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OPTIMIZING TEAM STAFFING: A REVIEW OF COMPUTATIONAL APPROACHES TO 
TEAM FORMATION 

EXECUTIVE SUMMARY 

Research Requirement: 

The U.S. Army has recently emphasized the strategic importance of small units of 
Soldiers, and in doing so, highlighted the importance of understanding how those units can best 
be formed. This review summarizes recent computational approaches to the problem of team 
formation and identifies promising areas for further research and potential applications.  

Procedure: 

This annotated bibliography offers a multi-disciplinary review of the current 
computational approaches to the team formation problem. We organize the review around two 
questions: (1) What are the common decision types, computational approaches, and optimization 
constraints in the literature? (2) How can theoretical contributions from psychology advance 
computational methods of team formation to make them both psychologically relevant and 
applicable to real world problems? 

Findings: 

We find first that computational approaches to team formation fall broadly into three 
decision type categories: team member replacement, multiple team formation, and single team 
formation. Within each of those categories, decisions to join a team can either be exogenous (i.e., 
membership is decided by an external advisor) or endogenous (i.e., the individuals themselves 
decide whether or not to join the team) to the team. Computational approaches to each of those 
decision types tend to vary, with approaches including general algorithmic models and network-
based architectures. While our aim is not to review the details of those solutions per se, we do 
find differential potential for certain computational approaches to be implemented at a scale 
useful for team staffing decisions in organizations such as the Army. We find that theoretical 
advances from the organizational and psychological sciences can be used to inform how the 
inputs and constraints included in these models can be used to optimize team composition. 

Utilization and Dissemination of Findings: 

This work amounts to a summary and overview of current computational and theoretical 
approaches to team formation. Internal to the Army, the findings presented in this review will 
inform ongoing efforts to understand the foundations of optimal team composition. Beyond that 
conceptual contribution, this work also has the potential to aid in the development of practical 
tools to support the assignment of Soldiers to teams, and to support the ad hoc generation of 
those teams themselves. External to the Army, this work synthesizes team composition literature 
from several disciplines. While the problem of team formation has been well studied within the 
computer sciences and within the psychological sciences, those streams of research have 
remained largely distinct. Our work highlights the contributions psychological research on this 
problem can make to the development of algorithmic tools within the computer sciences.   
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Introduction 
 

In organizations across industries and the world, teams are at the center of the stage. 
Consisting of three or more individuals, those teams work together to achieve a common goal, 
perhaps even surpassing the individual potential of their members. As leaders continue to take 
advantage of team structures to maximize output and enable efficiency, the challenge of 
composing high-performing teams has come to the fore. 

 
Traditionally, decision-makers tasked with assembling teams have relied on approaches 

such as staffing heuristics, cluster hiring approaches, or simply “intuition” to create teams, but 
the results are not necessarily optimal. Consider, for example, the case of the U.S Army which 
recruits tens of thousands of Soldiers each year. Traditionally, new candidates work with a 
recruiter at the time of enlistment to choose a military occupation specialty (MOS) based on the 
needs of the Army and their scores on the ASVAB (Armed Services Vocational Aptitude 
Battery; i.e., aptitude, previous training). These new recruits then complete basic training in 
addition to any MOS specific technical training before they are given their first duty assignment 
within the Army at large. Once assigned to a unit, the final team placement falls to First 
Sergeants who often rely solely on heuristics and intuition to make these early and important 
decisions (Thompson & Schnaak, 2018). Despite the message from the Chief of Staff of the 
Army, General McConville, that “Army leaders have a sacred obligation to build cohesive 
teams” (Initial Message to the Army Team, 2019, p. 1), the practicality or guidance of how such 
a “cohesive” team should be built remains unclear. 

While team cohesion is considered as a critical aspect for team success (Acton et al., 
2020; Grossman et al., 2021), researchers within organizational psychology have advocated for 
the importance of optimizing team composition along many other dimensions as well. For 
instance, team composition is linked to optimal robustness, performance, and effectiveness, 
among others (Bell et al., 2018). Although many of those team-level outcomes can be improved 
through team-building and training exercises (e.g., Salas et al., 2008), initial staffing decisions 
critically impact the trajectory of teams at every level. Recent theories leverage the similarity, 
diversity, and complementarity of potential team members (e.g., Zaccaro & DiRosa, 2012; 
Driskell et al., 2017) and demonstrate that the mix of attributes within a team is an important 
predictor of group-level outcomes (Bell et al., 2018). While it is well established that a variety of 
individual characteristics matters to team outcomes, prescriptive guidelines for how to optimally 
mix characteristics are less well established. Beyond that gap in the literature, figuring out how 
to apply those theories remains complex. The dynamic and fluid nature of teams, combined with 
the sheer number of potential members and teams needed, yields a decision landscape that is 
vast. 

At the same time, research within the field of organizational psychology was detailing the 
features of a team’s composition that produced optimal teams, a separate literature developed: 
this one focused on team formation within the computational sciences. This largely independent 
literature aimed to develop algorithms to solve the problem of assigning people efficiently and 
effectively to teams. Broadly concentrated in the computer sciences, researchers formalized the 
problem of creating a team as one where there exists a pool of candidates, a set of constraints 
(e.g., team size), and an objective function (e.g., member diversity; Andrejczuk et al., 2019; 
Bahargam et al., 2019). The algorithmic task is to select a group of individuals from the pool that 
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satisfies the constraints and optimizes the objective function. That process of selection is 
deceptively simple, and its complexity gave rise to a wide range of algorithmic and theoretical 
approaches. 

The first aim of this review is to consider a taxonomy of those varied approaches to team 
formation algorithms. We will focus specifically on enumerating the common team types, 
computational approaches, and optimization constraints. The second aim of this review is to 
situate the computational work with respect to the team composition insights developed in the 
psychological sciences. To this end, we will highlight ways in which theory from psychology can 
advance computational methods of team formation with the aim to propose ways to be more 
psychologically relevant as well as to be applicable to team decisions facing leaders in the real 
world. 

The remainder of this paper is organized as follows. After an explanation of the methods 
used to assemble our corpus, we focus on specifying three key categories of team staffing 
problem types: team member replacement, multiple team formation, and single team formation. 
Within each type, we discuss the current key algorithmic approaches. We conclude the review by 
discussing how theoretical advances in organizational psychology can advance the existing 
algorithmic approaches to team formation. Specifically, our discussion will focus on how models 
of team composition (e.g., structure, diversity of personalities, team member roles) and team 
performance can inform the constraints specified in the computational literature. 

Methods 

Taking an integrative approach, we carried out a multi-disciplinary literature review to 
identify relevant empirical papers focused on team composition and staffing (Cronin & George, 
2020). Online databases (PsychINFO, Academic Source Complete, Business Search Complete, 
DTIC, and Google Scholar) were searched for peer-reviewed articles containing the following 
keywords: team composition, team staffing, and team formation. We retained and reviewed 
articles that indicated the use of new or existing computational tools or algorithms of team 
composition, team formation, or team-based selection. From our initial set of articles, we applied 
a set of exclusion criteria. Articles were excluded if they were non-English. Articles related to 
software program management, multi-agent systems (MAS), or AI/robotic teams were reviewed 
but later removed if the intent of the article was singularly on scheduling concerns or task 
allocation for a pre-existing team. We also excluded articles if the teams being formed featured 
exclusively AI agents to focus our attention on approaches that factored in human 
components/factors (e.g., personality, network).  

This procedure yielded a final set of 35 peer-reviewed sources of which eight were drawn 
from the psychological or management literature. The remainder of the articles were sourced 
primarily from the engineering, software development, and computer sciences fields. Each of 
these papers was coded to identify the type of team formation decision, key constraints 
considered, the algorithmic approach, and the utility of the methods developed and was further 
annotated in Appendix A. Relevant review articles were also retained and annotated in Appendix 
B. To account for gray literature (e.g., conference proceedings, white papers, proposals) that are 
unindexed yet often the source of novel engineering and computer science research (Borrego et 
al., 2014), we also tracked prevalent references in each to identify additional articles for 
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inclusion that were missed in our initial search resulting in a total of 43 algorithmic approaches 
that were retained and coded (see Appendix C).  

A Typology of Team Staffing Decisions 

The general problem facing those making team staffing decisions is to decide how to 
construct a team given a pool of candidate team members. The complexities of that decision, 
however, can vary widely depending on the type of team being created. That is, the procedure to 
create a single team will be different from the one used to create multiple teams. In turn, these 
two will also differ from the procedure to replace a team member on an existing team. These 
differences will present when the teams are created manually and will be magnified when teams 
are created algorithmically.  

We use the type of team staffing decision as the first way to distinguish among 
computational approaches and categorize each paper in our bibliography into three primary 
categories: team member replacement, multiple team formation, and single team formation (see 
Table 1). In doing so, we can tease apart different computational tools that would be appropriate 
for each of those distinct staffing tasks.  

Table 1  

Each category of staffing decision type with description and example 

Decision Type Decision Description Example 

Team member 
replacement 

Exogenous: Assigning an individual to an 
existing team 

Replacing a member who got promoted 
and left the squad 

Endogenous: Deciding which existing 
team to join 

Ranking individual preferences for 
open positions  

Single team 
formation 

Exogenous: Assigning individuals to one 
new team 

Forming a team for a specific mission 

Endogenous: Deciding to join a new ad 
hoc team 

Volunteering to join a temporary team 
to complete an exercise 

Multiple team 
formation 

Exogenous: Assigning individuals to 
multiple new teams 

Restructuring several teams after a 
reorganization or deployment  

Endogenous: Self-organization of 
individuals into multiple teams 

Reorganization in the field in response 
to rapidly changing personnel or 
environmental circumstances 

Within each category, we consider additional ways to categorize the literature. For 
instance, some models assume staffing decisions are exogenous to team members (i.e., an 
external agent decides team membership), and others consider that decision endogenous (i.e., 
individuals decide whether or not to join a team). Specifically, in the context of the Army, 
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models of staffing that represent the decision as exogenous may be more useful or easily 
applicable than models that are interested in the endogenous decision.  

Team Member Replacement 

Our first staffing problem domain is that of team member replacement. We categorize 
approaches into those in which the decision to join a team is exogenous and those in which the 
decision is endogenous. Exogenous decisions are made externally; that is, the problem setting is 
figuring out, given an open slot in an existing team and a set of constraints, which of a pool of 
possible candidates would be the best fit. In the case of endogenous team member replacement 
decisions, the problem facing the agent could instead be which team they should join, or how 
they should act now that they have joined an unfamiliar team. 

Exogenous Replacement 

The literature that looks at member replacement as an exogenous decision offers direct 
insights into ways automated systems could inform team staffing decisions. Here, we review 
research that demonstrates three broad approaches: graph-based (Li et al., 2015), neural-based 
(Sapienza et al., 2019), and general approximation algorithms (Malinowski et al., 2008). 

Graph-based, or network-based, approaches begin with a community of individuals who 
belong to a social network. The structure of that network captures how they relate to other people 
and what skills they themselves hold. To borrow an example from Li et al., (2015), a social 
network could consist of all current movie actors (“nodes” in the network) who have different 
connections (“edges”) with other actors based on the previous films and genres they have acted 
in. Within such a setting, the problem of member replacement would be to find the best 
replacement actor given a vacancy in an existing cast.  

Relationships can be captured by a social network in more general settings and 
communities as well. For instance, within the Army, instead of nodes representing current actors, 
they could represent each Soldier within a certain division. The connections among Soldiers 
would be revealed by edges with other nodes (Soldiers) based on more fine-grained group 
memberships. For instance, members of an airborne division will have connections with each 
other based on what previous team, squad, and platoon they served in. The task of replacing a 
Soldier within a specific team would simply be to find the most suitable Soldier (e.g., one with a 
similar background) given the current vacancy.  

Li and colleagues place two constraints at the core of their network-based approach: the 
replacement candidate should match the team and vacancies in terms of skills held, and they 
should have a social network similar to that of the departing team member. Optimizing both 
constraints would ensure that the new member would have the skills needed and the social 
connections necessary to join the team with minimal disruptions. Within the context of acting, 
skills and connections may be derived from acting histories, while within the context of the 
Army, skills could be represented by a Soldier’s knowledge, skills, behaviors, and preferences 
(KSB-Ps) and social connections made from previous service history. Methodologically, Li and 
colleagues model the team as a labeled graph (where each individual is uniquely represented by a 
node in the network) and then use graph kernels as a way to compute similarity in skill and social 
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connectivity (illustrated in Figure 1). Intuitively a graph kernel is a function that computes the 
similarity between pairs of graphs; it is an approach also leveraged in other network-based 
approaches in this review. Using kernel functions is, however, computationally intensive so the 
authors propose fast heuristic-based methods to reduce the time needed to reach a solution. 

Note. A depiction of an Army social network (panel A) where individual Soldiers1 are nodes and the 
strength of connection between Soldiers is represented by edges.  In this example, darker and thicker 
edges could represent a tighter social connection, whereas thinner and lighter lines depict weaker 
connections. If two Soldiers have no immediate ties to one another, there is no edge between them. 
In panel B the problem of team member replacement in the event of a member departure is depicted. 

 

More recent work has focused instead on neural architectures to solve for team 
replacement. In one notable example, the authors work with teamwork data from a large online 
multiplayer game (“Dota 2”) to capture the influence players have on their teammates (Sapienza 
et al., 2019). Using that influence network, they build a recommendation system which predicts, 
for any given player, new teammates that will help them improve their personal performance. 
The backbone of the system is a specialized instance of an autoencoder, a type of unsupervised 
learning neural network architecture that both learns the structure in a data set and can generate 
new data according to that structure. While promising in their accuracy and scalability, current 
neural architectures offered in the literature suffer similarly as graph-based approaches: existing 
methods have not been translated into systems for large scale general use. 

Our final categorical approach to exogenous team member replacement is through the use 
of general approximation algorithms. Malinowski, Weitzel, and Keim (2008), for instance, use a 
probabilistic latent semantic analysis (PLSA) technique to build a trust-based recommendation 

 
1  Soldier images taken from the following images: “Keeping Watch” (photo by Spc Kristina Gupton; Flickr, The 
U.S. Army); “Medal of Honor: Staff Sgt. Robert J. Miller” (Flickr, The U.S. Army); “Sicily Drop Zone” (photo by 
Sgt. Michael J. MacLeod; Flickr; The U.S. Army) 

Figure 1.  

Social Network of Army Soldiers 

 

A) B) 
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system. They propose that existing systems designed to support team staffing neglect key 
relational aspects that impact potential team fit so they introduce trust among team members as a 
central variable. The PLSA model they build is similar to recommendation systems used to 
suggest books a customer might enjoy, or songs they should listen to: if employee A trusts 
employee B, and employee B trusts C, then the model infers that A should trust employee C as 
well. Using ratings of trust among current team members as well as similarities in job 
preferences, the authors derive a subset of a pool of candidates who have maximum predicted 
trust with the existing team members. To be applicable in real world contexts their approach 
should be validated using data that might be accessible in real human resource settings. That is, 
the trust-relational network data needed to generate recommendations based on relationships 
must be sufficiently dense; if it is too sparse, as was the case in Malinowski et al.’s experimental 
data, the model will fail to recommend. 

As the Army continues to modernize and move towards informed placement strategies, 
its changing approaches to talent management are reflected in recent initiatives. Efforts to 
develop and employ a service-wide matchmaking service highlight the potential to use rich 
personnel data to find best fits for Soldiers. Just as Malinowski et al. (2008) aims to develop a 
system to support staffing decision makers, researchers within the Army have proposed to 
leverage Soldier KSB-Ps and non-professional resume data collected on the Army’s AIM2 
website to make team staffing recommendations (Thompson & Schaak, 2018; MacGregor & 
Tomberlin, 2017).  

Endogenous Replacement 

In general, the literature belonging to the category of endogenous team member 
replacement decisions considers the decisions facing an “ad hoc” agent. Models reflect either 
how the agent decides to join a new team or how the agent, newly assigned to an existing team, 
learns to assimilate or lead their new team. 

One example of an algorithmic approach to the first problem (that of deciding to join a 
team) is offered by Chen et al. (2015). Chen proposes a Bayesian reinforcement learning 
framework to capture the tradeoffs free agents make when deciding to join new teams or 
partnerships. They find that a set of key environmental properties – the turnover rate of 
individuals through teams, and the rate at which novel tasks are introduced – directly impact how 
agents are able to balance rewards from successfully completing tasks and short-term knowledge 
gain. For example, when the introduction rate of new tasks to the environment was high, the 
demand for a large variety of skills increased and individual workers learned fewer new skills. 
Their work has implications for the relevance of Bayesian learning frameworks for modeling 
how one might decide to join one team over another. It also highlights the importance of 
environmental properties in endogenous staffing decisions. Teams within the Army see 
differential amounts of turnover and task novelty. The results of Chen’s work suggest that 
understanding the ways in which environmental features influence perceptions of potential squad 
members, as well as the extent to which certain squad and team structures encourage the 
acquisition of new skills, will be important to capture in models of Army staffing. 

