Carncgic M(‘,“Oh UlliV(‘,l‘SitV [DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited
. . " distributon. Please see Copyright notice for non-US Government use and distibuton.
Software Engineering Institute

Technical Discussion: Test &
Evaluation of Software-Intensive _ P
Systems & DevSecOps

Eileen Wrubel — Technical Director of Transforming Software Acquisition Péifcy & Practice,
Hasan Yasar — Technical Director of Continuous Deployment of Capability,

SE| Software Solutions Division

Copyright 2022 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-
D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded
research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as
an official Government position, policy, or decision, unless designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED
ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY
DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR
COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see
Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form
without requesting formal permission. Permission is required for any other use. Requests for permission should be
directed to the Software Engineering Institute at permission@sei.cmu.edu.

DM22-0934

Carnegie Mellon University Shift Left Testing with DevSecOps [DISTRIBUTION STATEMENT A] This material has been approved for public release and uriimited distribuiion
Software Engineering Institute 2022 Carnegie Melon Uriversity

mailto:permission@sei.cmu.edu

Agenda

» Contextforthe Software Solution Division
> Related projectworkin DOT&E

» Potential collaboration opportunity —an ML component testing
challenge

» Shift Left Testing & DevSecOps insights

Carnegie Mellon University Shift Left Testing with DevSecOps [DISTRIBUTION STATEMENT A] This material has been approved for public release and uriimited distribuiion
Software Engineering Institute 2022 Carnegie Melon Uriversity

3

Software Solutions Division:
Rapidly Deploying Software Innovations with Confidence in DoD

Engineering Intelligent Software
Systems

Enabling Mission Capability
at Scale

Assuring Cyber-Physical
Systems

Continuous Deployment of
Capability

(@)
=
=
=
D
Qo
Q
=
e
<
N
(¢
Q.
=
<)
—h
(®)
=
o
D
)
@,
o
7
3
Q
2.
>
(]

Exploit emerging technologies

Transforming Software Acquisition

Policy and Practice

SEI Strategic Framework

Carnegie Mellon University Shift Left Testing with DevSecOps [DISTRIBUTION STATEMENT A] This material has been approved for public release and urlimited distributon
Software Eﬂgiﬂeeriﬂg Institute © 2022 Carnegie Mellon University

Software Engineering Research Roadmap (10-15 Year Horizon)

Theory of composability for
model-integrated computing
and quality attributes

Al-enabled system
specification methods

Documented patterns and tools L i

for composition notations, forAl-enabled systems - c\)
Q)/ rules, & relationships o
A\ Theory for assured Testing practices for ,p
% composition of evidence “Smart composition” Al-enabled systems New quality attributes '7
Q technologies based on human (

Modifiable Assurance Data management in behavior at scale

assurance argument Integrated tool chains support of

arguments templates to assure composed

Al-enabled systems

behaviors at scale
before & during
runtime

System instrumentation to
monitor effects of system
on social behavior

Automatic detection if a
system change invalidates
an assurance argument

Uncertainty
management
methods

Automated detection &

Intelligent

Automatic system update

protection against misuse of O
interacting Continuous socio-technical platforms ;
recommendations based formalisms & monitoring & VR
Re-envisioned software on operational data assurance sustainment Expanded set of
development lifecycle L), capabilities Platforms for quantum algorithms
ool chains for continuously evolving
Data & data models for combining evidence socio-technical Debugging tools
Al-augmented paradigms to re-assure ecosystems & techniques
asystem Standardized
Newformsof Scaled auto-code software stack
evidence of quality generation & repair Domain-specific iitaiaces
I VISION mans
omated design,
evolution, and analysis tools Evidence of developer

e Humans and Al
ateepanc are trustworthy

Profiling tools

Hybrid classical

quantum algorithms
collaborators that
- JL rapidly evolve
L e tems based '
Research Research SEMshasec on Research Research
Focus Topics programmer intent Topics
Areas

Focus
Areas

Research Focus Areas: Development Paradigms

Al-Augmented Software Assurllng Continuously Software Constrgc_:ﬂon
Evolving Software through Compositional
Development
Systems Correctness

The focus of this The goal of this This research area
research area is on research area is to focuses on methods &
what Al-augmented develop a theory & tools that enable the
software development practice of rapid & specification &

will look like at each assured software enforcement of

stage of the evolution that enables composition rules for
development process efficient & bounded component-based

& during continuous reassurance of technologies & platforms
evolution, where it will continuously evolving that allow both the

be particularly useful in systems. creation of required
taking on routine tasks. behaviors & the

assurance of these
behaviors.

