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1. Introduction 

Feature-based classification and regression tasks have been handled by deep 
learning (DL)-based models like FF-MLP,1 DT,2 SVM,3 and ELM4 for a long time. 
Such models have been found to be especially effective, but they also suffer from 
the lack of interpretability, high model complexity, and high computational cost. 
They all approach the common task of feature space partitioning in different ways. 

We propose a new classification-oriented machine learning model named subspace 
learning machine (SLM). It finds a balance between simplicity and effectiveness 
by partitioning an input feature space into multiple discriminant subspaces in a 
hierarchical manner. SLM does not change the feature space at all. The probabilistic 
projection in SLM is simply used for feature space partitioning without generating 
new features. Each tree node splitting corresponds to a hyperplane partitioning 
through weights and bias learning. As a result, both half subspaces can be 
preserved. SLM learns partitioning parameters in a feedforward and probabilistic 
approach, which is efficient and transparent. 

We explain the differences between SLM and other popular classification 
approaches in the following sections. 

1.1 Feedforward Multilayer Perceptron (FF-MLP) 

FF-MLP uses linear discriminant analysis (LDA) and the Gaussian mixture model 
(GMM) to capture feature distributions of multiple classes. It adopts neuron pairs 
with weights of opposite signed vectors to represent partitioning hyperplanes. It 
was introduced in 19583 and has been broadly applied to many classification and 
regression tasks. 5–7 Its universal approximation capability is studied in Hornik 
(1989), Stinchombe (1989), Glover (1986), and Leshno et al. (1993).8–11  

There are two approaches to the design of a practical MLP solution:  

• The parameters are finetuned at each layer through back propagation.12 

Architecture of MLP includes tabu search (a metaheuristic algorithm for 
solving combinatorial optimization problems)13 and simulated annealing.14 
In the convolutional neural networks (CNNs)15–18 variant of MLP, 
convolutional layers share neuron weights and biases across different 
spatial locations. The fully connected layers remain the same as in 
traditional MLPs. It also serves as the building blocks in transformer 
models.19,20  

• MLP layers are constructed layer by layer.21–24 In one optimization 
method,25–27 the parameters of the newly added hidden layer are added 
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without back propagation.28–30 In a method using CNN, the convolution 
operation changes the input feature space to an output feature space 
serving as the input to the next layer. Later the nonlinear activation in a 
neuron partitions the output feature space. Only one-half subspace is 
selected to resolve the sign confusion problem caused by the cascade of 
convolution operations.31,4  

1.2 Decision Tree (DT) 

A DT partitions one space into two subspaces by recursively selecting the most 
discriminant feature one at a time. Selecting a partition in DTs is easier, as it is 
conducted on a single feature, but its discriminant power is weak, so it is a weak 
classifier. For high tree depths, multiple DTs can be used to avoid overfitting the 
training data. In such situations, each of them individually is a weak classifier but 
their ensemble yields a strong one; for example, the random forest (RF) classifier.32 

Classification and Regression Tree (CART)2 (and similarly ID333) are classical DT 
algorithms. They are weak classifiers but can achieve higher performance by using 
multiple DTs with bootstrap aggregation32 and other boosting methods. 34 They may 
still fail due to poor split of training and test data and overfitting of the training 
data. As compared to them, one SLM tree (i.e., SLM Baseline) can exploit 
discriminant features obtained by probabilistic projections and achieve multiple 
splits at one node. SLM generally yields wider and shallower trees. 

1.3 Random Forest (RF) 

An RF consists of multiple decisions trees, and its predictive performance35 
depends on 1) the strength of individual trees, and 2) on a measure of their 
dependence that should be lower. RF training takes only a fraction of training 
samples and their features in building a tree. Thus, it trades the strength of each DT 
for the general ensemble performance for achieving a higher diversity. Several 
designs have been proposed for achieving uncorrelated individual trees, as follows: 

• Bagging36 builds each tree through random selection with replacement in 
the training set.  

• Random split selection37 selects a split at a node among the best splits at 
random. 

• A random subset of features is selected38 to grow each tree.  

RF uses bagging and feature randomness to create uncorrelated trees in a forest, 
and their combined prediction is more accurate than that of an individual tree. In 
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contrast, the SLM forest building process uses all training samples and the whole 
feature space. It utilizes feature randomness to achieve the diversity of each SLM 
tree (described in Section 3.1). The effective diversity and strength of an individual 
SLM tree remains unaffected in building an SLM forest. So, the SLM forest 
achieves better predictive performance and faster convergence in terms of the tree 
number. 

1.4 Support Vector Machine (SVM)  

SVM algorithm tries to find a hyperplane in an N-dimensional space (N = number 
of features). The optimum hyperplane has the maximum margin or the distance 
from the data points of all classes. Support vectors are the data points closer to the 
hyperplane and influence the position and orientation of the hyperplane. They are 
used to maximize the margin.  

1.5 Extreme Learning Machine (ELM) 

It projects a high-dimensional space to a 1D space randomly to find the optimal 
split point in the associated 1D space. Theory of random projection learning models 
and their properties (e.g., interpolation and universal approximation) has been 
investigated.39–42 ELM is not efficient in practice for high feature dimensions as 
many trials are needed for finding good projections. It adopts random weights for 
training feed forward neural networks.43 MLP can be built with ELM by adding 
new layers with randomly generated weights. However, it is inefficient in practice 
due to the requirements of long training time and large model size for a large search 
space.  

SLM Baseline does take the efficiency into account by building a general DT 
through probabilistic projections, which reduces the search space by leveraging 
most discriminant features with several hyper-parameters. We use the term 
“probabilistic projection” rather than “random projection” to emphasize their 
difference. 