If the problem facing the agent is to instead figure out how to act once they have joined 
that new team, a learning algorithm approach might be applicable. For instance, Barrett et al. 
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(2013) and Agmon et al. (2014) consider the case in which a new member learns how to fit into 
the existing team. In the case of the work by Barrett and colleagues, that new member is given a 
transfer learning mechanism for learning the behaviors and types of possible agents. Agmon et 
al., (2014) follow a similar approach but focus specifically on the case where the new team 
member must lead the team. Again, the task facing the new leader is to learn about their team so 
that they may lead them to the best possible outcomes (i.e., optimize joint action utility).  

Summary 

The problem of choosing an individual to join an existing team is of particular relevance 
to an organization such as the Army. Given the rates of both planned and unplanned personnel 
turnover, an architecture that can optimally fill a vacant position is valuable. Current exogenous 
computational approaches to this problem offer exciting and varied solutions that take into 
consideration not only skill fit but also interpersonal features. Optimizing such interpersonal fit 
of a new team member is particularly important for adding an individual while minimizing 
disruption to team processes. Choosing a replacement who has close social connections with 
current team members or high potential for collaboration may be an effective way to quickly 
build shared mental models or shared experiences that can help a team adapt readily to changes 
in membership (Bell et al., 2018; Mathieu et al., 2000). Such work has direct implications for 
helping squads achieve readiness in the face of personnel changes. 

Research on endogenous team member replacement also sheds light on team 
development. The work regarding how agents learn about their environment and about each 
other has relevance for the development of a team once it has formed. Learning about fellow 
teammates, their “types”, and their expected behaviors, can help each team member to learn how 
to act. Mechanisms that introduce transparency into team culture can therefore help to facilitate 
team member integration. Adding transparency to team learning also has the potential to 
facilitate leader development.  

The general computational problem of solving for optimal team member replacement is, 
however, computationally intense, especially in the context of network-based extractions. Li et 
al. (2015) approximate that for a candidate pool of one million individuals, standard graph kernel 
computations would take approximately 1.7 hours to find one replacement member for a team of 
ten.2 While the “fast algorithms” they develop significantly reduce that computational time, it 
remains the case that the pressure on usable systems to be efficient is significant. Alternative 
methods of representing both interpersonal data (i.e., social connections) and personal 
information (i.e., skills) such as the neural network approaches in Sapienza et al. (2019) may 
prove more computationally feasible. To that end, future work should extend the basic research 
discussed in this section to tools for practical use, with the primary focus on scalability.  

 
2 Note that the authors do not specify the processor underlying this estimate. We offer it here as a compelling 
illustration of the computational intractability of current graph kernel approaches and of the research need for 
developing algorithms that can be realistically applied to practical settings. 
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Single Team Formation 

Approaches, both exogenous and endogenous, to single team formation are dominated by 
the development of network-based approaches to team extraction. Many of the following papers 
focus on extracting a team of experts from a pool of candidates and consider how team hierarchy 
and robustness impact that extraction.  

Exogenous Formation 

In an early demonstration of a network-based approach to team formation, Lappas et al. 
(2009) aim to extract a team from a social network using capabilities and social connections as 
constraints. Constraining team membership by skill coverage is a common constraint that we 
have seen previously in this review and we will see again. However, just as a viable team must 
have the necessary skills, Lappas and colleagues require them to also have members who can 
effectively collaborate. One novel advance of this work was to operationalize potential for 
collaboration by communication cost, represented by the social network structure. As in Li et al., 
(2015; exogenous team member replacement; see also Figure 1), a social network graph consists 
of nodes which represent individuals and edges among nodes which could represent social 
structure such as distance between two individuals in an organization, or whether or not Soldiers 
have previously belonged to the same squad or served on the same installation. For example, if 
two Soldiers served alongside one another in the same small unit (e.g., within a squad or 
platoon), the weight of the edge would be greater than it would be if they were more distantly 
connected by a shared brigade or deployment region. Using these embedded representations of 
social connection, Lappas et al. propose different ways to leverage those connections to extract a 
subset of individuals that have low communication cost (e.g., similarity of service record) and 
necessary skills. 

Dorn and Dustdar (2010) also focus on extracting an expert team from a network but 
offer a solution that introduces two more realistic constraints. The network they work on is built 
from an online forum community where the authors derive skills from the topics each user posts 
about. Their first constraint targets the skill requirements of Lappas’s team extraction; however, 
while Lappas set skill requirements at a threshold below which no expert would be considered 
for inclusion, Dorn and Dustdar permit a tradeoff between social compatibility and skill. Second, 
they require every individual in the final team to be connected to one another. This requirement 
contrasts with the approach of Lappas to focus only on the strongest tie.  

Kargar and An (2011) further build on the network-based approach to team formation 
and make two primary contributions: they introduce new ways to define communication cost and 
they address the distinct problem of finding a team of experts that has a leader. The 
communication cost functions they propose are sensitive to the relationships among individuals 
with the same expertise and consider communication cost specifically between individuals and 
the leader of the team. To find the leader and corresponding team of experts, Kargar introduces a 
brute-force exact polynomial algorithm that was novel, but minimally scalable. In 2012 Kargar 
and colleagues approached the problem of forming teams which have a coverage of skills, 
minimal communication cost, and minimal personnel cost. They introduce a cost function that is 
simply a linear combination of communication and personnel cost and offer an approximation 
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algorithm to extract the team from the social network graph. Their subsequent paper in 2013 is 
largely an extension of that work.  

Teams that have a formal hierarchy are commonly overlooked in the algorithmic 
approaches discussed in this review. The work by Kargar and An (2011) is a notable exception in 
its specific consideration of team leaders. Teng et al. (2014) build off that work and consider the 
case in which there isn’t a singular leader guiding a team but rather a hierarchy of leaders 
coordinating with each other as well as with their teammates. Intuitively, each leader only has 
the capacity to communicate with a finite number of individuals so one of Teng’s key constraints 
in hierarchy formation is what they term “communication load”. 

The above work marks an advance in algorithmic approaches incorporating social aspects 
beyond skills held by an individual. While each has a different way of embedding and optimizing 
social compatibility, each recognizes that a team requires more than just members who have the 
right skills to be successful. The next set of papers considers a different aspect of building a 
team: robustness. 

One way of being robust is for a team to have a skill distribution such that one or more 
members can be lost and the team still has the skills necessary to complete a task. In an Army 
setting, robustness in this sense might reflect the need of a squad to complete their task even in 
the event of losing a Soldier. Okimoto et al. (2015) define the Task-Oriented Robust Team 
Formation (TORTF) problem as multi-objective constraint optimization problem: the goal is to 
find a team of individuals that is both robust to the loss of one or more agents and that minimizes 
cost of assembling the team. In this case, an individuals’ cost increases with the number of skills 
they possess. Crawford et al. (2016) build on Okimoto’s work by proposing a set of 
approximation algorithms that are more scalable than the exact algorithms proposed by Okimoto. 
The approaches they propose to solve the TORTF problem scale to large problems and 
efficiently trade off robustness and cost of a team.  

Endogenous Formation 

In our example of endogenous single team formation, Anagnostopoulos et al. (2017) 
formalize a problem they term team formation with outsourcing (TFO). In this setting, tasks 
arrive at a marketplace where there is a dynamic team of workers ready to complete it. The 
problem Anagnostopoulos solves is to figure out the optimal algorithm for hiring new workers to 
that team, firing existing workers, and outsourcing tasks the team cannot complete. Each worker 
has a set of skills and sets their fees (hiring fee, outsourcing fee, and salary) which represent the 
sole source of cost in the algorithm. A variety of algorithms are proposed including one where 
the minimum cost set of individuals is found that covers the required skills, and one where 
workers are never hired, only outsourced. While this paper explicitly does not consider any 
parameters other than skill coverage and cost (in terms of wages), it represents a novel 
contribution to team formation in an online, ad hoc, setting. Several papers in the endogenous 
multiple team formation section (e.g., Rockicki et al., 2015) return to the problem of team 
formation in online crowdsourcing settings. 
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 Summary 

The primary contributions of literature within this category revolve around their 
incorporation of interpersonal relationships (in terms of communication) and their development 
of network-based methods for team formation. The effort to create interconnected teams is one 
step towards adopting a psychologically sensitive approach to team formation. In considering 
communication and social connections when forming a team, a decision maker is able to 
assemble individuals that may more quickly achieve team cohesion, build common ground, and 
construct shared mental models than teams with higher social start-up costs. The advantage given 
to teams with minimal communication costs may help to reduce the time it takes to bring the 
team to readiness, a metric important to the development and sustainment of Army units 
(McCrystal et al., 2015).  

Many of the incremental advances reviewed in this section are aimed at developing 
algorithms that have greater efficiency and scalability. Given the computational costs of 
leveraging social network information to derive optimal teams, and the promise of those methods 
to be useful to practitioners, future work should continue to build systems that can handle 
multiple objectives at scales relevant to user expectations.  

Multiple Team Formation 

Here we categorize current exogenous and endogenous algorithmic approaches to 
multiple team formation by the features they consider and by their algorithmic approach. In this 
section we begin to see rigorous consideration of other, social, factors that impact teamwork, 
beyond simply skills held by team members. While communication cost was a significant focus 
in single team formation, here we discuss inclusion of personality traits and considerations for 
how personality interacts with team tasks.  

Exogenous Formation 

The literature devoted to exogenous approaches of multiple team formation can be 
organized into two broad categories. The first contains research aimed at incorporating the 
personality of potential members, whereas the second can be described as a methodological 
category of network-based approaches.  

Similar to the research discussed previously that was novel for the consideration of 
teammate communication and coordination potential (e.g., Lappas et al., 2009), research that 
includes psychological and more general personnel factors represents an important step within 
the computational sciences towards including psychological predictors of team success. In one 
example of a person-centered approach, Stylianou and Andreou (2012) propose a multi-objective 
algorithm for balancing team member skills and personality traits. Using the five-factor model of 
personality (Barrick & Mount, 1991) in combination with career handbooks, the authors derive 
links between different professions and desired personality characteristics. They include these 
synergies along with skill requirements, team size preferences, and scheduling constraints in a 
variety of genetic algorithm approaches. Broadly, a genetic algorithm is modeled after natural 
selection wherein genomes are evaluated according to a fitness function and those with higher 
fitness scores pass on part of their genome to the next generation. The details of how fitness is 
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assessed reflect dimensions of optimization such as personality trait fit and team size. 
Incorporating some methods from a previous study (Gerasimou et al., 2012; see below), the 
authors ultimately develop a tool reviewed later in this article, IntelliSPM. 

Farhangian et al. (2015a) endeavor to similarly balance individual skill, personality, and 
task specifications in their team formation. They employ personality types from the Myers-
Briggs Type Indicator3 (MBTI; Myers et al., 1998) and team role expectations from Belbin Team 
Roles (Belbin 2012) in an effort to capture the relationship between the creativity and social 
interaction of a task to individual personalities. Unlike other articles in this review, Farhangian 
uses an Agent Based Model (ABM) setting to model the effect of task dynamics on team 
formations. As tasks come online, managers must select the best team for the task even if that 
requires some team members to be reallocated from existing teams. The ABM captures that 
rescheduling cost and the authors explore team formation rules that either minimize under- or 
over-competency of team members. This approach is uniquely useful for investigating the 
dynamics of task allocation and dynamic environments in general and promising extensions 
could aim to develop user-interface tools with ABMs as the foundation formation algorithm. 

Both the above papers seek to inform staffing by linking personality traits with roles 
within a team. Stylianou and Andreou (2012) derive those links using career handbooks while 
Farhangian et al. (2015a) hypothesize certain connections between traits required for a role and 
personality profiles. The structure of jobs within the Army offers a potential data source for 
incorporating features of a team role into staffing decisions. One recently developed measure, the 
Adaptive Vocational Interest Diagnostic (AVID), aims to help Soldiers identify a MOS that 
matches their interests and is likely to yield high job satisfaction (Nye et al., 2019). Personality 
characteristics derived from the Soldier Tailored Adaptive Personality Assessment System 
(TAPAS; Drasgow et al., 2012) are currently used to identify appropriate and potential MOS so 
it could be the case that methods following those of Stylianou and Andreou, and Farhangian and 
colleagues could leverage both AVID and TAPAS responses to assign Soldiers to teams and 
positions fitting with their preferences and motivations. 

In a series of three papers from 2016, 2018, and 2019, Andrejczuk and colleagues 
propose personality-based algorithms of team formation. Andrejczuk et al. (2016b) use 
personality traits from the MBTI (Myers et al., 1998) to partition individuals into heterogeneous 
teams balanced on personality and gender with the aim to increase general performance. They 
develop algorithms for small and large team settings and compare their results with manually 
assembled teams, ultimately finding their algorithmic teams to be superior. Andrejczuk et al. 
(2018b) extend that approach by developing an algorithm, SynTeam, to solve what they dub the 
Synergistic Team Composition Problem (STCP). Their method efficiently partitions individuals 
into balanced teams that will exhibit relatively equal performance based on their gender 
distribution, personalities, and competencies. Finally, Andrejczuk et al. (2019) offer a direct 
extension of Farhangian et al. (2015; see above). They aim not to form a single heterogeneous 
team, but rather to assign individuals into “psychologically balanced,” competent, and gender-
balanced teams. As was the case with Farhangian’s approach, personnel data from Soldier 

 
3 We note that although the Myers-Briggs Type Indicator is commonly used as a personality assessment, 
psychologists and personality researchers recommend using psychometrically validated scales such as such as the 
Big Five trait inventory (John & Srivastava, 1999; John et al., 2008). See the section on “Integrating insights from 
psychological sciences” for a discussion. 
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TAPAS scores could be leveraged within an Army application. We review this paper in the 
section on tools, as it ultimately resulted in a web-based application for student team formation. 

Another example of a personality-based multiple team formation approach is that 
introduced by Gilal et al. (2018). As above, they use the MBTI to capture team member 
personality traits and include that feature in team composition. The larger aim of this paper is to 
identify the appropriate classification technique from a set of varied options: logistic regression, 
decision tree, and rough sets theory. In forming the teams, they consider team role (member or 
leader), personality, and gender, as well as a dichotomous team performance variable using data 
collected from undergraduate students. They find that each of the three classification techniques 
produced different solutions, with the logistic regression method failing to meet the accuracy 
benchmark. One important takeaway from this work is that different algorithmic approaches can 
produce wildly different solutions which may or may not be inferior to other potential 
algorithms. 

Our second category of exogenous approaches to multiple team formation consists of 
research that employs a network-based approach. The first research in this category is that of 
Anagnostopoulos et al. (2012) who consider a setting in which individuals have (binary) skills 
and are related to others in a social network. The author’s goal is to figure out how to form a 
team in response to dynamically introduced tasks such that all required skills are covered, 
communication cost is minimized, and the workload of each individual is balanced. They borrow 
the communication cost definitions from Lappas et al. (2009; see above section) but make the 
more realistic assumption that people need not be directly related to have potentially good 
coordination — they could be connected by second or third level relation. This more relaxed 
characterization of social connections may be more appropriate when deriving social networks to 
capture Soldier relations.  

Rangapuram et al. (2013) similarly build off Lappas et al.’s early work. Their goal is to 
provide a more realistic and flexible setting for the formation of teams where the team may have 
a leader, restricted size, and preference for easy communication. One way in which their 
approach offers increased nuance is that constraints can be put on the number of team members 
who have a certain skill of a certain level; that is, preference can be given not only to those who 
have a certain skill, but to those who have the highest (or lowest) competence. They also broaden 
their sense of distance to include both social distance (i.e., collaboration potential) and 
geographical distance. The constraints considered by Rangapuram and colleagues are of 
particular relevance to team formation tasks facing those in the Army. A constraint missing most 
often in the computational literature is team formation with a leader; in the present paper a team 
leader is chosen a priori and the team of subordinates are chosen to have minimal distance to that 
leader. 

Additional nuance is offered by Gutiérrez et al. (2016) in their formalization of the 
“Multiple Team Formation Problem” (MTFP). An explicit extension of a single team formation 
problem, MTFP aims to allocate individuals to multiple projects where they may only partially 
dedicate their time. The authors use a small and generic network to depict social aspects of the 
problem; their sociometric matrix captures how each team member perceives and is perceived by 
other members. The algorithmic approach Gutiérrez offers for the MTFP has ready analogies to 
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real-life mission settings and their inclusion of a sociometric matrix is a promising way to 
include social components of team building. 

Outside of a network setting, a recent paper by Bahargam et al. (2019) aims to develop a 
team formation scheme that explicitly considers the collaboration potential of a team by 
minimizing “faultline potential.” Team faultlines, which are described as dividing lines that split 
a group into relatively homogenous subgroups based on attribute differences (e.g., age), have 
been noted for their effect on team cohesion and performance but have proven difficult to 
measure in a way that could be leveraged for team formation. Bahargam proposes an algorithmic 
approach that minimizes “conflict triangles” that exist based on surface level characteristics (e.g., 
race or gender). Given the well-documented benefits of team diversity on performance (Horwitz, 
& Horwitz, 2007), the algorithms developed could be best used to partition a large population 
into groups that value diversity but minimize faultlines. 

