
© 2013 Carnegie Mellon University

The Java Security
Architecture:
How? and Why?

David Svoboda

2

Copyright 2013 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8721-05-C-
0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and
development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the United States Department of Defense.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF
FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE
MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO
FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution except as restricted below.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without
requesting formal permission. Permission is required for any other use. Requests for permission should be directed to the
Software Engineering Institute at permission@sei.cmu.edu.

CERT® is a registered mark of Carnegie Mellon University.

DM-0001401

3

Outline
• Introduction
• The Security Manager
• Policy
• Permissions
• Confused Deputy Problem
• doPrivileged()
• Reduced Security Checks
• Summary

4

Documentation

Secure Coding Guidelines
for the Java Programming
Language, Version 4.0

http://www.oracle.com/technetwork/java/seccodeguide-139067.html
Esp. Chapter 9: Access Control

The Java™ Tutorials
http://docs.oracle.com/javase/tutorial
Esp. Trail: Security Features in Java SE

The Java™ API Documentation
http://docs.oracle.com/javase/7/docs/api/

http://www.oracle.com/technetwork/java/seccodeguide-139067.html
http://www.oracle.com/technetwork/java/seccodeguide-139067.html
http://www.oracle.com/technetwork/java/seccodeguide-139067.html
http://docs.oracle.com/javase/tutorial
http://docs.oracle.com/javase/tutorial
http://docs.oracle.com/javase/7/docs/api/
http://docs.oracle.com/javase/7/docs/api/

5

CERT Java Documentation
The CERT™ Oracle™ Secure Coding
Standard for Java
by Fred Long, Dhruv Mohindra, Robert C.
Seacord, Dean F. Sutherland, David Svoboda

Rules available online at
www.securecoding.cert.org

Java Coding Guidelines
by Fred Long, Dhruv Mohindra, Robert C.
Seacord, Dean F. Sutherland, David Svoboda

http://www.securecoding.cert.org/
http://www.securecoding.cert.org/

6

Privilege System
Integrated with a larger system
 Delegation of authority

Java privilege system
 Grants different privileges to different code segments in the

same program

Other examples:
• UNIX privileges and permissions
• Windows NT-based privileges
• Android Permission System

7

Design: Privilege Separation
Privilege Separation

▪ Each component possesses the minimum
privileges required for it to function

▪ Consequence: component cannot perform
other privileged operations

– Limits impact of errors and of successful attacks

• 16. Avoid granting excess privileges

8

Design: Privilege Minimization
Privilege Minimization

▪ Privileges are disabled most of the time
▪ Privileges are enabled only when required
▪ Consequences:

– Reduces amount of privileged code
• Easier to get it right
• Reduces cost of review

– Temporally limits certain attack opportunities

 17. Minimize privileged code

• 19. Define custom security permissions for fine-grained security

9

Design: Distrustful Decomposition
Distrustful Decomposition

▪ Components have limited trust in each other
– Similar to compartmentalized security

▪ Consequence: Must manage interactions
between differently privileged components with
care

– Canonicalize, sanitize, normalize, and validate inputs
• Goal: Limit potential attacks

– Sanitize outputs
• Goal: Prevent information and capability leaks

A method with certain privileges may be invoked by another method that

lacks those privileges. Should the first method proceed?

10

Usage
Java’s privilege model is used in
 Applets
 Java Web Start (JWS) applets
 Servlets

– Tomcat
– Jetty

 Application servers
– WebSphere
– Jboss/WildFly

In Java’s privilege model
 Execution of untrusted code is permitted
 Untrusted code unaware of restrictions

– Doesn’t need to know Security API

11

Security
Manager

Access
Controller

Cast of Characters
Policy

Protection
Domains

Code
Source

URL

Certificates

Permissions

ClassLoader
(abstract)

SecureClassLoader
(contains CodeSource)

URLClassLoade
r

(contains URL)

Other class loaders

Access
Control
Context

Package java.security.

