

Software Engineering Institute
Carnegie Mellon University
4500 Fifth Avenue
Pittsburgh, PA 15213-2612

Phone: 412-268-5800
Toll-free: 1-888-201-4479

www.sei.cmu.edu

Training and Awareness

ABSTRACT: This article provides guidance on training and awareness opportu-
nities in the field of software security. It examines the state of the practice of
commercial/non-profit software security training and awareness offerings and
makes recommendations for goals and curricula contents.

OVERVIEW
This document is intended to provide guidance on training and awareness oppor-
tunities in the field of software security. It examines the state of the practice of
commercial/non-profit software security training and awareness offerings and
makes recommendations for goals and curricula contents.

An effective training program is vital to adopting new software development
practices. And, because software security is still an emerging and rapidly chang-
ing field, there are few experienced developers who are familiar with the sorts of
practices described here in the Build Security In (BSI) portal. As such, a clearly
defined training and awareness campaign is particularly important for this effort.
Indeed, Microsoft considers developer training to be a vital component of its
Security Development Lifecycle (SDL), and makes annual training a require-
ment for all of its software engineers [Howard 2006].

A commonly heard gripe in the industry is that academic curricula do not ade-
quately address software security issues. We take a brief look here at offerings
from universities and colleges in the United States, in particular those associated
with the National Security Agency (NSA) and Department of Homeland Security
(DHS) Centers for Academic Excellence in Information Assurance. When possi-
ble, it is a good idea to guide training and choice of academic programs by a rec-
ognized common body of knowledge (CBK). The DHS-sponsored Software As-
surance Curriculum Project (SwACP) in 2010 released a Master of Software
Assurance (MSwA) Reference Curriculum, which contains a CBK [Mead 2010].
The curriculum is recognized by the IEEE Computer Society (IEEE-CS) and
Association for Computing Machinery (ACM) as appropriate for a master’s pro-
gram in software assurance. This formal recognition signifies to the educational
community that the MSwA Reference Curriculum is suitable for creating gradu-
ate programs or tracks in software assurance. February 2012 saw the release of
the strawman draft of the Computer Science Curricula 2013 (CS2013) by the

Carol Sledge

Ken van Wyk

September 2005

ACM and the IEEE-CS [Sahami 2012]. Information Assurance and Security is
one of two new knowledge areas in CS2013. Information Systems Security Cer-
tification Consortium, Inc. (ISC)²® develops and maintains the (ISC)² CBK, a
compendium of information security topics.

STATE OF THE PRACTICE—COMMERCIAL/NON-PROFIT
To assess the state of commercial training offerings available today, we exam-
ined the publicly available documentation, syllabuses, etc. from numerous com-
mercial/non-profit organizations. We looked for training that emphasizes as
much of the BSI concepts as possible, including the best practice activities,
knowledge base topics, and available tools. We also looked for training that is
largely process agnostic, as are the concepts laid out in BSI.

The good news is that there are indeed many offerings to choose from. They
range in size and scope, and they cover a broad spectrum of aspects of software
security. The biggest strength in the available courses is that most of them pro-
vide a good amount of detail on the technical nature of current problems and
available solution sets. There are also more role-based offerings, such as the Cer-
tified Secure Software Lifecycle Professional (CSSLP®) offered by (ISC)².

That said, the bad news is that a number of the available commercial courses
appear to suffer from various shortcomings, at least with regard to the approach-
es presented in BSI. What follows is a brief description of those shortcomings,
along with recommendations on how to avoid or alleviate them.

• Security software vs. software security. According to their syllabuses, many
of the software security training offerings spend a great deal of time describ-
ing security functionality (the use of encryption, identification and authenti-
cation mechanisms, etc.). Although these security functions are vital ingre-
dients of software security, they are essentially security ingredients. The
topic of software security goes far beyond a simple list of security ingredi-
ents.

• Knowledge vs. practices. Similarly, many of the training offerings focus on
individual problems (e.g., buffer overflows) and their respective point solu-
tions. Avoiding these pitfalls is also vital to writing secure software, but
much else needs to be covered for the training to be as effective as it needs
to be.

• Network and operating system focus. Although not as common as the above
two shortcomings, some of the available training offerings appear to present
a network and operating system centric point of view to the issues of devel-
oping secure software.

