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1. Introduction

The US Army’s modernization strategy to enable Multi-Domain Operations (MDO)
includes foundational research investments to improve the warfighting capabili-
ties, including a priority research focus into advancements in Long-Range Preci-
sion Fires (LRPF), which includes research enabling high-speed/hypersonic Army
munitions.1 The realization of the Army MDO LRPF future concept requires pre-
cision guided munitions with improved maneuverability that can operate over an
expanded flight envelope to enable range extension and trajectory shaping maneu-
vers, and engagement of imperfectly located targets.2–6

Another emphasis for Army research is developing the ability to more rapidly
evolve Army capabilities and accelerate new start programs, enabling a more agile
response to changing threat environments. Working toward this desired capability
goal, this research develops a methodology to rapidly design effective flight control
for high-speed, highly maneuverable guided munitions to enable desired operation
across an expanded flight envelope covering a wide range of Mach and dynamic
pressure values. Furthermore, Army-relevant LRPF munition concepts often have
severe space restrictions for packaging onboard computation, actuation systems,
and sensors, and also require overcoming significant challenges such as extreme
operating environments (e.g., high thermal loading from low-altitude, hypersonic
flight, and/or high mechanical shock from gun launch). These challenges influence
sensor and actuator design, and can impose stringent robustness requirements and
inhibit the achievable performance of the flight control architectures.

Particularly in the early stages of a new munition design process, it is desirable to
quickly update the tuned control gains as the aerodynamics and mass properties
evolve. This allows for timely evaluation of closed-loop maneuverability and sys-
tem performance metrics to provide input for the overall munition development,
including the lifting and stabilizing surface sizing, control surface properties, actu-
ation system requirements, and sensor specifications.

This methodology develops a flight control approach that provides effective distur-
bance rejection and command tracking for a high-speed guided munition across an
expanded flight envelope, while prioritizing robustness to modeling uncertainties
and maintaining a focus on rapid tuning capability by leveraging available tools for
automation. An efficient, systematic approach is used to gain-schedule a three-loop
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autopilot, using a set of desired design constraints to enforce performance, stability,
and robustness properties. A similar approach for tuning a three-loop autopilot for
a missile system is described in Theodoulis and Proff.7

2. Projectile Flight Dynamics

In this section, we present the nonlinear flight dynamics for a generic tail-controlled
projectile. It should be noted that these dynamic equations follow the formulation of
any standard aerial vehicle, which is well known in the literature.8–11 For this report
to be self contained, we include an overview of these nonlinear dynamic equations
and how to simplify them into a controllable dynamic model.

2.1 Reference Frames and Kinematic Equations

We begin by introducing the relevant reference frames and coordinate systems
needed to describe the position and orientation of the projectile. To start, the fol-
lowing standard assumptions are made: 1) the projectile is rigid, 2) the rotation of

the Earth is neglected, 3) the effect of the wind is neglected, and 4) the projectile

center-of-mass is located at the center-of-gravity. Now, we set the Earth reference
frame, RE = {OE, xE, yE, zE}, as the inertial frame. The coordinate system fol-
lows the right-hand rule with the origin (OE) at the launch location, the x-axis (xE)
pointing toward the target centroid, the y-axis (yE) pointing 90◦ to the east of the
x-axis, and the z-axis (zE) pointing down and perpendicular to the xy-plane. The
body-fixed reference frame, Rb = {Ob, xb, yb, zb}, is a noninertial frame with a
coordinate system fixed at the center-of-gravity location on the body of the projec-
tile. In addition to the origin (Ob) at the center-of-gravity, the coordinate system is
designated by the x-axis (xb) pointing through the nose of the projectile, the y-axis
(yb) pointing 90◦ right of the x-axis, and the z-axis (zb) pointing down and perpen-
dicular to the xy-plane. The relation between the Earth frame and body-fixed frame
can be visualized in Fig. 1, where the three Euler angles for roll, pitch, and yaw,
given by φ, θ, and ψ, respectively, describe the angular orientation (or attitude) of
the body-fixed frame relative to the Earth frame.

Through a series of angular rotations, the orientation of the body-fixed frame can
be given with respect to the fixed Earth reference frame. A “Z → Y → X” Euler
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Fig. 1 Illustration of a generic projectile with a body-fixed frame relative to an Earth reference
frame (inertial frame)

sequence of rotations is represented by the transformation matrix

[T]bE =

cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ

cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ

−sθ sφcθ cφcθ

 , (1)

where sφ = sin(φ), cφ = cos(φ), and so forth. Using this transformation, the kine-
matic equations that relate the linear (or translational) body-fixed velocities to the
inertial rate of change of translational position can be given byẋẏ

ż

 = [T]bE

uv
w

 . (2)

Note the states [x, y, z]T are the center-of-gravity positions relative to the Earth iner-
tial frame along the xE , yE , and zE axes, respectively, implying the time derivatives
are the velocities. In addition, [u, v, w]T are the body-fixed linear velocities along
the xb, yb, and zb axes, respectively. Integration of Eq. 2 gives the position of the
body-fixed frame relative to the Earth reference frame.

The relationship between the body-fixed angular velocities and the rate of change
of the Euler angles is determined by resolving the Euler rates into the body-fixed
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reference frame. This follows aspq
r

 =

1 0 −sθ

0 cφ sφcθ

0 −sφ cφcθ


︸ ︷︷ ︸

≡J

φ̇θ̇
ψ̇

 , (3)

where [p, q, r]T are the body-fixed angular (or rotational) velocities acting in the
roll, pitch, and yaw planes, respectively. Using the inverse of the matrix J in Eq. 3,
the relationship can be reversed to determine the Euler rates from the body-fixed
angular velocities as φ̇θ̇

ψ̇

 =

1 sφtθ cφtθ

0 cφ −sφ

0 sφ/cθ cφ/cθ


pq
r

 , (4)

where tθ = tan(θ). Again, it is noted that integration of Eq. 4 provides the attitude
(or orientation) of the body-fixed frame relative to the Earth reference frame.

