions.  

Experimenting with automation in the modified models revealed that sometimes 

the task of monitoring AI can be more cognitively intensive than performing the automated 

task itself. Additionally, automating smaller tasks did not independently contribute 

significantly to workload reduction; however, cumulatively, the results were more 

impactful. Likewise, individual tasks that have higher workload values but are infrequent, 

such as send JVMF message and input channel, did not greatly contribute to cognitive 

overload. If conditions occur where frequency of these tasks is increased, they will likely 

have a more significant impact.  

Finally, this project revealed several limitations within the built-in results analysis 

tools in IMPRINT. We had to use tools outside of IMPRINT, including Excel, Power BI, 

and data extraction codes, to conduct effective analysis of the model. While IMPRINT 

provides sufficient tools to analyze individual models, it does not support multiple runs of 

models. For future researchers using IMPRINT, being able to compile data with tools like 

Excel is essential to analyzing multiple runs of models.  

C. RECOMMENDATIONS FOR HSA-DM 

The six communication tasks in which cognitive workload can be mitigated through 

automation are:  

• Monitor Radio Nets (pilot)  

• Monitor Radio Nets (copilot)  



70 

• Adjust volume (pilot)  

• Send JVMF message (copilot)  

• Input channel (copilot)  

• Change channel (copilot)  

Automating these tasks in our model yielded a 28% combined reduction in 

cognitive overload. Pilot cognitive overload was reduced by almost 56%, while copilot 

cognitive overload was reduced by 14.4%. Additionally, while this analysis identified how 

automation can reduce cognitive workload, further research needs to be conducted on how 

to implement this automation. We therefore recommend that HSA-DM use this model and 

the processes for analysis and eliciting values from pilots to gather a larger sample of pilot 

feedback. This feedback will provide more input on workload values to produce a more 

accurate model. 

D. RECOMMENDATION FOR FUTURE RESEARCH  

The results of this project indicate that the IMPRINT model can be a useful tool in 

modeling various tasks and reporting the cognitive workload for specific operators, in our 

case the pilot and copilot. The reports and analysis conducted by this research team and the 

interviewees provided valid information on the communication tasks that would reduce 

overall cognitive workload through a routine flight.  

While the data provided the necessary results, it was limited to input provided by 

six MEDEVAC pilots. Our first recommendation is to conduct this analysis again, but with 

a larger sample of MEDEVAC pilots to develop more accurate VACP values. Likewise, 

based on this additional data, more analysis needs to be conducted on how these automated 

tasks will be implemented using existing or future technologies.  

Our second recommendation is to develop IMPRINT models and conduct analysis 

on additional scenarios, including the remaining phases of MEDEVAC flight and various 

environmental conditions, such as inclement weather and night flight. Additional scenarios 
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could also account for crew members aside from the pilot and copilot. This model could 

also be modified to fit other aerial platforms. 

Our third recommendation is to configure this data in a virtual simulation platform 

for validation. This validation would entail inputting the tasks that we identified for 

automation through a virtual simulation platform to allow the pilot and copilot to test and 

evaluate the new automated mechanics. This simulation would further examine the 

relationship between the operator and the automation. This information also could generate 

other information that IMPRINT cannot produce such as operator trust in automation, and 

the behavioral effects of the pilot such as fatigue.  

We also recommend that, as material solutions for automation are developed, cost-

benefit analysis should be conducted to determine if the benefits of automating certain 

tasks are worth the effort. We identified that when automating some tasks, the workload 

associated with the monitoring of the AI negated improvements or increased workload. 

This concept is something that must be investigated before physically implementing 

automation. 

E. SUMMARY 

Our research successfully answered the primary and subordinate research 

questions, which are nested in the goals and research focus areas of the HSA-DM program. 

The focus areas that our results inform are decreasing pilot workload and increasing spare 

cognitive capacity. More important than simply answering the questions, our research 

provides an affordable, repeatable process that can be applied to investigate workload 

associated with other tasks and platforms. Likewise, we are providing the HSA-DM team 

with a model that can be easily manipulated as a starting point for future research on the 

FVL. We recommend that feedback from additional pilots be incorporated to provide more 

accurate workload values to the model. Our model identified six tasks that contribute 

significantly to cognitive overload which can be mitigated by automation. HSA-DM now 

has a model that has been verified by an IMPRINT SME, supported by data from 

MEDEVAC pilots, and a process for investigating cognitive workload that has multiple 

applications. 
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APPENDIX A.  MODEL TASK DATA 

Table 5. Model Task Data with VACP Values 

Task Function Task Audio Cognitive Fine Motor Speech Visual 
0 (Root) Model START      

