
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited

distribution. Please see Copyright notice for non-US Government use and distribution.

Softw are Engineering Institute

Carnegie Mellon University

Pittsburgh, PA 15213

Technical Discussion: Test &
Evaluation of Software-Intensive
Systems & DevSecOps

Eileen Wrubel – Technical Director of Transforming Software Acquisition Policy & Practice,

Hasan Yasar – Technical Director of Continuous Deployment of Capability,

SEI Software Solutions Division

2
Shift Left Testing with DevSecOps
© 2022 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Copyright 2022 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-
D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded
research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as
an official Government position, policy, or decision, unless designated by other documentation.
NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED
ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY
DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR
COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see
Copyright notice for non-US Government use and distribution.
This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form
without requesting formal permission. Permission is required for any other use. Requests for permission should be
directed to the Software Engineering Institute at permission@sei.cmu.edu.

DM22-0934

mailto:permission@sei.cmu.edu

3
Shift Left Testing with DevSecOps
© 2022 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Agenda

 Context for the Software Solution Division

 Related project work in DOT&E

 Potential collaboration opportunity – an ML component testing

challenge

 Shift Left Testing & DevSecOps insights

4
Shift Left Testing with DevSecOps
© 2022 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Software Solutions Division:
Rapidly Deploying Software Innovations with Confidence in DoD

AICyber

Software

Engineering Intelligent Software

Systems

Transforming Software Acquisition

Policy and PracticeSEI Strategic Framework
E

xp
lo

it
 e

m
e

rg
in

g
 t

e
c
h
n
o

lo
g

ie
s

C
u
ra

te
 &

 a
n
a
lyz

e
 d

a
ta

 fo
r d

e
c
is

io
n
-m

a
kin

g

Enabling Mission Capability

at Scale

Assuring Cyber-Physical

Systems

Continuous Deployment of

Capability

5
Shift Left Testing with DevSecOps
© 2022 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Software Engineering Research Roadmap (10-15 Year Horizon)

6
Shift Left Testing with DevSecOps
© 2022 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Research Focus Areas: Development Paradigms

Assuring Continuously

Evolving Software
Systems

Software Construction

through Compositional
Correctness

AI-Augmented Software

Development

The focus of this

research area is on

what AI-augmented

software development

will look like at each

stage of the

development process

& during continuous

evolution, where it will

be particularly useful in

taking on routine tasks.

The goal of this

research area is to

develop a theory &

practice of rapid &

assured software

evolution that enables

efficient & bounded

reassurance of

continuously evolving

systems.

This research area

focuses on methods &

tools that enable the

specification &

enforcement of

composition rules for

component-based

technologies & platforms

that allow both the

creation of required

behaviors & the

assurance of these

behaviors.

7
Shift Left Testing with DevSecOps
© 2022 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Research Focus Areas: Architectural Paradigms

Engineering Societal-

Scale Software Systems

Engineering AI-Enabled

Software Systems

Engineering Quantum

Computing Software
Systems

This research area

leverages the social

sciences to develop

new software

engineering

approaches that

enable predictable

behavior of software

systems consisting of

people as system

components.

This research area

focuses on exploring

which existing software

engineering practices

can reliably support the

development of AI

systems, as well as

identifying & augmenting

software engineering

techniques for systems

with AI components.

This research area will

enable quantum

computers to be easily

programmed, & then

enable increasing

abstraction as larger,

fully fault-tolerant

quantum computing

systems become

available.

8
Shift Left Testing with DevSecOps
© 2022 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

DOT&E Engagement

• April 2020 – December

o FY20 NDAA Sec 231 – Supported DOT&E in selecting, conducting and documenting

Digital Engineering Case Studies

o Software and Cyber Experts Roundtables

• January 2021 – September 2022
o Software and Cyber Policy & Guidance: SW Acquisition Pathway T&E Guidance; Cyber

T&E Focus Area; Cyber T&E Companion Guide; Software T&E Focus Area; DSO T&E

Companion Guide; Cyber Survivability White Paper

• September 2022 – November 2023
o Continued Work on Software and Cyber Policy & Guidance

o Integrated Modeling of DSO and Operational Test

o Reduction of supply chain risk through continuous SBOM monitoring

o Improving M&S through causal learning (project with NUWC)

9
Shift Left Testing with DevSecOps
© 2022 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Automation of Mismatch Detection and Testing in ML
Systems: Problem Statement

As DoD adopts machine learning (ML) to solve

mission critical problems, the inability to detect

and avoid mismatches between assumptions

and decisions made by different system

stakeholders creates delays, rework, and failure

in the development, deployment, and evolution

of ML-enabled systems.*

Results from our recent study show that one of

the top causes for mismatch is lack of

information on how to test ML components.

