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ABSTRACT 

Steel and aluminum test panels were irradiated with large numbers of pulses from a 
Nd:YAG (532 nm) or KrF excimer (248 nm) at fluence between 0.3 and 3.0 J/cm2, which 
induced changes to the surface topography of the panels.  In most cases this led to 
considerable roughening of the surface, and decoration of the roughened surface with 
nanoscale particles.  The contact angle of water droplets was measured, and showed 
both increased and decreased contact angle compared to unshot material, depending on 
the laser conditions.  The changes to the surface hydrophobicity are non-monotonic in 
both laser fluence and shot density.  Comparisons against surface topography suggest 
that the surfaces that exhibit two length scales of roughness are more likely to be 
excessively hydrophobic, whereas surfaces that have large scale features are more likely 
to be excessively hydrophilic.  
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Introduction 
The pervasive use of metallic components in military applications is understandable, 
because of the beneficial structural properties that metals provide.  Metallic surfaces, 
however, present numerous challenges, and the greatest of these is often their interaction 
with the component’s service environment.  In some cases, the extreme conditions 
characteristic of military use present materials challenges (e.g. the bore surface of a gun 
tube can degrade due to the high temperatures achieved during firing).  However, in many 
cases, it is exposure to the ambient environment that threatens the material, and this 
commonly occurs in the form of environmental corrosion and biological contamination.  
Systems with large surface areas, such as aircraft airframes, vehicle bodies, and ship 
hulls, are particularly susceptible to such concerns.  

The most common metals in military use, steel and aluminum (and its alloys) are 
susceptible to environmental corrosion.  To protect the metal substrate, coatings are 
frequently applied to the substrate.  Unfortunately, most coatings either require the use 
of toxic chemicals (such as hard chrome), are themselves toxic (such as cadmium), or 
require toxic chemical pre-treatments, such as those described in MIL-PRF-32239.  
These coatings expose personnel to hazardous chemicals, in the coating application, 
repair processes, the service environment, or all of these situations.[1]  Additionally, these 
processes generate considerable toxic waste.  As a result, elimination of pre-treatments 
that make use of toxic chemicals would be advantageous.  To accomplish new benign 
methods for the preparation of surfaces for the application of adhesive coatings is critical. 

The problem of biological contamination is fundamentally different; instead of promoting 
adhesion to the surface, one wishes to prevent it.  Particularly challenging examples 
include mold growth on weapon systems and biofouling of Navy ship hulls.  Such 
biofouling can take the form of the formation of a film or attachment of soft coatings, or, 
more problematic, the attachment of hard species such as mollusks and barnacles.[2-4]  
The attachment of such species result in severely degraded performance (estimates 
place the additional fuel consumption resulting from barnacle-caused drag as high as 
40%) and removal upon attachment is difficult.  To combat this, in the past, the Navy has 
treated ship hulls with coatings toxic to barnacles; however, these coatings are also toxic 
to all species in the aquatic environment and, thus, have an enormous environmental 
impact.[2] 

Our project sought to replace the use of harsh chemical treatments with physical 
modification to the surface.  The introduction of surface topography can have beneficial 
effects in the case of paint coating adhesion, by allowing entanglement of nano- and 
microtopographic features with polymerizable and crosslinkable components of the paint.  
On the other hand, surface topographical features are known in nature to suppress 
adhesion, the classic example being the self-cleaning Lotus leaf.  A key characteristic is 
the interaction of the length scale of the topographic features in comparison to the length 
scale of the features of the coating in question.[5]   
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In particular, laser irradiation has been shown to induce microstructural and chemical 
changes in surfaces, which can enhance their optical absorption [6], tribological 
performance [7], corrosion-resistance [8-10], or hydrophobicity [12-13].   The effect that 
a laser will have on a given target is complicated, and depends on the laser’s pulse 
duration and intensity, as well as on the initial microstructure and properties of the target.  
At low intensity, the laser may melt the surface, which can be used to induce surface 
alloying [11] or to remove deleterious second-phase particles in alloyed metals [9].  At 
higher instantaneous intensities, achieved with short pulse duration lasers, athermal 
processes begin to be important, and ejection of material via formation of a hot, dense 
plasma is observed.  If performed in liquid, this creates shock waves that “peen” the 
surface, which can improve its corrosion resistance[10]; in air or in vacuum, ablation of 
material can lead to surface microstructures qualitatively described as “spikes” or 
“bumps”, which improve hydrophobicity by reducing the ability of a water drop to spread 
out as it would on a flat metal surface.[9]  Hydrophobic surfaces have attracted great 
attention in recent years as potential “self-cleaning” surfaces, with improved resistance to 
biological contamination, and the similar behavior of the small-scale (~10 micron) 
“protrusions” on the leaves of the Lotus plant inspire and motivate the search for similar 
behavior in metal substrates.[13]  For corrosion problems in which extended contact with 
hygroscopic substances is likely, improved hydrophobicity may improve a coating’s 
corrosion resistance as well.   

