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Abstract

Hidden Information is a central mechanic in games like the Resistance or wargam-

ing with fog of war, adding an extra layer of complexity for search algorithms. Monte

Carlo Tree Search (MCTS) has gained much notoriety given its success in search-

ing complex domains such as Go. Extensions to MCTS allow it to perform well in

hidden information games such as Bridge, Kriegspiel (Chess), and Magic the Gather-

ing. These MCTS extensions however fail to consider information gain, an important

aspect of multi-action hidden information games as initial actions inform sequential

decisions. This report proposes an information gain incentive function and a risk

function to offset the risk of information gain. We implement the information gain

incentive and risk functions into MCTS variants ISMCTS and PIMCTS which are

then tested in the multi-action hidden information game TUBSTAP. Overall testing

demonstrates promising results, but lack of consistency makes it largely inconclusive.

Current implementation of the information gain incentive has flaws, and we offer a

more effective approach.
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Incentivizing Information Gain for MCTS in Hidden Information Multi-Action

Games

I. Introduction

Wargaming is a key part of course of action (COA) analysis, allowing a commander

to visualize and test a plan in detail. COA analysis is a step in the military decision-

making process, a process used to create orders from the reception of a mission. War

gaming is often represented as a turn-based strategy or tactical game (such as Silver

Botonet, Flashpoint Campaigns, Main Battle Tank, and Axis and Allies) [1].

Artificial Intelligence (AI) has been applied to wargaming to propose changes to a

preexisting COA [2] or develop an initial COA [3]. Additionally, AI can create com-

petitive game agents for individual play. Wargaming can require much coordination

and time to set up and play as a board game, especially if trying to employ aspects

such as fog of war which may require a game manager. Digitization of wargames with

competitive AI agents allows for much more training and repetition of COAs as less

coordination and time are required.

Wargames employ many game elements that greatly increase the complexity be-

yond a game of checkers or chess. These may include fog of war (hidden information),

taking multiple actions each turn (multi-action turns), having different capabilities

for each unit (such as unit health), or having a large board size. Additionally, war

games utilize a variety of maps and starting pieces to accommodate different scenar-

ios. This with the complex interaction between each unit and its environment makes

developing AI agents difficult.

TUBSTAP, the TUrn Based STrategy Academic Package, [4] is a multi-action
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turn-based strategy game that encompasses many complexities of wargaming. TUB-

STAP includes map customization, various unit types and compositions, fog of war

(by extension of [5]), and terrain that imposes restrictions and bonuses. In a TUB-

STAP game, two teams compete to eliminate all units of the opposing team.

Monte Carlo Tree Search (MCTS) has proven to be very successful in games of

increasing complexity such as Go [6]. Additionally, it has been successfully applied

to multi-action games [4] and games with hidden information such as Bridge [7],

Kriegspiel [8] [9], and Magic [10]. One shortcoming of MCTS applied to multi-action

hidden information games, is that it does not consider taking actions for the benefit

of gaining information, such as moving a unit to uncover fog of war to give future

moves more certainty.

1.1 Research Hypothesis

The hypothesis is that adding an information gain incentive with a risk function to

offset information gain inherent risk will improve MCTS hidden information variants

in multi-action hidden information games. This report proposes the following research

questions:

• Does applying an information gain incentive at MCTS selection phase improve

MCTS performance?

• Does applying a risk function to weight determinizations help offset the risk of

information gain?

• How do the information gain incentive and risk function perform together and

separately?

• How does applying risk and hidden information modification behave differently

when applied to MCTS variants ISMCTS and PIMCTS?

2



1.2 Methodology

Chapter III first explains how to prune impossible determinizations in TUBSTAP

with the use of a probability map in Section 3.1. Section 3.1.1 defines the information

gain incentive function, explains design choices, and applies it to MCTS variants.

The information gain incentive function determines the value of information gained

by examining a unit’s gained visibility and how this visibility uncovers information on

the pmap. The value of the function weights some nodes higher during the selection

phase of MCTS variants. Section 3.1.2 defines the risk function, explains design

choices, and applies it to MCTS variants. The risk function weights the pmap to

guide determinizations to be riskier.

1.3 Results

Chapter IV first designates function parameters, defines MCTS variants, displays

test maps, and explains the testing process in Section 4.1. Section 4.2 displays and

highlights the results of the experiment. Overall, the information gain function with

risk function did improve performance in some situations. When combined with

ISMCTS and tested on a larger map, it instead performed worse, demonstrating

inconsistency. Lastly, Section 4.3 analyzes the results, explores why this inconsis-

tency may have occurred, and possible solutions. Other key findings include that

the integration of a pmap to eliminate impossible determinizations greatly increases

performance. Additionally, ISMCTS outperforms PIMCTS on all maps when using

the pmap integration.

3



1.4 Document Overview

This document is organized as follows. Chapter II explains the rules of TUB-

STAP, discusses how multi-action and hidden information elements apply to game

tree searches, and defines the MCTS variants PIMCTS and ISMCTS. Chapter III

details the risk and information gain incentive functions and their integration into

PIMCTS and ISMCTS. Chapter IV presents the results of the risk and incentive

functions applied to PIMCTS and ISMCTS when competing on three maps. Finally,

Chapter V discusses the conclusions drawn from the results.

4



II. Background and Literature Review

TUBSTAP with fog of war has a very complex search space as a hidden infor-

mation and multi-action game. While MCTS is suitable for complex search environ-

ments, it requires extensions to handle hidden information and requires a definitive

game tree structure to handle multi-action games.

This chapter explains the rules of TUBSTAP, defines hidden information, explains

MCTS and its variants PIMCTS and ISMCTS in the context of game tree search, and

gives background on game tree search methods applied to both multi-action games

and hidden information games. Additionally, it highlights the unique considerations

of games when hidden information and multi-action aspects are handled separately

and together.

2.1 TUBSTAP Rules

TUBSTAP game mechanics are based on Nintendo’s 2001 game Advanced Wars.

TUBSTAP is a two-player game, each player controls a team of units. During a turn,

each player moves their units one at a time until all units are moved. Winning occurs

when one player eliminates all units of the opposing team. Teams fight on a tile map

as shown in Figure 1. The game has the following rules:

• Each tile has a terrain type that affects movement and defensive bonuses.

• There are six types of units: Attack Jet (A), Fighter Jet (F), Infantry (I),

Anti-Air (R), Tank (P), and Artillery (U)

• Each unit has a list of unique attributes. Table 1 displays the attack power that

each unit type has against another unit type. Units can attack adjacent units

(1 unit away), except for artillery which can attack units at 2 and 3 tiles away.

5



• Damage is calculated as follows:

damage =
attackpower × attackHP

10 + terrainbonus× defenseHP
(1)

• Each unit type has a unique movement range. Units can move any number of

tiles within that range. Moving over a tile costs 1 or 2 depending on terrain and

unit type. Additionally, some terrain blocks movement of certain unit types.

• On one player’s turn they perform an action for all their units in any order. An

action consists of a move and possibly an attack. Thus, if a player has 6 units,

they take 6 actions.

This research adds the rule of unit vision implemented by [5] that functions as a

Figure 1: Example TUBSTAP Map.

Table 1: Attack Power Matrix.

F A P U R I S
F 55 65 0 0 0 0 0
A 0 0 105 105 85 115 105
P 0 0 55 70 75 75 75
U 0 0 60 75 65 90 70
R 70 70 15 50 45 105 55
I 0 0 5 10 3 55 35
S 0 0 10 20 20 55 55

Table 2: Unit Vision and Movement.