1.6 Gradient Boosting Decision Tree (GBDT) 

Gradient boosting is another ensemble method of weak learners. It builds a 
sequence of weak prediction models. Each new model attempts to compensate the 
prediction residual left in previous models. The gradient boosting decision tree 
(GBDT) method includes 1) the standard gradient boosting,44 and 2) XGBoost.45,46 

It expands a general loss function in a Taylor series and defines a gain to perform 
more effective node splitting than standard DTs.  
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SLM Boost mimics the boosting process of XGBoost but replaces DTs with SLM 
trees. As compared with standard GBDT methods, SLM Boost achieves faster 
convergence and better performance because of stronger performance of an SLM 
tree. 

2. Classification Using Subspace Learning Machine (SLM) 

The SLM method is motivated by two basic ideas:  

• Random projection is used to find more discriminant subspaces. 

• In DT, one parent node is split into two child nodes. SLM allows an n-ary 
split instead. One example is shown in Fig. 1a and b, where space S0 is split 
into four disjoint subspaces. Generally, the n-ary split gives wider and 
shallower decision trees so that overfitting can be avoided more easily.  

   

Fig. 1 (a) An illustration of SLM, where space S0 is partitioned into four subspaces with 
two splits, and (b) the corresponding SLM tree with a root node and four child nodes 

We are given an input data set 𝑋𝑋. 

• Denote a data sample as 𝒙𝒙𝒍𝒍 which is a vector in a feature space (𝐿𝐿 = number 
of sample-vectors, 𝐷𝐷 = number of features in each sample or the dimension 
of the feature space) 

𝒙𝒙𝒍𝒍 = �𝑥𝑥𝑙𝑙,1, 𝑥𝑥𝑙𝑙,2, … , 𝑥𝑥𝑙𝑙,𝑑𝑑 , … , 𝑥𝑥𝑙𝑙,𝐷𝐷�
𝑇𝑇 ∈ 𝑅𝑅𝐷𝐷 , 𝑙𝑙 = 1,2, … , 𝐿𝐿 

An example for a point in ring and circle data set (D = 2) is 𝒙𝒙𝒍𝒍 = �
𝑥𝑥𝑙𝑙,1
𝑥𝑥𝑙𝑙,2�.  

• Each data vector 𝒙𝒙𝒍𝒍 has the class label vector 𝑦𝑦𝑙𝑙, which has K classes. 
(𝒚𝒚~𝐾𝐾 × 𝐿𝐿). Each 𝑦𝑦𝑙𝑙 vector has K-dimensional label space of classes 

𝑦𝑦𝑙𝑙 = �𝑦𝑦𝑙𝑙,1,𝑦𝑦𝑙𝑙,2, … , 𝑦𝑦𝑙𝑙,𝑘𝑘, … , 𝑦𝑦𝑙𝑙,𝐾𝐾�
𝑇𝑇 ∈ 𝑅𝑅𝐾𝐾 , 𝑙𝑙 = 1,2, … , 𝐿𝐿; 𝑘𝑘 = 1,2, … ,𝐾𝐾 
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Here 𝑦𝑦𝑙𝑙,𝑘𝑘= 1, and 𝑦𝑦𝑙𝑙,𝑘𝑘′= 0 for 𝑘𝑘 ≠ 𝑘𝑘′.  

• The combined sample and outcome are given by 𝐷𝐷𝑙𝑙 = (𝒙𝒙𝒍𝒍, 𝑦𝑦𝑙𝑙) having D+1 
elements. 

In the partitioning process, the root node is the whole sample space, and an 
intermediate or leaf node corresponds to a partitioned subspace. The goal of SLM 
is to hierarchically partition the feature space RD into multiple subspaces so that 
finally the samples at leaf nodes are as pure as possible. At the end of the process 
most samples at a node should be in the same class. Then all samples in the leaf 
node can be assigned to the majority class. The data classification by SLM has the 
following steps. 

Step 1: 𝑋𝑋 → 𝑆𝑆0: The feature subspace S0 with dimension 𝐷𝐷0 is determined and 
assigned to the root node of a DT.  

For X with low dimensions S0 ≈ X, and for X with high dimensions, less 
discriminant features from X are removed such that 𝐷𝐷0 < 𝐷𝐷. For that, denote the  
d-th feature set of xl by 𝑭𝑭𝒅𝒅 = {𝑥𝑥𝑙𝑙,𝑑𝑑|1 ≤  𝑙𝑙 ≤  𝐿𝐿}.  

Express the projection vectors (PV) in terms of basis vectors.  

Express the PV as  

𝒂𝒂 = 𝑎𝑎1𝒆𝒆𝟏𝟏 + ⋯+ 𝑎𝑎𝑑𝑑𝒆𝒆𝒅𝒅 + ⋯+ 𝑎𝑎𝐷𝐷𝒆𝒆𝑫𝑫, �|𝒂𝒂|� =1 

Here 𝒆𝒆𝒅𝒅 is the basis vector in which d-th value is 1 and the rest are 0.  

Rewrite PV in terms of reordered basis vectors.  

Choose an 𝒆𝒆𝒅𝒅 and a corresponding partitioning point 𝑡𝑡𝑑𝑑. Calculate the loss 
function 𝐿𝐿𝑑𝑑(𝑡𝑡𝑑𝑑) (as given in Appendix B). Vary 𝑡𝑡𝑑𝑑, and find the optimum 
𝑡𝑡𝑑𝑑∗  out of them that minimizes 𝐿𝐿𝑑𝑑(𝑡𝑡𝑑𝑑). 

