

 ARL-TN-1134 ● SEP 2022

Streamlined Development Pipeline for
MAVericks, ARL’s Unmanned Autonomous
Vehicle (UAV) Software

by Benjamin Linne

Approved for public release: distribution unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the
Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official
endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

 ARL-TN-1134 ● SEP 2022

Streamlined Development Pipeline for MAVericks,
ARL’s Unmanned Autonomous Vehicle (UAV)
Software

Benjamin Linne
DEVCOM Army Research Laboratory

Approved for public release: distribution unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

September 2022
2. REPORT TYPE

Technical Note
3. DATES COVERED (From - To)

1 December 2021–1 August 2022
4. TITLE AND SUBTITLE

Streamlined Development Pipeline for MAVericks, ARL’s Unmanned
Autonomous Vehicle (UAV) Software

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Benjamin Linne
5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

DEVCOM Army Research Laboratory
ATTN: FCDD-RLW-TD
Aberdeen Proving Ground, MD 21005

8. PERFORMING ORGANIZATION REPORT NUMBER

ARL-TN-1134

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release: distribution unlimited.

13. SUPPLEMENTARY NOTES
ORCID ID: Benjamin Linne, 0000-0003-0128-8053
14. ABSTRACT
Robotics is a challenging field that requires the convergence of software and hardware to accomplish desired autonomous
missions. Critical to any workflow is the automated building and testing of software before deploying to a production
environment. This report discusses the importance and creation of a continuous integration/continuous delivery tool used in
the software development process of the US Army Combat Capabilities Development Command Army Research Laboratory’s
(ARL’s) unmanned autonomous vehicle software research platform called MAVericks. This tool plays a crucial role in the
rapid research and development performed at ARL—including automated build testing for simulation and embedded hardware
targets, as well as verifying the desired behaviors in a software-in-the-loop simulation.
15. SUBJECT TERMS

Terminal Effects, MAVericks, continuous integration, UAV, automated, testing, deployment, VOXL

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
 OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

26

19a. NAME OF RESPONSIBLE PERSON

Benjamin Linne
a. REPORT

Unclassified
b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified

19b. TELEPHONE NUMBER (Include area code)

(410) 278-6219
 Standard Form 298 (Rev. 8/98)

 Prescribed by ANSI Std. Z39.18

iii

Contents

List of Figures iv

1. Introduction and Background 1

2. Pipeline 3

3. Stages 5

4. Docker 6

5. Implementation Summary 6

6. Build Dependencies 6

7. Build-Full 8

8. Test 12

9. Deploy 14

10. Future Improvements 17

11. Conclusion 18

List of Symbols, Abbreviations, and Acronyms 19

Distribution List 20

iv

List of Figures

Fig. 1 Pipeline overview .. 3

Fig. 2 Sample MR ... 4

Fig. 3 Sample pipeline ... 5

Fig. 4 List of pipelines for an MR ... 5

Fig. 5 Example list of successful tests ... 13

Fig. 6 VOXL and RB5 tarball download page .. 14

Fig. 7 GitLab artifact configuration .. 17

1

1. Introduction and Background

Continuous integration/continuous delivery (CI/CD) is a commonly used tool in
software development to automatically build, test, and deploy code. This tool is
critical to improving the speed and efficiency of research while ensuring
functionality is not hindered when adding or changing new features. Before CI/CD,
the software development process was challenging, and with increasing
collaborators modifying the code base, any new development risked breaking
existing functionality—such as code no longer building, and autonomous behaviors
and fail-safes no longer working as intended.

This report focuses on CI/CD integration for the US Army Combat Capabilities
Development Command (DEVCOM) Army Research Laboratory’s (ARL’s)
MAVericks unmanned autonomous vehicle (UAV) software platform, which is
built on the open-source platforms ROS2 and PX4. ROS2 is a set of software
libraries and tools for building robot applications, and PX4 is a powerful flight
control software for UAVs. Leveraging both platforms, MAVericks is a large
collaboration focused on agile flight that works across both simulation and robot
platforms. MAVericks is targeted to run on ModalAI’s VOXL and RB5 hardware
platforms because of the size, weight, and power it offers, along with being a Blue
UAS program partner, which means they were funded by the Defense Innovation
Unit to comply with Section 848 of the 2020 National Defense Authorization Act
regulations.*