Unit Type A F R I P U S
Vision 3 3 2 2 2 1 4
Movement 7 6 5 4 5 2 6

6



Fog of War. Each unit’s vision value is equal to the number of tiles it can see from its

current position in any direction (Table 2). A player’s vision is equal to the super-set

of each unit’s visible tiles. Enemy unit locations are only known when they are within

the player’s vision.

• Enemy units can only be seen on tiles that are in the player’s vision.

• A unit must decide what it is attacking before moving. Thus, enemy units

cannot be attacked by a unit unless they were visible at the beginning of that

unit’s action. Any enemy units revealed by a friendly unit’s movement can then

be attacked by the next friendly unit.

• Each player starts the game with knowledge of the number of types of units.

2.2 Hidden Information Game Search Fundamentals

Powly, et al. [11] define imperfect information games as having states that are

partially observable with different observations for different players. Perfect informa-

tion games have states that are fully observable to all players. The non-observable

information in the state is classified as hidden information.

TUBSTAP with Fog of War becomes a hidden information game. Each unit has a

certain sight range and anything outside of the unit’s sight range is unknown. Hidden

information exists in Texas Holdem as a player cannot observe an opponent’s hand.

This hidden information is different from stochastic, or chance, elements in a game.

For example, in Texas Holdem each card dealt on the board is a random card from the

deck. Stochastic elements, such as a random card draw, can be classified as occurring

with a designated probability. Hidden information may be gathered, leaked, and

inferred. Table 3 classifies games according to hidden information and stochasticity.

TUBSTAP with Fog of War is a deterministic game with imperfect information.

7



Table 3: Contrast of Imperfect Information (contains hidden information) and
Stochastic Games.

Deterministic Stochastic
Perfect Information Chess, Checkers, Go, Othello Backgammon, Monopoly
Imperfect Information TUBSTAP, Wumpus World Bridge, Poker, Scrabble

Hidden information contributes to increased complexity and branching factor.

Unknown space can be represented as a list of possible determinations. Consider a

TUBSTAP board where there are 4 unseen enemy units and 20 unseen tiles. The

number of possible determinations is C(20, 4) × 4! or 116,280 determinations. The

branching factor of the game is then multiplicative of the number of determinations.

Determinations can be guided by beliefs of the opponent. The opponent behaves

according to a policy allowing inference on which determinizations are more likely.

The better a player’s beliefs of the opponent, the fewer determinations needed to make

an optimal decision. The simplest way to model an opponent would be to consider

all possible determinizations with an equal probability of occurring.

Lastly, hidden information can be reduced through certain information-gaining

actions. In TUBSTAP, by moving a unit closer to unseen tiles, the player can learn

whether tiles within visual range contain an enemy or are empty. Taking an action

that is suboptimal by itself based on the known information, may lead to more in-

formed and thus better subsequent actions. TUBSTAP being a multi-action game

only enhances the importance of information gain as it informs subsequent actions.

By searching through a sampling of possible determinizations, a player can determine

the average best move from the perspective of a single unit. This does not factor in

the utility of information gain that can benefit all other units.

8



2.3 Game Tree Search

A search tree is used to represent the possible states of a game. The board state

at the beginning of a player’s turn is the root of the tree with a depth of 0. The root

is expanded by applying each possible action to the root to generate the children’s

nodes with a depth of 1. At each depth d, node expansion generates children at a

depth of d + 1 until a terminal node is reached. A terminal node has no possible

actions to be taken and evaluates to a win or loss for the player. Expanding all nodes

in the search tree to terminal nodes generates all possible legal positions from the

root. The branching factor b is the number of children at each node. For example,

a binary tree has a branching factor of two. However, the branching factor for game

trees varies from node to node, making it useful to calculate an average branching

factor. The number of nodes in the tree can then be estimated as bd. The purpose

of the game tree is to determine the best action to take from the root node. Action

candidates are the set of actions that lead to the root children at d = 1.

Minimax Search is a tree search method that returns an optimal action in a deter-

ministic adversarial game [12]. A minimax game tree as shown in Figure 2 alternates

between player nodes and opponent nodes at each ply. Minimax search assumes that

each player plays optimally. Thus, opponent nodes (minimizing nodes) always eval-

uate to the minimum value of thier children. And player nodes (maximizing nodes)

always evaluate to the maximum value of their children. An evaluation function de-

termines the value of terminal nodes, for example, a 1 for a win, 0 for a draw, and a

-1 for a loss.

Expectiminimax can be used for an adversarial game with hidden information or

stochastic elements [13]. Expectiminimax uses chance nodes to account for hidden

and stochastic elements as shown in Figure 3. Each child of a chance node is a

possible outcome. They can also be used with hidden information where each child is

9



Figure 2: Minimax Game Tree. Maximizing nodes as triangles, minimizing nodes as
upside-down triangles. Terminal nodes as circular nodes with an evaluation of win
(1), loss (-1), or tie (0). Each line is a possible action that leads to a new possible
state. The player will select Action 2 from the action candidates with a value of 1.

a possible determinization of the opponent. Each chance node assigns a probability

to its child node; the total value of a chance node is then the expected value of its

children. Maximizing and minimizing nodes behave the same.

Minimax and Expectiminimax find the optimum move for the player assuming

Figure 3: Expectiminimax Game Tree. Square nodes are chance nodes. Assuming
an equal chance of all child nodes, each chance node takes the sum of the children
divided by the number of children. The player will take Action 2 with a value of 0.5.

10



that the opponent also behaves optimally. However, for games with large branching

factors, these search methods by themselves are impractical due to the exponential

growth of the game tree. Heuristic pruning techniques such as Alpha-Beta Pruning

can limit the number of nodes searched. For example, consider a minimizing node

choosing between two maximizing nodes A and B. Node A is fully expanded and

evaluates to 3. If any children of node B are discovered to be greater than 3, node

B’s unsearched children are pruned, since the minimizing node will always choose

node A. Alpha-Beta minimax uses backward pruning, still guaranteeing an optimal

solution [12]. Forward pruning also reduces tree complexity at the risk of overlooking

an optimum solution. It attempts to guide the search toward a “good” solution

by employing various heuristic methods. The next section discusses some forward

pruning methods in the context of MCTS.

2.3.1 Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) is an anytime stochastic algorithm that searches

the game space asymmetrically, focusing on the most promising nodes [14]. MCTS

has proven to perform well in games with large branching factors such as Go. Each

iteration of MCTS completes four phases: Selection, Expansion, Simulation, and

Backpropagation.

Selection: Starting at the root, MCTS selects child nodes according to a selection

policy until it has reached a leaf node. The Upper Confidence Bounds Applied to

Trees (UCT) algorithm Equation (2) is the most used selection policy for MCTS. [15]

UCTi =
wi

ni

+ α

√
ln(Ni)

ni

(2)

wi is the number of wins of node i. ni is the number of visits to that node. Ni is the

11



number of visits made to the node’s parent. The UCT algorithm balances exploitation

and exploration by exploiting the most promising nodes (those with the highest win

ratio wi

ni
) as well as exploring those which have not been visited often. Exploration is

guided by the constant α. When examining a node that has never been visited before

(ni = 0), this node will always be selected as limni→0

√
ln(Ni)
ni

=∞.

Expansion: Once a leaf node has been reached, a random successor state is added

as a child node to this leaf node. Simulation is then conducted on this child node.

