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1. ABSTRACT 

Control systems for Unmanned Undersea Vehicles (UUVs) are typically implemented using 
Proportional Integral Derivative (PID) control systems. PID control systems for UUVs are 
resource-intensive to tune since they require engineers, marine operators, and ship crew working 
together to adjust the controller. Furthermore, PID controllers rely heavily on complex 
dynamical system models that contain assumptions to reduce the computational complexity of 
the models. The controller's performance may degrade if environmental and external conditions 
do not fully align with those assumptions.  In this work, a Deep Reinforcement Learning (DRL) 
control system based on the Deep Deterministic Policy Gradient (DDPG) algorithm is studied for 
a UUV control system. The DDPG algorithm is model-free, meaning that the explicit 
formulations of the complex dynamical system models are optional to provide optimal 
performance. The DRL-based control systems are tuned autonomously, reducing the resources 
needed for manual tuning. Our focus is to study how different Deep Neural Network (DNN) 
architectures implemented as part of the DDPG agent affect the control signal output by the 
control system. DNN architectures that minimize undesirable oscillations in the control signals, 
which could potentially cause physical damage to the UUV, will be of interest. Numerical case 
studies will be presented. 
 

2. INTRODUCTION 

Technologies that rely entirely on autonomous systems have played significant roles in 
advancing environmental research in the undersea domain.  Unmanned Undersea Vehicles 
(UUVs) such as the Naval Post Graduate School UUV research platform have played a role in 
advancing the state of the art of autonomous systems for research purposes.  Using autonomous 
systems for research is becoming more popular because autonomous systems can relieve humans 
from repetitive tasks and reduce the risk of injury.  Additionally, UUVs can be manufactured in 
large quantities at relatively lower costs.  Moreover, due to advances in computing and battery 
technologies, UUVs can undertake more extended missions without human interventions.  
 
One of the essential parts of UUVs is the control system.  UUV control system configuration 
may change based on the vehicle payload or environmental factors such as salinity.  The control 
system is responsible for achieving and maintaining stable flight about at a target path. PID 
controllers are widely implemented on UUVs, although their use comes with a significant cost to 
tune the controller. The steep cost does not provide the benefits of a robust or intelligent solution 
because of two major problems.  
  
The first problem is that PID controllers rely on complex dynamic system models to control the 
UUV. The dynamic system models have simplifying assumptions that allow the control problem 
to be solved efficiently. When the assumptions are not valid, a PID controller can provide sub-
optimal control, or even complete loss of control can occur. The second problem is that PID 
controllers are not intelligent and cannot learn autonomously.  PID controllers require multiple 
engineers and other personnel to spend days collecting and analyzing data to tune the controller. 
Tuning a PID controller is a manual task that introduces the opportunity for human error.   
  
There is much ongoing research in using Deep Reinforcement Learning methods for autonomous 
vehicle control systems, and it has shown promising results [1, 2].  Deep Reinforcement 
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Learning controllers have been shown to outperform PID controllers for UUVs executing path-
following missions [3]. Additionally, Deep Reinforcement Learning based controllers have been 
demonstrated to provide superior attitude control compared to PID controllers  
for Unmanned Aerial Vehicles (UAVs) [4-5]. Although this example is not specific to UUVs, 
this concept from the aerial domain can be translated to the undersea domain.  
 
Some of the most popular Deep Reinforcement Learning algorithms being used for autonomous 
vehicle control system development are the Proximal Policy Optimization (PPO) [6] and Deep 
Deterministic Policy Gradient (DDPG) [7] algorithms.  This study will focus on the DDPG 
algorithm. The DDPG algorithm is an Actor-Critic type Deep Reinforcement Learning 
algorithm.  Actor-Critic algorithms learn both a policy and value function.  The concept of an 
Actor-Critic algorithm is that the policy function (the actor) determines the actions of the system 
according to the current state, and the value function (the critic) critiques the actions.  The DDPG 
algorithm uses the state-action value function.  In Deep Reinforcement learning, the policy and 
value functions are approximated by DNNs, specifically Multi-Layer Perceptrons (MLPs) in this 
study. 
 
