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Abstract

Human social interaction hinges on the ability to interpret and
predict the actions of others. The most valuable explanatory
variable of these actions, more important than environmental
or social factors, is the one that we do not have direct access
to: the mind. This lack of access leaves us to impute the men-
tal states—Dbeliefs, desires, emotions, intentions, etc.—of oth-
ers before we can explain their behaviors. Studying our abil-
ity to do so, our Theory of Mind, has long been the province
of psychologists and philosophers. Computational scientists
are joining this research space, however, as they strive to
imbue artificial intelligences with human-like characteristics.
We provide a high-level review of Theory of Mind research
across several domains, with the goal of mapping between
theory and recursive agent models. We illustrate this mapping
using a specific recursive agent architecture, PsychSim, and
discuss how it addresses many of the open issues in Theory
of Mind research by enforcing a set of minimal requirements.

Our goal is to communicate to you a set of propositional at-
titudes (cognitive states such as beliefs or desires) related to
developing an artificial intelligence helper agent (Al helper).
Philosophers and psychologists have long posited that such
communication requires knowing the mental states of both
the listener and oneself. As convenient as it would be, we
do not have direct access to your mental states nor our own.
This means that if our goal is to communicate our position
effectively (it is) we must impute these states. The capac-
ity to do so is commonly known as Theory of Mind (ToM
Premack and Woodruff 1978).!

Imagine that we were slightly more intrepid authors who
thought it would be easier to enlist an Al helper to author
our manuscript. The fundamental communication problem,
that of understanding the mental states of its readers and the
author team, would persist for the Al helper. Moreover, we
believe that it is reasonable to assume that access to its own
mental states would make the the Al helper better at its task
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!'This name is somewhat fraught due to its implication that the
development of an explicit theory is part of the underlying cog-
nitive process. Adding to the confusion, cognitive and computa-
tional scientists often refer to how researchers have a theory of
mind about how the mind works (Newell 1994). We adopt it, nev-
ertheless, due to its universal recognition.

(because then it could consider how its beliefs about you or
us might factor into its work). When the helper explains a
technical term, for example, it may want to assess the accu-
racy of its belief of your degree of belief that it has accu-
rately depicted the term. In other words, the Al helper needs
a ToM.

We are academics and as such it behooves us to share our
opinions. It is only natural then that we would not just turn
the Al helper loose and accept whatever it produced. We un-
doubtedly would find ways to insert ourselves into its pro-
cess, to team with it as a sort of human-Al collective in-
telligence (Gupta and Woolley Forthcoming), in hopes of
producing a high quality paper that reflects our positions.
The success of our human-Al team largely hinges on trust
(Bonaccio and Dalal 2006; Wang, Pynadath, and Hill 2016;
Wang et al. 2018). For the human members of our team, trust
is grounded in our assessment of the AI’s abilities, critically,
its level of intelligence (Glikson and Woolley 2020). Again,
we believe that a robust theory of mind, in this instance for
its human teammates, will facilitate the AI’s success. Herein
we review a subset of the vast literature on human social
cognition, specifically focusing on ToM, and discuss im-
plementation of myriad theories and models in such an Al
helper using PsychSim, a recursive agent architecture. Crit-
ically, the PsychSim implementation enforces a set of min-
imal requirements that we believe reveals the strengths and
weaknesses of different ToM theories.

PsychSim

This basic description of a PsychSim agent and its machin-
ery will serve as a framework for comparing ToM theories.
PsychSim is a social simulation platform with the capacity
to implement psychologically valid theories of human be-
havior (Pynadath and Marsella 2005). It uses a recursive ar-
chitecture, meaning that it applies the same rules repeatedly
to generate outputs (Gmytrasiewicz and Durfee 1995). Each
agent in a PsychSim simulation possesses a fully specified
decision-theoretic model, i.e. model of choices based on a
utility framework, of itself and the other agents in its envi-
ronment. Most importantly, the platform readily facilitates
modeling beliefs, including those related to ToM (Marsella,
Pynadath, and Read 2004). A PsychSim-based Al helper
thus has a model of itself, for each of its teammates, and
potentially for the team holistically which it can use to sim-



ulate different scenarios and base recommendations on just
like our hypothetical paper mill agent.

The minimal requirements for creating an Al helper with
ToM using a recursive agent architecture, such as PsychSim,
are:

(i) framework for inferring beliefs, from observations, about
others

(i) means of translating these beliefs into predictions about
behaviors

(iii)) way of handling higher order reasoning (you believe that
he believes that she believes...)