Simulation: Simulation is done through a rollout. A rollout selects children of the

node until a terminal node is reached. A random rollout that selects random children

is commonly used. The resulting win or loss of the simulation is then used during

backpropagation.

Backpropagation: Starting at the child node added to the tree in the expansion

phase, MCTS updates Wi and ni of the node. This is repeated on each parent

node until the root is reached. If the result of the simulation was a win, then Wi is

incremented by 1. ni is always incremented by one.

Although it is an anytime algorithm, if run with infinite time, the MCTS tree will

converge to a full minimax tree.

Algorithm 1 displays the pseudocode for MCTS with the additional definitions.

A(s) is the set of all possible actions from the state s. A(s) = ∅ if s is terminal. a(s)

is the action that was taken to get to this state. C(s) is the set of possible children

from state s. p(s) is the parent of state s. Using the terminology from Equation (2),

ns refers to visits of node s, Ws refers to wins.

MCTS can be adapted to account for hidden information by sampling possible

determinations of the unknown space. Two hidden information MCTS variations:

Perfect Information MCTS (PIMCTS) [12] and Information Set MCTS (ISMCTS)

[10].

12



Algorithm 1: MCTS

Data: current state of the game
Result: action from candidate actions

1 initialize root as the current state of the game;
2 while time is left or nroot < MAX ITER do
3 r = root;

// SELECT
4 while A(r) ̸= ∅ do
5 r = Select child with max score from C(r);

//EXPAND
6 if | A(r) |> 0 then
7 a = select random action from A(r);
8 child = execute action a on deepcopy of r add child as a child to r;

//SIMULATE
9 sim = deepcopy of r;

10 result = perform a rollout on sim according to the policy until a terminal
node is reached;
//BACKPROPOGATE

11 while r! = null do
12 nr += 1 ;
13 Wr+ = result;
14 r = p(r);

15 best = select child with max UCT score from C(root);
16 return a(best);

2.3.2 Perfect Information MCTS

PIMCTS creates x determinizations from the game state, then performs a separate

MCTS search on each determinization. The result of each determinization is stored

in a candidate actions list. Once complete, the action with the highest cumulative

UCT score is chosen.

PIMCTS has the shortcomings of strategy fusion and non-locality [16]. Strategy

fusion is due to each determinization being treated as a perfect information game

with no hidden information. Thus, the AI chooses an action based on unavailable

information. Non-locality occurs when PIMCTS samples determinations with uni-

form probability. In reality, some states are more likely than others since they have
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a rational opponent.

Long, et al. [17] identified three features, leaf correlation, bias, and disambigua-

tion that largely affected the success of PIMCTS. Leaf correlation is the probability

that child nodes have the same payoff value. Bias is the probability that a game favors

one player. Disambiguation is the speed that hidden information is revealed. PIM-

CTS performs better with higher leaf correlation and when disambiguation avoids

the extremes of very fast or very slow. More extreme bias resulted in better perfor-

mance if the correlation was medium to low. PIMCTS is likely a good candidate for

TUBSTAP due to having a high leaf correlation, although disambiguation can largely

depend on map size and the number of units. Pseudocode for PIMCTS is displayed

in Algorithm 2.

2.3.3 Information Set MCTS

ISMCTS creates a new determinization d with each iteration. All determinizations

are included in singular tree TR and each node is a part of an information set. ISMCTS

conducts MCTS on d, creating a search tree Td, and adds the result to TR. To do

this, it selects nodes in TR that exist in Td and descends both trees in parallel. Then

it expands a leaf node in TR by adding an unexplored child node from Td.

By aggregating the results of each determinization into a singular tree, ISMCTS

overcomes the problem of strategy fusion. However since all determinizations are

considered with the same probability, ISMCTS still suffers from non-locality. The

effects of correlation, disambiguation, and bias likely have the same impact on ISM-

CTS as on PIMCTS since they both use determinizations. Psuedocode for ISMCTS

is displayed in Algorithm 3.
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Algorithm 2: PIMCTS

Data: current state of the game, max number of determinations
MAX DETER

Result: action from candidate actions
1 initialize root as the current state of the game;
2 candidateActions = ∅;
3 for i = 0 to MAX DETER do
4 while time is left or nroot < MAX ITER do
5 r =create random determination from root;

// SELECT
6 while A(r) ̸= ∅ do
7 r = Select child with max score from C(r);

//EXPAND
8 if | A(r) |> 0 then
9 a = select random action from A(r);

10 child = execute action a on deepcopy of r add child as a child to r;
//SIMULATE

11 sim = deepcopy of r;
12 result = perform a rollout on sim according to the policy until a

terminal node is reached;
//BACKPROPOGATE

13 while r! = null do
14 nr += 1 ;
15 Wr+ = result;
16 r = p(r);

17 best = select child with max UCT score from C(root);
18 if a(best) ∈ candidateActions then
19 add the UCT scores of the actions together;
20 else
21 candidateActions ∪ a(best);

22 return a(best);
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Algorithm 3: ISMCTS

Data: current state of the game
Result: action from candidate actions

1 initialize root as the current state of the game;
2 while time is left or nroot < MAX ITER do
3 s = make random determination from root;
4 r = root;

// SELECT
5 while A(r) ̸= ∅ and | A(r) ∪ A(s)! =| A(r) |: do
6 n = Select child with max UCT score from C(s) ∩ C(r);
7 Execute action a(r) on s;

//EXPAND
8 untried = A(r) ∪ A(s)− A(r);
9 if | untried |> 0 then

10 u = select random action from untried;
11 execute action u on s;
12 add s as a child to r;
13 r = s

//SIMULATE
14 sim = deepcopy of r;
15 result = execute actions on sim according to the policy until a terminal

node is reached;
//BACKPROPOGATE

16 while r! = null do
17 nr += 1 ;
18 Wr+ = result;
19 r = p(r);

20 best = select child with max UCT score from C(root);
21 return a(best);
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2.4 Multi-action Game Tree Search

Nodes in a multi-action game tree can either represent a single action (partial

turn) or a complete action sequence (full turn) as displayed in Figure 4.

Figure 4: Two methods of constructing a Multi-Action Tree. Each node is an action
(A) vs each node is a set of all actions (B).

Evolutionary MCTS [18] uses tree search where each node is a complete action

sequence represented as a genome. Edges then represent a mutation of a single action

of the genome. Additionally, Fujiki, et al. [4] uses Depth Limited Monte Carlo

(DLMC) with nodes as an entire action sequence. DLMC creates m random samples

from the list of all possible actions, then completes n simulations to a limited depth

of d on each possible action. The state at the end of the simulations is evaluated by a

static evaluator to give each sample a score. This benefits from easier state evaluation

since total action sequences are used for nodes. Additionally, DLMC improves the

quality of them random samples through Attack Action Search (AAS). AAS examines

l actions, exhausting all attack actions before including movement actions in the

total for l. AAS then performs each action on the current state and then uses an

evaluation function to determine the best action. DLMC + AAS then includes m

random samples and the resulting best attack action from AAS before simulation.

When multi-action is combined with hidden information, representing each node
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as a complete action sequence leads to information loss. This is because each par-

tial action sequence can uncover hidden information that informs the next partial

action. However, nodes as a partial action sequence can decrease ply depth searched

since simulation and determinations must be made at each action. Simulation and

determinization computations may be repetitive if no information is gained between

actions. To maintain information gain advantage, each node represented in PIMCTS

and ISMCTS for testing in this paper will represent a single action. Additionally, the

use of evolutionary algorithms and DLMC + AAS seem disadvantageous for multi-

action games with hidden information given their tree structure where each node is

a full turn.

