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We learned why we need detectors, but why do we need machine learning?

Potential Dangers:

• >700k hours of video 

uploaded to YouTube daily

• Deepfake apps can be run 

with push of a button

• Deepfakes are generated 

with ML, logical then to 

think that we can detect 

them with ML

• Castle defense

We need scalable detectors!

Image from DW.com. The righthand side image is an 

example of a deepfake used to impersonate the mayor of 
Kyiv. Brackets are ours.
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First, a crash course in modeling
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Problem set-up: Is this a deepfake?

Input

Yes 
(96%)

Model/Alg./Blackbox

Output

????
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Problem set-up: Now with some math

Input

f(X)
Yes 

(96%)

Model/Alg./Blackbox

Output

X is an image Y is between 0 and 1

(0 = real, 1 = fake) 
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We need to first specify a model for f(X)

Example: Logistic Regression

𝑓 𝑋 = 𝑙𝑜𝑔𝑖𝑡−1(𝑿𝜷)

=
1

1 + 𝑒−𝑿𝜷

X = vector of features

𝜷 = vector of parameters to learn

This  Photo by Unknown Author i s licensed under CC BY

https://hausetutorials.netlify.app/posts/2019-04-13-logistic-regression/
https://creativecommons.org/licenses/by/3.0/
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Often f(X) is a neural net we need to learn

𝑓: 𝒳 → [0,1]

𝑿 ↦ 𝑓(𝑿; 𝜽)

X = image

𝜽 = parameters we need to learn

This  Photo by Unknown Author i s licensed under CC BY

𝜽𝜽 𝜽

𝑓(𝑿;𝜽)X

https://2019.igem.org/Team:Linkoping_Sweden/Model
https://creativecommons.org/licenses/by/3.0/
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Statistical and ML models let us estimate 𝜽 from data

Data = 𝑋𝑖 ,𝑌𝑖 𝑖=1…𝑛

, REAL

, FAKE

, FAKE

, REAL

Data = 
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We learn by minimizing a loss function

 𝑌𝑖 = 𝑓 𝑿𝒊, 𝜽

𝐿  𝑌𝑖 , 𝑌𝑖 = distance between predicted and 

actual value

 𝜽 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜽  

𝑖=1…𝑛

𝐿  𝑌𝑖 , 𝑌𝑖

This  Photo by Unknown Author i s licensed under CC BY

https://www.frontiersin.org/articles/10.3389/fneur.2020.576029/full
https://creativecommons.org/licenses/by/3.0/
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Our favorite loss is binary cross entropy

𝐿 𝑦𝑖 ,  𝑦𝑖 = −[𝑦𝑖 ⋅ log  𝑦𝑖 + 1 − 𝑦𝑖 ⋅ log(1 −  𝑦𝑖)]

If 𝑦𝑖 = 1

if  𝑦𝑖 is close to 1 then term is small

if  𝑦𝑖 is close to 0 then term is large

If 𝑦𝑖 = 0

if  𝑦𝑖 is close to 1 then term is large

if  𝑦𝑖 is close to 0 then term is small

Goal: We want loss to be small
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In summary, we need only three things

1. We have a set of labeled data

2. We specify a function class that has parameters we need to learn

3. Using data, we minimize a loss function to estimate parameters in neural net 

The devil is in the details
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These two are hard problems, but we have lots of help

2. We specify a function class that has parameters we need to learn (e.g. neural net)

3. Using data, we minimize a loss function to estimate parameters in neural net 
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So the devil is in the data

Problem 1: Overfitting

Solution: Train and Test Data
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Train and Test data

Idea: Don’t ‘train’ your model on all the data.  Leave some for testing.
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Problem 2. Affine transformations

Idea: a deepfake is still a deepfake if the 

face is big/large, rotated, upside down, off-

center, etc.

Solution: Augmented data
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Problem 3: Spurious features

Idea: Data are biased.  Sometimes the 

machine finds coincidental features, not real 

ones.

Solution: standardization and masking
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Standardization

• Align and center faces

• Subtract the ‘average’

Takeaway: we want real differences to stand out
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Masking

Takeaway: we want real differences to stand out
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There’s a very clear pattern in deepfake detection

1. Gather labeled data

2. Transform data to emphasize useful features and mitigate biases

3. Train a model on some data

4. Test the model on separate data

We call this process the deepfake detection pipeline
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Gather labeled data
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Gathering deepfake data is harder than it may seem

• Ethical issues

• Proprietary issues

• Accessibility issues

Consequence:  There are about a dozen datasets the public 

effectively uses for deepfake detection
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Popular datasets for deepfake detection
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Flickr-Face HQ (Real portrait photos)
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StyleGAN2 (Synthetic individuals, portrait style)
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Deepfake Detection Challenge (Real)
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DeepFake Detection Challenge (Fake)
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Celeb DF v2 

Real Deepfake
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Abstracting a video/image into computer representation

• Inputs of dimension

(W, H, C, F)

• W = Pixel width

• H = Pixel height

• C = Channel (RGB)

• F = Frame #
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Data Transformations



31
Machine Learning for Deepfake Detection
Contact: skgallagher@sei.cmu.edu
© 2022 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release 
and unlimited distribution

How do we extract useful features?