Package java.lang

12

Outline
• Introduction
• The Security Manager
• Policy
• Permissions
• Confused Deputy Problem
• doPrivileged()
• Reduced Security Checks
• Summary

13

SecurityManager
Class in java.lang
 Public interface to Java’s security model
 Enforces a security policy
 Provides many check*() methods

Each check*() method checks to see if the calling program

is permitted to perform some action.
 If permitted, check*() returns silently
 Otherwise, throws a SecurityException

14

System.SecurityManager 1

Static field in the java.lang.System class

Indicates the SecurityManager that is currently in effect
 (any SecurityManager object that is not the “system

security manager” is ignored)

Can be unset (null)

Managed by static getter/setter methods:

▪ System.getSecurityManager()
▪ System.setSecurityManager(SecurityManager s)

15

System.SecurityManager 2

Applets run with the default system security manager

Applications can be run with no security manager

 java App.java

But they can be explicitly run with the default security manager

 java -Djava.security.manager App.java

or a custom security manager

 java -Djava.security.manager=MySecMgr \
 App.java

16

System.SecurityManager 3

Any method that performs privileged operations should first
make sure its calling program is permitted to execute these
operations

System.getSecurityManager().check*();

Don’t forget to check the system security manager for null first!

Most methods assume that if system security manager is null,

all operations are permitted

17

Example: FileInputStream
public FileInputStream(File file)
 throws FileNotFoundException {
 String name = (file != null ? file.getPath() : null);
 SecurityManager security =
 System.getSecurityManager();
 if (security != null) {
 security.checkRead(name);
 }
 if (name == null) {
 throw new NullPointerException();
 }
 fd = new FileDescriptor();
 fd.incrementAndGetUseCount();
 open(name);
}

Security check before open

Permitted if no system
security manager present

18

Sensitive Operations
• Open a file
• Open a network socket
• Create a new window
• Read a system property
• Write a system property
• Change or remove the system security manager
• Load native libraries
• Load new Java code
• Access classes in certain packages (eg sun.*)

19

Outline
• Introduction
• The Security Manager
• Policy
• Permissions
• Confused Deputy Problem
• doPrivileged()
• Reduced Security Checks
• Summary

20

Policy 1

Indicates what a program is allowed to do

Enforced by the security manager

Only one policy object in effect; it is returned by

 java.security.Policy.getPolicy()

21

Policy 2

All applets and applications run with the default policy, which
is very restrictive

The policy is ignored, however, if no security manager is
installed

An application can be run with a custom policy:

 java -Djava.security.manager \
 -Djava.security.policy=my.policy \
 Application.java

22

Default Policy File
// Standard extensions get all permissions by default
grant codeBase "file:${{java.ext.dirs}}/*" {
 permission java.security.AllPermission;
};
grant codeBase "file:/usr/lib/jvm/
 java-7-openjdk-common/jre/lib/ext/*“ {
 permission java.security.AllPermission;
};
…

grant {
…
 // allows anyone to listen on un-privileged ports
 permission java.net.SocketPermission "localhost:1024-", "listen";

 // "standard" properies that can be read by anyone
 permission java.util.PropertyPermission "java.version", "read";
 permission java.util.PropertyPermission "java.vendor", "read";
…
};

Grants all permissions to all paths containing
core Java libraries and extensions

Some other properties
that all code can read:

• os.version
• file.separator
• path.separator
• line.separator

23

Default Policy
Permissions that the default policy did NOT grant
(except to core libraries):

• Access to the filesystem
• Open a network socket on a privileged port (<1024)
• Access certain system properties

• java.class.path
• java.home
• user.dir
• user.home
• user.name

• Change or remove the system security manager
• Load new Java code
• Access classes in certain packages (e.g., sun.*)