Carnegie Mellon University Shift Left Testing with DevSecOps [DISTRIBUTION STATEMENT A] This material has been approved for public release and urlimited distributon
SOftV\/a re Eﬂgineeriﬂg Institute © 2022 Carnegie Mellon University

Research Focus Areas: Architectural Paradigms

Engineering Quantum

Engineering Al-Enabled Engineering Societal-

Software Systems Scale Software Systems g;/);?é)#‘t;ng =CINTEE
This research area This research area This research area will
focuses on exploring leverages the social enable quantum

which existing software sciences to develop computers to be easily
engineering practices new software programmed, & then
can reliably support the engineering enable increasing
development of Al approaches that abstraction as larger,
systems, as well as enable predictable fully fault-tolerant
identifying & augmenting behavior of software guantum computing
software engineering systems consisting of systems become
techniques for systems people as system available.

with Al components. components.

Carnegie Mellon University Shift Left Testing with DevSecOps [DISTRIBUTION STATEMENT A] This material has been approved for public release and urlimited distributon
Software Eﬂgmeeriﬂg Institute © 2022 Carnegie Mellon University

DOT&E Engagement

e April 2020—- December

o FY20 NDAA Sec 231 — Supported DOT&E in selecting, conducting and documenting
Digital Engineering Case Studies
o Software and Cyber Experts Roundtables

e January 2021 - September 2022

o Software and Cyber Policy & Guidance: SW Acquisition Pathway T&E Guidance; Cyber
T&E Focus Area; Cyber T&E Companion Guide; Software T&E Focus Area; DSO T&E
Companion Guide; Cyber Survivability White Paper

* September 2022 — November 2023
o Continued Work on Software and Cyber Policy & Guidance
o Integrated Modelingof DSO and Operational Test
o Reduction of supply chain risk through continuous SBOM monitoring
o Improving M&S through causal learning (project with NUWC)

Carnegie Mellon University Shift Left Testing with DevSecOps [DISTRIBUTION STATEMENT A] This material has been approved for public release and uriimited distribuiion
2022 Carnegie Mellon University

Software Engineering Institute

Automation of Mismatch Detection and Testing in ML
Systems: Problem Statement

As DoD adopts machine learning (ML) to solve

mission critical problems, the inability to detect ML mismatch is a problem that
and avoid mismatches between assumptions occurs in the development,

and decisions made by different system deployment, and operation of an
stakeholders creates delays, rework, and failure ML-enabled system due to

in the development, deployment, and evolution incorrect assumptions made

of ML-enabled systems.* about system elements by different

stakeholders — data scientists, ML
engineers, software engineers,
operations — that results in a
negative consequence.

Results from our recent study show that one of
the top causes for mismatch is lack of
information on how to test ML components.

* We define an ML-enabled system (or ML system for short) as a software system that includes one or more ML components

Carnegie Mellon University Shift Left Testing with DevSecOps [DISTRIBUTION STATEMENT A] This material has been approved for public release and uriimited distribuiion
Software Engineering Institute 2022 Carnegie Melon University

Examples of Mismatch

Poor system
performance
because
computing
resources for
model testing
different from
operational
computing
resources
(computing
resource
mismatch)

Poor model accuracy because model training

data different from operational data (data
distribution mismatch)

Operational Environment

Data Collection ML-Enabled System

<<Software Component>> i
ML Component Insight /
Prediction /
Data Entry Inference
Data Store
Data
Stream

\

Data
Processing

Software Software

Operational Component A Component B

Data

Trained Model

Tools not set up to detect
diminishing model accuracy or
collect data necessary for
model troubleshooting and
retraining (monitoring
mismatch)