Partially observable Markov decision processes (POMDPs)
are the backbone of PsychSim and fill each of these require-
ments. The POMDP framework posits that an agent assumes
system variables, such as other agents, follow stochastic pro-
cesses (MDPs) which it cannot fully observe. MDPs are
characterized by a set of states, actions, probabilities of
given actions for each state, and rewards associated with ar-
riving in particular states. The task of an agent in an envi-
ronment modeled by an MDP is simply observing the cur-
rent state and potential rewards of each available action then
selecting the best option given the data. States are not di-
rectly observable in the partially observable generalization
of MDPs, so the agent must gather outcome information.
The agent maintains models of itself and the other agents
that it updates based on this information to overcome the ob-
servability obstacle. Similar to the use of recursive models
in interactive POMDPs (I-POMDPs) (Gmytrasiewicz and
Doshi 2005), these models take the form of probability dis-
tributions for its observations given the state of the sys-
tem and models of the stochastic processes followed by the
agents in the system. The POMDPs of an agent generally
rely on utility-based functions to model behavior.

Theories about Theory of Mind

Humans gather, process, and create information about the
actions of other agents in their environment—a set of infor-
mation processing behaviors collectively called social cog-
nition (Fiske and Taylor 2021). Like most domains of human
cognition, that is where the consensus on social cognition
ends and debate begins. In the case of ToM, which is widely
considered a subdomain of social cognition, there are at least
three theoretical explanations of human ToM: theory theory,
simulation theory, and more recently, arguments for social
cognition without ToM. Recursive agent models, including
PsychSim, share many features with all of these explana-
tions.

A set of minimal requirements for ToM reasoning will
help illustrate the strengths and weaknesses of each theoret-
ical position as well as clarify the approaches that recursive
agent models take. It is our argument that the three require-
ments of developing a recursive agent architecture can also
serve as coarse but critical requirements for ToM theories.

Theory-Theory

Modern inquiry into how humans think about and represent
the mental states of others is frequently traced back to Hei-

der and Simmel’s (Heider and Simmel 1944) famous geo-
metric shapes experiment. The basic paradigm involves par-
ticipants watching interacting geometric shapes and report-
ing what they saw. In a classic scene, three shapes move
around the screen. One shape quickly moves towards an-
other shape while a third shape later moves in between them.
This ground breaking experiment revealed that participants,
almost universally, ascribed agency to the shapes. For ex-
ample, participants said that the above scenario depicted an
aggressor, victim, and third party who intervened to stop the
aggression.

Belief-to-Prediction
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Figure 1: The three minimal requirements of implementing
ToM reasoning in a PsychSim agent and our subjective as-
sessment of where major ToM theories fall in the space of
these requirements. We argue that these requirements are
also applicable to actual ToM reasoning and can serve as
a means of evaluating theories and models.

Although Heider faltered in arguing that such abilities re-
sult from direct access to our own internal mental states
(Heider 1958), his work with Simmel precipitated the first
recognizable version of theory-theory from the philosopher
Wilfred Sellars (1956). Sellars took the position that we de-
velop, via experiences and enculturation, a naive theory to
explain the mental states of our peers. In other words, we
function as lay scientists developing and testing tacit theo-
ries about our social world based on input from the people
around us, social observations, and even rudimentary ex-
perimentation. This position would eventually come to be
known as theory-theory and finds most of its empirical sup-
port in adaptions of Wimmer and Perner’s false belief task
(Wimmer and Perner 1983).2

The false belief task has proven extremely productive for the



The conceptual account of theory-theory maps relatively
cleanly to a PsychSim agent. As will become clear, Psy-
chSim offers a formalization of ToM requirements i and ii
where theory-theorists do not. Using the lay scientist anal-
ogy, the PsychSim agent’s research methods, or the ways in
which it formalizes and answers hypotheses, are POMDPs.
A PsychSim agent typically assumes that other agents in its
environment are using POMDPs for their decision-making
as well. Each time a PsychSim agent makes an observation,
it updates it beliefs about how the agents and environment
work. In the case of agents, it assumes that they are trying
to maximize their utility. This renders the accuracy of its
model, which determines its ability to predict how another
agent will respond to a stimulus, contingent on its prior ex-
periences. Importantly, any interpretation it makes of a per-
son’s behavior is thus circumscribed to be goal-driven via
the maximization of some utility function. Even if the ob-
served behavior is generated by an arbitrary stochastic pro-
cess, the PsychSim agent will form posterior beliefs over a
candidate set of POMDPs based on how well their corre-
sponding behaviors would match the observed behavior.