1 | TRAINING AND AWARENESS

While all of the above elements are important to cover in a software security
training program, what we feel is principally lacking in a number of the course
offerings is adequate coverage of security processes that are necessary to incor-
porate software security into the development processes and practices. These
should be at least similar to those presented in the Best Practices area of BSI.
Further, an emphasis should be placed on some high-value best practice activi-
ties such as abuse case analysis, architectural risk analysis, risk-based testing,
and code review practices and tools.

At least the situation is steadily improving, with numerous high-quality courses
recently becoming available. There are improved courses and certifications, and,
as mentioned earlier, the more holistic software development security assurance
process embodied in Microsoft’s Security Development Lifecycle. SDL embeds
security processes into the software development lifecycle to make it more se-
cure. These security processes include, “security requirements, threat modeling,
static analysis, dynamic analysis, security review and product incident response”
[Chess 2012]. Additionally, Microsoft makes SDL information and tools availa-
ble to (external) developers on its website and blog.

The Denim Group has donated its ThreadStrong secure software development
courses to U.S. universities to help students learn how to build more secure
software.1

The software assurance community as a whole is building upon earlier efforts
and provides information, methods and frameworks, which can be used by indi-
viduals and organizations, and incorporated into course offerings (non-academic
and academic.) According to “The Software Industry’s ‘Clean Water Act’ Alter-
native,” Robert A. Martin and Steven M. Christey the Common Weakness Enu-
meration (CWE)2 offers the industry a list of potentially dangerous software con-
taminants, and the Common Weakness Scoring System (CWSS) and the
Common Weakness Risk Analysis Framework (CWRAF) provide a standard
method to identify which of these contaminants are most harmful to a particular
organization, given the software’s intended use. CWE, CWSS, and CWRAF ef-
forts are being adopted by the community and integrated into static-analysis of-
ferings and other solutions” [Martin 2012]. Among others, “SANS publically

1 More information including how universities can apply for a complimentary license is available on
the CERT website.

2 CWE is co-sponsored by MITRE and the National Cyber Security Division of the U.S. Department
of Homeland Security.

2 | TRAINING AND AWARENESS

declared support and plans to incorporate CWSS. Likewise … EC-Council…and
OWASP all declared their plans to work on using and evolving CWRAF to meet
… community needs for a software error scoring system”[Martin 2012]. The
Top 25 CWEs represent the most significant exploitable software constructs that
have made software so vulnerable. Addressing these will go a long way in secu-
rity software, both in development and in operation.3 The CWE site also contains
other information for self-directed training.

STATE OF THE PRACTICE—ACADEMIC
Within academia, a number of colleges and universities are now offering option-
al senior-level undergraduate and graduate courses in software security. These
courses tend to be broader in focus than their commercial/non-profit counter-
parts, in that they include discussions on the sorts of best practice activities men-
tioned above in addition to discussions of common vulnerabilities. Additionally,
a number of community colleges may also offer courses in this area. A number
of these community college offerings are aligned with commercial offerings
and/or certifications. Departments and programs such as Computer Information
Systems are likely to teach applications development. To facilitate more com-
munity college offerings, the Department of Homeland Security (DHS) spon-
sored the Software Assurance Curriculum Project (SwACP), which has produced
a report [Mead 2011] and article [Hawthorne 2012] focusing on community col-
lege courses for software assurance. The courses are intended to provide sup-
plementary education for students with prior undergraduate technical degrees
who wish to become more specialized in software assurance or to provide stu-
dents with fundamental skills for continuing with graduate-level education. Since
community colleges exist to serve their immediate constituencies, industry may
find faculty and programs willing to incorporate additional secure software top-
ics and courses. Community colleges are of particular importance, as many prac-
titioners utilize these (less expensive) community college offerings for additional
training—choosing courses based on their particular needs, and not necessarily
with the intent of obtaining (another) degree or certification.

With respect to four-year undergraduate and graduate schools, one excellent
source of programs are those academic institutions that have obtained (and are

3 See the list of Top 25 CWE Most Dangerous Software Errors on the Software Assurance Communi-
ty Resources and Information Clearinghouse website for more.