System failure due to poor
testing —developers not
able to generate
appropriate test data or
test cases (testing
mismatch)

Large amounts of glue code because ML
component input/output very different from
operational data types (APl mismatch)

Carnegie Mellon University

Shift Left Testi ng with DevSecOps [DISTRIBUTION STATEMENT A] This materid has been approved for public release and unlimited distribuon.
Software Engiﬁeeriﬂg Institute ©2022 Carnegie Mellon University

ML Component Testing

Data collected during our research showed that a large cause of mismatch was due to
lack of information on how to test ML components, in particular testing for production-
readiness, which we define based on four ML component attributes:

« Ease of Integration (Integratability): ML component is compatible with upstream and
downstream components in production system

* Testability: ML component contains metadata/’"hooks”/test cases that enable testing
by software developers and/or external QA teams

* Monitorability: ML component properly produces data (or exposes internals) that is
used by monitoring components in the production system
« Comparable Inference Quality: Inference quality (e.g., accuracy) of ML component in

the production system is comparable to inference quality demonstrated during model
development and evaluation

Carnegie Mellon University Shift Left Testing with DevSecOps [DISTRIBUTION STATEMENT A] This material has been approved for public release and uriimited distribuiion
Software Engineering Institute 2022 Carnegie Melon University

11

Near-Term Collaboration Opportunity for
ML Component Testing for Production Readiness

Looking for organizations (e.g., T&E) that are tasked with testing ML components (or ML
systems) developed by other organizations or teams.

Participate in meetings, calls, or workshops to answer the following questions:
» What are commonfailuresin ML components developed by third parties (or other teams)?
* What type of testing is performed on these components?
* What are the challenges when testing these components?
« What do specifications for ML components look like?
» How do you extract test cases from these specifications?

Longerterm potential:
» Testing approaches that we develop foraddressing identified challenges
* Integrating SEI-developed approaches into testing processes

Carnegie Mellon University Shift Left Testing with DevSecOps [DISTRIBUTION STATEMENT A] This material has been approved for public release and uriimited distribuiion
2022 C: ors

Software Engineering Institute arnegie Melon University

Carnegie Mellon University
Software Engineering Institute

Shift Left Testing with DevSecOps

Shift-Left testing

Shift left testing requires:
* Practices and test tools
* Timing of tests
* Time to develop automate testing
 Planning for testing(what & how)
*Level of testing

*Culture
None of these changes will be easy;
they require energy, commitment, resources and mindset

Carnegie Mellon University Shift Left Testing with DevSecOps [DISTRIBUTION STATEMENT A] This material has been approved for public release and uriimited distribuiion
Software Engineering Institute 2022 Carnegie Melon Uriversity

14

Testing Fundamentals

Carnegie Mellon University Shift Left Testing with DevSecOps [DISTRIBUTION STATEMENT A] This material has been approved for public release and urlimited distributon
SOftV\/a re Engineering Institute © 2022 Carnegie Mellon University

Reminder: Sw Development Phases

Carnegie Mellon Un_iversity Shift Left Testing with DevSecOps [DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribuon.
Software Engineering Institute ©2022 Carnegie Melon University

Different Incremental Approaches

Incremental development:

« Single increment of work, delivered once in a single
package

Incremental Development, Single Delivery

« Work divided into logical subsets for development in
pieces, delivered once in a single package

Incremental Development & Delivery

« Work divided into meaningful slices of the total end
result, delivered in gradually more complete versions

« Alternatively, delivering new pieces rather than total
new versions

Carnegie Mellon University Shift Left Testing with DevSecOps [DISTRIBUTION STATEMENT A] This material has been approved for public release and urlimited distributon
Software Engiﬁeeriﬂg Institute ©2022 Carnegie Mellon University

Incremental and Iterative Combinations

Ilteration 1 , lteration 2 ; lteration 3

e ——— -

Incremental Incremental Not
Dev and Delivery Dev Only Incremental
Carnegie Mellon University Shift Left Testing with DevSecOps [DISTRIBUTION STATEMENT A] This material has been approved for public release and urlimited distributon

Software Eﬁgmeeriﬂg Institute ©2022 Carnegie Mellon University

Start from Planning (capturing the right requirements)