There are two major benefits that a Deep Reinforcement Learning controller based on the DDPG 
algorithm provides compared to a traditional PID controller for UUVs.  The first benefit is that 
the DDPG algorithm is model-free. It does not require any knowledge of the vehicle or 
environmental dynamics to provide optimal control.  Therefore, it avoids the downfalls of 
simplifying assumptions needed to solve complex vehicle or environmental dynamic system 
models efficiently.  Secondly, Deep Reinforcement Learning based control systems can be tuned 
(trained) autonomously.  This will reduce the resources needed to tune a Deep Reinforcement 
Learning based control system compared to a PID control system.  
 
An area of ongoing research of Deep Reinforcement Learning based control systems is training 
the Reinforcement Learning agent to provide optimal control with a smooth control signal that is 
free of high frequency and high amplitude oscillations.  Much of the research in this area is 
focused on reward signal engineering and algorithmic improvements [5,8].  The contribution of 
this work will be examining the effects of different DNN architectures on the control signal 
behavior produced by a DDPG agent.  The effects of DNN architectures on Deep Reinforcement 
Learning agent performance for the continuous control problem of real-world systems are often 
overlooked in the literature.  This study will be an attempt to fill that void.   
 
In our study, a three degree of freedom simulation environment was created in Simulink where 
the Naval Post Graduate School Autonomous Undersea Vehicle (NPSUUV) model [9] from the 
Marine Systems Simulator (MSS) Matlab Toolbox [10] is implemented as the UUV model to 
execute a path following the task of a curved surface.  The NPSUUV model is tasked with 
keeping a constant altitude above a curved surface while maintaining a pitch angle that is as 
close to parallel to the surface as possible at a constant speed.  A DDPG agent is used to control 
the UUV’s control surfaces to provide altitude and pitch angle control to accomplish this task. 
While keeping the DDPG agent hyperparameters unchanged, this study will investigate the 
effects of DNN architectures commonly found in Deep Reinforcement Learning literature on the 
control signal behavior.  The DNN architectures that will be explored are MLPs with the 
following layer and node counts for both actor and critic networks: [64, 64], [400, 300], [256, 
256], and [100, 50, 25].   
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The remainder of the paper is structured as followed.  The Problem Formulation section will 
provide a brief background on the NPSUUV dynamics, PID control, the DDPG algorithm, DNN 
categories used for Deep Reinforcement Learning, and a brief background on methods to reduce 
the oscillatory characteristics of control signals produced by Reinforcement Learning 
agents.  The Experimental Analysis section will describe the setup and results of the numerical 
experiments run in this study.  The overall work and future planned work will be described in the 
Conclusions and Future Work section.  
 

3. PROBLEM FORMULATION 

3.1 NPSUUV DYNAMICS 

The UUV numerical model used in this study is the Naval Post Graduate School Aries UUV 
model as described in [9].  The authors detail a six degree of freedom dynamic system model for 
this UUV.  The equations of motion for this system are developed in the body fixed reference 
frame as described in [11].  The velocity components of the UUV in the body fixed reference 
frame are described as:  

𝑥̇ = [𝑢(𝑡), 𝑣(𝑡), 𝑤(𝑡), 𝑝(𝑡), 𝑞(𝑡), 𝑟(𝑡)] 

Where u(t) is the surge velocity, v(t) is the sway velocity, w(t) is the heave velocity, p(t) is the 
roll velocity, q(t) is the pitch velocity, and r(t) is the yaw velocity. 

The body-reference frame for the NPSUUV is illustrated in Figure 1. 

