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1. Introduction 

This report summarizes research results over the life of the Experimental Methods 
in Network Science project covering approximately 2017–2020. The project 
focused on two main topics: context-aware networking and cybersecurity for 
resilient networking. Context-aware networking aims to improve the performance 
of tactical networks and services they support using context awareness to enhance 
current state-of-practice methods that do not necessarily account for dynamics of 
the environment and limitations of resource-constrained edge devices and 
networks. Cybersecurity for resilient networking aims to enhance the security of 
tactical networks in the presence of dynamic and sophisticated adversaries.  

The US Army Combat Capabilities Development Command Army Research 
Laboratory research staff involved in this project had significant influence in 
shaping and collaborating in multiple external partner programs in related topics. 
Outcomes of these programs were fed into the mission-funded projects. The partner 
programs include United States–United Kingdom Distributed Analytics and 
Information Sciences International Technology Alliance (DAIS ITA), Internet of 
Battlefield Things Collaborative Research Alliance (IoBT CRA), The Technical 
Cooperation Program (TTCP), and NATO Science and Technology Organization 
Information Systems Technology (NATO STO IST) Panel.  

The impact of this research includes network-emulation experiments validating 
viability of algorithms and techniques to support theoretical outcomes, significant 
reporting of research results in the networks and communications research 
community, and contributions to Army Concept Science & Technology (S&T) 
documents. Highlights that are summarized in the following sections include 
development of optimal control in cascading failures for network control using 
sandpile modelling and determining conditions that can prevent cascading failures; 
physical layer security authentication protocols that increase lifetimes of secret 
keys by an order of magnitude; and contributions to the Command and Control 
(C2), Fires and Cyber S&T concept documents. 

2. Technical Summary 

2.1 Context-Aware Networking 

With the growing scope of operations and dynamics required with moving toward 
realizing multidomain operations (MDO), it is necessary to exchange more 
information within and across operational domains. The increased information 
exchange and synchronization of multidimensional and multimodal information 
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has the potential to enhance situational awareness and performance for joint 
operations. With expanded operations, this approach leverages multiple 
environmental contexts, gaining further understanding of dynamically evolving 
operational conditions and environments. However, in a congested and contested 
operational environment involving resource-constrained devices and networks, it is 
necessary to devise efficient means to configure and adapt networks. Tactical 
networked operations are assumed to operate in a denied, disconnected, 
intermittent-connectivity, limited-bandwidth (DDIL) environment with low size, 
weight, and power (SWAP) devices.  

The research can be organized around the concept of the operations process cycle 
adapted to networked operations: learning and inferring network context, planning 
network control and analysis, and executing intelligent network adaptation through 
dynamic network reconfiguration. The research concepts of the cycle are 
thematically interrelated and holistically provide a more complete consideration of 
cross-layer resilience and robustness of a complex networked operational 
environment. These techniques are applicable to a broad range of challenges and 
Army functions as identified by project contributions to concept developer S&T 
documents. 

To align with MDO, military commanders will have to learn the environmental 
context in which they operate, plan strategies to improve network performance, and 
execute adaptation of networked resources. The cycle of “assess, adapt, execute” is 
illustrated in Fig. 1. MDO assumes significant dynamics of the operational 
environment and resource-constrained platforms, so this research enhances 
understanding of efficient approaches to the provisioning and adaptation of these 
resources. We have made advancements in various topics such as dynamic resource 
allocation, distributed optimization, distributed machine learning (ML) and deep 
learning (DL) to best deal with the high complexity and scale of these systems. 
Through the development of novel techniques to account for the unique operating 
environmental challenges and constraints and applications, this research resulted in 
methods to understand network context, approaches to adapting networks to 
enhance performance, and techniques tested and validated on relevant tactical 
network environments.  
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Fig. 1 Diagram of context-aware networking including the understand, adapt, and execute 
cycle 

The research results summarized in this report seek to increase understanding of 
networked operations and improve how they perform under a variety of tactical 
network settings, such as coalition networks, IoBT, and MDO. With a growing 
volume of information available in tactical and strategic networks, network 
operators and commanders will require enhanced capabilities to analyze 
information. The approach of this project sought out network adaptation techniques 
that consider various network contexts for a tactical network setting and to 
understand generalized aspects of any of the findings. 

