
INTENT-DEFINED ADAPTIVE SOFTWARE (IDAS)

SIERRA NEVADA CORPORATION

OCTOBER 2022

FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

AFRL-RI-RS-TR-2022-144

 UNITED STATES AIR FORCE  ROME, NY 13441 AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose other than
Government procurement does not in any way obligate the U.S. Government. The fact that the Government
formulated or supplied the drawings, specifications, or other data does not license the holder or any other person
or corporation; or convey any rights or permission to manufacture, use, or sell any patented invention that may
relate to them.

This report was cleared for public release by the 88th ABW, Wright-Patterson AFB Public Affairs Office and is
available to the general public, including foreign nationals. Copies may be obtained from the Defense Technical
Information Center (DTIC) (http://www.dtic.mil).

AFRL-RI-RS-TR-2022-144 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE CHIEF ENGINEER:

 / S / / S /
WILLIAM E. MCKEEVER GREGORY J. HADYNSKI
Work Unit Manager Assistant Technical Advisor

Computing & Communications Division
Information Directorate

This report is published in the interest of scientific and technical information exchange, and its publication does
not constitute the Government’s approval or disapproval of its ideas or findings.

PREVIOUS EDITION IS OBSOLETE. STANDARD FORM 298 (REV. 5/2020)
Prescribed by ANSI Std. Z39.18

REPORT DOCUMENTATION PAGE

1. REPORT DATE

OCTOBER 2022

2. REPORT TYPE

FINAL TECHNICAL REPORT

3. DATES COVERED

START DATE
APRIL 2020

END DATE
APRIL 2022

4. TITLE AND SUBTITLE
INTENT-DEFINED ADAPTIVE SOFTWARE (IDAS)

5a. CONTRACT NUMBER
FA8750-20-C-0518

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
62303E

5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER
R2ZA

6. AUTHOR(S)
Jeff Smith and Mitch Kokar

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
 Sierra Nevada Corporation
 444 Salomon Circle

Sparks, NV 89434-9651

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
 Air Force Research Laboratory/RITA DARPA
 525 Brooks Road 675 North Randolph St
 Rome NY 13441-450 Arlington, VA 22203-2114

10. SPONSOR/MONITOR'S
ACRONYM(S)

AFRL/RI

11. SPONSOR/MONITOR'S
REPORT NUMBER(S)

AFRL-RI-RS-TR-2022-144

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited. PA#: AFRL-2022-5152
Date Cleared: 25 October 2022

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The overall Intent-Defined Adaptive Software (IDAS) goal was to automate code generation derived from software intent, and
associated constraints, for rapid adaptation to late changes in requirements and operating environments. IDAS was divided
into Automated Software Genera-tion, Problem Set Generation, Integrated Test & Evaluation and Experimental Control and
Transition Technical Areas (TAs). During the research and initial prototype Phase 1, Sierra Ne-vada Corporation (SNC)
performed on the latter TA, working with problem sets/changes, exer-cises, prototype toolchains and execution guidance from
other TAs and providing, 1) abstrac-tion layers and software framework (consisting of dashboard, control, and abstraction
APIs along with exemplary use cases) used for evaluation and 2) a Cloud Agility Baseline (CAB), with associated Agile
process improvements, to compare prototype workflows and software. This framework was intended to test and evaluate the
effectiveness of technologies supporting the continual adaptation of DoD software-enabled systems.

15. SUBJECT TERMS
Intent-Defined Adaptive Software (IDAS), DevSecOps; Agile Software Development, SADL (Semantic Application Design
Language), AADL (Architecture Analysis and Design Language)
16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

ABSTRACT

SAR

18. NUMBER OF PAGES
a. REPORT

U
b. ABSTRACT

U
C. THIS PAGE

U
19a. NAME OF RESPONSIBLE PERSON
WILLIAM E. MCKEEVER

19b. PHONE NUMBER (Include area code)