Collaborators include the United States Military Academy’s West Point as part of
the Distributed and Collaborative Intelligent Systems and Technology program;
University of California, Berkeley, as part of the Scaled and Robust Autonomy
program; and the University of Maryland’s AI and Autonomy for Multi-Agent
Systems program—and the list is always growing. Furthermore, ARL is always
seeking to increase the robustness of its algorithms and mature capabilities to
transition to other organizations within DEVCOM and the DOD. With many
collaborators joining MAVericks, it is important to ensure a minimum useable
functionality after every modification to encourage rapid onboarding and
contributing. MAVericks is a large research platform composed of over a hundred
packages and it is important that every package builds and works reliably. Often,
collaborators are only concerned with a few packages, and it is critical that they can
easily make changes and additions without needing to troubleshoot unrelated
issues. Due to this growing community, it is easy to incidentally introduce bugs or

* More information can be found at https://www.congress.gov/bill/116th-congress/senate-bill/1790.

2

break unrelated functionality. Therefore, CI/CD is an excellent solution that will
increase the reliability and usability of the platform for a diverse group of users.

The CI/CD pipeline enables many features that streamline development. It can fully
build the entire platform, ensure the dependency installation is successful for new
users, run and test the platform in the simulation environment to ensure autonomous
behavior is working correctly, and rapidly build compressed workspaces to prevent
the need to build on the UAV.

One problematic scenario in software development for autonomous systems is
when a user modifies several packages, but only builds and tests one specific
package. Thus, code is merged into production without verifying it will work for
others. If the untested changes are merged, packages that depend on those changes
may no longer build or pass all test cases.

From a user’s perspective, CI/CD is triggered by a user creating a code Merge
Request (MR) to add their changes to the main branch. This initiates CI/CD with a
pipeline that is created. The pipeline comprises four stages: build-dependencies,
build-full, test, and deploy. For each stage, multiple jobs can be run in parallel to
complete the stage. In each job, the pipeline first copies the merged changes into a
fresh environment and completes a specific task. At the end of the pipeline, a fully
built version is uploaded and ready to be flashed on a UAV. If any step fails, the
remaining pipeline stages are aborted and the user is notified of exactly what went
wrong, so they can fix any problems. See Fig. 1 for an overview of the pipeline.

3

Fig. 1 Pipeline overview

In this report, the foundation of the MAVericks CI/CD is described, then each stage
in the pipeline is detailed along with several challenges that were overcome.

2. Pipeline

The MAVericks CI/CD is a pipeline architecture that is created utilizing the GitLab
CI/CD framework. GitLab is a Git- or distributed-version control system hosting
platform; it hosts the MAVericks code with a web user interface and interfaces with
a CI/CD framework. This is made available to collaborators by the Sensor

4

Information Testbed Collaborative Research Environment (SITCORE), which is an
Information Science Campaign initiative within ARL’s Open Campus.*

To easily interact with CI/CD, the GitLab framework includes a user-interface that
is customized to meet the needs of MAVericks. This allows users to easily view
code and interact with CI/CD. One of the main features is the MR, which allows
users to submit code changes, then a maintainer can view the specific changes,
make comments, and accept or deny the changes. A sample MR is shown in Fig. 2,
and the corresponding pipeline is shown in Fig. 3.

Fig. 2 Sample MR

* The repository and pipeline are found at https://gitlab.sitcore.net/arl/vtd/ASD-Aerial-
Robotics/mav_platform_r2.

5

Fig. 3 Sample pipeline

After each change is made to the MR, a new pipeline is run, and gives the user
another opportunity to fix any mistakes or improve the changes. An example list of
pipelines for an MR is shown in Fig. 4.

Fig. 4 List of pipelines for an MR

3. Stages

Stages are run sequentially and only proceed after the stage succeeds. If any job in
a stage fails, the pipeline fails, and the user is notified of what went wrong. The
order and number of stages were created to minimize storage use and increase
speed. The first stage is Build-Dependencies (i.e., build-deps), which is a

6

conditional stage that only runs when needed to save time. It builds all of the
dependencies that do not change frequently and is a single job that can be skipped
if no modifications to the listed dependencies are made. Then, build-full runs three
jobs in parallel. The first is for the desktop and every UAV type. Next, the test stage
uses the desktop build to run the tests. Finally, the deploy stage is run and
compresses each workspace into a tarball* that is ready to run a UAV.