Although Bahargam and colleagues used surface-level characteristics to model faultlines, 
psychological research of teams suggests that surface-level features are only of particular 
importance during the early stages of a team. Deep-level attributes (e.g., personalities, teamwork 
preferences, values) are more likely to continue to interact and influence team processes and 
effectiveness over time (Bell et al., 2018). Future applications of Bahargam’s type of triangle 
minimization approach may be particularly useful for forming teams to prevent team conflict. 
For example, this method could leverage research on conflicting personalities that could be 
especially harmful for the effectiveness of certain types of teams (i.e., teams on long term 
missions). 

The final paper in this section is one that forms the foundation for both a tool discussed at 
the end of this review, and a personality-based approach mentioned earlier in this section. 
Gerasimou et al. (2012) propose a particle swarm optimization (PSO) approach to aim in team 
formation and project assignment. This computational approach is biologically inspired (as are 
genetic algorithms) and seeks an optimal solution to a problem by starting with a set of random 
solutions (called particles) which are moved around in solution space according to simple rules 
(an analogy from nature may be bees searching for pollen). Gerasimou demonstrates the strength 
of such an approach in this article and builds on the PSO method in later work (e.g., Stylianou & 
Andreou, 2012; Stylianou, Gerasimou, & Andreou, 2012).  

Endogenous Formation  

Of the literature on endogenous multiple team formation, some work focuses on 
discovering general principles that guide self-organization into teams, leveraging naturalistic 
data sets and crowdsourcing tasks to examine how individuals may naturally sort themselves into 
teams given their preferences and constraints. Other work aims to algorithmically compose 
teams by prioritizing agents, or to look at team formation through a lens of learning and 
inference. 

In one large-scale study of self-organized teams, Wax et al. (2017) used data from a 
massively multiplayer online role-playing game (MMORPG; Dragon Nest) to evaluate how 
teams form and what predicts their success. They find evidence for three primary mechanisms of 
formation: homophily (i.e., similarity of players, specifically in terms of level and “guild” 
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membership), familiarity, and geographical proximity. In general, they find that surface-level 
homophily in terms of player level positively predicted team performance; that is, teams with 
differing player levels performed worse than teams with players of equal status. The authors 
contribute that particular finding in part to the structure of Dragon Nest; homologous teams 
engage in more appropriate quests. In the context of the game Computer Go, Marcolino et al. 
(2013) find that heterogeneity of a team is preferred to a homogeneous team. They model a 
player team where each member agent votes each round for what action they think should be 
taken. Within their context they find that a diverse team outperforms a team composed of copies 
of the strongest agent – a finding that reflects the value of opinion diversity.  

Rockicki, Zerr, and Siersdorfer (2015) are also interested in self-organization of teams 
but particularly with the aim of using team structures to increase individual performance via 
competition. They take the context of online crowdsourcing work (e.g., Amazon’s Mechanical 
Turk) where tasks are usually completed by individuals who are monetarily incentivized to 
complete high quality work. In an empirical study they allow individuals to complete tasks (e.g., 
image classification) individually, as part of an assigned group, or as part of a self-organized 
group and find that compared to individual competitions, team scenarios yielded the highest 
quality work. Within the self-organized team formation condition, they observed that the primary 
strategy was for individuals to join one of the top-performing groups (as broadcast on a 
leaderboard). A secondary strategy was for low-performing teams to combine forces in a pattern 
they termed “competitive merging”. 

If the aim of crowdsourced self-organized groups (or coalitions) is to work together to 
complete complex tasks instead of working together to complete more of the same task, the 
demands on organization change. Peleterio et al. (2015) present a model for building and 
maintaining coalitions and they focus on two decision mechanisms. First, their mechanism 
allows a coalition leader to decide if they should keep their current coalition and then how they 
should assemble a team based on skill and reputation. Second, the participating individuals can 
decide to remain part of a coalition or join another. Central to both mechanisms are calculations 
of agent skills, agent collaboration potential (i.e., “synergies” based on past interactions), and 
reputation of both extant coalitions and individuals. In an empirical evaluation, Peleterio showed 
that this decision framework supports high quality teams that produce high quality work. In a 
similar vein, Farhangian et al. (2015b) propose an auction-based framework in which task 
requesters and contributors decide how to manage teams. Requestors receive bids from 
contributors and decide who to put on a team based on familiarity, past success, and personality 
fit. The inclusion of personality in this auction scheme is a novel contribution and reflects the 
psychological literature that suggests personality characteristics have a large role to play in team 
performance (e.g., Driskell, et al., 1987; Barrick et al., 1998; Bell, 2007). 

Spradling and colleagues (2013) focus still on the case where different team members 
complete different tasks but are interested in the combination of player preferences for their own 
role and for team composition. They term this situation a Roles and Teams Hedonic Game and 
propose algorithms that partition teams according to both preferences on individual roles and 
preferences for team roles to fill. In this way, individuals can automatically be matched with 
others who agree roles X, Y, and Z are needed and are interested in uniquely playing one of 
those roles. The authors offer a heuristic optimizer to solve the formation problem. 
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Finally, Liemhetcharat et al. (2014) and Chalkiadakis et al. (2010) focus on 
approximating learning algorithms to reflect how individuals update their information about 
potential teammates and use that information in coalition formation decisions. Liemhetcharat 
(2014) explores this by having pairs of teammates interact in “learning instances'' during which 
they can learn about the task through experience or, more interestingly, how to coordinate better 
with their teammate. The team formation goal is then to choose the optimal team after all 
training has concluded. In a similar vein, Chalkiadakis et al. (2014) propose a Bayesian model-
based reinforcement learning framework which allows individuals to update their beliefs about 
the types of people with whom they are interacting. As they refine their beliefs, the agents must 
decide whether or not to form new teams (explore) or rely on partners they know (exploit). This 
work is novel for the way in which it combines dynamic group formation with individual-type 
uncertainty and their core algorithm is shown to be robust and computationally feasible.  

Summary 

Several themes emerge from the literature on multiple team formation. First, we reviewed 
several papers that were novel in their inclusion of personality as a team formation constraint. In 
some cases, the algorithmic approaches considered personality traits as the second half of a 
multi-objective approach for optimizing team composition (with the first half being skill 
oriented; Stylianou & Andreou, 2012; Andrejczuk et al., 2016). While those papers differed in 
what they viewed as an optimal distribution of personality traits, they form the algorithmic 
foundation of an approach to select team-relevant traits and determine optimal distribution of 
those traits among teams. 

In others, personality was included in a more nuanced consideration of how individuals 
fit into teams but also into team roles (e.g., Farhangian et al., 2015). Later, in the section on 
“Integrating insights from psychological science” we discuss the opportunity for Soldier 
personnel data to be leveraged in order to fit an individual to an optimal role. Outside the realm 
of personality, papers in the above section also offered new algorithms to extract multiple teams 
from a network of individuals (e.g., Rangapuram et al., 2013) where other team features such as 
leader/follower dynamics and team communication were considered. 

The reviewed research on endogenous multiple team formation offered more general 
insights into how teams might dynamically self-assemble (or dynamically re-assemble) 
depending on needed skills and synergies of potential team members (e.g., Peleterio et al. 2015). 
While not directly relevant to forming multiple teams in an Army setting, Liemhetcharat et al. 
(2014) and Chalkiadakis et al.’s (2010) research on learning algorithms could be used to better 
understand how various trait combinations in a team impact how readily members can learn 
about each other. In particular, Liemhetcharat highlighted the importance of opportunities to 
learn about tasks and about the behaviors of teammates. The more a set of team members knows 
about a given environment and about the collaboration behaviors of other members, the more 
optimal they become. 

Tools for Automated Team Formation 

The landscape of potential algorithmic approaches to solve team formation problems is, 
as the previous sections demonstrate, vast. Arguably, the majority of efforts within those fields 
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of research have gone to presenting proof of concept solutions, and not solutions which are 
meant to be implemented by practitioners. A small emerging literature aims to fill that gap by 
providing algorithms that incorporate constraints important to their target audiences and 
programs that are built in systems that can be customized and implemented by individual users.  

One set of tools currently available leverages an input program called Comprehensive 
Assessment for Team-Member Effectiveness (CATME; Ohland et al., 2012) which is a survey-
based peer evaluation tool. In one part of the survey students are able to provide feedback on 
how well their teams are working together. The other part of the survey is integrated with a team 
assembly framework called Team-Maker (Layton et al. 2010). Central to the usability of Team-
Maker is that it allows instructors to decide which of a set of criteria are important when forming 
a team. For instance, they could prioritize Grade-Point Average (GPA) distribution in groups 
such that teams either have students of similar or dissimilar GPAs. They could also decide that 
allocation according to that GPA rule was more important – or should receive greater weight – 
than allocation according to gender. While this tool was developed for academic classrooms, it 
does have the flexibility for users to define their own rules, creating an opportunity for 
specialized users to include preferences for KSB-Ps, performance evaluations, or previous 
experience. 

The selection of a best set of groups is found in Team-Maker with a hill-climbing 
algorithm, an optimization technique that finds local maxima by making incremental changes to 
its solution from a random initial starting point (in this case, random allocation of students to 
groups). The algorithm begins with a random allocation of students to groups and then swaps 
two students at a time, recomputing the group fit scores each time. One drawback to CATME’s 
Team-Maker is that it does not allow for the manual shuffling of team members. As such, a unit 
leader, armed with tacit knowledge about positive or negative social dynamics between two 
Soldiers, would not be able to switch them within the system. 

In 2011 Dimiduk and Dimiduk introduced a new program, GroupEng, that targeted two 
particular flaws of Team-Maker. First, GroupEng introduces privacy improvements by keeping 
data inputted by students and teachers local, unlike Team-Maker which stores it externally. It 
also addresses a weakness of the group value determination in Team-Maker which allows for 
teams to be weaker on average than other groups if they have satisfied certain rules. As a result, 
Team-Maker could lead to large deviations in group strength even when instructors indicated a 
preference for equally strong groups. While there may be situations in which such large 
deviations are useful or do not significantly impact team outcomes (e.g., when assembling a sub 
team from a larger unit), such a violation could be hazardous for partitioning Soldiers into 
equally resilient teams deploying under high-risk conditions. 

Hertz et al. (2019) offer yet another algorithm to solve the Team-Maker problem, gruepr. 
Their set-up is essentially the same as before, with an instructor gathering information on 
participating students, indicating desired scoring rules, and then preferred weighting of those 
rules. This time, Hertz and colleagues solve the assignment problem using a genetic algorithm. 
Here, genomes are arrays of student IDs representing potential group membership which are 
evaluated according to a group compatibility score. Those with higher fitness scores pass on part 
of their genome to the next generation and as evolution within the model proceeds, random 
mutations occur (students are randomly swapped between teams) and over generations, the 
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optimal distribution of students to teams emerges. The authors demonstrate dominance of 
gruepr’s team allocation over both random and instructor-selected assignments.  

So far, all of the above tools nicely incorporate basic information about participants, such 
as their schedules or GPAs, but none have incorporated any additional personnel factors. 
Andrejczuk et al. (2019) propose a tool that fills that gap by considering personality traits of 
potential team members. Their tool, EduTeam, is based on their SynTeam algorithm, a heuristic 
algorithm based on local search. As in Stylianou et al. (2012; see below), Andrejczuk aims to 
sort students into teams that are balanced in size, skills, personality, and gender. Their approach 
is to randomly compose teams of the given size as an initial solution and then iteratively select 
two teams at random and shuffle members. To evaluate proficiency of a team solution they 
calculate a score that depends both on competency of the team (balance and coverage of skills 
needed to complete a task) and congeniality of a team. Congeniality in their sense is based on a 
set of heuristics surrounding the personality types defined by MBTI (e.g., a team is more 
congenial if it has a balance of sensing-intuition and thinking-feeling types). While the authors 
employ Myers-Briggs type, Army specific metrics such as TAPAS scores could be used 
equivalently to capture primary personality factors (derived in this case from the Big Five) and 
additional factors such as team orientation. Overall, the SynTeam algorithm is shown to be 
efficient at large numbers of students and partitions, making it a promising tool for team 
segmentation in the real world.  

The procedure for all the tools discussed so far is to provide instructors with flexibility in 
creating rule sets and preferences, but then lock them into the algorithmic groupings. Thio and 
colleagues (2018) offer a tool, Teammatic, with a “mixed initiative approach” that directly 
addresses that inflexibility. Similar to others, their tool begins by having instructors upload 
information about their students (e.g., their schedules, topic interest, gender) and then creating 
constraints to govern team formation. Allocation proceeds according to a greedy algorithm that 
maximizes a score function that reflects the instructor’s constraints. Importantly, after the teams 
have been generated, instructors can move students to different groups. To support these swaps, 
Teammatic suggests potential exchanges that will still yield groups scoring high on the specified 
criteria. A tool such as Teammatic may be particularly useful in a military setting where leaders 
and decision makers are likely armed with implicit knowledge about potential team 
compositions. With the system’s swap suggestion tool, that leader could combine algorithmic 
insights with their tacit knowledge to enact informed changes.  

Outside of a classroom setting, Stylianou et al. (2012) offer a tool aimed at software 
project managers. As before, their tool takes as input information about potential team members 
but this time that information includes both personal traits of team members (five-factor model 
of personality) and project features (e.g., duration of task, skill level needed). Their tool has two 
primary functionalities: first, using a multi-objective genetic algorithm, individuals are assigned 
to teams according to skill and personality fit. The objective function of this step minimizes the 
number of individuals assigned to a task, maximizes the personality fit of individuals to the 
nature of the task, and maximizes skill fit. The second functionality of their tool takes a set of 
team assignments as given and outputs a schedule of tasks that will yield the shortest possible 
project duration. In this step, the user has the option of using a genetic algorithm or a single-
objective particle swarm optimization algorithm depending on their preference. While this 
particular tool is geared towards project management, its explicit consideration of how a certain 
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personality trait aligns with a specific task is novel and an important reflection of psychological 
constraints. It may be a promising tool to use for specific duration missions where team 
functionality is tightly linked to the nature and duration of team tasks. 

The final tool we consider here is one that addresses the so far unaddressed issue of team 
member replacement (Zhou et al., 2018). In that work, the authors build a network-based 
recommendation system with the specific aim of being transparent to the user. Their tool, 
EXTRA, uses a random walk graph kernel approach to choose minimally disruptive candidates 
to replace current team members. Using a graphical interface, the decision maker can then 
explore the foundations of that recommendation by learning, for instance, what the social 
connections are between the candidate and current team and how the candidate’s skills compare 
to those held by other members. This tool is unique in its focus on member replacement and in 
its interactive design.  

Summary 

The tools reviewed here represent the major advances in the last decade of development. 
Many of these tools are used actively by large communities (e.g., CATME and Team-Maker in 
education settings) and have evolved to be adaptable and user-friendly by building flexibility in 
the types of constraints to consider during team formation. Some tools offered on the market go 
beyond skills and schedules to include personality traits when assembling final teams (Stylianou 
et al., 2012; Andrejczuk et al., 2019). 

 The landscape of tools is ripe for methods that include other social factors, such as team 
communication and coordination costs which could be represented by past collaboration between 
service members. A paper mentioned earlier in this review, by Sapienza et al. (2019), used a 
neural architecture for building a recommender system which could be a scalable way to include 
both skill and collaboration in team formation. Rad et al. (2021) propose an open source toolkit 
using such an approach and employ an efficient variational Bayes neural architecture. As the 
field of automated tools advances, there is opportunity to introduce new computational tools 
(such as those network-based approaches) to user systems. In doing so, additional staffing 
problems such as team member replacement decisions could be included in automated decision 
tools. 

Integrating Insights from Psychological Sciences 

Recent years have seen significant advances within the computer sciences on the 
computationally difficult problem of team formation and composition. One overarching theme of 
this review is that the landscape of approaches to forming teams is extensive. Some 
computational tools are common to all decision types (e.g., genetic algorithms, graph kernels). 
Other tools, such as network- or graph-based approaches, have been employed for single and 
multiple team formation but have not been leveraged for team replacement systems or user-
friendly tools (see Appendix C for a summary of algorithmic approaches and tools). Papers in the 
review also vary in the extent to which individuals are privy to, or involved in, the architectures 
that assign them to teams (a distinction aligned with the exogenous/endogenous categorization), 
and the extent to which they are characterized solely in terms of their skills. 
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Organizational science is not particularly well positioned to inform variation arising from 
algorithmic approaches. To date, the limited attempts by organizational psychologists to create 
decisional tools have fallen short. For instance, although Donsbach et al. (2009) developed a 
staffing tool that considered both staffing decisions (e.g., creating a new team vs. filling an 
opening to an existing team) and individual team role propensities (i.e., individual experience 
and personality), its practicality was limited to staffing one team at a time, while also restricting 
the input to no more than 50 candidates and 12 open positions. Organizational psychologists are, 
however, well positioned to leverage their theories of team composition to inform, or create, 
decision tools for automated staffing that are psychologically sensitive. Below, we consider three 
main areas that psychology has identified as important for composing teams. For each, we 
highlight current algorithmic approaches that either address that area or are potentially adaptable 
and relevant.  