Preliminary data in our lab had previously shown a factor-of-3 reduction in corrosion mass 
loss for steel samples treated with a laser-structuring process compared to untreated 
steel.  We have also found, consistent with the literature, that the laser irradiations of steel 
induce features on several length scales:  there are “macro” scale features determined 
by the size of the laser spot, but these are decorated with smaller sub-micron scale 
protrusions which are themselves decorated with tens-of-nanometer-scale roughness.  
The topography changes depending on the laser parameters – the intensity, the number 
of shots hitting an area, and the spacing between shots. 

Experimental 
We obtained test panels of 3003-H14 aluminum and 4340 steel (Q-Labs Corp).  The 
panels were placed horizontally on a motorized stage and rastered under the focused 
beam of either a KrF laser (248 nm, 15 ns pulse) or a frequency-double Nd:YAG laser 
(532 nm, 6 ns pulse).  The former produces a rectangular spot approximately 2 mm by 1 
mm; the latter produces a circular spot 1.3 mm in diameter.  The translation speed of the 
stage was varied, relative to the pulsing frequency of the laser, so as to controllably vary 
the average number of laser shots that would hit a given area of the sample.  For each 
specimen, an area at least 1 cm2 was irradiated.  The laser fluence was also 
systematically varied, by adjusting the output energy of the laser. 

Nd:YAG irradiations were performed at 0.27, 1.15, and 2.3 J/cm2.  The shot densities 
were 80, 120, 310, and 820 shots per area.  Excimer laser irradiations were performed at 
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0.3, 1.0, 1.5, and 3.0 J/cm2.  The shot densities were 375, 750, 1000, 1500, and 3000 
shots per area. 

The topography of the samples post-irradiation was examined with an electron 
microscope (FEI Helios Nanolab) at 20 kV, with measurements made in the secondary 
electron detector, at magnification from 350× to 35,000×.   

The contact angle of a water droplet placed on the surface was measured with a contact 
angle meter (Attension), to determine the hydrophobicity of the material pre- and post-
irradiation.  Unirradiated areas of each sample were measured as a control. 
Measurements were made with deionized water.  The water was dropped onto the 
irradiated area and monitored with a camera for several seconds, then the surface was 
blown clean prior to the next droplet.  The software fits the droplet image to a spherical 
cap to determine the contact angle.  Each irradiated area was measured between 3 and 
5 times, and the measurements were averaged to determine the contract angle. 

Results 
Fig. 1 and Fig. 2 show contour plots for the contact angle after irradiation by excimer (Fig. 
1) and Nd:YAG (Fig. 2), respectively.  The contact angle for unshot material appears in 
the color bar for reference.  As can be seen, both sets of excimer-irradiated samples show 
areas where the contact angle has increased, indicating that the surface has become 
more hydrophobic, and other regions where the contact angle has decreased, indicating 
that the surface has become more hydrophilic.  
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Fig.1 Contact angle contour plot for steel (top) and aluminum (bottom) panels irradiated 
with a KrF excimer laser at varying laser fluence and shots per area.  The black line 
shows the baseline contact angle for unirradiated material. 
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Fig.2 Contact angle contour plot for steel (top) and aluminum (bottom) panels irradiated 
with an Nd:YAG laser at varying laser fluence and shots per area.  The black line shows 
the baseline contact angle for unirradiated material. 
 