3 | TRAINING AND AWARENESS

currently designated as) Centers for Academic Excellence (CAE) in Information
Assurance Education (IAE). This designation is jointly sponsored by the Nation-
al Security Agency (NSA) and the Department of Homeland Security (DHS) and
awarded for a period of five years. Recently CAEs in IA two-year Education and
Training were added. The current4 list of CAE/IAE academic institutions (those
in 42 U.S. states, plus the District of Columbia and Puerto Rico) can be obtained
at the NSA website.

As an example, selecting Stevens Institute of Technology (NJ) from that list on
the NSA website will take you to the Center for the Advancement of Secure Sys-
tems and Information Assurance (CASSIA). Scrolling down to “Academic Pro-
grams” will show a list of undergraduate degree programs, master’s programs,
doctoral programs, and graduate certificates available. Knowing the names of the
programs and certificates can help locate the specific information in the various
departmental sites.

As was the case for appropriate community college courses, some professionals
may choose to take particular courses for continuing professional develop-
ment/education purposes. For those in senior level positions or those who al-
ready have advanced degrees, it may be that they choose to take courses for pro-
fessional enhancement, rather than matriculate for a degree or certification.

There is certainly room for optimism in these findings, while at the same time
there is also room for improvement. For example, a strong argument for integrat-
ing discussions of secure design processes, avoiding buffer overflows, and simi-
lar topics into the more general computer science courses could easily be made;
why not teach students to avoid strcpy() and the like in an Introduction to C
course? Integrating software security into the entire curriculum is bound to be
more effective than offering it as a senior-level elective course. Fortunately,
some faculty are doing this. For example, Dr. Steven Hadfield and other faculty
within the Department of Computer Science at the U. S. Air Force Academy
have used a cross-curricular approach to integrate software assurance and secure
programming concepts across their course offerings [Hadfield 2011, 2012]. Ad-
ditionally, there are other efforts to provide faculty with materials. Dr. Blair Tay-
lor of Towson University led a group of educators to produce modules related to
security injections. "Security injections are strategically-placed security-related
modules for existing undergraduate classes. The combination of lab exercises
and student-completed checklists in these security injections has helped us teach

4 As of July 3rd, 2012.

4 | TRAINING AND AWARENESS

security across the curriculum without adding extra pressure on already-
overburdened undergraduate degree programs" [McKay 2012].5 These materials
are available at the Towson University website .

For some organizations, it may make sense to partner with academic institutions
or faculty to offer specific courses, training, etc. Large organizations may decide
to go even further. Recently Northrop Grumman and the University of Maryland
teamed to “develop a curriculum to produce graduates who can enter the work-
force with an eye toward cybersecurity defense.” Northrop Grumman will pro-
vide financial support and, in the fall of 2013, the university will “develop 45
students per year in the Advanced Cybersecurity Experience for Students
(ACES) program. The students, from majors including computer science, engi-
neering, business, public policy and social sciences, will live together in a
“learning-living” program and use state-of-the-art laboratories in the yearlong
capstone project” [McKay 2012].

BEST PRACTICES IN TRAINING AND AWARENESS
As stated above, we feel that a best practice software security training program
today should encompass the various best practices, knowledge bases, and tools
presented in BSI. Further, training and awareness initiatives should plan for—at
a minimum—three target audiences: senior decision makers, engineering man-
agers, and software developers. Each of the audiences should receive training
that addresses its needs, naturally. The most fundamental goals and objectives
for each audience follow.

• Senior decision makers
For a software security initiative to succeed in an organization, the organiza-
tion’s senior decision makers need to support the initiative with their buy-in.
Therefore, an awareness training program should be presented to them that
clearly articulates the need for software security and the difficulties faced in
delivering secure software. The training should also succinctly describe the
best practices necessary to accomplish those deliveries.

• Engineering managers
Likewise, engineering or software development managers (across all of the
organizations and disciplines involved in the overall development process)

5 This work was funded under National Science Foundation grant DUE-0817267.

5 | TRAINING AND AWARENESS

also need to buy into a software security initiative. Additionally, however,
they need to have a thorough understanding of the software security practic-
es that their organization will be incorporating into its development process-
es and specifically what their sub-organizations will need to do as a result.
This is essential for managers to understand for purposes of project planning
and execution. Thus, managers should be provided training content that de-
scribes the need for software security, as well as a thorough description and
understanding of their organization’s software security practices. The train-
ing should emphasize, where possible and feasible, the levels of effort for
each software security activity involved, how to identify areas for improving
existing software security practices (e.g., evaluate and improve), as well as
methods for measuring a development organization’s software security ef-
fectiveness. It may be beneficial to tailor the training content by audience
somewhat—e.g., development managers are likely to have different specific
needs and interests than test and quality assurance managers. In this case, the
disciplines that each audience are directly responsible for should be empha-
sized and covered in more detail than the others.