𝑡𝑡𝑑𝑑∗ = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑑𝑑𝐿𝐿𝑑𝑑(𝑡𝑡𝑑𝑑) 

Rank 𝑡𝑡𝑑𝑑∗  according to their loss function values  

𝐿𝐿1(𝑡𝑡1∗) ≤ 𝐿𝐿2(𝑡𝑡2∗) … .≤ 𝐿𝐿𝐷𝐷(𝑡𝑡𝐷𝐷∗ ) 

and reorder basis vectors as (𝒆𝒆𝟏𝟏′ , 𝒆𝒆𝟐𝟐′ ,…, 𝒆𝒆𝒅𝒅′ ,…, 𝒆𝒆𝑫𝑫′ ) according to the loss 
function, which allows rewriting PV as  

𝒂𝒂 = 𝑎𝑎1′ 𝒆𝒆𝟏𝟏′ + ⋯+ 𝑎𝑎𝑑𝑑′ 𝒆𝒆𝒅𝒅′ + ⋯+ 𝑎𝑎𝐷𝐷′ 𝒆𝒆𝑫𝑫′ , �|𝒂𝒂′|� =1 

Use hyperparameters to choose 𝑎𝑎𝑑𝑑′   
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The 𝑎𝑎𝑑𝑑′  coefficients are chosen in a probabilistic manner using three 
hyperparameters (𝛽𝛽, 𝑎𝑎,𝑅𝑅). 

i) 𝛽𝛽 = Coefficient in the exponential distribution. It controls the 
probability of selecting 𝑎𝑎𝑑𝑑′  using  

𝑃𝑃𝑑𝑑 = 𝛽𝛽0𝑒𝑒−𝛽𝛽𝛽𝛽 (𝛽𝛽0 is the normalization). It is higher for smaller d. 

ii) 𝛼𝛼 = Coefficient in the exponential distribution. It controls the 
probability of selecting the dynamic range of 𝑎𝑎𝑑𝑑′  using envelope 
parameter 𝐴𝐴𝑑𝑑 = 𝛼𝛼0𝑒𝑒−𝛼𝛼𝛼𝛼 (𝛼𝛼0 is the normalization)., 𝛼𝛼 > 0. Only the 
integer values are used due to ease of computation. 

𝑎𝑎𝑑𝑑′ = 0, ±1, ±2, … , ±𝐴𝐴𝑑𝑑 (Integer part) 

iii) R = Number of selected 𝑎𝑎𝑑𝑑′  coefficients such that R < D (for large D, 
R << D). The rest of the D ‒ R coefficients are set to zero. 

The data vector dimension is reduced, and it is 𝑥𝑥0 = �𝑥𝑥0,1, 𝑥𝑥0,2, … , 𝑥𝑥0,𝐷𝐷0�, 𝐷𝐷0 =
𝐷𝐷 − 𝑅𝑅. 

Step 2: Generate p PVs using this process to get p 1D subspaces. 

The three hyperparameters (𝛽𝛽,𝑎𝑎,𝑅𝑅) define a collection of many PVs whose 
search space is bounded by  

Lower bound = ∏ (2𝐴𝐴𝑑𝑑 + 1)𝑅𝑅
𝑑𝑑=𝐷𝐷+1−𝑅𝑅 , and Upper bound = ∏ (2𝐴𝐴𝑑𝑑 + 1)𝑅𝑅

𝑑𝑑=1 . 

For each chosen PV in this set, the DFT or loss function is calculated to choose 
the best p PVs. 

Step 3: 𝑝𝑝 → 𝑞𝑞 1D subspaces 

Select the best q subspaces from p candidate subspaces based on 
discriminability and correlation.  

Step 4: Use n-ary splits to get 2q child nodes (example in Fig. 1). 

3. Extension of Basic SLM to SLM Forest and SLM Boost 

An ensemble model aims to obtain better performance than each constituent model 
alone, using methods like bootstrap aggregating (“bagging”) and boosting—for 
example, RF and GBDT. The bagging applied to SLM gives SLM Forest and 
similarly boosting gives SLM Boost. The latter is inspired by XGBoost.45,46 
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3.1 SLM Forest 

The RF contains a set of tree predictors, where each tree is built using the values of 
a random vector sampled independently. All trees in the forest43 have the same 
distribution. According to the Strong Law of Large Numbers, the RF performance 
converges with increasing tree numbers. Combination of many weak decision trees 
leads to significant improvement over a single DT result.  

Similarly, the SLM Forest uses the diversity of many single SLM trees through 
probabilistic selection to get better results than single tree. For partitioning at a 
node, D0 dimensions are probabilistically selected from the D input feature 
dimensions by considering each feature’s discriminant ability. A larger β denotes 
more discriminant features. All training samples and all feature dimensions are kept 
as the input at each node splitting to increase the strength of individual SLM trees. 
The decorrelating partitioning planes are used to get better performance and faster 
converge than RF.  

3.2 SLM Boost 

With standard DTs as weak learners, GBDT44 and XGBoost45,46 can deal with a 
large amount of data efficiently and achieve the state-of-the-art performance in 
many machine learning problems. They take the ensemble of standard DTs with 
boosting, that is, by defining an objective function and optimizing it with learning 
a sequence of DTs. By following the gradient boosting process, we propose SLM 
Boost to ensemble a sequence of SLM trees. 