The kinematic equations given by Eqs. 2 and 4 are critical for describing the mo-
tion of the projectile (body-fixed frame) in reference to the Earth inertial frame.
This includes the position, linear velocities, attitude, and angular velocities. From
these equations, one can use guidance and navigation to ensure the projectile is on
course for a given target. The main contributor to the flight control development are
the equations of motion consisting of the forces and moments acting on the pro-
jectile. These dictate the body-fixed flight dynamics and are discussed in the next
subsection.

First, we introduce one more reference frame, the wind frame, which is commonly
used for aerodynamic modeling and flight control development. The wind frame is
defined by the instantaneous orientation of the relative wind velocity vector with re-
spect to the body-fixed frame. This can also be thought of as the projectile’s center-
of-gravity velocity vector being defined with respect to the Earth reference frame
with no wind, denoted as ~V ≡ ~VCG/E . One can then think of the relative wind vec-
tor as −~V and the airspeed as V = |~V |. Based on this, the wind reference frame,
Rw = {Ow, xw, yw, zw}, has the coordinate system with the originOw at the center-
of-gravity of the projectile body, the x-axis (xw) is superimposed on the projectile’s
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center-of-gravity velocity vector V , the z-axis (zw) points 90◦ down from the x-axis,
and the y-axis (yw) completes the right-hand rule. Figure 2 depicts the relationship
between the wind frame and the body-fixed frame through the aerodynamic angles
(or incidence angles): angle of attack, α, and angle of sideslip, β.

x
b

y
b

z
b V⃗CG

α

β

Fig. 2 Wind reference frame relative to the body-fixed reference frame. Angle of attack and
angle of sideslip relate to the projectile’s center-of-gravity velocity vector.

Rotating along the aerodynamic angles, the body-fixed reference frame is related to
the wind reference frame with the transformation matrix give by

[T]wb =

cαcβ −cαsβ −sα

sβ cβ 0

sαcβ −sαsβ cα

 , (5)

where sα = sin(α), cα = cos(α), and so forth. Using this transformation, the body-
fixed component velocities can be obtained from the center-of-gravity velocity vec-
tor as uv

w

 = [T]wb

V0
0

 =

V cαcβ

V sβ

V sαcβ

 . (6)

As noted previously, V is the airspeed of the projectile and as the magnitude of the
velocity vector ~V , it can be written as

V =
√
u2 + v2 + w2. (7)

Using Eq. 6, the aerodynamic angles can be written in terms of the body-fixed
component velocities as

α = arctan
(w
u

)
, (8)

β = arcsin
( v
V

)
, (9)
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It is important to note the wind frame as it provides a relationship from the body-
fixed frame to the center-of-gravity velocity vector of the projectile (relative to the
Earth reference frame). Aerodynamic modeling determines the aerodynamic coeffi-
cients related to the forces and moment acting on the body. This is done with respect
to the relative wind velocity vector. These coefficients are then related back to the
body-fixed frame using the aerodynamic (or incidence) angles. This is used in the
next subsection when discussing the aerodynamic coefficients and obtaining them.

2.2 Body-Fixed Flight Dynamics

The projectile flight dynamics are based on the standard rigid body 6-degree-of-
freedom equations of motion. To begin, the three linear (or translational) degrees
of freedom are governed by Newton’s second law with a flat Earth assumption. In
vector notation, this is expressed in a general form as

~F = m
dE
~V

dt
= m

[db
~V

dt
+ ~ωbE × ~V

]
, (10)

where ~F is the vector sum of external forces acting on the projectile, m is the mass
of the projectile, ~V is the linear velocity vector of the projectile center-of-gravity
with respect to the Earth, dE

~V /dt and db
~V /dt are the Earth reference frame and

body-fixed frame time derivatives, respectively, and ~ωbE is the angular velocity of
the body-fixed frame with respect to the Earth reference frame.

The external forces acting on the projectile consist of aerodynamic forces and a
gravitational force* resolved into the body coordinates. Since the gravitational ac-
celeration is in the Earth frame and points down along the zE axis, it follows that
gE = [0, 0, g]T. To express the gravitational acceleration in the body-fixed frame,
the transformation matrix given by Eq. 1 is used to project from the Earth refer-
ence frame to the body-fixed frame as gb = [T]bEgE = [−gsθ, gsφcθ, gcφcθ]

T. Now,
resolving Eq. 12 in the body-fixed frame with the vector components defined as
~V = [u, v, w]T, ~ωbE = [p, q, r]T, and ~F = [FX , FY , FZ ]T +mgb, the expression for
linear velocity dynamics in the body-fixed frame can be written as

*When considering a more general aerial vehicle, one would also include a thrust force acting
on the flight body from propulsive components. Projectiles, in general, do not have propulsive com-
ponents so the thrust force can be neglected. However, it should be noted that the proposed flight
control framework can be implemented regardless of the inclusion or exclusion of a thrust force
component.

6



 u̇v̇
ẇ

 =
1

m


FX −mgsθ

FY +mgsφcθ

FZ +mgcφcθ

−
 0 −r q

r 0 −p
−q p 0


uv
w

 . (11)

The three angular (or rotational) degrees of freedom are governed by Euler’s law
with a flat Earth assumption. In vector notation, this is expressed in a general form
as

ω̇bE = ~I−1
[
~M − ~ωbE × ~I~ωbE

]
, (12)

where ~I is the inertia matrix of the projectile, ~I~ωbE is the angular momentum of
the body-fixed frame with respect to the Earth reference frame, and ~M is the vector
sum of external moments acting on the projectile.