There is great potential benefit of deploying advanced analytics, including artificial 
intelligence (AI) and ML in tactical environments; however, there is a lack of 
understanding of ML’s potential impact in tactical networks for a variety of reasons. 
The limits to the extent that advanced analytics can be realized and provide benefit 
in the tactical networked environment is not known. Additionally, some ML 
techniques or approaches may provide performance enhancements that are worth 
the cost of extra computational demands in these environments. Some challenges 
include the resource-constrained nature of the devices and limited network 
resources coupled with the dynamic, hostile operational environment. We have 
analyzed and evaluated ML techniques and feasibility on tactical edge platforms, 
including Raspberry Pi and mobile GPU resources. Additionally, we explored 
distributed approaches to allow for placement of complex analytics over multiple 
nodes. Also, we considered other adaptations to ML, particularly model pruning 
and efficient data exchange methods for training and inference. We consider two 
ways to approach the interaction between ML and tactical networks: adapt ML 
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applications to work on tactical networks despite challenges imposed by the 
operational environment and develop ML-based approaches to enhance the 
performance of tactical networks. The research in this report primarily deals with 
the latter. 

2.1.1 Key Research Questions and Efforts 

This research includes theoretical development, modeling, and experimental 
validation to enhance the performance and resilience of multilayer networks to 
provide situation understanding to analysts in contested, complex environments. 
These interrelated research efforts, when integrated, can enable cross-layer network 
optimization techniques. Here are three key research areas and research questions 
relevant to the context-aware networking focus area of the report: 

Research Area 1: Learn: Context and Inference – Develop networked applications 
that consider the end user, mission requirements, and environmental context. We 
emphasize situations where the “user” is actually an inference engine, for example, 
an ML algorithm. 

• Can we create a system that efficiently gathers relevant networked 
information and makes it available to processes within nodes and among 
local nodes? 

• Can we identify meaningful subsets of features for sensing and inference of 
networked information? 

• Can we devise analytics that can make cross-layer network reconfiguration 
recommendations to improve performance in evolving mission context? 

Research Area 2: Plan: Control and Analysis – Based on awareness of network 
contexts, devise centralized and decentralized network control and reconfiguration 
approaches with the aim to improve network performance. 

• Can we make meaningful inferences from available network 
statistics/information to adapt network resources efficiently?  

• What ML or optimization strategies are useful to improve network 
performance while considering extra overhead or distributed approaches? 

Research Area 3: Execute: Adaptation and Reconfiguration – Devise approaches 
and technology to realize network reconfiguration with the purpose of providing 
robustness and resilience of multiple network layers. 

• Can we adaptively reconfigure networked resources to exploit dynamic 
operational environments and evolving mission requirements?  
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• What frameworks can be developed that enable testing of dynamically 
allocated analytics? 

• What cross-layer reconfiguration strategies are tractable and effective? 

• What are meaningful reward functions for effective networking behavior in 
representative scenarios? 

These research areas are aligned with the aforementioned operations process cycle 
for networked operations. In the remainder of this section, we summarize outcomes 
of several research efforts. Each of these efforts pertain to one or more of the 
process cycles in Fig. 1 as well as the associated research questions. 

2.1.2 Distributed Analytics 

The distributed analytics research effort focused on the challenge of accelerating 
decision-making at the edge—enhancing system performance through intelligent 
adaptation of network resource allocation and exploitation of information at the 
edge. Recent developments propose a micro-edge cloud computing approach, in 
which computing resources are made available closer to severely resource-
constrained devices. Given these resource-constrained devices operating over 
DDIL networks, limited capacity to host different services and applications, and a 
diversity of service and task requests, we have developed algorithms to address 
adaptation and reconfiguration challenges in this network paradigm.  