Let 𝑓𝑓𝑡𝑡(𝑥𝑥𝑙𝑙) denote the t-th SLM tree out of T trees in total. Then, the prediction of 
the ensemble is the sum of all trees, that is, each of the L samples is predicted as  

𝑦𝑦�𝑙𝑙 = −∑ 𝑓𝑓𝑡𝑡(𝑥𝑥𝑙𝑙)𝑇𝑇
𝑡𝑡=1 , l = 1, 2,…,L 

Define the objective function for first t-trees 

Ψ(t) = � 𝛾𝛾(
𝐿𝐿

𝑙𝑙=1
𝑦𝑦�𝑙𝑙 ,𝑦𝑦�𝑙𝑙

(𝑡𝑡)) 

Here 𝑦𝑦�𝑙𝑙
(𝑡𝑡)= prediction of sample l with all t trees, 𝛾𝛾(𝑦𝑦�𝑙𝑙 ,𝑦𝑦�𝑙𝑙

(𝑡𝑡)) = training loss for the 
model with 

a sequence of t trees. Let initial model prediction be 𝑦𝑦�𝑙𝑙
(0) = 0, so one gets  

𝑦𝑦�𝑙𝑙
(𝑡𝑡) = 𝑦𝑦�𝑙𝑙

(𝑡𝑡−1) + 𝑓𝑓𝑡𝑡(𝑥𝑥𝑙𝑙) 

Then the objective function is 
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Ψ(t) = � 𝛾𝛾(
𝐿𝐿

𝑙𝑙=1
𝑦𝑦�𝑙𝑙 ,𝑦𝑦�𝑙𝑙

(𝑡𝑡−1) + 𝑓𝑓𝑡𝑡(𝑥𝑥𝑙𝑙)) 

Following the XGBoost process, we use Taylor expansion up to the second order. 
With individual SLM trees stronger than individual DTs, SLM Boost achieves 
better performance and faster convergence than XGBoost.  

4. Performance Evaluation of the SLM  

4.1 Data Sets 

To evaluate the performance of SLM, we conduct experiments on the nine data sets 
shown in Table 1 (also Appendix A for model parameters). 

Table 1 Details of nine data sets used for classification 

Data set Properties Description 
Circle-and-
Ring 

Feature 
dimension (FD) 
= 2, synthetic  

An inner circle as one class and an outer ring as the other 
class as shown in Fig. 4a,47 500 samples per class, 20% 
noisy samples in the decision boundary, samples 
randomly split into 60% training and 40% test sets  

2-New-Moons FD = 2, 
synthetic  

Two interleaving new moons as shown in Fig. 4b.47 Each 
new moon is a class, 500 samples per class, 30% noisy 
samples in the decision boundary, samples randomly 
split into 60% training and 40% test sets 

4-New-Moons FD = 2, 
synthetic  

Four interleaving new moons as shown in Fig. 4c.47 Each 
new moon is a class, 500 samples per class, 20% noisy 
samples in the decision boundary, samples randomly 
split into 60% training and 40% test sets 

Iris FD = 4, real-
world  

Iris plants data set47,48 has 3 classes, 4D features, and 150 
samples, samples randomly split into 60% training and 
40% test sets 

Wine FD = 4, real-
world 

Wine recognition data set47,49 has 3 classes, 13D 
features, and 178 samples, samples randomly split into 
60% training and 40% test sets 

B.C.W. FD = 4, real-
world 

Breast cancer Wisconsin data set47,49 has 2 classes, 30D 
features, and 569 samples, samples randomly split into 
60% training and 40% test sets 

Diabetes FD = 4, real-
world 

The Pima Indians diabetes data set50 is for diabetes 
prediction. It has 2 classes, 8D features, and 768 
samples. By following,4 we removed samples with the 
physically impossible zero value for glucose, diastolic 
blood pressure, triceps skin fold thickness, insulin, or 
BMI and used the remaining 392 samples for consistent 
experimental settings, samples randomly split into 60% 
training and 40% test sets 
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Table 1 Details of nine data sets used for classification (continued) 

Ionosphere FD = 4, real-
world 

Binary classification data set51,49 is used to predict 
whether the radar return is good or bad. It has 2 classes, 
34D features, and 351 instances. For consistency with,4 
we remove the feature dimension that has the zero 
variance from the data, Samples randomly split into 60% 
training and 40% test sets 

Banknote FD = 4, real-
world 

The banknote authentication data set49 classifies whether 
a banknote is genuine or forged based on the features 
extracted from the wavelet transform of banknote 
images. It has 2 classes, 4D features, and 1372 samples, 
samples randomly split into 60% training and 40% test 
sets 

 
We divide the 10 classifiers into two groups, 1) six basic methods: FF-MLP, BP-
MLP, LSVM, SVM/RBF, DT, and SLM Baseline, and 2) four ensemble methods: 
RF, XGBoost, SLM Forest, and SLM Boost.  

The best results for each group are shown in bold. SLM Baseline and SVM/RBF 
often outperform FF-MLP, BP-MLP, LSVM, and DT and give the best results. 

Some observations follow. 

• For the three synthetic 2D data sets (i.e., circle-and-ring, 2-new-moons, and 
4-new-moons), the gain of SLM over MLP is relatively small due to noisy 
samples. The difference in sample distributions of training and test data 
plays a role in the performance upper bound. To demonstrate this point, we 
show sample distributions of their training and testing data in Fig. 2. For the 
data sets with high-dimensional input features, the SLM methods achieve 
better performance over the classical ones. 

• The network architectures of FF-MLP and BP-MLP and their performance 
results are taken from Lin et al.4 FF-MLP has a four-layer network 
architecture (one input layer, two hidden layers, and one output layer). The 
input neuron numbers equal feature dimension input and output one is the 
class number. The neuron numbers at each hidden layer are hyper-
parameters determined adaptively by a data set. BP-MLP has the same 
architecture as FF-MLP against the same data set. Its model parameters are 
initialized by those of FF-MLP and trained for 50 epochs. 