24

Applet Policy
Remote applets can do the following:
 Open a network socket to their origin host (e.g., phone

home)
 Access public methods of other active applets

But they can’t do the following:
 Access the filesystem
 Open a network socket anywhere besides their origin
 Load native libraries
 Create a ClassLoader

Local applets and Web Start apps have fewer

restrictions

25

Policy Contents
Policy

Protection
Domains

Code
Source

URL

Certificates

Permissions

26

ProtectionDomain

Used to partition the components of a program into

differing levels of security

A policy contains a set of protection domains

Each protection domain contains
 Code source
 Permissions

27

CodeSource

Used in a protection domain (which is part of a

security policy) to indicate where code originates

A code source contains
 URL indicating where the code originated
 List of certificates indicating who vouches for the code

– Could be empty

28

Class Loaders
Responsible for loading all classes needed by the program

All class loaders inherit from java.lang.ClassLoader

Every object can access its class using
 Object.getClass()

Every class can access its class loader using
 Class.getClassLoader()

Since every class loader is itself a class, it has its own class
loader, so class loaders have a “loading tree”

Class loaders also have an inheritance tree with
java.lang.ClassLoader at the root

29

Class Loader Inheritance
ClassLoader

(abstract)

SecureClassLoader
(contains CodeSource)

URLClassLoader
(contains URL)

Other class loaders

30

Class Loaders
Application and applet class loaders inherit from
URLClassLoader

So each class loader can associate a class with a
CodeSource and consequently with the Permissions
associated with that class by the security policy

31

Putting the Pieces Together
To check if a method has permission to
do something:
1. Get its associated class
2. Get that class’s class loader
3. Get the Permissions that the class

loader associated with the class
4. If the requested permission isn’t listed,

throw a security exception

OK, but how do we figure this out?

32

Outline
• Introduction
• The Security Manager
• Policy
• Permissions
• Confused Deputy Problem
• doPrivileged()
• Reduced Security Checks
• Summary

33

Permissions
Permission

Collection

Permissions

Permission

All
Permission

Basic
Permission

Audio
Permission

Reflect
Permission

File
Permission

34

FilePermission

Stores an absolute path to file or directory that
permissions apply to

Special String Meaning
/* All files in that directory
/- All files in that directory and

all subdirectories
<<ALL FILES>> All files

35

FilePermission
Also indicates which permissions are granted

Permission Meaning Method
read May read path
write May write to path
execute May execute

program in path
Runtime.exec()

delete May delete path File.delete()

readlink May follow
symbolic link

FileSystemProvider
.readSymbolicLink()

36

Permission Implication
One permission can imply another:
 boolean Permission.implies(Permission p)

For instance,
 java.security.FilePermission \
 "/home/*", "read,write"
implies
 java.security.FilePermission \
 "/home/.login", "read"

37

Permission Guard
Every permission object supports the
java.security.Guard interface

which provides one method:
 void checkGuard(Object object)

Determines whether or not to allow access to the

guarded object. Returns silently if access is
allowed. Otherwise, throws a
SecurityException

38

Outline
• Introduction
• The Security Manager
• Policy
• Permissions
• Confused Deputy Problem
• doPrivileged()
• Reduced Security Checks
• Summary

39

Privileges Can Vary per Class
If a and b are objects of the same class, they will always have

the same privileges

But if they are different classes, they may have differing

privileges
• even if a is a subclass of b
• even if they are in the same package
• in the same JVM

Object privileges are determined by their classes’
CodeSource

Classes in the Java core library have full privileges

40

Privilege Security Issues
Privilege escalation vulnerability
 Restricted code manages to execute code in an

unrestricted (privileged) context

Less privileged methods can invoke more privileged
methods

More privileged methods can invoke less privileged
methods unknowingly:
 Unprivileged subclasses
 Interfaces

– Callbacks
– Event handlers

41

Confused Deputy Problem 1

Q: If class A is unprivileged and class B is privileged, how do
we make sure that class A doesn’t trick class B into doing
something privileged on A’s behalf?