Child-Scientists The child-scientist theory for ToM devel-
opment is arguably the truest to Sellars’ original vision and
the most common among theory-theorist. Like many scien-
tific perspectives, it started as an analogy to better under-
stand how humans might develop the ability to represent
others’ minds. Its most ardent supporters, however, take it
beyond the analogical insights and argue that philosophy of
science’s theory development processes are actual blueprints
for how cognition transpires (Kuhn 1989; Gopnik 1996;
Gopnik, Meltzoff, and Kuhl 1999; Perner and Lang 1999).
Theories are viewed as systems that assign specific repre-
sentations to inputs, similar to how the visual system assigns
representations to input. These systems are not rigid, partic-
ularly in early development. Just like a young child refines
her interpretation of visual input from a single representa-
tion for fuzzy, four-legged creatures (dog) to a multitude of
representations (cat, horse, sheep, etc.), she refines her rep-
resentations for the various processes that underpin the be-
havior of agents in her social world.

Proponents of the child-scientist view generally subscribe
to one of two explanations for the brain’s ToM mechanism:
a general purpose (domain-general) or modular (domain-
specific) learning mechanism. The child-scientist perspec-
tive adopts the former, i.e. there is a generalized psycho-
logical structure that supports learning across domains. This
general purpose learning mechanism is supported by a suite
of reflexes, or cognitive capabilities, that are present from
birth (Gopnik and Meltzoff 1994). Together, the learning
mechanism and reflexes exploit sensorimotor interactions
with the environment to form theories, or models, of how
the world works. These theories empower a child to not
only understand her environment, but also solve increasingly

scientific community. Review of experimental methods is not in the
scope of this paper, however it is worth noting that it and the em-
pirical designs that followed in its footsteps likely have numerous
flaws (Bloom and German 2000; Heyes 2014; Turner and Felisberti
2017; Quesque and Rossetti 2020).

complex prediction problems, including those that are clas-
sically social. The Bayesian flavor of all this is no fluke. For-
malizations of domain-general mechanisms frequently take
Bayesian forms (Gopnik et al. 2004; Lu et al. 2008; Frost
et al. 2015).

Theory theorists can readily handle our requirement iii.
A lay ToM scientist trying to workout higher-order beliefs
simply needs to establish a hypothesis, test it, and update
accordingly. The testing can even happen in situ by imag-
ining various outcomes given a set of beliefs. Items i and ii
present bigger challenges. The child-scientist approach is to
assume that ToM is handled by a learning mechanism used
in other types of learning, like the statistical learning mech-
anism proposed for vision and audition (Kirkham, Slemmer,
and Johnson 2002). There is reasonable evidence that sug-
gests domain-general mechanisms support ToM reasoning.
For example, when a person is under cognitive load their
performance in social reasoning tasks may decrease (McK-
innon and Moscovitch 2007). This is, of course, only corre-
lational and not causal.

The PsychSim agent uses maximum expected utility as its
domain-independent theory of reasoning, one that also acts
as a constraint on its theory of others. Within that constraint,
it is free to choose an arbitrary set of (possibly recursive)
POMDPs as its model of those others. Like a developing
human, it is possible to specify a PsychSim agent that starts
with a small set of simple (e.g., short horizon, few goals)
POMDPs. These are analogous to the child’s theories for
how the world works. Experience allows it to continually
expand that set when none of its current candidates satisfac-
torily explain its experiences in social interaction.

Modular Theory Cognitive modularity suggests that the
brain has a fixed architecture. One perspective argues that
this structure limits the flow and processing of information.
The edges of modules, or regions, in the brain function as
filters that can be uni- or bi-directional. That is, some of the
information inside the module may not be available outside
or vice versa (Fodor 1983). Although theorists conceptual-
ize the modules as rigid units, they generally offer a bit of
hand waving when pressed on the actual degree of modu-
larity (Fodor 1983; Scholl and Leslie 1999). The alterna-
tive view of modularity is knowledge-centric, meaning that
rather than the brain having distinct modules for processing
information, they store it. This allows for flexible skill and
belief systems to process across these core systems of object
representation (Spelke and Kinzler 2007). Modular explana-
tions for ToM generally adopt the former position and posit
a distinct functional system in the brain which comes online
during childhood development (Leslie 1994b,a; Scholl and
Leslie 1999; Leslie, Friedman, and German 2004).

