

 ARL-TR-9604 ● OCT 2022

Subspace Learning Machine (SLM): A New
Approach to Classification and Regression

by Vinod K Mishra and C-C Jay Kuo

Approved for public release: distribution unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the
Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official
endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

 ARL-TR-9604 ● OCT 2022

Subspace Learning Machine (SLM): A New
Approach to Classification and Regression

Vinod K Mishra
DEVCOM Army Research Laboratory

C-C Jay Kuo
University of Southern California

Approved for public release: distribution unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

October 2022
2. REPORT TYPE

Technical Report
3. DATES COVERED (From - To)

1 January–30 June 2022
4. TITLE AND SUBTITLE

Subspace Learning Machine (SLM): A New Approach to Classification and
Regression

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Vinod K Mishra and C-C Jay Kuo
5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

DEVCOM Army Research Laboratory
ATTN: FCDD-RLC-NC
Aberdeen Proving Ground, MD 21005

8. PERFORMING ORGANIZATION REPORT NUMBER

ARL-TR-9604

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release: distribution unlimited.

13. SUPPLEMENTARY NOTES
ORCID ID: Vinod K Mishra, 0000-0001-9432-9082

14. ABSTRACT

Classification and regression are some of the most important tasks handled by supervised machine learning. Many approaches
like feedforward multilayer perceptron, decision tree, support vector machines, and extreme learning machine methods have
been proposed in the past for these tasks. Recently, a new approach called subspace learning machine/regressor (SLM/SLR)
has been applied to data with low to moderate dimensions and it has shown substantial advantages over other similar methods.
This technical report describes SLM/SLR and traces the reasons behind its superior performance.

15. SUBJECT TERMS

Machine Learning, Classification, Subspace Learning, Network and Computational Sciences

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
 OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

35

19a. NAME OF RESPONSIBLE PERSON

Vinod K Mishra
a. REPORT

Unclassified
b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified

19b. TELEPHONE NUMBER (Include area code)

(410) 278-0114
 Standard Form 298 (Rev. 8/98)

 Prescribed by ANSI Std. Z39.18

iii

Contents

List of Figures v

List of Tables v

1. Introduction 1

1.1 Feedforward Multilayer Perceptron (FF-MLP) 1

1.2 Decision Tree (DT) 2

1.3 Random Forest (RF) 2

1.4 Support Vector Machine (SVM) 3

1.5 Extreme Learning Machine (ELM) 3

1.6 Gradient Boosting Decision Tree (GBDT) 3

2. Classification Using Subspace Learning Machine (SLM) 4

3. Extension of Basic SLM to SLM Forest and SLM Boost 6

3.1 SLM Forest 7

3.2 SLM Boost 7

4. Performance Evaluation of the SLM 8

4.1 Data Sets 8

4.2 Comparison of Model Sizes 11

4.3 Comments on Performance 12

4.4 Convergence Performance Comparison of DT Ensembles and SLM
Ensembles 13

5. Subspace Learning Regressor (SLR) 14

5.1 Method 14

5.2 Performance Evaluation 14

6. Conclusion and Future Work 16

7. References 17

iv

Appendix A. Model Specifications for Data Sets 22

Appendix B. Loss Function 25

List of Symbols, Abbreviations, and Acronyms 27

Distribution List 28

v

List of Figures

Fig. 1 (a) An illustration of SLM, where space S0 is partitioned into four
subspaces with two splits, and (b) the corresponding SLM tree with a
root node and four child nodes.. 4

Fig. 2 Visualization of 2D feature data sets: (a) circle-and-ring, (b) 2-new-
moon, and (c) 4-new-moon. One ground truth sample of the training
data, the ground truth of the test data, and the SLM predicted results
are shown in the first, second, and third rows, respectively. 10

Fig. 3 Comparison of SLM and DT ensembles for three data sets: (a) Wine,
(b) B.C.W., and (c) Pima. Each left subfigure compares the accuracy
curves of SLM Forest and RF as a function of the tree number. Each
right subfigure compares the logloss curves of SLM Boost and
XGBoost as a function of the tree number. .. 13

List of Tables

Table 1 Details of nine data sets used for classification 8

Table 2 Classification accuracy comparison of the 10 benchmarking methods
on 9 data sets ... 11

Table 3 ML model size comparison (four ML models against nine data sets,
smallest model size in bold) .. 12

Table 4 Regression data sets .. 15

Table 5 Regression performance (eight regressors, six data sets) 15

1

1. Introduction

Feature-based classification and regression tasks have been handled by deep
learning (DL)-based models like FF-MLP,1 DT,2 SVM,3 and ELM4 for a long time.
Such models have been found to be especially effective, but they also suffer from
the lack of interpretability, high model complexity, and high computational cost.
They all approach the common task of feature space partitioning in different ways.

We propose a new classification-oriented machine learning model named subspace
learning machine (SLM). It finds a balance between simplicity and effectiveness
by partitioning an input feature space into multiple discriminant subspaces in a
hierarchical manner. SLM does not change the feature space at all. The probabilistic
projection in SLM is simply used for feature space partitioning without generating
new features. Each tree node splitting corresponds to a hyperplane partitioning
through weights and bias learning. As a result, both half subspaces can be
preserved. SLM learns partitioning parameters in a feedforward and probabilistic
approach, which is efficient and transparent.

We explain the differences between SLM and other popular classification
approaches in the following sections.

1.1 Feedforward Multilayer Perceptron (FF-MLP)

FF-MLP uses linear discriminant analysis (LDA) and the Gaussian mixture model
(GMM) to capture feature distributions of multiple classes. It adopts neuron pairs
with weights of opposite signed vectors to represent partitioning hyperplanes. It
was introduced in 19583 and has been broadly applied to many classification and
regression tasks. 5–7 Its universal approximation capability is studied in Hornik
(1989), Stinchombe (1989), Glover (1986), and Leshno et al. (1993).8–11

There are two approaches to the design of a practical MLP solution:

• The parameters are finetuned at each layer through back propagation.12

Architecture of MLP includes tabu search (a metaheuristic algorithm for
solving combinatorial optimization problems)13 and simulated annealing.14
In the convolutional neural networks (CNNs)15–18 variant of MLP,
convolutional layers share neuron weights and biases across different
spatial locations. The fully connected layers remain the same as in
traditional MLPs. It also serves as the building blocks in transformer
models.19,20

• MLP layers are constructed layer by layer.21–24 In one optimization
method,25–27 the parameters of the newly added hidden layer are added

2

without back propagation.28–30 In a method using CNN, the convolution
operation changes the input feature space to an output feature space
serving as the input to the next layer. Later the nonlinear activation in a
neuron partitions the output feature space. Only one-half subspace is
selected to resolve the sign confusion problem caused by the cascade of
convolution operations.31,4

1.2 Decision Tree (DT)

A DT partitions one space into two subspaces by recursively selecting the most
discriminant feature one at a time. Selecting a partition in DTs is easier, as it is
conducted on a single feature, but its discriminant power is weak, so it is a weak
classifier. For high tree depths, multiple DTs can be used to avoid overfitting the
training data. In such situations, each of them individually is a weak classifier but
their ensemble yields a strong one; for example, the random forest (RF) classifier.32

Classification and Regression Tree (CART)2 (and similarly ID333) are classical DT
algorithms. They are weak classifiers but can achieve higher performance by using
multiple DTs with bootstrap aggregation32 and other boosting methods. 34 They may
still fail due to poor split of training and test data and overfitting of the training
data. As compared to them, one SLM tree (i.e., SLM Baseline) can exploit
discriminant features obtained by probabilistic projections and achieve multiple
splits at one node. SLM generally yields wider and shallower trees.