4. Docker

To ensure that jobs are run in a clean environment, docker containers are used.
Docker containers are virtual environments that are created for each job; they start
from a clean install of the Ubuntu operating system. This guarantees that any new
user who begins with a clean install will be able to run MAVericks and ensures that
if a user makes changes that work on their machine, those changes will also work
on any other machine. Docker also allows stages to divide work by creating images
that are snapshots of a docker container, which can be passed from previous to
subsequent stages.

5. Implementation Summary

The following sections cover the implementation details of the pipeline and the full
MAVericks GitLab CI/CD configuration file.† For MAVericks specifics, a script
for each job is in the “Docker/scripts” folder. This allows the “.gitlab-ci.yaml” file
to focus on GitLab specifics such as setup and triggering jobs.

6. Build Dependencies

The build-deps stage consists of a single job that builds a list of large dependencies
that are not frequently changed (i.e., only when modified).

In the “.gitlab-ci.yaml” file, the build-deps job is defined as follows:
build-desktop-dependencies:
 stage: build-deps
 rules:
 - changes:
 # Use file path for submodules
 - .gitlab-ci.yml
 - Docker/Dockerfile.desktop_deps.build
 - Docker/scripts/build_desktop_deps_docker.sh

* Tarball is a jargon term for a TAR archive—a group of files collected together as one.
† The “.gitlab-ci.yaml” file is available at: https://gitlab.sitcore.net/arl/vtd/ASD-Aerial-Robotics/
mav_platform_r2/-/blob/galactic/.gitlab-ci.yml. Further GitLab specifics can be found on the
GitLab documentation page: https://docs.gitlab.com/ee/ci/.

7

 - setup/**/*
 - src/communication/px4_msgs
 - src/communication/px4_ros_com
 - src/dependencies/**/*
 - src/perception/image_common/**/*
 - src/perception/image_pipeline/**/*
 - src/perception/sensor_msgs
 - src/localization/open_vins
 script:
 - ./Docker/scripts/build_desktop_deps_docker.sh

Under the rules section, this job is only run when changes to specific directories or
files are changed. Then, if the job is run, the “build_desktop_deps_docker” script
is executed as follows:

Exits immediately if any line errors
set -e
Reduces docker image siz
ln -sf .dockerignore.desktop .dockerignore
Prints information relating gitlab runner storage to debug
build failure
Due to storage constraints
./Docker/scripts/helper/debug_storage.sh
Sets IMG variable depending on if job is run for a merge
request or after a
Merge request into the default branch
if ["$CI_COMMIT_REF_NAME" == "$CI_DEFAULT_BRANCH"]; then
 IMG=${CI_REGISTRY_IMAGE}/${CI_DEFAULT_BRANCH}:desktop-deps
elif ["$CI_PIPELINE_SOURCE" == "merge_request_event"]; then

IMG=${CI_REGISTRY_IMAGE}/merge_requests/${CI_COMMIT_REF_SLUG}:des
ktop-deps
fi

source Docker/scripts/helper/volume_option.sh

Running these steps outside of Dockerfile to avoid needing to
copy all files to desktop_deps image
/mav_platform_r2 is used as the build directory for --symlink-
install to preserve paths
docker run ${VOLUME_OPTION} ros:galactic-ros-base \
/bin/bash -c 'export DEBIAN_FRONTEND=noninteractive \
&& export CI_DIR="/builds/arl/vtd/ASD-Aerial-
Robotics/mav_platform_r2/" \
&& apt-get update \
&& apt-get install -y apt-utils keyboard-configuration rsync \
&& rsync -a ${CI_DIR}/{.[!.],}* /mav_platform_r2 \
&& pushd /mav_platform_r2 \
&& cat setup/ros-key.txt | apt-key add - \
&& ./setup/install_desktop.sh \
&& colcon build --symlink-install --packages-up-to $(cat
setup/base_deps.txt) \
&& rsync -a /mav_platform_r2/{.[!.],}* ${CI_DIR} \
&& rm -rf /mav_platform_r2 \
&& echo $HOSTNAME > ${CI_DIR}/temp_deps_id.txt'