• Software developers
Software developers should receive training that provides them with a con-
ceptual foundation of software security, its importance to their organization,
and the practices used within their organization. They should gain practical
knowledge about the benefits of software security. Additionally, developers
should receive technology-specific security training in each of the technolo-
gies that are involved in designing, coding, and testing software in the tech-
nologies that they work with. In the same manner that the training for the
management may be tailored by the audience’s disciplines, the content for
software developers must emphasize the aspects of software development
that they work on directly. Further, it should be replete with code examples
and hands-on exercises/labs to help reinforce the course material [Howard
2006].

With these goals and objectives in mind, the following outlines are presented as
guidelines for developing organizational curricula for software security training.

Training Courses and Outlines by Audience
For each of the three audiences, it is particularly useful to clearly address the
rationale for each security activity. Where feasible, consider demonstrating the
activity through exercises, examples, and in-depth anecdotes from case studies.

Software security awareness training for senior decision makers should look sim-
ilar to the following:

6 | TRAINING AND AWARENESS

Introduction to software security problems
This training module should present an overview of the security problems faced
today by software developers. Its aim should be to convince the audience why
traditional and largely separate approaches to information security and software
development are flawed from a software security perspective. Further, it should
present an accurate business case that weighs the often conflicting goals of de-
velopment and security.

1. Shortcomings of traditional perimeter-based network security solutions
2. Common software weaknesses
3. Balancing the different goals of security and software development

Software security activities to integrate into the SDLC
This module should provide a basic conceptual overview of software security
activities and their impact on the SDLC for the senior decision maker audience.
It should principally focus on describing the activities and their associated
costs—monetary and schedule.

1. Requirements and specifications activities
2. Design time activities
3. Implementation activities
4. Test planning and testing
5. Deployment, operations, and maintenance issues
Software security awareness training for engineering management, as stated,
should be substantially similar to that provided to the senior decision makers, but
with a somewhat different core message. Specifically, instead of solely aiming to
convince the audience of the merits of software security, it should also ensure
that the managers have the necessary knowledge to implement and measure an
appropriate set of software security practices. Their training outline should look
similar to the following:

Introduction to software security problems
This training module should delve into the security problems faced today by
software developers. Its aim should be to convince this management audience
why traditional and largely separate approaches to information security and
software development are flawed. Further, it should present an accurate business
case that weighs the often conflicting goals of development and security. For the
engineering management audience, particular attention should be paid to cost vs.
benefit information, as they’re often the people within an organization that are
the most skeptical about the benefits of adding more activities to the SDLC pro-
cess.

7 | TRAINING AND AWARENESS

1. Shortcomings of traditional perimeter-based network security solutions
2. Common software weaknesses
3. Balancing the different goals of security and software development

Software security activities to integrate into the SDLC
This module should be the core of the training content provided to the engineer-
ing management audience. For the managers, particular focus should be given to
describing the processes involved and how to implement them, as well as meth-
ods of measuring their teams’ progress and successes. Additionally, realistic
program management information should be provided, such as scheduling issues
and typical level of effort required for each activity.

1. Requirements and specifications activities
2. Design time activities
3. Implementation activities
4. Test planning and testing
5. Deployment, operations, and maintenance issues

Many of the same topics covered in the above two training curricula should also
be covered for the software developer audience; however, the focus here should
shift dramatically from the conceptual to the technical. A conceptual foundation
must be presented, but the developers will need specific technical information in
order for them to do their expected software security tasks. Additionally, where
feasible and possible, hands-on exercises should be incorporated into the training
so that the developers can experiment with putting into practice the processes
described in the training material.

Introduction to software security problems
This training module should delve into the security problems faced today by
software developers. Its aim, quite simply, should be to convince the students
that they should care about software security in their work. (Realistic case stud-
ies can be highly beneficial here.)