Thought: Only small sections of images/videos are ‘deepfaked’

Problem: Extract the ‘area’ where we think deepfake will take place

For us this usually translates to extracting faces
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Haar cascades

From Ngo et al. (2009)

https://www.researchgate.net/figure/Haar-features-used-for-Viola-Jones-face-detection-method_fig1_268348020
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Edge Detectors

From this canny edge detection article

https://www.bogotobogo.com/python/OpenCV_Python/python_opencv3_Image_Canny_Edge_Detection.php
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Entirely separate Neural Nets

Facial boundary detection from MTCNN
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Then we can augment the data

From Zeno, Kalinovskiy, and Matveev (2021)



36
Machine Learning for Deepfake Detection
Contact: skgallagher@sei.cmu.edu
© 2022 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release 
and unlimited distribution

Modeling
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Training Models – largely pre-trained Neural Nets

AlexNet

ConvNeXt

DenseNet

EfficientNet

EfficientNetV2

GoogLeNet

Inception V3

MNASNet

MobileNet V2

MobileNet V3

RegNet

ResNet

ResNeXt

ShuffleNet V2

SqueezeNet

SwinTransformer

VGG

VisionTransformer

Wide ResNet

https://pytorch.org/vision/stable/models/alexnet.html
https://pytorch.org/vision/stable/models/convnext.html
https://pytorch.org/vision/stable/models/densenet.html
https://pytorch.org/vision/stable/models/efficientnet.html
https://pytorch.org/vision/stable/models/efficientnetv2.html
https://pytorch.org/vision/stable/models/googlenet.html
https://pytorch.org/vision/stable/models/inception.html
https://pytorch.org/vision/stable/models/mnasnet.html
https://pytorch.org/vision/stable/models/mobilenetv2.html
https://pytorch.org/vision/stable/models/mobilenetv3.html
https://pytorch.org/vision/stable/models/regnet.html
https://pytorch.org/vision/stable/models/resnet.html
https://pytorch.org/vision/stable/models/resnext.html
https://pytorch.org/vision/stable/models/shufflenetv2.html
https://pytorch.org/vision/stable/models/squeezenet.html
https://pytorch.org/vision/stable/models/swin_transformer.html
https://pytorch.org/vision/stable/models/vgg.html
https://pytorch.org/vision/stable/models/vision_transformer.html
https://pytorch.org/vision/stable/models/wide_resnet.html
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Testing/Evaluation
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Prototype results: data bias makes generalization hard

Data Set Celeb DF v1 Stylegan2 Stylegan3-t Stylegan3-r DFDC Pt. 0

Celeb DF v1 99.1 44.2 44.2 44.0 51.2

Stylegan2 24.1 98.7 52.9 48.4 57.4

Stylegan3-t 16.7 69.7 96.7 84.0 7.0

Stylegan3-r 16.9 68.0 89.0 97.2 7.0

DFDC Pt. 0 68.1 57.4 57.5 57.5 88.7

Tested on

T
ra

in
e
d

o
n

Accuracy (%) of fine-tuned ResNet
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Testing: How do the best models do??

Great**

**In controlled scenarios
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In closing

• Deepfake detection can be completely adapted to the ML modeling framework

• In theory, deepfake detection is a simple four step process

• Data collection

• Data transformation

• Modeling

• Evaluation

• But the devil is in the details

And Dr. Bernaciak will show you exactly how!
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The GAN problem

Red makes a generator to create deepfakes

Blue makes a detector

Red uses results from blue’s detector to make generator better

Blue uses new red images to improve detector

…

Who wins?
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GAN set-up

Fig. from d2l.ai 

𝑋 ′ = 𝐺(𝑍) = generator fake image

X = real image

𝐷 𝑋 = discriminator in [0,1]

Y=0, Y’=1 (0 is real, 1 is fake)

Data ={ 𝑋𝑖, 0 𝑖=1…𝑚 , 𝑋
′
𝑗 , 1 𝑗=1…𝑛

}

𝐿 𝑥, 𝑦 = loss function

https://d2l.ai/chapter_generative-adversarial-networks/gan.html
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GAN Set-up

Round 0: Generator introduces fakes

Round 1:

Discriminator turn: Use generated data to get best discriminator

 𝐷1| 𝐺0 = 𝑎𝑟𝑔𝑚𝑖𝑛𝐷 𝑖=1
𝑚 𝐿(𝐷 𝑋𝑖 ,0) +  𝑗=1

𝑛 𝐿(𝐷 𝑋𝑗
′ ,1)

Generator turn: Directly try to deceive discriminator

 𝐺1|  𝐷1 = 𝑎𝑟𝑔𝑚𝑖𝑛𝐺  

𝑗=1

𝑛

𝐿( 𝐷1 𝑋𝑗′ ,0)

= 𝑎𝑟𝑔𝑚𝑖𝑛𝐺 𝑗=1
𝑛 𝐿( 𝐷1(𝐺 𝑍𝑗 ),0)

Repeat