Since most projectile bodies are symmetric, the inertia matrix can be simplified to
contain only diagonal elements ~I = diag([Ix, Iy, Iz]) and with the body components
of angular rates ~ωbE = [p, q, r]T and external moments* ~M = [Ml,Mm, Mn]T, the
expression for angular velocity dynamics in the body-fixed frame can be written as

ṗq̇
ṙ

 =

I
−1
x 0 0

0 I−1
y 0

0 0 I−1
z



Ml

Mm

Mn

+

I
−1
x (Iy − Iz)qr
I−1
y (Iz − Ix)pr
I−1
z (Ix − Iy)pq

 . (13)

2.3 Aerodynamic Modeling from Forces and Moments

The aerodynamic forces and moments acting on the projectile flight body are ex-
pressed in the body-fixed frame with the aerodynamic forces consisting of an axial,
side, and normal force and the aerodynamic moments consist of a rolling, pitching,
and yawing moment. These are written respectively as

*The sole contribution to the external moments are the aerodynamic moments. Owing to the as-
sumption that the center-of-mass is located at the center-of-gravity, there is no moment due to the
gravitational force. Furthermore, since there is no propulsive component acting on the projectile,
there is no moment contribution from a thrust force. Once again, the proposed flight control frame-
work can be implemented regardless of the inclusion or exclusion of a thrust force component and
the resulting moment.
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FXFY
FZ

 = QS

CXCY
CZ

 ,
Ml

Mm

Mn

 = QSD

ClCm
Cn

 , (14)

where Q = 1
2
ρV 2 is the dynamic pressure (V being the airspeed and ρ being the

air density), S = π
4
D2 is the aerodynamic reference area, D is the projectile di-

ameter, and CX , CY , CZ , Cl, Cm, and Cn are nondimensional force and moment
coefficients.

An aerodynamic model can be used to provide the aerodynamic forces and moments
resulting in the aerodynamic coefficient data.11,12 The aerodynamic coefficients are
dependent on the flight conditions of the projectile and can be given as functions of
Mach number, aerodynamic angles, body-fixed angular rates, and the aerodynamic
virtual control surface deflections. This can be expressed as

CX = CX
(
M, α, β, δp

)
, (15)

CY = CY
(
M, β,

D

2V
r, δr

)
, (16)

CZ = CZ
(
M, α,

D

2V
q, δq

)
, (17)

Cl = Cl
(
M, α, β,

D

2V
p, δp

)
, (18)

Cm = Cm
(
M, α,

D

2V
q, δq

)
, (19)

Cn = Cn
(
M, β,

D

2V
r, δr

)
. (20)

Each of the aerodynamic coefficients can be extended; however, for the purposes
of this report, we expand only the coefficients for the normal force and pitching
moment. Specifically, Eqs. 17 and 19 can be written as

CZ = CZ0(M) + CZα(M) sinα + CZα2 (M) sin2 α + CZα3 (M) sin3 α

+CZα4 (M) sin4 α + CZα5 (M) sin5 α +
D

2V
CZq(M)q

+CZδq (M, α)δq, (21)

Cm = Cm0(M) + Cmα(M) sinα + Cm2
α
(M) sin2 α + Cm3

α
(M) sin3 α

+Cm4
α
(M) sin4 α + Cmα5 (M) sin5 α +

D

2V
Cmq(M)q

+Cmδq (M, α)δq. (22)
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The dynamic component on the normal force coefficient given by CZq(M)qD/2V

is negligible and the static components given by the sin(·) functions and nominal
terms CZ0 and Cm0 can be represented instead as a function of α. We then write
Eqs. 21 and 22 as

CZ = CZα(M, α)α + CZδq (M, α)δq, (23)

Cm = Cmα(M, α)α +
D

2V
Cmq(M)q + Cmδq (M, α)δq. (24)

Here we note that the coefficients CZα , Cmα , and Cmq are referred to as stability or
aerodynamic derivatives as they notate derivatives taken with respect to α and q (i.e.,
CZα = dCZ/dα, Cmα = dCm/dα, Cmq = dCm/dq). Similarly, the coefficients
CZδq = dCZ/dδq and Cmδq = dCm/dδq are referred to as control derivatives.

As mentioned previously, all the force and moment coefficients can be further
expanded into separate static and dynamic components with stability and control
derivatives specific to the given axes of motion. These aerodynamic terms are ob-
tained using a combination of semi-empirical aero prediction tools, as well as in-
viscid and Navier–Stokes computational fluid dynamics (CFD) and wind tunnel
measurements and are then organized in look-up tables across a flight envelope of
operation.13 For example, Fig. 3, provided later in Section 3, depicts the variation
of the stability and control derivatives from Eqs. 23 and 24. We specifically use the
coefficients for the normal force and pitching moment as they are used in the next
section to produce a linear system for the proposed flight control framework.

3. Flight Control Methodology

The previous section provided details on the full 6-degree-of-freedom equations of
motion for a projectile. These equations are nonlinear by nature and capture the
cross-coupling between the different planes of motion. In addition, the process of
obtaining aerodynamic information to model the forces and moments acting on the
projectile was briefly highlighted. Understanding the motion of the projectile in
flight from the dynamics and using the aerodynamic coefficients specific to a given
flight body, one can design an appropriate flight control.

It is common practice to make assumptions and simplify the flight dynamics and
then design a flight control that is robust enough to account for the simplifications.
This can be done by assuming small angles and neglecting cross-coupling terms

9



such that a linearized model of the flight dynamics can be achieved. The control
gains are tuned around many operating conditions with this linear model to cover
an entire flight envelope. A gain-schedule is constructed from these tuned control
gains such that the projectile is properly controlled within the entire flight envelope.
This process can be very time intensive if the control gains are manually tuned for
hundreds of operating conditions.

Thus, the objective in this work is to propose a flight control design methodology
that prioritizes robustness to model inaccuracies and simplifying assumptions while
leveraging available tools for automation to reduce the design cycle iteration time.
This approach is applicable to a wide variety of applications and controller archi-
tectures. For this report, we consider a generic tail-controlled projectile2–6,14–18 and
use this methodology to design a longitudinal flight control.