 

SEM images show the surface topography that resulted in the various surface conditions.  
First we consider excimer-shot Al samples.  Fig. 3 shows a fluence series at constant 
shot density, akin to taking a horizontal slice across Fig. 1.  The images in Fig. 3 were 
taken at low resolution, and show the large scale features the samples exhibit.  At higher 
resolution, as was the case for Fig. 4 and Fig. 5, fine features decorating the coarser-
scale undulations are visible, becoming larger and more pronounced at higher fluence.  
Holding the fluence constant and increasing the shot density shows a similar progression, 
as in Fig. 6; the overall roughness of the surface increases as does the size of the 
representative surface features.  
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Fig. 3.  Excimer-shot Al irradiated with 1500 shots per area at (a) 0.3 J/cm2, (b) 1.0 
J/cm2, (c) 1.5 J/cm2 and (d) 3.0 J/cm2, all at 350× magnification. 

 



UNCLASSIFIED 
 

7 
 

UNCLASSIFIED//DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. 

 
Fig. 4.  Excimer-shot Al irradiated with 1500 shots per area at (a) 0.3 J/cm2, (b) 1.0 
J/cm2, (c) 1.5 J/cm2 and (d) 3.0 J/cm2, all at 6500× magnification. 
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Fig. 5.  Excimer-shot Al irradiated with 1000 shots per area at (a) 0.3 J/cm2, (b) 1.0 
J/cm2, (c) 1.5 J/cm2 and (d) 3.0 J/cm2, all at 35,000× magnification. 
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Fig. 6.  Excimer-shot Al irradiated at 1 J/cm2, with (a) 750, (b) 1000, (c) 1500, and (d) 
3000 shots per area, all at 6500× magnification. 

 

Excimer-shot steel samples show some similarities.  Fig. 7 and Fig. 8 show representative 
images from varying the laser fluence and shot density, respectively.  In Fig. 7, the 
qualitative appearance of the surface topography is dramatically different between the 
lowest and highest fluence, whereas in Fig. 8, the images are qualitatively similar, with 
larger undulations decorated by small features, but the length scale increases 
considerably as the shot density increases. 



UNCLASSIFIED 
 

10 
 

UNCLASSIFIED//DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. 

 
 
Fig. 7.  Excimer-shot steel irradiated with 750 shots per area at (a) 0.3 J/cm2, (b) 1.0 
J/cm2, (c) 1.5 J/cm2 and (d) 3.0 J/cm2, all at 6500× magnification. 
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Fig. 8.  Excimer-shot steel irradiated at 3 J/cm2 with (a) 375, (b) 750, (c) 1500 and (d) 
3000 shots per area, all at 6500× magnification. 

 

Fig. 9 and Fig. 10 show similar evolutions for Nd:YAG irradiations of steel, varying the 
laser fluence and shot density, respectively.  Although some similar trends are evident, 
the overall topographic appearance of these samples is quite different from irradiations 
at 248 nm.  In Fig. 11 and 12, a similar progression for Al samples that, like the steel, little 
resembles the progressions for KrF, even taking into account that the shot densities are 
lower for the Nd:YAG samples than for most of the KrF samples.  
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Fig. 9.  Nd:YAG-shot steel irradiated with 310 shots per area at (a) 0.27 J/cm2, (b) 1.15 
J/cm2, (c) 2.3 J/cm2, all at 15,000× magnification. 
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Fig. 10.  Nd:YAG-shot steel irradiated at 2.3 J/cm2 with (a) 80, (b) 120, (c) 310 and (d) 
820 shots per area, all at 6500× magnification. 
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Fig. 11.  Nd:YAG-shot Al irradiated with 310 shots per area at (a) 0.27 J/cm2, (b) 1.15 
J/cm2, (c) 2.3 J/cm2, all at 6500× magnification. 
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Fig. 12.  Nd:YAG-shot Al irradiated at 1.15 J/cm2, with (a) 120, (b) 310, and (c) 820 
shots per area, all at 6500× magnification. 

 

The range in the degree of overlap between shots is evident in Fig. 13, which shows Al 
irradiated with the KrF laser at three shot densities.  All three show ridges that are parallel 
to the slow axis, but along the fast axis there is more topography at the lower shot density.  
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Fig. 13.  Excimer-shot Al irradiated at 3.0 J/cm2, with (a) 375, (b) 1000, and (c) 3000 
shots per area, all at 350× magnification. 

 

Discussion 
The contact angle data show several noteworthy features, which the microscopy can help 
interpret. 