1.3 Random Forest (RF)

An RF consists of multiple decisions trees, and its predictive performance35
depends on 1) the strength of individual trees, and 2) on a measure of their
dependence that should be lower. RF training takes only a fraction of training
samples and their features in building a tree. Thus, it trades the strength of each DT
for the general ensemble performance for achieving a higher diversity. Several
designs have been proposed for achieving uncorrelated individual trees, as follows:

• Bagging36 builds each tree through random selection with replacement in
the training set.

• Random split selection37 selects a split at a node among the best splits at
random.

• A random subset of features is selected38 to grow each tree.

RF uses bagging and feature randomness to create uncorrelated trees in a forest,
and their combined prediction is more accurate than that of an individual tree. In

3

contrast, the SLM forest building process uses all training samples and the whole
feature space. It utilizes feature randomness to achieve the diversity of each SLM
tree (described in Section 3.1). The effective diversity and strength of an individual
SLM tree remains unaffected in building an SLM forest. So, the SLM forest
achieves better predictive performance and faster convergence in terms of the tree
number.

1.4 Support Vector Machine (SVM)

SVM algorithm tries to find a hyperplane in an N-dimensional space (N = number
of features). The optimum hyperplane has the maximum margin or the distance
from the data points of all classes. Support vectors are the data points closer to the
hyperplane and influence the position and orientation of the hyperplane. They are
used to maximize the margin.

1.5 Extreme Learning Machine (ELM)

It projects a high-dimensional space to a 1D space randomly to find the optimal
split point in the associated 1D space. Theory of random projection learning models
and their properties (e.g., interpolation and universal approximation) has been
investigated.39–42 ELM is not efficient in practice for high feature dimensions as
many trials are needed for finding good projections. It adopts random weights for
training feed forward neural networks.43 MLP can be built with ELM by adding
new layers with randomly generated weights. However, it is inefficient in practice
due to the requirements of long training time and large model size for a large search
space.

SLM Baseline does take the efficiency into account by building a general DT
through probabilistic projections, which reduces the search space by leveraging
most discriminant features with several hyper-parameters. We use the term
“probabilistic projection” rather than “random projection” to emphasize their
difference.

1.6 Gradient Boosting Decision Tree (GBDT)

Gradient boosting is another ensemble method of weak learners. It builds a
sequence of weak prediction models. Each new model attempts to compensate the
prediction residual left in previous models. The gradient boosting decision tree
(GBDT) method includes 1) the standard gradient boosting,44 and 2) XGBoost.45,46

It expands a general loss function in a Taylor series and defines a gain to perform
more effective node splitting than standard DTs.

4

SLM Boost mimics the boosting process of XGBoost but replaces DTs with SLM
trees. As compared with standard GBDT methods, SLM Boost achieves faster
convergence and better performance because of stronger performance of an SLM
tree.

2. Classification Using Subspace Learning Machine (SLM)

The SLM method is motivated by two basic ideas:

• Random projection is used to find more discriminant subspaces.

• In DT, one parent node is split into two child nodes. SLM allows an n-ary
split instead. One example is shown in Fig. 1a and b, where space S0 is split
into four disjoint subspaces. Generally, the n-ary split gives wider and
shallower decision trees so that overfitting can be avoided more easily.

Fig. 1 (a) An illustration of SLM, where space S0 is partitioned into four subspaces with
two splits, and (b) the corresponding SLM tree with a root node and four child nodes

We are given an input data set 𝑋𝑋.

• Denote a data sample as 𝒙𝒙𝒍𝒍 which is a vector in a feature space (𝐿𝐿 = number
of sample-vectors, 𝐷𝐷 = number of features in each sample or the dimension
of the feature space)

𝒙𝒙𝒍𝒍 = �𝑥𝑥𝑙𝑙,1, 𝑥𝑥𝑙𝑙,2, … , 𝑥𝑥𝑙𝑙,𝑑𝑑 , … , 𝑥𝑥𝑙𝑙,𝐷𝐷�
𝑇𝑇 ∈ 𝑅𝑅𝐷𝐷 , 𝑙𝑙 = 1,2, … , 𝐿𝐿

An example for a point in ring and circle data set (D = 2) is 𝒙𝒙𝒍𝒍 = �
𝑥𝑥𝑙𝑙,1
𝑥𝑥𝑙𝑙,2�.

• Each data vector 𝒙𝒙𝒍𝒍 has the class label vector 𝑦𝑦𝑙𝑙, which has K classes.
(𝒚𝒚~𝐾𝐾 × 𝐿𝐿). Each 𝑦𝑦𝑙𝑙 vector has K-dimensional label space of classes

𝑦𝑦𝑙𝑙 = �𝑦𝑦𝑙𝑙,1,𝑦𝑦𝑙𝑙,2, … , 𝑦𝑦𝑙𝑙,𝑘𝑘, … , 𝑦𝑦𝑙𝑙,𝐾𝐾�
𝑇𝑇 ∈ 𝑅𝑅𝐾𝐾 , 𝑙𝑙 = 1,2, … , 𝐿𝐿; 𝑘𝑘 = 1,2, … ,𝐾𝐾

5

Here 𝑦𝑦𝑙𝑙,𝑘𝑘= 1, and 𝑦𝑦𝑙𝑙,𝑘𝑘′= 0 for 𝑘𝑘 ≠ 𝑘𝑘′.

• The combined sample and outcome are given by 𝐷𝐷𝑙𝑙 = (𝒙𝒙𝒍𝒍, 𝑦𝑦𝑙𝑙) having D+1
elements.

In the partitioning process, the root node is the whole sample space, and an
intermediate or leaf node corresponds to a partitioned subspace. The goal of SLM
is to hierarchically partition the feature space RD into multiple subspaces so that
finally the samples at leaf nodes are as pure as possible. At the end of the process
most samples at a node should be in the same class. Then all samples in the leaf
node can be assigned to the majority class. The data classification by SLM has the
following steps.

Step 1: 𝑋𝑋 → 𝑆𝑆0: The feature subspace S0 with dimension 𝐷𝐷0 is determined and
assigned to the root node of a DT.

For X with low dimensions S0 ≈ X, and for X with high dimensions, less
discriminant features from X are removed such that 𝐷𝐷0 < 𝐷𝐷. For that, denote the
d-th feature set of xl by 𝑭𝑭𝒅𝒅 = {𝑥𝑥𝑙𝑙,𝑑𝑑|1 ≤ 𝑙𝑙 ≤ 𝐿𝐿}.

Express the projection vectors (PV) in terms of basis vectors.