Traditional

The requirements form a mutually exclusive and
collectively exhaustive expression of the user
needs and wants

Complete. Each requirement must fully describe
the capability to be delivered

Unambiguous. All readers of a requirement
should arrive at a single, consistentinterpretation
of it

Verifiable. It should be possible to objectively
determine whether the system properly
implements each requirement

Consistent. A requirement must not conflict with
other requirement

Good User stories (INVEST)

Independent. The requirement can be developed and
tested on its own

Negotiable (Definable). The requirementis a promise to
have a conversationin due time to define the details of
whatever is being built. Is more about learning than
negotiation

Valuable. The requirement must provide a benefitthe
customer could appreciate

Estimable. It should be possible forthe team to forecast
the effortit will require to implementit

Small. The requirementshould be small enoughto be
able to be completed in an iteration

Testable. The requirement must provide enough
information to make it clear how it will be verified

Carnegie Mellon University Shift Left Testing with DevSecOps
Software Engineering Institute 2022 C

megie Mellon University

[DISTRIBUTION STATEMENT A] This materid has been approved for public release and unlimited distribuon.

Definitions of Ready & Definitions of Done

DoR

Business value is clearly articulated

PBI details are understood by the
development team

Dependencies are identified and resolved
(e.g., not known external dependency should
block the work once started)

The PBI is estimated and small enough to
comfortably fit in one sprint

Acceptance criteria are clear and testable.

Performance criteria, if any, are defined and
testable

DoD

. With a Story

All Code (Test and
Mainline) Checked in
All Unit Tests Passing
All Acceptance Tests
ldentified, written &
Passmg

Help File Auto
Genevated

Functional Tests Passing

With a Sprint

All Story Criteria, Plus..
Product Backup
Updated

o Performance Testing

e Pactkage, Class &
Architecture Diagrams
Updated

o All Bugs Closed or
Postpored

o Code Coverage for all
Usit Tests at 80% «

..Release to INT

All Sprint Criteria, Plus

trstallation Packages
Created

MOM Packaaqes Created
Operations Guide
Updated
Tm«bhthnoh'reg Guides
Updated

Drsaster Recovery Flan
Updated

All Test Sutes Passing

..Release to Prod

All INT Critera, Plus .

o Stress Testing

o Performance Turing

¢ Network Diagram
Updated

o Security Pass Validated

e Threat Modelmg Pass
Valddated

o Deaster Recovery Plan
Tested

M. Lacey,
How Do
We Know
When We
Are Done?,
2008

Carnegie Mellon University
Software Engineering Institute

Shift Left Testing with DevSecOps

©2022 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This materid has been approved for public release and unlimited distribuon.

Testing in General

A
$3% "\5@ & i)
24 y g e Typical Large
y {1/ End-to-end Ul Have as many cheap,
N fast running tests as
Typical Medium possible and minimize
External Services the number of
Single Ul .
expensive and slow
Typical Small tests
Individual
Classes

© Scaled Aglle, Inc

Carnegie Mellon University Shift Left Testing with DevSecOps [DISTRIBUTION STATEMENT A] This material has been approved for public release and urlimited distributon

SOftV\/a re Eﬂgineeriﬂg Institute © 2022 Carnegie Mellon University

Test Harness

» Test Harness

.

Load Balancer

LN
m

Environment

— e e e e e »

A test harness generates inputs and
compares outputsto verify the
correctness of the code.

|
External
- . Components
Configuration

Carnegie Mellon University Shift Left Testing with DevSecOps [DISTRIBUTION STATEMENT A] This material has been approved for public release and uriimited distribuiion
Software Engineering Institute ©2022 Carnegie Melon University

Test data

Test data is real (ish) but limited.
* Need to worry about exposing private data to Developers/Contractors
e Limited so that tests will run fast and keep build queue from growing
* If tests change database, it must be refreshed before next set of tests.

* No results should be sent to any production service — results in corrupting
production version.