8

Dependencies installed get committed, but data in volume or
CI_DIR does not
TEMP_DEPS=$(cat temp_deps_id.txt)
TEMP_IMAGE=$(docker commit ${TEMP_DEPS})
docker rm ${TEMP_DEPS}

Build image with build and install
docker build --build-arg base_image=${TEMP_IMAGE} -t ${IMG} -f
./Docker/Dockerfiles/Dockerfile.desktop_deps.build .
docker push ${IMG}

./Docker/scripts/helper/debug_storage.sh

First, this script sets up the build by setting environmental variables and
configuration files, then the build is run in a temporary docker image. In this image,
the “install_desktop” script is run, which installs all necessary dependencies. Then,
the build is initiated with “colcon”. The “–packages-up-to” argument uses the
“setup/base_deps.txt”, which contains the list of dependency packages that are
needed to build other packages—these typically take a long time to build and are
not frequently updated. When this stage is skipped, it reduces the pipeline build
time by over 45 min (how long the job takes to complete).

Finally, the docker build command executes the “Dockerfile.desktop_deps” docker
script, which gets tagged with the image (IMG) variable and saved to the GitLab
container registry to be used in the next stage. The docker script is shown as
follows:
ARG base_image
FROM $base_image
WORKDIR /mav_platform_r2
COPY build build/
COPY install install/
ENTRYPOINT ["/ros_entrypoint.sh"]
CMD ["bash"]

This script copies the build and install directories into a new image that will get
merged with the full build to create a fully built workspace.

7. Build-Full

The build-full stage contains the jobs to build desktop and UAV hardware, which
includes the VOXL and RB5 hardware platforms. To support these platforms, three
jobs are run in parallel: build-desktop, build-rb5, and build-voxl. First, each job
builds all packages and fails if any package has an error building, then the user is
notified which package failed before proceeding. After the build is successful, the
build-desktop job creates an image used for the test stage. It can also be used for
further experimenting. The build-rb5 and build-voxl jobs then build compressed

9

workspaces in the form of a tarball. This process dramatically reduces the time
needed to deploy MAVericks to less than half an hour on these hardware targets
since building the complete workspace on a VOXL or on a developer machine can
take several hours. This allows developers to continue preparing for flight tests
while their workspace is being built.

In the “.gitlab-ci.yaml” file, the build-desktop job is defined as follows:
build-desktop:
 stage: build-full
 script:
 - ./Docker/scripts/build_desktop_docker.sh

This job runs on every pipeline and calls the “build_desktop_docker” script, which
contains the following:
set -e
ln -sf .dockerignore.desktop .dockerignore

./Docker/scripts/helper/debug_storage.sh

Sets BASE_IMG and FULL_IMG
source Docker/scripts/helper/tag_helper.sh "desktop-full"
Sets VOLUME_OPTION
source Docker/scripts/helper/volume_option.sh

This build could fail during a MR pipeline when a different MR
merges with DEFUALT_BRANCH and updates desktop-deps
If this begins to cause problems, we should consider combining
the build_deps and build_full stages
Another fix is to merge with master to fix any conflicts
docker run --rm --pull always ${VOLUME_OPTION} ${BASE_IMG} \
/bin/bash -c 'export CI_DIR="/builds/arl/vtd/ASD-Aerial-
Robotics/mav_platform_r2/" \
&& rsync -a ${CI_DIR}/{.[!.],}* /mav_platform_r2 \
&& pushd /mav_platform_r2 \
&& colcon build --symlink-install --packages-skip $(cat
setup/base_deps.txt) \
&& rsync -a /mav_platform_r2/{.[!.],}* ${CI_DIR} \
&& rm -rf /mav_platform_r2'

Build final image with needed files for final image
docker build --build-arg base_image=${BASE_IMG} -t ${FULL_IMG} -f
./Docker/Dockerfiles/Dockerfile.desktop.build .
docker push ${FULL_IMG}