Work in this area resulted in numerous results, furthering insights into a range of 
topics relevant to distributed analytics. In Panigrahy et al. (2020a, 2020b), we 
developed the power-of-two (POT) choice algorithms for resource allocation of 
tasks in distributed networks. With limited resources at the edge, optimal allocation 
of resources, considering latency and communication costs, is a critical issue. We 
proposed a novel algorithm that we showed was fairer than the state of the art, while 
retaining performance optimality. A key aspect of the research was to cast the 
problem in the framework of bulk service queueing systems. We generalized 
existing queueing results to cover the case in which servers are heterogeneous and 
resources may be shared across multiple users. The theoretical results and 
numerical evaluation yield design guidelines for resource placement (Panigrahy et 
al. 2020b). We extended these results to the 2-D case and studied the tradeoff 
between communication costs and load balancing. In a classical POT choice 
algorithm, a user is associated with the less loaded of the two closest servers (the 
closeness captures communication costs). Using a classical balls-and-bins 
approach, we established lower bounds on the asymptotic expected maximum load 
for a spatial POT policy. We proposed two nonuniform server sampling-based POT 
policies that achieve the best of both the performance metrics (Panigrahy et al. 
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2020a). We extended these results to graphs, which capture allowed 
communication links, and in which communication cost is in terms of number of 
hops rather than Euclidean distance. We performed extensive simulations over a 
wide range of network topologies. The proposed server sampling process leads to 
a drastic reduction in the overall systemwide implementation cost while obtaining 
a similar load distribution profile as that of POT policy (Panigrahy et al. 2022). 

We also developed a series of methods that enables training of ML models in a 
distributed networked environment to account for limited bandwidth that inhibits 
exchange of training data to a central node; these novel methods use distributed 
coresets construction (Lu et al. 2020a, 2020b, and 2020c). To understand what 
resources are available in distributed environments, we also developed topology 
and Network Function Virtualization (NFV) inference techniques (Panigrahy et al. 
2020a; Wheatman et al. 2020). We combined our approaches to network 
tomography, summarized in He et al. (2021), with ideas from higher-order statistics 
to infer the underlying routing topology of an arbitrary set of monitor paths using 
the joint distribution of end-to-end measurements, without making any assumptions 
on routing behavior. Our approach, called the Möbius Inference Algorithm, uses 
cumulants of this distribution to quantify high-order interactions among monitor 
paths, and it applies Möbius inversion to “disentangle” these interactions. We 
provide a more practical variant called Sparse Möbius Inference, which uses 
various sparsity heuristics to reduce the number and order of cumulants required to 
be estimated. We show the viability of our approach using synthetic case studies 
based on real-world internet service provider topologies (Smith et al. 2020). 

Other work involved approaches toward optimal task resource allocation in a 
variety of distributed settings while also considering dynamics of environment and 
diversity of resource availability and resource requirements (Zhao et al. 2018; 
Pasteris et al. 2019; Tran et al. 2019; Wheatman et al. 2020). To ensure quality-of-
information guarantees in analytics, communications, computation, and caching, 
costs must be jointly optimized to minimize energy consumption. We formulated 
the problem of identifying the optimal data compression rates and cache placement 
as a mixed-integer nonlinear programming problem with nonconvex functions, 
which is NP-hard in general. We proposed a variant of the spatial branch-and-bound 
algorithm that can provide an ϵ-global optimal solution to the problem. Our 
extensive numerical experiments show that our optimization framework improves 
energy efficiency by up to 88% compared to any optimization that only considers 
either communication and caching or communication and computation (Zafari et 
al. 2020). Computation of multiple edge analytics can be facilitated by resource 
sharing among different domains or coalition partners (or edge cloud servers), each 
of which may have different utilities. We model resource sharing as a multi-
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objective optimization problem and present a solution framework based on 
Cooperative Game Theory. We prove that for a monotonic, nondecreasing utility 
function, the game is canonical and convex. We propose a core algorithm and a 
variant that reduces resource fragmentation (Zafari et al. 2021). These results 
provide analysis and experimentally validated approaches toward the placement of 
analytics and execution of distributed analytics including ML training and network 
inference. These results enhanced the fundamental understanding of networks and 
analytics relevant to MDO and coalition networks. 

2.1.3 Network Control 

Control and analysis of networks enhances network resilience and robustness by 
understanding the current network and environment state as well as determining 
methods to move to a more desirable network configuration to enhance 
performance metrics. 

We studied the concept of IoBT and the need for quick discovery and synthesis of 
Internet of Things (IoT) networks (Cisneros-Velarde et al. 2019; Pylorof et al. 
2019; Ghosh et al. 2020). Our results include addressing the synthesis problem and 
developing techniques that scale to large regions and large networks while 
producing cost-effective solutions. Ghosh et al. (2020) and Cisneros-Velarde et al. 
(2019) explore two different representations of the synthesis problems using 
satisfiability modulo convex (SMC) optimization and mixed-integer linear 
programming (MILP). Our findings suggest that MILP outperforms SMC in some 
settings for smaller problem sizes. The fact that SMC’s expressivity matches our 
problem ensures that it uniformly generates better-quality solutions at larger 
problem sizes. Additionally, we developed and analyzed robust network control 
algorithms using sum of squares programming to identify requirements for system 
stability (Cisneros-Velarde et al. 2021). 