Strategies applied to multi-action MCTS often include various heuristic pruning

methods. Pruning is already a popular method to apply to MCTS outside of multi-

action games for large search spaces [19][20]. The additional complexity provided

by multi-action games only increases the value of limiting the tree space to obtain

a deeper search. DLMC + AAS greatly reduces the TUSBTAP search space by

eliminating a large portion of possible actions, essentially limiting the branching factor

to m.

Sato and Ikeda [21] present three forward pruning techniques applied to TUB-

STAP: Fixing the movement order of units, applying selective unit action generation,

and applying limited unit actions. Selective unit action generation groups attack and

movement actions by certain criteria, such as target unit, and only selects one action

per group. Lastly, limited unit action performs a smaller tree search on only the most

influential units (ignoring units with low HP or far out of range of combat). These

forward pruning techniques improved TUBSTAP agents by allowing deeper searches

on the tree focusing on more promising nodes.

Progressive widening or progressive unpruning [22] limits the number of child
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nodes added to any node until a certain threshold is reached. The threshold can

increase with the number of iterations, slowly upruning or adding more children to

each node. This has been applied effectively to TUBSTAP [4] with an emphasis on

attack actions. Progressive upruning can be paired with progressive bias [22] which

uses heuristic knowledge to influence node selection. As the number of iterations

increases, the heuristic influence decreases. Progressive bias could be an effective

solution to TUBSTAP given the development of effective heuristic state evaluators

such as phase division [23]. The phase division heuristic evaluator is based on unit

positioning and matchups rather than simply HP and unit type such as in [4].

2.5 Hidden Information MCTS Related Works

Belief state MCTS (BSMCTS) [24] seeks to solve the non-locality problem of

ISMCTS and PIMCTS. BSMCTS adds opponent guessing and opponent modeling to

phantom games. In phantom games, players cannot access information the opponent

has. Kriegspiel is a phantom game identical to chess, except each player’s chess pieces

are invisible to the opponent. If an opponent attempts to make an illegal move, they

are prompted to make a different move. In the BSMCTS tree, each node contains a

probability and a state. Each iteration of the algorithm creates a determinization like

in ISMCTS but uses an opponent model to infer a determinization through historical

moves. At player nodes, BSMCTS uses opponent guessing. Opponent guessing uses

an online learning method to adjust the probabilities of states and select the next node

using a utility function added to an exploration function similar to UCT. Opponent

predicting occurs on opponent nodes, selecting the next state from a random distri-

bution based on each state’s utility and probability. Wang’s BSMCTS outperformed

in phantom Tic Tac Toe and phantom Go.

Whereas an opponent policy can be learned and help guide a player’s determiniza-
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tions through an opponent model, the player can also reveal his policy to the op-

ponent. Cowling [25] addresses this issue of leaking information to the opponent

through the concept of self-determinization in the game The Resistance. This game

is based around hiding one’s role while discovering which of the opponents are spies.

Self-determinization introduces “impossible” worlds into the agent’s determinization

samples to hide its policy from inference. This led to bluffing behavior, a necessity

in the Resistance.

Goodman [26] addresses another variant of information leakage that occurs in

hidden information games in Re-determinizing ISMCTS (RISMCTS). Since ISMCTS

creates determinizations at the root, both player and opponent nodes in the tree

act with perfect knowledge of the player’s true state. In reality, opponent nodes do

not know the true state of the player’s board. Thus, information about the player

leaks down the tree causing ISMCTS to never consider positions where the opponent

may act according to an imperfect determinization of the player. This is one reason

why ISMCTS performs so poorly in the card game Hanabi. To solve this, RISMCTS

redeterminizes the hidden information at each node so player and opponent nodes

both act in accordance with hidden information.

Uriarte [27] defines the issue of Fake Omniscience in determinizations as when a

player never tries to hide or gain information because they believe that they have per-

fect information. Solutions by Cowling and Goodman hide information both from the

opponent and within the game tree, but information gain has largely been overlooked.

Additionally, ISMCTS, PIMCTS, and BSMCTS have been tested within TUB-

STAP fog of war by [5]. The ISMCTS and PIMCTS algorithms worked as described

in Section 2.3.1. Each determinization distributed enemies randomly among unseen

tiles. In reality, this can be improved by tracking possible legal positions of enemy

units from where they were last seen. PIMCTS outperformed ISMCTS and BSMCTS,
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however, the success of BSMCTS relies heavily on the opponent model and learning

methods employed.

2.6 Summary

TUBSTAP with fog of war provides a flexible platform for testing multi-action

hidden information games. Monte Carlo Tree search variants are an effective solution

to searching complex game spaces and improve through various pruning techniques.

Additionally, structuring the tree where each node is a single action prevents infor-

mation loss that occurs when each node is a single turn.

Additional work has been done to prevent information leakage of one’s policy to

the opponent, prevent information leakage of one’s knowledge into MCTS rollouts,

addressing the problems of non-locality and strategy fusion in hidden information

games, but there has yet to be research done on incentivizing information gain.
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III. Methodology

To account for information gain in multi-action hidden information games, this

chapter proposes the addition of an information gain incentive function. A risk func-

tion is also added to account for the inherent risk in taking information-gaining ac-

tions.

This chapter will first explain an accurate method to track possible enemy legal

moves through the maintenance of a probability map. Then it explains the imple-

mentation of the information gain incentive and risk functions dependent on the

probability map that is then integrated into PIMCTS and ISMCTS.

3.1 Maintaining a Probability Map

The following notation will be used in the implementation of information gain and

risk algorithms. The map is represented by a set of tiles t(x,y) ∈ T ∧ t = {plains,

mountain, forest, road, ocean}. From the perspective of the active player, fi(l, t, h) ∈

F is a friendly unit, and ei(l, t, h) ∈ E is an enemy unit. l,t, and h correspond to the

unit’s location, type, and health respectively.

A visibility matrix {V(x,y)} tracks which tiles are visible. If V(x,y) = 1, then t(x,y)

is visible. If V(x,y) = 0, then t(x,y) is not visible. V functions like a Boolean matrix

but uses 1’s and 0’s for compatibility of operations with other matrices. V refers

to the invisible tile where V(x,y) = 1 when t(x,y) is not visible. The matrix v(fi)

contains all tiles visible for unit fi. The probability map {P(x,y,e)}(e ∈ E) tracks the

probability of an enemy unit being on each tile. Each probability is between 0 and 1:

p(x, y, e) ∈ P, 0 ≤ p ≤ 1.

The probability map is initially a uniform distribution of possible positions that

an enemy unit can be to guide determinizations. A simple way to determinize enemy
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units is by uniformly distributing them among all unseen tiles. This simple method

allows for determinizations including illegal moves of enemies. The probability map

prunes determinizations to exclude unrealizable states.

To help the probability map create useful information in the early turns of the

game, the player assumes that enemy units begin in a mirrored configuration to their

own. That is, for the first turn of the game, enemy units are distributed onto tiles

opposite of friendly units with a probability of 1. A player determines the possible

positions of enemy units in the probability map based on their total turn vision, the

range of each enemy unit, and the probability map from the previous turn.