 

Figure 1- Body-reference frame for Aries UUV 

The six components describing UUV position are:   

𝑥 = [𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡), 𝜙(𝑡), 𝜃(𝑡), 𝜓(𝑡)] 
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Where x(t) is the position in the surge direction, y(t) is the position in the sway direction, z(t) is 

the position in the heave direction, 𝜙(𝑡) is the roll angle, 𝜃(𝑡) is the pitch angle, and 𝜓(𝑡) is the 
yaw angle.   

To control the UUV, the model control inputs are:  

𝑢𝑖 = [𝛿𝑟(𝑡), 𝛿𝑠(𝑡), 𝛿𝑏(𝑡), 𝛿𝑏𝑝(𝑡), 𝛿𝑏𝑠(𝑡), 𝑛] 

Where 𝛿𝑟(𝑡) is the rudder angle, 𝛿𝑠(𝑡) is the port and starboard stern plane angle, 𝛿𝑏(𝑡) is the 

top and bottom bow plane angle, 𝛿𝑏𝑝(𝑡) is the port bow plane angle, 𝛿𝑏𝑠(𝑡) is the starboard bow 

plane, and n is the propeller shaft speed.  

The equation of motion for the UUV is described in terms of twelve non-linear systems of 
equations as described in [12]:  

𝑀(𝑡)
𝑑𝑥

𝑑𝑡
= 𝒇(𝑥(𝑡), 𝑧(𝑡), 𝑐(𝑡)) + 𝒈(𝑥(𝑡), 𝑧(𝑡)) ∗ 𝒖(𝑡) 

𝑑𝑧

𝑑𝑡
= 𝒉(𝑧(𝑡), 𝑥(𝑡), 𝑢𝑐) 

The mass matrix M(t) includes both the mechanical and hydrodynamic added mass.  The 
functions f and g are mappings of the UUV motions into forces such as Coriolis, gravitational, 
centrifugal, hydrostatic, hydrodynamic, and moments acting on the UUV with coefficients c, and 
the motion dependent influence of the control surfaces, propeller, and ballasting.  The function h 
includes the kinematical relationships found in performing the coordinate system transformation 

between the body reference frame, inertial reference frame, and ocean current 𝑢𝑐.   

The equations of motion for each degree of freedom can be found in the appendix section and are 
implemented similarly in Matlab MSS toolbox npsauv.m function 

 
 
3.2 PROPORTIONAL INTEGRAL DERIVATIVE CONTROLLER 

Proportional Integral Derivative (PID) controllers are simple and versatile controllers that are 
widely used in practice.  Although PID controllers are easy to implement and tune, they are very 
sophisticated in that these controller types capture the history of the system through integration 
and can anticipate the future behavior of the system through differentiation [13].   

The basic architecture of a feedback control loop with a PID controller is illustrated in Figure 2.  
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Figure 2- Feedback control loop with PID controller 

In this model, the reference signal is the target response that we desire the UUV to achieve.  The 
PID controller accepts the error (e) between the reference signal and the UUV response and 
computes a control signal for the UUV that will minimize the difference between these two 
signals. 

The control signal is computed by the PID controller by considering the error, the integral of the 
error, and the derivative of the error as follows:  

𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝑆𝑖𝑔𝑛𝑎𝑙 =  𝐶𝑝𝑒(𝑡) + 𝐶𝑖 ∫ 𝑒(𝑡)𝑑𝑡 + 𝐶𝑑

𝑑𝑒(𝑡)

𝑑𝑥
 

The coefficient  𝐶𝑝 scales the control signal proportionally to the error and influences how 

quickly the system reacts to minimizing the error.  𝐶𝑖 scales the integral of the error and helps 

minimize the steady state error.  𝐶𝑑 scales the derivative of the error and allows the controller to 

predict the future error.  Coefficients 𝐶𝑝, 𝐶𝑖, and 𝐶𝑑 are determined empirically through 

experimentation. 