Complex systems are challenging to control because the system responds to the 
controller in a nonlinear fashion, often incorporating feedback mechanisms. 
Interdependence of systems (such as communications, information and social 
networks, or power, water, and phone networks) poses additional difficulties, as 
cross-system connections enable malicious activity to spread between layers, 
increasing systemic risk. We studied conditions for optimal control of cascading 
failures in a system of interdependent networks, using the sandpile model. We 
explored the propagation of cascades across networks using realistic network 
topologies, such as heterogeneous degree distributions, as well as intra- and 
interlayer degree correlations. We find that three properties—scale-free degree 
distribution, internal network assortativity, and cross-network hub-to-hub 
connections—are all necessary components to significantly reduce the size of large 



 

8 

cascades in the sandpile model. We demonstrated that correlations present in the 
structure of the multilayer network influence the dynamical cascading process and 
can prevent failures from cascading. These findings highlight the importance of 
internal and cross-network topology in optimizing robustness of interconnected 
systems (Turalska et al. 2019, 2021). 

Complex networks are heterogeneous in node and link attributes, and one aspect of 
this heterogeneity manifests itself in the so-called friendship paradox, that is, on 
average people have fewer friends than their friends do, or the average degree of a 
node is less than that of its one-hop neighbors. We proposed a local network metric, 
called the friendship index (FI), to quantify characteristics of this paradox. We used 
the FI metric to measure disparity within a network, and we examined the 
aggregated FI value both theoretically for a class of networks and experimentally 
across a suite of synthetic and real-world networks. By conducting a correlation 
study between the proposed metrics and degree assortativity, we experimentally 
demonstrated that the phenomenon of the friendship paradox is related to the well-
known phenomenon of assortative mixing (Pal et al. 2019). 

Recent social networks research focused on the modeling and analysis of how 
opinions evolve as a function of individual relationships—attempting to model the 
implications of both friendly and antagonistic relationships. In Bovet and Chan 
(2018), Cisneros-Velarde et al. (2019), and Turalska et al. (2019), we studied the 
boomerang effect in opinion dynamics and model and analyze the presence of 
opinion polarization using structural balance property. Our analysis shows that in 
signed networks, the opinions show persistent fluctuations. Additionally, opinions 
and influence in various networks are impacted by false and misleading 
information, thus leading toward networked information instability. Modeling and 
understanding of these phenomena enables control of dissemination of such 
harmful information in these networks, limiting potential harmful downstream 
impact to networked operations. 

We also studied the influence maximization problem using a dynamic model under 
competitive settings in a signed network, where two adversaries compete to spread 
their influence in the network. Here, nodes are dynamic and are free to continually 
change their states and influence propagates under voting dynamics. Theoretical 
results and numerical evaluation provide insights on the optimal allocation of 
resources. We show that optimal strategy varies with the fraction of negative links 
in a network under adversarial settings (Chakraborty et al. 2019, 2020).  
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2.1.4 Tactical Networks 

This effort focused on developing various services that are suitable for operation 
on tactical networks. Semantically Managed Autonomous Resilient Tactical 
Networks (SMARTNET) is an effort that developed semantically managed C2 
across multigenre tactical networks. We collaborated with NATO and TTCP 
partners to assess numerous aspects of communication protocols in 
tactical/coalition settings. We also worked with DAIS ITA to develop approaches 
to improve resilience of software defined networking (SDN) for tactical networks. 

2.1.4.1 SMARTNET 

SMARTNET is a bilateral Project Arrangement between the United States and 
Australia’s Defence Science and Technology Group. This program aims to develop 
semantically managed autonomous and resilient C2 applications across multigenre 
tactical networks to enhance robustness and resilience of networked applications; 
augment Command, Control, Communication, Computers, Intelligence, 
Surveillance and Reconnaissance (C4ISR) applications deployed in disconnected, 
intermittent, and limited (DIL) networking environments through various 
information management techniques; and develop a prototype with relevant 
hardware/software (HW/SW) to demonstrate the concept in a tactical network 
environment. The concept involved the idea to prioritize, transform, and control 
information over the tactical network (Fig. 2) in accordance with changing Mission, 
Platform, Environmental and Network conditions/contexts. 