• Shortcomings of traditional perimeter-based network security solutions
• Common software weaknesses
• Balancing the different goals of security and software development

Software security activities to integrate into the SDLC
This module should present the same basic concepts that were presented to the
engineering managers, but the principal focus should be on actionable recom-

8 | TRAINING AND AWARENESS

mendations for the developers. The students should come away with a clear un-
derstanding of where they fit into the software security program within their or-
ganization, what is expected of them, and how they need to implement software
security. Specific guidance and recommendations should be provided for each of
these processes that will help the student ”internalize” the correct behaviors as
they apply to software security activities.

1. Requirements and specifications activities
2. Design time activities
3. Implementation activities
4. Test planning and testing
5. Deployment, operations, and maintenance issues

Know the enemy
To build software that can withstand attacks, it is essential to understand the na-
ture of the anticipated attacks and the concepts behind them, and in considerable
technical detail. This module should teach developers about their adversaries.
The students should understand who wants to attack their software, why, and
how they are likely to go about doing it. Common concepts such as buffer over-
flows, SQL injection, cross-site scripting, and so on should be thoroughly de-
scribed and, where feasible, included in hands-on exercises/labs so that the stu-
dents can best internalize the course material.

1. Threat analysis – who are the attackers and what motivates them
2. Common software vulnerabilities explained in detail – architectural flaws

as well as implementation bugs
3. Attack tools and methodologies

Knowledge base and tools
Whereas the previous module stresses the best practices that developers are to
follow, this module should arm the students with the necessary knowledge base
and understanding of the tools necessary to their jobs. The actual content deliv-
ered here to each student may need to be further refined to the exact discipline of
the student audience. For example, software designers need to focus on the archi-
tectural risk analysis processes and specific methodologies, whereas coders need
to focus on code review methods and tools.

1. Risk analysis techniques (e.g., STRIDE, SQM, CLASP)
2. Language-specific tips, pitfalls to avoid, rules, and guidelines

9 | TRAINING AND AWARENESS

3. Tools for code analysis, testing, etc.

Code remediation
With the fundamentals out of the way, it is important to include training that in-
cludes prescriptive information on how to design and implement safe software.
The content should be replete with code examples and should be specific to the
languages, frameworks, etc., in use by the developers. At a minimum, the
courseware should include example design and code patterns addressing the
most egregious bugs and flaws found in similar architectures and languages. It
should include the OWASP Top 10 for web developers, for example.

1. Top 10 security defects (by technology)
2. Safe coding examples and guidelines
3. Exercises/labs to reinforce

Security testing
An additional training topic that is often overlooked is security testing. Security
testing practices in far too many of today’s software development organizations
consists of little more than a late-cycle penetration test. As we’ve seen in Adapt-
ing Penetration Testing for Software Development Purposes, this approach is
inadequate. One step in adopting better testing practices is to train the develop-
ment and testing team on how to do security testing in depth [Howard 2006].

1. Fuzz testing
2. Penetration testing
3. Run-time verification

Of course, the above outlines are quite simplistic and generic views of the topics
to be covered. Additional examples of course are cited in the list at the end of
this article, as well as in [Howard 2006]. Additionally, some worthwhile consid-
erations in creating or selecting appropriate course material might include the
following:

• Beyond the basics, courses should be as specific to the development envi-
ronments in use as possible.

• Courses should include hands-on exercises/labs whenever feasible.
• Course material should cite common defects with specific code examples.
• Secure coding guidance should be prescriptive with ample code pattern ex-

amples for the students to study from.

10 | TRAINING AND AWARENESS

• Instructors with exceptional communication skills are vital, but also look for
instructors with hands-on software development experience.

Once a firm conceptual foundation has been laid for the students, a library or
repository of up-to-date reference information should be made readily available
to them. This should include external sources of information such as books and
published papers, as well as internal sources such as (security vetted) design ar-
chitectures, design documents, and source libraries.

MEASURING KNOWLEDGE
A serious training initiative should take steps to verify and validate the students’
knowledge base, but many questions quickly emerge [Howard 2006]. There are a
number of software security certification programs in the commercial and non-
profit marketplace, which helps to address this issue. There is also a need to val-
idate “the skills of individuals being trained so that not only do they receive a
certification, but we also know their specific quantifiable skills, from the tech-
nical to the analytical” [Kwon 2012]. At a minimum, however, development or-
ganizations should mandate training attendance and record employee participa-
tion. If the organization tracks other related security metrics (e.g., code defect
density per thousand lines of code), it may consider trying to correlate course
attendance with defect density, but that is a degree of measurement that few or-
ganizations can achieve.