Carnegie Mellon University Shift Left Testing with DevSecOps [DISTRIBUTION STATEMENT A] This material has been approved for public release and uriimited distribuiion
Software Engineering Institute 2022 Carnegie Melon Uriversity

Testing in

Development

* Unit Testing/component
testing

* Verify the functionally of
specific section of code

* Includes static code
analyzers, data flow,
metrics analysis or peer
code reviews

* Acceptance Testing

» Done by developer prior
to integration or
regression

* Security Review/Testing

* Reasonable to proceed

with further testing or not|

Automated Testing with CI
Product artifacts are subjected to a
collection of automated tests

* Tests are performed using a test
harness

* Regression tests

* Smoke testing

* Rainy day scenarios

* Unit Testing/component testing

* Security Testing

* Module/subsystem integration

* Trade off between
comprehensiveness of tests and
time it takes to run the tests

* Clreports results through
DevSecOps pipeline

Carnegie Mellon University
Software Engineering Institute

Shift Left Testing with DevSecOps

©2022 Carnegie Mellon University

[DISTRIBUTION STATEMEN I A] This materid has been approved for public release and unlimited distribuon.

Te

sting In Staging.
Regression testing
Smoke testing
Compatibility testing
Integration testing
Functional Testing
Usability Testing
Install/uninstall testing
Performance testing
Security testing
Test for performance with generated loads
Environment should be as ‘real’ as possible
Load balanced
* Auto scaled
* Multiple instances

Testing in Production(!)
* Performance Testing

* Usability

* Chaos Monkey testing

* Security testing

* [Feature flag

Carnegie Mellon University Shift Left Testing with DevSecOps

SOftV\/a re Eﬂgineeriﬂg Institute © 2022 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This materid has been approved for public release and unlimited distribuon.

Testing for Embedded systems & HW

Development

Carnegie Mellon University Shift Left Testing with DevSecOps [DISTRIBUTION STATEMENT A] This material has been approved for public release and urlimited distributon
Software Eﬂgmeeriﬂg Institute © 2022 Carnegie Mellon University

Development boards and prototypes

» Typically used during initial prototyping but can also extend into testing
« Convenient due to multitude of available 10 options already built in
* Very limited as they usually represent the controller, no custom hardware, sensors, etc.

« Notthe actual hardware, requires system level tests on actual hardware

Carnegie Mellon University Shift Left Testing with DevSecOps [DISTRIBUTION STATEMENT A] This material has been approved for public release and uriimited distribuiion
Software Engineering Institute 2022 Carnegie Melon Uriversity

Hardware simulation

* Fully or partially implemented hardware functionality in software
« Emulation is often down to the instruction set

« Many forms exist, each has its limitations

« Emulation introduces latency

 Significant effortto create and maintain a functional simulator
« Many companies have a dedicated simulator “SIM” team

« Efficient development of complex systems “requires” a simulator, often custom

« Offthe shelf simulators exist, provide generic simulation and test integration
capabilities
» May not be sufficient for a complex system
» Proprietary technology maybe difficult to extent

Carnegie Mellon University Shift Left Testing with DevSecOps [DISTRIBUTION STATEMENT A] This material has been approved for public release and uriimited distribuiion
Software Engineering Institute 2022 Carnegie Melon Uriversity

Hybrid Approach

« Start up the simulation team early in the dev process
« Perform early SW development with APl-based substitution and HW dev boards
« Basic simulator ready in time for sub-system and unit tests in CI

« Hardware testbed and simulator management with configuration and memory
snapshots to improve test stability

» Daily/Weekly “arming” tests with real HW
« End-to-End tests on real hardware once ready

Carnegie Mellon University Shift Left Testing with DevSecOps [DISTRIBUTION STATEMENT A] This material has been approved for public release and uriimited distribuiion
Software Engineering Institute 2022 Carnegie Melon Uriversity

Hardware-Based (HWIL) Testing with DevSecOps

Serial, Ethernet,

LlE—— -

Build Server HW Prov1sioning
l [e
uns Modbus, LLLLT] L @
e = = CAN, etc. = :
X z = " i = - @

;—_ nnnnna [AR R]]
Devsecops TW Under T@Tt

Infrastructure
Ethernet, Serial, etc. gi

Data Feed

Carnegie Mellon University Shift Left Testing with DevSecOps [DISTRIBUTION STATEMENT A] This material has been approved for public release and uriimited distribuiion
2022 Carnegie Mellon University

Software Engineering Institute

30

Overall: View of Testing

» Tests are the final requirements forthe system!