 

Fig. 2 SMARTNET concept including prioritization, transformation, and control of 
information in tactical networks 

Key accomplishments included development of information dissemination 
techniques for C2 applications in DIL environments to enhance robustness and 
resilience (Judd and Chan 2017; Chan et al. 2018; Craggs et al. 2021); development 
of network simulation and emulation experiments and initial in-lab experimentation 
with integrated HW/SW (Chan et al. 2019b, Craggs et al. 2021; and enhancement 
of network experimentation capabilities (Judd et al. 2018; Chan et al. 2019a; Chan 
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et al. 2019b; Judd et al. 2019). Specifically, work on optimizing the configuration 
of SMARTNET modeling and parameterization of assigning value to message 
types to determine relative performance yielded an improvement of nearly 50% 
over the baseline as validated through simulation (Craggs et al. 2021). These 
research results were validated in DEVCOM Army Research Laboratory’s 
Network Science Research Laboratory with plans to execute a field trial in October 
2020. The field trial was planned to demonstrate the SMARTNET concept and 
vision, involving middleware to enhance information delivery using cross-layer 
context awareness. The experiments were to include execution of SMARTNET 
software integrated with tactical radios in a tactically relevant scenario. The field 
trial was cancelled due to COVID-19. 

2.1.4.2 Protocol Assessment 

Research on improving tactical network performance included methods to enable 
understanding and adaptation, such as messaging middleware and other 
publish/subscribe standards. Other efforts studied the potential of agility provided 
by these methods. Portions of this research were executed in collaboration with our 
NATO allies, in the NATO IST panel groups IST-118 and IST-150 (Meiler et al. 
2017; Manso et al. 2018a, 2018b, 2019; Johnsen et al. 2019;  Jansen et al. 2021), 
where the group identified and experimentally tested and validated their 
performance in NATO-related field experiments.  

Our team designed and conducted a video analytics experiment to assess the 
benefits of applying the SDN paradigm to tactical environments. This experiment 
was leveraged in various incarnations for collaborative work (Marcus et al. 2018). 
It was instrumental in the creation of a new international collaborative project 
within TTCP C4I TP43 (Communications), where the group identified important 
aspects of applying SDN for tactical networks. Specific aspects included 
requirements for coalition interoperability, security, quality of service 
management, and trust management. Other research outcomes included the 
development of an unmanned ground sensor scenario with a US Army military 
advisor for the collaborative project. 

2.1.4.3 Software Defined Networking 

In collaboration with DAIS ITA, we designed and analyzed two complementary 
approaches for robust control of highly dynamic mobile networks via SDN. In 
complex tactical networks that span regions of differing dynamics, hybrid 
architectures that combine the conceptually centralized control plane of Software 
Defined Coalitions (SDCs) with a distributed control plane have demonstrated 
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promising tradeoffs between performance and robustness that inform the control of 
a robust network infrastructure for distributed analytics tasks. 

First, we designed a novel system to perform distributed verification of 
interoperating control planes and demonstrated a significant reduction in downtime 
when evaluated in military settings (EMANE). In a related effort, we demonstrated 
a technique to significantly improve the routing success through coalition partners 
that advertise only a subset of their routes due to privacy concerns. Our technique 
for distributed verification of safety and security requirements reduced routing 
downtime by up to 75% (Gokarslan et al. 2019; Li et al. 2019; Xiang et al. 2019). 

Second, we designed and analyzed an approach for autonomous operation of 
switches that become disconnected from the SDN control plane (i.e., fragmented). 
However, switches often do not have sufficient computational capability or 
information to perform the complex computation of the controllers. Therefore, we 
proposed the use of lightweight binarized neural networks to reduce computation 
and memory requirements by a factor of 32 and enable disconnected operation at 
line speed (Qin et al. 2020). A similar idea is applied to deciding when to switch 
between SDCs and mobile ad-hoc network protocols by running local models at 
switches to predict the fragmentation event with the use of graph attention networks 
that are robust to topology changes. We showed improved pathloss prediction while 
using only 9.5% of the input features on the Anglova scenario (Qin et al. 2021).  

Synchronization of distributed controllers is critical to eliminating anomalies and 
network instability due to inconsistencies between the views of the different 
controllers. To address this challenge, we formulated the controller synchronization 
problem as a Markov decision process and applied reinforcement learning 
techniques combined with deep neural networks to train a smart, scalable, and fine-
grained controller synchronization policy. This policy significantly outperforms the 
Open Network Operating System (ONOS) and greedy SDN heuristics by 56% and 
30%, respectively (Zhang et al. 2019). 