Skills, Individual Attributes, and Team Role Propensity 

A common way to optimize assignment of individuals to teams is by considering the 
skills held. An optimal team by this metric has full or redundant (Okimoto et al., 2015) coverage 
of skills required to complete a given task. However, an individual’s ability to contribute to 
either a team or individual task is far wider than simply their skill level and includes attributes 
such as their cognitive ability, personality, and gender (Barrick et al., 1998; Devine & Philips, 
2001; Van Vianen & De Dreu, 2001; Fisher et al., 2012; Lykourentzou et al., 2016). In the case 
of personality, one of the challenges facing work within the computational sciences is 
measurement based. The measures employed by the papers reviewed here (e.g., MBTI) have 
been replaced in modern research in favor of more scientifically derived scales (Pittenger, 2005). 
At their core, algorithmic approaches that included personality in their team-fit calculations 
represent an important step towards psychological sensitivity. However, to reflect modern 
theories of personality and teams, architectures must be built around more robust models of 
personality (e.g., Big Five traits; Barrick & Mount, 1991). Army settings are particularly well 
positioned to leverage algorithmic approaches to personality-sensitive team formation. While 
academic instructors may lack more detailed aptitude or personality data on their students, 
Soldiers each have ASVAB and TAPAS scores and a wealth of other personnel data that can 
immediately be incorporated. 

Efforts to formalize the specific relationship between personality and team roles also 
suffer from a lack of rigorous tools. For instance, Stylianou and Andreou (2012) sought to 
optimize the fit between personality and occupation, as derived from a career handbook while 
Farhangian et al. (2015) offered an ABM framework that represented the dependency between 
personality traits and role tendencies based on MBTI types and Belbin role descriptions (Belbin, 
1993). Both of these papers offer a framework for considering how team members may be more 
or less suited to complete a particular part of a task or occupy a particular team role. Research 
from psychology suggests that indeed, the characteristics of an individual motivate and enable 
them to occupy some roles more effectively than others. For example, Mathieu et al. (2015) 
create a taxonomy measure, Team Role Experience and Orientation, that defines the behaviors 
associated with different team roles found in the literature (e.g., a “Challenger” pushes a team to 
explore all possible solutions to a problem; interested readers may refer to Appendix A for a full 
list of- team roles). Future computational work should continue to include person-role matching 
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considerations and incorporate motivation of an individual to complete a task as part of the fit 
optimization.  

Beyond person-role fit, certain distributions of personality traits are critical to group 
effectiveness. While algorithmic architectures such as that developed by Andrejczuk et al. (2016) 
partition individuals into heterogeneous teams balanced on personality, it may be the case that 
only certain characteristics are important to balance on. For instance, Halfhill et al. (2005) find 
that relationship-oriented personality traits such as agreeableness predicted team performance 
beyond task-oriented traits such as achievement motivation. That said, Bell (2007) notes that 
particularly in the case of agreeableness, minimum agreeableness is more important than average 
agreeableness when composing a team; all it takes is one disagreeable member to disrupt the 
balance of an otherwise agreeable team. Moreover, findings from across civilian teams may no 
longer stand when tested against an Army population. The relationships among personality 
characteristics and Army-relevant team outcomes need to be both understood and incorporated to 
create teams that may perform optimally. For example, although high group extraversion is 
typically predictive of high team performance, it may be detrimental to teams operating in 
austere or isolated environments (Palinkas et al., 2000).   

Personality is one way to represent compatibility of team members but there are other 
factors that impact interpersonal relations that subsequently impact team performance. Many 
papers here formalized “communication cost” as a way to capture potential for effective 
collaboration among team members. Sometimes that cost was represented by histories of 
collaboration (e.g., Lappas et al. (2009) used co-authorship in a database of articles), and other 
times, closeness in a social network (e.g., Rangapuram et al., 2015). Communication cost could 
be additionally represented by a wealth of other data sources, such as service history or 
geographical histories (e.g., deployment locations, or posts on which a Soldier has lived). 

Among psychologists there is generally a consensus that interpersonal cooperation and 
communication are important for optimizing teamwork (Sheng et al., 2010). Indeed, 
interpersonal cooperation itself is required to collaboratively problem solve and resolve conflict 
(Korsgaard et al., 2005). Network-based approaches offer a natural and promising architecture 
for representing relationships that could facilitate such cooperation but for practitioners, aside 
from the high computational costs of current network algorithms, deriving the relevant social 
network would require appropriate data on individual members. Malinowski et al. (2004) for 
instance, propose that data on colleague trust perceptions could be derived from company-wide 
surveys.  

Team Hierarchies 

The overwhelming majority of computational approaches to team formation reviewed 
here imply that teams are entirely egalitarian and do not consider team hierarchy in the formation 
decision. Of the exceptions (Agmon et al., 2014; Kargar and An., 2011; Rangapuram et al., 2013; 
Gilal et al., 2018), the team leader is usually taken as given; that is, a team is formed around a 
pre-designated leader. There is therefore a lack of computational approaches in which, given a 
pool of candidates, a team is extracted with consideration of who in that team will assume the 
position of a leader. 
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In a context such as team formation in the Army, it may be the case that leaders are 
indeed prespecified, and the goal would be to select the optimal group of subordinates for that 
leader. Alternatively, it may be the case that a leader needs to be recruited to lead an already 
formed team. In the first case, there is some preliminary algorithmic work that formalizes the 
optimal relationship between a leader and a subordinate as one that minimizes the 
communication cost between them (Kargar et al., 2011). Current algorithmic approaches don’t 
speak to the second situation in which, given a team, a leader is chosen (this decision problem 
would likely fall in the category of exogenous team member replacement). Insights from 
organizational psychology could inform the characteristics desired in a leader given the features 
and goals of the team (Carter et al., 2019).  

Task Type 

In the organizational science literature, task type is considered to impact team 
performance both in terms of the tasks completed by team members (e.g., negotiation vs. 
advising; Wildman et al., 2012) and in terms of tasks completed by the team as a whole. This 
latter type of team-task interaction reflects task context and captures the impact of complexity, 
environmental uncertainty, and interdependencies of subtasks. Generally, different tasks require 
different types of teams (see Hollenbeck et al. (2012) and Lee et al. (2015) for a description of 
team type conceptualization, also Steiner (1972)). Research suggests, for instance, that as tasks 
become more complex and as environments become more uncertain, the demand of teams to be 
more cohesive also increases (Andrejczuk et al., 2018).  

The impact of task types can also be seen in the team formation decisions across the 
Army; leaders show differences in the attributes desired for strategy, negotiation, and crisis 
response teams (Baltos & Mitsopoulou, 2007). Baltos and Mitsopoulou (2007) also note that the 
extent to which personal relationships and collaboration potential matter for team formation 
decisions changes with the external team context, with interpersonal relationships less a factor 
when the team is entering a crisis response situation. Within the current review, Farhangian et al. 
(2015b) represents one of the few algorithmic staffing papers to consider task type in formation 
decisions, though their design is limited to two types of tasks -- structured tasks and open-ended, 
“cognitive” tasks. There is, therefore, a significant opportunity to develop team formation 
algorithms that consider the nature of the tasks the team is being designed to complete. 

Conclusion 

Over the course of this annotated bibliography we have provided a multi-disciplinary 
review of current and emerging computational approaches to team formation. We adopted a 
taxonomy which categorized those approaches into decision type and exogeneity/endogeneity of 
decision makers in an effort to highlight the relevance of computational systems to real-life team 
formation problems. We concluded with consideration of areas that organizational science has 
identified as important for composing teams. 

One goal of this review is to offer researchers from psychology an overview of the last 
decade of computational literature on team formation. In doing so, we are able to highlight the 
areas we see as particularly ready for interdisciplinary research. It is likely that the disconnect 
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between the organizational and the computational literatures has several sources. For instance, it 
may arise from structural differences in the field, where prestigious computer science publishing 
outlets include peer-reviewed conference proceedings as well as the traditional peer-reviewed 
journals, leading to potential advances going overlooked by researchers in other fields unfamiliar 
with those norms. Additionally, as is often the case in multi-disciplinary work, computer 
scientists are unfamiliar with the experimental work of psychologists, and psychologists are in 
turn unfamiliar with computer scientists’ architectures and mathematical methods, rendering 
each side inaccessible to the other. This review aims to be accessible to both.  

From a practitioner’s standpoint, we hope this review provides insight into the current 
ready-to-use tools for team formation and into the possibility of adapting more basic research to 
decision systems that are psychologically sensitive and user friendly. Part of the challenge facing 
developers of these tools is algorithmic; a useful tool must have low computational costs and be 
scalable to the extent that the user needs to create a large number of teams from a large pool of 
candidates. But there is also a user challenge present. It may be that in order for an algorithmic 
approach to be adopted by a human user, that user must feel like they have control over the 
outcomes – Gómez-Zará et al. (2020) discuss this need in terms of a high- or low-participation 
team assembly architecture. There is therefore a need for automated tools that are transparent in 
their process and allow for human intervention. One example that we have seen in this review is 
EXTRA by Zhou et al. (2018) which is novel both for its use of network-based team formation 
algorithms and for its level of user engagement, allowing users to explore the decisions outputted 
by the algorithm through visual displays. In doing so, the authors offer a decision tool that begins 
to draw the curtain back from the algorithmic “black box” by increasing user understanding of 
how the automated processes unfolded, thus potentially increasing user trust in the outcomes 
(Balfe et al., 2018). Future efforts to develop high-participation systems should continue to make 
the algorithmic process transparent and amenable to human decision-maker refinements.  

 As researchers from both the computer and the organizational sciences continue to 
explore the problem of team formation, there is great opportunity for them to engage in deeply 
interdisciplinary work. This review detailed the primary algorithmic approaches to solving three 
different types of team staffing problems and offered insight into how psychological research on 
team composition could inform those approaches. While solutions to team formation abound, the 
gap between basic science proof-of-concept research and user-focused tools is large. Closing that 
divide will require the development of algorithmic approaches that scale, optimize 
psychologically relevant constraints in an adaptable way, and offer transparency as to their 
assignment process.  
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Appendix A: Annotated Bibliography of Selected Papers 

Team Member Replacement 

Agmon, N., Barrett, S., & Stone, P. (2014, May). Modeling uncertainty in leading ad hoc 
teams. In Proceedings of the 2014 International Conference on Autonomous Agents 
and Multi-Agent Systems (pp. 397-404). 

These authors focus on modeling how new team members learn how to assimilate into an 
existing or newly formed team. According to the problem, ad hoc teamwork exists when a team 
of agents needs to cooperate without being able to communicate a priori and each agent must 
decide on the next action based on the actual (recursive) teammate behavior. Here the authors 
consider that there are only two types of agents: a best response agent who chooses their action 
based on the current state of the world assuming that their teammates will continue to behave as 
they have in the past, and an ad-hoc agent, or one that has a better awareness of the full team and 
the possible actions they may take. Using this knowledge, ad hoc agents (i.e., new leaders) must 
try to influence the collective selection of actions in the team to reach a joint optimal solution. 
Computationally the problem becomes how to lead the team to the optimal steady cycle (osc; 
cyclic set of joint actions) with minimal cost.  

Agmon introduces the Reducing Expected Action Costs for Teamwork (REACT) 
algorithm to select the best action that the ad hoc team leader should take at times of a point of 
no return to the osc, employing an indirect planning method driven only by the most informed 
agent to solve a set of problems. When a decision needs to be made, the algorithm will calculate 
the possible consequences of each choice of action given the uncertainty of expected behaviors 
and provide the most risk aversive decision to maximize the team’s utility. Thus, the proposed 
algorithm is formed with the assumption that the ad hoc agent will have an idea of their 
teammates' types and subsequent behavior, albeit with some uncertainty. The algorithm will then 
analyze the cost/impact of misidentifying their teammate’s types on the optimal solution. 
Empirical results show that using REACT to reason about uncertainty outperforms making 
incorrect assumptions of your teammates, suggesting the potential savings of such an approach to 
be quite large.  

Li, L., Tong, H., Cao, N., Ehrlich, K., Lin, Y. R., & Buchler, N. (2015, May). Replacing the 
irreplaceable: Fast algorithms for team member recommendation. In Proceedings of 
the 24th International Conference on World Wide Web (pp. 636-646). 

Li and colleagues focus on the problem of team member replacement within the setting of 
a social network: given a vacancy within an existing team, how can you find the best 
replacement candidate? They place two constraints at the center of their approach: first, the 
replacement should match the existing team in terms of skills held and should have similar skills 
to that member which they will be replacing. Second, they should have a social network similar 
to that of the existing team members. This second constraint, termed structure matching, follows 
the literature suggesting that there will be less disruption within the team if the replacement is 
someone who has similar relationships with current team members, either because there is a 
history of collaboration or overlap in peripheral colleagues. The authors formalize the problem of 
team member replacement by modeling the team as a labeled graph and using graph kernels as a 
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way to represent the skill and structure match requirements. They offer a variety of fast 
approximation algorithms and for each, apply them to real world data sets to show that they are 
both effective (accurate) and efficient (scalable). Take, as an example, the case in which Matt 
Damon is no longer available to film Saving Private Ryan. The top replacement as generated by 
their algorithm is Samuel L Jackson who has participated in movies of similar keyword 
categories (i.e., Jackson has the action and drama movie skills) and who has collaborated with 
other actors starring in Saving Private Ryan.  

The methods and conceptual approaches outlined in this paper represent an important 
contribution to the smaller literature of team member replacement. Formalizing the problem 
within the setting of a social network enables the authors to include important social 
considerations and go beyond simple skill matching.  

Malinowski, J., Weitzel, T., & Keim, T. (2008). Decision support for team staffing: An 
automated relational recommendation approach. Decision Support Systems, 45(3), 
429-447. 

This article is an example of how an algorithm used to estimate team compatibility can be 
integrated into computer-based human resource practice. Here, the authors present a decision 
support system which recommends candidates from a wider pool that will best match future team 
members in terms of interpersonal compatibility, thereby enhancing pre-selection results. In 
considering this interpersonal dimension, their model goes beyond previous work that largely 
focuses on skills and abilities (i.e., the fit between person and job) not between person and team. 
That is, they argue that a decision support system used for building teams should consider more 
than just whether the CV and the job match but also the relational attributes of its members.  

The foundation of their recommender system is a computational model aimed at 
predicting trust relations between previously unknown individuals, taking into account both 
social and human capital of candidates. Authors discuss the merits of the two prominent filter 
techniques used for recommender systems: 1) Content-based models that use information about 
objects already rated (these models may filter out features such as category name, title, or author) 
and 2) collaborative methods that that try to identify users with similar tastes or attributes. 
Applying a combination or hybrid of the two, a probabilistic latent aspect (PLSA) model using 
the Expectation Maximization (EM) algorithm is used to predict collaborative trust, direct trust, 
and similarity-based trust before taking an average of all available trust paths among the three. 
The recommender system was tested on 21 University students after they were asked to rate their 
preference for 100 job profiles and to rate their relationships with the other students in the 
seminar with promising results for producing desired team member matches.  

One aspect that they do not mention is how the user should go about collecting a survey 
of interpersonal relationships that exist among team members. Rather they suggest that some 
parts of the data required for such an approach could be derived from personal profiles already 
stored electronically in HR information systems (e.g., past projects/team assignments or 
performance evaluations). Taken together, this piece is one of the few published articles that 
explicitly outlines how human resources can improve team-based assignments through the 
consideration of the relational aspects that assess person-team fit in addition to person-job fit.  
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Sapienza, A., Goyal, P., & Ferrara, E. (2019). Deep neural networks for optimal team 
composition. Frontiers in Big Data, 2, 14. 

Sapienza and colleagues focus specifically on the role of cooperation in team 
composition. They have two broad conceptual goals: to specify the influence teammates have on 
each other in the short and long term, and to design a framework to recommend teammates that 
would improve individual performance. For each of these goals, they demonstrate that the 
improvements can be predicted with a deep learning architecture. 

To their first goal, the authors construct a network that encodes information about how 
individuals perform when they work together with others. To construct that network, they turn to 
large online multiplayer games (in their case, “Dota 2”) where teams of players have to 
cooperate to achieve a shared goal and performance is reflected in ratings. Interested readers can 
turn to the paper to learn more about that co-play network but its main interest to us is in how it 
is subsequently used in a recommendation system. To build the recommendation service the 
authors formalize a “teammate autoencoder” which is a specialized instance of a traditional 
autoencoder. Put simply, an autoencoder is a neural network that learns how to compress data 
and then reconstruct it in such a way that the noise in that data is minimized. The innovation in 
the present paper is to modify the traditional structure to accommodate the co-play network 
designed in the goal above. Doing so allows the authors to predict new teammates for a given 
player that will be beneficial to them and improve their individual performance. In a series of 
evaluation studies, they demonstrate that their method far outperforms recommendation models 
currently in use in the literature.  

In this paper Sapienza demonstrates the ability of deep neural networks to represent how 
individual players influence those with whom they collaborate and then how to use that network 
of influence to predict future synergies among individuals. While future work needs to be done 
to implement these techniques at scale, this is a promising application of deep learning 
techniques to the problem of team member replacement.  

Single Team Formation 

Anagnostopoulos, A., Castillo, C., Fazzone, A., Leonardi, S., & Terzi, E. (2018, July). 
Algorithms for hiring and outsourcing in the online labor market. In Proceedings of 
the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data 
Mining (pp. 1109-1118). London, United Kingdom.  

