
1
10 Years of Research in Technical Debt and an Agenda for the Future

© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Softw are Engineering Institute

Carnegie Mellon University

Pittsburgh, PA 15213

[Distribution Statement A] Approved for public release and unlimited distribution.

10 Years of Research in
Technical Debt and an Agenda
for the Future

Robert Nord (rn@sei.cmu.edu)

Ipek Ozkaya (ozkaya@sei.cmu.edu)

2
10 Years of Research in Technical Debt and an Agenda for the Future

© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Copyright 2022 Carnegie Mellon University.
This material is based upon work funded and supported by the Department of Defense under Contract No.
FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute,
a federally funded research and development center.
The view, opinions, and/or findings contained in this material are those of the author(s) and should not be
construed as an official Government position, policy, or decision, unless designated by other documentation.
NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING
INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY
MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited
distribution. Please see Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or
electronic form without requesting formal permission. Permission is required for any other use. Requests for
permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.
DM22-0862

3
10 Years of Research in Technical Debt and an Agenda for the Future

© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

ALL SYSTEMS HAVE TECHNICAL DEBT!

4
10 Years of Research in Technical Debt and an Agenda for the Future

© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Technical Debt: A Definition

In software-intensive systems, technical debt

consists of design or implementation constructs

that are expedient in the short term but set up a

technical context that can make future changes

more costly or impossible.

5
10 Years of Research in Technical Debt and an Agenda for the Future

© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Ernst N.; Bellomo, S.; Ozkaya, I.; Nord, R.; & Gorton, I . Measure it?

Manage it? Ignore it? Software Practitioners and Technical Debt. In

Int. Symp on Foundations of Software Engineering. 2015.

Software Architecture and Design Tradeoffs Matter

Results from over 1800 developers from
two large industry and one government

software development organizations
reinforce that unattended architecture

decisions and practices are at the root of
technical debt.

6
10 Years of Research in Technical Debt and an Agenda for the Future

© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Our vision in 2012

Provide a way for the software engineering community to recognize that technical debt

has its roots in architecture rework.

Our 2012 ICSA paper* presented a dependency analysis framework for measuring

architecture rework as a proxy for technical debt.

New features

and added
functionality

Architectural,

structural
features

Defects
Technical

Debt

legend

* In search of a metric for managing architectural technical debt

RL Nord, I Ozkaya, P Kruchten, M Gonzalez-Rojas - 2012 Joint Working IEEE/IFIP Conference on Softw are Architecture, 2012

7
10 Years of Research in Technical Debt and an Agenda for the Future

© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Let’s Recall the Paper and the Presentation

We exemplified use of one metric,

propagation cost, but emphasized that

quantifying rework is not trivial.

We demonstrated the potential rework

created as a consequence of the tension

between architecture decisions and

delivering priority functional requirements.

8
10 Years of Research in Technical Debt and an Agenda for the Future

© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

The Work that Followed

Research recognizing the connection of architecture and design roots of technical

debt

• e.g. Martini and Bosch 2014-2015, Lin, Liang, Avgeriou 2015

Research investigating propagation cost (Pc) and other architecture related metrics and

architecture smell detection

• e.g. Abad 2015, Ampatzoglou 2015, MacCormack 2016, Azadi 2019, Verdecchia 2020

Self-admitted technical debt research which identified conversations in code comments

providing further examples of technical debt and architecture.

• e.g. Maldonado and Shihab 2017

Work that focused on understanding how to manage technical debt and architecture

evolution, including systematic literature studies

• e.g. Fontana 2016, Guo 2016, Letouzey 2012, Rios 2018, Besker 2018

9
10 Years of Research in Technical Debt and an Agenda for the Future

© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

The good, the bad, and the opportunity

The paper made the architecture roots of technical debt very visible.

“Architectural technical debt” in our title unintentionally implied a technical debt

taxonomy.

Not enough people attended the presentation to

pick up on our tease to investigate the relationship

between design patterns and metrics.

R. L. Nord, I. Ozkaya, R. S. Sangwan, J. Delange, M. A. Gonzalez, P. Kruchten: Variations on

Using Propagation Cost to Measure Architecture Modifiability Properties . ICSM 2013: 400-403

10
10 Years of Research in Technical Debt and an Agenda for the Future

© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Technical Debt Causal Chain

11
10 Years of Research in Technical Debt and an Agenda for the Future

© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

A Typical Example

Technical debt is a software design decision made to solve

a problem but may not stand the test of time and cause rework.