1 (Root) Manipulate Flight Controls      

10 (Root) Operate Foot Pedals (Pilot) 0.5 1.54 1.3 0 2.53 
100 (Root) FVL_Movement      

101 (Root) Movement_End      

103_0 Communications START      

103_1 Communications InternalComms      

103_10 Communications Co-PilotExternalTransmit      

103_11 Communications Visual_Time Delay1      

103_12 Communications Monitor Radio Nets (Pilot) 1.59 0.5 0.69 1.44 0 
103_13 Communications TimeDelay      

103_14 Communications TimeDelay1      

103_15 Communications Coms_      

103_16 Communications end External Communication Loop      

103_17 Communications EndInternalComsLoop      

103_18 Communications Co-PilotExternalRecieveComs      

103_19 Communications Transmit (Pilot) 0.31 4.46 1.10 2.50 0.31 
103_2 Communications Visual Confirmation of Radio Net (Co-Pilot) 0.31 0.75 1.10 0.81 1.44 
103_20 Communications Receives (Co-Pilot) 4.16 4.36 2.13 0.81 0.50 
103_21 Communications Transmit (Co-Pilot) 2.06 3.66 3.23 2.88 0.50 
103_22 Communications Receives (Pilot) 3.84 3.59 0.00 0.31 0.31 
103_23 Communications Monitor Radio Nets (Co-Pilot) 1.78 0.50 0.00 0.31 0.00 
103_24 Communications Input Channel (Co-Pilot) 1.53 0.56 3.16 0.31 2.16 
103_25 Communications Select Channel (Co-Pilot) 0.31 0.75 1.10 0.31 1.81 
103_26 Communications Send JVMF Message (Co-Pilot) 0.31 1.63 0.69 0.31 0.94 
103_27 Communications Transmit Message (Co-Pilot) 0.31 1.85 2.13 0.31 1.50 
103_28 Communications Adjust Volume (Pilot) 0.69 0.75 3.16 0.31 0.50 
103_29 Communications Visual Confirmation of Radio Net (Pilot) 0.31 0.75 1.10 0.81 1.44 
103_3 Communications PilotExternalCommunications(Receive)      

103_30 Communications NoExternalComs(Pilot)      

103_4 Communications Record information (Co-Pilot) 2.06 3.44 2.99 1.25 2.38 
103_5 Communications NoComs      

103_6 Communications rejoin Pilot External Loop      

103_9 Communications Visual_Time Delay      

103_999 Communications END      

104 (Root) startComs      

11 (Root) Scan Secondary Flight Display (Pilot) 0.5 2.49 0.31 0 4.39 
12 (Root) Scan Primary Flight Display (PiIot) 0.5 2.49 0.31 0 4.39 
13 (Root) Scan External Environment (Pilot) 0.5 2.49 0 0.31 5.31 
14 (Root) Identify Obstacles (Pilot) 0.31 3.29 1.93 1.19 5.5 
15 (Root) Scan Primary Flight Display(Co-Pilot) 0.5 2.16 0 0 3.26 
17 (Root) Scan External Environment(Co-Pilot) 0.5 2.8 0 0.31 5.13 
18 (Root) Identify Obstacles(Co-Pilot) 0.31 3.48 0 0.81 5.31 
2 (Root) instrumentScanFreq      

5 (Root) Fuel Management Procedures (Co-Pilot) 0 2.52 2.44 0.63 1.69 
59 (Root) Conduct Evasive Manuevers (Pilot) 1.69 3.85 1.79 1.69 3.94 
67 (Root) Operate Collective Control (Pilot) 0.69 0.75 2.41 0.31 2.53 
75 (Root) Initialize Model Conditions      

77 (Root) Operate bezel keys (Co-Pilot) 0.31 2.58 2.54 0 2.39 
78 (Root) Operate the multifunction slew controller (MFSC,Co-Pilot) 0.31 2.58 3.16 0.63 2.5 
79 (Root) Operate the collective cursor slew controller (Co-Pilot) 0.31 2.58 3.16 0.63 2.39 
86 (Root) rejoinAviateLoop      

87 (Root) pilotSwitch      

88_0 ShiftAnnouncement START      

88_10 ShiftAnnouncement Operate Cyclic Control (Co-Pilot) 0.5 1.54 2.1 0 2.53 
88_11 ShiftAnnouncement Operate Multifuncational Display (Pilot)      

88_12 ShiftAnnouncement Pilot focus internal to the cockpit 0.5 1.63 0.81 1.19 1.75 
88_13 ShiftAnnouncement End Pilot Shift Internal      