Express the PV as

𝒂𝒂 = 𝑎𝑎1𝒆𝒆𝟏𝟏 + ⋯+ 𝑎𝑎𝑑𝑑𝒆𝒆𝒅𝒅 + ⋯+ 𝑎𝑎𝐷𝐷𝒆𝒆𝑫𝑫, �|𝒂𝒂|� =1

Here 𝒆𝒆𝒅𝒅 is the basis vector in which d-th value is 1 and the rest are 0.

Rewrite PV in terms of reordered basis vectors.

Choose an 𝒆𝒆𝒅𝒅 and a corresponding partitioning point 𝑡𝑡𝑑𝑑. Calculate the loss
function 𝐿𝐿𝑑𝑑(𝑡𝑡𝑑𝑑) (as given in Appendix B). Vary 𝑡𝑡𝑑𝑑, and find the optimum
𝑡𝑡𝑑𝑑∗ out of them that minimizes 𝐿𝐿𝑑𝑑(𝑡𝑡𝑑𝑑).

𝑡𝑡𝑑𝑑∗ = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑑𝑑𝐿𝐿𝑑𝑑(𝑡𝑡𝑑𝑑)

Rank 𝑡𝑡𝑑𝑑∗ according to their loss function values

𝐿𝐿1(𝑡𝑡1∗) ≤ 𝐿𝐿2(𝑡𝑡2∗) … .≤ 𝐿𝐿𝐷𝐷(𝑡𝑡𝐷𝐷∗)

and reorder basis vectors as (𝒆𝒆𝟏𝟏′ , 𝒆𝒆𝟐𝟐′ ,…, 𝒆𝒆𝒅𝒅′ ,…, 𝒆𝒆𝑫𝑫′) according to the loss
function, which allows rewriting PV as

𝒂𝒂 = 𝑎𝑎1′ 𝒆𝒆𝟏𝟏′ + ⋯+ 𝑎𝑎𝑑𝑑′ 𝒆𝒆𝒅𝒅′ + ⋯+ 𝑎𝑎𝐷𝐷′ 𝒆𝒆𝑫𝑫′ , �|𝒂𝒂′|� =1

Use hyperparameters to choose 𝑎𝑎𝑑𝑑′

6

The 𝑎𝑎𝑑𝑑′ coefficients are chosen in a probabilistic manner using three
hyperparameters (𝛽𝛽, 𝑎𝑎,𝑅𝑅).

i) 𝛽𝛽 = Coefficient in the exponential distribution. It controls the
probability of selecting 𝑎𝑎𝑑𝑑′ using

𝑃𝑃𝑑𝑑 = 𝛽𝛽0𝑒𝑒−𝛽𝛽𝑑𝑑 (𝛽𝛽0 is the normalization). It is higher for smaller d.

ii) 𝛼𝛼 = Coefficient in the exponential distribution. It controls the
probability of selecting the dynamic range of 𝑎𝑎𝑑𝑑′ using envelope
parameter 𝐴𝐴𝑑𝑑 = 𝛼𝛼0𝑒𝑒−𝛼𝛼𝑑𝑑 (𝛼𝛼0 is the normalization)., 𝛼𝛼 > 0. Only the
integer values are used due to ease of computation.

𝑎𝑎𝑑𝑑′ = 0, ±1, ±2, … , ±𝐴𝐴𝑑𝑑 (Integer part)

iii) R = Number of selected 𝑎𝑎𝑑𝑑′ coefficients such that R < D (for large D,
R << D). The rest of the D ‒ R coefficients are set to zero.

The data vector dimension is reduced, and it is 𝑥𝑥0 = �𝑥𝑥0,1, 𝑥𝑥0,2, … , 𝑥𝑥0,𝐷𝐷0�, 𝐷𝐷0 =
𝐷𝐷 − 𝑅𝑅.

Step 2: Generate p PVs using this process to get p 1D subspaces.

The three hyperparameters (𝛽𝛽,𝑎𝑎,𝑅𝑅) define a collection of many PVs whose
search space is bounded by

Lower bound = ∏ (2𝐴𝐴𝑑𝑑 + 1)𝑅𝑅
𝑑𝑑=𝐷𝐷+1−𝑅𝑅 , and Upper bound = ∏ (2𝐴𝐴𝑑𝑑 + 1)𝑅𝑅

𝑑𝑑=1 .

For each chosen PV in this set, the DFT or loss function is calculated to choose
the best p PVs.

Step 3: 𝑝𝑝 → 𝑞𝑞 1D subspaces

Select the best q subspaces from p candidate subspaces based on
discriminability and correlation.

Step 4: Use n-ary splits to get 2q child nodes (example in Fig. 1).

3. Extension of Basic SLM to SLM Forest and SLM Boost

An ensemble model aims to obtain better performance than each constituent model
alone, using methods like bootstrap aggregating (“bagging”) and boosting—for
example, RF and GBDT. The bagging applied to SLM gives SLM Forest and
similarly boosting gives SLM Boost. The latter is inspired by XGBoost.45,46

7

3.1 SLM Forest

The RF contains a set of tree predictors, where each tree is built using the values of
a random vector sampled independently. All trees in the forest43 have the same
distribution. According to the Strong Law of Large Numbers, the RF performance
converges with increasing tree numbers. Combination of many weak decision trees
leads to significant improvement over a single DT result.

Similarly, the SLM Forest uses the diversity of many single SLM trees through
probabilistic selection to get better results than single tree. For partitioning at a
node, D0 dimensions are probabilistically selected from the D input feature
dimensions by considering each feature’s discriminant ability. A larger β denotes
more discriminant features. All training samples and all feature dimensions are kept
as the input at each node splitting to increase the strength of individual SLM trees.
The decorrelating partitioning planes are used to get better performance and faster
converge than RF.

3.2 SLM Boost

With standard DTs as weak learners, GBDT44 and XGBoost45,46 can deal with a
large amount of data efficiently and achieve the state-of-the-art performance in
many machine learning problems. They take the ensemble of standard DTs with
boosting, that is, by defining an objective function and optimizing it with learning
a sequence of DTs. By following the gradient boosting process, we propose SLM
Boost to ensemble a sequence of SLM trees.

Let 𝑓𝑓𝑡𝑡(𝑥𝑥𝑙𝑙) denote the t-th SLM tree out of T trees in total. Then, the prediction of
the ensemble is the sum of all trees, that is, each of the L samples is predicted as

𝑦𝑦�𝑙𝑙 = −∑ 𝑓𝑓𝑡𝑡(𝑥𝑥𝑙𝑙)𝑇𝑇
𝑡𝑡=1 , l = 1, 2,…,L

Define the objective function for first t-trees

Ψ(t) = � 𝛾𝛾(
𝐿𝐿

𝑙𝑙=1
𝑦𝑦�𝑙𝑙 ,𝑦𝑦�𝑙𝑙

(𝑡𝑡))

Here 𝑦𝑦�𝑙𝑙
(𝑡𝑡)= prediction of sample l with all t trees, 𝛾𝛾(𝑦𝑦�𝑙𝑙 ,𝑦𝑦�𝑙𝑙

(𝑡𝑡)) = training loss for the
model with

a sequence of t trees. Let initial model prediction be 𝑦𝑦�𝑙𝑙
(0) = 0, so one gets

𝑦𝑦�𝑙𝑙
(𝑡𝑡) = 𝑦𝑦�𝑙𝑙

(𝑡𝑡−1) + 𝑓𝑓𝑡𝑡(𝑥𝑥𝑙𝑙)

Then the objective function is

8

Ψ(t) = � 𝛾𝛾(
𝐿𝐿

𝑙𝑙=1
𝑦𝑦�𝑙𝑙 ,𝑦𝑦�𝑙𝑙

(𝑡𝑡−1) + 𝑓𝑓𝑡𝑡(𝑥𝑥𝑙𝑙))

Following the XGBoost process, we use Taylor expansion up to the second order.
With individual SLM trees stronger than individual DTs, SLM Boost achieves
better performance and faster convergence than XGBoost.