These authors introduce and propose a model for the team formation for outsourcing 
(TFO) problem, which they describe as a middle ground between crowdsourcing and team 
formation. In the model, tasks arrive online (i.e., unknown to the team a priori) to a core team of 
hired workers. However, in this scenario the team is dynamic as new team members can be hired 
and existing team members can be fired. It is also possible to outsource some parts of an 
incoming task to a non-team member to complete. Thus, the problem becomes one of finding an 
online cost-minimizing algorithm that can be used to balance the costs and salaries associated 
with the hiring, firing, and outsourcing of members to complete a task. Unlike other solutions to 
the team formation problem, this situation does not focus on optimizing the communication cost 
as there is no assumption of a network among individual workers. Their algorithmic design takes 



 

35 
 

an online primal-dual approach to allow for an algorithm that can account for both the 
outsourcing and the hiring cost of all workers. The premise of this is to create a sequence of 
integer programs to model the online problem by incrementally introducing variables and 
constraints before considering their duals and linear relaxations (essentially embedding a set-
cover problem in an online algorithm). The authors design several algorithms, namely LumpSum 
and TFO, that are shown to have logarithmic competitive approximation ratio. Experimental 
results further suggest that the primal-dual technique can effectively take into account multiple 
sources of cost, leading to cost saving practices in the context of online labor markets.  

Kargar, M., & An, A. (2011, October). Discovering top-k teams of experts with/without a 
leader in social networks. In Proceedings of the 20th ACM International Conference 
on Information and Knowledge Management (pp. 985-994). 

Kargar and An build on the problem of extracting teams from a social network as 
introduced in Lappas et al. (2009). Their aim is twofold: to introduce two new ways to define 
communication cost, and to introduce the problem of finding a group of experts with a leader. 
The communication cost functions they propose specifically address key weaknesses in the 
stability and relevance of the cost functions proposed by Lappas. The first new cost function, 
“sum of distances”, considers communication cost between pairs of individuals within a team 
that have the same expertise. “Leader Distance” on the other hand, considers the communication 
cost between a leader and each team member. Both functions readily capture the intuition that it 
is desirable to have experts on a team who can easily collaborate and communicate with each 
other, and that it is important for a leader to be able to do the same with her team members. The 
authors proceed to propose algorithms for each communication measure (an approximation 
algorithm for minimizing “sum of distances” and an exact polynomial algorithm for minimizing 
“leader distance”) and demonstrate effectiveness in producing either one or a collection of top 
teams with or without a leader. Empirical evaluations using both a dataset of academic papers 
(DBLP) and a dataset of movies and actors (IMDb) show that Kargar and An’s algorithms 
produce teams with lower communication costs (as they define them) than the algorithms and 
cost functions used by Lappas et al. (2009). In later work, Kargar and An (2017) expand their 
approach to include personnel cost as well as communication cost.  

This work is a significant extension of previous efforts to create teams within a network 
setting. The communication structures developed address realistic obstacles facing individuals 
newly assembled into a team. Furthermore, it is the first to offer a method for forming a team 
with a designated leader who is both skilled and closely connected to their team members. 

Kargar, M., An, A., & Zihayat, M. (2012, September). Efficient bi-objective team 
formation in social networks. In Joint European Conference on Machine Learning 
and Knowledge Discovery in Databases (pp. 483-498). Springer, Berlin, Heidelberg. 

In addition to finding a team of experts from a social network with low communication 
cost, these authors extend the team formation research to consider the personnel cost. That is, 
they introduce a bi-objective cost function for team formation that is able to effectively balance 
the overall combined communication and personnel cost across a team of qualified agents. Here 
the social network is modeled as a graph in which nodes represent experts and two nodes have an 
edge between them if they worked with each other in the past. As in their previous work (Kargar 
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& An, 2011), the authors use the “sum of distance” cost function to consider communication 
cost. They then introduce a personnel cost function that increases the cost of each expert as a 
multiple of the number of skills that they will be responsible for. To solve the bi-criteria 
optimization problem the two objectives are combined into one with a tradeoff parameter that 
considers the weighted sum of the two functions. The same 2-approximation algorithm (2011) is 
used to find a team of experts that minimizes the combined cost. Three heuristic algorithms 
(iterative replacement (ItReplace) and two variations of a minimal cost contribution (MCC/MCC 
Rare)) are also proposed to help find the best team of experts. Using pre-existing data from 
IMDb and DBLP, results indicate that the four proposed algorithms are both effective and 
efficient at finding a team in a social network, performing the task much faster than doing so 
using the exact or random method.  

While the current approach requires that experts (agents) have the necessary 
competencies to perform a task, the proposed algorithms do not require any specific motivations. 
That is, a major limitation of this approach is that the communication cost function does not 
consider the expert's motivation to work in a team or with potential members of a team, 
regardless of their proximity in a social network.  

Lappas, T., Liu, K., & Terzi, E. (2009, June). Finding a team of experts in social networks. 
In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge 
Discovery and Data Mining (pp. 467-476). 

The authors offer a novel approach to the classic team formation problem by solving the 
problem in the context of social networks. This paper serves as a foundation for later work 
mentioned in this annotated bibliography, namely that of Kargar & An (2011, 2017) and 
Gutiérrez (2016).  

Lappas et al. define the problem of team formation as one where a subset of experts is 
extracted from a larger network according to two constraints: how closely the experts’ skills 
meet the requirements of the task and how effectively the group can work together. In the case of 
the first constraint, that of skills, each individual is first defined by a particular set of abilities. A 
potential group of individuals is only viable if at least one individual in that group has a skill 
required by the task at hand. The specification of the communication constraint relies on 
individuals being organized into an undirected and weighted graph (network) where the weights 
between individuals represent the communication cost between them. Just as a viable group must 
have individuals with the necessary skills, it should also consist of individuals who can 
effectively collaborate; that is, ones with low communication costs. The authors propose two 
ways to define communication costs among team members and specify two possible algorithms 
for solving each. Each proposed algorithm is evaluated using a collaboration graph extracted 
from a dataset of academic publications and is assessed on the communication cost, cardinality 
(size) of the team, and connectivity of the generated team. They find that their proposed 
algorithms are able to form task-oriented teams that have low communication costs, although the 
teams varied in their size according to the underlying algorithm.  

Their specification of the team formation problem allows for a more nuanced 
incorporation of attributes important to team composition. For instance, while they assume that 
skills are binary (individuals either have a skill or not) and that tasks either require a skill or not, 
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their approach could be generalized to specify graded skills in both cases. The authors also note 
that by minimizing communication cost they are implicitly solving for small teams. Their 
method could, however, be extended to be a “bi-objective” optimization problem meaning that 
both an optimal communication cost and an optimal team size could be considered in team 
formation.  

Okimoto, T., Schwind, N., Clement, M., Ribeiro, T., Inoue, K., & Marquis, P. (2015, May). 
How to Form a Task-Oriented Robust Team. In AAMAS (pp. 395-403). 

Okimoto et al. (2015) present a more realistic model of the team formation problem to 
consider that there may be circumstances in which one or more (k) team members may be unable 
to complete their task (e.g., dangerous conditions; failed technology). Using a binary approach in 
which an agent either does or does not have a skill-set, the authors define the problem as 
identifying a team that is both cost efficient and k-robust such that the overall goal (or task) can 
be completed in the event of member loss. They offer two algorithmic approaches using a branch 
and bound technique. The first, Algorithm for Robust Teams (ART), is intended to identify a 
singular team that is both cost-efficient and k-robust. If said team can be found, the second, 
Algorithm for Optimal Robust Team (AORT) aims to find the best solution to the bi-objective 
constraint, presenting all possible solutions of the trade-off between team cost and team 
robustness.  

Each algorithm is evaluated using a number of small benchmarks on a small problem set. 
Authors find that identifying an optimum robust team is no more computationally advanced than 
is that of identifying an optimum efficient team. However, to be robust, the skill distribution 
amongst team members must be such that every skill required to complete a task/set of tasks is 
covered by at least k+1 of its members. In terms of team staffing, the utility of this approach may 
be better suited to teams in which it is critical that there are members with redundant skill sets as 
the cost of each team member is likely to rise in accordance with the number of skills that they 
bring to the team. For more advanced guidance on the task-oriented robust team formation 
problem, we direct interested readers to Crawford et. al., (2016) who introduce and evaluate a 
handful of approximation algorithms and an evolutionary computational approach that is scalable 
to larger problem sets and complexities.  

Teng, Y. C., Wang, J. Z., & Huang, J. L. (2014, May). Team formation with the 
communication load constraint in social networks. In Pacific-Asia Conference on 
Knowledge Discovery and Data Mining (pp. 125-136). Springer, Cham. 

 In addition to finding a team of experts to cover all of the skills required at minimum 
communication cost, these authors consider the team formation problem for occasions in which a 
single leader is unable to manage the needs of a larger team or project. That is, there are some 
instances in which experts are further divided into different groups based on their skills and the 
tasks required of a project. In this scenario, multiple leaders are organized into a hierarchical 
structure in which their communication load is limited to a certain number of leaders or team 
members at the next lowest level. This constraint is referred to as the communication load 
parameter.  
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The authors present a two-phase framework. During the first phase, all teams that are 
qualified are identified based on the methods for identifying a group of experts with a leader first 
developed by Kargar and An (2011). For the second phase, they developed a naive algorithm 
called Brute-Force to find the team and hierarchy with the minimal communication cost (the 
degree-constrained minimum spanning tree) by enumerating all the eligible teams and 
hierarchies. Due to the time-consuming nature of this method, they presented two additional 
algorithms to cut down on the number of teams that need to be considered during the hierarchy 
establishment phase of the process. The Opt algorithm uses the lower bounds of the 
communication cost to prune some of the qualified teams in the first phase. However, the 
execution time for this computation still suffers when used in large social networks. The Approx 
algorithm instead provides a more scalable solution that finds nearly-optimal teams by applying 
a 2-opt change approximation for the hierarchy establishment of each qualified team as opposed 
to the enumeration method used in the first two approaches. Experimental results suggested that 
when a nearly-optimal solution is acceptable, Approx is much more efficient for identifying a 
solution to the team formation problem when considering multiple leaders in a hierarchy with 
only a small increase in the communication cost.  

Multiple Team Formation 

Anagnostopoulos, A., Becchetti, L., Castillo, C., Gionis, A., & Leonardi, S. (2012, April). 
Online team formation in social networks. In Proceedings of the 21st International 
Conference on World Wide Web (pp. 839-848). 

Anagnostopoulos et al., (2012) expand the team formation problem to consider how to 
form teams online (via a networked community) such that coordination cost is minimized while 
also ensuring that there is a fair allocation of the overall workload among experts with a diverse 
set of skills. Using the diameter and Steiner tree communication cost measures proposed by 
Lapps et al. (2009), authors present algorithms that are shown to approximate the optimal 
solution in an online case. Unlike previous offline models, their model does not assume that team 
members need to be directly connected to be socially compatible. Instead, coordination and 
communication costs can be reduced by limiting the team diameter such that parameters can be 
bound to the longest shortest path4 among team members (e.g., the distance between team 
members could be set to not exceed second or third connection). Once the communication cost is 
bound, the online algorithms can be used to solve the bi-objective social task assignment 
problem to minimize the maximum load for team members. In doing so, the proposed algorithms 
must also keep track of the tasks (or teams) individuals in the network are already assigned to. 
Although the authors use Internet Movie Database (IMDb) and Bibsonomy as their source of 
experts and gauge of social compatibility, they suggest that the team diameter function can 
model other network preferences such as past interactions, geographical proximity, compatibility 
in collaborating, or distance in a company’s hierarchy. Moreover, while balancing task allocation 
is the primary objective of the proposed algorithms, this is the first work to specifically 
acknowledge the problem of team formation to meet the demands of an incoming stream of tasks 
in an online setting.  

 
4 In graph theory, the longest shortest path is one way to describe the diameter of a graph. In network analysis it can 
be thought of as the fewest number of steps required for the most distantly linked pair of teammates within a group 
to connect with each other. 
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Andrejczuk, E., Bistaffa, F., Blum, C., Rodríguez-Aguilar, J. A., & Sierra, C. (2019). 
Synergistic team composition: A computational approach to foster diversity in 
teams. Knowledge-Based Systems, 182, 104799. 

 These authors propose a model to predict team performance given a complex task and 
based on the individual attributes of the members in the team. Extending Wilde’s post-Jungian 
theory for team composition, the current model assumes that different types of tasks require 
different personalities such that teams with multiple personalities will benefit through the diverse 
approach each member will contribute to different tasks. They introduce the Synergistic Team 
Composition Problem (STCP) as one whose goal is to partition a group of agents into a set of 
heterogeneous teams balanced (i.e., both congenial and proficient) across team member 
competencies (non-binary), personality, and gender.  

Two algorithms are proposed as a solution. The STCPSolver is an optimal algorithm that 
is effective for smaller instances of the problem while the SynTeam is an approximate (heuristic) 
algorithm that can provide high quality, though not necessarily optimum solutions. STCPSolver 
generates all possible teams of a given size and computes the best synergistic value for each team 
before generating an integer linear programming (ILP) encoding of the problem. For larger 
problems, SynTeam instead randomly composes teams of the given size as an initial solution and 
then iteratively selects two teams at random and shuffles members, generating the synergistic 
value of all partitions. The algorithm stops after a given number of non-improving iterations 
occur. The two algorithms are validated using empirical data obtained from analyzing student 
performance in multiple University classrooms. The benefits of SynTeam with respect to STCP 
are found to grow as the number of students and the size of the partitioned teams increase. Due 
to the promising results, authors developed a web application, EduTeam 
(http://eduteams.iiia.csic.es), which is publicly available for teachers who wish to use the 
SynTeam algorithm to partition their classroom into synergistic teams.  

 As a whole, STCP identified a new type of constrained coalition formation problem 
which requires a balanced coalition structure in terms of both coalitional values and coalition 
sizes. Although STCP is introduced and tested in the domain of student team composition, the 
authors suggest that the two algorithms may offer guidance for any institution in need of 
automatic team composition.  

Bahargam, S., Golshan, B., Lappas, T., & Terzi, E. (2019). A team-formation algorithm for 
faultline minimization. Expert Systems with Applications, 119, 441-455. 

Bahargam and colleagues are the first to introduce faultlines to the team formation 
literature. The authors define the faultline-partitioning problem as the problem of partitioning a 
set of workers into teams of equal size such that the total faultline potential across teams is 
minimalized. Team faultlines, which are described as hypothetical dividing lines that split a 
group into relatively homogenous subgroups based on attribute differences (e.g., age, sex, race), 
have been well-documented for their effect on team cohesion and performance. However, most 
measures available for measuring faultlines utilize clustering algorithms that require pre-existing 
teams, rendering them with little applicability to automated team formation. To handle the 
advanced computational efficiency of identifying faultline-minimizing teams, a measure must be 
easy to compute for a given team in polynomial time (linear computation efficiency) and be easy 

http://eduteams.iiia.csic.es/
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to update in constant time should a person join or leave the team (constant updates efficiency). 
To solve this problem, the proposed algorithm (FaultlineSplitter)1 works to minimize the 
potential “conflict triangles'' that exist based on surface-level characteristics such as gender and 
nationality. For example, the authors describe that there are three possible triangle types for a 
given attribute: (+,+,+), (-,-,-), or (-,-,+) based on the signs of their edges. Team faultlines can 
only appear in the presence of (-,-,+) triangles. That is, bad triangles, where one individual is 
dissimilar from the other two, serve as a proxy for faultlines as they measure the extent that 
similar groups of people can oppose those that are different from them.  

The algorithm starts with a random partitioning of the population into the set number of 
groups and then iteratively reassigns individuals to teams until the faultline potential of the 
obtained partitions does not improve across iterations (similar to the k-means algorithm). This is 
achieved through the execution of two functions. The AssignCosts routine returns the cost of 
assigning each individual to every team in which cost can be thought of as the number of conflict 
triangles an individual will incur if they are placed on each team. The ReassignTeam routine then 
uses these costs to produce new assignments of individuals to teams, treating the partitioning as a 
b-matching problem that can be solved using the Hungarian algorithm (a commonly used 
combinatorial optimization algorithm). The performance of the FaultlineSplitter algorithm was 
evaluated against real and synthetic data and was found to perform better than Greedy or 
Clustering algorithms, improving as population size increases.  

While team-builders may eliminate faultlines by creating highly homogenous teams, this 
approach goes against the well-documented benefits of team diversity. Instead, the algorithmic 
framework described in this paper offers guidance for an automated tool that can be engineered 
to partition a large population into numerous low-faultline teams without over-penalizing 
diversity.  

The Python implementation is available online: https://github.com/sanazb/Faultline. 

Gerasimou, S., Stylianou, C., & Andreou, A. S. (2012, June). An Investigation of Optimal 
Project Scheduling and Team Staffing in Software Development using Particle 
Swarm Optimization. In ICEIS (2) (pp. 168-171). 