3.1 Flight Control Model Linearization

It is common practice to decouple the flight control for the different planes of mo-
tion (i.e., longitudinal in the pitch plane and lateral-directional in the roll and yaw
planes). The longitudinal dynamics can be described by the time evolution of the
states [u,w, q, θ]. These dynamics can be categorized into the short-period motion
and the long-period (or phugoid) motion. In this work, the short-period approxima-
tion of the projectile is considered for the flight control development. The short-
period dynamics are described by the aerodynamic angle and the body angular rate
in the pitch-plane of motion (i.e., the angle of attack α and the pitch rate q).

Noting from Eq. 8, the angle of attack is dependent on u and w, we start by differ-
entiating both sides of the equation to obtain the time rate of change for angle of
attack as

α̇ =
uẇ − wu̇
u2 + w2

(25)

Now, using the body-fixed velocity components, u, v, and w, given by Eq. 6 and u̇
and ẇ given in Eq. 11, one can use several algebraic steps to write Eq. 25 as

α̇ = q − (pcα + rsα)tβ +
1

mV cβ

[
(FZ +mgcφcθ)cα

−(FX −mgsθ)sα
]

(26)
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By assuming the aerodynamic angles and the roll and yaw rates remain small*, ne-
glecting gravity, and using the appropriate relation from Eq. 14, this can be written
as

α̇ = q +
QS

mV
CZ . (27)

Pulling q̇ from Eq. 13, neglecting the cross-coupling of the body-fixed angular rates,
and using the appropriate relation from Eq. 14, we obtain

q̇ =
QSD

Iy
Cm. (28)

In addition, since the control objective will be to follow a desired acceleration com-
mand, we note here that the projectile’s specific vertical accelerationAZ = −FZ/m
can be written as

AZ = −QS
m
CZ , (29)

where the negative sign is used by convention so a positive angle of attack supplies
a positive vertical acceleration.

Using the expressions for the force and moment coefficients given by Eqs. 23 and
24, we can write Eqs. 27 and 28 in terms of the Mach and angle-of-attack dependent
stability and control derivatives as

α̇ =
QS

mV
CZα(M, α)α + q +

QS

mV
CZδq (M, α)δq, (30)

q̇ =
QSD

Iy
Cmα(M, α)α +

QSD

Iy

D

2V
Cmq(M)q

+
QSD

Iy
Cmδq (M, α)δq. (31)

In a similar fashion, the specific vertical acceleration follows as

AZ = −QS
m
CZα(M, α)α− QS

m
CZδq (M, α)δq. (32)

At this point, the short-period dynamics have been simplified into a linear form that
is dependent on the stability and control derivatives, which are nonlinear functions

*This can be viewed as fixing the projectile in the pitch plane of motion.
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of Mach and angle of attack.

For the considered example tail-controlled projectile, we use the flight envelope, Ξ,
defined by

Ξ =


1.2 ≤ M ≤ 3.8

|α| ≤ 12◦

Sea Level.

Across this flight envelope, the stability and control derivatives for the short-period
dynamics for the example projectile can be seen in Fig. 3. It is clear they vary
significantly across the flight envelope, and are nonlinear in Mach and angle of
attack.

Fig. 3 Stability and control derivatives varying across flight envelope

The nonlinearity of the coefficients motivates a gain-scheduling approach to the
flight control design. To implement this approach, the flight envelope, Ξ, is dis-
cretized into sample points, ξ = [M, α] ∈ Ξ. The short-period dynamics for the
projectile are then evaluated at each ξ to build a family of linear models sched-
uled across the flight envelope. To see this, we augment the short-period dynamics
given by Eqs. 30 and 31 and compactly write them along with the specific vertical

12



acceleration in the state-space formα̇
q̇

 =

 Zα(ξ)
V

1

Mα(ξ) Mq(ξ)


︸ ︷︷ ︸

A(ξ)

α
q


︸︷︷︸
x

+

 Zδq (ξ)

V

Mδq(ξ)


︸ ︷︷ ︸

B(ξ)

δq (33)

 q

AZ


︸ ︷︷ ︸

y

=

 0 1

−Zα(ξ) 0


︸ ︷︷ ︸

C(ξ)

α
q

+

 0

−Zδq(ξ)


︸ ︷︷ ︸

D(ξ)

δq (34)

The terms within the state-space matrices in Eqs. 33 and 34 are now represented as
dimensional derivatives terms for convenience. Table 1 is provided for reference.

Table 1 Dimensional derivative terms

Zα = QS
m CZα Zδ =

QS
m CZδq

Mα = QSD
Iy

Cmα Mq =
QSD
Iy

D
2V Cmq

Mδ =
QSD
Iy

Cmδq

The dimensional derivative terms within the state-space matrices for this example
projectile can be evaluated at each discretized sample point ξ = [M, α] ∈ Ξ, as
shown in Fig. 4, with subscripts corresponding to the matrix row, column indices,
as shown:

ẋ =

[
A11(ξ) 1

A21(ξ) A22(ξ)

]
x+

[
B11(ξ)

B21(ξ)

]
δq

y =

[
0 1

C21(ξ) 0

]
x+

[
0

D21(ξ)

]
δq

(35)

If a Simulink model of the nonlinear system dynamics is available, an alternative
approach to model linearization is available through a MATLAB/Simulink work-
flow. In this approach, the operspec command is used to first define operating
point specifications for each ξ, and then the findop command is used to trim the
Simulink model at each operating point. The trimmed model is then linearized at
each operating point using the linearize command. The linearized models can
then be reformulated as needed to match the form of Eq. 35.
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Fig. 4 Short-period approximation linear model terms varying across flight envelope

3.2 Actuator Model

The actuator dynamics are important to consider in the flight control tuning pro-
cess, as slower actuators interfere with the ability of the flight control to access
the projectile dynamics. In this example, the actuators are modeled as a standard
second-order system, as shown in Eq. 36:[

δ̇q

δ̈q

]
=

[
0 1

−ω2
n −2ζωn

][
δq

δ̇q

]
+

[
0

ω2
n

]
δcmd
q , (36)

where the damping ratio, ζ , and the actuator natural frequency, ωn, are chosen as
0.707 and 300 rad/s, respectively, for this example.