4. Performance Evaluation of the SLM

4.1 Data Sets

To evaluate the performance of SLM, we conduct experiments on the nine data sets
shown in Table 1 (also Appendix A for model parameters).

Table 1 Details of nine data sets used for classification

Data set Properties Description
Circle-and-
Ring

Feature
dimension (FD)
= 2, synthetic

An inner circle as one class and an outer ring as the other
class as shown in Fig. 4a,47 500 samples per class, 20%
noisy samples in the decision boundary, samples
randomly split into 60% training and 40% test sets

2-New-Moons FD = 2,
synthetic

Two interleaving new moons as shown in Fig. 4b.47 Each
new moon is a class, 500 samples per class, 30% noisy
samples in the decision boundary, samples randomly
split into 60% training and 40% test sets

4-New-Moons FD = 2,
synthetic

Four interleaving new moons as shown in Fig. 4c.47 Each
new moon is a class, 500 samples per class, 20% noisy
samples in the decision boundary, samples randomly
split into 60% training and 40% test sets

Iris FD = 4, real-
world

Iris plants data set47,48 has 3 classes, 4D features, and 150
samples, samples randomly split into 60% training and
40% test sets

Wine FD = 4, real-
world

Wine recognition data set47,49 has 3 classes, 13D
features, and 178 samples, samples randomly split into
60% training and 40% test sets

B.C.W. FD = 4, real-
world

Breast cancer Wisconsin data set47,49 has 2 classes, 30D
features, and 569 samples, samples randomly split into
60% training and 40% test sets

Diabetes FD = 4, real-
world

The Pima Indians diabetes data set50 is for diabetes
prediction. It has 2 classes, 8D features, and 768
samples. By following,4 we removed samples with the
physically impossible zero value for glucose, diastolic
blood pressure, triceps skin fold thickness, insulin, or
BMI and used the remaining 392 samples for consistent
experimental settings, samples randomly split into 60%
training and 40% test sets

9

Table 1 Details of nine data sets used for classification (continued)

Ionosphere FD = 4, real-
world

Binary classification data set51,49 is used to predict
whether the radar return is good or bad. It has 2 classes,
34D features, and 351 instances. For consistency with,4
we remove the feature dimension that has the zero
variance from the data, Samples randomly split into 60%
training and 40% test sets

Banknote FD = 4, real-
world

The banknote authentication data set49 classifies whether
a banknote is genuine or forged based on the features
extracted from the wavelet transform of banknote
images. It has 2 classes, 4D features, and 1372 samples,
samples randomly split into 60% training and 40% test
sets

We divide the 10 classifiers into two groups, 1) six basic methods: FF-MLP, BP-
MLP, LSVM, SVM/RBF, DT, and SLM Baseline, and 2) four ensemble methods:
RF, XGBoost, SLM Forest, and SLM Boost.

The best results for each group are shown in bold. SLM Baseline and SVM/RBF
often outperform FF-MLP, BP-MLP, LSVM, and DT and give the best results.

Some observations follow.

• For the three synthetic 2D data sets (i.e., circle-and-ring, 2-new-moons, and
4-new-moons), the gain of SLM over MLP is relatively small due to noisy
samples. The difference in sample distributions of training and test data
plays a role in the performance upper bound. To demonstrate this point, we
show sample distributions of their training and testing data in Fig. 2. For the
data sets with high-dimensional input features, the SLM methods achieve
better performance over the classical ones.

• The network architectures of FF-MLP and BP-MLP and their performance
results are taken from Lin et al.4 FF-MLP has a four-layer network
architecture (one input layer, two hidden layers, and one output layer). The
input neuron numbers equal feature dimension input and output one is the
class number. The neuron numbers at each hidden layer are hyper-
parameters determined adaptively by a data set. BP-MLP has the same
architecture as FF-MLP against the same data set. Its model parameters are
initialized by those of FF-MLP and trained for 50 epochs.

• For the two SVM models, we conduct grid search for hyper-parameter C in
LSVM and hyper-parameters C and γ in SVM/RBF for each of the nine data
sets to yield the optimal performance.

• For the DT model, the weighted entropy is used as the loss function in node
splitting. We do not set the maximum depth limit of a tree, the minimum

10

sample number and the minimum loss decrease required as the stopping
criteria. Instead, we allow the DT for each data set to split until the purest
nodes are reached in the training. For the ensemble of DT models (i.e., RF
and XGBoost), we conduct grid search for the optimal tree depth and the
learning rate of XGBoost to ensure that they reach the optimal performance
for each data set. The number of trees is set to 100 to ensure convergence.

• The hyper-parameters of SLM Baseline (i.e., with one SLM tree) include
D0, p, Aint, alpha, beta, and the minimum number of samples used in the
stopping criterion. They are searched to achieve the performance as shown.
The number of trees in SLM Forest is set to 20 due to the faster convergence
of stronger individual SLM trees. The number of trees in SLM Boost is the
same as that of XGBoost for fair comparison of learning curves.

Figure 2 shows visualization, and Table 2 shows the classification accuracy results
of 10 classifiers.

Fig. 2 Visualization of 2D feature data sets: (a) circle-and-ring, (b) 2-new-moon, and (c)
4-new-moon. One ground truth sample of the training data, the ground truth of the test
data, and the SLM predicted results are shown in the first, second, and third rows,
respectively.

11

Table 2 Classification accuracy comparison of the 10 benchmarking methods on 9 data
sets

Data
sets→

circle-and-
ring

2-new-
moons

4-new-
moons Iris Wine B.C.W. Pima Ionosphere Banknote

FF-MLP 87.25 91.25 95.38 98.33 94.44 94.30 73.89 89.36 98.18
BP-MLP 88.00 91.25 87.00 64.67 79.72 97.02 75.54 84.11 88.38
LSVM 48.50 85.25 85.00 96.67 98.61 96.49 76.43 86.52 99.09
SVM/RBF 88.25 89.75 88.38 98.33 98.61 97.36 75.15 93.62 100.00
DT 85.00 87.25 94.63 98.33 95.83 94.74 77.07 89.36 98.00
SLM Baseline 88.25 91.50 95.63 98.33 98.61 97.23 77.71 90.07 99.09
RF 87.00 90.50 96.00 98.33 100.00 95.61 79.00 94.33 98.91
XGBoost 87.50 91.25 96.00 98.33 100.00 98.25 75.80 91.49 99.82
SLM Forest 88.25 91.50 96.00 98.33 100.00 97.36 79.00 95.71 100.00
SLM Boost 88.25 91.50 96.00 98.33 100.00 98.83 77.71 94.33 100.00

4.2 Comparison of Model Sizes

The model size or the number of model parameters of FF/BP-MLP, LSVM,
SVM/RBF, DT, and SLM Baseline are compared in Table 2.