88_14 ShiftAnnouncement FVL_Movement      

88_15 ShiftAnnouncement Movement_End      
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88_3 ShiftAnnouncement airspaceSurvFreq(Co-Pilot)      

88_4 ShiftAnnouncement Scan External Environment(Co-Pilot) 0.50 2.49 0.00 0.31 5.31 
88_5 ShiftAnnouncement Identify Obstacles(Co-Pilot) 0.31 3.29 1.93 1.19 5.50 
88_6 ShiftAnnouncement Manipulate Flight Controls      

88_7 ShiftAnnouncement Operate Foot Pedals (Co-Pilot) 0.5 1.54 1.3 0 2.53 
88_8 ShiftAnnouncement Operate Collective Control (Co-Pilot) 0.69 0.75 2.41 0.31 2.53 
88_9 ShiftAnnouncement rejoinAviateLoop      

88_999 ShiftAnnouncement END      

9 (Root) Operate Cyclic Control (Pilot) 0.5 1.54 2.1 0 2.53 
90 (Root) end other Tasks      

92 (Root) Manage Flight Operations (Co-Pilot)      

94 (Root) end other Tasks1      

96 (Root) Operate Digital Map (Co-Pilot)      

999 (Root) Model END      
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APPENDIX B.  ILLUSTRATION OF ALL SIX MODELS USED FOR ANALYSIS 

 
Figure 19. Base Model with Aviate and Navigate Tasks Shown. Aviate and Navigate Was not Changed throughout the Six 

Different Models, Only Communication was Adjusted 
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Figure 20. Communication Goal Expanded for Baseline Model 
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This is the expanded Pilot Shift Internal goal. This was designed to simulate the times the pilot needed to focus on something other than flying 
and the co-pilot had to take over flight responsibilities. The Variables box seen in the upper right was a troubleshooting tool used during model 
development.  

Figure 21. Pilot Shift Internal Goal Model  
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Observe the monitor AI task assigned which assigns a small ammount of visual and cognitive workload to ensuring AI properly executes these 
tasks. 

Figure 22. Communicate Goal with Pilot’s Monitor Radio Nets and Adjust Radio Volume Automated 
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Figure 23. Communicate Goal with Copilot’s Monitor Radio Nets Automated 
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Figure 24. Communicate Goal with Copilot’s Send JVMF Message Automated 
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Figure 25. Communicate Goal with Copilot’s Input Channel and Select Channel Automated 
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Figure 26. Communicate Goal with All Six Tasks Automated at Once 
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APPENDIX C.  TASK ANALYSIS DATA  

Table 6. Consolidated Task Analysis Data 

 
High Level 

Task 

 
 

Operator 

 
 

Task 

 
 

Sub-task 

 
Sub-sub task 

 
Auditory 

 
Cognitive 

  
Fine Motor 

   
Speech 

  
Visual 

 B M P W B M P W B M P W B M P W B M P W 

Aviate Pilot Manipulate Flight 

Controls 
Operate Cyclic  1 1 0 0 1.2 1 1 2.6 3.6 2.6 2.6 0 0 0 0 0 1 3 1.5 4.4 

 Operate Foot Pedals 
1 1 0 0 1.2 1 1 2.6 0 2.6 2.6 0 0 0 0 0 1 3 1.5 4.4 

Operate Collective 
1 1 0 1 1.2 1 1 0 3.6 2.6 2.6 1 0 0 0 1 1 3 1.5 4.4 

 Instrument Scans    

 Scan Primary Display  
0 1 0 1 4.6 4.6 1 0 0 0 0 1 0 0 0 0 4 6 3 4.4 

Scan Secondary Display 
0 1 0 1 4.6 4.6 1 0 0 0 0 1 0 0 0 0 4 6 3 4.4 

 Airspace 
Surveillance 

   

 Scan External Environment  

0 1 0 1 4.6 4.6 1 0 0 0 0 0 0 0 0 1 5 6 6 4.4 
Identify Obstacles  

0 1 0 0 5 4.6 4.6 0 4.6 2.6 0 0 0 2 2 1 6 6 6 4.4 
 

Copilot 
 Conduct Evasive 

Mvrs 0 2 0 4.2 
 

4.6 6.8 4.6 2.6 2.6 2.6 2 2 1 
 

6 6 5 
 Instrument Scans    

 Scan Primary Display  
1 1 0 0 1.2 4.6 1 1 0 0 0 0 0 0 0 0 1 5 3 4.4 

Scan Secondary Display 
1 1 0 1 1.2 4.6 1 1 3.6 0 0 0 0 0 0 0 1 5 3 4.4 

 Airspace 
Surveillance 

   