• For the two SVM models, we conduct grid search for hyper-parameter C in 
LSVM and hyper-parameters C and γ in SVM/RBF for each of the nine data 
sets to yield the optimal performance. 

• For the DT model, the weighted entropy is used as the loss function in node 
splitting. We do not set the maximum depth limit of a tree, the minimum 
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sample number and the minimum loss decrease required as the stopping 
criteria. Instead, we allow the DT for each data set to split until the purest 
nodes are reached in the training. For the ensemble of DT models (i.e., RF 
and XGBoost), we conduct grid search for the optimal tree depth and the 
learning rate of XGBoost to ensure that they reach the optimal performance 
for each data set. The number of trees is set to 100 to ensure convergence. 

• The hyper-parameters of SLM Baseline (i.e., with one SLM tree) include 
D0, p, Aint, alpha, beta, and the minimum number of samples used in the 
stopping criterion. They are searched to achieve the performance as shown. 
The number of trees in SLM Forest is set to 20 due to the faster convergence 
of stronger individual SLM trees. The number of trees in SLM Boost is the 
same as that of XGBoost for fair comparison of learning curves. 

Figure 2 shows visualization, and Table 2 shows the classification accuracy results 
of 10 classifiers.  

 

Fig. 2 Visualization of 2D feature data sets: (a) circle-and-ring, (b) 2-new-moon, and (c) 
4-new-moon. One ground truth sample of the training data, the ground truth of the test 
data, and the SLM predicted results are shown in the first, second, and third rows, 
respectively. 
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Table 2 Classification accuracy comparison of the 10 benchmarking methods on 9 data 
sets 

Data 
sets→ 

circle-and- 
ring 

2-new- 
moons 

4-new- 
moons Iris Wine B.C.W. Pima Ionosphere Banknote 

FF-MLP 87.25 91.25 95.38 98.33 94.44 94.30 73.89 89.36 98.18 
BP-MLP 88.00 91.25 87.00 64.67 79.72 97.02 75.54 84.11 88.38 
LSVM 48.50 85.25 85.00 96.67 98.61 96.49 76.43 86.52 99.09 
SVM/RBF 88.25 89.75 88.38 98.33 98.61 97.36 75.15 93.62 100.00 
DT 85.00 87.25 94.63 98.33 95.83 94.74 77.07 89.36 98.00 
SLM Baseline 88.25 91.50 95.63 98.33 98.61 97.23 77.71 90.07 99.09 
RF 87.00 90.50 96.00 98.33 100.00 95.61 79.00 94.33 98.91 
XGBoost 87.50 91.25 96.00 98.33 100.00 98.25 75.80 91.49 99.82 
SLM Forest 88.25 91.50 96.00 98.33 100.00 97.36 79.00 95.71 100.00 
SLM Boost 88.25 91.50 96.00 98.33 100.00 98.83 77.71 94.33 100.00 

4.2 Comparison of Model Sizes 

The model size or the number of model parameters of FF/BP-MLP, LSVM, 
SVM/RBF, DT, and SLM Baseline are compared in Table 2.  

• FF-MLP and BP-MLP share the same architecture, so their model sizes are 
the same. It is calculated by summing up the weight and bias numbers of all 
neurons.  

• The model parameters of LSVM and SVM/RBF can be computed as 

 SVM Parameter = L + 1 + (D + 2) 𝑁𝑁𝑆𝑆𝑆𝑆  (1) 

Here L, D, and 𝑁𝑁𝑆𝑆𝑆𝑆 denote the number of training samples, the feature dimension, 
and the number of support vectors, respectively. The first term in Eq. 1 is the slack 
variable for each training sample. The second term denotes the bias. The last term 
comes from the fact that each support vector has D feature dimensions, one 
Lagrange dual coefficient, and one class label. 

• The model sizes of DTs depend on the number of splits learned during the 
training process, and there are two parameters learned during each split for 
feature selection and split value, respectively; the sizes of DTs are 
calculated as two times the number of splits. 

• The size of an SLM baseline model depends on the number of partitioning 
hyperplanes that are determined by the training stage. For given hyper-
parameter D0, each partitioning hyperplane involves one weight matrix and 
a selected splitting threshold, with qi decorrelated partitioning learned for 
partitioning each parent node. Then, the model size of the corresponding 
SLM can be calculated as 
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 SLM Parameter = ∑ 𝑞𝑞𝑖𝑖(𝐷𝐷0 + 1)𝑀𝑀
𝑖𝑖=1  (2) 

Here M =  the number of partitioning hyperplanes. Table 3 compares the model 
sizes. 

Table 3 ML model size comparison (four ML models against nine data sets, smallest model 
size in bold) 

Data set FF/BP-
MLP LSVM SVM/ 

RBF DT SLM 
Baseline 

DT 
Depth 

SLM Tree 
depth 

Circle-and-Ring 125 2,965 1,425 350 39 14 4 
2-new-moons 114 1,453 1,305 286 42 15 4 
4-new-moons 702 2,853 2,869 298 93 11 5 
Iris 47 235 343 34 20 6 3 
Wine 147 453 963 26 99 4 2 
B.C.W. 74 1,462 3,254 54 126 7 4 
Pima 2,012 1,532 1,802 130 55 8 3 
Ionosphere 278 1,017 2,207 50 78 10 2 
Banknote 22 1,160 1,322 78 40 7 3 

4.3 Comments on Performance 

• For SVM, the training involves learning the dual coefficients and slack 
variables for each training sample and memorization of the support vectors. 
The model size increases linearly with the number of training samples and 
number of support vectors. For similar classification accuracy, the SVM 
models are much heavier with a large number of training samples.  