A B

42

Confused Deputy Problem 2

Security
Manager

A B

A: Require that all callers are privileged before proceeding.

43

Mitigating Confused Deputy
For a sensitive operation to proceed, every method on the call

stack must be allowed to do it

This stops unprivileged classes from “hiding” behind privileged
classes when trying to do something malicious

Enables privileged classes to publish sensitive methods,
because the security check will prevent unprivileged
classes from using them

Sensitive methods can “take care of themselves”

Encourages Distrustful Decomposition

OK but is there a way to perform sensitive operations safely?

44

AccessControlContext 1
For a sensitive operation to proceed, every method on the call

stack must be allowed to do it

This class embodies the permissions that are allowed for the

current method, as well as every calling method
This is the “intersection” of the privileges of every class in the

call stack.

 void checkPermission(Permission perm)

If the access control context contains the given permission,

returns silently. If not, throws an
AccessControlException

Hey wait! Can’t an attacker start a new thread with a malicious
Runnable object, which would run with full privileges?

45

AccessControlContext 2
For a sensitive operation to proceed, every method on the call

stack must be allowed to do it

Every Thread also has a private
inheritedAccessControlContext field, which contains
the context it was created in

The AccessController can access it using this method:

 static native AccessControlContext
getInheritedAccessControlContext();

So the context is preserved not only across method

invocations but also across thread creation

46

AccessControlContext 3
For a sensitive operation to proceed, every method on the call

stack must be allowed to do it

 void checkPermission(Permission perm)

If the access control context contains the given permission,

returns silently
 If not, throws an AccessControlException

This call creates an AccessControlContext object from

the current stack:

AccessControlContext acc =
AccessController.getContext();

47

AccessController.checkPermission()

public static void checkPermission(Permission perm)
 throws AccessControlException
{
…
 if (perm == null) {
 throw new NullPointerException("permission can't be null");
 }

 AccessControlContext stack = getStackAccessControlContext();
 // if context is null, we had privileged system code on the stack
 if (stack == null) {
 ...lots of debug code
 return;
 }

 AccessControlContext acc = stack.optimize();
 acc.checkPermission(perm);
}

This method is private,
static, and native

48

AccessController

java.security.AccessController
 Actual enforcer of Java’s security model

java.lang.SecurityManager is an

“ambassador”
 Most SecurityManager methods simply

delegate their work to AccessController
methods

49

SecurityManager Methods
public void checkRead(FileDescriptor fd) {
 if (fd == null) {
 throw new NullPointerException(
 "file descriptor can't be null");
 }
 checkPermission(
 new RuntimePermission("readFileDescriptor"));
}

public void checkPermission(Permission perm) {
 java.security.AccessController.checkPermission(perm);
}

public Object getSecurityContext() {
 return AccessController.getContext();
}

This actually returns an
AccessControlContext

50

AccessController methods

Method Documentation
getContext() Returns the context (e.g.,

permissions) for the current stack
checkPermission() Validates that the current stack has

the given permission
doPrivileged() Executes a privileged action
doPrivilegedWithCombiner() Executes a privileged action

51

Outline
• Introduction
• The Security Manager
• Policy
• Permissions
• Confused Deputy Problem
• doPrivileged()
• Reduced Security Checks
• Summary

52

AccessController.doPrivileged()

Executes a block of code with “elevated” privileges

Java’s analogue to UNIX’s setuid feature… sort of

Specifically instructs AccessController to not check the

stack beyond the current method

Does check immediate caller, but no higher

This prevents untrusted code from executing malicious code

inside a doPrivileged() block

53

AccessController.doPrivileged()

Permission perm;

Object f() {
 AccessController.checkPermission(perm);
 return g();
}

Object g() {
 AccessController.checkPermission(perm);
 return AccessController.doPrivileged(
 new PrivilegedAction<Object>() {
 public Object run() {
 return h();
 }});
}