The empirical nature of determining (tuning) PID controller coefficients is both advantageous 
and detrimental.  While the controller easy to understand, it is very resource intensive to tune.  
Tuning a UUV PID controller requires several engineers to spend time offshore with a physical 
UUV to manually tune the coefficients through experimentation.  After the resource intensive 
tuning effort, a PID controller is model based, meaning that a dynamic system model of the UUV 
is required to provide control.  This type of dynamic system model is very complex and requires 
simplifying assumptions to be solvable in a computationally acceptable manner.  If the UUV 
encounters an environmental condition that conflicts with a simplifying assumption, it can cause 
the controller to provide sub-optimal control, or even complete loss of control.   

To improve control system technology for UUVs, there is ongoing research on using Deep 
Reinforcement Learning methods for UUV control.  Key benefits of using Deep Reinforcement 
Learning methods for UUV control have been described in the introduction section of this paper.  
 

3.3 DDPG ALGORITHM 

This study will focus on using the DDPG algorithm for control of the UUV described in this 
section.  The DDPG algorithm is an off-policy, model-free actor-critic Deep Reinforcement 
Learning algorithm.  Model-free means that the algorithm does not rely on an environmental or 
UUV dynamic system model to achieve optimal performance.  The DDPG algorithm is an off-
policy algorithm.  This means that the state-action function does not depend on the policy used to 
gather experiences.  An off-policy algorithm considers the maximum Q value over all the 
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potential actions available in a given a state [14].  This is different from an on-policy algorithm 
such as SARSA [15] which relies on the Q value calculated by the experience gathering policy.   

A benefit of off-policy algorithms is that a large number of past experiences can be considered 

when computing the Q value.  These experiences given by the tuple, (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) , are stored 

in an experience buffer, or replay buffer, in a First In First Out (FIFO) fashion.  𝑠𝑡 is the state at 

time t, 𝑎𝑡 is the action selected by the agent at time t, 𝑟𝑡 is the reward at time t, and 𝑠𝑡+1 is the 
next state.  As the buffer becomes full, the oldest experiences are removed.  Removing old 
experiences is important because older experiences tend to be less useful and it’s preferable for 
the agent to learn from more recent experiences.  Each time the agent trains, experiences are 
sampled from a uniform distribution to update the parameters of the critic network.  The number 
of experiences used during training is called the batch size.  The buffer size and batch size are 
tunable DDPG agent hyperparameters.     

The DDPG algorithm is an actor-critic type algorithm.  In Deep Reinforcement Learning the 

actor and critic are implemented as DNNs.  The actor network, 𝜇(𝑠|𝜃),  learns a parameterized 

policy that computes an action according to the current state.  The critic network, 𝑄(𝑠, 𝑎|𝜙) , 
learns a value function given a state action pair and provides reinforcing information to the actor. 

𝜃 and 𝜙 are the weights of the actor and critic networks respectively.  The critic computes the 
temporal difference (TD) error that is used in both the actor and critic networks during the 
training process.  A high level architecture of an actor-critic type Deep Reinforcement Learning 
agent is found in Figure 3. 

` 

Figure 3- Actor-critic agent architecture [16] 

There are two actor and critic networks in the DDPG algorithm.  There is a trained network and a 
target network for both actor and critic.  The target networks for the actor and critic are denoted 

by 𝜇′(𝑠|𝜃′) and 𝑄′(𝑠, 𝑎|𝜙′) where 𝜃′ are the weights of the target actor network and 𝜙′ are the 
weights of the target critic network.  The reason for using two networks is that it stabilizes 
training [17].  During training, the actor and critic networks are being updated frequently and this 
makes training difficult because there can be large changes to the actor and critic networks 
between each training step.  To mitigate this, target networks are implemented that are updated at 
a slower rate.  There are two strategies to update the weights of the target network.  One strategy 
is to copy the weights from the actor and critic networks to their respective target networks 
periodically, or to use the Polyak averaging method to update the target actor and critic weights 
at a slower constant rate.  The Polyak method will be used in this study because it eliminates the 
potential for large changes in the target actor and critic networks that may occur if the time 
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between updates is too long.  The Polyak update method for the target actor and critic networks 
are:  

𝜃′ ←  𝜏𝜃 + (1 − 𝜏)𝜃′ 

𝜙′ ←  𝜏𝜙 + (1 − 𝜏)𝜙′ 

𝜏 is a tunable hyperparameter called the Target Smoothing Factor that controls how fast the 
target actor and critic network weights change with respect to the actor and critic networks.  