N/A

P age 1 of 2

20

Approved for Public Release; Distribution Unlimited.
i

TABLE OF CONTENTS

List of Figures ... ii

1.0 SUMMARY ... 1

2.0 INTRODUCTION ... 2

3.0 METHODS, ASSUMPTIONS, AND PROCEDURES ... 4

4.0 RESULTS AND DISCUSSION .. 8

5.0 CONCLUSIONS.. 11

6.0 REFERENCES .. 12

APPENDIX A – Publications and Presentations .. 13

LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS .. 14

Approved for Public Release; Distribution Unlimited.
ii

LIST OF FIGURES

Figure 1: Agile process management enables responsiveness to change 4

Figure 2: CAB Architecture .. 6

Figure 3: Nestable EDPs described in PIN ... 7

Figure 4: Possible targets Properties for Narwhal .. 9

Approved for Public Release; Distribution Unlimited.
1

1.0 SUMMARY

The overall Intent-Defined Adaptive Software (IDAS) goal was to automate code generation de-
rived from software intent, and associated constraints, for rapid adaptation to late changes in re-
quirements and operating environments. IDAS was divided into four technical areas (TA): Auto-
mated Software Generation, Problem Set Generation, Integrated Test & Evaluation and Experi-
mental Control and Transition. Sierra Nevada Corporation (SNC) was a TA 4 performer; working
with problem sets/changes, exercises, prototype toolchains and execution guidance from other TAs
and providing, 1) abstraction layers and software framework (consisting of dashboard, control, and
abstraction APIs along with exemplary use cases) used for evaluation and 2) a Cloud Agility Base-
line (CAB), with associated Agile process improvements, to compare prototype workflows and
software. This framework was intended to test and evaluate the effectiveness of technologies sup-
porting the continual adaptation of DoD software-enabled systems.

Approved for Public Release; Distribution Unlimited.
2

2.0 INTRODUCTION

The objective of the Intent-Defined Adaptive Software (IDAS) program is to develop technolo-
gies that can capture the intentions of software engineers, to enable rapid code generation to sup-
port the continual adaptation of Department of Defense (DoD) software-enabled systems. In prac-
tice, changes in requirements and resources are a common occurrence. The program will develop
new methods for representing the intent of software and its abstract constraints separately from
its concrete instantiation and will leverage automated methods to adjust to a particular instance.

Technologies developed on the IDAS program will enable rapid adaptation of software to changes
in requirements and/or operating environments. There are three underlying beliefs of IDAS:

1. Creating separate representations of the problem to be addressed by the software (e.g., the
constraints on a viable solution), and the actual solution (e.g., a specific software architec-
ture and program that addresses the problem), is essential for scalability. If the problem
constraints include aspects of the intended solution (e.g., opting for the use of a particular
algorithm that now implicitly fixes certain data types and concurrency requirements when
there are viable alternatives that do not add such constraints), the resulting constraint sat-
isfaction problem is drastically more difficult to solve, because such aspects ramify the
dimensions of the problem, creating a more complex search space.

2. Representing the program as a set of higher-level programmer intentions rather than just
as specific, concrete source code that addresses a current set of problem constraints is es-
sential for enabling rapid future changes.

3. Application Programming Interfaces (APIs) and pre-defined interfaces are concretizations
that hamper software flexibility.

This third point requires some unpacking. Conventional APIs and interfaces hide the underlying
implementation of a software module from its users, creating an abstraction boundary that enables
the module users and module developers to conduct their development activities independently.
For this to work in practice, however, the APIs must not change in ways that invalidate the as-
sumptions of the API users. The specification of an API therefore requires extensive commit-
ments to design choices, in other words, many concretizations and conventions (typically de-
scribed in human-readable documentation).

The IDAS program will enable adaptation of software to radical changes in requirements or its
computational environment with an order-of-magnitude reduction in the effort required. The key
idea of IDAS is the separation of problem description (in terms of intentions and constraints) from
any particular, concrete instantiation. This intent and constraint model must be semantically ac-
cessible to an IDAS toolchain, yet expressive enough to capture the relationships between the
problem and the method by which generated software can solve and validate a solution. For IDAS
to transition, this capture process should be done to the greatest extent possible within the familiar
process of writing software, and impose minimal additional tasks on developers who may not un-
derstand formal methods. Through additional automation of specific implementation generation,

Approved for Public Release; Distribution Unlimited.
3

software sustainment effort should be drastically reduced, freeing engineers to focus on the design
of the software and adding new functionality.

The IDAS program had 4 technical areas (TA). TA1 is Automated Software Generation. The goal
of TA1 is to create technologies that enable software engineers to develop and verify adaptive
software through a deferred-concretization methodology. The core challenge will be to enable
traditional developers to work at a higher level of abstraction than currently possible with mini-
mal additional effort.