• For MLPs, SLM models outperform the MLP models in all benchmarking 
data sets for high-dimension classification tasks. 

• For the data sets with saturated performance such as Iris, Banknote, and 
Ionosphere, SLM achieves better or comparable performance with less than 
half of the parameters of MLP.  

• For DTs, the SLM models give wider and shallower trees. The depth of 
SLM trees are overall smaller than the DT models, while the number of 
splitting can be comparable for the small data sets, like Wine. The SLM 
trees tend to make more splits to reach pure leaf nodes at shallower depth. 
While outperforming the DTs in all the data sets, the SLM model sizes are 
generally smaller than the DTs as they benefit from the subspace 
partitioning process. 
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4.4 Convergence Performance Comparison of DT Ensembles and 
SLM Ensembles 

We compare the convergence performance of the ensemble and the boosting 
methods of DT and SLM for Wine, B.C.W., and Pima, three data sets in Fig. 3a–c.  

• For RF and SLM Forest, which are ensembles of DT and SLM, respectively, 
we set their maximum tree depth and learning rate to the same. We show 
their accuracy curves as a function of the tree number in the left subfigure. 
We see that SLM Forest converges faster than RF.  

• For XGBoost and SLM Boost, which are boosting methods of DT and SLM, 
respectively, we show the logloss value as a function of the tree number in 
the right subfigure. Again, we see that SLM Boost converges faster than 
XGBoost. 

 

Fig. 3 Comparison of SLM and DT ensembles for three data sets: (a) Wine, (b) B.C.W., 
and (c) Pima. Each left subfigure compares the accuracy curves of SLM Forest and RF as a 
function of the tree number. Each right subfigure compares the logloss curves of SLM Boost 
and XGBoost as a function of the tree number. 
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5. Subspace Learning Regressor (SLR) 

5.1 Method 

A different loss function can be adopted in the subspace partitioning process for a 
different task. For example, to solve a regression problem, we can follow the same 
methodology as described in Section 2 but adopt the mean-squared-error (MSE) as 
the loss function. The resulting method is called subspace learning regression 
(SLR), and the corresponding regressor is the subspace learning regressor. 

Mathematically, each training sample has a pair of input x and output y, where x is 
a D-dimensional feature vector and y is a scalar that denotes the regression target. 
Then, we build an SLR tree that partitions the D-dimensional feature space 
hierarchically into a set of leaf nodes. Each of them corresponds to a subspace. The 
mean of sample targets in a leaf node is set as the predicted regression value of 
these samples. The partition objective is to reduce the total MSE of sample targets 
as much as possible. In the partitioning process, the total MSE of all leaf nodes 
decreases gradually and saturates at a certain level. 

The ensemble and boosting methods are applicable to SLR. The SLR Forest 
consists of multiple SLR trees through ensembles. Its final prediction is the mean 
of predictions from SLR trees in the forest. To derive SLR Boost, we apply the 
GBDT process and train a series of additive SLR trees to achieve gradient boosting, 
leading to further performance improvement. As compared with a decision tree, an 
SLR tree is wider, shallower, and more effective. As a result, SLR Forest and SLR 
Boost are more powerful than their counterparts as demonstrated in the next 
subsection. 

5.2 Performance Evaluation 

To evaluate the performance of SLR, we compare the root mean-squared-error 
(RMSE) performance of eight regressors on six data sets in Table 3. The five 
benchmarking regressors are linear SVR (LSVR), SVR with RBF kernel, DT, RF, 
and XGBoost. There are three variants of SLR: SLR Baseline (with one SLR tree), 
SLR Forest, and SLR Boost. The first three data sets are synthesized data sets as 
described by Quinlan.52 We generate 1000 samples for each of them. The last three 
data sets are real world data sets. Samples in all six data sets are randomly split into 
60% training samples and 40% test samples. Table 4 describes the regression data. 
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Table 4 Regression data sets 

Data set Description 
Make 
Friedman 1 

Its input vector, x, contains P (with P > 5) elements, which are independent 
and uniformly distributed on interval [0, 1]. Its output, y, is generated by the first 
five elements of the input. The remaining (P 5) elements are irrelevant 
features and can be treated as noise. We refer to Quinlan52 for details. We 
choose P = 10 in the experiment. 

Make 
Friedman  
2-3 

Their input vector, x, has four elements. They are independent and uniformly 
distributed on interval [0, 1]. Their associated output, y, can be calculated by 
all four input elements via mathematical formulas as described by Quinlan.52 

Boston It contains 506 samples, each of which has a 13D feature vector as the input. 
An element of the feature vector is a real positive number. Its output is a 
real number within interval [5, 50]. 

California 
Housing 

It contains 20640 samples, each of which has an 8D feature vector. The 
regression target (or output) is a real number within interval [0.15, 5]. 

Diabetes It contains 442 samples, each of which has a 10D feature vector. Its regression 
target is a real number within interval [25, 346]. 

 
The performance comparison is given in Table 5. 

Table 5 Regression performance (eight regressors, six data sets) 

Data sets make 
friedman1 

make 
friedman2 

make 
friedman3 Boston California 

housing Diabetes 

LSVR 2.49 138.43 0.22 4.90 0.76 53.78 
SVR/RBF 1.17 6.74 0.11 3.28 0.58 53.71 
DT 3.10 33.57 0.11 4.75 0.74 76.56 
SLR Baseline 2.89 31.28 0.11 4.42 0.69 56.05 
RF 2.01 22.32 0.08 3.24 0.52 54.34 
XGBoost 1.17 32.34 0.07 2.67 0.48 53.99 
SLR Forest 1.88 20.79 0.08 3.01 0.48 52.52 
SLR Boost 1.07 18.07 0.06 2.39 0.45 51.27 

 
Some observations follow. 