Alan Leslie’s Theory of Mind Mechanism/Selection Pro-
cessing is arguably the dominant modular explanation
(Leslie 1987, 1994a, 2000; Scholl and Leslie 2001). Leslie
and colleagues argue that ToM is innate and that there is a
unique mechanism which yields representations solely for
related reasoning. This mechanism, much like puberty, is
genetically present (innate) and activated by environmen-
tal factors. They do not, however, argue that this mecha-



nism is responsible for all ToM abilities—just that it has
a specific innate basis and a function unique to ToM rea-
soning. The mechanism part of the theory stipulates that the
ToM module automatically processes perceptual informa-
tion about behaviors and computes what mental states may
have produced them. Because this process is algorithmic and
spontaneous, it is prone to errors, be they from biased learn-
ing or learned heuristics. This necessitates a supplemental,
executive system that overrides the module’s salient outputs
when they are unwanted. In the case of a false belief task, the
mechanism yields a true belief about the state of the world
(the actual location of the hidden object).The selection pro-
cessing overrides this belief to yield an accurate ToM for the
target (who has a false belief about the object location).

Modular theorists attempt a more direct approach to meet-
ing requirements ii and iii than their child-scientists counter-
parts, but stop short of pointing to an actual module in the
brain that handles inference (i) or prediction (ii). The ToM
module handles belief inference and the translation of these
beliefs into predictions, both of which can be exported to
other regions of the brain for various purposes. Unlike vision
or audition researchers, however, modular theorists offer in-
conclusive evidence for where in the brain the module exists
and about the algorithmic way in which perceptual informa-
tion about behaviors is processed (Saxe and Wexler 2005).

Most recursive agent models are modular, in an informa-
tion processing sense, by default. PsychSim encapsulate the
models of different agents and at different recursive depths
so that information cannot flow between the models except
along edges in the corresponding influence diagram. This
means that a unique model exists for processing informa-
tion about each agent and these models output information
that flows between them to account for their interactions.
Furthermore, while both the agent’s decision-making and its
ToM models of others use the same decision-theoretic algo-
rithms, there are typically computational shortcuts taken in
the ToM models that are not used for the agent’s own more
thorough reasoning. For example, PsychSim ToM POMDPs
are usually more abstract than the actual POMDPs used for
behavior generation. This abstraction can be achieved by
removing variables from the POMDP that have limited or
no influence on the modeling agent’s utility (Pynadath and
Marsella 2007). Removing these variables, however, does
introduce uncertainty. PsychSim usually handles this by im-
plementing a softmax, instead of strict maximization func-
tion, which is more forgiving of errors that may result of
the uncertainty. The resulting POMDP is smaller (and thus
faster) than the original.

Simulation Theory

In its simplest form, simulation theory says that we under-
stand and predict the mental states of others by trying to
simulate them within ourselves (Gordon 1986). This yields
a very straightforward means of achieving ToM: repurpos-
ing the psychological machinery used for our own cogni-
tion to gain insight into the cognition of others. Doing so
implies a two part process: first, generate imaginary men-
tal states that correspond to the target’s mental states, and
second, feed those mental states into the appropriate mech-

anism(s) to generate an output. The simulator is thus capa-
ble of producing feasible explanations of behavior whenever
they make decisions in a manner roughly similar to the target
(Goldman 2006). Simulation theorists argue that this yields
a much more efficient ToM than any proposed by theory-
theorists.

Theory-theory is constrained by high-level reasoning: the
need to actively think about the cognitive state of another
person to test and validate a naive theory about their every
behavior is likely intractable for humans. Because of this,
theory-theory is a poor candidate for explaining the seem-
ingly automatic human capacity for detecting subtle social
cues. If we had to stop to ponder on the expression of emo-
tions, like a slight twitch in the face that is indicative of
anger, we would frequently find ourselves in grave danger.
Simulation theorist argue, however, that it is very capable of
explaining low-level phenomena, like automatic detection of
a fear response in another person. It is plausible that mirror
neurons are the basis for this capability (Gallese and Gold-
man 1998), but the evidence for mirror neurons in humans
is largely inferred rather than observed. Invasive procedures
are necessary to observe mirror neurons, which is why the
vast majority of studies reporting on them appear in the an-
imal literature (Rizzolatti and Craighero 2004) save a single
notable example in humans (Mukamel et al. 2010).

