

U.S. ARMY COMBAT CAPABILITIES DEVELOPMENT COMMAND – GROUND VEHICLE SYSTEMS CENTER

Characterization of Microstructure Associated with Adiabatic Shear in High-Mn, High-AI Steels

Dr. Katherine Sebeck

Specialist Research Engineer

Ground Vehicle Materials Engineering

DISTRIBUTION A. Approved for public release; distribution unlimited. OPSEC #: 6660

WHAT IS FEMNAL?

- High Mn, high Al low density steel with similar strength to RHA
- Weight and Performance
 - 7.8 g/cc vs 2.7 g/cc vs 6.9 g/cc (steel vs Al vs FeMnAl)
 - Space considerations
 - Strength/Density vs Threat Performance/Density
 - Going thinner is not necessarily better, or possible
- Army lightweighting is driven by meeting performance requirements for changing threats, new equipment, and maintaining logistic supports
 - Army bridges, NATO rail car, and highway equipment transport trailer (HETT) designed for 70T capacity

Increasing Threats and Coverage

PROJECT MOTIVATION

Normalized FeMnAl Performance Summary

Target Threshhold Current Performance

- Generally met Class 1 RHA threats on a space efficiency basis, exceeded on a mass efficiency basis influenced by hardness levels
- Underperformed against Class 2 RHA requirements on space efficiency basis; in line with Class 1 for mass efficiency – no apparent effect of hardness or impact toughness

ADIABATIC SHEAR

Adiabatic Shear

- The onset of shear banding occurs when thermal softening overcomes strain and strainhardening effects
 - Higher hardenability and lower thermal softening lead to improved resistance to shear localization

$$\frac{d\tau}{d\gamma} = \left(\frac{\partial\tau}{\partial\gamma}\right)_{\dot{\gamma},T} + \left(\frac{\partial\tau}{\partial\dot{\gamma}}\right)_{\gamma,T}\frac{d\dot{\gamma}}{d\gamma} + \left(\frac{\partial\tau}{\partial T}\right)_{\dot{\gamma},\gamma}\frac{dT}{d\gamma} \le 0$$

 Neglecting strain-rate hardening, the critical shear strain for shear localization can be expressed as:

$$\gamma_c = \frac{\rho C_p n}{-\frac{\partial \tau}{\partial T}}$$

 Where ρ is density, C_P is specific heat capacity, n is strain-hardening index, and –δτ/δT is the thermalsoftening parameter

Adiabatic heating in high strain rate events occurs because energy is unable to leave the system in the time frame of the work done by the event

- Looking for evidence of dynamic recrystallization
 - Some may be in the base microstructure due to wrought processing, incomplete solution treatment
- Shear bands should follow flow lines of material displaced by projectile

O.A. Zambrano *et. al.*, "Hot deformation of a Fe-Mn-Al-C steel susceptible of κ -carbide precipitation" Mat Sci Eng A 689 pp 269-285 (2017) Hu, CJ and Lee, PY. "Ballistic Performance and Microstructure of Modified Rolled Homogeneous Armor Steel". J. Ch. Inst. Eng 25 (1) pp 99-107 (2002)

BALLISTIC THEORY

• Steel is typically well described by the Culver equation for failure strain:

$$\epsilon_i = \frac{\rho cn}{-\frac{\partial \sigma}{\partial T}\Big|_{\epsilon, \dot{\epsilon}}}$$

- $\epsilon_i = \text{failure strain}$
- $\rho = \text{density}$
- c =specific heat capacity
- $n = \operatorname{strain} \operatorname{hardening} \operatorname{exponent}$

 $\left. \frac{\partial \sigma}{\partial T} \right|_{\epsilon, \dot{\epsilon}} = \text{change in stress as a function of temperature for constant strain and strain rate}$

However, this equation significantly overpredicts FeMnAI performance

 Aluminum is more well described by the Grady criterion for adiabatic shear localization

$$\Gamma_{c0} = \frac{\rho c}{\alpha} \left(\frac{9\rho^3 c^2 \chi^3}{\sigma_y^3 \alpha^2 \dot{\epsilon}} \right)^{1/4}$$