TA2 is Problem Set Generation. TA2 will develop sets of requirements and environments that are
comparable in complexity to, but lack the security sensitivities of, actual DoD systems. These
surrogate problem sets should map to DoD use cases, but will be temporally compressed into an
evaluation period to test the ability of TA1 and TA4 performers to keep pace with changing re-
quirements and environments.

TA3 is Integrated Test and Evaluation. TA3 will ensure the proper execution of experimentation
by deeply understanding the nuances of the TA4 and each TA1 approach, and adjusting the spe-
cifics of timing for the release of changed requirements during a 1-4 month evaluation exercise
engagement.

TA4 is Experimental Control and Transition. In order to properly evaluate and measure TA1 per-
former approaches, the TA4 experimental control and transition team will establish a baseline of
performance, against which TA1- developed software and workflows will be compared. The TA4
performer should apply current software engineering best practices to develop software that ad-
dresses the same requirements and environmental constraints as TA1 during each evaluation ex-
ercise, and will respond to all changes in requirements or computational resources.

The Sierra Nevada Corporation IDAS contract filled the role of a TA 4 performer, to support the
Defense Advanced Research Projects Agency (DARPA) in achieving their objectives of reducing
the cost of software operations and management caused by the complexity of updating software to
meet changes in requirements and computing resources. Their solutions have been deployed into
a wide range of environments, at all classification levels to include tactical disconnected resources,
private clouds and commercial clouds. Throughout their programs they have implemented pro-
cesses, tools and technologies to enable a flexible open architecture that can be reused and evolved.
This flexible architecture is the core to enabling rapid development and minimizing the impact of
changes. All of SNC’s software programs are managed using Agile development with Scrum and
implement the best of breed Agile development techniques. The SNC Team’s industry best prac-
tice experience ensures delivery of a quality TA4 solution, on time, and within budget.

Approved for Public Release; Distribution Unlimited.
4

3.0 METHODS, ASSUMPTIONS, AND PROCEDURES

The IDAS TA4 key challenge is establishing a reliable baseline to measure the effectiveness of
the TA1 solutions. To be effective, this baseline must be free of measurements that are not directly
applicable to the problem, e.g. learning entirely new skills or incorporating entirely new technol-
ogies. The TA4 team must develop the abstraction layers and platforms necessary to perform the
exercises provided by TA2, so the baseline measurement reflects only the fundamental difficulty
of changing requirements of the exercises. This will enable effective identification of areas that
complicate software maintenance.

The SNC Team implements the Agile process across all phases (See Figure 1). SNC is a leading prac-
titioner of the Agile process and has used it for every major project for over a decade. SNC’s Agile
process mitigates the risk inherent in project planning, ensures good communications among all team
members, and pro-vides rapid adaptation to changing circumstances and conditions. Velocity meas-
urement, a key Agile concept, will be directly applicable to creating a reliable IDAS baseline meas-
urement. Velocity will be established for the team when composing the CAB. It will create a baseline
for the volume of work that can be competed for a set period of time. This will provide a relative
measurement of the im-pact of changing requirements. Additionally, implementation time per story
will be captured enabling TA3 to compare the cost of implementation and reaction to change. SNC’s
Agile process will also help ensure a successful Phase 3 transition by establishing an effective and
frequent communication.

Figure 1: Agile process management enables responsiveness to change

Approved for Public Release; Distribution Unlimited.
5

During Phase 1 (18 months), the SNC Team will build a CAB, a baseline framework of abstrac-
tion layers and microservices to support exercise events. During this phase, they will collaborate
with TA3 team(s) to determine the data needed to effectively compare TA1 to TA4. TA2 will de-
velop exercise requirements and parameters and these will be provided to TA1 and TA4 teams
by TA3 company. The test exercises during Phase 1 will familiarize all of the teams with the
evaluation exercise process and provide an opportunity to make adjustments prior to Phase 2. In
Phase 1, SNC will assemble a team that includes software professionals with comprehensive ex-
perience in software architecture, operating systems, system security, middleware frameworks,
model-driven development, formal methods, distributed/cloud and web-based computing, open
systems, DARPA projects, build processes, continuous integration and continuous deployment,
Agile development methods, and the entire software development life cycle. The team will com-
prise engineers from the Enterprise Engine (E2) and Joint Cyber Intelligence Tool Suite (JCITS)
Conversion programs and other similar efforts who have broad experience in these areas and who
have successfully handled changing requirements.