2.2 Cybersecurity for Resilient Networking 

The presence of near-peer adversaries makes security of paramount importance in 
MDOs and autonomous maneuvers will be required to ensure the resilience of 
tactical cyber networks. Network resilience is the ability of network services to 
operate despite adversary duress and dynamics, maintaining measures of 
performance (e.g., uptime, link failure rate, and detection rate) across multiple 
layers (physical through application layers). We studied appropriate 
countermeasures and defenses against intelligent adversaries that surveil and learn. 
This section summarizes research in three related efforts: robust detection and 
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authentication, deception strategies, and moving target defense (MTD). These 
research activities leverage research in the Cyber and IoBT CRAs and International 
Technology Center – Pacific (ITC-PAC) program. Selected research outcomes fed 
into Foundational Research for Electronic Warfare in Multi-Domain Operations 
(FREEDOM) Essential Research Program and have transitioned to Command, 
Control, Communication, Computers, Cyber, Intelligence, Surveillance and 
Reconnaissance (C5ISR) Automated Cyber through Cyber CRA Applied Research 
and Engineering 6.2 Program. 

The military tactical area of operations is a complex environment with both 
environmental and adversarial challenges. There is a constant need to protect the 
confidentiality and integrity of data communications in this tactical space. 
Resilience is the ability of the tactical network to operate under adversary duress 
and dynamics. Robustness is the ability of the network resources to withstand 
families of attacks. Our research furthers fundamental understanding on how it is 
possible to efficiently deploy detection techniques, effectively use deception to 
thwart potential adversarial attacks, and autonomously maneuver to ensure resilient 
tactical cyber networks. These research outcomes continue to influence efforts on 
improving robustness and resilience of Army tactical networks. 

We focused on autonomous network maneuvers to ensure resilient tactical 
networks. Resilience is the ability of the tactical network to operate under adversary 
duress and dynamics. Because adversaries are present in or around our networks, 
the security of the operations is of paramount importance and must be jointly 
considered with other measures of resilience (e.g., uptime, link failure rate). We 
consider the passive adversary that eavesdrops as well as the active adversary that 
injects malicious activity. 

Some broad concepts summarizing the goals to bolster the resilience of the network 
against sophisticated, dynamic adversaries include detection of adversaries through 
adversarial ML techniques for traffic obfuscation and cyber deception through 
dynamic honeynets; detection of the adversary using ML techniques for distributed 
and efficient intrusion detection and fundamental limits of intrusion detection in 
distributed ML protocols; and approaches for robustness using ML techniques that 
exhibit strong performance against a variety of noise, adversarial injection and 
mislabeling, and DL techniques to provide robustness against network attacks 
including rewiring and feature masking. Taken together, these approaches enhance 
the resilience of Army networks against the adversary and improve their robustness 
so the mission can be accomplished even under extreme dynamics and hostility. 
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2.2.1 Key Research Questions 

Our approach aims to enhance the awareness and robustness of attacks and 
adversarial influence from multiple perspectives. We have organized this research 
into four related efforts: network traffic obfuscation, practical security, MTD, and 
network systems diversity for resilience. The following list of questions were 
addressed in the research efforts:  

• Research Question 1: Can we devise distributed detection and 
authentication techniques to provide detection capabilities over multiple 
dimensions (across network layers, distributed across the network, and 
across time)?  

• Research Question 2: Can we devise effective strategies for adaptation and 
monitor placement to enable honeypots, honeynets, and moving target 
defense? 

• Research Question 3: Can we develop strategic deception to place deception 
and decoy capabilities that enable adversarial detection by deceiving the 
adversary? 

• Research Question 4: Can we develop moving target defense to enhance 
strategies to adapt networks to provide robustness to adversarial attack?  

• Research Question 5: Can we develop provable authentication secure 
protocols against attacks on physical layer communications? 

• Research Question 6: Can we develop network traffic obfuscation 
techniques to fool an adversary to bypass network traffic detection or 
network flow dynamics? 