Figure 5 shows an example of how the probability map tracks the legal moves

of enemies. The enemies in Map A are assumed to have been in squares e2 and e1

last turn. Each enemy has a movement of 2. Map A depicts the possible locations

each enemy could be this turn (red squares for enemy 1, blue squares for enemy 2,

and purple squares for both). Each friendly unit has a vision of 2. Map B shows

the visibility of the player at the start of the turn. In map C, a unit is moved from

a4 to a2 revealing more tiles. Note that tile c4 is out of range of both units, but

since there was visibility of that tile at the start of the turn, it is included in the

visible tiles. Before the next move, the player updates the probability map with the

added information in Map D. Tile c2 cannot contain an enemy since it is now visible.

Without any added belief, the probabilities of each enemy are uniformly distributed

among the tiles. For determining the enemy range next turn, the probability map

checks the range at each edge tile (tiles c1, d2, and e3 for enemy 2).

Psuedocode for updating the visibility matrix and probability map is displayed

in Algorithm 4. To update ISMCTS and PIMCTS with the pmap information, call

UpdatePmap at each iteration. Before the first iteration, the visibility map must be

initialized with all elements to 0. At this time, the probability map is initialized with
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Figure 5: Tracking possible enemy moves.

enemy units mirrored from friendly units starting positions with probabilities of 1.

3.1.1 Information Gain Incentive

The information gain incentive function combines information from the visibility

matrix and probability map to create a heuristic for guiding MCTS selection. The

damage calculation in Equation (1) largely favors the attacker over the defender. In

TUSBTAP with hidden information, a unit cannot attack another unit that it cannot

see. Finding enemy units is important for using attack advantage as well as for better

organizing defense. If an enemy has a probability of 0 or 1 on a tile, then discovering

that tile provides no information gain. A move generates a set of newly seen tiles

G. A tile in the set of newly seen tiles g ∈ G is considered significant if there is a

probability of an enemy on that tile that is not 0 or 1. In Figure 5 D, tile c2 would

be considered a significant tile. The sum of significant tiles can be calculated as:

∑
gx,y∈G

gx,y
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Algorithm 4: UpdatePmap

Data: Initialized visibility map V , initialized probability map P , last unit
that moved flast

Result: Probability Map P that uniformly distributes enemy units among
possible unseen tiles

1 updateVisibilityMap();
2 //update the pmap for enemies within seen tiles
3 foreach ei ∈ E do
4 foreach vx,y ∈ V do
5 if vx,y = 1 then
6 if ei(l) = (x, y) then
7 Px,y,ei = 0;
8 else
9 Px,y,ei = 1;

10 //update the pmap for enemies not within seen tiles
11 if it is not the first turn of the game for player 0 and it is the first move this

turn then
12 reachable = matrix {x, y, ei} initialized to 0 ;
13 foreach ei ∈ E do
14 foreach px,y,ei ∈ P do
15 if px,y,ei > 0 then
16 reachablex,y,ei = 1;
17 if px,y,ei is adjacent to a tile with pei = 0 then
18 range = matrix of reachable tiles for enemy ei where

rangex,y is 1 if tile tx,y is reachable, otherwise 0;
reachableei ∪ range;

19 reachableei∩ ∼ V ;

20 P = reachable;

21 Normalize P so 0 < px,y,ei < 1
22 Function updateVisibilityMap():
23 if it is the first move this turn then
24 V ← set all elements to 0;
25 foreach fi ∈ F do
26 V ∪ v(fi);
27 else
28 V ∪ v(flast);

29 return;

g(n) =

{
1 if 0 < px,y,e < 1

0 else

Additionally, information gain becomes less important towards the end of the
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turn. If a player has four units, moving the first unit informs the next three moves

this turn. However, moving the last unit does not inform any future moves this turn.

Any gained information then becomes degraded upon the enemy’s next turn. Thus,

the last unit should receive less incentive for information gain. This is reflected in the

incentive function below by dividing the number of active friendly units (units that

can still be moved) by the total number of friendly units. Equation (3) calculates the

number of significant tiles discovered for each enemy and divides by the total number

of tiles with px,y,e > 0. This restricts the value between 0 and 1.

significant =
∑

ex,y∈E

∑
gx,y∈G

g(n)

total =
∑

px,y,e∈P

1 if px,y,e > 0

igi =
| FA |
| F |

× significant

total
; 0 ≤ ri ≤ 1 (3)

The information gain function value changes the value used during MCTS Selec-

tion as shown in Equation (4) with a constant β. Ideally, this modification should be

applied at every node in Selection which requires maintenance of the pmap through

each node of the tree. However, due to difficulties with this pmap maintenance

throughout the tree, Selection uses Equation (4) only in the first layer of nodes in the

tree. Any nodes after this layer use normal Selection with just UCT.

u(s) = (1− β) UCTi + β igs (4)

After all simulations have been completed or time has run out, MCTS chooses a

child node from the root with the highest win rate. Instead of using just win rate at

26



this step, ISMCTS and PIMCTS with the information gain inventive function choose

a child according to the win rate plus the information gain incentive.

3.1.2 Risk Implementation

Information gain is associated with risk. This risk is largely accounted for simply in

the UCT function Equation (2) in ISMCTS and PIMCTS by conducting simulations

on a node across different determinizations. To enhance the determinizations to

better account for risk, a risk function applies a paranoid distribution of enemy units

by increasing the chance of them being in unfavorable positions. It weights the

probability map so that some determinizations are more likely than others.

Two units of the same type and hp fighting each other will far more often result

in a win for the unit that attacks first. When moving into a position that reveals

an enemy unit, that enemy unit will be able to attack with attack advantage next

turn in most scenarios (since each unit has movement equal to or greater than their

vision). Whereas identifying the unit allows a player to attack it, it also makes the

identifier vulnerable to attack.

This risk modifies the probability map by applying a paranoid distribution of

enemy units along the fringe. The fringe is considered the tiles adjacent to the

outermost visible tile. Enemies that are placed on the fringe pose a risk to units

that move closer to it. Additionally, fringe enemy units are more relevant to an

existing fight as they are closer in range for a counterattack (clearer in the cases

where movement is greater than vision). This risk function weights determinizations

so that some are more likely than others.

Algorithm 5 applies this paranoid distribution by increasing the probability of a

unit to be on a certain tile given its proximity to the fringe. Unseen tiles are given

a higher value the closer they are to a seen tile. The squared value of the tile is
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multiplied by the probability of the unit being on the tile to increase the likelihood

of placing an enemy near the fringe during a determinization. Figure 6 displays how

the value of tiles is determined.

Figure 6: Applying uneven fringe weighting. Grey tiles represent turn vision. Red
squares represent possible locations of enemy units. Numbers show proximity to seen
tiles and the square of these values is used as weighting in the probability map.

Algorithm 5: ParanoidDistribution

Data: Initialized visibility map V , Initialized probability map P
Result: Probability map P with increased weighting on fringes

1 initialize root as the current state of the game;
2 c = 0;
3 w = set to a max value. Could use 2/3 map width;
4 fringe = V ;
5 while w > 0 do
6 foreach frx,y ∈ fringe do
7 if frx,y > 0 and frx,y is adjacent to a tile with fr = c then
8 frx,y = w, c = w,w− = 1;

9 Iterate over x, y and multiply each element of Px,y by the squared value in
frx,y; Normalize P so 0 < px,y,ei < 1;

3.1.3 Summary

The information gain incentive and risk functions were created to jointly improve

ISMCTS and PIMCTS in TUBSTAP. The incentive function increases the value of

a node during selection based on the potential for gaining information. The risk
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function guides determinizations so that information-gaining units are susceptible to

an enemy counterattack.