The SNC Team will build a backlog based on the two exercise areas and any information provided
on test exercises. The backlog will be used as a foundation for modeling and definition of abstraction
layers. To develop the abstraction layers and framework to provide a reliable baseline for the TA2
exercises, the SNC Team will create a CAB. The CAB will be built to support a Logistics, Cloud and
a third, to be defined exercise. The CAB will pro-vide flexibility for the various exercises to promote
reuse of microservice components. For the Logistics exercise the micro-services will route supplies
to area of responsibility (AOR) via several transport means supporting evolving political and military
realities. The core features of the CAB will be to provide an easily adaptable framework which can
be molded to meet mission requirements and changes to those requirements with ease.

In order to achieve this adaptability, platform independent microservices will be utilized. All cloud
systems have coarse-grained services in categories e.g. storage (S3 or EFS), databases (RDS, Nep-
tune, DynamoDB), migration and transfer (e.g. Snowball and DataSync), network content and deliv-
ery (e.g. VPC or CloudFront), security (e.g. Resource Access Manager), and machine learning (e.g.
DeepLens, SageMaker or Tensorflow). The problem is the cloud vendors macro-services have ven-
dor-specific Application Programming Interfaces (APIs). By creating an abstraction layer which is
service independent which can broker the various macro-services you create flexibility and overall
reliability reducing the overall integration friction. This is what has driven the industry to micro-
service architecture where services are small, independent, and loosely coupled with strong cohesion.
For instance, Azure defines a Domain-Driven Design (DDD) that “provides a set of design patterns
that you can use to create the domain model”. This approach is more agile with small/independent

Approved for Public Release; Distribution Unlimited.
6

microservice/infra-structure development and is resilient and scalable (See Figure 2). The CAB Ar-
chitecture provides a valid baseline representing the state-of-the-art in software development.

Figure 2: CAB Architecture

SNC will extend the concept of this DDD framework to serve as a gateway to all cloud providers,
provide required custom microservices and build microservices with enhancements to a standard
Model Based Systems Engineering (MBSE) framework as well as subscribe to key standards for
new service definitions. For instance, cloud platforms do not provide standard lightweight log-
ging services and they anticipate such services will be needed to support the metrics they want
to collect. SNC will develop these microservices, in this case, conforming to the Object Manage-
ment Group (OMG) Lightweight Logging Specification (LLS).

SNC’s MBSE approach provides a formalized application of modeling to support system require-
ments, design, analysis, verification and validation activities. Capturing requirements as part of
a model allows quick reaction to changing requirements. Their implementation is novel in two
ways. First, The Enterprise Unified Process [Ambler] shows one approach to the iterative MBSE
process. They will practice the Agile form of MBSE by creating extensive models before writing
source code for Agile models good enough for each sprint. Second, SNC will use mainstream
plugins to the MagicDraw MBSE to support microservice design expressed as Elemental Design
Patterns (EDP). EDPs are written in the style of traditional design patterns, complete with appli-
cations they are suited for, example implementation, usage consequences and related patterns,
but at a more granular level, with solutions to common problems found in existing software sys-
tems. In fact, all object-oriented programs have EDPs, but without a strategy and standard, they
are an infinite set.

EDPs are granular forms of coding patterns in common usage. A given EDP can be implemented
in many ways but still embody the same concept. An isotope of a design pattern defines how ex-
ternal interfaces remain constant despite pattern variances, much like an atom is the same pattern

Approved for Public Release; Distribution Unlimited.
7

despite the number of electrons. The idea of separating the implementation from external inter-
faces is not new to object programming, but isotopes, separating implementation and interface of
a concept, is a novel part of EDPs that help insulate against requirements and constraints changes.
For example, suppose an object f has a method foo calling method bar of object b. They say that f.foo
relies on b.bar. The object, type and method similarities between these two endpoints is well defined
and defines the EDP between them. If the implementation is changed by injecting a new method-
calling chain, the construct is altered but the relationship between the endpoints remains unchanged.
The strategy for achieving their goal is to invest in the front-end activities of the software engineering
process life cycle by modeling standard EDPs in SysML, using an EDP composable, graphical ab-
stractions supported by large-scale modeling tools.

EDPs correlate to components that have mechanisms provided at the beginning of a software project
(in architecture design and development), rather than putting out fires whenever they occur. They are
nestable (EDPs within EDPs), as in Figure 3 below described in Pattern Instance Notation (PIN) and
composable (forming larger patterns from micro-versions).

