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We learned why we need detectors, but why do we need machine learning?

Potential Dangers:

« >700k hours of video
uploaded to YouTube daily

» Deepfake apps can be run
with push of a button

« Deepfakes are generated
with ML, logical then to
think that we can detect
them with ML

* Castle defense

Image from DW.com. The righthand side image is an
example of a deepfake used to impersonate the mayor of We need scalable detectors!
Kyiv. Brackets are ours.
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First, a crash course in modeling

Model
identification

Data

collection Applications

Parameter GOF

Theory

. .
estimation tests
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Problem set-up: Is this a deepfake?

Model/Alg./Blackbox

Output

Yes
(96%
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Problem set-up: Now with some math

Model/Alg./Blackbox

Output

Yes
(96%)

Y is between 0 and 1
(0 =real, 1 = fake)

X Is an image
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We need to first specify a model for f(X)

Example: Logistic Regression

Logistic (sigmoid or inverse logit) function

fX) = logit™ (XB)
1

T 1+eXP

X = vector of features

p (output or transformed values)

B = vector of parameters to learn

x (input values)

This PhotobyUnknown Authoris licensed under CCBY
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https://hausetutorials.netlify.app/posts/2019-04-13-logistic-regression/
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Often f(X) is a neural net we need to learn

fi X - [0,1] X f(X;0)
X f(X 9) Input layer Hidden layers Qutput layers

X =image
6 = parameters we need to learn
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Statistical and ML models let us estimate 8 from data

Data ={(X;,Y;)i=1.n}

_
Data = 1
, FAKE , REAL
-
 REAL FAKE
b)
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We learn by minimizing a loss function

Vi = f(X;,0)
L(Y;,Y;) = distance between predicted and

Objective function model
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Our favorite loss is binary cross entropy

L(y;, ¥:) = —[y;i-log(®:) + (1 —y;) - log(1 — 9;)]

Ify, =1
if ; is close to 1 then term is small
if §; is close to O then term is large
Ify; =0
if y; is close to 1 then term is large
if ; is close to 0 then term is small

Goal: We want loss to be small
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In summary, we need only three things

1. We have a set of labeled data
2. We specify a function class that has parameters we need to learn

3. Using data, we minimize a loss function to estimate parameters in neural net

The devil is in the detalils
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These two are hard problems, but we have lots of help

2. We specify a function class that has parameters we need to learn (e.g. neural net)
3. Using data, we minimize a loss function to estimate parameters in neural net

AR VAR

R R R
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PyTorch
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So the devil is in the data

Problem 1: Overfitting

X
Underfitting Just right! overfitting

Solution: Train and Test Data
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Train and Test data

Idea: Don't ‘train’ your model on all the data. Leave some for testing.

s Testing set

g Training set

|
(L
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Problem 2. Affine transformations

|dea: a deepfake is still a deepfake if the
face is big/large, rotated, upside down, off-
center, etc.

Solution: Augmented data

.........

Non-uniform

Rotation Muroring  Scaling Translation  Shearmg i
Scaling
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Problem 3: Spurious features

Idea: Data are biased. Sometimes the
machine finds coincidental features, not real
ones.

input ': bird image

J/./ spurious correlation: water background:

" —m— prediction f/ waterbird /

true label /: waterbird

Solution: standardization and masking
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Standardization

AVG(REAL) - AVG(FAKE)

« Align and center faces

« Subtract the ‘average’

Takeaway: we want real differences to stand out
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Masking

Random
© Erasing

(d) Dynamic Face Cutout

Takeaway: we want real differences to stand out
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There’s a very clear pattern in deepfake detection

Gather labeled data
Transform data to emphasize useful features and mitigate biases

Train a model on some data

= A

Test the model on separate data

We call this process the deepfake detection pipeline
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Gather labeled data
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Gathering deepfake data is harder than it may seem

« Ethical issues
» Proprietary issues

» Accessibility issues

Consequence: There are about a dozen datasets the public
effectively uses for deepfake detection

Carnegie Mellon University Machine Learning for Deepfake ‘Detextlum [DISTRIBUTION STATEMENT A] Approved for public release
Software Engineering Institute ! and unlimited distribution

22



Popular datasets for deepfake detection
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Flickr-Face HQ (Real portrait photos)
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StyleGAN2 (Synthetic individuals, portrait style)
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Deepfake Detection Challenge (Real)
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DeepFake Detection Challenge (Fake)

(Iarn(-gic Mellon University Machine Learning for Deepfake Detection
. N . . C Contact: skgallagher@sei.cmu.edu
S()ft\/\/d re Eﬂgmee' Ing ‘nSUtUte © 2022 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution

27



Celeb DF v2

Real Deepfake
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Abstracting a video/image into computer representation

of dimension
(W,H, C, F)
W = Pixel width
* H = Pixel height
« C = Channel (RGB)
 F=Frame #
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Data Transformations

'

Q.f A c
Al ¢
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How do we extract useful features?