./Docker/scripts/helper/debug_storage.sh

Similar to build-deps, this script first sets up the build by setting environment
variables and configuration files, then the build starts with the build-deps image,
which comes from the optional stage or from the default branch if it was not run.
Then the “colcon” build begins with a partially built workspace and skips all of the

10

prebuilt packages with the “–packages-skip” argument. Finally, the docker image
is built using “Dockerfile.desktop.build” as shown:
ARG base_image
FROM $base_image
WORKDIR /mav_platform_r2
COPY env env/
COPY setup setup/
COPY src src/
COPY build build/
COPY install install/
CMD ["sh -c 'strip --remove-selection=.note.ABI-tag /lib/x86_64-
linux-gnu/libQtCore.so.5'"]
ENTRYPOINT ["/ros_entrypoint.sh"]
CMD ["bash"]

This script is very similar to the build-deps docker file. However, this one copies
the source code along with the build and install so that this image contains
everything needed to run MAVericks.

In the “.gitlab-ci.yaml” file, the build-voxl is defined as follows:
build-voxl:
 stage: build-full
 tags:
 - arm
 rules:
 - if: '$CI_COMMIT_BRANCH == $CI_DEFAULT_BRANCH'
 - if: '$CI_PIPELINE_SOURCE == "merge_request_event"'
 when: manual
 allow_failure: true # To allow skip
 artifacts:
 reports:
 dotenv: deploy.env
 expire_in: 4 week
 paths:
 - mavericks_voxl.tar.gz
 script:
 - ./Docker/scripts/build_voxl_docker.sh

The build-voxl job is unique because it uses the arm tag, which is used because it
will pick an arm64 builder that allows the build to speed up so that it goes from
taking several hours to just 30 min. When a regular amd64 runner is running an
arm64 image, there is a lot of overhead translating between amd64 and arm64.

The rules tag specifies that this job is always run on the default branch; however, it
is an optional job for MRs to reduce the number of unnecessary builds being run
since there are only two GitLab runners available. The number of tarballs created
is also reduced, which saves space on the GitLab server.

Next, the output is an artifact called “mavericks_voxl.tar.gz” that is set to expire in
4 weeks (i.e., it will be deleted). In comparison to the build-rb5 job, it is almost

11

identical except that build-rb5 has a different artifact name and calls a different
script. Finally, the “build_voxl_docker” script is run; it contains the following:
set -e
ln -sf .dockerignore.voxl .dockerignore

VOXL_DEPLOY=registry.gitlab.sitcore.net:443/arl/vtd/asd-aerial-
robotics/dependencies/voxl-deploy:galactic-3-2-image

Sets BASE_IMG and FULL_IMG
source Docker/scripts/helper/tag_helper.sh "voxl-full"
Sets VOLUME_OPTION
source Docker/scripts/helper/volume_option.sh

Get px4_ros_com generated files since voxl image can't generate
TEMP_BASE=$(docker run -d --pull always ${BASE_IMG})
mkdir -p build/px4_ros_com/
docker cp $TEMP_BASE:/mav_platform_r2/build/px4_ros_com/src
build/px4_ros_ com/
docker rm $TEMP_BASE

./Docker/scripts/helper/debug_storage.sh

docker run --rm --pull always ${VOLUME_OPTION} ${VOXL_DEPLOY} \
/bin/bash -c 'export CI_DIR="/builds/arl/vtd/ASD-Aerial-
Robotics/mav_platform_r2/" \
&& rsync -a ${CI_DIR}/{.[!.],}* /data/mav_ws \
&& pushd /data/mav_ws \
&& export LD_LIBRARY_PATH=/usr/local/lib \
&& source /opt/ros/galactic/setup.bash \
&& export MAVERICKS_PLATFORM=VOXL \
&& colcon build --symlink-install \
--cmake-args -DBUILD_TESTING=OFF -DCMAKE_BUILD_TYPE=Release -
DCMAKE_SHARED_LINKER_FLAGS='-latomic' -DCMAKE_EXE_LINKER_FLAGS='-
latomic' \
--packages-skip $(cat setup/voxl_skip_deps.txt) \
&& rsync -a /data/mav_ws/{.[!.],}* ${CI_DIR} \
&& rm -rf /data/mav_ws'

tar -czf mavericks_voxl.tar.gz install/ build/

./Docker/scripts/helper/debug_storage.sh

echo "FULL_VOXL_JOB_ID=${CI_JOB_ID}" >> deploy.env

This job is like the build-desktop job, except that it uses the “arm64
VOXL_DEPLOY” IMG to build. Then, since the VOXL_DEPLOY IMG is unable
to build “px4_ros_com” correctly, the “px4_ros_com/src” files are copied from the
build-deps. These are files generated in the “src directory” as part of the build
process, and without them, building the “px4_ros_com” package will fail using the
VOXL_DEPLOY IMG.