ML mismatch is a problem that

occurs in the development,

deployment, and operation of an

ML-enabled system due to

incorrect assumptions made

about system elements by different

stakeholders — data scientists, ML

engineers, software engineers,

operations — that results in a

negative consequence.

* We define an ML-enabled system (or ML system for short) as a software system that includes one or more ML components

10
Shift Left Testing with DevSecOps
© 2022 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Operational Environment

ML-Enabled System

Software

Component A

Software

Component B

Runtime

Monitoring

Tools

Operational

Data

Data Collection

Data

Processing

<<Software Component>>

ML Component

Trained Model

Sensors

Data Entry

Data Store

Data

Stream

Insight /

Prediction /

Inference

Examples of Mismatch

Poor system
performance

because

computing
resources for
model testing
different from

operational
computing
resources

(computing
resource

mismatch)

Poor model accuracy because model training
data different from operational data (data
distribution mismatch)

Large amounts of glue code because ML
component input/output very different from
operational data types (API mismatch)

Tools not set up to detect
diminishing model accuracy or
collect data necessary for
model troubleshooting and
retraining (monitoring
mismatch)

System failure due to poor
testing —developers not
able to generate
appropriate test data or
test cases (testing
mismatch)

11
Shift Left Testing with DevSecOps
© 2022 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

ML Component Testing

Data collected during our research showed that a large cause of mismatch was due to

lack of information on how to test ML components, in particular testing for production-

readiness, which we define based on four ML component attributes:

• Ease of Integration (Integratability): ML component is compatible with upstream and

downstream components in production system

• Testability: ML component contains metadata/”hooks”/test cases that enable testing

by software developers and/or external QA teams

• Monitorability: ML component properly produces data (or exposes internals) that is

used by monitoring components in the production system

• Comparable Inference Quality: Inference quality (e.g., accuracy) of ML component in

the production system is comparable to inference quality demonstrated during model

development and evaluation

12
Shift Left Testing with DevSecOps
© 2022 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Near-Term Collaboration Opportunity for
ML Component Testing for Production Readiness

Looking for organizations (e.g., T&E) that are tasked with testing ML components (or ML

systems) developed by other organizations or teams.

Participate in meetings, calls, or workshops to answer the following questions:

• What are common failures in ML components developed by third parties (or other teams)?

• What type of testing is performed on these components?

• What are the challenges when testing these components?

• What do specifications for ML components look like?

• How do you extract test cases from these specifications?

Longer term potential:

• Testing approaches that we develop for addressing identified challenges

• Integrating SEI-developed approaches into testing processes

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited

distribution. Please see Copyright notice for non-US Government use and distribution.

Shift Left Testing with DevSecOps

14
Shift Left Testing with DevSecOps
© 2022 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Shift-Left testing

Shift left testing requires:

•Practices and test tools

•Timing of tests

•Time to develop automate testing

•Planning for testing(what & how)

•Level of testing

•Culture

None of these changes will be easy;

they require energy, commitment, resources and mindset

15
Shift Left Testing with DevSecOps
© 2022 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Testing Fundamentals

16
Shift Left Testing with DevSecOps
© 2022 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Reminder: SW Development Phases

17
Shift Left Testing with DevSecOps
© 2022 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Different Incremental Approaches

Incremental development:

• Single increment of work, delivered once in a single

package

Incremental Development, Single Delivery

• Work divided into logical subsets for development in

pieces, delivered once in a single package

Incremental Development & Delivery

• Work divided into meaningful slices of the total end

result, delivered in gradually more complete versions

• Alternatively, delivering new pieces rather than total

new versions

18
Shift Left Testing with DevSecOps
© 2022 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Incremental and Iterative Combinations

Incremental
Dev and Delivery

Incremental
Dev Only

Not
Incremental

19
Shift Left Testing with DevSecOps
© 2022 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Start from Planning (capturing the right requirements)

Traditional

• The requirements form a mutually exclusive and

collectively exhaustive expression of the user
needs and wants

• Complete. Each requirement must fully describe
the capability to be delivered

• Unambiguous. All readers of a requirement

should arrive at a single, consistent interpretation
of it

• Verifiable. It should be possible to objectively

determine whether the system properly
implements each requirement

• Consistent. A requirement must not conflict with

other requirement

Good User stories (INVEST)

Independent. The requirement can be developed and

tested on its own

Negotiable (Definable). The requirement is a promise to
have a conversation in due time to define the details of
whatever is being built. Is more about learning than

negotiation

Valuable. The requirement must provide a benefit the
customer could appreciate

Estimable. It should be possible for the team to forecast

the effort it will require to implement it

Small. The requirement should be small enough to be
able to be completed in an iteration

Testable. The requirement must provide enough

information to make it clear how it will be verified

20
Shift Left Testing with DevSecOps
© 2022 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Definitions of Ready & Definitions of Done

DoR

• Business value is clearly articulated

• PBI details are understood by the
development team

• Dependencies are identified and resolved
(e.g., not known external dependency should
block the work once started)

• The PBI is estimated and small enough to
comfortably fit in one sprint

• Acceptance criteria are clear and testable.