 We use tests to determine if the software is what we want and have become
synonyms for the requirements

« They’re the only objective measure of the system

« Conseguences:
« Every requirement must have one or more tests associated with it
» If we're practicing TDD, then code should only be written to make a failing test pass
« Tests will have to be developed incrementally (or we're back to waterfall)

Carnegie Mellon University Shift Left Testing with DevSecOps [DISTRIBUTION STATEMENT A] This material has been approved for public release and uriimited distribuiion
.

Software Engineering Institute 2022 Carnegie Melon Uriversity

Agile intermingles Development and Test

* Development and test are not
separate or standalone

» Tests are added to a repeatable i
: Team Backlog
test suite SN P — — = = N

» Test suite is repeated for each
change

 Demos not a replacement for
testing

Carnegie Mellon University Shift Left Testing with DevSecOps [DISTRIBUTION STATEMENT A] This material has been approved for public release and urlimited distributon

Software Engineering Institute ©2022 Carnegie Melon University

Agile iteration relies on more testing earlier

« Testing used for rapid :
refinement of loosely Portfolio Portfolio Backlog
understood requirements, m gill | Dt gl 11

architecture, and design

i Value Stream Backlog

* Requirements and Release T
implementation are finely sliced Planning ey
« Each slice is tested “?? T
immediately and repetitively E Backlog - .?g?
= Quality Attribute v
__ Requirements —
Technical
Requirements -
Carnegie Mellon University Shift Left Testing with DevSecOps [DISTRIBUTION STATEMENT A] This material has been approved for public release and urlimited distributon

Software Eﬁgmeeriﬂg Institute ©2022 Carnegie Mellon University

Shift-left testing

Tradition “V" Model delays feedback Shift left for fast feedback

Write Write Test FEATURE TEST
Feature Feature Feature (BDD)

Behavior-Driven

Development (BDD)
(BDD) n

Write Story Test Story Write Story 0

Behavior-Driven

Davelopment (BDD)
CODE TEST

Write Code Test Code Write Code (TDD)
Test-Driven
Development (TDD)

© Scaled Aghe, Inc

We may not be able to run the tests, but we're thinking about them early

Carnegie Mellon University Shift Left Testing with DevSecOps [DISTRIBUTION STATEMENT A] This material has been approved for public release and urlimited distributon
Software Engineering Institute ©2022 Carnegie Melon University

A Strategy for Shift-Left Testing

Carnegie Mellon University Shift Left Testing with DevSecOps [DISTRIBUTION STATEMENT A] This material has been approved for public release and urlimited distributon
SOftV\/a re Engineering Institute © 2022 Carnegie Mellon University

Classic Agile inter-twingles development and test

==

Sprint BN e
Planning

Story Writing

/ Story Testing

Implementation

Backlog

| [

Quality Attribute Dev Testing

Requirements ‘ontinuous Integration

Technical
Requirements

[DISTRIBUTION STATEMENT A] This materid has been approved for public release and unlimited distribuon. 36

Shift Left Testing with DevSecOps

Carnegie Mellon University
© 2022 Carnegie Mellon University

Software Engineering Institute

Agile High Assurance Dev/Test cadence

n+1

Iteration

Dev Test
Sprint Sprint

Planning Planning J Test Model Rel
Adapter Development R ede'ase
Story Writing s eadiness

eyword-Action Development Review

Story Testing

Implementation Test Execution

Dev Testing

__.ammmContinuous Integration

Carnegie Mellon University Shift Left Testing with DevSecOps [DISTRIBUTION STATEMENT A] This material has been approved for public release and urlimited distributon
Software Engineering Institute ©2022 Carnegie Melon University

Agile High Assurance Dev/Test cadence

Version
0.1

Version
0.2

Version 0.3 ———

Carnegie Mellon University Shift Left Testing with DevSecOps [DISTRIBUTION STATEMENT A] This material has been approved for public release and urlimited distributon
Software Engineering Institute ©2022 Carnegie Melon University