It is very plausible that ToM involves two (or more)
distinct systems, possibly both theory-theory and simula-
tion theory processes (Mitchell 2005; Perner and Kiihberger
2005; Goldman 2006; Apperly and Butterfill 2009; Heyes
and Frith 2014; Carruthers 2016; Low et al. 2016). Goldman
(2006), for example, suggests that theorizing might play an
important, even dominant, role in “high-level mind reading,”
which he defines as imaginative simulation that is conscious,
actively controlled imputation of others’ mental states. This
supplements unconscious, simulation-based mind reading
that handles simple mental states (e.g. detecting emotional
states such as fear from facial expressions). Heyes and Frith
(2014) adopt the terms implicit and explicit to describe neu-
rocognitively inherited and enculturated skills respectively.
The implicit mechanisms are present from birth and play a
vital role in formulating accurate expectations about the be-
havior of agents. Further, they accept that the outputs of an
implicit system may inform the explicit system by prepro-
cessing observed behavior in a way that facilitates catego-
rization. They make clear, however, that they do not believe
this to be sufficient for the sort of complex ToM observed in
mature humans.

Whereas theory-theory explanations are vague about the
mechanism that handles inferences, requirement i, simula-
tion theory is much more direct: the mechanisms that we
use for our own behavior are repurposed for ToM. Predic-
tions about behavior then become a simple task of running
the belief outputs through the same system that determines
our behavior. This account implies that we can, in a sense,
re-enter the machinery we use for our own cognition. Be-
fore the discovery of mirror neurons this was pure specula-
tion, and to a large extent it still is given the lack of human
evidence related to mirror neurons.

Unlike a human, there is a clear way for a PsychSim agent



to re-enter the machinery that it uses to understand its social
world. PsychSim agents explicitly use their POMDP models
of others to generate expectations of their behavior. In partic-
ular, they apply their own POMDP solution algorithms to the
variables, graph structures, and parameters they (possibly in-
correctly) ascribe to others’ POMDPs. An agent will use this
capability to simulate the outcomes of each of its alternate
actions, evaluating those outcomes against their utility func-
tion, and choosing the behavior that maximizes that expecta-
tion. It will also use this simulation capability to evaluate al-
ternate explanations of observed behaviors in terms of their
likelihood, which in turn causes its update its belief in those
explanations.

First-Person ToM and Introspection

Both theory-theory and simulation theory posit that first-
person ToM plays an important role in our social capabilities
(Gopnik 1993; Goldman 2006). There is division, however,
over whether we have direct access to our internal states
to make use of during first-person ToM reasoning. Gopnik
(1993) argues that even though people may believe their
first-person knowledge is derived from experience, it actu-
ally comes from the same theory of mind system that ex-
plains the behaviors of other agents. This is because, as she
argues, we lack direct access to the psychological process
underlying out own behavior. Goldman (2006), on the other
hand, claims that we do have direct access to the psycho-
logical processes behind our behaviors. Moreover, it is his
position that first-person theory of mind development pre-
cedes and is necessary for third-person abilities. An alter-
native simulation account is that ToM always has a “target”
agent and the simulation is the same whether it is first or
third person, implying that there is no direct access to inter-
nal mental states (Gordon 1995).

PsychSim is equipped to do all the above. First, it has two
mechanisms for an agent to reason about its own behavior:
via direct access to its “true” POMDP, or via a perceived
POMDP. The latter may deviate from the former, just as its
POMDP models of others can deviate from their true mod-
els. It is agnostic, however, about the timing of when a first-
person ToM comes online. In theory, it could be inhibited
or prioritized, but PsychSim implementations generally have
everything happen simultaneously.

Social Cognition Without ToM

There are numerous, defensible explanations of how humans
anticipate and respond to other agents that do not involve
any of the classic ToM processes. Game Theory supplies
many examples and one of the most recognizable: the tit-for-
tat strategy (Axelrod and Hamilton 1981; Rabin 1993). An
agent who uses this strategy in a social interaction first coop-
erates and then in every subsequent interaction simply repli-
cates the behavior of the other agent(s). The tit-for-tat model
of behavior easily explains complex human behavior, such
as reciprocal altruism (Trivers 1971; Brosnan and De Waal
2002), without appealing to complex ToM processes. Eco-
nomic theorists have posited rich social behaviors, includ-
ing cooperation, emerge from learned and automated rules,
i.e. social norm heuristics (Bowles and Gintis 2003; Chudek

and Henrich 2011). Such heuristics may circumvent the need
for deliberate self constraint—which would need to emerge
from ToM reasoning—when an agent faces no risks from
taking advantage of another agent (Gigerenzer and Gaiss-
maier 2011; Molnar and Loewenstein 2021).