According to this paper, one of the main reasons for software project failures and delays 
is the inability of project managers to estimate the time needed for software development and to 
adequately assign team members to meet the task and time demands of a given project. To 
address this problem, authors suggest a swarm intelligence approach to automate the decision 
process to meet two goals: 1) to optimize the sequence of task executions to minimize the time 
needed to complete the tasks and 2) to form skillful and productive teams that best utilize 
developer skills and experience. Their approach accounts for both constraints (i.e., violation of 
task dependencies; skill coverage; conflicting work schedule) and fitness of the solution as 
evaluated by the duration of the project and the experience of the assigned team members. Using 
a combination of Constriction and Binary-PSO variations, the authors tested the algorithm 
against a total of 7 projects of varying size and complexity. Results suggest that the PSO 
algorithm generated feasible solutions in all cases, however as the size and complexity of the 
projects increase, the generation of optimal solutions begins to wane as difficulties arise in the 

https://github.com/sanazb/Faultline
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evolution of the algorithm. For example, despite satisfying all constraints, “needless” gaps in 
schedules were observed.  

This article provided an initial attempt to determine whether particle swarm optimization 
could represent a viable approach for producing acceptable team-based solutions in the context 
of software project management. As a result of the promising findings, these authors have 
continued to build on research capitalizing on the use of genetic algorithms to improve 
development team formation. For example, within the same year they expanded the above 
approach to provide solutions to a multi-objective problem to account for social factors 
(Stylianou & Andreou, 2012) and even to create a tool to help project managers allocate project 
teams (Stylianou et al., 2012). 

Gilal, A. R., Jaafar, J., Capretz, L. F., Omar, M., Basri, S., & Aziz, I. A. (2018). Finding an 
effective classification technique to develop a software team composition model. 
Journal of Software: Evolution and Process, 30(1), e1920. 

 Recognizing poor team composition as a common cause of project failure, these authors 
aim to identify an effective classification technique to develop a model for more effective 
composition of software development teams. One reason for this is that team composition across 
software teams has traditionally focused on the technical skills of team members without 
considering the role that non-technical (soft) skills have on team effectiveness. After reviewing 
some common data mining techniques, these authors describe how to use predictive data mining 
techniques to discover relationships from historical (pre-existing) data. Using three classification 
techniques for team formation (logistic regression, decision tree, and rough sets theory (RST)) 
they developed a model of software team development that predicts team performance using 
personality type (MBTI), gender, and team role (team leader, analyst, designer, programmer, and 
tester). They evaluated the three classification techniques using data collected from 
undergraduate student teams of four programmers and one team leader. Results suggest that the 
two heuristic algorithms of RST (Johnson Algorithm and Genetic Algorithm) provided the 
highest prediction accuracy for measuring the performance of the model followed by the 
decision tree algorithm. Logistic regression failed to meet the obtained prediction accuracy 
benchmark. In turn, each technique returned different results after implementation.  

 Taken as a whole, this paper provides an example of how to develop and validate a team 
composition model. Results suggest that using only one technique may result in biased 
outcomes. Instead, model development techniques should be chosen carefully as different 
approaches can cause different results. Moreover, the model validated by this research suggests 
that both personality and gender play an important role in team composition and across role 
assignments.  

Gutiérrez, J. H., Astudillo, C. A., Ballesteros-Pérez, P., Mora-Melià, D., & Candia-Véjar, 
A. (2016). The multiple team formation problem using sociometry. Computers & 
Operations Research, 75, 150-162. 

 Although healthy team member relationships are associated with heightened team 
productivity, the social aspect this involves is difficult to measure and as a result has often been 
neglected in models of team composition. These authors propose the Multiple Team Formation 
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Problem (MTFP) as a mathematical programming model for maximizing the efficiency of the 
positive interpersonal relationships among people who share a multidisciplinary work cell. This 
optimization model consists of a quadratic objective function, linear constraints, and integer 
variables. The sociometric matrix is argued to serve as a useful proxy for understanding the 
problem because it provides a quantitative vision of how each potential group member perceives 
and is perceived by his/her peers within their group. Within this matrix, the predisposition of 
each individual for working with another individual is labeled -1, 0, and +1 indicating their 
affinity as negative, neutral, or positive. Three algorithms are then proposed as a solution to the 
optimization of multiple team formation: a Constraint Programming approach (CP) provided by 
a commercial solver, a Local Search heuristic (LS) and a Variable Neighborhood Search 
metaheuristic (VNS). The performance of the algorithms are evaluated against three 
experimental problems that differ as a function of the percentage of positive relationships in the 
people available. In nearly all cases, the VNS algorithm slightly outperforms the CP and LS 
algorithms although performance issues begin to occur as the problem grows in size.  

At large, the MFTP can be understood as the problem of allocating multiple people 
(either full-time or in smaller time fractions) categorized into one or several skills to multiple 
teams or projects (groups) that require a specified amount of people per skill. By considering 
multiple projects and fractions of people’s time this research introduced two new dimensions to 
the Team Formation Problem. Moreover, by considering the social structure of teams, the 
proposed MTFP model may provide an ideal method for future work in social network analysis.  

Liemhetcharat, S., & Veloso, M. (2014, May). Team formation with learning agents that 
improve coordination. In Proceedings of the 2014 International Conference on 
Autonomous Agents and Multi-Agent Systems (pp. 1531-1532). 

 Liemhetcharat & Veloso consider the learning team formation problem where there are a 
certain number of training instances for learning pairs to improve coordination and the goal is to 
form a team with maximum performance after all training instances are allocated. Learning agent 
pairs are defined as pairs of agents that simultaneously learn and consist of a learning and a 
regular agent. Within a set of agents, learning pairs are considered to have heterogeneous rates of 
coordination improvement, such that a team with low performance but with learning pairs that 
improve quickly may outperform other teams with slowly improving learning pairs after training.  

  This work extends research on the Synergy Graph model which views team performance 
as a function of single-agent capabilities and the coordination among pairs of agents, removing 
the typical assumption in the MAS literature that the capabilities of single-agents remain fixed. 
Although the model was originally proposed to analyze improvements in an agent’s capabilities 
as the agent learns more about the task through experience, the current work is concerned with 
improvement in the coordination as the agent learns to work better with its teammates. More 
specifically, this differentiation allows for models to consider how team performance may 
change over time as team members learn from each other through their repeated interactions.  

 In this problem, the synergy model is represented by a graph where the distance between 
agents is an indicator of how well they work together. Each learning pair has an initially 
unknown learning rate whose estimate is improved after every training instance is observed. 
Using two models of coordination (both linear and geometric to consider marginal improvement 
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decreases), the current approach iteratively allocates training instances and updates the estimated 
learning rates with the use of a Kalman filter. Importantly, the proposed algorithms can learn 
from only a partial set of agent interactions in order to learn the complete synergy model such 
that they can be used to balance exploring (improving the estimate) and exploiting (allocating 
training to the pairs that improve team performance).  

Rangapuram, S. S., Bühler, T., & Hein, M. (2013, May). Towards realistic team formation 
in social networks based on densest subgraphs. In Proceedings of the 22nd 
International Conference on World Wide Web (pp. 1077-1088). 

 Rangapuram, Bühler, and Hein contribute to the literature solving the team formation 
problem in the context of social networks by offering a new method, Formation of Realistic 
Teams (FORTE). Their goal is to provide a more flexible and realistic setting for modeling team 
requirements such as inclusion of leaders, restriction of size, and ease of communication and to 
do so they present a new method for solving the team formation problem. Their approach is 
based on a classic problem in computer science, the densest subgraph problem, which aims to 
find a subgraph of maximum density. Put another way, the goal is to find a team within the larger 
network of candidate individuals that is the most connected and therefore has maximum density. 
In employing this formalization, the authors can make a series of generalized constraints that are 
flexible enough to handle many different decision settings.  

 First, in their method, team size can be given an upper bound. Similarly, constraints can 
be put on the number of people within the team who have a certain skill of a certain level. For 
instance, preference can be given not only to those who have a skill, but to those who have the 
highest competence in that particular skill. Importantly their setting also allows for a team to be 
formed around a specific person or even a group of experts, a constraint important in creating 
teams that have a leader either previously determined or identified in the course of creating the 
team. Their most general constraint is one that constrains distance – whereas in previous work 
that notion of distance was specified in terms of communication or collaboration history, their 
distance constraint could be used to create a team that was geographically close or socially close. 
They also note that the distance constraint could be applied in the opposite sense, to exclude 
members who have high incompatibility with others. 

 As with all other computational methods proposed in the papers annotated here, the 
methods are only useful if they have efficient solutions. The authors demonstrate that although 
the “densest subgraph problem” on which their formulation is based is classically difficult to 
solve, they can use a linear programming relaxation to find a solution and check the optimality of 
that solution (we direct interested readers to the text for details). 

Stylianou, C., & Andreou, A. S. (2012, September). A multi-objective genetic algorithm for 
software development team staffing based on personality types. In IFIP 
International Conference on Artificial Intelligence Applications and Innovations (pp. 
37-47). Springer, Berlin, Heidelberg. 

Recognizing that humans are a critical component of team success, these authors build on 
previous work (Gerasimou et al., 2012) to include a social factor as one of the primary objective 
functions in their consideration of software development team formation. A multi-objective 
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approach was utilized to consider the sometimes conflicting need to optimize both team member 
skill and personality traits. Using an implementation of a non-denominated genetic sorting 
algorithm (cited authors send interested readers to Deb et al., 2002), the proposed method will 
produce a set of optimal solutions assigning different collections of project developers to 
assignment tasks while ensuring that the best solution is preserved. Each solution is evaluated by 
three objective functions: two maximization functions based on assigned developer’s technical 
skills and personality traits5 and a third minimization function based on team size that is included 
to maximize resource utilization and prevent over-assignment to a team. Feasibility of the 
solutions is based on two constraint functions that ensure that all skills are covered by at least 
one developer assigned to the team and that each developer is available during the proposed 
schedule.  

Results from two experimental trials suggest that the proposed algorithm is capable of 
producing adequate and feasible solutions. Moreover, researchers found that when the algorithm 
failed to produce an optimum solution of available developers, the product manager of the 
participating company confirmed that they often lack the human resources necessary to prevent 
project overrun. Thus, this algorithm may provide directions for a decision support tool for 
project team staffing that can both help to form teams to meet the demands of each project and 
help managers to decipher where there are potential human capital deficits. Integrating some of 
the objective and constraint equations developed in their previous work (Gerasimou et al., 2012), 
authors used this approach to develop IntelliSPM.  

Existing Tools  

Dimiduk, T. G., & Dimiduk, K. C. (2011, December). Effectively assign student groups by 
applying multiple user-prioritized academic and demographic factors using a new 
open source program, GroupEng. In 2011 WEPAN Nat. Conf. Advancing Women: 
Transforming Eng. Educ (pp. 1-12). 

GroupEng is a tool introduced by Dimiduk and Dimiduk (2011) that approaches team 
composition in a way similar to that of Team-Maker. Two particular features of Team-Maker are 
addressed in GroupEng’s design: (1) GroupEng introduces privacy improvements by keeping 
data inputted by students and teachers local, unlike Team-Maker which stores it externally, and 
(2) it addresses a weakness of Team-Maker’s group value determination where groups which 
have satisfied certain rules are allowed to be weaker on average than other groups. The 
underlying algorithm employed by GroupEng is a heuristic guided stochastic greedy algorithm 
and the structure allows for flexibility in team size and in sequence of team formation preference 
rules. Four grouping rules are allowed by the program and the instructor must decide the order of 
grouping rules. The first, distribute, spreads students with an attribute (e.g., a needed skill) across 
groups such that each group is equal in that attribute. The aggregate rule groups students with 
some attribute (e.g., project choice) together in the same group, while the cluster rule ensures 
that students with a particular attribute are not isolated (e.g., imposes a minimum of two women 

 
5 Authors note that the desired personality traits that were associated with each occupation were 
selected based on career handbook suggestions and were not validated. Rather they argue this 
aspect could easily be changed and the focus is on how well their encoding approach optimizes 
team assignment. 
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in a group). The balance operation ensures equal strength of groups based on a criterion (e.g., 
GPA). This program has been released in a beta version as a python tool and is free to users: 
https://www.groupeng.org.  

Donsbach, J. S., Tannenbaum, S. I., Alliger, G. M., Mathieu, J. E., Salas, E., Goodwin, G. 
F., & Metcalf, K. A. (2009). Team composition optimization: The team optimal profile 
system (TOPS). Army Research Inst For The Behavioral And Social Sciences 
Arlington Va. 

 This article outlines one of the few published articles outlining and providing an example 
of an automated team decision developed to handle the range of team staffing decisions that need 
to be made using both qualitative data and team composition theory as a guide. Authors 
interviewed 21 subject matter experts from both the military and private sector to determine the 
most common staffing scenarios and the accompanying factors and constraints that are 
commonly faced when staffing teams. Results were organized into a team staffing taxonomy that 
highlights five elements that should be considered when staffing teams: 1) types of team staffing 
decisions, 2) factors decision makers consider when staffing teams (e.g., Individual knowledge, 
skills, abilities, and other (KSAOs), functional diversity among the team, criticality of the 
task/mission), 3) factors that define the team staffing process (i.e., centrality of the decision 
making; availability of candidate information; temporal dynamics), 4) factors that define the 
candidate pool (e.g., internal vs. external), and 5) constraints placed on team staffing decisions 
(e.g., costs, missing information, timing). 

They break down the types of team staffing decisions into 6 domains that can be further 
categorized by whether they are concerned with staffing team member/s to an existing team, a 
new team, or a reconfiguration of teams. The objective of the team optimal profile system 
(TOPS) is to aid military commanders in making those decisions that involve staffing existing 
and new teams. Existing team decisions include: 1) team member placement where a person is 
assigned to an existing team, 2) multiple member replacement where people are assigned to 
multiple positions on an existing team, and 3) talent distribution where new people are assigned 
to several existing teams. On the other hand, new team decisions include: 4) single team 
formation where multiple people are assigned to a new team, and 5) multiple team formation 
where people are assigned to several new teams. A TOPS Framework was developed to specify 
the functional characteristics and interlinking modules of the decision making system proposed. 
For a more detailed description of each module, we direct readers to the text; however, a major 
strength of the proposed framework is that it would provide a user-friendly software application 
that is customizable to be scalable across situations and applications. For example, in addition to 
the standard candidate and position information that should be pre-populated, the decision maker 
is able to identify and adjust the importance of different key attributes across team roles in 
addition to customizing interdependency weights to reflect the influence that different positions 
have on the performance of others on the team.  

A generic TOPS algorithm is proposed that will be built in and will function as the 
underlying engine to the TOPS system with each subsequent module introducing the selected 
constraints. A major contribution of this algorithm to the team composition literature is it allows 
for: 1) a recognition that team performance is a joint function of members’ individual job 
performances and their contributions to combined team activities; 2) incorporation of the relative 

https://www.groupeng.org/
https://www.groupeng.org/
https://www.groupeng.org/
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interdependencies of members’ individual job performances in a network fashion; and 3) a 
differentiation of members’ job versus team related KSAOs. Although the authors were unable to 
fully demonstrate the algorithm due to limited computational power (see Tannenbaum et al., 
2010), this work is novel in that it outlines how a team optimization system could be applied in 
practice to help those in charge to work through real team staffing scenarios.  

Hertz, J. L., Davis, D., O'Connell, B. P., & Mukasa, C. (2019, June). gruepr: An Open 
Source Program for Creating Student Project Teams. In 2019 ASEE Annual 
Conference & Exposition. 

Hertz et al. (2019) offer another algorithm to solve the team formation problem, gruepr. 
Their set-up is similar to that of Team-Maker, among others, with an instructor gathering 
information on students, indicating desired scoring rules, and then specifying their preferred 
weighting of those rules. Hertz and colleagues solve the assignment problem using a genetic 
algorithm (GA). As implied by the name, a GA is a method modeled after natural selection 
wherein genomes (arrays of student IDs representing group membership) are evaluated 
according to a fitness function (a group compatibility score) and those with higher fitness scores 
pass on part of their genome to the next generation. As evolution within the model proceeds, 
random mutations occur (students are randomly swapped between teams) and over generations, 
the optimal distribution of students to teams emerges. The details of how fitness is assessed 
reflect how the instructor has weighted their group membership preferences. The authors 
demonstrate dominance of gruepr’s team allocation over both random and instructor-selected 
assignment. They have made the source code available here: 
https://bitbucket.org/joshuahertz/gruepr/wiki/Home.  

Layton, R. A., Loughry, M. L., Ohland, M. W., & Ricco, G. D. (2010). Design and 
validation of a web-based system for assigning members to teams using instructor-
specified criteria. Advances in Engineering Education, 2(1), n1. 

