Machine Learning for Deepfake Detection

Shannon K. Gallagher, PhD

skgallagher@sei.cmu.edu

Softw are Engineering Institute Carnegie Mellon University Pittsburgh, PA 15213

Carnegie Mellon University Software Engineering Institute

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution

Copyright 2022 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official Government position, policy, or decision, unless designated by other documentation.

References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by Carnegie Mellon University or its Software Engineering Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

Carnegie Mellon[®] and CERT[®] are registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM22-0747

We learned why we need detectors, but why do we need machine learning?

Image from DW.com. The righthand side image is an example of a deepfake used to impersonate the mayor of Kyiv. Brackets are ours.

Potential Dangers:

- >700k hours of video uploaded to YouTube daily
- Deepfake apps can be run with push of a button
- Deepfakes are generated with ML, logical then to think that we can detect them with ML
- Castle defense

We need scalable detectors!

Carnegie Mellon University Software Engineering Institute

First, a crash course in modeling

Problem set-up: Is this a deepfake?

Model/Alg./Blackbox

Input

Carnegie Mellon University Software Engineering Institute

Problem set-up: Now with some math

Model/Alg./Blackbox

Carnegie Mellon University Software Engineering Institute

We need to first specify a *model* for f(X)

Example: Logistic Regression

$$f(X) = logit^{-1}(X\beta)$$
$$= \frac{1}{1 + e^{-X\beta}}$$

X = vector of features

 β = vector of parameters to learn

Logistic (sigmoid or inverse logit) function

This Photo by Unknown Author is licensed under <u>CCBY</u>

Carnegie Mellon University Software Engineering Institute

Often f(X) is a neural net we need to learn

 $f: \mathcal{X} \to [0,1]$ $X \mapsto f(X; \theta)$

X = image

 θ = parameters we need to *learn*

This Photo by Unknown Author is licensed under <u>CCBY</u>

Statistical and ML models let us estimate θ from data

Data = { $(X_i, Y_i)_{i=1...n}$ } Data , REAL , FAKE , REAL , FAKE

Carnegie Mellon University Software Engineering Institute

We learn by minimizing a loss function

 $\hat{Y}_i = f(\boldsymbol{X}_i, \boldsymbol{\theta})$

 $L(\widehat{Y}_i, Y_i)$ = distance between *predicted* and actual value

$$\widehat{\boldsymbol{\theta}} = argmin_{\boldsymbol{\theta}} \sum_{i=1...n} L\left(\widehat{Y}_{i}, Y_{i}\right)$$

Our favorite loss is binary cross entropy

$$L(y_i, \hat{y}_i) = -[y_i \cdot \log(\hat{y}_i) + (1 - y_i) \cdot \log(1 - \hat{y}_i)]$$

If $y_i = 1$

if \hat{y}_i is close to 1 then term is small if \hat{y}_i is close to 0 then term is large If $y_i = 0$ if \hat{y}_i is close to 1 then term is large

if \hat{y}_i is close to 0 then term is small

Goal: We want loss to be *small*

Carnegie Mellon University Software Engineering Institute Machine Learning for Deepfake Detection Contact: skgallagher@sei.cmu.edu © 2022 Carnegie Mellon University

11

In summary, we need only three things

- 1. We have a set of labeled data
- 2. We specify a function class that has parameters we need to learn
- 3. Using data, we minimize a loss function to estimate parameters in neural net

The devil is in the details

These two are hard problems, but we have lots of help

2. We specify a function class that has parameters we need to learn (e.g. neural net)3. Using data, we minimize a loss function to estimate parameters in neural net

Carnegie Mellon University Software Engineering Institute

So the devil is in the data

Problem 1: Overfitting

Solution: Train and Test Data

Carnegie Mellon University Software Engineering Institute

Train and Test data

Idea: Don't 'train' your model on all the data. Leave some for testing.

Problem 2. Affine transformations

Idea: a deepfake is still a deepfake if the face is big/large, rotated, upside down, off-center, etc.