Other behaviors are executed according to what psychol-
ogist call scripts (Bower, Black, and Turner 1979) and ar-
tificial intelligence researchers call frames (Minsky 2019).
A script (frame) includes a set of elements, descriptions of
what those elements can do, outcomes given combinations
of the various elements, and is composed of scenes. Walk-
ing into a corner market, picking up a package of candy, and
paying for it at the register can all happen without explicit
ToM when a script is in place. You do not have to reason
about the attendant wanting money from you in exchange
for your snack—the script dictates all the necessary behav-
iors for the social interaction.

While POMDPs are the core part of PsychSim’s base
architecture, there are occasions where it has been conve-
nient to bypass decision-theoretic reasoning altogether and
directly encode an agent’s policy. The form of this policy is a
piecewise-linear decision tree. It can capture behaviors that
are reminiscent of ToM, but do not require the complete ma-
chinery. Although these sort of policies are closer in spirit
to frames, they are conceptually the same thing as a script
and can be implemented in recursive agents when warranted
(Pynadath and Marsella 2004).

Modeling Theory of Mind

A complete model of ToM reasoning will have a framework
for inferring beliefs about others, a way to translate those be-
liefs into predictions, and the capacity to handle higher order
reasoning. Researchers have formalized the proposed theo-
retical structures of ToM in a diversity of ways. Many mod-
els are grounded in paradigms with rich histories in com-
putational research including reinforcement learning (RL),
partially observable Markov decision processes (POMDPs),
utility maximization, and Bayesian inference. Additionally,
modelers take both-model based and model-free approaches
(Friston et al. 2016; Gershman et al. 2016; Jara-Ettinger
2019). Model-based approaches are prospective, meaning
that they assume a goal and active cognition, often referred
to as system II thinking (Kahneman 2011). Model-free ap-
proaches, on the other hand, are retrospective and capable
of capturing habitual cognition, i.e. Kahneman’s system I
thinking. Each modeling approach comes packaged with a
suite of benefits and laundry list of short comings that effect
its ability to capture the nuances of ToM reasoning. More-
over, there are costs and benefits when implementing the
myriad models in an AI helper. The shortlist of exemplars
included here is far from exhaustive, but we believe each
merits consideration when designing Al helpers for human-
machine teams.

Bayesian Inference

Bayesian approaches to ToM often conceptualize the ob-
serving agent as forming a hypothesis about the target’s be-
havior. This hypothesis is evaluated given observable data



and under the constraints of an underlying theory of be-
havior in a very theory-theory fashion (Gopnik et al. 2004;
Baker, Tenenbaum, and Saxe 2006; Tenenbaum, Griffiths,
and Kemp 2006; Baker, Saxe, and Tenenbaum 2009). This
allows for ToM to be cast as an inverse planning and in-
ference task. When a person observes another’s actions, she
answers the ToM problem (implicitly) by assuming that the
other person made the decision based on data, that likely
includes beliefs, and according to some model of how to
act in the world which approximates rationality. Next she
attempts to invert this model of how to act by applying
Bayesian inference: integrate the likelihood of her observa-
tions with a prior over mental states. The output becomes her
ToM for the other’s behavior. In one computational example
of this, a target agent’s plans and inferences are formalized
as POMDPs that capture propositional attitudes (e.g. desires
and beliefs) via utility functions and probability distributions
respectively (Baker, Tenenbaum, and Saxe 2006). The target
is assumed to be approximately rational, i.e. the target is util-
ity maximizing. Inverting the target’s forward model using
Bayesian inference yields the observer’s ToM model of the
target.

Bayesian models of ToM not only offer a handy way
of operationalizing an opaque set of cognitive processes,
they also facilitate other important capabilities for adaptive
agents. For example, if an observer has reason to believe that
a target is knowledgeable, then she can adapt the Bayesian
process used for ToM reasoning to learn how to act or refine
her beliefs (Shafto, Goodman, and Frank 2012). Or, if an ob-
server is observing a group of targets, rather than attempting
to compute a ToM for each target, she can adopt a model
that represents the “average” member of the group and rely
on it to make inferences and predictions about how the indi-
viduals within the group may act (Khalvati et al. 2019). Im-
portantly, the same Bayesian machinery used to model basic
social cognitive processes can be used in modeling affective
cognition (D’Mello, Kappas, and Gratch 2018; Ong, Zaki,
and Goodman 2019).