2.2.2 Network Traffic Obfuscation 

Securing network transmissions by not allowing adversaries to infer types of 
network transmission or to understand dynamics of information flows in network 
is a crucial step towards improving resilience in networked operations. One 
approach applied Adversarial Machine Learning (AML) techniques to perturb 
network traffic to prevent eavesdroppers from classifying network traffic type 
(Verma et al. 2018). One constraint beyond typical AML techniques is the 
requirement that the network traffic still contain useable payloads as well as adhere 
to the network protocol. Thus, it is necessary to find map back functions from 
features to packet and network flows that are meaningful and pass network 
checksums, for example. Another result involved adding network chaff to prevent 
eavesdropping attacks from determining the source of network transmissions over 
multiple hops of a wireless network (He et al. 2017; Ciftcioglu et al. 2018). This 
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location privacy result is immediately applicable to providing resilience to the 
Mobile Edge Cloud network paradigm. 

 

2.2.3 Practical Security 

The project conducted research on provably secure and implementable protocols 
and made progress along two related directions. First, the project developed 
provably secure authentication protocols at the physical layer that leveraged the use 
of multiple antennas and artificial noise to improve performance. We showed how, 
in the 10-antenna case, the lifespan of a secret key can be increased from 3 uses to 
89 uses by allocating 10% of its fingerprinting power to artificial noise (Perazzone 
et al. 2019a, 2021). A novel use of RF fingerprinting techniques to create a 
cryptographic side-channel was also proposed (Perazzone et al. 2018a). New results 
in characterizing the capacity regions for secret key-enabled authenticated 
communications were obtained as well as a coding scheme that outperforms 
previous schemes (Perazzone et al. 2018b). 

Second, the project developed methods for authentication in the presence of 
adversaries of various capabilities and in different channel types. In this work, a 
myopic adversary has a noncausal noisy version of the transmitted sequence and 
can choose the channel state with the goal of having the receiver decode to an 
incorrect message. The myopic model bridges the gap between oblivious and 
omniscient adversaries. We showed channel conditions exist where authentication 
is impossible with a deterministic encoder (Beemer et al. 2019a), but possible with 
a stochastic encoder. With such an encoder, we then showed the capacity region 
can be as large as that of the nonadversarial channel (Beemer et al. 2020a). That is, 
the authentication capability can be obtained with very little overhead. 

A keyless structured authentication coding scheme was developed for the binary 
adversarial channel that allows the receiver to decode the legitimate transmission 
or to detect adversarial interference (Beemer et al. 2019b). The practicality of the 
scheme stems from its bounded-complexity decoding and is the subject of a patent 
application (Beemer et al. 2020c). Further, we developed a coding scheme resilient 
to adversarial interference in multiple access channels, gave results on the error-
correcting authentication capacity region, and presented a code construction for the 
real addition binary arbitrarily varying multiple access channel (Beemer et al. 
2020b). 
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2.2.4 Moving Target Defense 

MTD is a proactive approach to cybersecurity. As opposed to passive approaches 
for detection of threats and patching of known vulnerabilities, MTD seeks to 
increase the complexity and uncertainty for the attacker by dynamic changes to the 
attack surface (Cho et al. 2020). As part of a collaboration with an ITC-PAC group, 
ARL developed approaches using SDN to change the perceived attack surface of 
the IP/port address space using virtual addresses managed by the SDN controller. 
These approaches reduce the rate an attacker is successful in finding a host user 
(scanning attack) approaching 1/e for large address space (i.e., the chances the 
attacker will find a network host is reduced almost 37%) (Sharma et al. 2018, 2019). 
In addition to the security benefits of such an approach, the group also addressed 
issues of network scale by using multiple SDN controllers. This improves the 
reliability against a single point of failure with the security side benefit of enabling 
the reduction of the effective MTD interval thereby more frequently changing the 
attack surface (e.g., two controllers can reliably reduce the interval by 33%, three 
controllers by 50%, and, in general, N controllers by (N–1)/(N+1)×100% for a fixed 
number of host and address spaces) (Narantuya et al. 2019). Another critical issue 
addressed is the performance loss generated by MTD actions. This performance 
loss might result in an increase of file transfer duration by up to 19.73% (Dishington 
et al. 2019) and an increase of maintenance plus opportunity costs of 7% 
(Mendonca et al. 2020). Various strategies can be used to mitigate this, such as 
pausing the MTD action a specified time until remaining jobs complete can reduce 
the number of failed or dropped jobs in half while still nearly maintaining the 
security benefit (Kim et al. 2020). Adding a second server/controller that alternately 
completes jobs while the other initiates the MTD action can increase the server 
response time by 28.7%, hence increasing the probability that a job completes (does 
not fail) by 44.3% (Mendonca et al. 2021).  