BUSINESS CASE
As the practice of software security catches on and grows throughout the soft-
ware development community, training and awareness initiatives are vital to
adoption among developers and managers alike. This is particularly the case as
few professional software developers today have undergone anything more than
rudimentary on-the-job exposure to software security issues, and probably not
much in the form of academic instruction.

For software security best practices to be successfully adopted in industry, there
must be senior-level buy-in. This can be accomplished in a number of ways, in-
cluding a clear and concise awareness training program that presents senior deci-
sion makers with the issues and tradeoffs involved in delivering secure software.

Further, mid-level engineering management needs to be aware not just of the
issues associated with delivering secure software but with the software security

11 | TRAINING AND AWARENESS

best practices that they should be incorporating into their groups’ development
processes and methodologies.

Lastly, software developers themselves, from architects and designers through
coders and testers, need to be thoroughly trained in all of the above, plus all of
the technology specifics involved in designing, coding, and testing software in
the technologies that they work with.

Without these things, it is highly unlikely that software security initiatives can
succeed in a substantial way. Trying to accomplish a software security agenda
from a ”grass roots” or ”bottom up” perspective is not likely to accomplish more
than superficial change.

GLOSSARY

incident Any real or suspected adverse event in relation to the security of computer systems
or computer networks.

NON-PROFIT TRAINING SAMPLING
International Council of E-commerce Consultants (EC-Council)
http://www.eccouncil.org/

International Information Systems Security Certification Consortium, Inc.,
(ISC)² https://www.isc2.org/

The SANS Institute, Inc. http://www.sans.org/

12 | TRAINING AND AWARENESS

REFERENCES

[Chess 2012] Chess, Brian & Wysopal, Chris. “Software Assurance for the Masses.” IEE Security
and Privacy 10, 3 (May-June 2012): 14-15.

[Hadfield
2011]

Hadfield, Steve; Schweitzer, Dino; Gibson, David; Fagin, Barry; Carlisle, Martin;
Boleng, Jeff; & Bibighaus, David. “Defining, Integrating, and Assessing a Purposeful
Progression of Cross-Curricular Initiatives into a Computer Science Program”, Pro-
ceedings of the 41st ASEE/IEEE Frontiers in Education Conference. Rapid City,
SD, Oct. 2011. IEEE, 2011.

[Hadfield
2012]

Hadfield, Steve, “Integrating Software Assurance and Secure Programming Concepts
and Mindsets into an Undergraduate Computer Science Program,” Proceedings of
the 16th Semi-Annual Software Assurance Forum. Arlington, VA, Mar. 2012. Build
Security In, 2012.

[Hawthorne
2012]

Hawthorne, Elizabeth K. " Infusing Software Assurance (SwA) into Introductory Com-
puter Science Curricula." Build Security In. https://buildsecurityin.us-
cert.gov/bsi/articles/knowledge/education/1400-BSI.html (2012).

[Howard
2006]

Howard, Michael & Lipner, Steve. The Security Development Lifecycle: SDL: A Pro-
cess for Developing Demonstrably More Secure Software. Redmond, WA: Microsoft
Press, 2006 (ISBN 977-07356-2214-2).

[Kwon 2012] Kwon, Mischel; Jacobs, Michael J.; Cullinane, David;, Ipsen, Christopher G.; & Foley,
James. “Educating cyber professionals: A view from academia, the private sector,
and government.” IEEE Security and Privacy 10, 2 (March-April, 2012): 50-53.

[Martin 2012] Martin, Robert A. & Christey, Steve M. “The Software Industry’s ‘Clean Water Act’
Alternative.” IEEE Security and Privacy 10, 3 (May-June 2012): 24-31.

[McKay 2012] McKay, Jim. “Cybersecurity Curriculum on Tap for University of Maryland Students.”
Emergency Management. http://www.emergencymgmt.com/training/Cybersecurity-
Curriculum-University-Maryland-Students.html (2012).