12

Before the build begins, a temporary container is run from the VOXL_DEPLOY
IMG. In this image, the source is copied using “rsync”, into the “/data/mav_ws”
directory since that is where it will live on the VOXL. The build needs to run in
this directory because the build is run with the “–symlink-install.” If MAVericks is
run in another directory, the symlinks will not point to the correct directories.

Then, the build is started and the “voxl_skip_deps” are provided to the “–packages-
skip” argument to prevent building unnecessary packages such as simulation or
visualization packages.

Finally, the tarball is created by compressing the build/ and install/ directories, and
the “deploy.env” artifact is used as an identifier for the deploy stage.

8. Test

Before the deploy stage is run, a series of tests are run before merging any changes
and releasing a build. These tests include testing behaviors and fail-safes. The
behavior tests currently only have a go-to test, and the fail-safe tests include
combinations of off-board lost and Remote Control (RC) lost to ensure the correct
response is executed. This job is defined as follows in the “.gitlab-ci.yaml” file:
test:
 stage: test
 variables:
 GIT_STRATEGY: fetch
 GIT_SUBMODULE_STRATEGY: none
 # Ensure test jobs are run sequentially to prevent race condition
 resource_group: test
 script:
 - ./Docker/scripts/tests.sh
 artifacts:
 when: always
 reports:
 junit:
 - mav_report.xml
 - px4_report.xml

To save the test job about 10 min, a full clone of the workspace is not needed;
therefore, the Git variables are set to just perform a Git fetch. This way at least the
docker scripts are available to run the build-desktop image and the tests.

The resource group ensures that tests from other pipelines are not run at the same
time to avoid conflicts between docker containers. This may not be needed, but it
attempts to fix an issue with tests failing.

13

Finally, after the test script is run, the test results are saved and exported as JUnit
files to better represent them in the GitLab web interface. Thus, if the job fails users
can easily identify the tests that need work. An example is shown in Fig. 5.

Fig. 5 Example list of successful tests

The test script contains the following:
set -e

if ["$CI_COMMIT_REF_NAME" == "$CI_DEFAULT_BRANCH"]; then
 IMG=${CI_REGISTRY_IMAGE}/${CI_DEFAULT_BRANCH}:desktop-full
elif ["$CI_PIPELINE_SOURCE" == "merge_request_event"]; then

IMG=${CI_REGISTRY_IMAGE}/merge_requests/${CI_COMMIT_REF_SLUG}:des
ktop-full
fi

Sets VOLUME_OPTION
source Docker/scripts/helper/volume_option.sh

Fail script if any test fails, but run all tests. See
https://unix.stackexchange.com/a/596968
docker run --pull always ${VOLUME_OPTION} --rm ${IMG} /bin/bash -c
\
'pushd /mav_platform_r2; \
source env/sim.sh; \
test_dir='src/mav_system_tests/mav_system_tests'; \
report_dir='/builds/arl/vtd/ASD-Aerial-Robotics/mav_platform_r2';
\

14

ss=0; \
launch_test --junit-xml $report_dir/mav_report.xml
$test_dir/mav_system_tests.py || ((ss++)); \
launch_test --junit-xml $report_dir/px4_report.xml
$test_dir/px4_failsafe_tests.py || ((ss++)); \
exit $ss'

First, the correct desktop-full image is selected depending on whether the job is
running on the main branch or an MR. Then, the tests are run using the “ros2
launch_test” command. Currently, only two integration tests are run. These include
the “mav_system_tests” and “px4_failsafe_tests”. The “mav_system_tests” launch
MAVericks and send a go-to mission, which succeeds if the way point is achieved.
The “px4_failsafe_tests” simulate a series of fail-safes such as RC lost or off-board
lost, then ensures the correct response is executed. These two integration tests
ensure a minimal functionality is achievable; however, more tests are needed to
ensure every future change maintains a high level of functionality.