This chapter introduced a method for tracking the legal moves of the opponent

using a probability map that guides determinations. This probability map can be

modified to represent an opponent model and is done so using a paranoid distribution

of enemy units. This is combined with an incentive function that is additive to the

UCT evaluation during MCTS selection.
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IV. Results and Analysis

To evaluate the effectiveness of the pmap and information gain and risk functions,

this chapter reports the performance of each element tested separately and together

with PIMCTS and ISMCTS on a variety of maps.

This chapter first presents three testing maps and defines five PIMCTS and ISM-

CTS variants. It explains the testing process and the chosen parameters for each

variant. Next, it displays the results of the variants on each map before giving anal-

ysis of the performance to include an explanation for improving functionality.

4.1 Experiment Set Up

The information gain and risk functions were tested on three maps as shown in

Figure 7. Map A provides a smaller game board where information is gained quickly,

providing lower disambiguation. Map B provides a larger space with a more open

center field. The scout has a large sight range making it valuable. It is strong against

infantry and more resistant to tanks and artillery than infantry, making it relatively

safe. Map C is an even larger map with 8 units and uses the fighter and attacker

which each have a large sight range. They however are very vulnerable on this map

given the large presence of anti-aircraft.

PIMCTS and ISMCTS with the information gain and risk functions will compete

against each other to determine the effectiveness of information gain and risk functions

separately and together. The MCTS variants are:

1. PIMCTS-Pmap/ ISMCTS-Pmap: PIMCTS and ISMCTS using the probability

map described in Section 3.1 with a uniform distribution. The information gain

and risk functions are not used.
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Figure 7: Test Maps A, B, and C.

2. PIMCTS-IG/ ISMCTS-IG: PIMCTS and ISMCTS using the information gain

incentive function in Equation (4) and the pmap with uniform distribution.

3. PIMCTS-Risk/ ISMCTS-Risk: PIMCTS and ISMCTS using the fringe distri-

bution applied to the pmap as depicted in Figure 6.

4. PIMCTS-IGR/ ISMCTS-IGR: PIMCTS and ISMCTS using the information

gain incentive function and fringe distribution applies to the pmap.

5. PIMCTS-S/ ISMCTS-S: PIMCTS and ISMCTS without the use of a probability

map. They instead use the simplified determinization method of distributing
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enemy units uniformly among unseen tiles as used in [5].

Algorithms used a UCT constant α of 0.15 as used in [5] and a β of 0.05 if using

the information gain incentive function. A parameter sweep on Map A using values

between 0.05 and 0.30 determined β. A steep drop-off in performance occurred after a

b of 0.2. Each algorithm used 10,000 iterations of MCTS. PIMCTS divided this into

20 determinizations of 500. Additionally, all MCTS rollouts choose attack actions

most of the time when available.

For each map, PIMCTS-Pmap competed against each of its variants (PIMCTS-S,

PIMCTS-IG, PIMCTS-Risk, and PIMCTS-IGR). The same was done for ISMCTS-

Pmap and its variants. Next PIMCTS-Pmap, ISMCTS-Pmap, and cheating UCT

competed in a round-robin tournament to determine the play strengths of PIMCTS

and ISMCTS algorithms. Cheating UCT has complete knowledge of enemy unit

locations but still can only attack enemies that are within its unit vision. Each

matchup in the round-robin tournament consisted of 30 games and sides were switched

between each game to account for turn 1 advantage or disadvantage.

4.2 Results

Each match receives 1 point for wins, -1 point for losses, and 0 points for ties.

This generates a score between -30 and 30 which is then normalized between 0 and

1. Since each competes in 30 games, the normalized score is calculated as (wins −

losses+30)/60. A score with an even number of wins and losses results in a score of

0.5. Thus any score above 0.5 suggests better performance, scores below 0.5 suggest

worse performance. A game with 18 wins, 9 loses, and 3 ties results in a score of 0.65.

Table 4 and Table 5 display results for testing PIMCTS and ISMCTS against their

respective variants on Map A. Each variant competed against all other variants in 30

games. The score of each algorithm (player) is displayed in the rows of the tables;
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each column is the opponent they played against. For example in Table 4, the score

of PIMCTS-Pmap against PIMCTS-S is 0.72, demonstrating a higher win-rate and

stronger performance of PIMCTS-Pmap.

Table 4: PIMCTS variants Map A

Player
Opponent PIMCTS- PIMCTS- PIMCTS- PIMCTS- PIMCTS-

S Pmap Risk IG IGR
PIMCTS-S - 0.28 0.2 0.32 0.22
PIMCTS-Pmap 0.72 - 0.45 0.52 0.38
PIMCTS-Risk 0.8 0.55 - 0.57 0.48
PIMCTS-IG 0.68 0.48 0.43 - 0.48
PIMCTS-IGR 0.78 0.62 0.52 0.52 -

Table 5: ISMCTS variants Map A

Player
Opponent ISMCTS- ISMCTS- ISMCTS- ISMCTS- ISMCTS-

S Pmap Risk IG IGR
ISMCTS-S - 0.27 0.28 0.33 0.3
ISMCTS-Pmap 0.73 - 0.58 0.43 0.38
ISMCTS-Risk 0.72 0.42 - 0.43 0.48
ISMCTS-IG 0.67 0.57 0.57 - 0.58
ISMCTS-IGR 0.7 0.62 0.52 0.42 -

PIMCTS-IGR/ISMCTS-IGR vs PIMCTS-Pmap/ISMCTS-Pmap reflects the added

utility of the information gain incentive and risk functions when playing against an

opponent that can accurately track opponent moves. For example PIMCTS-IGR had

a score against PIMCTS-Pmap of 0.62, suggesting the information gain incentive with

risk offset improved performance. Both ISMCTS and PIMCTS had an increase in

performance with the risk and IG incentive functions (IGR) against the pmap vari-

ants on map A. IGR variants did not necessarily outperform risk and IG variants

alone.

The addition of a pmap to accurately track opponent positions and prune illegal

determinizations led to a much higher and consistent win rate over algorithms that
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used simplified determinizations (the S variant). Pmap, Risk, IG, and IGR variants

all use the pmap and all perform much better than the S variant without the pmap.

Table 6 and Table 7 display results for testing PIMCTS and ISMCTS against their

respective variants on Map B for another 30 games each.

Table 6: PIMCTS variants Map B

Player
Opponent PIMCTS- PIMCTS- PIMCTS- PIMCTS- PIMCTS-

S Pmap Risk IG IGR
PIMCTS-S - 0.28 0.37 0.32 0.4
PIMCTS-Pmap 0.72 - 0.53 0.53 0.35
PIMCTS-Risk 0.63 0.47 - 0.62 0.47
PIMCTS-IG 0.68 0.47 0.38 - 0.32
PIMCTS-IGR 0.6 0.65 0.53 0.68 -

Table 7: ISMCTS variants Map B

Player
Opponent ISMCTS- ISMCTS- ISMCTS- ISMCTS- ISMCTS-

S Pmap Risk IG IGR
ISMCTS-S - 0.37 0.35 0.33 0.3
ISMCTS-Pmap 0.63 - 0.47 0.7 0.57
ISMCTS-Risk 0.65 0.53 - 0.5 0.6
ISMCTS-IG 0.68 0.3 0.5 - 0.52
ISMCTS-IGR 0.7 0.43 0.4 0.48 -

On map B, PIMCTS-IGR again performed better than PIMCTS-pmap. However

ISMCTS-IGR did not perform as well as ISMCTS-Pmap. ISMCTS-IG performed very

poorly, but combination with the risk function (to create ISMCTS-IGR) did improve

this poor performance. It is unclear why ISMCTS-IGR performed worse than the

pmap variant on this map. The larger size of map B keeps the IG and risk functions

more relevant throughout the game whereas, in map A, they are mostly used during

the first few turns. Perhaps this more relevant information gain is more helpful to

PIMCTS which can only sample over a small amount of determinizations. Any added

knowledge then increases the accuracy of these determinizations. However, ISMCTS

may not need the information gain incentive as much as the plentiful number of
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determinizations provide enough information. If this is the case, then perhaps the

amount of information gain incentive should decrease over the course of the game.