•  SLR Baseline outperforms DT in all data sets.  

• Also, SLR Forest and SLR Boosting outperform RF and XGBoost, 
respectively.  

• For make friedman1, make friedman3, California-housing, Boston, and 
diabetes data sets, SLR Boost achieves the best performance.  

• For make friedman2, SVR/RBF achieves the best performance benefiting 
from the RBF on its specific data distribution. However, it is worthwhile 
to emphasize that, to achieve the optimal performance, SVR/RBF needs to 
overfit to the training data by fine-tuning the soft margin with a large 
regularization parameter (i.e., C = 1000). This leads to much higher 
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computational complexity. With stronger individual SLR trees and effective 
uncorrelated models, the ensemble of SLR can achieve better performance 
than DTs with efficiency. 

6. Conclusion and Future Work 

A novel ML model, the SLM, combines FF-MLP design and DT, and learns to 
discriminate subspace and make predictions. It utilizes the methods of hyperplane 
partitioning and random projection to achieve significantly better performance 
compared to other methods. It is lightweight, mathematically transparent, adaptive 
to high dimensional data, and achieves state-of-the-art benchmarking performance. 
Also, an SLM tree can serve as a weak classifier in general boosted and bootstrap 
aggregation methods as a more generalized model. In future, we will investigate 
SLM’s extension to very high dimensional input data.  
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Appendix A. Model Specifications for Data Sets
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FF-MLP = Feed-forward multilayer perceptron, LSVM = Lagrangian 
support vector machine 

SVM/RBF = Support vector machine/restricted Boltzmann functions, DT = 
Decision tree 

SLM = Subspace learning machine 

Data sets FF-MLP LSVM SVM/RBF DT SLM 
Circle-and-
Ring 

Gaussian 
components = 
4 for ring, 1 
for circle, 8 
and 9 neurons 
in the two 
hidden layers, 
total 125 
parameters  

Slack 
variables = 
600, support 
vectors = 
591, bias = 
1, total 
parameters 
= 2965 

Slack 
variables = 
600, support 
vectors = 
206, bias = 
1, total 
parameters 
= 1425 

Splits = 
175 tree 
depth = 14, 
total 
parameters 
= 350 

Input features = 2, 
tree depth = 4. node 
numbers at each 
level = 1, 4, 4, 10, 
and 8, partitions = 
13, total parameters 
= 39 

2-New-
Moons 

Gaussian 
components = 
2 for each 
class, 8 
neurons in 
each of two 
hidden layers, 
total 
parameters = 
114 

Slack 
variables = 
600, support 
vectors = 
213, bias = 
1, total 
parameters 
= 1453 

Slack 
variables = 
600, support 
vectors = 
176, bias = 
1, total 
parameters 
= 1305 

Splits = 
143 tree 
depth = 15, 
total 
parameters 
= 286 

Tree depth = 4. 
node numbers at 
each level = 1, 4, 8, 
12, and 4, partitions 
= 14, total 
parameters = 42 

4-New-
Moons 

Gaussian 
components = 
3 for each 
class, 18 and 
28 neurons in 
two hidden 
layers, total 
parameters = 
702 

Slack 
variables = 
1200, 
support 
vectors = 
413, bias 
=1, total 
parameters 
= 2853 

Slack 
variables = 
1200, 
support 
vectors = 
417, bias 
=1, total 
parameters 
= 2869 

Splits = 
149 tree 
depth = 11, 
total 
parameters 
= 298 

Tree depth = 5. 
node numbers at 
each level = 1, 4, 
16, 22, 16, and 4, 
partitions = 31, 
total parameters = 
93 

Iris Gaussian 
components = 
2 for each 
class, 4 and 3 
neurons in 
two hidden 
layers, total 
parameters = 
47 

Slack 
variables = 
90, support 
vectors = 
24, bias =1, 
total 
parameters 
= 235 

Slack 
variables = 
90, support 
vectors = 
42, bias =1, 
total 
parameters 
= 343 

Splits = 17 
tree depth 
= 6, total 
parameters 
= 34 

Input features = 4 
tree depth = 3. 
Node numbers at 
each level = 1, 2, 2, 
and 4, partitions = 
4, total parameters 
= 20 
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Wine Gaussian 
components = 
2 for each 
class, 6 
neurons in 
each of two 
hidden layers, 
total 
parameters = 
147 

Slack 
variables = 
107, support 
vectors = 
23, bias =1, 
total 
parameters 
= 453 

Slack 
variables = 
107, support 
vectors = 
57, bias =1, 
total 
parameters 
= 963 

Splits = 13 
tree depth 
= 4, total 
parameters 
= 26 

Input features = 8 
tree depth = 2. 
Node numbers at 
each level = 1, 8, 
and 256, partitions 
= 11, total 
parameters =99 

B.C.W. Gaussian 
components = 
2 for each 
class, 2 
neurons in 
each of two 
hidden layers, 
total 
parameters = 
74 

Slack 
variables = 
341, support 
vectors = 
35, bias =1, 
total 
parameters 
= 1462 

Slack 
variables = 
341, support 
vectors = 
91, bias =1, 
total 
parameters 
= 3254 