First, the contact angles show considerable changes compared to the unirradiated 
material.  The sample in the lower-left corner of each contour plot received the fewest 
shots per area and the lowest fluence, and shows the smallest topography change.  
These samples would be expected to show a contact angle closest to the unirradiated 
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material, and with the exception of excimer-shot steel, which showed a contact angle of 
95° compared to 79° for bare steel, this is observed.  However, the contact angle deviates 
considerably from the unshot material as fluence, shot density, or both is increased.  The 
fact that the lowest fluence and shot density yielded nearly no difference in contact angle 
suggests that the effect that dominates the contact angle behavior is a topographical 
effect rather than a chemical modification of the surface due to irradiation, or that if a 
chemical modification to the surface is important, it requires exceeding some threshold 
fluence to be achieved. 

Second, the contact angle changes are non-monotonic in both laser fluence and shot 
density.  For almost every fluence and shot density, following a line from low to high 
results in both increases and decreases in observed contact angle.  Moreover, the 
observed contact angles are sometimes greater and sometimes less than the unirradiated 
material. 

If we draw a horizontal line across the two panels of Fig. 1 at 1500 shots per area, and 
look at the topography as a function of fluence, the resulting comparisons are shown in 
Fig. 14 and Fig. 15, for steel and Al, respectively.  Both show a progression from a 
relatively smooth surface, to a surface with some undulations decorated with small-scale 
roughness, and finally a surface with large-scale features, also decorated with small-scale 
roughness.  The surface of the lowest fluence, despite having some small-scale features, 
is reasonably smooth and therefore gives a comparable contact angle to the unshot 
surface.  At intermediate fluence, the surface exhibits the two different length scales of 
roughness characteristic of the lotus leaf effect, and thus the maximum contact angle 
occurs for this condition.  Finally, at high fluence, the large-scale surface so dominates 
the topography that the hydrophobic effect of the small-scale features is overwhelmed, 
and thus the surface has become hydrophilic. 
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Fig. 14.  Excimer-shot steel irradiated with 1500 shots per area at (a) 0.3 J/cm2, (b) 1.0 
J/cm2, (c) 1.5 J/cm2 and (d) 3.0 J/cm2, all at 6500× magnification. 
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Fig. 15.  Excimer-shot Al irradiated with 1500 shots per area at (a) 0.3 J/cm2, (b) 1.0 
J/cm2, (c) 1.5 J/cm2 and (d) 3.0 J/cm2, all at 6500× magnification. 
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Relatedly, Fig. 16 shows four images, corresponding to the four circles shown in the inset.  
The 1.5 J/cm2, 3000 shots per area sample and the 3 J/cm2, 375 shots per area sample, 
have the highest contact angle, and these surfaces are the most similar, showing two 
length scales of surface roughness.  The 1.5 J/cm2, 375 shot per area sample also has a 
high contact angle, but appears to have only a single (small) length scale of surface 
feature.  In contrast, the 3 J/cm2, 3000 shot per area sample has a lower contact angle 
than unshot steel, and it has the largest length scale of roughness.  This image 
corroborates the interpretation that surfaces with the right kind of surface topography 
become hydrophobic, while others become more hydrophilic, and that different laser 
conditions can induce similar surface conditions.  Even though the top left and bottom 
right surface do not look identical – clearly these are different surfaces – they are 
sufficiently comparable with respect to having the needed two length-scales of roughness 
that they produce similar effects when subjected to wetting. 
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Fig. 16.  (a)-(d) Excimer-shot steel, all at 6500× magnification. (a) 1.5 J/cm2, 3000 shots 
per area; (b) 3.0 J/cm2, 3000 shots per area; (c) 1.5 J/cm2, 375 shots per area; (d) 3.0 
J/cm2, 375 shots per area.  Lower panel: contour plot from Fig. 1; dots show the 
conditions corresponding to the images in (a)-(d). 

 

Third, the surface is more hydrophobic when irradiated with 248 nm light than with 532 
nm light.  Fig. 17 provides some insight into this finding.  The top row shows irradiated 
steel while the bottom row shows irradiated Al; the left shows irradiations at 532 nm and 
the right at 248 nm.  The fluence and shot density are comparable.  For both materials, 
the 532 nm samples are less hydrophobic than unshot material, whereas the 248 nm 
samples are more hydrophobic than unshot material.  Comparing the left and right 
columns show that the topography is different for the different laser wavelengths.  
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Although the 532 nm samples show significant roughness, this is consistent with a single 
length scale of roughness, which appears to result in increased wettability.  In contrast, 
the 248 nm samples are more consistent with two length scales, although the small-scale 
roughness of the steel sample is very fine.   