• FF-MLP and BP-MLP share the same architecture, so their model sizes are
the same. It is calculated by summing up the weight and bias numbers of all
neurons.

• The model parameters of LSVM and SVM/RBF can be computed as

 SVM Parameter = L + 1 + (D + 2) 𝑁𝑁𝑆𝑆𝑆𝑆 (1)

Here L, D, and 𝑁𝑁𝑆𝑆𝑆𝑆 denote the number of training samples, the feature dimension,
and the number of support vectors, respectively. The first term in Eq. 1 is the slack
variable for each training sample. The second term denotes the bias. The last term
comes from the fact that each support vector has D feature dimensions, one
Lagrange dual coefficient, and one class label.

• The model sizes of DTs depend on the number of splits learned during the
training process, and there are two parameters learned during each split for
feature selection and split value, respectively; the sizes of DTs are
calculated as two times the number of splits.

• The size of an SLM baseline model depends on the number of partitioning
hyperplanes that are determined by the training stage. For given hyper-
parameter D0, each partitioning hyperplane involves one weight matrix and
a selected splitting threshold, with qi decorrelated partitioning learned for
partitioning each parent node. Then, the model size of the corresponding
SLM can be calculated as

12

 SLM Parameter = ∑ 𝑞𝑞𝑖𝑖(𝐷𝐷0 + 1)𝑀𝑀
𝑖𝑖=1 (2)

Here M = the number of partitioning hyperplanes. Table 3 compares the model
sizes.

Table 3 ML model size comparison (four ML models against nine data sets, smallest model
size in bold)

Data set FF/BP-
MLP LSVM SVM/

RBF DT SLM
Baseline

DT
Depth

SLM Tree
depth

Circle-and-Ring 125 2,965 1,425 350 39 14 4
2-new-moons 114 1,453 1,305 286 42 15 4
4-new-moons 702 2,853 2,869 298 93 11 5
Iris 47 235 343 34 20 6 3
Wine 147 453 963 26 99 4 2
B.C.W. 74 1,462 3,254 54 126 7 4
Pima 2,012 1,532 1,802 130 55 8 3
Ionosphere 278 1,017 2,207 50 78 10 2
Banknote 22 1,160 1,322 78 40 7 3

4.3 Comments on Performance

• For SVM, the training involves learning the dual coefficients and slack
variables for each training sample and memorization of the support vectors.
The model size increases linearly with the number of training samples and
number of support vectors. For similar classification accuracy, the SVM
models are much heavier with a large number of training samples.

• For MLPs, SLM models outperform the MLP models in all benchmarking
data sets for high-dimension classification tasks.

• For the data sets with saturated performance such as Iris, Banknote, and
Ionosphere, SLM achieves better or comparable performance with less than
half of the parameters of MLP.

• For DTs, the SLM models give wider and shallower trees. The depth of
SLM trees are overall smaller than the DT models, while the number of
splitting can be comparable for the small data sets, like Wine. The SLM
trees tend to make more splits to reach pure leaf nodes at shallower depth.
While outperforming the DTs in all the data sets, the SLM model sizes are
generally smaller than the DTs as they benefit from the subspace
partitioning process.

13

4.4 Convergence Performance Comparison of DT Ensembles and
SLM Ensembles

We compare the convergence performance of the ensemble and the boosting
methods of DT and SLM for Wine, B.C.W., and Pima, three data sets in Fig. 3a–c.

• For RF and SLM Forest, which are ensembles of DT and SLM, respectively,
we set their maximum tree depth and learning rate to the same. We show
their accuracy curves as a function of the tree number in the left subfigure.
We see that SLM Forest converges faster than RF.

• For XGBoost and SLM Boost, which are boosting methods of DT and SLM,
respectively, we show the logloss value as a function of the tree number in
the right subfigure. Again, we see that SLM Boost converges faster than
XGBoost.

Fig. 3 Comparison of SLM and DT ensembles for three data sets: (a) Wine, (b) B.C.W.,
and (c) Pima. Each left subfigure compares the accuracy curves of SLM Forest and RF as a
function of the tree number. Each right subfigure compares the logloss curves of SLM Boost
and XGBoost as a function of the tree number.

14

5. Subspace Learning Regressor (SLR)

5.1 Method

A different loss function can be adopted in the subspace partitioning process for a
different task. For example, to solve a regression problem, we can follow the same
methodology as described in Section 2 but adopt the mean-squared-error (MSE) as
the loss function. The resulting method is called subspace learning regression
(SLR), and the corresponding regressor is the subspace learning regressor.

Mathematically, each training sample has a pair of input x and output y, where x is
a D-dimensional feature vector and y is a scalar that denotes the regression target.
Then, we build an SLR tree that partitions the D-dimensional feature space
hierarchically into a set of leaf nodes. Each of them corresponds to a subspace. The
mean of sample targets in a leaf node is set as the predicted regression value of
these samples. The partition objective is to reduce the total MSE of sample targets
as much as possible. In the partitioning process, the total MSE of all leaf nodes
decreases gradually and saturates at a certain level.

The ensemble and boosting methods are applicable to SLR. The SLR Forest
consists of multiple SLR trees through ensembles. Its final prediction is the mean
of predictions from SLR trees in the forest. To derive SLR Boost, we apply the
GBDT process and train a series of additive SLR trees to achieve gradient boosting,
leading to further performance improvement. As compared with a decision tree, an
SLR tree is wider, shallower, and more effective. As a result, SLR Forest and SLR
Boost are more powerful than their counterparts as demonstrated in the next
subsection.

5.2 Performance Evaluation

To evaluate the performance of SLR, we compare the root mean-squared-error
(RMSE) performance of eight regressors on six data sets in Table 3. The five
benchmarking regressors are linear SVR (LSVR), SVR with RBF kernel, DT, RF,
and XGBoost. There are three variants of SLR: SLR Baseline (with one SLR tree),
SLR Forest, and SLR Boost. The first three data sets are synthesized data sets as
described by Quinlan.52 We generate 1000 samples for each of them. The last three
data sets are real world data sets. Samples in all six data sets are randomly split into
60% training samples and 40% test samples. Table 4 describes the regression data.

15

Table 4 Regression data sets

Data set Description
Make
Friedman 1

Its input vector, x, contains P (with P > 5) elements, which are independent
and uniformly distributed on interval [0, 1]. Its output, y, is generated by the first
five elements of the input. The remaining (P 5) elements are irrelevant
features and can be treated as noise. We refer to Quinlan52 for details. We
choose P = 10 in the experiment.

Make
Friedman
2-3

Their input vector, x, has four elements. They are independent and uniformly
distributed on interval [0, 1]. Their associated output, y, can be calculated by
all four input elements via mathematical formulas as described by Quinlan.52

Boston It contains 506 samples, each of which has a 13D feature vector as the input.
An element of the feature vector is a real positive number. Its output is a
real number within interval [5, 50].