This research effort also considered approaches to help inform MTD actions. When 
assets in the network are ranked it is important to prioritize the actions. ARL 
developed an attack graph analysis to guide where to initiate MTD actions. For 
example, in one scenario with 600 hosts this approach has an attack path prediction 
accuracy of 86% (compared to an existing state-of-the-art approach that has an 
accuracy of 74%) with one-third the cost in terms of computation time (Yoon et al. 
2020a). Dynamic metrics (Sharma et al. 2020; Mendonca et al. 2021) have also 
been developed to help a user determine when the risk of scan or exploitation or 
compromise exceeds a threshold for their requirements. Another approach to 
inform the MTD action is consideration of resources (Dishington et al. 2019; Yoon 
et al. 2021). Under this scenario, ARL has designed several ML approaches (Lee et 
al. 2021; Yoon et al. 2021; Kim et al. 2022) that determine where to allocate 
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resources and when to initiate MTD actions to optimize the security performance 
with minimal effect on the network performance. Currently, ARL is interested in 
integrated intrusion detection to inform the proactive MTD mechanism (Kim et al. 
2022). 

A particular application space of concern for this research is in-vehicle network 
security (Yoon et al. 2020b; Lee et al. 2021), although the work has applicability in 
other domains, such as enterprise systems (Cho et al. 2020; Kim et al. 2020; 
Mendonca et al. 2020). The ITC-PAC is part of a collaboration between ARL and 
international (University of Queensland [Australia] and Gwangju Institute of 
Science and Technology [South Korea]) and domestic (Virginia Tech) partners. 

2.2.5 Network Systems Diversity for Resilience 

Diversity of network systems has proven to be an indicator of resilience of network 
systems by limiting the damage of any single vulnerability (Cho and Moore 2019; 
Zhang et al. 2022). Given a system with a particular set of vulnerabilities, we have 
investigated the benefits of adapting an existing network system (Cho and Moore 
2018; Moore et al. 2019) with consideration of increasing diversity to maintain 
service after the network has been attacked (Zhang et al. 2021b). These results 
demonstrate that if network nodes are clustered into task groups, then the 
probability of maintaining the task can be increased by 5% (Cho and Moore 2018) 
to 9% (Moore et al. 2019). We have recently used ML techniques to determine 
which network adaptations to take (Zhang et al. 2021a, 2021c) and are currently 
considering the potential of adapting the approach as an MTD in collaboration with 
the ITC-PAC. 

3. Army Impact 

Through engagement with then Team Ignite and now Task Force Ignite, our 
research impacted several Army Futures Command (AFC) operational command 
documents contributing to several S&T appendices that outline future technology 
and research capabilities that will impact future Army operations. Through 
engagements with AFC, Task force Ignite, and other collaborators, research results 
from this project informed several conceptor documents’ preparation, including C2, 
Cyber, and Fires (AFC 2021a, 2021b, 2021c).  

Contributions to the semantically adaptive network control conceptor document 
(AFC 2021a) were based on research efforts found in Section 2.1.3, Network 
Control, particularly drawing from results in context-aware network adaptation and 
SDN control in Chan et al. (2019a), Poularkis et al. (2019), and Qin et al. (2021). 
Specifically, our research aimed at identifying semantics of the network context 
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and operational environment to improve network adaptation and resilience 
decisions. Research conducted and findings obtained from Section 2.2, 
Cybersecurity for Resilient Networking, contributed to the conceptor document on 
Cyberspace and Electromagnetic Operations (AFC 2021b). Specifically, the 
contributions focused on context-aware networking to enhance network and cyber 
robustness through evaluation of tradeoffs between packet loss and packet delay 
(Judd et al. 2019), network agility via MTDs such as IP or software diversity (Cho 
and Moore 2018, 2019; Moore et al. 2019; Zhang et al. 2021a, 2021b, 2021c; Zhang 
et al. 2022), and network obfuscation employing adversarial ML techniques to 
successfully produce adversarial examples with a 90% success rate (Verma et al. 
2018). The Fires conceptor document included research complex activity detection 
results that demonstrated the feasibility of multitarget, multiview detection of 
complex events at the tactical edge (Liu et al. 2019). This concept was suggested 
for potential application to the automatic target recognition requirement. 
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