Typical values for 𝜏 are on the order of 10−3.   The target actor and critic networks are updated 
during each time step during training just like the actor and critic networks.  

The actor network is updated by sampling the policy gradient:  

∇𝜃J ≈ (
1

𝑁
∑ ∇𝑎𝑄(𝑠𝑖 , 𝜇(𝑠𝑖|𝜙)∇𝜃𝜇(𝑠𝑖|𝜃)

𝑖

) 

The critic network is updated by minimizing the loss:   
 

𝐿 =  
1

𝑁
∑(𝑦𝑖 − 𝑄(𝑠𝑖 , 𝑎𝑖|𝜙))

2

𝑖

 

To promote exploration in the DDPG algorithm, an exploration policy is built by adding noise to 
the action selected by the actor network.  The noise added to the policy is defined by the 
Ornstein-Uhlenbeck process [18].  The exploration policy is defined as 

𝜇′(𝑠) = 𝜇(𝑠|𝜃) + 𝑂𝑈𝑛𝑜𝑖𝑠𝑒 

The Ornstein-Uhlenbeck (OU) noise is implemented as [19]:  

𝑥𝑡 =  𝑥𝑡−1 +  𝜗(𝜇 − 𝑥𝑡−1)𝑑𝑡 + 𝑟𝑎𝑛𝑑𝑛(𝑠𝑖𝑧𝑒(𝜇))𝜎√𝑑𝑡 

Where 𝑥𝑡 is the noise to be added to the selected action at time t, 𝜗 is the Mean Attraction 
Constant which specifies how quickly the noise model output is attracted to the noise model 

mean, 𝜇.  𝜎 is the standard deviation and is defined as a percentage of the action space range.   

𝜎 = 0. 𝑋(𝑎𝑐𝑡𝑖𝑜𝑛_𝑠𝑝𝑎𝑐𝑒𝑚𝑎𝑥 − 𝑎𝑐𝑡𝑖𝑜𝑛_𝑠𝑝𝑎𝑐𝑒𝑚𝑖𝑛) 

During each time step, the standard deviation is decayed by the decay rate 𝜀.  The decayed 
standard deviation is 

𝜎𝑑𝑒𝑐𝑎𝑦𝑒𝑑 =  𝜎(1 −  𝜀) 

The standard deviation to be used in the next step is the calculated as 

𝜎 = max(𝜎𝑑𝑒𝑐𝑎𝑦𝑒𝑑 , 𝜎𝑚𝑖𝑛) 
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where 𝜎𝑚𝑖𝑛 is the minimum standard deviation for the noise model.  𝜎𝑚𝑖𝑛 is a tunable 
hyperparameter. 

 

3.4 DEEP NEURAL NETWORK CATEGORIES FOR DEEP REINFORCEMENT 
LEARNING 

DNNs are used to approximate the policy and state-action value functions for the DDPG 
algorithm.  The three main categories of DNN’s are Multi-Layer Perceptrons (MLP), 
Convolutional Neural Networks (CNN), and Recurrent Neural Networks (RNN).   MLP’s are 
general purpose DNNs that generally perform well for low dimensional problems where data 
sequence or spatial considerations are not important.  CNN’s perform very well at learning from 
images because they are designed to take advantage of the spatial nature of image data.  The 
strength of RNNs is learning from sequences of information such as text or speech data.  

Hybrid networks can also be constructed which are built with some combination of MLPs, 
CNNs, or RNNs and are suitable for when model inputs contain a mixture of data types.  For 
example, if a network’s input was UUV state information and image data, a hybrid network 
consisting of a MLP and CNN may be advantageous to process these different data types.    