 

 
 
Fig. 17.  (a) and (b) steel, (c) and (d) Al.  Left side: Nd:YAG at 1.15 J/cm2, 820 shots 
per area.  Right side: Excimer at 1.0 J/cm2, 750 shots per area.  All at 6500× 
magnification. 

 

An explanation for this discrepancy is not readily available.  The skin depth of Al at 248 
nm and 532 nm is 0.24 nm and 0.31 nm, respectively.  These are so similar, and so short 
compared to the length scale of the roughness, that it is unlikely that differences in the 
absorption depth of the light can account for the topographical differences.  Another 
possibility is that the slight pulse duration difference (15 ns for the 248 nm laser vs. 5 ns 
for the 532 nm laser) could lead to differences.  The form this could take might be 
interaction of the laser beam with the ablation plasma, which is known to occur with ns 
lasers.  This would be more pronounced in the longer 248 nm pulse.  We observed that 
beam occlusion by the ablation plume significantly changed the surface morphology of 
polymer composite targets irradiated with a ms pulse laser [14].  In a different study, 
irradiation by a scanned ns laser of a metal target also showed differences as the 



UNCLASSIFIED 
 

23 
 

UNCLASSIFIED//DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. 

scanning speed and pulse energy are varied. [15]  In that case, the laser pulse rate was 
200 kHz compared to 10 Hz in the experiments reported here, and so in the Ref. [15] 
experiments, the plume was still present before the arrival of the next pulse.   

The best way to investigate whether the pulse duration contributes significantly would be 
to use one of the other harmonics of the Nd:YAG laser, such as 355 nm or 266 nm.  If the 
resulting surface morphology looked more comparable to the 532 nm-irradiated surface, 
this would strongly indicate that pulse duration, and not wavelength, dominated the 
surface topography effect.   

Ref. [15] also notes how the degree of overlap influences the topography of the irradiated 
area.  When there is sufficient overlap between subsequent shots, ablation becomes 
effectively continuous with a 200 kHz laser.   But even with a low-pulse rate laser, the 
difference between spots that almost entirely overlap and those that only partially overlap 
can be considerable.  In the former case, the centers of the ablation craters are nearly 
concentric, whereas in the latter case, the center of the ablation craters are far apart, 
leading to the formation of a ridge between the two adjacent craters.   

This phenomenology can be observed in Fig. 13, a high fluence series in which the shot 
density is varied.  At the lowest shot density (375 shots per area), the ridges perpendicular 
to the slow axis are defined but the curvature of individual spots along the fast axis are 
also evident.  These are less pronounced at intermediate shot density (1000 shots per 
area) and washed out entirely at high shot density (3000 shots per area).  However, the 
absolute fluence also plays a role in setting the crater depth, as the comparison in Fig. 18 
makes clear.  The sample in the upper panel was irradiated at a lower fluence, and shows 
fine-scale particles but no large surface undulations, whereas the sample in the lower 
panel was irradiated at high fluence and shows larger undulations and larger-scale 
particles decorating those undulations, and correspondingly, the higher fluence sample 
shows enhanced hydrophobicity whereas the lower fluence sample’s hydrophobicity is 
comparable to the baseline. 
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Fig. 18.  Excimer-shot Al irradiated with 375 shots per area at (a) 1.0 J/cm2 and (b) 3.0 
J/cm2, all at 6500× magnification. 

 

Conclusion 
Aluminum and steel test panels were irradiated with nanosecond pulsed lasers at 248 nm 
and 532 nm at varying shot densities.  The surface topography was measured with 
electron microscopy, and showed combinations of long length scale undulations and 
ridges and small length scale particles, with the relative amount of each type of feature 
depending on the laser conditions.  Measurements of the contact angle of water showed 
that some surfaces become more hydrophobic after irradiation and some became less.  
There is agreement between the microscopy and surface topography in that surfaces that 
showed two length scales of roughness were more likely to exhibit enhanced 
hydrophobicity than those that exhibited only one length scale, consistent with the familiar 
Lotus leaf effect. 

Future work could seek to apply coatings to these surfaces, to ascertain whether the 
surfaces improve or hinder the coating’s ability to bond well to the surface.  
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