3.3 Flight Control Design

The performance objective for the flight controller in this example is to provide
tracking of vertical acceleration command and improve disturbance rejection across
the expanded flight envelope Ξ. The flight control design is complicated by the
aerodynamic nonlinearities of the projectile and unstable dynamics at low α.16 A
three-loop controller design is chosen for this example, as illustrated in Fig. 5. The
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controller can be expressed with the following dynamics[
ẋi

δ̇cmd
q

]
=

[
0 0

KuKqKi −Ku

][
xi

δcmd
q

]

+

[
Ka −Ka −1

KuKe −KuKe −KuKq

] Aref
Z

AZ

q

 (37)

where the pitch deflection command, δcmd
q , is used to track the vertical acceleration

reference signal,Aref
Z , using feedback ofAZ and q, which are the measured body ac-

celeration and pitch rate, respectively.7 This controller design provides four tunable
gains, Ka, Ki, Kq, and Ke, as well as a low-pass output filter set by Ku. The output
filter is chosen based on the actuator dynamics and helps ensure the closed-loop
system is protected from actuator modeling uncertainty. In this approach, the four
tunable gains are calculated using an optimization process that attempts to ensure a
desired set of performance goals are met.

Ka Ki∫ Kq Ku ∫

Ke

-- -

𝑞

𝛿𝑞
cmd

𝐴𝑍

𝐴𝑍
ref

𝐾𝑎 𝐾𝑖 𝐾𝑢𝐾𝑞

𝐾𝑒

Fig. 5 Diagram of the three-loop controller for the longitudinal projectile dynamics

3.4 Closed-Loop Model

The controller dynamics given by Eq. 37 can be augmented with the actuator dy-
namics in Eq. 36 and the short-period approximation dynamics given by Eq. 35
to be written in a closed-loop form, letting xcl = [α, q, δq, δ̇q, xi, δ

cmd
q ]T and ycl =

[α, q, Az]
T,

ẋcl = Aclxcl +BclA
ref
Z (38)

ycl = Cclxcl
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where

Acl =



A11(ξ) A12(ξ) B11(ξ) 0 0 0

A21(ξ) A22(ξ) B21(ξ) 0 0 0

0 0 0 1 0 0

0 0 −ω2
n −2ζωn 0 ω2

n

−KaC21(ξ) −1 −KaD21(ξ) 0 0 0

−KuKeC21(ξ) −KuKq −KuKeD21(ξ) 0 KuKqKi −Ku


,

Bcl =



0

0

0

0

Ka

KuKe


, and Ccl =

 1 0 0 0 0 0

0 1 0 0 0 0

C21(ξ) 0 D21(ξ) 0 0 0

 .

This system describes the dynamics of the controlled plant across the flight enve-
lope, as a function of the choice of controller gains, Ka, Ki, Kq, and Ke, Ku, and
is used in the optimization process to choose gain values that result in desirable
closed-loop system performance.

4. Tuning Approach

For the tuning process of the gain-scheduled three-loop autopilot, this methodology
uses defined tuning goals/constraints to achieve desired performance and robustness
metrics. Optimization tools within MATLAB are then used to identify the control
gains across the entire flight envelope that satisfy the given constraints. This ap-
proach prioritizes rapid tuning capability by leveraging available tools for automa-
tion while resulting in a controller that has desired performance and robustness
properties.

The closed-loop system model from Eq. 38 describes the dynamics of the controlled
plant across the flight envelope as a function of the choice of controller gains. For
this example, Ku is chosen to be 250 rad/s, based on the actuator bandwidth of 300
rad/s. This choice sets the roll-off filter for the controller slower than the actuator to
include margin for actuator uncertainty. The Ka, Ki, Kq, and Ke gains are defined
as smoothly varying polynomial surfaces across the flight envelope, according to
the form of Eq. 39.
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K(M,α) = k0 + k1M + k2α + k3αM + k4α
2 + k5α

2M + k6α
3 (39)

These tunable gain surfaces are defined in MATLAB using the tunableSurface
function, enabling the MATLAB to adjust each ki coefficient within the optimiza-
tion. Various tuning goals are defined to describe the desired performance and sta-
bility characteristics for the controller, and these goals are used to constrain the
tuning of the gain surfaces Ka, Ki, Kq, and Ke within the optimization.

4.1 Tuning Goals

The tuning goals in this methodology are governed by the desired crossover fre-
quency for the closed-loop system, ωFC

c to customize speed of desired response.
This parameter defines the transition point between low-frequency reference sig-
nals the system should track and high-frequency noise the system should suppress.
The choice of this single parameter provides a convenient adjustment mechanism to
scale the tuning goals to achieve a more conservative (slower) or aggressive (faster)
response from the tuned closed-loop system.

An appropriate choice of ωFC
c depends on the dynamics of the combined open-loop

plant, which contains all significant dynamics in the system outside the controller
itself, including the projectile dynamics, the actuator dynamics, estimator/filter dy-
namics, and computation delays. Combined plant dynamics with faster frequencies
generally allow faster feasible ωFC

c choices.

One major driver of combined plant dynamics is the projectile natural frequency
and damping. Driving a plant faster than its natural frequency requires increasingly
more control effort, resulting in higher controller gains and increased actuator de-
mands, which can diminish the controller robustness. The actuator response can
also severely limit the feasible ωFC

c value. The actuator dynamics break the direct
connection between the controller and the system dynamics. Slow actuators inter-
fere more with the ability of the controller to access the system dynamics and apply
the proper control signal.