Solution: Augmented data

Carnegie Mellon University Software Engineering Institute

Problem 3: Spurious features

Idea: Data are biased. Sometimes the machine finds coincidental features, not real ones.

Solution: standardization and masking

Carnegie Mellon University Software Engineering Institute

Standardization

- Align and center faces
- Subtract the 'average'

AVG(REAL) - AVG(FAKE)

Takeaway: we want real differences to stand out

Carnegie Mellon University Software Engineering Institute

Masking

Takeaway: we want *real* differences to stand out

Carnegie Mellon University Software Engineering Institute

There's a very clear pattern in deepfake detection

- 1. Gather labeled data
- 2. Transform data to emphasize useful features and mitigate biases
- 3. Train a model on some data
- 4. Test the model on separate data

We call this process the deepfake detection pipeline

Carnegie Mellon University Software Engineering Institute Machine Learning for Deepfake Detection Contact: skgallagher@sei.cmu.edu © 2022 Carnegie Mellon University

20

Gather labeled data

Carnegie Mellon University Software Engineering Institute

Gathering deepfake data is harder than it may seem

- Ethical issues
- Proprietary issues
- Accessibility issues

Consequence: There are about a dozen datasets the public effectively uses for deepfake detection

Carnegie Mellon University Software Engineering Institute

Popular datasets for deepfake detection

Name	Type	Format	Labels	Size (08)	Size (#)	Resolution	GANF	Gen.	Faces?	Year	Access	Ex.
The fire Galegier												
Flickt-Faces-HQ	. Iniges	sng and json	Real	2 TB total, 90 GB for a condensed awt	210s files and 70k in condensed yst	. Variubie	Ne		Yes	2020	Google Drive	
Desplaie Detection Challenge (DFDC)	Video	Agm	Real/Fake	47008 compressed	1004+ 10± clips 8428 unique actors	1080p (mostly)	yes	1-3	yes	2020	Register on Kaggle	atductorizonal
MetFaces	images	and and (son	Real (paintings of faces)	150B	2621 files	9024x1024	No		Yes (but paintings)	2020	Seo hero	E
DeeperForensics	Video	<i>m</i> 04	Resylfanipulated	30008	60k videos, 500 Individuale		Yes		Yes	2020	Google furm/license	
DeepFake Detection Dataset (DFD) Note: The data is Face Porensica++	Video	hqn	Resphanipulated	-8008 compressed -2 TB new	303 original videos and 3068 manipulated	Vartuble	yes		yes	2018	Google form	

Carnegie Mellon University Software Engineering Institute

Flickr-Face HQ (Real portrait photos)

Carnegie Mellon University Software Engineering Institute

Machine Learning for Deepfake Detection Contact: skgallagher@sei.cmu.edu © 2022 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution

StyleGAN2 (Synthetic individuals, portrait style)

Carnegie Mellon University Software Engineering Institute

Machine Learning for Deepfake Detection Contact: skgallagher@sei.cmu.edu © 2022 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution

Deepfake Detection Challenge (Real)

Carnegie Mellon University Software Engineering Institute

DeepFake Detection Challenge (Fake)

Carnegie Mellon University Software Engineering Institute

Celeb DF v2

Carnegie Mellon University Software Engineering Institute

Machine Learning for Deepfake Detection Contact: skgallagher@sei.cmu.edu © 2022 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution

Abstracting a video/image into computer representation

- Inputs of dimension (W, H, C, F)
 - W = Pixel width
 - H = Pixel height
 - C = Channel (RGB)
 - F = Frame #

Data Transformations

Carnegie Mellon University Software Engineering Institute

Machine Learning for Deepfake Detection Contact: skgallagher@sei.cmu.edu © 2022 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution

How do we extract useful features?