“A decade ago processors were not as powerful. To optimize for

performance, we would not insert code for exception handling

when we knew we would not divide by zero or hit an out of bounds memory

condition. These areas now are hard to track and have become

security nightmares.”

Exists in an
executable system

artifact, such as code,
build scripts, data

model, automated test

suites.

Is traced to several locations
in the system, implying issues

are not isolated but propagate
throughout the system artifacts.

Has a quantifiable and increasing effect on
system attributes (e.g., increasing defects,

negative change in maintainability and code
quality indicators).

12
10 Years of Research in Technical Debt and an Agenda for the Future

© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Context Matters

13
10 Years of Research in Technical Debt and an Agenda for the Future

© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Separate What Causes Technical Debt from the Actual Debt

Common causes of technical debt

Techniques and approaches to eliminate the causes will be different
from those to identify and remove technical debt. Understanding and

eliminating causes help avoiding future technical debt.

14
10 Years of Research in Technical Debt and an Agenda for the Future

© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Purpose: A systematic approach to navigate through the state

of a software development project focusing on key areas

including vision, architecture, development practices, and

organization.

- This is our recommended first step to ensure causes of technical
debt and its symptoms are understood.

Approach: Set of interviews and stakeholder-focused meetings

to analyze project context, supported by artifact review as

needed.

Outcomes: A scorecard and supporting data which includes a

list of potential and actual causes of technical debt, impact

rating for each, and approaches for identifying relevant technical

debt.

Technical Debt Exposure Workshop and Analysis

business goals +

success strategies +

resources =

customer communication =

consequences of business decisions =

 feedback cycles =

... ...

architecturally significant requirements –

architecture fitness –

architecture issues =

short-term and long-term architecture goals –

impact of technology change =
 build, integration, test, and deployment alignment –

… ...

development infrastructure =

quality assurance =

development tools –

 done criteria –

code maintenance and evolution –

 software development processes and practices =

…

 collaboration =

change management +

 cost of delay and rework =

uncertainty –

development team resources =

new employee onboarding +

team communication +

… ...

B
us

in
es

s
V

is
io

n
A

rc
hi

te
ct

ur
e

D
ev

el
op

m
en

t
O

rg
an

iz
at

io
n

LEGEND + Issues are managed to minimize technical debt exposure

= Can improve, can contribute to technical debt

– Significant issues contributing to technical debt

Sample scorecard

15
10 Years of Research in Technical Debt and an Agenda for the Future

© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

The Technical Debt Landscape

The technical debt landscape. On the left, evolution or its challenges; on the right, quality issues, both internal and external.

VisibleVisible

New Features
Additional Functionality

Evolution Issues: Evolvability

Defects
Low External Quality

Quality Issues: Maintainability

Mostly Invisible

Code

Low Internal Quality
Code Complexity

Code Smells

Coding Style Violations

Architecture

Architecture Smells
Pattern Violations

Structural Complexity

Other Development Artifacts

Testing and Documentation Issues

Kruchten, P.; Nord, R.L.; & Ozkaya, I.

Managing Technical Debt Reducing Friction in Software Development, Pearson Addison-Wesley, 2019.

16
10 Years of Research in Technical Debt and an Agenda for the Future

© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Technical Debt Fills a Missing Gap in Software Development

Defects

Technical

Debt

Vulnerabilities

Defect proneness implies increased

vulnerability risks.

Technical debt increases vulnerability

risks.

Technical debt as it lingers in the system

increases defect proneness.