The example projectile used to illustrate this methodology is very lightly damped
(ζ < 0.1), with a natural frequency that varies between 20 60 rad/s across the flight
envelope, as shown in Fig. 6. From Section 3, recall the actuator frequency for this
example is 300 rad/s. With this information, the projectile natural frequency, and
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some trial-and-error, the ωFC
c is chosen to vary from 8 20 rad/s for this example,

scaling with Mach, as shown in Fig. 7. A single ωFC
c target value may be sufficient

for many cases, depending on application specifics and desired performance, but a
varying ωFC

c was chosen for this example to illustrate flexibility within the design
process.

Fig. 6 Natural frequency of the example projectile

Fig. 7 Desired ωFC
c across the Mach range
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This choice of ωFC
c is used to define hard constraints and soft constraints on the

optimization. The methodology uses hard constraints on stability margin and loop
shape, which are strictly enforced to ensure desired robustness and performance
criteria. Once the hard constraints are satisfied, a soft constraint on reference track-
ing is used to optimize the tracking response within the hard constraint limits. This
process is detailed in the following sections.

4.1.1 Stability Margin

The methodology enforces a hard constraint on stability margins within the op-
timization. Depending on the application, the control system designer can choose
from among these stability margin metrics to trade between robustness and perfor-
mance. In this example, the closed-loop system is subjected to simultaneous gain
and phase variations across all plant inputs and outputs to obtain the multiloop in-
put/output disk margin, as illustrated in Fig. 8.

An example stability margin plot is shown in Fig. 9, which plots the loop-at-a-time
margins for variation on individual plant outputs, AZ and q, in blue and red, respec-
tively, along with the margins for variation on the input, δcmdq , shown in yellow. The
multiloop output margin is shown in purple, obtained by simultaneous variation of
gain and phase for both AZ and q, while the most conservative robustness metric,
the multiloop input/output disk margin, is shown in green.

Actuator
Model

Plant 
Dynamics

Controller
Vary:
[G,Ph]

𝛿𝑞
cmd 𝐴𝑍, 𝑞

Vary:
[G,Ph]

Fig. 8 Stability margin analysis. In this block diagram, “G” denotes gain and “Ph” denotes
phase.

For this flight control design example, the design goal for the majority of the flight
envelope is defined as 3 dB of gain margin with 30o phase margin for the multiloop
input/output disk margin, as shown in Table 2. The unstable, low-α regions are
given a relaxed margin constraint of 2 dB of gain margin with 15o phase margin to
facilitate the tuning process. Enforcement of this tuning goal ensures stability across
the flight envelope with significant margin for robustness to plant uncertainty.

This design goal is implemented using the TuningGoal.Margins function with-
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Fig. 9 Example stability margin plot

Table 2 Disk margin tuning goal

α ≤ 1o 1o < α ≤ 12o

Gain margin 2dB 3dB
Phase margin 15o 30o

in MATLAB to set up for the optimization process. As the goal varies across the
flight envelope in this example, the varyingGoal function is used to wrap the
different margin tuning goals into one object for the solver.

4.1.2 Loop Shape

This methodology enforces another hard constraint on the open-loop gain profile
within the optimization to achieve desirable reference tracking, disturbance rejec-
tion, and noise attenuation properties. For this analysis, the feedback loop of the
combined closed-loop system is broken, as shown in Fig. 10, and open-loop gain
response (L) is shaped by analyzing the sensitivity (S) and complementary sensi-
tivity (T ) functions. Note the sensitivity and complementary sensitivity functions
are restricted by the trade-off given by S + T = 1.

Figure 11 provides an example plot showing the open-loop gain, along with S

and T . The target loop shape that of a pure integrator, and is enforced by a low-
frequency constraint on S and a high-frequency constraint on T . These constraints
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Actuator
Model

Plant 
Dynamics

Controller

X

𝐴𝑍

Fig. 10 Loop shaping analysis

are derived from the desired ωFC
c . For frequencies below ωFC

c , where L > 1, the
green low-frequency keep-out region forces a minimum gain constraint onL (equiv-
alently a max gain constraint on S) to provide desirable reference tracking perfor-
mance and disturbance rejection. For frequencies greater than ωFC

c , where L < 1,
the red high-frequency keep-out region forces a maximum gain constraint on L and
T to provide desirable noise attenuation. The gap between the two keep-out regions
sets the frequency band where L can cross 0 dB, and is defined in this methodology
by choosing the upper and lower frequency bounds as given in Table 3.

Fig. 11 Example loop gain plot, showing the sensitivity and complementary sensitivity func-
tions

This design goal is implemented within MATLAB using TuningGoal.Loop

Shape to set up for the optimization process. As the goal varies across the flight
envelope in this example (due to variations in ωFC

c ), the varyingGoal function
is used to wrap the different loop shape tuning goals into one object for the solver.
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Table 3 Loop shape tuning goal

Min Max

Crossover range 0.5ωFC
c 5ωFC

c

4.1.3 Reference Tracking

This methodology also enforces a soft constraint to optimize the reference tracking
performance within the hard constraint limits. For this analysis, reference signals
of varying frequency are provided to the closed-loop system, and the error between
the reference and output is analyzed across frequency, as shown in Fig. 12.

Vary 
Freq.

Compare

Actuator
Model

Plant 
Dynamics

Controller

Fig. 12 Reference tracking analysis

Figure 13 provides an example plot showing the reference tracking goal. The rela-
tive error between the reference and response is plotted across frequency, and com-
pared to a desired error profile with a 20-dB/decade slope consistent with an inte-
grator response. The crossover frequency of the desired error profile in this example
is set to ωFC

c .

This design goal is implemented within MATLAB using the TuningGoal.Tra-
cking function to set up for the optimization process. As the goal varies across
the flight envelope in this example (due to variations in ωFC

c ), the varyingGoal
function is used to wrap the varying reference tracking goal into one object for the
solver.