Thought: Only small sections of images/videos are 'deepfaked' Problem: Extract the 'area' where we think deepfake will take place

For us this usually translates to extracting faces

Carnegie Mellon University Software Engineering Institute

Haar cascades

From <u>Ngo et al. (2009)</u>

Carnegie Mellon University Software Engineering Institute

Edge Detectors

From this canny edge detection article

Carnegie Mellon University Software Engineering Institute

Entirely separate Neural Nets

Facial boundary detection from MTCNN

Carnegie Mellon University Software Engineering Institute

Then we can augment the data

From Zeno, Kalinovskiy, and Matveev (2021)

Carnegie Mellon University Software Engineering Institute

Modeling

Carnegie Mellon University Software Engineering Institute Machine Learning for Deepfake Detection Contact: skgallagher@sei.cmu.edu © 2022 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution

Training Models – largely pre-trained Neural Nets

<u>AlexNet</u>	<u>RegNet</u>	
<u>ConvNeXt</u>	<u>ResNet</u>	
<u>DenseNet</u>	<u>ResNeXt</u>	P7/12
EfficientNet	ShuffleNet V2	P5/32
EfficientNetV2	<u>SqueezeNet</u>	P3/8
<u>GoogLeNet</u>	SwinTransformer	P1/2
Inception V3	VGG	
MNASNet	VisionTransformer	
MobileNet V2	Wide ResNet	
MobileNet V3		

37

Testing/Evaluation

Carnegie Mellon University Software Engineering Institute

Prototype results: data bias makes generalization hard

Accuracy (%) of fine-tuned ResNet

	Data Set	Celeb DF v1	Stylegan2	Stylegan3-t	Stylegan3-r	DFDC Pt. 0
_	Celeb DF v1	99.1	44.2	44.2	44.0	51.2
n	Stylegan2	24.1	98.7	52.9	48.4	57.4
	Stylegan3-t	16.7	69.7	96.7	84.0	7.0
ine	Stylegan3-r	16.9	68.0	89.0	97.2	7.0
Tra	DFDC Pt. 0	68.1	57.4	57.5	57.5	88.7

Tested on

Testing: How do the best models do??

Great**

0

0.42842

2

2

ZY

2Y

3 Ntechiah	(a) // 1088	
	G 0.43	1452

WM

**In controlled scenarios

Carnegie Mellon University Software Engineering Institute

Machine Learning for Deepfake Detection Contact: skgallagher@sei.cmu.edu © 2022 Carnegie Mellon University

68 -0

In closing

- Deepfake detection can be completely adapted to the ML modeling framework
- In theory, deepfake detection is a simple four step process
 - Data collection
 - Data transformation
 - Modeling
 - Evaluation
- But the devil is in the details

And Dr. Bernaciak will show you exactly how!

The GAN problem

Red makes a generator to create deepfakes

Blue makes a detector

Red uses results from blue's detector to make generator better

Blue uses new red images to improve detector

Who wins?

. . .

GAN set-up

X' = G(Z) = generator fake image X = real image D(X) = discriminator in [0,1] Y=0, Y'=1 (0 is real, 1 is fake)

Data ={
$$(X_i, 0)_{i=1...m}, (X'_j, 1)_{j=1...n}$$
}
 $L(x, y) = loss function$

Fig. 18.1.1 Generative Adversarial Networks

Fig. from d2l.ai

Carnegie Mellon University Software Engineering Institute Machine Learning for Deepfake Detection Contact: skgallagher@sei.cmu.edu © 2022 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution

GAN Set-up

Round 0: Generator introduces fakes

Round 1:

Discriminator turn: Use generated data to get best discriminator

$$\widehat{D}^{1}|\widehat{G}^{0} = argmin_{D}\sum_{\{i=1\}}^{m} L(D(X_{i}), 0) + \sum_{\{j=1\}}^{n} L(D(X_{j}'), 1)$$

Generator turn: Directly try to deceive discriminator

$$\widehat{G}^{1} | \widehat{D^{1}} = argmin_{G} \sum_{\{j=1\}}^{n} L(\widehat{D}^{1}(X_{j}'), 0)$$
$$= argmin_{G} \sum_{\{j=1\}}^{n} L(\widehat{D}^{1}(G(Z_{j})), 0)$$

Repeat

Carnegie Mellon University Software Engineering Institute Machine Learning for Deepfake Detection Contact: skgallagher@sei.cmu.edu © 2022 Carnegie Mellon University

44