Object h() {
 AccessController.checkPermission(perm);
 ...
}

Checks permissions of g() and f()

Checks permissions of f()

Checks permissions of h() and g() but not f()

54

doPrivileged() Features

Always returns an object; the type is a generic parameter of
the PrivilegedAction interface

Use the Void type for blocks that don’t return anything

Privileged code must not throw a checked exception (because
PrivilegedAction.run() has no throws declaration)

Use a PrivilegedExceptionAction to run an action that
can throw an exception

Can take an extra AccessControllerContext indicating

an arbitrary context to limit items
 Analogous to Unix setuid-non-root (sort of)
If no context given, analogous to UNIX setuid-root (sort of)

55

Other Contexts
Permission perm;
AccessControlContext context = …

Object f() {
 AccessController.checkPermission(perm);
 return g();
}

Object g() {
 AccessController.checkPermission(perm);
 return AccessController.doPrivileged(
 new PrivilegedAction<Object>() {
 public Object run() {
 return h();
 }}, context);
}

Object h() {
 AccessController.checkPermission(perm);
 ...
}

Checks permissions of g() and f()

Checks permissions of f()

Checks permissions of h() and g() and context

56

doPrivileged() Security
doPrivileged() can’t be used by unprivileged

code to gain privileges

It can be used by privileged code to ignore the

restrictions imposed by unprivileged code that
called the privileged code

So privileged methods that invoke doPrivileged()

code blocks can be subject to the “confused
deputy” problem

57

doPrivileged() Guidelines

Guideline 9-3: Safely invoke
java.security.AccessController.doPrivileged
Guideline 9-4: Know how to restrict privileges through
doPrivileged
Guideline 9-7: Understand how thread construction
transfers context

SEC00-J. Do not allow privileged blocks to leak sensitive
information across a trust boundary
SEC01-J. Do not allow tainted variables in privileged blocks

17. Minimize privileged code

https://www.securecoding.cert.org/confluence/display/java/SEC00-J.+Do+not+allow+privileged+blocks+to+leak+sensitive+information+across+a+trust+boundary
https://www.securecoding.cert.org/confluence/display/java/SEC00-J.+Do+not+allow+privileged+blocks+to+leak+sensitive+information+across+a+trust+boundary
https://www.securecoding.cert.org/confluence/display/java/SEC00-J.+Do+not+allow+privileged+blocks+to+leak+sensitive+information+across+a+trust+boundary
https://www.securecoding.cert.org/confluence/display/java/SEC01-J.+Do+not+allow+tainted+variables+in+privileged+blocks
https://www.securecoding.cert.org/confluence/display/java/SEC01-J.+Do+not+allow+tainted+variables+in+privileged+blocks
https://www.securecoding.cert.org/confluence/display/java/SEC01-J.+Do+not+allow+tainted+variables+in+privileged+blocks

58

Outline
• Introduction
• The Security Manager
• Policy
• Permissions
• Confused Deputy Problem
• doPrivileged()
• Reduced Security Checks
• Summary

59

Reduced Security Checks 1

Some core methods use reduced security checks

Instead of checking the permissions for all callers in

the call stack, they check the permissions only for
the immediate caller

Any method that invokes one of these methods may

be vulnerable to “confused deputy”

 18. Do not expose methods that use reduced security checks to

 untrusted code

60

Reduced Security Checks 2

Method
java.lang.Class.newInstance

java.lang.reflect.Constructor.newInstance

java.lang.reflect.Field.get*

java.lang.reflect.Field.set*

java.lang.reflect.Method.invoke

java.util.concurrent.atomic.AtomicIntegerFieldUpdater.newUpdater

java.util.concurrent.atomic.AtomicLongFieldUpdater.newUpdater

java.util.concurrent.atomic.AtomicReferenceFieldUpdater.newUpdater

Guideline 9-10: Be aware of standard APIs that perform Java
language access checks against the immediate caller