POMDPs are one of the most common means of captur-
ing the prior-observation-update-posterior belief pipeline of
reasoning depicted by Bayesian ToM theories. One of the
earliest examples of a Bayesian theory of mind also used
a POMDP-based architecture (Si, Marsella, and Pynadath
2010). And, as we have explictly noted, this is what Psych-
Sim implements for its agent models.

Game Theory and Economics

Economists use game theory to model how economic agents
think about and respond to the mental states of others
(Camerer 2011). For a given model, the “game” is captured
by a mathematical description of the strategies and asso-
ciated payoffs available to each agent. Games often have
multiple stages during which agents choose actions to ex-
ecute from a limited set, can be competitive or cooperative,
and range in length from a single shot to (theoretically) in-
finite number of rounds. Every agent is assumed to hold be-
liefs, which are captured as probability distributions, about
the available actions, progress of the game, and even beliefs
of other agents. Importantly, games are structured such that

predictions about a player’s behavior can be derived without
any observations.

In game-theoretic approaches to modeling ToM, each
agent generally has a policy over strategies that dictate how
it will behave given a set of conditions—including infer-
ences of other agents’ policies and observed behaviors. This
policy is subject to a state-dependent value that the agent is
attempting to optimize for in a particular game setting. Each
agent has a level of sophistication that describes the degree
to which it considers the depth of other agents’ models of it
(Yoshida, Dolan, and Friston 2008; Camerer 2011).

Rousseau’s stag hunt problem is a classic example of a so-
cial dilemma easily captured by game theory. Two hunters
must independently decide whether to hunt a stag or hare.
Hunting a stag successfully requires input form both hunters
and results in each hunter garnering a greater reward (more
meat). Hunting a hare can be accomplished without coordi-
nation, but also has a lower payoff. There is a risk to choos-
ing to hunt a stag in that if the other hunter pursues hare,
you will go hungry. This simplified game has two strategies
(hunting a hare or stag) and the value function hinges on the
amount of meat from each strategy. Each hunter has a model
of the other hunter’s likelihood of selecting stag that includes
the other’s beliefs about herself. The concept of sophisti-
cation captures how many recursions an agent considers in
her model. In line with Herbert Simon’s famous work on
the bounds of human rationality, people generally do not go
much beyond two-step logic (Camerer 2003; Simon 1997).

Game theoretic models can capture a number of interest-
ing social behaviors, but they fall short of explaining the
rich set of mental gymnastics that comprises social cogni-
tion. That does not mean that these models are out of place
in recursive agent architectures. Situations arise when the
decision-theoretic models are overly cumbersome and a sim-
ple heuristic, like tit-for-tat, is warranted. In practice, these
are implemented as explicit policies (Pynadath and Marsella
2004).

Reinforcement Learning

The basic concept of model-based RL is to combine a world
model and reward function to produce a policy. The world
model is a learned, simplified model of an agent’s environ-
ment and used to make predictions about future states of
the world. Reward functions can take many forms, but fre-
quently a cost minimization or benefit maximization func-
tion of the world model’s accuracy is implemented. In
essence, these are models of what an agent “ought” to do. If
a food item tastes good (bad), it ought (not) to eat it and (or)
be rewarded with the good (bad) flavor. The policy is the se-
quence of actions that an agent uses in pursuit of a goal and
generated, or learned, from the repeated combination of the
world model and reward function. If we assume that a mind
functions via model-based RL, then predicting mental states
from observable behavior can take the same form as inverse
RL.

IRL involves an observer agent that tries to learn a target’s
utility function given repeated decision observations. In its
simplest form, this requires a state space, an action space,
and transition function which are modeled as a Markov de-



cision process. Although powerful, this is computationally
expensive—vast numbers of labeled training examples are
required in order to infer a reward function from a policy
(set of observed states and actions) and transition function,
which is frequently a researcher degree of freedom (Lake
et al. 2017). A human infant with an IRL-based ToM would
need hundreds of thousands of labeled training examples a
day (Jara-Ettinger 2019).