Or information gain incentive should be more selective. On map B, the increased

performance from using a pmap is still evident as all variants outperform the S variant.

Table 8 and Table 9 display results for testing PIMCTS and ISMCTS against

their respective variants on Map C for another 30 games each. Due to having to

make corrections in the information gain function, this paper did not have enough

time to retest information gain variants on Map C. Thus these data points are left

blank in Table 8 and Table 9.

Table 8: PIMCTS variants Map C

Player
Opponent PIMCTS- PIMCTS- PIMCTS- PIMCTS- PIMCTS-

S Pmap Risk IG IGR
PIMCTS-S - 0.48 0.43
PIMCTS-Pmap 0.52 - 0.53
PIMCTS-Risk 0.57 0.47 -
PIMCTS-IG
PIMCTS-IGR

Table 9: ISMCTS variants Map C

Player
Opponent ISMCTS- ISMCTS- ISMCTS- ISMCTS- ISMCTS-

S Pmap Risk IG IGR
ISMCTS-S - 0.37 0.55
ISMCTS-Pmap 0.63 - 0.58
ISMCTS-Risk 0.45 0.42 -
ISMCTS-IG
ISMCTS-IGR

On Map C, the pmap still appears to outperform simple variants but less so.

This is likely due to having a larger map with a smaller sight range. The fighter and

attacker’s additional sight range is mostly unused since they are completely vulnerable

to anti-aircraft and placing them behind friendly units subtracts from their ability to
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gain vision. Over time, the unseen opponent’s legal moves eventually become very

similar to the unseen tiles by the player.

Tables 10-12 display the results of a round-robin tournament of PIMCTS-Pmap,

ISMCTS-Pmap, and Cheating UCT on maps A, B, and C respectively. The pmap

variants were chosen over the simplified variants given their consistent success. ISM-

CTS consistently outperformed PIMCTS, winning more often against both PIMCTS

and Cheating UCT. The increased performance of ISMCTS is more evident on Maps

B and C likely since these have more hidden information than Map A. ISMCTS

avoids the issue of strategy fusion and samples across a much wider range of de-

terminizations than PIMCTS leading to this increase in performance. Additionally,

since ISMCTS uses one tree, it can search much deeper. Making more accurate de-

terminizations through the use of the pmap likely allows ISMCTS to better leverage

these advantages over PIMCTS.

Table 10: PIMCTS vs ISMCTS Map A

Player
Opponent

PIMCTS-Pmap ISMCTS-Pmap Cheating UCT

PIMCTS-Pmap - 0.43 0.27
ISMCTS-Pmap 0.57 - 0.25
Cheating UCT 0.73 0.75 -

Table 11: PIMCTS vs ISMCTS Map B

Player
Opponent

PIMCTS-Pmap ISMCTS-Pmap Cheating UCT

PIMCTS-Pmap - 0.32 0.18
ISMCTS-Pmap 0.68 - 0.38
Cheating UCT 0.82 0.62 -

Figures 9-11 display the average maximum search depths within one game of

cheating UCT, PMCTS-S/IGR, and ISMCTS-s/IGR every 5 turns. Each of these

algorithms competed against themselves in one game. This is only partially repre-
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Table 12: PIMCTS vs ISMCTS Map C

Player
Opponent

PIMCTS-Pmap ISMCTS-Pmap Cheating UCT

PIMCTS-Pmap - 0.4 0.2
ISMCTS-Pmap 0.6 - 0.37
Cheating UCT 0.8 0.63 -

sentative of actual average search depths, since performance of an algorithm changes

with its opponent. Lines that do not extend to the full turn count represent games

that ended early. PIMCTS naturally has a lower depth since it must divide its com-

putation budget across a number of trees. Cheating UCT decreases search depth

overtime. This could be due to doing more exploration as it fails to find good moves

later in the game, or by having an increased branching factor as pieces move toward

the center of the board. The information gain incentive appears to lead to a deeper

search for both ISMCTS and PIMCTS on maps A and B, but this does not hold on

map C. More iterations are needed to determine the extent that depth is affected,

but the graphs give a general overview of the tree structure.
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Figure 8: Average Search Depth Map A.

Figure 9: Average Search Depth Map B.
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Figure 10: Average Search Depth Map C.

4.3 Analysis

Currently, the information gain incentive only is used in the Selection step at

the first layer (a depth of 1) of the search tree. By applying this at only the first

layer, MCTS still samples actions that provide information gain more frequently.

However, since deeper nodes do not consider information gain, the player’s policy is

not fully reflected in the tree, causing inaccurate evaluation. This is flawed: an action

candidate is evaluated based on the assumption that later actions (past a depth of 1)

will not give information gain at all. To more accurately evaluate candidate actions,

information gain should be applied to Selection at each node in the tree rather than

just to the first layer.

Both the information gain incentive alone (IG) and risk (R) alone variants were

more effective dependant on the map configuration and algorithm used (PIMCTS vs

ISMCTS). Thus variants that include information gain incentive and risk functions
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(IGR) saw increased performance when either of these functions improved perfor-

mance. Due to the differing structures of PIMCTS and ISMCTS, information gain

incentive and risk had differing effects. Information gain may be more important for

PIMCTS since it is limited by the number of determinizations it can make (too many

determinizations decreases individual tree depth for the same computational budget).

Adding the pmap to prune illegal moves from determinations proved to be very

helpful in maps A and B, where a relatively small number of units could see about

half of the map. In map C, where a large number of units still struggled to see half of

the map, it was less effective. This is likely because as the game progresses without

finding opponent units, the unseen opponent’s legal moves eventually become equal

to the unseen tiles by the player. In these situations, a more functional information

gain incentive implementation could prove beneficial, to help overcome this pmap

reduction. Additionally, MCTS may struggle to find any good moves at a certain

level of complexity, making the advantages of the pmap less impactful.

Currently the incentive function only evaluates the score based on the revealed tiles

that could contain an opponent, and how many friendly units have already moved.

Many other factors may be considered when evaluating the value of information gain

as well:

• Not all information gained is relevant to future actions. If a unit moves to un-

cover fog of war at a location out of range of active allies, then that information

is irrelevant to future attacks this turn.

• An information-gaining action with some risk may give the opponent an equal

amount of information for free, making it disadvantageous.

• An action may not gain information this turn, but provide more information

on subsequent turns. Revealing tiles that have no chance to contain enemies
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may not help with determining an action this turn, but may be useful when an

enemy moves into that tile later.

• Information gain importance may change with game phases. In TUBSTAP, the

initial turns are vital in organizing units to defend each other and command

board presence while later turns focus entirely on exploiting enemy weaknesses.

In this initial phase, information gain is much more important.