Thought: Only small sections of images/videos are ‘deepfaked’

Problem: Extract the ‘area’ where we think deepfake will take place

For us this usually translates to extracting faces
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Haar cascades

ok o
=1 E

From Ngo et al. (2009)
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https://www.researchgate.net/figure/Haar-features-used-for-Viola-Jones-face-detection-method_fig1_268348020

Edge Detectors

Original Image Edge image

From this canny edge detection article
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https://www.bogotobogo.com/python/OpenCV_Python/python_opencv3_Image_Canny_Edge_Detection.php

Entirely separate Neural Nets

Facial boundary detection from MTCNN
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Then we ca

]

n augment the data

From Zeno, Kalinovskiy, and Matveev (2021)
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Modeling

alk
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Training Models — largely pre-trained Neural Nets

AlexNet RegNet

ConvNeXt ResNet

DenseNet ResNeXt

EfficientNet ShuffleNet V2

EfficientNetV2 SqueezeNet
GoogleNet SwinTransformer —
Inception V3 VGG o
MNASNet VisionTransformer

MobileNet V2 Wide ResNet

MobileNet V3
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https://pytorch.org/vision/stable/models/alexnet.html
https://pytorch.org/vision/stable/models/convnext.html
https://pytorch.org/vision/stable/models/densenet.html
https://pytorch.org/vision/stable/models/efficientnet.html
https://pytorch.org/vision/stable/models/efficientnetv2.html
https://pytorch.org/vision/stable/models/googlenet.html
https://pytorch.org/vision/stable/models/inception.html
https://pytorch.org/vision/stable/models/mnasnet.html
https://pytorch.org/vision/stable/models/mobilenetv2.html
https://pytorch.org/vision/stable/models/mobilenetv3.html
https://pytorch.org/vision/stable/models/regnet.html
https://pytorch.org/vision/stable/models/resnet.html
https://pytorch.org/vision/stable/models/resnext.html
https://pytorch.org/vision/stable/models/shufflenetv2.html
https://pytorch.org/vision/stable/models/squeezenet.html
https://pytorch.org/vision/stable/models/swin_transformer.html
https://pytorch.org/vision/stable/models/vgg.html
https://pytorch.org/vision/stable/models/vision_transformer.html
https://pytorch.org/vision/stable/models/wide_resnet.html
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Testing/Evaluation

'
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Prototype results: data bias makes generalization hard

Accuracy (%) of fine-tuned ResNet

Software Engineering Institute

t
2022 Carnegie Mellon University

Tested on
Data Set CelebDF vl Stylegan2 Stylegan3-t Stylegan3-r DFDC Pt. 0
CelebDF v1 99.1 44.2 44.2 44.0 51.2
= Stylegan2 24.1 _ 52.9 48.4 57.4
_g Stylegan3-t 16.7 69.7 96.7 84.0 7.0
GC) Stylegan3-r 16.9 68.0 89.0 _ 7.0
IC_E DFDC Pt. 0 68.1 57.4 57.5 57.5 88.7
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Testing: How do the best models do??

o Chrrepitits |

Great**

Deepfake Detection Challenge

Idantif with facial orveice maniputations
Chalengs  2.785 teams 2 yuars ago

Overview Oata Coce Discussion (eademoand  Rules

$1,000,000

Prize Money

Leaderboard 3. RawDats C Refrosh
Q  Searn laadertisrd
Thes P 15 closed for 5. Tha Frivate Leaderboard was based on a re-run of participants’ code by the host on a privatoly-held 1est sat.
This competition has completed. This leaderboard reflects the final stanaings.
B Prize Winners
# Team Members Score Entries Last Code
1 Selim Satertrekoy L] 0.42798 2 ¥
2 W 0 ® 022842 2 2y
3 Ntechiab 2 0.43452 2 2y

**In controlled scenarios
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In closing

» Deepfake detection can be completely adapted to the ML modeling framework

» Intheory, deepfake detection is a simple four step process

» Data collection

« Data transformation
* Modeling

« Evaluation

 But the devil is in the details

And Dr. Bernaciak will show you exactly how!
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The GAN problem

Red makes a generator to create deepfakes
Blue makes a detector
Red uses results from blue’s detector to make generator better

Blue uses new red images to improve detector

Who wins?
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GAN set-up

X' = G(Z) = generator fake image
X =real image

D (X)= discriminator in [0,1]

Y=0, Y’=1 (O isreal, 1 is fake)

Data ={(X;,0);=1..m, (X';, 1)
L(x,y) = loss function

]1n

Is real or fake

Discriminator
Fake G(z) Real X
3
Generator
\
Noise Z

Fig. 18.1.1 Generative Adversarial Networks

Fig. from d2l.ai
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https://d2l.ai/chapter_generative-adversarial-networks/gan.html

GAN Set-up

Round 0: Generator introduces fakes
Round 1:

Discriminator turn: Use generated data to get best discriminator

—

D'|GY = argminp =13 L(D(X;),0) + Z?jﬂ}L(D(Xj’)rl)

Generator turn: Directly try to deceive discriminator
n

—

G'| D! = argming z L(D(X'),0)
U=1

= argming Yfi_q L(ﬁl(G(Zj)), 0)

Repeat
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