 Scan External Environment  
0 1 0 1 4.6 4.6 1 1 0 0 0 0 0 0 0 1 5 5 6 4.4 

Identify Obstacles 
0 1 0 

 

4.6 4.6 4.6 1 0 0 0 0 0 0 2 1 6 5 6 4.4 
 

Manage Flight Ops 
 

 Fuel Management Procedures  

0 0 0 0 5.3 4.6 0 0 6.5 2.2 0 0 0 2 0 0 3 3 0 1 

Navigate Pilot/Copilot Announce shift 
internal 

 
0 1 0 1 0 4.6 0 1 0 2.6 0 0 2 2 0 1 0 5 0 1 

 
Operate Digital Map Operate bezel keys on the MFD 

 
0 1 0 

 
0 4.6 0 5.5 2.2 5.5 0 2.2 0 0 0 0 0 5 0 4.4 

 
Operate the collective slew controller 0 1 0 0 0 4.6 0 5.5 5.5 5.5 0 2.2 0 2 0 0 0 5 0 4.4 

Operate the multifunction slew 
controller (MFSC) 0 1 0 0 0 4.6 0 5.5 5.5 5.5 0 2.2 0 2 0 0 0 5 0 5 

Communicate 
e Pilot 

 
Transmit Information 0 1 0 

 
1.2 4.6 7 5.5 2.2 0 2.2 0 4 2 3 1 0 1 0 0 

 Receive Information 
6 6 4.5 0 1.2 4.6 7 1 0 0 0 0 0 0 0 1 

 

1 0 0 
 External 

Communications 
 

 
Monitor Radio Nets 

 0 1 4.5 0 0 1 0 1 0 2.2 0 0 4 0 0 1 0 0 0 0 

Visual Confirmation of Channel 
0 1 0 0 0 1 1.2 1 0 2.2 2.2 0 0 2 0 1 0 1 4 0 

Transmit Information (Radio) 
0 6 0 1 1.2 5 7 1 2.2 2.2 2.2 0 0 4 3 

 

0 1 0 
 

Input Radio Freq 
0 6 0 1 0 5 0 1 5.5 2.2 5.5 5.5 0 4 0 1 1 1 5.1 1 

 
Adjust Volume 

Identify which 
channel is 
transmittin
g 

 
0 

 
1 

 
1 

 
1 

 
0 

 
1 

 
1.2 

 
1 

 
5.5 

 
2.2 

 
5.5 

 
0 

 
0 

 
0 

 
0 

 
1 

 
1 

 
0 

 
1 

 
0 

 Co-Pilot Internal 
Communications 

 

 Transmit Information  
0 6 0 1 1.2 5 7 1 2.2 2.2 2.2 5.5 4 4 3 1 0 1 0 1 

Receive Information 
6 6 4.5 1 1.2 5 7 4.6 0 2.2 0 5.5 0 2 0 1 0 1 0 1 

 External 
Communications 

   

 Monitor Radio Channels  
0 1 4.5 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 

Select Radio Channel for transmition 0 0 0 1 0 1 1.2 1 0 2.2 2.2 0 0 0 0 1 0 3 4 0 

Transmit Information (Radio) 
0 3 0 1 1.2 4.6 7 1 2.2 2.2 2.2 0 4 2 3 1 3 1 0 0 

Input Radio Freq 
0 4.3 0 1 0 1.2 0 1 5.5 2.2 5.5 0 0 0 0 1 0 3 5.1 0 

 Identify which 
channel is 
transmitting 

  
1 

 
1 

 
1 

  
1 

 
1.2 

 
1 

  
2.2 

 
0 

 
5.5 

 
0 

 
0 

 
0 

 
1 

 
0 

 
0 

 
0 

 
1 
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 Monitor JVMF  
0 0 

No input, 
flew UH- 

60L, didn’t 
have 

capability 

1 4.6 N/A N/A 1 2.2 N/A N/A 0 0 N/A N/A 1 3 N/A N/A 0 
Send Message 

0 0 1 4.6 1.2 
 

1 5.5 2.2 
 

0 0 0 
 

1 3 3 
 

0 
Receive Message 

0 1 1 4.6 4.6 
 

4.6 2.2 2.2 
 

5.5 0 0 
 

1 3 3 
 

1 
Adjust Volume 

1 1 
 

1 
 

4.6 
 

2.2 
 

5.5 0 0 
 

1 0 0 
 

1 
Record Information  0 6 1 4.6 4.6  5.5 5.5 4.6  2.2 0 4  0 3 3  4 
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