4.2 Tuning Results

Once the tuning constraints are defined and implemented into MATLAB using
TuningGoal and varyingGoal functions, and the Ka, Ki, Kq, and Ke gains
within Eq. 38 have been set as tunableSurface functions according to Eq. 39,
the problem is ready for optimization.
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Fig. 13 Example reference tracking plot

The MATLAB systune function takes the closed-loop system model and the set
of hard and soft constraints, and adjusts the surface coefficients for each gain to
shape the surfaces in a way that satisfies the constraints across the flight envelope.
Figure 14 shows the resulting tuned surfaces across the flight envelope for each
tunable gain parameter in the controller.

The performance of the gain-scheduled controller is evaluated across the flight en-
velope to ensure desired robustness characteristics and performance. Using Eq. 38,
the controller gain surfaces are evaluated at each sample point ξ ∈ Ξ to obtain the
family of tuned, closed-loop linearized models. These closed-loop systems are then
compared to the tuning goal criteria.

Figure 15 plots the tuned system stability margins for each linear model and the
corresponding controller gains across the flight envelope. The tuned gain surfaces
result in a family of closed-loop systems that meet the design goals defined in Ta-
ble 2 at each sample point within the flight envelope.

The open-loop gain profile for the family of tuned systems is shown in Fig. 16,
along with the corresponding S and T function profiles. The tuned gain surfaces
result in open-loop gain profiles, which meet the design goals defined in Table 3 at
each sample point within the flight envelope.
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Fig. 14 Polynomial gain surfaces for Ka, Ki, Kq , and Ke

The family of closed-loop systems is further evaluated using a bode plot analysis
and an analysis of the system response to step inputs, as shown in Figs. 17 and 18.
These figures confirm the desired performance of the tuned, closed-loop systems
at each sample point across the flight envelope. The effect of varying ωFC

c accord-
ing to Fig. 6 is evident in the Fig. 18 step responses, with lower Mach numbers
corresponding to slower step responses.
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Fig. 15 Stability margins for the tuned, closed-loop system across the flight envelope
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Fig. 16 Open-loop gain profiles for the tuned system across the flight envelope
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Fig. 17 Bode plots for the tuned, closed-loop system across the flight envelope
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Fig. 18 Step responses of the tuned, closed-loop systems across the flight envelope
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4.2.1 Nonlinear Simulation

The gain-scheduled flight controller is implemented in Simulink according to Fig. 5
with the tuned gain surfaces from Fig. 14. The flight controller is then simulated
with the full nonlinear aerodynamics and equations of motion for the projectile in
the longitudinal plane. An AZ reference command is generated following a first-
order response to a step input, with the reference model time constant, τR = 5

rad/s, chosen to smooth/slow abrupt changes to the reference command below the
ωFC
c . Figure 19 plots the simulation results, showing the AZ reference command

and AZ , α, q, simulation response, along with the control deflection, δq.

Fig. 19 Nonlinear simulation results with the tuned flight controller tracking an AZ reference
command
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5. Robustness Analysis

The models used to design the flight controller are simplified expressions of the true
dynamics, and hence, include errors and uncertainties that cause deviations from
true flight behavior. The flight controller should be designed with robustness to this
model error/uncertainty. One source of model error in this case is the linearization
using the short-period approximation covered in Section 3, which neglects aspects
of the nonlinear dynamics in order to make use of the powerful linear control de-
sign techniques. Additionally, the aerodynamic terms used within the model are
obtained through the blending of multiple experimental and analytical techniques
(CFD, wind tunnel, flight experiments, etc.), each of which have different strengths
and limitations. This aerodynamic data fusion remains an area of active research,
and the aerodynamic coefficients can have significant uncertainty, particularly in
hypersonic flight regimes.

To add variability and uncertainty to the projectile and actuator dynamic models, the
MATLAB ureal command is used to define uncertain parameters, which vary
according to a specified error range. These uncertain parameters are used to re-
build the state-space models as uncertain state-space models, which contain the
underlying uncertainty of the parameters within the differential equations. These
uncertain models are then combined with the flight controller and used to analyze
the robustness of the closed-loop system to the specified uncertainties.

5.1 Model Uncertainties

A conservative uncertainty bound is set for each parameter, as shown in Table 4. For
this example, the projectile mass, m, and moment of inertia, Iy, are given an error
bound of ±10% from their nominal values. The x-location of projectile center-of-
gravity (CG) is assumed to vary by ±0.1 cal. The air density, ρ, is given an error of
±20%, and the projectile velocity, V , is given a ±10% uncertainty. These combine
together to define the uncertainty in the dynamic pressure, Q = 1/2ρV 2.

The aerodynamic force coefficients CZα , CZδ are both given an error bound of
±10%, and the error in the damping coefficient, Cmq is assumed to be ±30%, as
shown in Table 4. The aerodynamic moment coefficients are affected by the CG
uncertainty, along with an assumed additional error bound of ±20%. The aerody-
namic coefficient values vary across the flight envelope, so these error boundaries
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Table 4 Dynamic model uncertainty bounds

Mass
properties

m ±10%
Iy ±10%

CGx ±0.1cal

Environment
parameters

ρ ±20%
V ±10%

Aerodynamic
coefficients

CZα ±10%
CZδ ±10%
Cmα ±20% ±0.1 cal
Cmδ ±20% ±0.1 cal
Cmq ±30%

Actuator
properties

ωn [280:350] rad/s

are implemented as error surfaces derived from the nominal values, as shown in
Fig. 20. Note the effect of the CG shift on the aerodynamic moments is cumulative
with the ±20% error.