If both tests are successful, the job succeeds. If the first test fails, the second one is
still run since the commands are executed together using a semicolon instead of an
ampersand. If the “$ss” variable increments are above zero the job fails; however,
all reports are saved and viewable.

9. Deploy

A complete build of MAVericks takes several hours for the UAV hardware;
therefore, it is extremely useful to have prebuilt versions available to download at
any time. The result of build-full creates tarballs that can easily be extracted on
UAVs and are immediately ready to run the code. In the deploy stage, the deploy-
voxl job exposes these tarballs to an easy-to-view web page for users to access and
download. This web page contains the commit, branch, date, commit title, job ID,
expiration time, and download URL for each available tarball (Fig. 6).

Fig. 6 VOXL and RB5 tarball download page

15

After all tests succeed, the job runs in the Python 3.7.0 IMG since only Python is
needed. The “before_script” section is skipped because docker is not needed and
fails the job since it is not included in the Python 3.7.0 IMG. Then, like the build-
voxl job, the rules are set to optionally run for MRs but are always run for the
default branch. Also, the Git variables and “resource_group” are set like the test job
for speed and to prevent conflicts between pipelines, respectively.
deploy-voxl:
 stage: deploy
 image: "python:3.7"
 # Remove before_script since docker command will fail in python
image
 before_script: []
 rules:
 - if: '$CI_COMMIT_BRANCH == $CI_DEFAULT_BRANCH'
 - if: '$CI_PIPELINE_SOURCE == "merge_request_event"'
 when: manual
 allow_failure: true # To allow skip
 variables:
 GIT_STRATEGY: fetch
 GIT_SUBMODULE_STRATEGY: none
 # Ensure deploy-voxl jobs are run sequentially to prevent race
condition
 resource_group: deploy
 script:
 - ./Docker/scripts/deploy_platforms.sh

The last part is the script that runs the “deploy_platforms” scripts, which displays
the build artifacts on a web page. This script contains the following:

16

#! /bin/bash
set -e

pip install python-csv python-dateutil

VOXL_BUILDS_REPO="https://root:${BOT_ACCESS_TOKEN}@${CI_SERVER_HO
ST}/arl/vtd/ASD-Aerial-Robotics/utilities/mav_platform_r2-voxl-
builds.git"
VOXL_BUILDS_DIR=artifact/mav_platform_r2-voxl-builds/
git clone "$VOXL_BUILDS_REPO" "$VOXL_BUILDS_DIR"

RB5_LOG_FILE=${VOXL_BUILDS_DIR}public/rb5_artifact_log.txt
VOXL_LOG_FILE=${VOXL_BUILDS_DIR}public/voxl_artifact_log.txt

if [[-n "$FULL_RB5_JOB_ID"]]; then
 ./Docker/scripts/helper/update_artifact_log.py
"${CI_COMMIT_SHA}" "${CI_COMMIT_REF_NAME}" "${CI_COMMIT_TITLE}"
"${FULL_RB5_JOB_ID}" "${RB5_LOG_FILE}"
 cp ${RB5_LOG_FILE}.tmp ${RB5_LOG_FILE}
 rm ${RB5_LOG_FILE}.tmp
 COMMIT_RB5=1
fi

if [[-n "$FULL_VOXL_JOB_ID"]]; then
 ./Docker/scripts/helper/update_artifact_log.py
"${CI_COMMIT_SHA}" "${CI_COMMIT_REF_NAME}" "${CI_COMMIT_TITLE}"
"${FULL_VOXL_JOB_ID}" "${VOXL_LOG_FILE}"

 cp ${VOXL_LOG_FILE}.tmp ${VOXL_LOG_FILE}
 rm ${VOXL_LOG_FILE}.tmp
 COMMIT_VOXL=1
fi

cd ${VOXL_BUILDS_DIR}
git config --global user.name "${GITLAB_USER_NAME}"
git config --global user.email "${GITLAB_USER_EMAIL}"

if [["${COMMIT_RB5}" -eq "1"]];then
 git add public/rb5_artifact_log.txt
fi
if [["${COMMIT_VOXL}" -eq "1"]];then
 git add public/voxl_artifact_log.txt
fi
git commit -m "update log for job# ${CI_JOB_ID}"
git push
https://root:$BOT_ACCESS_TOKEN@$CI_SERVER_HOST/arl/vtd/ASD-
Aerial-Robotics/utilities/mav_platform_r2-voxl-builds.git