Team-Maker is a team composition tool that is integrated with the more general 
Comprehensive Assessment for Team-Member Effectiveness (CATME; Ohland et al., 2012) tool 
for classroom group assignment (Layton et al., 2010). Users begin by inputting relevant 
classroom information and are able to identify what set of criteria are important to them when 
forming their teams. For instance, they could prioritize Grade-Point Average (GPA) distribution 
in groups such that teams either have students of similar or dissimilar GPAs. They could also 
decide that allocation according to that GPA rule was more important – or should receive greater 
weight – than allocation according to gender. To select a set of optimal groups, Team-Maker 
employs a hill-climbing algorithm, an optimization technique that finds local maxima by making 
incremental changes to its solution from a random initial starting point. The algorithm begins 
with a random allocation of students to groups and then swaps two students at a time, 
recomputing the “compliance” or group fit scores each time. Several weaknesses of Team-
Maker’s method of composition are addressed in subsequent work (see e.g., Thio et al., 2017; 
Dimiduk & Dimiduk, 2011). One specific drawback from a usability standpoint is that 
instructors are not able to manually move students among groups – they may only re-specify 
criteria and preferences and run the algorithm again. The Team-Maker tool is currently marketed 
as part of a larger CATME package and is available to users for an annual fee: 
https://www.catme.org/login/index.  

https://bitbucket.org/joshuahertz/gruepr/wiki/Home
https://bitbucket.org/joshuahertz/gruepr/wiki/Home
https://bitbucket.org/joshuahertz/gruepr/wiki/Home
https://www.catme.org/login/index
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Stylianou, C., Gerasimou, S., & Andreou, A. S. (2012, November). A novel prototype tool 
for intelligent software project scheduling and staffing enhanced with personality 
factors. In 2012 IEEE 24th International Conference on Tools with Artificial 
Intelligence (Vol. 1, pp. 277-284). IEEE. 

 Building on their previous work, these authors developed a decision support tool, 
IntelliSPM, intended as a means of helping software project managers to optimally assign 
developers to tasks using both technical aspects (i.e., developer skill levels, duration, and team 
size) and social factors (i.e., developer personality traits and required personality traits of tasks). 
IntelliSPM offers users the option to choose from two functionalities using several optimization 
techniques (namely, single-objective GAs, multi-objective GAs, and/or a single-objective PSO). 
The parameter settings for both functions are tailorable to the degree that the user is familiar with 
the optimization algorithm but in all cases requires that the user enter information regarding 
project tasks (e.g., expected time and effort), the dependency between tasks, and the required 
skills and preferred personality types for each task.  

The first functionality utilizes a multi-objective genetic algorithm (the constrained Non-
Dominated Sorting Algorithm) and a pre-existing project schedule to optimally assign the 
minimum number of developers to teams based on the competing nature of the required skills 
and “right” personality. Users are then provided with a visualization of multiple solutions from 
which the best staffing strategy can be decided. This functionality can also be used to help 
managers to pinpoint where there are personnel or resource shortages in the case where no 
feasible solutions can be found to meet the scheduling demand. The second functionality 
performs two different operations. First, this functionality provides a set of staffing solutions in 
the same manner as the first. However, this time the implementation does not include the project 
schedule restriction (i.e., the assignment conflict constraint) allowing users to identify if their 
available personnel is adequate enough to complete a project based on their skills and 
personality. If so, the user can then use the provided solutions to create a project schedule using a 
specific staffing strategy. In this step, users are able to choose between a genetic algorithm or a 
single-objective particle swarm optimization algorithm to generate a set of assigned tasks with 
the minimum project duration (as visualized by a Gantt chart).  

 After two experiments confirmed the effectiveness and efficiency of the two 
functionalities of IntelliSPM, an empirical validation of the tool was conducted to confirm its 
applicability, usability, and scalability to the activities of scheduling and staffing. Although the 
participating project managers desired the ability to have more control over the objectives used 
during optimization, including the incorporation of a project cost constraint, the consideration of 
how a certain personality trait aligns with a specific task represents a novel addition to an 
automated tool for helping project managers to better assign their personnel to meet project 
demands.  

Tannenbaum, S. I., Donsbach, J. S., Alliger, G. M., Mathieu, J. E., Metcalf, K. A., & 
Goodwin, G. F. (2010). Forming Effective Teams: Testing The Team Composition 
System (TCS). Algorithms and Decision Aid. US Army Research Institute, 1-7. 

This paper provides an overview of a program of research and the development of an 
automated tool to help military commanders (and others) make effective staffing decisions. The 
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team composition system (TCS) algorithm described is designed to integrate the three team 
staffing approaches introduced by Donsbach et al. (2009) and can be scaled to focus on a number 
of team composition constraints. As a step beyond the previous model, researchers also introduce 
a team role profile measure developed as an additional team-related predictor to be included in 
the decision aid. The Team Role Experiences and Orientation (TREO) survey is a 48-item 
diagnostic survey which asks candidates about their past experiences and personal preferences 
when working on a team in order to predict their propensity for six team roles (organizer, 
innovator, doer, challenger, team builder, or connector).  

The TCS algorithm and TREO assessment tool were empirically tested across three 
different samples (a flight simulation, student business teams, and Army Transition Teams). 
Results provided suggest that together the algorithm and TREO results have the potential to 
predict team performance above that attained through traditional individual models of position-
readiness. A first generation TCS prototype was designed to support the formation of a single 
team based on both individual position readiness and team fit indicators. Although the state of 
the PC computing power at the time required that some constraints be programmed (e.g., limiting 
the total team size and number of candidates considered) to reduce system run time, the TCS can 
be used to generate a list of possible teams with the highest predicted performance score while 
allowing users to easily readjust their specifications and re-run their analysis to examine the best 
solutions. For example, the TCS can be adjusted to account for the user’s considerations such as 
more central team roles, number of people on the team with a specific skill, or people who 
cannot (or should not) work together. As a whole, the TCS is suggested to be an important first 
step in developing an efficient tool for helping military commanders and others to make more 
effective team staffing decisions. 

Thio, C. (2017). Teammatic: A Mixed Initiative Interface for Team Composition with 
Multiple Constraints. University of California, San Diego. 

Thio and colleagues (2017) offer a tool, Teammatic, that has a “mixed initiative 
approach” that allows instructors more flexibility when interacting with team formation. Similar 
to others, their tool begins by having instructors upload information about their students (e.g., 
their schedules, topic interest, gender) and then create constraints to govern team formation. 
Allocation proceeds according to a greedy algorithm that maximizes a score function that reflects 
the instructor’s constraints. Importantly, after the teams have been generated, instructors can 
move students to different groups. To support these swaps, Teammatic suggests potential 
exchanges that will still yield groups scoring high on the specified criteria. The tool is available 
in a beta stage here: https://projects.invisionapp.com/share/JZCWS2XNQ#/screens.  

Zhou, Q., Li, L., Cao, N., Buchler, N., & Tong, H. (2018, September). Extra: Explaining 
team recommendation in networks. In Proceedings of the 12th ACM Conference on 
Recommender Systems (pp. 492-493). 

These authors developed an interactive prototype, EXTRA, whose purpose is to explain 
why the underlying algorithms of network-based team recommendation systems give the specific 
results given the team optimization scenario. More specifically this tool can be used to explain 
the recommendations according to random walk graph kernel which measures the similarity 
between two graphs (e.g., the team networks before and after a replacement). For example, in 

https://projects.invisionapp.com/share/JZCWS2XNQ#/screens
https://projects.invisionapp.com/share/JZCWS2XNQ#/screens
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team replacement, the objective is to find a person with a similar skill to the team member they 
are trying to replace as well as a similar collaboration structure with the existing team members. 
The graph kernel approach is then used to find the candidate that makes the new team most 
similar to the old team. EXTRA provides users with a visual explanation of the recommendation 
results based on underlying network to help the end-user understand why the replacement 
algorithm recommended a candidate as a good fit (e.g., can show the key connections with 
existing team members or the key skill similarities that the candidate brings to the team). This 
system is designed to function across three different team recommendation scenarios and can 
provide an explanation from three different perspectives according to the influence of the edges, 
nodes, or attributes of the resulting graphs (outlined below).  

  Team Replacement Team Expansion Team Shrinkage 

Edges important common 
collaborations shared by 
the candidate and the 
departure member 

new collaborations that 
the new member might 
establish 

the most important 
collaborations the 
candidate is lacking 

Nodes key existing team 
members both candidate 
and departure member 
collaborate with 

key existing team 
members the new member 
will work with 

key existing team 
members that the 
candidate should have 
collaborated with 

Attributes common and important 
skills shared by the 
candidate and the 
departure member 

the unique skills the new 
team member brings that 
are critical to the team’s 
new need 

the most important skills 
that the candidate lacks 

Organizational Science 

Bell, S. T. (2007). Deep-level composition variables as predictors of team performance: a 
meta-analysis. Journal of Applied Psychology, 92(3), 595. 

This author conducted a meta-analysis on the relationship between the configuration of 
relatively enduring deep-level characteristics (i.e., personality, values, and mental ability) and 
team performance. Results pooled from 89 different sources revealed that the relationship 
between team personality and values with team performance held greater magnitude in field 
settings as compared to that of a lab whereas emotional intelligence and general mental ability 
were more related to performance in a lab-based setting. In regard to team personality, team 
agreeableness and conscientiousness were the strongest predictors of team performance. 
Moreover, results suggest that the mean operationalization of the composition variables (e.g., 
average of team member conscientiousness) produced the strongest correlation with team 
performance except for team agreeableness, where the lowest scoring team member reflected the 
strongest predictor of the relationship with team performance. Results of this meta-analysis also 
suggest that having team members with a collectivist orientation and a preference for team-work 
should be beneficial to team performance. Although there are other contextual factors important 
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to team composition that this research was unable to capture (i.e., tenure, task-type), these 
findings can be used to consider team characteristics during the initial design, formation, and 
subsequent staffing stage of teams.  

Harrison, D. A., Price, K. H., Gavin, J. H., & Florey, A. T. (2002). Time, teams, and task 
performance: Changing effects of surface-and deep-level diversity on group 
functioning. Academy of Management Journal, 45(5), 1029-1045. 

This article suggests that time plays a key role in increasing team collaboration. More 
specifically, as team members interact over time, they start to focus less on surface-level 
diversity (e.g., race, gender) and more on deep-level attributes (e.g., attitudes, beliefs). In turn, 
this affects the role that team member diversity has on performance. These authors examined the 
effects of both perceived and actual diversity and team reward contingency (i.e., the degree to 
which outcomes for individual members depend on outcomes for their teams) on team 
integration and performance across 144 student project teams over the course of approximately 4 
months. Results found that actual diversity was positively related to perceived diversity (both 
surface and deep), which in turn negatively impacted team performance through its negative 
effect on team integration. However, as team collaboration increased, the negative impact of 
perceived surface-level diversity on team integration was diminished whereas that of perceived 
deep-level diversity was strengthened. Team-based rewards were in turn found to increase team-
member collaboration suggesting that organizations and team leaders can use structure to 
increase cooperation in teams. Taken together, results suggest that early perceptions of both 
demographic and psychological differences among team members leads to negative 
consequences in how diverse groups of individuals will get along even months later. However, 
differences in psychological attributes such as personality and job-related attitudes, beliefs, and 
values become more consequential over time as team members continue to work together.  

Humphrey, S. E., Morgeson, F. P., & Mannor, M. J. (2009). Developing a theory of the 
strategic core of teams: A role composition model of team performance. Journal of 
Applied Psychology, 94(1), 48. 

These authors present a theory that supports the use of a compilation (relative 
contribution model; Mathieu et al., 2014) or “role composition” approach to team staffing in 
which some members are more crucial to overall team effectiveness than others. Unlike previous 
models of team composition that have focused on individual attributes, the proposed theory 
suggests that there is a strategic core of teams which represent the role/s on a team that: 1) 
encounter more of the problems needed to be overcome by the team; 2) have greater exposure to 
the tasks that the team is performing; 3) are more central to the workflow of the team. Combined 
with an individual attribute approach, this article suggests that team member experience and job 
skills are more strongly related to team performance when these characteristics are possessed by 
the strategic core than by non-core team members. Based on a sample of 778 major league 
baseball teams across 29 years, these authors found that core resource allocation increased team 
performance by an additional 3% after accounting for total resource allocation. Results further 
suggest that paying core role holders more than non-core team members might improve team 
performance if pay variance is derived from a focus on the critical roles. Taken as a whole, the 
theory of the strategic core suggests that those in charge of team staffing should place priority on 
the core roles when they consider building or changing teams. 
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Mathieu, J. E., Tannenbaum, S. I., Donsbach, J. S., & Alliger, G. M. (2014). A review and 
integration of team composition models: Moving toward a dynamic and temporal 
framework. Journal of Management, 40(1), 130-160. 

This article represents one of the initial attempts of researchers to bridge the science-
practitioner gap to connect team composition theory to team staffing. These authors review the 
literature and present four composition models (including the corresponding heuristic formula), 
to predict team effectiveness based on individual and/or team-related staffing decisions. 
Although there are advantages and disadvantages to each approach, the preferable model will 
depend on the type of team being considered, including the skills and team-member 
interdependency required for team performance. Individual models include the traditional 
personnel-fit model and the personnel fit model with teamwork considerations which focus on 
the individual team member’s fit with the job requirements or on the member’s team-generic 
KSAOs such as team orientation or cooperativeness. According to the traditional approach, team 
performance is improved through the selection of individuals with high levels of task specific 
skills for their role, regardless of the team context. The latter model extends the individual 
approach to consider how the member contributes to the team as a collective such that team 
effectiveness is enhanced to the extent that members all possess generic team-related 
competencies. The two team-based models adopt a holistic or comparative view of individual 
members’ KSAOs (e.g., averages, diversities) or consider more complex combinations or team 
profiles of KSAOs. The relative contribution model assumes that team member contributions to 
performance are unequally weighted. This represents a compilation model in which particular 
individuals can carry or undermine the entire team's effort (i.e., the competencies of the weakest 
or strongest member; attributes of occupants in critical roles). Finally, the team profile model 
advocates a collective perspective and attempts to optimize the blend, synergy, and profiles of 
the team members. For example, it may not matter exactly who performs specific tasks, only that 
at least one or a certain percentage of individuals on the team have the necessary skills to 
complete the team’s mission.  

The authors go on to recognize that teams, and team members, are dynamic and that 
current compositional models fail to take this into account. Changes in team membership and 
team-relevant tasks can influence team development, team member dynamics, and the effect that 
team member characteristics have on overall team performance. As such, different team 
compositional profiles are likely to be more important at different stages of a team’s lifespan. To 
help account for this, the authors provide a temporal vector that can be integrated into the team 
composition algorithms to help predict the impact on effectiveness that different team member 
combinations have over time. This article concludes with a consideration of areas in need of 
future research to better understand how team composition affects team-related outcomes over 
time.  

Mathieu, J. E., Tannenbaum, S. I., Kukenberger, M. R., Donsbach, J. S., & Alliger, G. M. 
(2015). Team role experience and orientation: A measure and tests of construct 
validity. Group & Organization Management, 40(1), 6-34. 

 This work is built off the assumption that team composition serves as a foundation upon 
which other team factors are built such that teams with an optimal combination of member’s 
KSAOs are better positioned for more effective teamwork and performance outcomes than those 
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with a sub-par combination of member attributes. Moreover, the attributes that make up each 
individual on a team motivate and enable them to occupy different team roles. These authors 
reviewed and synthesized prior team role taxonomies to offer and develop a measure for a more 
comprehensive six-dimensional framework of team role classifications (defined below). Using a 
sample of both military and non-military participants they then developed and validated a 48-
item measure that uses both the individual’s previous team role-related experiences and their 
predispositions to certain role-related behaviors to predict their propensity to occupy the roles. 
Moreover, they were able to show discriminant validity from measures of the Big 5 Personality 
Scale (NEO-FFI) despite finding some of the hypothesized correlations between some of the 
factors – among these were Organizer and Doer with Conscientiousness, Innovator and 
Openness to Experience, Team Builder, Connector, and Innovator with Extraversion, and Team 
Builder with Agreeableness, Innovator, and Openness to Experience.  

Although not tested here, empirical research suggests that different team member 
combinations or profiles may be more or less advantageous according to the situation. Thus, the 
Team Role Experience and Orientation (TREO) measure is suggested as an additional tool that 
can be used for future research on optimal team compositions. A team role behavior-based 
observation tool for measuring the TREO taxonomy has also been developed for future research 
and organizational utility (Griggs et al., 2021). 

Team Role Definitions:  

1. Organizer: An organizer acts to structure what the team is doing, keeps track of 
accomplishments, and monitors how the team is progressing relative to goals and 
timelines.  

2. Doer: A doer is someone who willingly takes on work and can be relied upon to 
complete work, meet deadlines, and take on tasks to ensure the team’s success.  

3. Challenger: A challenger is a member who asks “why” in order to push the team to 
explore all aspects of a situation and to consider alternative assumptions, explanations, 
and solutions.  

4. Innovator: An innovator actively generates new and creative ideas, strategies, and 
approaches for how the team can handle various situations and challenges.  

5. Team Builder: A team builder is a member who endeavors to establish norms, support 
decisions, and maintain a positive work atmosphere within the team, calming and 
motivating team members as necessary.  

6. Connector: A connector bridges and connect the team with external people, groups, or 
other stakeholders. They ensure good working relationships between the team and 
external individuals. 
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Munyon, T. P., Summers, J. K., & Ferris, G. R. (2011). Team staffing modes in 
organizations: Strategic considerations on individual and cluster hiring approaches. 
Human Resource Management Review, 21(3), 228-242. 