- $\Gamma_{c0} =$ fracture energy
- $\rho = \text{density}$
- c =specific heat capacity
- $\alpha = \text{linear thermal softening}$

- $\chi =$ thermal conductivity
- $\sigma_y = \text{yield strength}$
- $\dot{\varepsilon} = \text{strain rate}$
- Based on projected thermal properties, this model more accurately predicts FeMnAl performance

	RHA	Estimated FeMnAl Properties	Measured FeMnAI Properties
Culver	1	3.4x	7.8x
Grady	1	0.49x	1.2x
Fragment Simulating Projectile			0.65x

- Four key parameters are related to shear localization:
 - Specific heat capacity
 - Thermal Conductivity
 - Linear Thermal Softening
 - Density

These are all affected by the aluminum content in FeMnAl

- Additional aluminum leads to a dilation in the lattice parameter of the main austenitic phase
 - Changes lattice vibrations, number of conduction electrons
 - Atomic radius of AI is 1.43Å, Fe is 1.24Å
 - Atomic mass of Al 26.98u, Fe is 55.84u

COMPOSITIONAL STUDY EFFORT

Level	Mn (wt%)	AI (wt%)	C (wt%)
Low	25.0	8.0	0.8
High	29.0	9.0	0.9

	Mn (wt%)	AI (wt%)	C (wt%)	Mo (wt %)	V (wt %)
No Mo	29.0	9.0	0.90	0.0	0
Hi Mo	29.0	9.0	0.90	0.75	0
Low AI 1	25.0	7	0.90	0.55	0
Low AI 2	25.0	7	0.80	0.55	0
V	29.0	9	0.90	0.55	0.55

- κ-carbide cubic perovskite crystal structure (E21)
- Building on previous design of experiments to evaluate sensitivity of toughness and aging to composition
 - 2 level full factorial for Mn, Al and C
 - Main components of the carbide which controls hardness, toughness
 - 5 separate compositions to evaluate the role of grain refiners, lower Al levels
- Two different producers, small plates
 - Missouri S&T using traditional sand casting
 - Arcelor Mittal using Vacuum Induction Melting (VIM)

BALLISTIC AND CVN PERFORMANCE RESULTS

- No clear correlation between impact test performance and fragment simulating projectile defeat
- Overall trend in V50 follows plates thickness
 - Widest variation in performance at 0.53" thick plate
- FSP normalized to Sample 20

ST01: t=0.553, CVN=7.6J , V50=1.02x

ST02: t=0.553, CVN=44.7J, V50=1.03x

ST10: t=0.532, CVN=51.0, V50= 0.83x

VC1: t=0.53, CVN= 82.7, V50= 0.98x

Identified 5 samples based on CVN, ballistic performance for detailed analysis

Sample ID	02 (VC1)	06 (VC9)	08 (VC11)	20 (ST9)	21 (ST10)
Nominal Composition	27.3Mn-8.75Al- 0.95C-0.9Si-0Mo	23.1Mn-8.94Al- 0.88C-0.93Si- 0.42Mo	26.9Mn-8.85Al- 0.84C-0.97Si- 0.48Mo	24.9Mn-7.5Al- 1.1C-0.88Si- 0.48Mo	24.55Mn-6.59Al- 1.06C-0.79Si- 0.48Mo
CVN Energy (J)	41.0	48.6	36.2	10.3	51.0
Normalized FSP V50	0.94	0.96	0.94	1	0.83
Plate Thickness	0.53	0 533	0 537	0 533	0 532
(11)	0.00	0.000	0.007	0.000	0.552

Complete Penetration (CP)

- Fracture inspection
- Optical Microscopy
 - Base material
 - Partial penetration
 - Complete penetration
- Density
- Thermal Conductivity
- Electron Backscatter
 Diffraction

TENSILE PROPERTIES

- Hardness below target of 320 HBN
- Lower Mn level was not detrimental to yield strength
 - Strength dominated by heat treatment kinetics, achievable at a wide range of compositions