[Mead 2010] Mead, Nancy R.; Allen, Julia H.; Ardis, Mark; Hilburn, Thomas B.; Kornecki, Andrew
J.; Linger, Rick; & McDonald, James. Software Assurance Curriculum Project Volume
I: Master of Software Assurance Reference Curriculum (CMU/SEI-2010-TR-005).
Software Engineering Institute, Carnegie Mellon University, 2010.
http://www.sei.cmu.edu/library/abstracts/reports/10tr005.cfm

[Mead 2011] Mead, Nancy R.; Hawthorne, Elizabeth K; & Ardis, Mark. Software Assurance Curric-
ulum Project Volume IV: Community College Education (CMU/SEI-2011-TR-017).
Software Engineering Institute, Carnegie Mellon University, 2011.
http://www.sei.cmu.edu/library/abstracts/reports/11tr017.cfm

13 | TRAINING AND AWARENESS

https://buildsecurityin.us-cert.gov/sites/default/files/Integrating%20Software%20Assurance%20and%20Secure%20Programming%20Concep.pdf
https://buildsecurityin.us-cert.gov/sites/default/files/Integrating%20Software%20Assurance%20and%20Secure%20Programming%20Concep.pdf
https://buildsecurityin.us-cert.gov/bsi/articles/knowledge/education/1400-BSI.html
https://buildsecurityin.us-cert.gov/bsi/articles/knowledge/education/1400-BSI.html
https://buildsecurityin.us-cert.gov/redirect?url=http%3A%2F%2Fwww.sei.cmu.edu%2Flibrary%2Fabstracts%2Freports%2F10tr005.cfm
https://buildsecurityin.us-cert.gov/redirect?url=http%3A%2F%2Fwww.sei.cmu.edu%2Flibrary%2Fabstracts%2Freports%2F11tr017.cfm

[Sahami
2012]

Sahami, Mehran & Roach, Steve. “CS2013 Strawman Curriculum Standard
now available”. Computing Education Blog.
http://computinged.wordpress.com/2012/02/20/cs2013-strawman-curriculum-
standard-now-available/ (2012).

14 | TRAINING AND AWARENESS

https://buildsecurityin.us-cert.gov/redirect?url=http%3A%2F%2Fcomputinged.wordpress.com%2F2012%2F02%2F20%2Fcs2013-strawman-curriculum-standard-now-available%2F
https://buildsecurityin.us-cert.gov/redirect?url=http%3A%2F%2Fcomputinged.wordpress.com%2F2012%2F02%2F20%2Fcs2013-strawman-curriculum-standard-now-available%2F

Copyright 2005-2012 Carnegie Mellon University

This material is based upon work funded and supported by Department of Homeland
Security under Contract No. FA8721-05-C-0003 with Carnegie Mellon University
for the operation of the Software Engineering Institute, a federally funded research
and development center sponsored by the United States Department of Defense.

Any opinions, findings and conclusions or recommendations expressed in this mate-
rial are those of the author(s) and do not necessarily reflect the views of Department
of Homeland Security or the United States Department of Defense.

References herein to any specific commercial product, process, or service by trade
name, trade mark, manufacturer, or otherwise, does not necessarily constitute or im-
ply its endorsement, recommendation, or favoring by Carnegie Mellon University or
its Software Engineering Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND
SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN
“AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO
ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF
FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON
UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT
INFRINGEMENT.

This material has been approved for public release and unlimited distribution except
as restricted below.

Internal use:* Permission to reproduce this material and to prepare derivative works
from this material for internal use is granted, provided the copyright and “No War-
ranty” statements are included with all reproductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification,
and freely distributed in written or electronic form without requesting formal permis-
sion. Permission is required for any other external and/or commercial use. Requests
for permission should be directed to the Software Engineering Institute at permis-
sion@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

Carnegie Mellon® and CERT® are registered marks of Carnegie Mellon University.

DM-0001120

15 | TRAINING AND AWARENESS

	Training and Awareness
	Overview
	State of the Practice—Commercial/Non-Profit
	State of the Practice—Academic
	Best Practices in Training and Awareness
	Training Courses and Outlines by Audience
	Introduction to software security problems
	Software security activities to integrate into the SDLC
	Introduction to software security problems
	Software security activities to integrate into the SDLC
	Introduction to software security problems
	Software security activities to integrate into the SDLC
	Know the enemy
	Knowledge base and tools
	Code remediation
	Security testing

	Measuring Knowledge
	Business Case
	Glossary
	Non-Profit Training Sampling
	References