Figure 3: Nestable EDPs described in PIN

Approved for Public Release; Distribution Unlimited.
8

4.0 RESULTS AND DISCUSSION

Between the IDAS kickoff meeting and first cadence meeting, in July 2020, SNC had settled into
their agile process, derived candidate hybrid model-based code generation approaches, applied
them to their Cloud Agility Baseline (CAB), and assembled the beginnings of their Cloud Native
Development Tools to support their initial Continuous Integration and Continuous Deployment
(CI/CD) pipeline. SNC had refined their method to decompose complex problems into smaller
parts and to make those parts as general as possible to promote reuse and resilience to requirements
changes between July 2020 and their second Cadence meeting in September 2020. The Domain-
Driven Design method gave developers the understanding they needed to safely change or extend
a solution in response to new requirements. The method distilled a complex problem domain into
a common modeling language to help keep the evolving design and the model-based portion of
SNC’s code base synchronized with each other.

Before the first PI Meeting in October 2020, SNC had 1) defined the CAB requirements in SysML,
using a IEEE 15288 compliant framework, 2) augmented the Cloud Native Toolbox to help re-
spond to requirement changes (including tools and technologies for databases, middleware, data
processing, and user interface development), 3) used this toolbox to deploy a containerized form
of the initial CAB to the Amazon Web Services (AWS) cloud, 4) investigated several possible
mechanisms for automatically generating code and configuration for parts of the project and used
those mechanisms to respond to IDAS requirement changes and 5) cataloged and classified types
of requirement changes (with an ontology for modeling requirement changes and implementation
guidance when changes occur).

After this first PI Meeting, SNC had 1) refined the CAB to more closely resemble an actual cloud-
based logistics system, 2) derived a representative set of CAB requirement changes to measure
their velocity and evaluate approach refinements, 3) completed their preliminary classification and
ontology of software requirement changes to be able to choose which requirement change pro-
cesses to use and to measure their effectiveness of responding to changes, 4) automated various
the DevOps aspects of the CAB (including continuous integration with unit, integration, and re-
gression tests; reproducible development, test, and continuous deployed environments) and 5) se-
lected the model-to-code mechanisms that they planned augment manually, including the use of
fundamental design patterns.

By November 2020, SNC had 1) built a proof-of-concept prototype for how model and code de-
velopment can cooperate, 2) built baseline approaches solving the traveling salesman problem
(prototypical SNC planned Routing Planner DoD-relevant application), 3) evaluated TLA+ for
model-checking behavioral properties, and implemented a version of a CAB-related algorithm, to
show the interaction between SysML/formal models and code interoperate, 4) built a system test
harness to evaluate run-time characteristics of deployed system under test, 5) increased the confi-
dence in their UML/SysML models with mappings to OWL, 6) verified the satisfaction of modeled
requirements through OWL/SPARQL and 8) upgraded CI/CD pipeline for delivery in test evalu-
ation format.

Approved for Public Release; Distribution Unlimited.
9

For the second IDAS PI meeting in January 2021, SNC had 1) designed and developed a full
lifecycle system simulator, 2) presented results of the research of possible targets (identifying cri-
teria for target selection) for new program shift, 3) continued refining the CAB to more closely
resemble an actual cloud-based logistics system, 4) analyzed the use of category theory for system,
5) continued investigating mapping of SysML models to OWL and 6) continued developing a
method for ensuring requirement satisfaction using SPARQL and reasoning.

Since the January 2021 pivot request, SNC had settled on their first selection of a DoD-relevant
application of IDAS technology that could be shared with the other TAs. This was the JADC2/Nar-
whal Route Planner as it met the candidate deployment criteria as expressed in the table below.
They had also built a shareable form of JADC2/Narwhal Route Planner. Towards this end SNC had
a) built open version of CUI Route Planner, b) completed Data and Software Release form, and sent
code, for the open version of Route Planner with AFRL, c) assembled an unclassified dataset to
stimulate the Route Planner and d) stood up a portable Docker image of an NGTS simulator to
dynamically stimulate the Route Planner. SNC stood up and demonstrated UxAS Framework on
AWS Cloud. They had also researched and stood up UxAS-related AADL and SADL tools/data
from “Safe and Secure Systems and Software Symposium”, Summer of Innovation (SoI) Group
GE/Rockwell to gain improved UxAS understanding and to avoid research duplication. The SNC
team wrote a specification of a SysML to OWL extension, to perform deeper OCL constraint check-
ing and implement a requirements change ontology, read XMI and ontology, extract block opera-
tions and OCL elements from XMI, generate ontological representations for each operation and
OWL axioms for each OCL element, and insert these ontological representation into the ontology.