California
Housing

It contains 20640 samples, each of which has an 8D feature vector. The
regression target (or output) is a real number within interval [0.15, 5].

Diabetes It contains 442 samples, each of which has a 10D feature vector. Its regression
target is a real number within interval [25, 346].

The performance comparison is given in Table 5.

Table 5 Regression performance (eight regressors, six data sets)

Data sets make
friedman1

make
friedman2

make
friedman3 Boston California

housing Diabetes

LSVR 2.49 138.43 0.22 4.90 0.76 53.78
SVR/RBF 1.17 6.74 0.11 3.28 0.58 53.71
DT 3.10 33.57 0.11 4.75 0.74 76.56
SLR Baseline 2.89 31.28 0.11 4.42 0.69 56.05
RF 2.01 22.32 0.08 3.24 0.52 54.34
XGBoost 1.17 32.34 0.07 2.67 0.48 53.99
SLR Forest 1.88 20.79 0.08 3.01 0.48 52.52
SLR Boost 1.07 18.07 0.06 2.39 0.45 51.27

Some observations follow.

• SLR Baseline outperforms DT in all data sets.

• Also, SLR Forest and SLR Boosting outperform RF and XGBoost,
respectively.

• For make friedman1, make friedman3, California-housing, Boston, and
diabetes data sets, SLR Boost achieves the best performance.

• For make friedman2, SVR/RBF achieves the best performance benefiting
from the RBF on its specific data distribution. However, it is worthwhile
to emphasize that, to achieve the optimal performance, SVR/RBF needs to
overfit to the training data by fine-tuning the soft margin with a large
regularization parameter (i.e., C = 1000). This leads to much higher

16

computational complexity. With stronger individual SLR trees and effective
uncorrelated models, the ensemble of SLR can achieve better performance
than DTs with efficiency.

6. Conclusion and Future Work

A novel ML model, the SLM, combines FF-MLP design and DT, and learns to
discriminate subspace and make predictions. It utilizes the methods of hyperplane
partitioning and random projection to achieve significantly better performance
compared to other methods. It is lightweight, mathematically transparent, adaptive
to high dimensional data, and achieves state-of-the-art benchmarking performance.
Also, an SLM tree can serve as a weak classifier in general boosted and bootstrap
aggregation methods as a more generalized model. In future, we will investigate
SLM’s extension to very high dimensional input data.

17

7. References

1. Cortes C, Vapnik V. Support-vector networks. Machine Learning.
1995;20(3):273–297.

2. Breiman L, Friedman J, Stone C, Olshen R. Classification and regression trees.
Taylor & Francis; 1984.

3. Rosenblatt F. The perceptron: a probabilistic model for information storage
and organization in the brain. Psychological Review. 1958;65(6):386.

4. Lin R, Zhou Z, You S, Rao R, Kuo C-C J. From two-class linear
discriminant analysis to interpretable multilayer perceptron design. arXiv
preprint arXiv:2009.04442; 2020.

5. Devadoss AV, Ligori TAA. Forecasting of stock prices using multi layer
perceptron. International Journal of Computing Algorithm. 2013;2(1):440–
449.

6. Sivakumar K, Desai UB. Image restoration using a multilayer perceptron with
a multilevel sigmoidal function. IEEE Transactions on Signal Processing.
1993;41(5)2018–2022.

7. Cybenko G. Approximation by superpositions of a sigmoidal function.
Mathematics of Control, Signals and Systems. 1989;2(4):303–314.

8. Hornik K, Stinchcombe M, White H. Multilayer feedforward networks are
universal approximators. Neural Networks. 1989;2(5):359–366.

9. Stinchombe M. Universal approximation using feed-forward networks with
nonsigmoid hidden layer activation functions. Proceedings of the IJCNN; 1989.
p. 161–166.

10. Leshno M, Lin VY, Pinkus A, Schocken S. Multilayer feedforward networks
with a nonpolynomial activation function can approximate any function.
Neural Networks. 1993;6(6):861–867.

11. Glover F. Future paths for integer programming and links to artificial
intelligence. Computers & Operations Research. 1986;13(5):533–549.

12. LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W,
Jackel LD. Backpropagation applied to handwritten zip code recognition.
Neural Computation. 1989;1(4):541–551.

18

13. Kirkpatrick S, Gelatt Jr CD, Vecchi MP. Optimization by simulated annealing.
Science. 1983;220(4598):671–680.

14. LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to
document recognition. Proceedings of the IEEE. 1998;86(11):2278–2324.

15. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep
convolutional neural networks. Advances in Neural Information Processing
Systems. 2012;25.

16. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–
444.

17. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł.
Polosukhin I. Attention is all you need. Advances in Neural Information
Processing Systems. 2017;30.

18. Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner
T, Dehghani M, Minderer M, Heigold G, Gelly S, et al. An image is worth
16x16 words: transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929; 2020.

19. Parekh R, Yang J, Honavar V. Constructive neural network learning
algorithms for multi-category real-valued pattern classification. Dept Comput
Sci, Iowa State University; 1997. Report No.: ISU-CS-TR97-06.

20. Me´zard M, Nadal J-P. Learning in feedforward layered networks: the tiling
algorithm. Journal of Physics A: Mathematical and General.
1989;22(12):2191.

21. Frean M. The upstart algorithm: a method for constructing and training
feedforward neural networks. Neural Computation. 1990;2(2):198–209.

22. Parekh R, Yang J, Honavar V. Constructive neural-network learning
algorithms for pattern classification. IEEE Transactions on Neural Networks.
2000;11(2):436–451.

23. Kwok T-Y, Yeung D-Y. Objective functions for training new hidden units in
constructive neural networks. IEEE Transactions on Neural Networks.
1997;8(5):1131–1148.

24. Gallant SI, et al. Perceptron-based learning algorithms. IEEE Transactions on
Neural Networks. 1990;1(2):179–191.

19

25. Mascioli FF, Martinelli G. A constructive algorithm for binary neural
networks: the oil-spot algorithm. IEEE Transactions on Neural Networks.
1995;6(3):794–797.

26. Parekh R, Yang J, Honavar V. Constructive neural-network learning
algorithms for pattern classification. IEEE Transactions on Neural Networks.
2000;11(2):436–451.

27. Yang J, Parekh R, Honavar V. Distal: an inter-pattern distance-based
constructive learning algorithm. Intelligent Data Analysis. 1999;3(1):55–73.

28. Marchand M. Learning by minimizing resources in neural networks. Complex
Systems. 1989;3:229–241.

29. Kuo C-C J. Understanding convolutional neural networks with a mathematical
model. Journal of Visual Communication and Image Representation.
2016;41:406–413.

30. Huang G-B, Zhu Q-Y, Siew C-K. Extreme learning machine: theory and
applications. Neurocomputing. 2006;70(1-3):489–501.

31. Huang G-B, Chen L, and Siew CK. Universal approximation using incremental
constructive feedforward networks with random hidden nodes. IEEE Trans
Neural Networks. 2006;17(4):879–892.