• Performance criteria, if any, are defined and
testable

DoD

M. Lacey,
How Do
We Know
When We
Are Done?,
2008

21
Shift Left Testing with DevSecOps
© 2022 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Testing in General

Have as many cheap,

fast running tests as

possible and minimize

the number of

expensive and slow

tests

22
Shift Left Testing with DevSecOps
© 2022 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Test Harness

Database

Environment

Load Balancer

VMVMVM

Configuration

External
Components

Test Harness

2

2

A test harness generates inputs and

compares outputs to verify the

correctness of the code.

23
Shift Left Testing with DevSecOps
© 2022 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Test data

Test data is real (ish) but limited.

• Need to worry about exposing private data to Developers/Contractors

• Limited so that tests will run fast and keep build queue from growing

• If tests change database, it must be refreshed before next set of tests.

• No results should be sent to any production service – results in corrupting

production version.

24
Shift Left Testing with DevSecOps
© 2022 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Testing in

Development
• Unit Testing/component

testing

• Verify the functionally of

specific section of code

• Includes static code

analyzers, data flow,

metrics analysis or peer

code reviews

• Acceptance Testing

• Done by developer prior

to integration or

regression

• Security Review/Testing

• Reasonable to proceed

with further testing or not

Automated Testing with CI
• Product artifacts are subjected to a

collection of automated tests

• Tests are performed using a test

harness

• Regression tests

• Smoke testing

• Rainy day scenarios

• Unit Testing/component testing

• Security Testing

• Module/subsystem integration

• Trade off between

comprehensiveness of tests and

time it takes to run the tests

• CI reports results through

DevSecOps pipeline

25
Shift Left Testing with DevSecOps
© 2022 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Testing in Staging.

• Regression testing

• Smoke testing

• Compatibility testing

• Integration testing

• Functional Testing

• Usability Testing

• Install/uninstall testing

• Performance testing

• Security testing

• Test for performance with generated loads

• Environment should be as ‘real’ as possible

• Load balanced

• Auto scaled

• Multiple instances

Testing in Production(!)
• Performance Testing

• Usability

• Chaos Monkey testing

• Security testing

• Feature flag

26
Shift Left Testing with DevSecOps
© 2022 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Testing for Embedded systems & HW

Development

Unit
Tests

Sub
System
Tests

System
Tests

End-
To-End
Tests

HW

27
Shift Left Testing with DevSecOps
© 2022 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Development boards and prototypes

• Typically used during initial prototyping but can also extend into testing

• Convenient due to multitude of available IO options already built in

• Very limited as they usually represent the controller, no custom hardware, sensors, etc.

• Not the actual hardware, requires system level tests on actual hardware

28
Shift Left Testing with DevSecOps
© 2022 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Hardware simulation

• Fully or partially implemented hardware functionality in software

• Emulation is often down to the instruction set

• Many forms exist, each has its limitations

• Emulation introduces latency

• Significant effort to create and maintain a functional simulator

• Many companies have a dedicated simulator “SIM” team

• Efficient development of complex systems “requires” a simulator, often custom

• Off the shelf simulators exist, provide generic simulation and test integration

capabilities

• May not be sufficient for a complex system

• Proprietary technology maybe difficult to extent

29
Shift Left Testing with DevSecOps
© 2022 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Hybrid Approach

• Start up the simulation team early in the dev process

• Perform early SW development with API-based substitution and HW dev boards

• Basic simulator ready in time for sub-system and unit tests in CI

• Hardware testbed and simulator management with configuration and memory

snapshots to improve test stability

• Daily/Weekly “arming” tests with real HW

• End-to-End tests on real hardware once ready

30
Shift Left Testing with DevSecOps
© 2022 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Hardware-Based (HWIL) Testing with DevSecOps

Build Server HW Provisioning

Data Feed

HW Under Test

Serial, Ethernet,
JTAG, etc.

Ethernet, Serial, etc.

Modbus,
CAN, etc.

DevSecOps

Infrastructure

31
Shift Left Testing with DevSecOps
© 2022 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Overall: View of Testing

• Tests are the final requirements for the system!