Agile High Assurance Dev/Test Cadence

2-4 week Iteration/Sprint

o | 1| 2 | 3 | 4 | 5 | 6 | Release _

Release Test Env
Planning Prep

Dev 0.1 Test 0.1
Dev 0.2 Test 0.2
Dev 0.3 Test 0.3
Dev 0.4 Test 0.4
Dev 0.5 Test 0.5
Dev RC Test RC, Release

Support, Retro

Version
Team Test Sprint
Sprint
Carnegie Mellon University Shift Left Testing with DevSecOps [DISTRIBUTION STATEMENT A] This material has been approved for public release and urlimited distributon

Software Engmeerimg Institute © 2022 Carnegie Mellon University

Shift left Testing in multiple sprints
Moving from

Traditional Vee-process phased and
| . siloed testing
Emmmme +emmm to Agile testing

- “ -

Agile development with traditional DT and OT (Hybrid) is the Blg
”
(O B Deal

S

Integrating
Agile cadence

- 8 "0 -g-a0- o oy tommmg | With DT/OTIs a
© 0 -4 -f-08- -0F- S key challenge

Agile development with traditional DT and OT, early integration synch points

Agile High Assurance Dev/Test Cadence f
Developmental Testing Operational Testing
] oevoev [5 B oo I B oerioymen
Carnegie Mellon University Sh|ft Left Testl ng W|th DevSecOps [DISTRIBUTION STATEMENT A] This material has been approved for public release and uriimited distribuiion

40

Software Engineering Institute Carmegie. Melor

Tools for Test Automation

e There are hundreds of
COTS, FOSS, and GOTS
software testing tools

« Each tool is specialized for
a certain kind of testing

« Each tool is specialized for
a tool stack, target stack,
and target interface

Enterprise
Information

Systems
Application

Domain
Embedded

Control
Systems

Function
Performance
Security
Function Function
Performance Performance
Security Security
API GUI
Interface
Supported

*nix
RTOS

Windows

Platforms
Supported

Carnegie Mellon University Shift Left Testing with DevSecOps
©2022 Carnegie Mellon University

Software Engineering Institute

[DISTRIBUTION STATEMENT A] This materid has been approved for public release and unlimited distribuon.

41

Takeaway

Carnegie Mellon University Shift Left Testing with DevSecOps [DISTRIBUTION STATEMENT A] This material has been approved for public release and urlimited distributon
SOftV\/a re Engineering Institute © 2022 Carnegie Mellon University

Apply Testing from
Inception to
Deploy and
Improve every
delivery

Carnegie Mellon University
Software Engineering Institute

Shift Left Testing with DevSecOps
© 2022 Carnegie Mellon University

CONTINUOQUS
INTEGRATION

CONTINUOUS
DELIVERY

FEEDBACK

data -
[Fowure Requens | [Reguirermemes Archivcne ‘ Design ’ Dvvedopenen Dubvery
Req Design Code A»
data -
//LYCL€ PROCESS g z

- data

* Bring tester community into development
early

Ideal time is in backlog grooming;
testers can develop acceptance
criteria

Particularly true for SAFe Features
and Capabilities— use BDD to define
acceptance

* No surprises

No hidden tests — provide tests to
developers as soon as you have
them

Independence (e.g., of OT&E) is not
isolation

* Integrate. Integrate. INTEGRATE
 Automate as much as possible
* Tests should be delivered with the code

Carnegie Mellon University
Software Engineering Institute

Shift Left Testing with DevSecOps

© 2022 Carnegie Mellon Unive

orsity

[DISTRIBUTION STATEMENT A] This materid has been approved for public release and unlimited distribuon.

Thank you

Eileen Wrubel

eow@sei.cmu.edu

Hasan Yasar

hyasar@cmu.edu

Carnegie Mellon University Shift Left Testing with DevSecOps [DISTRIBUTION STATEMENT A] This material has been approved for public release and urlimited distributon

Software Eﬂgiﬂeeriﬂg Institute © 2022 Carnegie Mellon University

mailto:eow@sei.cmu.edu
mailto:hyasar@cmu.edu