32. Friedman JH. Greedy function approximation: a gradient boosting machine.
Annals of statistics. 2001;1189–1232.

33. Chen T, Guestrin C. XGBoost: A scalable tree boosting system. Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining; 2016. p. 785–794.

34. Breiman L. Bagging predictors. Machine Learning. 1996;24(2):123–140.

35. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O,
Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A,
Cournapeau D, Brucher M, Perrot M, Duchesnay E. Scikit-learn: machine
learning in Python. The Journal of Machine Learning Research.
2011;12:2825–2830.

36. Dietterich TG. An experimental comparison of three methods for constructing
ensembles of decision trees: bagging, boosting, and randomization. Machine
Learning. 2000;40(2):139–157.

20

37. Ho TK. The random subspace method for constructing decision forests. IEEE
Transactions on Pattern Analysis and Machine Intelligence. 1998;20(8):832–
844.

38. Ahad A, Fayyaz A, Mehmood T. Speech recognition using multilayer
perceptron. In: IEEE Students Conference, ISCON’02. Proceedings, vol. 1.
IEEE; 2002, p. 103–109.

39. Huang G-B, Chen L. Convex incremental extreme learning machine.
Neurocomputing. 2007;70(16-18):3056–3062.

40. Huang G-B, Chen L. Enhanced random search based incremental extreme
learning machine. Neurocomputing. 2008;71(16-18):3460–3468.

41. Chen Y, Xu Z, Cai S, Lang Y, Kuo C-C J. A SAAK transform approach to
efficient, scalable and robust handwritten digits recognition. In: 2018 Picture
Coding Symposium (PCS). IEEE; 2018. p. 174–178.

42. Chen Y, Kuo C-C J. Pixelhop: A successive subspace learning (ssl) method
for object recognition. Journal of Visual Communication and Image
Representation. 2020;70:102749.

43. Huang G-B, Zhu Q-Y, Siew C-K. Extreme learning machine: theory and
applications. Neurocomputing. 2006;70(1-3):489–501.

44. Yang Y, Wang W, Fu H, Kuo C-C J. On supervised feature selection from
high dimensional feature spaces. arXiv preprint arXiv:2203.11924; 2022.

45. Chen T, Guestrin C. XGBoost: A scalable tree boosting system. Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining; 2016. p. 785–794.

46. Amit Y, Geman D. Shape quantization and recognition with randomized trees.
Neural computation. 1997;9(7):1545–1588.

47. Fisher RA. The use of multiple measurements in taxonomic problems. Annals
of Eugenics. 1936;7(2):179–188.

48. Asuncion A, Newman D. UCI machine learning repository. Irvine University
of California; 2007.

49. Smith JW, Everhart JE, Dickson W, Knowler WC, Johannes RS. Using the
ADAP learning algorithm to forecast the onset of diabetes mellitus.
Proceedings of the Annual Symposium on Computer Application in Medical
Care. American Medical Informatics Association; 1988. p. 261.

21

50. Göpfert JP, Wersing H, Hammer B. Interpretable locally adaptive nearest
neighbors. Neurocomputing. 2022;470:344–351.

51. Friedman JH. Multivariate adaptive regression splines. The Annals of
Statistics. 1991;19(1):1–67.

52. Quinlan JR. Induction of decision trees. Machine Learning. 1986;1(1):81–106.

22

Appendix A. Model Specifications for Data Sets

23

FF-MLP = Feed-forward multilayer perceptron, LSVM = Lagrangian
support vector machine

SVM/RBF = Support vector machine/restricted Boltzmann functions, DT =
Decision tree

SLM = Subspace learning machine

Data sets FF-MLP LSVM SVM/RBF DT SLM
Circle-and-
Ring

Gaussian
components =
4 for ring, 1
for circle, 8
and 9 neurons
in the two
hidden layers,
total 125
parameters

Slack
variables =
600, support
vectors =
591, bias =
1, total
parameters
= 2965

Slack
variables =
600, support
vectors =
206, bias =
1, total
parameters
= 1425

Splits =
175 tree
depth = 14,
total
parameters
= 350

Input features = 2,
tree depth = 4. node
numbers at each
level = 1, 4, 4, 10,
and 8, partitions =
13, total parameters
= 39

2-New-
Moons

Gaussian
components =
2 for each
class, 8
neurons in
each of two
hidden layers,
total
parameters =
114

Slack
variables =
600, support
vectors =
213, bias =
1, total
parameters
= 1453

Slack
variables =
600, support
vectors =
176, bias =
1, total
parameters
= 1305

Splits =
143 tree
depth = 15,
total
parameters
= 286

Tree depth = 4.
node numbers at
each level = 1, 4, 8,
12, and 4, partitions
= 14, total
parameters = 42

4-New-
Moons

Gaussian
components =
3 for each
class, 18 and
28 neurons in
two hidden
layers, total
parameters =
702

Slack
variables =
1200,
support
vectors =
413, bias
=1, total
parameters
= 2853

Slack
variables =
1200,
support
vectors =
417, bias
=1, total
parameters
= 2869

Splits =
149 tree
depth = 11,
total
parameters
= 298

Tree depth = 5.
node numbers at
each level = 1, 4,
16, 22, 16, and 4,
partitions = 31,
total parameters =
93

Iris Gaussian
components =
2 for each
class, 4 and 3
neurons in
two hidden
layers, total
parameters =
47

Slack
variables =
90, support
vectors =
24, bias =1,
total
parameters
= 235

Slack
variables =
90, support
vectors =
42, bias =1,
total
parameters
= 343

Splits = 17
tree depth
= 6, total
parameters
= 34

Input features = 4
tree depth = 3.
Node numbers at
each level = 1, 2, 2,
and 4, partitions =
4, total parameters
= 20

24

Wine Gaussian
components =
2 for each
class, 6
neurons in
each of two
hidden layers,
total
parameters =
147

Slack
variables =
107, support
vectors =
23, bias =1,
total
parameters
= 453

Slack
variables =
107, support
vectors =
57, bias =1,
total
parameters
= 963

Splits = 13
tree depth
= 4, total
parameters
= 26

Input features = 8
tree depth = 2.
Node numbers at
each level = 1, 8,
and 256, partitions
= 11, total
parameters =99

B.C.W. Gaussian
components =
2 for each
class, 2
neurons in
each of two
hidden layers,
total
parameters =
74

Slack
variables =
341, support
vectors =
35, bias =1,
total
parameters
= 1462

Slack
variables =
341, support
vectors =
91, bias =1,
total
parameters
= 3254

Splits = 27
tree depth
= 7, total
parameters
= 54

Input features = 5
tree depth = 4.
Node numbers at
each level = 1, 8,
16, 8, and 32,
partitions = 21,
total parameters
=126

Diabetes Gaussian
components =
2 for each
class, 18 and
88 neurons in
two hidden
layers, total
parameters =
2012

Slack
variables =
461, support
vectors =
107, bias =
1, total
parameters
= 1532

Slack
variables =
461, support
vectors =
134, bias =
1, total
parameters
= 1802

Splits = 65
tree depth
= 8, total
parameters
= 130

Input features = 4
tree depth = 3.
Node numbers at
each level = 1, 2,
16, and 20,
partitions = 11,
total parameters =
55