Similar to Zaccaro et al. (2012), these authors bring to light that despite the significance 
of teams to organizations, very little research exists to help guide organizations who wish to 
implement human resource practices to facilitate the effective staffing of teams. After briefly 
reviewing the history of team staffing, this article takes a firm level approach drawing upon 
resource based theory to consider the competitive contribution of team human capital based on 
the team staffing approach used (we direct interested readers to the full text for an overview of 
the strategic outcomes discussed). While authors include the more traditional approach of 
individual staffing to teams in their review, a significant contribution of this piece is the 
inclusion of cluster hiring. This refers to an organizational effort to staff entire teams at once 
through the acquisition and fitting of pre-existing teams (either internal or external to the 
organization). Although outcomes are at the macro-level, the discussion provides a more in-
depth explanation of how the different staffing approaches impact individual and team level 
factors (i.e., team embeddedness; shared mental models). Taken as a whole, authors propose that 
although the traditional, individual approach to team staffing may be less costly during the initial 
acquisition stage of the team, cluster hiring should prove more cost efficient in the long run in 
the form of enhanced labor productivity resulting from mitigated socialization processes and 
higher levels of coordination. On the other hand, cluster hiring may result in a stagnant role 
structure and shared knowledge base that can impede team creativity.  

Trainer, H. M., Jones, J. M., Pendergraft, J. G., Maupin, C. K., & Carter, D. R. (2020). 
Team membership change “events”: a review and reconceptualization. Group & 
Organization Management, 45(2), 219-251. 

 This paper describes team composition as a dynamic process through which team 
membership shifts as team members join and leave over time. From this perspective, each team-
membership change can be conceptualized as a discrete team-level event that can alter team 
functioning at varying degrees (i.e., along the dimensions of novelty, disruptiveness, and 
criticality). The impact of team-membership change can also be characterized according to 
whether the change is associated with team member entry, team member departure, or team 
membership fluidity (i.e., high levels of team member replacement). With these differences in 
mind, authors identified and reviewed 83 articles to advance an integrative framework that 
depicts the impact of individual, team, and organizational factors that can influence the overall 
impact of a team membership change. For example, this review suggests that there tend to be 
more favorable team outcomes when an outgoing team-member is replaced with a member who 
is similar across both task-role and individual level attributes. Moreover, team membership 
changes to positions that carry a heavier load in the team have the ability to cause more 
disruption to overall team effectiveness. Taken as a whole, there are both positive and negative 
outcomes that can occur across the different types of team membership change that can be 
influenced by both the existing team composition, team structure, and the attributes of the new or 
replacement team member.  
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Zaccaro, S. J., & DiRosa, G. A. (2012). The processes of team staffing: A review of relevant 
studies. International Review of Industrial and Organizational Psychology, 27, 197-
229. 

Although team researchers acknowledge that team composition should be a consideration 
in staffing decisions, the process of selecting and/or assigning individual(s) to meet the demands 
of team-related tasks and team-member interdependencies is more complex than individual 
selection, with few best practices for practitioners to follow. This chapter represents one of the 
first attempts to discuss the value of staffing from a team's perspective using empirical examples 
as support for practitioners moving forward. These authors provide an overview of 5 primary 
steps to consider for team-based staffing: 1) conduct a team-task analysis; 2) identify requisite 
member attributes and attribute configurations; 3) recruit candidate members; 4) assess member 
characteristics; 5) select the best fitting mix of member candidates. While the steps outlined in 
this chapter do not provide a standard step by step manual for practitioners to use, the authors 
provide a guiding framework that introduces and discusses different team-related factors (e.g., 
contextual considerations; task interdependency) that should be considered when deciding how 
to select and configure individuals for team-based assignment.   
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Appendix B: Collection of Comprehensive Reviews 

Andrejczuk, E., Rodriguez-Aguilar, J. A., & Sierra, C. (2016). A concise review on 
multiagent teams: contributions and research opportunities. Multi-Agent Systems 
and Agreement Technologies, 31-39. 

This article reviews and classifies the most recent advances made in the computer science 
literature dealing with the composition and formation of multi-agent teams (e.g., crowdsourcing 
applications; human-agent teams). This paper provides a “who, what, when, where, why” 
approach to synthesizing the state of the literature. As a whole the multi-agent system (MAS) 
literature is described as one that has focused on building systems whose agents interact to 
achieve a common objective or to exploit the other’s features to achieve self-interested goals but 
without a consideration of the quality of human factors or resources.  

Andrejczuk, E., Berger, R., Rodriguez-Aguilar, J. A., Sierra, C., & Marín-Puchades, V. 
(2018). The composition and formation of effective teams: computer science meets 
organizational psychology. The Knowledge Engineering Review, 33. 

This paper integrates some of the major contributions from the computer science 
literature and the organizational psychology literature on the topics of team formation and team 
composition. As in their 2016 review, the authors approach the topic from a “who, what, when, 
where, why” perspective to compare and contrast the driving factors of the research in both fields 
in order to help pave the way for future collaboration.  

Costa, A., Ramos, F., Perkusich, M., Dantas, E., Dilorenzo, E., Chagas, F., ... & Perkusich, 
A. (2020). Team Formation in Software Engineering: A Systematic Mapping Study. 
IEEE Access, 8, 145687-145712. 

 These authors used a snowball based systematic mapping approach to review the 
literature on team formation specific to software project management. Based on 51 identified 
articles, this article describes the most common approaches and concerns for software team 
formation. Overall, the most commonly used solutions match software engineers (or tasks) to 
teams based on some sort of technical attribute using some sort of search and optimization 
technique (namely a genetic algorithm) to approach the problem. Authors conclude that one of 
the major constraints to the team formation problem in software engineering is the scalability of 
the solutions that try to incorporate more subjective attributes.  

Gómez-Zará, D., DeChurch, L. A., & Contractor, N. S. (2020). A taxonomy of team-
assembly systems: Understanding how people use technologies to form teams. 
Proceedings of the ACM on Human-Computer Interaction, 4(CSCW2), 1-36. 

This review takes a system’s perspective to advance our understanding of how users 
interact and assemble teams within more advanced team-assembly technology. They highlight 
four types of teams assembled in computer-mediated environments (optimized teams, staffed 
teams, self-assembled teams, and augmented teams) according to how systems allow users to 
shape team assembly based on user agency and participation. Based on a systematic literature 
review, the socio-technical considerations are discussed for each. As it stands, the authors 
conclude that although there appears to be an increasing interest in combining the use of 
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algorithms with user’s participation to form teams, the majority of team assembly systems do not 
consider user agency. Full results of the scoping literature review can be downloaded as 
supplemental material at https://dl.acm.org/doi/abs/10.1145/3415252#sec-supp. 

Harris, A. M., Gómez-Zará, D., DeChurch, L. A., & Contractor, N. S. (2019). Joining 
together online: the trajectory of CSCW scholarship on group formation. 
Proceedings of the ACM on Human-Computer Interaction, 3(CSCW), 1-27. 

 This paper reviews all of the articles (n= 35) published at CSCW (Computer Supported 
Cooperative Work) that are identified as focusing on technology and team formation. Using 
thematic analysis, the reviewers identify and discuss four group formation periods that occurred 
from 1990 to 2018: 1) groups interacting with technology (e.g., groupware); 2) enabling online 
groups and communities (e.g., social networking sites); 3) enabling crowds (i.e., assigning 
skilled workers to micro-tasks); 4) the renaissance of small groups (i.e., using group formation to 
support group performance and effectiveness). Six main themes (group composition, self-
presentation of users and groups, recruitment mechanisms, assembly mechanisms, organizing 
structures, and group culture) were also identified across the progression of CSCW articles with 
additional sub themes discussed for each.  

Juárez, J., Santos, C., & Brizuela, C. A. (2021). A Comprehensive Review and a Taxonomy 
Proposal of Team Formation Problems. ACM Computing Surveys (CSUR), 54(7), 1-
33. 

 These authors review the last two decades of research on the team formation problem, 
recognizing the two major contributing fields to be that of Operations Research (identifying a 
team with the “best” match between candidates and specific jobs or positions according to the 
organization’s needs) and Data Mining (identifying candidates via social network data with 
tightly knitted interactions whose combined skillset meet the demands of a given task). 
Moreover, they offer a taxonomy to organize the existing research into two collections based on 
how the problem is modeled. The first refers to assignment based models where the goal is to 
maximize the suitability of the matching between a set of candidates and a team or team position. 
This research is typically found in the Operations Research and Decision Science literature and 
can be further categorized based on the considerations of the TFP (single team, multiple teams, 
or kindred teams that also recognize the social aspect). The second collection refers to the TFP in 
Social Networks and is largely rooted in Data Mining and Data Science research. This literature 
can be further classified by how candidate skill levels are included into the problem (binary 
skills, weighted skills, or probabilistic skills). A more in-depth discussion of the common 
components and application of TFPs follows.  

Wang, X., Zhao, Z., & Ng, W. (2015, April). A comparative study of team formation in 
social networks. In International Conference on Database Systems for Advanced 
Applications (pp. 389-404). Springer, Cham. 

This review offers a comparative study of the metrics and algorithms used to solve the 
Team Formation Problem for Social Networks. These authors examine a particular set of team 
formation algorithms, namely RarestFirst, EnSteiner, MinSD, MinLD, MinDiaSol, MinAggrSol, 
MCC, ItRepace, LBRadius and LBSteiner and categorize them into four groups according to 

https://dl.acm.org/doi/abs/10.1145/3415252#sec-supp
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communication cost functions (radius distance, steiner distance, sum of distances, and leader 
distance). Experiments and case study results suggest that there is not one best algorithm but that 
some perform better in different situations. The code and datasets used to evaluate the 
performance of the algorithms are publicly available at www.cse.ust.hk/˜xwangau/TF.html. 

 

 

http://www.cse.ust.hk/%CB%9Cxwangau/TF.html
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Appendix C: Table of Algorithmic Approaches Coded for Content 

Table C1 
 
Algorithmic Approaches to Team Formation 
 

Reference Exogenous/ 
Endogenous 

Algorithmic 
Approach 

Optimization 
Criteria Inputs Context Tool Name 

Multiple Team Formation 

Anagnostopoulos 
et al. (2012) Exogenous 

Steiner coordination-
cost algorithm, 
Diameter algorithm, 
set-cover Steiner 
algorithm 

Minimize 
communication cost, 
balance workload 

Skills, 
communication 
cost, workload 

Ad hoc team --- 

Andrejczuk et al. 
(2016b) Exogenous Greedy algorithm Heterogeneity 

Skill, 
personality, 
gender 

--- --- 

Andrejczuk et al. 
(2018b) Exogenous Heuristic algorithm   Heterogeneity 

Skill, 
personality, 
gender 

--- SynTeam 

Andrejczuk et al. 
(2019). Exogenous Linear programming, 

heuristic algorithm 
Team size, 
personality 

Skill, 
personality, 
gender 

--- --- 

Bahargam et al. 
(2019) Exogenous Heuristic algorithms Minimize faultline 

potential 
Variable (e.g., 
gender, major) 

Team 
diversity 

Faultline 
Splitter 

Chalkiadakis & 
Boutilier (2012) Endogenous Bayesian 

reinforcement learning Joint outcome utility Skills, level of 
expertise Learning ---  

Farhangian et al. 
(2015a) Exogenous Agent based model Skill coverage, 

personality-role fit 
Skills, 
personality ---  ---  
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Farhangian et al. 
(2015b) Endogenous Agent based model Joint outcome utility 

Skills, 
personality, task 
type 

--- --- 

Gilal et al. 
(2018) Exogenous 

Logistic regression, 
decision tree, and 
rough sets theory 

Team performance 
Skills, 
personality, 
gender, team role 

--- --- 

Gutiérrez et al. 
(2016) Exogenous 

Constraint 
Programming, Local 
Search, Variable, 
Neighborhood Search 

Skill coverage, peer 
affinity 

Skills, 
sociometric 
matrix 

--- 

Multiple 
Team 
Formation 
Problem 

Liemhetcharat & 
Veloso (2014) Endogenous Synergy graph Coordination Skills Learning --- 

Marcolino et al. 
(2013) Endogenous --- Joint action utility Individual 

preferences --- --- 

Peleteiro et al. 
(2015) Endogenous Network-based, 

contract net algorithm 

Skill coverage, 
synergy, minimize 
cost 

Skills, synergies, 
reputation Ad hoc team --- 

Rangapuram et 
al. (2013) Exogenous 

Network-based, dense 
subgraph problem 
algorithm 

Minimize 
communication cost Skill, team size --- --- 

Rokicki et al. 
(2015) Endogenous General algorithmic 

approach 
Solution quality, 
minimize cost 

Skills, hiring 
cost Ad hoc team --- 

Spradling et al. 
(2013) Endogenous Heuristic optimizer, 

greedy algorithm Joint action utility Skills Ad hoc team 

Roles and 
Teams 
Hedonic 
Games 
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Single Team Formation 

Anagnostopoulos 
et al. (2017) Endogenous 

Linear Program; 
heuristic algorithms 
(LumpSum, TFO) 

Skill coverage, 
minimize personnel 
cost 

skills, tasks, 
costs (salary and 
hiring/ 
outsourcing fees 

Online 
crowdsourcing --- 

Crawford et al. 
(2016) Exogenous 

Greedy heuristic 
algorithm, genetic 
algorithm, linear 
programming 

Robustness, 
minimize team cost Skills Robust team 

formation 

Task-
Oriented 
Robust 
Team 
Formation 

Dorn & Dustdar 
(2010) Exogenous 

Network-based, 
simulated annealing, 
metaheuristics 

Skill coverage, 
connectivity 

Skills, level of 
expertise Expert team --- 

Gerasimou et al. 
(2012) Exogenous Particle swarm 

optimization 
Skill coverage, 
availability Skills, schedule ---  --- 

Kargar (2011) Exogenous 
Network-based, 
approximate and exact 
polynomial algorithm 

Skill coverage, 
minimize 
communication cost 

Skills, team role Expert team 
with leader --- 

Kargar & An 
(2013) Exogenous 

Network-based, 
approximation 
algorithms 

Skill coverage, 
minimize personnel 
cost and 
communication cost 

Skills, hiring 
cost Expert team --- 

Kargar & 
Zihayat (2012) Exogenous 

Network-based, 
minimal cost 
contribution algorithm 

Minimize 
communication cost 
and recruiting cost 

Recruiting cost Expert team --- 

Lappas et al. 
(2009) Exogenous 

Network-based, greedy 
heuristic and 
approximation 
algorithm 

Skill coverage, 
minimize 
communication cost 

Skills Expert team --- 
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Okimoto et al. 
(2015) Exogenous Branch and bound 

search-based algorithm 
Robustness, 
minimize team cost 

Skills, hiring 
cost 

Robust team 
formation --- 

Stylianou & 
Andreou (2012) Exogenous Multi-objective genetic 

algorithm 
Skill coverage, 
personality fit 

Skills, 
personality 
factors 

Project 
management --- 

Team Member Replacement 

Agmon et al. 
(2014) Endogenous 

Recursive modeling, 
simultaneous repeated 
game 

Joint action utility 
Depth and width 
of agent 
recursion 

Ad hoc team --- 

Barrett et al. 
(2013) Endogenous Transfer learning 

algorithms Joint action utility Agent recursion Learning --- 

Chen et al. 
(2015) Endogenous --- Rate of learning and 

completion 
Skills, task, and 
agent turnover Ad hoc team --- 

Li et al. (2015) Exogenous Network-based, graph 
kernels 

Skill and structure 
matching 

Skills, 
relationships --- --- 

Malinowski et al. 
(2008) Exogenous Probabilistic latent 

semantic analysis Predicted trust Trust --- --- 

Sapienza et al. 
(2019) Exogenous Deep neural network Minimize the loss 

function 
Skill level and its 
error of certainty Virtual games --- 

Wax et al. (2017) Endogenous 
Network-based, 
exponential random 
graph models 

N/A N/A Virtual games --- 

Tool 

Dimiduk & 
Dimiduk (2011) Exogenous 

Heuristic guided 
stochastic greedy 
algorithm 

Variable Variable User tool GroupENG 

Donsbach et al. 
(2009) Exogenous General algorithmic 

approach Variable Variable User tool Tops 
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Hertz et al. 
(2019) Exogenous Genetic algorithm Variable Variable User tool gruepr 

Layton et al. 
(2010) Exogenous Hill-climbing 

algorithm Variable Variable User tool 
Team-
Maker w/ 
CATME 

Rad et al. (2021) Exogenous Variational bayesian 
neural network 

Skill coverage, 
history of 
collaboration 

Variable User tool PyTFL 

Stylianou et al. 
(2012, 
November) 

Exogenous 
Particle swarm 
optimization, genetic 
algorithm 

Skill, personality fit 
Skills, 
personality traits, 
schedule 

User tool IntelliSPM 

Tannenbaum et 
al. (2010) Exogenous General algorithmic 

approach Variable Skills, team role, 
synergy User tool TCS 

Thio (2017) Exogenous Greedy algorithm Variable Variable User tool Teammatic 
Zhou et al. 
(2018) Exogenous Network-based, graph 

kernels 
Minimize 
communication cost Variable User tool Extra 
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