Likewise, the established risk determinization may be too simple to work in every

scenario. Determinizations with the uneven fringe weighting on a large map may

isolate enemy units from being within range of each other. There is more risk if

there are multiple enemy units that will be able to counterattack than just one. Unit

proximity to each other is important in defining a defensible position.
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V. Conclusions

This report addresses the MCTS shortcoming of not considering information gain

in hidden information games. This shortcoming becomes more predominate in hidden

information games that also have multi-action elements as starting actions can inform

later actions in the turn. The proposed risk and information gain incentive functions

while demonstrating some increased performance, fail to do so consistently in ISM-

CTS and PIMCTS. Current implementation of the incentive function only applies

the incentive during selection at the first layer of nodes. Using the information gain

incentive function at each node in the selection steps of MCTS is necessary to ensure

sampled action candidates have been evaluated according to a consistent selection

policy. Additionally, the use of a more restrictive incentive function that identifies

more relevant information may be more effective. When weighting determinizations

with the risk function, other factors such as unit proximity should be taken into ac-

count. The implementation of a probability map that tracks enemy legal actions does

improves performance over a simple distribution of enemies among unseen locations.

Modifying MCTS hidden information variants to account for gaining information is

still a necessary step in overcoming the limitations of determinizations. More work is

needed to determine the advantage of effectively incentivizing information gain and

offsetting inherent risk.

5.1 Future Work

Additional work for this report includes applying an information gain incentive at

each node in the Selection step of MCTS rather than just the first layer of selection.

To do this, the current implementation needs to perform updates on a copy of the

pmap throughout the game tree to properly calculate the information gain incentive at
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depths greater than one (at a depth of one, copying is not needed and selection can use

the pmap at the root). Currently, the information gain incentive accounts for decay as

a single turn progresses (providing less incentive for each friendly unit that has already

moved). However, when calculating information gain incentive throughout the tree,

this decay should occur at each depth, so that information gain is only considered

at early nodes in the game tree. This implementation focuses on evaluating nodes

more accurately according to the policy of information gain. Information gain in this

implementation could also be used to effectively prune unpromising nodes and search

deeper in the tree.

Exploring other dependencies on information gain in TUBSTAP such as player

unit proximity to gained information would also be beneficial. A better utility func-

tion that only triggers that only incentivizes information-gaining actions under certain

conditions could improve performance.

If found successful, information gain incentivization could be applied to BSMCTS

or RISMCTS. Additionally, RISMCTS has not been tested in the TUBSTAP domain

and may be effective to better reflect the opponent’s policy. This would be done by

using an opponent’s pmap to create determinizations of the player at each opponent

node.
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15. Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In

European conference on machine learning, pages 282–293. Springer, 2006.

16. Ian Frank and David Basin. Search in games with incomplete information: A

case study using bridge card play. Artificial Intelligence, 100(1-2):87–123, 1998.

17. Jeffrey Richard Long, Nathan R Sturtevant, Michael Buro, and Timothy Furtak.

Understanding the success of perfect information monte carlo sampling in game

tree search. In Twenty-Fourth AAAI Conference on Artificial Intelligence, 2010.

18. Hendrik Baier and Peter I Cowling. Evolutionary mcts for multi-action adversarial

games. In 2018 IEEE Conference on Computational Intelligence and Games

(CIG), pages 1–8. IEEE, 2018.

19. Nick Sephton, Peter I Cowling, Edward Powley, and Nicholas H Slaven. Heuristic

move pruning in monte carlo tree search for the strategic card game lords of war.

In 2014 IEEE Conference on Computational Intelligence and Games, pages 1–7.

IEEE, 2014.

20. Bo Wu and Yanpeng Feng. Point-based incremental pruning for monte-carlo tree

search. In 2017 4th International Conference on Information Science and Control

Engineering (ICISCE), pages 545–548. IEEE, 2017.

21. Naoyuki Sato, Tsubasa Fujiki, and Kokolo Ikeda. Three types of forward pruning

techniques to apply the alpha beta algorithm to turn-based strategy games. In

2016 IEEE Conference on Computational Intelligence and Games (CIG), pages

1–8. IEEE, 2016.

22. Guillaume M JB Chaslot, Mark HM Winands, H Jaap van den Herik, Jos WHM

Uiterwijk, and Bruno Bouzy. Progressive strategies for monte-carlo tree search.

New Mathematics and Natural Computation, 4(03):343–357, 2008.

46



23. Naoyuki Sato and Kokolo Ikeda. Phase division and simplification game offline

tree search for phase evaluation value composition in turn-based strategy games.

Game Programming Workshop, pages 61–68, 2015.

24. Jiao Wang, Tan Zhu, Hongye Li, Chu-Hsuan Hsueh, and I-Chen Wu. Belief-

state monte-carlo tree search for phantom games. In 2015 IEEE Conference on

Computational Intelligence and Games (CIG), pages 267–274. IEEE, 2015.

25. Peter I Cowling, Daniel Whitehouse, and Edward J Powley. Emergent bluff-

ing and inference with monte carlo tree search. In 2015 IEEE Conference on

Computational Intelligence and Games (CIG), pages 114–121. IEEE, 2015.

26. James Goodman. Re-determinizing mcts in hanabi. In 2019 IEEE Conference

on Games (CoG), pages 1–8. IEEE, 2019.

27. Alberto Uriarte and Santiago Ontanón. Single believe state generation for han-

dling partial observability with mcts in starcraft. In Thirteenth Artificial Intelli-

gence and Interactive Digital Entertainment Conference, 2017.

47



REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

01–09–2022 Master’s Capstone Aug 2021 — Sept 2022

Incentivizing Information Gain for MCTS
in Hidden Information Game TUBSTAP

Lervold, Nathan, 2nd Lt, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENG-MAS-22-S-026

AFRL/RISB
Dr. Braydon D. Hollis
Email: brayden.hollis.1@us.af.mil
Rome Research Site, Rome, NY

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

Hidden Information is a central mechanic in games like the Resistance or wargaming with fog of war, adding an extra
layer of complexity for search algorithms. Monte Carlo Tree Search (MCTS) has gained much notoriety given its success
in searching complex domains such as Go. Extensions to MCTS allow it to perform well in hidden information games
such as Bridge, Kriegspiel (Chess), and Magic the Gathering. These MCTS extensions however fail to consider
information gain, an important aspect of multi-action hidden information games as initial actions inform sequential
decisions. This report proposes an information gain incentive function and a risk function to offset the risk of information
gain. We implement the information gain incentive and risk functions into MCTS variants ISMCTS and PIMCTS which
are then tested in the multi-action hidden information game TUBSTAP. Overall testing demonstrates promising results,
but lack of consistency makes it largely inconclusive. Current implementation of the information gain incentive has flaws,
and we offer a more effective approach.

Tree search, Hidden Information Game, Multi-Action Game, Monte Carlo Tree Search (MCTS), Perfect Information
MCTS (PIMCTS), Information Set MCTS (ISMCTS), Information Gain

U U U UU 56

Dr. Gilbert Peterson, AFIT/ENG

(937) 255-6565 x4281; Gilbert.Peterson@afit.edu


	Abstract
	List of Figures
	List of Tables
	Introduction
	Research Hypothesis
	Methodology
	Results
	Document Overview

	Background and Literature Review
	TUBSTAP Rules
	Hidden Information Game Search Fundamentals
	Game Tree Search
	Monte Carlo Tree Search
	Perfect Information MCTS
	Information Set MCTS

	Multi-action Game Tree Search
	Hidden Information MCTS Related Works
	Summary

	Methodology
	Maintaining a Probability Map
	Information Gain Incentive
	Risk Implementation
	Summary


	Results and Analysis
	Experiment Set Up
	Results
	Analysis

	Conclusions
	Future Work

	Bibliography