Ionosphere Gaussian
components =
2 for each
class, 6 and 8
neurons in
two hidden
layers, total
parameters =
278

Slack
variables =
211, support
vectors =
23, bias =1,
total
parameters
= 1017

Slack
variables =
211, support
vectors =
57, bias =1,
total
parameters
= 2207

Splits = 25
tree depth
= 10, total
parameters
= 50

Input features = 5
tree depth = 2.
Node numbers at
each level = 1, 4,
and 20, partitions =
13, total parameters
= 78

Banknote Gaussian
components =
2 for each
class, 2
neurons at
each of the
two hidden
layers, total
parameters =
22

Slack
variables =
823, support
vectors =
56, bias =1,
total
parameters
= 1160

Slack
variables =
823, support
vectors =
834, bias =
1, total
parameters
= 1322

Splits = 39
tree depth
= 7, total
parameters
= 78

Input features = all
tree depth = 3.
Node numbers at
each level = 1, 2, 8,
and 18, partitions =
8, total parameters
= 40

25

Appendix B. Loss Function

26

The process for calculating Discriminant Feature Test (DFT) or loss function is as
follows.

(i) Denote d-th feature set of xl by 𝑭𝑭𝒅𝒅 = {𝑥𝑥𝑙𝑙,𝑑𝑑|1 ≤ 𝑙𝑙 ≤ 𝐿𝐿}. Choose a
partitioning point 𝑡𝑡𝑑𝑑 corresponding to the feature 𝑥𝑥𝑑𝑑 so that the data
vectors are divided in two classes.

𝐷𝐷𝑑𝑑
𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡 = {(𝒙𝒙,𝑦𝑦)|𝑥𝑥𝑑𝑑 ≤ 𝑡𝑡𝑑𝑑}. Number of data vectors = 𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡

𝐷𝐷𝑑𝑑
𝑟𝑟𝑖𝑖𝑟𝑟ℎ𝑡𝑡 = {(𝒙𝒙, 𝑦𝑦)|𝑥𝑥𝑑𝑑 > 𝑡𝑡𝑑𝑑}. Number of data vectors = 𝑁𝑁𝑟𝑟𝑖𝑖𝑟𝑟ℎ𝑡𝑡

Next, let

𝑁𝑁𝑘𝑘
𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡𝑜𝑜𝑎𝑎 𝑁𝑁𝑘𝑘

𝑟𝑟𝑖𝑖𝑟𝑟ℎ𝑡𝑡= #data vectors of class k in the left or right division

𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡 = ∑ 𝑁𝑁𝑘𝑘
𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡𝐾𝐾

𝑘𝑘=1 , 𝑁𝑁𝑟𝑟𝑖𝑖𝑟𝑟ℎ𝑡𝑡 = ∑ 𝑁𝑁𝑘𝑘
𝑟𝑟𝑖𝑖𝑟𝑟ℎ𝑡𝑡𝐾𝐾

𝑘𝑘=1 , 𝑁𝑁 = 𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡 + 𝑁𝑁𝑟𝑟𝑖𝑖𝑟𝑟ℎ𝑡𝑡

The class-specific probabilities are

𝑝𝑝𝑘𝑘
𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡 = 𝑁𝑁𝑘𝑘

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
, 𝑝𝑝𝑘𝑘

𝑟𝑟𝑖𝑖𝑟𝑟ℎ𝑡𝑡 = 𝑁𝑁𝑘𝑘
𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑙𝑙

 𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑙𝑙

The class-specific entropies are

𝐻𝐻�𝐷𝐷𝑑𝑑
𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡� = −∑ 𝑝𝑝𝑘𝑘

𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡log 𝑝𝑝𝑘𝑘
𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡𝐾𝐾

𝑘𝑘=1 , 𝐻𝐻�𝐷𝐷𝑑𝑑
𝑟𝑟𝑖𝑖𝑟𝑟ℎ𝑡𝑡� = −∑ 𝑝𝑝𝑘𝑘

𝑟𝑟𝑖𝑖𝑟𝑟ℎ𝑡𝑡log 𝑝𝑝𝑘𝑘
𝑟𝑟𝑖𝑖𝑟𝑟ℎ𝑡𝑡𝐾𝐾

𝑘𝑘=1

Then the DFT function is

𝐿𝐿𝑑𝑑(𝑡𝑡𝑑𝑑) =
𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡

𝑁𝑁
𝐻𝐻�𝐷𝐷𝑑𝑑

𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡� +
𝑁𝑁𝑟𝑟𝑖𝑖𝑟𝑟ℎ𝑡𝑡

𝑁𝑁
𝐻𝐻(𝐷𝐷𝑑𝑑

𝑟𝑟𝑖𝑖𝑟𝑟ℎ𝑡𝑡)

Thus, dimension D is reduced to 𝐷𝐷0 or the dimension of the feature space satisfying
the discriminant bound (𝐷𝐷0 < 𝐷𝐷). Out of many partitioning points 𝑡𝑡𝑑𝑑, the optimum
𝑡𝑡𝑑𝑑∗ minimizes 𝐿𝐿𝑑𝑑(𝑡𝑡𝑑𝑑).

𝑡𝑡𝑑𝑑∗ = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑑𝑑𝐿𝐿𝑑𝑑(𝑡𝑡𝑑𝑑)

27

List of Symbols, Abbreviations, and Acronyms

CART Classification and Regression Tree

CNN convolutional neural network

DL deep learning

DT decision tree

ELM extreme learning machine

FF-MLP feedforward multilayer perceptron

GBDT gradient boosting decision tree

GMM Gaussian mixture model

LDA linear discriminant analysis

ML machine learning

PV projection vectors

RF random forest

SLM subspace learning machine

SLM/SLR subspace learning machine/regressor

SVM support vector machines

28

 1 DEFENSE TECHNICAL
 (PDF) INFORMATION CTR
 DTIC OCA

 1 DEVCOM ARL
 (PDF) FCDD RLD DCI
 TECH LIB

 1 DEVCOM ARL
 (PDF) FCDD RLC NC
 V MISHRA

 1 UNIVERSITY OF SOUTHERN CALIFORNIA
 (PDF) C-C J KUO

	List of Figures
	List of Tables
	1. Introduction
	1.1 Feedforward Multilayer Perceptron (FF-MLP)
	1.2 Decision Tree (DT)
	1.3 Random Forest (RF)
	1.4 Support Vector Machine (SVM)
	1.5 Extreme Learning Machine (ELM)
	1.6 Gradient Boosting Decision Tree (GBDT)

	2. Classification Using Subspace Learning Machine (SLM)
	3. Extension of Basic SLM to SLM Forest and SLM Boost
	3.1 SLM Forest
	3.2 SLM Boost

	4. Performance Evaluation of the SLM
	4.1 Data Sets
	4.2 Comparison of Model Sizes
	4.3 Comments on Performance
	4.4 Convergence Performance Comparison of DT Ensembles and SLM Ensembles

	5. Subspace Learning Regressor (SLR)
	5.1 Method
	5.2 Performance Evaluation

	6. Conclusion and Future Work
	7. References
	Appendix A. Model Specifications for Data Sets
	Appendix B. Loss Function
	List of Symbols, Abbreviations, and Acronyms