Discussion

Evaluating, especially comparing, theory about and model-
ing approaches to ToM reasoning is challenging. We believe
that this challenge arises because theorists and modelers ap-
proach ToM without a unifying set of requirements for ToM
reasoning. This leads to the value of their unique perspec-
tives being lost to the variance in their interpretation of the
problem. As we have illustrated, such a set of requirements
is indispensable when comparing different approaches and
perspectives. Theories that only focus on how humans han-
dle higher order reasoning, for example, are hard to compare
to those that are primarily concerned with a framework for
inferring beliefs. Developing and deploying artificial agent
systems, such as PsychSim, forces not only acknowledging
the need to take a stance on the minimal requirements of
ToM reasoning, but implementing and validating them as
well.

Theory-theory approaches that do not specify a belief in-
ference framework or its origin are incomplete. Without a
framework, it is not possible to falsify a theory because sim-
ple adjustments to the mechanism that produces inputs, i.e.
beliefs, that support ToM reasoning alter the theory’s accu-
racy. This is particularly important for accounts that claim
ToM is acquired rather than innate. ToM input-output data
are scarce. This leaves researchers in the position of being
able to select from a vast array of candidate functions the one
that best fits the data and their theory. Validating their selec-
tion from the legions of alternatives is not possible, however,
given the data paucity. Thus their claim becomes this is the
acquired function because it fits the data and our model.

If ToM is innate, then the fundamental difference between
the theory and simulation perspective is simply the infer-
ence mechanism. All that the theory-theorists are saying is
that we do not know the mechanism, however it is not that
mechanism. This again leaves them in a position to select
whatever mechanism works with the data and their theory.
Meanwhile, the simulation account of a repurposed mecha-
nism leads to a paradox. If it is the same mechanism that we
use for our own behavior, it must be one which can be re-
entered or that supports recursion. This is necessary for the
third item in our list, higher order reasoning, but not neces-
sarily for behavior. This suggests that the mechanism was
not repurposed, but designed/evolved with the capability for
ToM.

A theory without a belief translation mechanism is also
hard to falsify. This is because, like not having a belief in-
ference framework, all it takes is a convenient function to
make your theory valid. And again, the lack of data makes
it challenging, if not impossible, to validate whether a given

functional form is correct. This makes it impossible to vali-
date the entire pipeline. A model that lacks the first or sec-
ond item and only specifies a way of handling higher order
reasoning, like many perspectives in the theory-theory camp
do, lacks the needed structure to test its validity.

Explanations for social cognition without the higher order
reasoning that typifies ToM face the challenge of explod-
ing complexity and generalization. Scripts and frames can
account for social interactions and do not need higher or-
der reasoning, but scripting every class of social interaction
would quickly become intractable for humans as the number
agents and levels of reasoning increase.

All of these challenges to existing modeling and theo-
retical approaches to ToM reasoning point to the need for
a more holistic account. Recursive agent models, like Psy-
chSim, force researchers into taking a position on each re-
quirement. PsychSim assumes that ToM reasoning follows a
POMDP framework. The same framework is repurposed for
learning about the environment, making predictions about
behaviors, and higher order reasoning. Game Theory and re-
inforcement learning offer framework alternatives, but we
believe each has a fundamental flaw. If an agent imple-
mented a pure reinforcement learning approach, like direct
policy search, it would need a way to down select to a good
set of candidate policies from the vast set of possible poli-
cies. This adds a new requirement for ToM reasoning and
it is possibly intractable as each new variable for considera-
tion increases the complexity of the policy selection task. A
purely game-theoretic approach would mean specifying the
details for each game that an agent may enter and knowing
when to use each unique game, i.e. belief inference frame-
work. Again, the complexity of a system based entirely on
this approach quickly grows intractable.

Lastly, PsychSim is more than just an approach to mod-
eling ToM. Because it is modular, adding additional capa-
bilities becomes trivial, which renders it a general mecha-
nism for artificial cognition. This is already demonstrated in
the literature. The PsychSim approach, for example, can im-
plicitly generate the appraisals found in appraisal theories of
emotion (Si, Marsella, and Pynadath 2010). Also, its deci-
sion theoretic approach to ToM constrained mental models
of others into exhibiting preference ordering (Pynadath and
Marsella 2005).

Conclusion

There are numerous theories and modeling approaches that
attempt to capture the essence of human theory of mind. The
development of an agent capable of a similar level of ToM
reasoning reveals where each theory and approach may fal-
ter. The requirements of creating such an agent, we believe,
are also minimal requirements for actual ToM reasoning.
Combining these requirements with lessons learned from at-
tempts to explain and model ToM holds the potential of pro-
ducing a more complete, viable theory.
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