This script works by publishing the download URLs for the tarballs and
descriptions to the GitLab web page repository.* After 28 days (or when a branch
is deleted), the respective tarballs are deleted. An exception is made if it is the most

* Accessible at https://arl.gitlab-pages.sitcore.net/vtd/ASD-Aerial-Robotics/utilities/
mav_platform_r2-voxl-builds/.

17

recent successful build for a branch. This option in the GitLab CI/CD settings is
shown in Fig. 7.

Fig. 7 GitLab artifact configuration

If any tarballs have expired, they are removed from the web page on the next
update. If no new updates have been made after a tarball has expired, it will show
up as expired since the “expires_in” column is calculated from the viewers browser
in JavaScript.

10. Future Improvements

The current size of the build-deps and build-desktop images are 4 and 11 GB
compressed, respectively. As they get larger CI/CD runs more slowly (since loading
and saving images currently takes several minutes) and more potential exists for
GitLab storage constraints to be exceeded. It would be wise to attempt to reduce
these sizes by either eliminating unnecessary packages in MAVericks or by
optimizing the docker scripts.

In the testing stage, there are currently no unit tests or feature testing. By adding
more tests and increasing the code coverage, developers will save time and effort
when developing new features. This is done by preventing new bugs from being
introduced when new features are being developed. Also, it is not currently possible
to run graphical simulations for more extensive integration testing. It should be
possible to run them without a monitor attached (i.e., headless mode); however, this
still needs to be explored. Unit tests for behavior trees are possible from the open-
source examples; however, none have been created for the MAVericks behaviors.
Additional tests are recommended; however, their duration must remain
reasonable.

Another way to increase pipeline speed is by only running build-deps on “commits”
(i.e., how Git refers to changes) instead of for the entire MR. This would be useful
since MRs that are open for a long time may only have one small dependency
change, but many unrelated changes. Unfortunately, after an MR has modified a
dependency, every subsequent commit must run build-deps, which adds

18

unnecessary delay. This may not be possible depending on the GitLab configuration
but could be a feature request for GitLab to implement.

11. Conclusion

CI/CD is a powerful tool that allows developers to effectively collaborate by way
of a pipeline, which is run after each modification to MAVericks. It dramatically
increases the reliability of the software, while reducing the amount of manual
testing needed by software engineers to verify new changes. These tools allow for
distributed development between ARL and other DEVCOM centers, industry, and
academia.

CI/CD may not always reduce build times, but it allows developers to free up their
machine for developmental work since building is usually a long process that
consumes all available processing power. It also enables a developer to build
multiple experimental builds without needing to maintain built workspaces on their
machine.

19

List of Symbols, Abbreviations, and Acronyms

ARL Army Research Laboratory

build-deps Build-Dependencies

CI/CD continuous integration/continuous delivery

DEVCOM US Army Combat Capabilities Development Command

DOD Department of Defense

IMG image

MR Merge Request

RC Remote Control

SITCORE Sensor Information Testbed Collaborative Research
Environment

UAV unmanned autonomous vehicle

URL uniform resource locator

20

 1 DEFENSE TECHNICAL
 (PDF) INFORMATION CTR
 DTIC OCA

 1 DEVCOM ARL
 (PDF) FCDD RLD DCI
 TECH LIB

 1 DEVCOM ARL
 (PDF) FCDD RLW TD
 B LINNE

	List of Figures
	1. Introduction and Background
	2. Pipeline
	3. Stages
	4. Docker
	5. Implementation Summary
	6. Build Dependencies
	7. Build-Full
	8. Test
	9. Deploy
	10. Future Improvements
	11. Conclusion
	List of Symbols, Abbreviations, and Acronyms