Sample ID	Yield Strength (MPa)	Tensile Strength (MPa)	Elongation (%)	Surface Hardness (HBN)	Core Hardness (HBN)	Measured Composition		
						Mn	AI	C*
VC3-02	969	1116	45.7	253	257	25.4	7.46	0.93
VC9-06	1040	1224	43.7	263	262	22.1	7.5	0.92
VC11-08	1309	1490	41.8	264	259	25.8	7.42	0.83
ST9-20	Not enough material to complete tensile testing		237	271	25.4	7.1	1.21	
ST10-21			214	259	28.2	8.6	0.83	

INCLUSIONS AND FRACTURE SURFACES

- **Majority of inclusions** • are:
 - AION
 - MnS
- Based on location on fracture surfaces, not substantially impacting the fracture performance

5% Nital etch

- Some ferrite is observed at the plate surface for all compositions
 - This is attributed to decarburization during rolling and subsequent heat treatment
 - 08 also shows some ferrite stringers in the center line (below)
 - Centerline believed to be due to incomplete solution treatment
- More uniform grain size observed in plates produced by vacuum induction melting
 - Significant annealing twinning observed
- Significant microporosity throughout the structure

- Larger, equiaxed grains in the sand castings (20 and 21) vs VIM castings (2,6 and 8)
- Less residual ferrite in the sand cast samples

VIM

Sand

IMPACT FRACTURE PROFILE

- Cross section of samples from Charpy V Notch impact testing
- VIM cast samples have more ragged fracture surface
 - Intergranular fracture in austenitic regions
 - Intragranular fracture through ferrite grains
 - · Confirms anticipated detrimental influence of ferrite
 - Intragranular fracture through large incompletely recrystallized grains (see 20)

LOW MAGNIFICATION PARTIAL PENETRATION FRACTURES

- Compound fracture paths driven by projectile profile
 - -Additional stress concentrations leading to additional fracture paths
 - -This may be driving the spiral pattern in the fracture

- Flow of microstructure visible on either side of the fracture path
 - Smaller grains seem to be flowing
 - Large unrecrystallized grains failing intragranularly, ferrite failing intragranularly
- Less flow before shear than anticipated from other steels

PARTIAL PENETRATION

No transformation band as seen in martensitic steels as the structure is already austenitic

FERRITE VS DEFORMATION BANDS

CLEAVAGE OF GRAINS

COMPLETE PENETRATION

Grain refinement and deformation at penetration surface

COMPARISON BETWEEN CONDITIONS

Base

- Equiaxed austenite
- Laminar ferrite stringers
- Porosity but no cracks

Partial Penetration

- Skewed austenite
- Curved ferrite stringers
- Cracking along ferrite grains •

Complete Penetration

- Skewed austenite, refined grains
- Curved ferrite stringers
- Cracking along ferrite grains

Partial Penetration

Complete Penetration

EBSD CHALLENGES

- Sample preparation issues
 - Selective etching of grain boundaries by polishing media, partially resolved via alternative cleaning methods
- Charge build up leading to lateral drift (green arrow)
 - Trying ion milling and gold sputter coating once gas canisters installed in new lab space
- Lack of coherent pattern due to unrecrystallized grains, damage (yellow arrows)
- Older equipment
 - Scans take 10s of hours to complete vs 10s of minutes on newer equipment

DENSITY AND CONDUCTIVITY

- Density measure via ASTM D792 Specific Gravity method
- Thermal conductivity and effusivity were measured via ASTM D7984
- Specific heat was calculated from density, effusivity and conductivity

EFFECT OF COMPOSITION

- Fewer available data points for thermal conductivity due to limited plate
 - Melting process may have a larger impact than limited variations in thermal conductivity
- Trend becomes more ambiguous when looking at all points
 - Total alloy content weakly correlates to thermal conductivity with R²=0.54
 - With exception of ST10 plate, which fell well below target hardness, more homogeneous castings lead to better FSP performance
 - Industrially cast plate A1133 also higher performing

- Evidence of recrystallization found, as well as deformation banding
 - -No "white banding" observed
 - -Further EBSD work planned once ion mill reinstalled in new space
- Failure via cleavage dominates large grains
- Branched cracking along ferrite bands
- Effects of plate homogeneity proved more impactful than compositional variations
 - -This will allow for processing kinetics to drive compositional selection versus performance requirements