Fig. 20 Aerodynamic coefficients with uncertainty bounds (shown in red) around nominal
values across flight envelope

The actuator response is also assumed to be uncertain, with a ωn varying from 280

to 350 rad/s. This assumption captures uncertainties due to simplifications between
the true dynamics and the second-order modeling approximation, as well as non-
linearities in the actuator response in the presence of significant hinge moments
due to aerodynamic forces on the control surfaces in high dynamic pressure flight
conditions.
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5.2 Robustness Analysis Results

Each of the parameters in Table 4 is defined with the MATLAB ureal command as
an uncertain parameter with the associated uncertainty bounds. The actuator model
from Eq. 36 is rebuilt using the uncertain ωn value, resulting in an uncertain state-
space model for the actuator. Similarly, the projectile dynamics model from Eq. 35
is rebuilt at each sample point across the flight envelope, resulting in a family of
uncertain state-space models spanning the flight envelope, which each contain un-
certain parameters bounded according to Table 4 and Fig. 20. The uncertain actuator
model and uncertain projectile models are connected with the tuned flight controller
to rebuild the closed-loop system in preparation for the robustness analysis, as il-
lustrated in Fig. 21.

Uncertain 
Actuator

Model

Uncertain 
Plant 

Dynamics
Controller

Fig. 21 Closed-loop model with uncertainty for robustness analysis

In this methodology, the robustness of the closed-loop system is evaluated using
µ-analysis, which determines the minimum stability margin across frequency us-
ing the structured singular value, µ, for the uncertainty space defined in Table 4.
This calculation is performed using the MATLAB robstab command and gives
a deterministic calculation of stability across the defined uncertainty space using a
robustness factor. This robustness factor (RF) indicates the stability of the system
relative to the normalized uncertainty space, with RF = 1 indicating the closed-loop
system is robust to uncertainties that exactly match the error boundaries given, and
RF > 1 indicates the system is robust to uncertainties in excess of the specified
error bounds.

For this example, the RF for the uncertainty space defined in Table 4 is shown in
Fig. 22, which indicates this flight control design is robust to specified uncertainties
across the majority of the flight envelope. At lower Mach numbers, the closed-loop
system is shown to be robust to 150% 200% of the normalized uncertainty space.
A few corner cases at low-α, low/high Mach are shown to be robust to only 70%
of the specified error. This is a result of the relaxed stability margin tuning goal
for those cases (see Table 2). If the robustness of these corner cases is insufficient,
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the controller gain surfaces must be re-tuned with adjusted tuning goals. For this
example, the robustness of the design is assumed to meet requirements.

Fig. 22 RF calculated for the close-loop system, indicating stability with respect to the defined
uncertainty space

The robustness analysis in this methodology also includes a measure of the relative
effect of parameter variation on the stability. Figure 23 plots a line for each un-
certain parameter in the analysis that shows the minimum, maximum, and average
sensitivity of the closed-loop stability across the flight envelope to variations in that
parameter across the specified error boundary. This comparison highlights which
parameters most affect stability within the uncertainty bounds. For this example,
the main drivers of stability are 1) CG offset errors, 2) airspeed and air density
estimates (which combine into Q), and 3) actuator bandwidth. It should be noted
that the relative sensitivity metric is a combination of the impact of each parame-
ter on stability as well as the size of the corresponding error space. Parameters can
be key drivers due to large uncertainty bounds and/or out-sized impact on stability.
For example, the CG offset parameter has significant impact on stability from first
principles and was given a large uncertainty range in this example, so its role as
a driver in this analysis is expected. In contrast, the actuator bandwidth was given
a relatively small uncertainty range in this analysis, yet shows up as a significant
driver of instability, highlighting the critical role the actuator performance plays in
closed-loop system stability.
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Fig. 23 Measure of the relative effect of variation in each parameter on stability

5.3 Nonlinear Simulation

As part of the overall robustness analysis, the scheduled flight controller is exercised
in a Monte Carlo (MC) simulation using the full nonlinear aerodynamic model and
pitch plane equations of motion. This MC analysis provides a complement to the
RF analysis to ensure the linearization assumptions and flight envelope sampling
have not missed critical details.

Uniform random draws are taken for each uncertain parameter according to the
error bounds defined in Table 4, and each case is exercised in simulation. The con-
troller is provided an AZ reference command to track, and the initial conditions
are chosen to exercise the controller across the majority of the (Mach, α) pair val-
ues within the flight envelope. The flight behavior for 150 simulations is shown in
Fig. 24. As the uncertain parameters deviate from their nominal values, the con-
troller continues to provide acceptable AZ tracking performance, with the δq com-
mands and α responses adjusting from their nominal values to accommodate the
changing dynamics.
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Fig. 24 MC simulation results using the nonlinear flight dynamic model
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6. Conclusion

A flight control design methodology was developed that provides effective distur-
bance rejection and command tracking for a high-speed guided munition across an
expanded flight envelope, while prioritizing robustness to modeling uncertainties
and maintaining a focus on rapid tuning capability by leveraging available tools for
automation. This efficient, systematic tuning approach was used to gain-schedule a
three-loop autopilot for an example tail-controlled projectile, using a set of desired
design constraints to enforce performance, stability, and robustness properties.

The performance of the resulting closed-loop system was evaluated using a vari-
ety of linear systems analysis techniques to verify the tuning goals were satisfied.
Nonlinear simulation results of the closed-loop system were presented to illustrate
performance across the flight envelope.

A robustness analysis was performed, which verified the closed-loop system to be
robust to significant errors/uncertainties in the model parameters. This robustness
analysis was complemented with nonlinear simulation results from a MC analy-
sis that varied each model parameter across its uncertainty boundary and showed
the closed-loop system exhibits a graceful degradation in performance across the
defined modeling uncertainty space.
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List of Symbols, Abbreviations, and Acronyms

CG center-of-gravity

MATLAB MATrix LABoratory

MC Monte Carlo

MDO Multi-Domain Operations

LRPF Long-Range Precision Fires

RF robustness factor

MATHEMATICAL OPERATORS:

([T ]AB) denotes a transformation matrix that gives reference frame A

with respect to reference frame B.

( ˙ ) the overdot denotes the time-derivative.

(~ ) the over arrow denotes a vector.

(·)T the transpose operator.

(×) denotes the cross product.

(·)−1 the inverse operator.
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