Splits = 27 
tree depth 
= 7, total 
parameters 
= 54 

Input features = 5 
tree depth = 4. 
Node numbers at 
each level = 1, 8, 
16, 8, and 32, 
partitions = 21, 
total parameters 
=126 

Diabetes Gaussian 
components = 
2 for each 
class, 18 and 
88 neurons in 
two hidden 
layers, total 
parameters = 
2012 

Slack 
variables = 
461, support 
vectors = 
107, bias = 
1, total 
parameters 
= 1532 

Slack 
variables = 
461, support 
vectors = 
134, bias = 
1, total 
parameters 
= 1802 

Splits = 65 
tree depth 
= 8, total 
parameters 
= 130 

Input features = 4 
tree depth = 3. 
Node numbers at 
each level = 1, 2, 
16, and 20, 
partitions = 11, 
total parameters = 
55 

Ionosphere Gaussian 
components = 
2 for each 
class, 6 and 8 
neurons in 
two hidden 
layers, total 
parameters = 
278 

Slack 
variables = 
211, support 
vectors = 
23, bias =1, 
total 
parameters 
= 1017 

Slack 
variables = 
211, support 
vectors = 
57, bias =1, 
total 
parameters 
= 2207 

Splits = 25 
tree depth 
= 10, total 
parameters 
= 50 

Input features = 5 
tree depth = 2. 
Node numbers at 
each level = 1, 4, 
and 20, partitions = 
13, total parameters 
= 78 

Banknote Gaussian 
components = 
2 for each 
class, 2 
neurons at 
each of the 
two hidden 
layers, total 
parameters = 
22 

Slack 
variables = 
823, support 
vectors = 
56, bias =1, 
total 
parameters 
= 1160 

Slack 
variables = 
823, support 
vectors = 
834, bias = 
1, total 
parameters 
= 1322 

Splits = 39 
tree depth 
= 7, total 
parameters 
= 78 

Input features = all 
tree depth = 3. 
Node numbers at 
each level = 1, 2, 8, 
and 18, partitions = 
8, total parameters 
= 40 
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Appendix B. Loss Function
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The process for calculating Discriminant Feature Test (DFT) or loss function is as 
follows.  

(i) Denote d-th feature set of xl by 𝑭𝑭𝒅𝒅 = {𝑥𝑥𝑙𝑙,𝑑𝑑|1 ≤  𝑙𝑙 ≤  𝐿𝐿}. Choose a 
partitioning point 𝑡𝑡𝑑𝑑 corresponding to the feature 𝑥𝑥𝑑𝑑 so that the data 
vectors are divided in two classes.  

𝐷𝐷𝑑𝑑
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = {(𝒙𝒙,𝑦𝑦)|𝑥𝑥𝑑𝑑 ≤ 𝑡𝑡𝑑𝑑}. Number of data vectors = 𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  

𝐷𝐷𝑑𝑑
𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 = {(𝒙𝒙, 𝑦𝑦)|𝑥𝑥𝑑𝑑 > 𝑡𝑡𝑑𝑑}. Number of data vectors = 𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 

Next, let 

𝑁𝑁𝑘𝑘
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜 𝑁𝑁𝑘𝑘

𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡= #data vectors of class k in the left or right division  

𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = ∑ 𝑁𝑁𝑘𝑘
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝐾𝐾

𝑘𝑘=1 , 𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 = ∑ 𝑁𝑁𝑘𝑘
𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡𝐾𝐾

𝑘𝑘=1 , 𝑁𝑁 = 𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 

The class-specific probabilities are  

𝑝𝑝𝑘𝑘
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  = 𝑁𝑁𝑘𝑘

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
, 𝑝𝑝𝑘𝑘

𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡  =  𝑁𝑁𝑘𝑘
𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡

 𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡
 

The class-specific entropies are 

𝐻𝐻�𝐷𝐷𝑑𝑑
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙� = −∑ 𝑝𝑝𝑘𝑘

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙log 𝑝𝑝𝑘𝑘
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝐾𝐾

𝑘𝑘=1  , 𝐻𝐻�𝐷𝐷𝑑𝑑
𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡� = −∑ 𝑝𝑝𝑘𝑘

𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡log 𝑝𝑝𝑘𝑘
𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡𝐾𝐾

𝑘𝑘=1  

Then the DFT function is  

𝐿𝐿𝑑𝑑(𝑡𝑡𝑑𝑑) =
𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝑁𝑁
𝐻𝐻�𝐷𝐷𝑑𝑑

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙� +
𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡

𝑁𝑁
𝐻𝐻(𝐷𝐷𝑑𝑑

𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡) 

Thus, dimension D is reduced to 𝐷𝐷0 or the dimension of the feature space satisfying 
the discriminant bound (𝐷𝐷0 < 𝐷𝐷). Out of many partitioning points 𝑡𝑡𝑑𝑑, the optimum 
𝑡𝑡𝑑𝑑∗  minimizes 𝐿𝐿𝑑𝑑(𝑡𝑡𝑑𝑑). 

𝑡𝑡𝑑𝑑∗ = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑑𝑑𝐿𝐿𝑑𝑑(𝑡𝑡𝑑𝑑) 
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List of Symbols, Abbreviations, and Acronyms 

CART Classification and Regression Tree 

CNN convolutional neural network 

DL deep learning 

DT decision tree 

ELM extreme learning machine 

FF-MLP feedforward multilayer perceptron 

GBDT gradient boosting decision tree 

GMM Gaussian mixture model 

LDA linear discriminant analysis 

ML machine learning 

PV projection vectors 

RF random forest 

SLM subspace learning machine 

SLM/SLR subspace learning machine/regressor 

SVM support vector machines 
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