• We use tests to determine if the software is what we want and have become

synonyms for the requirements

• They’re the only objective measure of the system

• Consequences:

• Every requirement must have one or more tests associated with it

• If we’re practicing TDD, then code should only be written to make a failing test pass

• Tests will have to be developed incrementally (or we’re back to waterfall)

32
Shift Left Testing with DevSecOps
© 2022 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Agile intermingles Development and Test

• Development and test are not

separate or standalone

• Tests are added to a repeatable

test suite

• Test suite is repeated for each

change

• Demos not a replacement for

testing

Team Backlog

33
Shift Left Testing with DevSecOps
© 2022 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Agile iteration relies on more testing earlier

• Testing used for rapid

refinement of loosely

understood requirements,

architecture, and design

• Requirements and

implementation are finely sliced

• Each slice is tested

immediately and repetitively

Portfolio Backlog

Value Stream Backlog







Portfolio

Mgmt

Release

Planning













Backlog

Quality Attribute
Requirements
Technical
Requirements

34
Shift Left Testing with DevSecOps
© 2022 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Shift-left testing

We may not be able to run the tests, but we’re thinking about them early

35
Shift Left Testing with DevSecOps
© 2022 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

A Strategy for Shift-Left Testing

36
Shift Left Testing with DevSecOps
© 2022 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Classic Agile inter-twingles development and test

Sprint

Planning
Demo

Implementation

Dev Testing

Story Writing

Story Testing

Continuous Integration







Backlog

Quality Attribute
Requirements

Technical
Requirements

37
Shift Left Testing with DevSecOps
© 2022 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Agile High Assurance Dev/Test cadence

Iteration n Iteration n + 1

Dev

Sprint

Planning

Demo

Implementation

Dev Testing

Story Writing

Story Testing

Continuous Integration

X.n

TAMS
Repos

Test Execution

Test Modeling

Adapter Development

Keyword-Action Development

Test

Sprint

Planning

X.n

TAMS
Repos

Release

Readiness

Review

Development Sprint – Development Team
Version x.n developed and stabilized

Test Sprint – Test Team
Version x.n modeled and stressed

38
Shift Left Testing with DevSecOps
© 2022 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Agile High Assurance Dev/Test cadence

Version

0.1

Version

0.2

Version 0.3

Sprint n Sprint n + 1 Sprint n + 2 Sprint n + 3

39
Shift Left Testing with DevSecOps
© 2022 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Agile High Assurance Dev/Test Cadence

0 1 2 3 4 5 6 Release

0

N

N+1

N+2

N+3

N+4

Release
Candidate

2-4 week Iteration/Sprint

Version
Dev
Sprint

Test SprintTeam
Sprint

Release
Planning

Test Env
Prep

Dev 0.1 Test 0.1

Dev 0.2 Test 0.2

Dev 0.3 Test 0.3

Dev 0.4 Test 0.4

Dev 0.5 Test 0.5

Dev RC Test RC, Release

Support, Retro

40
Shift Left Testing with DevSecOps
© 2022 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Shift left Testing in multiple sprints

Traditional Vee-process

Agile development with traditional DT and OT (Hybrid)

Agile development with traditional DT and OT, early integration synch points

OEM Dev
Developmental Testing
(DT)

Cyber
Operational Testing
(OT)

Deployment

Moving from

phased and

siloed testing

to Agile testing

is the “Big

Deal”

Integrating

Agile cadence

with DT/OT is a

key challenge

Agile High Assurance Dev/Test Cadence

41
Shift Left Testing with DevSecOps
© 2022 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

GUI

Embedded

Control

Systems

API

Enterprise

Information

Systems

Windows

*nix

RTOS

Application

Domain

Interface

Supported

Platforms

Supported

Function

Performance

Security

...

Function

Performance

Security

...

Function

Performance

Security

...

Function

Performance

Security

...

• There are hundreds of

COTS, FOSS, and GOTS

software testing tools

• Each tool is specialized for

a certain kind of testing

• Each tool is specialized for

a tool stack, target stack,

and target interface

Tools for Test Automation

42
Shift Left Testing with DevSecOps
© 2022 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Takeaway

43
Shift Left Testing with DevSecOps
© 2022 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Apply Testing from

Inception to

Deploy and

improve every

delivery

44
Shift Left Testing with DevSecOps
© 2022 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

• Bring tester community into development
early

• Ideal time is in backlog grooming;
testers can develop acceptance
criteria

• Particularly true for SAFe Features
and Capabilities – use BDD to define
acceptance

• No surprises
• No hidden tests – provide tests to

developers as soon as you have
them

• Independence (e.g., of OT&E) is not
isolation

• Integrate. Integrate. INTEGRATE
• Automate as much as possible
• Tests should be delivered with the code

Next Steps

45
Shift Left Testing with DevSecOps
© 2022 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Eileen Wrubel
eow@sei.cmu.edu

Hasan Yasar
hyasar@cmu.edu

Thank you

mailto:eow@sei.cmu.edu
mailto:hyasar@cmu.edu