Consistency checking of UML/OCL models is a challenging issue in software development. The
SNC team developed OWL/ontology-based method to detect the inconsistencies in the UML/OCL
models as the first step of requirement change management. Specifically, they map the UML/OCL
models to OWL, so that the consistency of the corresponding ontology can be checked by OWL
reasoners automatically. They propose a set of mapping rules to interpret the components of UML
state machine diagrams, along with OCL constraints, to OWL DL.

Figure 4: Possible targets Properties for Narwhal

Approved for Public Release; Distribution Unlimited.
10

Two months after the January 2021 pivot, the DARPA IDAS Program was cancelled, with the
exception of finishing out the summer with universities. Working with Northeastern University,
the work consisted of an OWL/ontology-based method to detect the inconsistencies in the
UML/OCL models and documenting it in a paper called “An Ontology-based Method on Detection
of Inconsistencies in UML/OCL Models” [1].

Approved for Public Release; Distribution Unlimited.
11

5.0 CONCLUSIONS

The overall IDAS goal was to automate code generation derived from software intent, and associ-
ated constraints, for rapid adaptation to late changes in requirements and operating environments.
IDAS was divided into Automated Software Generation, Problem Set Generation, Integrated Test
& Evaluation and Experimental Control and Transition Technical Areas (TAs). During the re-
search and initial prototype Phase 1, SNC performed on the latter TA, working with problem
sets/changes, exercises, prototype toolchains and execution guidance from other TAs and provid-
ing, 1) abstraction layers and software framework (consisting of dashboard, control, and abstrac-
tion APIs along with exemplary use cases) used for evaluation and 2) a Cloud Agility Baseline
(CAB), with associated Agile process improvements, to compare prototype workflows and soft-
ware. This framework was intended to test and evaluate the effectiveness of technologies support-
ing the continual adaptation of DoD software-enabled systems.

Approved for Public Release; Distribution Unlimited.
12

6.0 REFERENCES

[1] Lu, Shan, et al. "Ontology-based Detection of Inconsistencies in UML/OCL Mod-
els." MODELSWARD. 2022.

Approved for Public Release; Distribution Unlimited.
13

APPENDIX A – PUBLICATIONS AND PRESENTATIONS

Lu, Shan, et al. "Ontology-based Detection of Inconsistencies in UML/OCL Models." MOD-
ELSWARD. 2022.
Chen, Y., Kokar, M.M. & Moskal, J.J. “SPARQL Query Generator (SQG).” Journal on Data Se-
mantics 10, 291–307 (2021).

Approved for Public Release; Distribution Unlimited.
14

LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS

AADL Architecture Analysis and Design Language

AFRL Air Force Research Laboratory

AOR area of responsibility

API Application Programming Interfaces

AWS Amazon Web Services

C5ISR&T

Command, Control, Communications, Computers, Cyber, Intelligence, Sur‐

veillance, Reconnaissance, and Targeting

CAB Cloud Agility Baseline

CI/CD Continuous Integration (CI) and Continuous Deployment (CD)

DARPA Defense Advanced Research Projects Agency

DDD Domain‐Driven Design

DL Description Logic

E2 Enterprise Engine

EDP Elemental Design Patterns

EFS Elastic File System

HLA/DIS High‐Level Architecture/Distributed Interactive Simulation

IDAS Intent‐Defined Adaptive Software

IEEE Institute of Electrical & Electronics Engineers

JADC2 Joint All‐Domain Command and Control

JCITS Joint Cyber Intelligence Tool Suite

LLS Lightweight Logging Specification

MBSE Model Based Systems Engineering

OCL Object Constraint Language

OMG Object Management Group

OWL Web Ontology Language

PI Principal Investigator

PIN Pattern Instance Notation

RDS Relational Database Service

S3 Simple Storage Service

SADL Semantic Application Design Language

Approved for Public Release; Distribution Unlimited.
15

SNC Sierra Nevada Corporation

SoS System of Systems

SPARQL SPARQL Protocol and RDF Query Language (Recursive Acronym)

SysML Systems Modeling Language

TA Technical Area

TLA+ Temporal Logic of Actions

UML Unified Modeling Language

UxAS Unmanned Systems Autonomy Services

VPC Virtual Private Cloud

XMI XML Metadata Interchange

XML Extensible Markup Language