61

Reduced Security Checks 3

Method
java.lang.Class.forName

java.lang.Package.getPackage(s)

java.lang.Runtime.load

java.lang.Runtime.loadLibrary

java.lang.System.load

java.lang.System.loadLibrary

java.sql.DriverManager.getConnection

java.sql.DriverManager.getDriver(s)

java.sql.DriverManager.deregisterDriver

java.util.ResourceBundle.getBundle

Guideline 9-9: Safely invoke standard APIs that perform tasks
using the immediate caller’s class loader instance

62

Reduced Security Checks 4

Method
java.lang.Class.getClassLoader

java.lang.Class.getClasses

java.lang.Class.getField(s)

java.lang.Class.getMethod(s)

java.lang.Class.getConstructor(s)

java.lang.Class.getDeclaredClasses

java.lang.Class.getDeclaredField(s)

java.lang.Class.getDeclaredMethod(s)

java.lang.Class.getDeclaredConstructor(s)

java.lang.ClassLoader.getParent

java.lang.ClassLoader.getSystemClassLoader

java.lang.Thread.getContextClassLoader

Guideline 9-8: Safely
invoke standard APIs
that bypass
SecurityManager
checks depending on
the immediate caller’s
class loader

63

Outline
• Introduction
• The Security Manager
• Policy
• Permissions
• Confused Deputy Problem
• doPrivileged()
• Reduced Security Checks
• Summary

64

Summary 1

Java’s security architecture is designed to be
 Extendable
 Modular
 Behind-the-scenes

Encourages the use of these secure design

patterns:
 Privilege separation
 Privilege minimization
 Distrustful decomposition

65

Summary 2

Security architecture is NOT designed to be
 Modifiable
 Familiar

– Analogies with UNIX privileges or setuid are
very tenuous

Watch out for
 doPrivileged()
 Methods that use reduced security checks

66

For More Information

Visit CERT® websites:
http://www.cert.org/secure-coding
https://www.securecoding.cert.org

Contact Presenter
David Svoboda
svoboda@cert.org
(412) 268-3965

Contact CERT:
Software Engineering Institute
Carnegie Mellon University
4500 Fifth Avenue
Pittsburgh PA 15213-3890
USA

http://www.cert.org/secure-coding/
https://www.securecoding.cert.org/
mailto:svoboda@cert.org

	The Java Security Architecture:�How? and Why?�
	Slide Number 2
	Outline
	Documentation
	CERT Java Documentation
	Privilege System
	Design: Privilege Separation
	Design: Privilege Minimization
	Design: Distrustful Decomposition
	Usage
	Cast of Characters
	Outline
	SecurityManager
	System.SecurityManager 1
	System.SecurityManager 2
	System.SecurityManager 3
	Example: FileInputStream
	Sensitive Operations
	Outline
	Policy 1
	Policy 2
	Default Policy File
	Default Policy
	Applet Policy
	Policy Contents
	ProtectionDomain
	CodeSource
	Class Loaders
	Class Loader Inheritance
	Class Loaders
	Putting the Pieces Together
	Outline
	Permissions
	FilePermission
	FilePermission
	Permission Implication
	Permission Guard
	Outline
	Privileges Can Vary per Class
	Privilege Security Issues
	Confused Deputy Problem 1
	Confused Deputy Problem 2
	Mitigating Confused Deputy
	AccessControlContext 1
	AccessControlContext 2
	AccessControlContext 3
	AccessController.checkPermission()
	AccessController
	SecurityManager Methods
	AccessController methods
	Outline
	AccessController.doPrivileged()
	AccessController.doPrivileged()
	doPrivileged() Features
	Other Contexts
	doPrivileged() Security
	doPrivileged() Guidelines
	Outline
	Reduced Security Checks 1
	Reduced Security Checks 2
	Reduced Security Checks 3
	Reduced Security Checks 4
	Outline
	Summary 1
	Summary 2
	For More Information