Some issues just overlap, making them

hard to tease apart!

defect – error in coding or logic that

causes a program to malfunction or
to produce incorrect/ unexpected

results

vulnerability – system

weakness in the intersection
of three elements:

• system flaw,
• attacker access to the

flaw,

• attacker capability to
exploit the flaw

technical debt – design

or implementation
construct traced to several

locations in the system,
that make future changes

more costly

17
10 Years of Research in Technical Debt and an Agenda for the Future

© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Making technical debt visible implies

communicating and tracking technical debt in a

manner that

• Is timely

• Concretely identifies what and where

• Includes experienced and potential

consequences

• Involves all relevant stakeholders

Making Technical Debt Visible

Next sprint
stories

New story

Break-down epic

Delete obsolete items

Epic (tbd in the future)

T
o

p
 p

ri
o

ri
ty

 i
te

m
s

=
 f
in

e
r
g

ra
n

u
la

ri
ty

TD item

18
10 Years of Research in Technical Debt and an Agenda for the Future

© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Detecting Technical Debt

1. Detect technical debt from code, where code-level conformance and structural

analysis indicate maintainability and concerns related to the structure of the

system and the codebase

2. Detect technical debt from symptoms that signal architecture issues.

3. Detect technical debt from architecture during design reviews and analysis of

decisions

4. Detect technical debt from development and deployment infrastructure, which

are not typically part of the delivered system but may impact its delivery,

security, and quality

Examples of Technical Debt’s Cybersecurity Impact, Robert Nord,

Ipek Ozkaya, Carol Woody, SEI Technical Note. July 2021.

19
10 Years of Research in Technical Debt and an Agenda for the Future

© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Name Connect #Gateway-1631:

Remove empty Java packages

Summary The re-architecture of the source code to support

multiple adaptor specifications has introduced a
new Java packaging scheme. Numerous empty
Java package folders across multiple projects.

Consequences No impact to functionality; however, re-

architecture may lead to confusion for users
implementing enhancements or modifications to
the source code.

Remediation

approach

New and existing classes have been moved into

these new package folders; however, the
previous package folders have been left in place
with no class files.

Reporter /

assignee

Gateway developers

.

Technical Debt Item Examples – Detect from Code

Defects

Technical

Debt

Vulnerabilities

20
10 Years of Research in Technical Debt and an Agenda for the Future

© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Name Unexpected crashes due to API incompatibility

Summary The source code uses a very large negative letter-spacing
in an attempt to move the text offscreen. The system

handles up to -186 em fine, but crashes on anything
larger. A similar issue was fixed with a patch, but there

were several other similar reports. My sense is that if we

patch it here, it will pop up somewhere else later.

Consequences We already had 28 reports from seven clients. And it
definitely leaves the software vulnerable. Finding the root

cause can be time consuming given that existing patches
did not resolve the issue.

Remediation

approach

The external web client and our software likely has an API
incompatibility, but further analysis is needed. The course

of action is to verify where the root of this problem is and
see if we can fix it on our side. If the external web client

team needs to fix it, we would need to negotiate.

Reporter /

assignee

DevSecOps Team / External Web Client Team

.

Technical Debt Item Examples – Detect from Symptoms

Defects

Technical

Debt

Vulnerabilities

21
10 Years of Research in Technical Debt and an Agenda for the Future

© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Manage the Technical Debt Timeline

Unintentional and not well

managed technical debt

Intentional and well

managed technical debt

22
10 Years of Research in Technical Debt and an Agenda for the Future

© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Acquisition Pathways – Software

Programs will maximize use of

automated software testing and

security accreditation,

continuous integration and

continuous delivery of software

capabilities, and frequent user

feedback and engagement.

Programs will consider the

program’s lifecycle

objectives and actively

manage technical debt. ….

(https://aaf.dau.edu/aaf/software/)

An iterative and incremental, architecture focused process which includes

proactive technical debt management is recommended.

23
10 Years of Research in Technical Debt and an Agenda for the Future

© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Going forward

Both commercial software industry (e.g. agile at scale/DevOps practices) and regulated

software environments (e.g. Adaptive Acquisition Framework) today recognize technical

debt management as a core software engineering practice.

TechDebt conference (www.techdebtconf.org) is a way to connect to ongoing research.

NDAA Section 835 calls for a study on better understanding

Open questions include:

• How to quantify rework with a variety of metrics to guide how and when to refactor

systems to resolve technical debt?

• How can rework quantification be related to operational practices, e.g. how should

technical debt be recorded and prioritized?

• How can empirical data and analysis be used to improve iterative and incremental

architecture practices to manage technical debt?

http://www.techdebtconf.org/

24
10 Years of Research in Technical Debt and an Agenda for the Future

© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

25
10 Years of Research in Technical Debt and an Agenda for the Future

© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

THANK YOU!