The type of DNN that this study implements is the MLP.  MLP’s are a suitable choice for this 
problem because the policy and state-action value functions being approximated are a function of 
the states of the UUV and the actions selected by the DDPG agent.  There is no spatial structure 
or information sequence to be considered. If there was an image input for the actor or critic 
networks, a CNN would be a better choice of network as a strength of CNNs is learning from 
images.  

 

3.5 OSCILLATORY CONTROL SIGNALS 

Deep Reinforcement Learning agents have been shown to be able to learn and perform optimal 
control for UAVs and UUVs.  There are two ways to achieve optimal control.  The preferred 
way to achieve optimal control for UUVs is by a completely smooth control signal that 
minimizes the error between the UUV response and reference signal.  Optimal control can also 
be achieved through bang-bang control.  Bang-bang control is where optimal control is achieved 
by high frequency, high amplitude oscillations between the upper and lower bounds of the 
control signal.  These two optimal control signal descriptions represent the extremes.  Deep 
Reinforcement Learning agents can also learn to provide optimal control with control signals that 
are relatively smooth, but still exhibit some oscillatory characteristics.   

For this type of problem, the goal is to always achieve optimal control with a completely smooth 
control signal.  Removing oscillations from the control signal will prevent damage to a system 
that high frequency, high amplitude oscillations in the control signal can cause as well as 
preserve sensor data quality by minimizing unwanted changes to the UUVs attitude.   

Methods to achieve a completely smooth control signal for Deep Reinforcement Learning agents 
is an active area of research.  A widely used approach to solving this problem is through reward 
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signal engineering where the agent is penalized for oscillations of the control signal such as in 
[5].  Another approach in a recent study has shown promising results by regularizing the policy 
function to smooth the control signal [8]. 

While both approaches have been proven effective in practice or benchmark testing, there is 
another aspect to this problem that is overlooked in the literature and is an area that this study 
aim to address.  Little attention has been paid to how DNN architecture influences the control 
signal independent of the Deep Reinforcement Learning agent configuration for a real world 
problem.  This study implements a reward signal engineering approach to reducing the 
oscillations in the control signal and will examine the effects of DNN architectures on the control 
signal while keeping all parameters of the Reinforcement Learning agent constant. 

4. EXPERIMENTAL ANALYSIS 

This section will describe the configuration of the control system architecture, numerical 
simulation environment and DDPG agent configuration used to execute numerical experiments 
of this study.  We will also present the results of our experiments in this section.  

4.1 EXPERIMENTAL SETUP 

The goal of the control system is for the UUV to maintain a fixed altitude of 10m above the 
curved surface defined by the equation: 

𝑆 =  2 sin (0.0209𝑥 +
𝜋

2
) − 40 

to within 0.1m while also maintaining the UUV’s pitch angle to be within 4° of the angle of the 
curved surface at any given time.  This will keep the UUV approximately parallel to the surface.  
The UUV’s speed is constant. 

The Deep Reinforcement Learning control system for the NPSUUV was developed using 
Matlab/Simulink 2020a.  The feedback control system architecture is illustrated in Figure 4.  
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Figure 4- Feedback control loop for DDPG Reinforcement Learning control system for the 
NPSUUV.   

The reference signal block defines the target altitude and pitch angle that the UUV is to achieve.  
The UUV Plant block is the dynamic system model to compute the UUV’s response to the 
actions selected by the Deep Reinforcement Learning Agent block.  The UUV Plant is the 
NPSUUV model described in the previous section.  The Deep Reinforcement Learning agent is 
the DDPG algorithm as implemented in Matlab/Simulink 2020a Reinforcement Learning toolbox 
[20].  The Signal Processing block computes the environment observations (states) and reward 
signal.   

The observations generated by the signal processing block are:  

𝑠𝑡 = {Δ𝑧𝑡 , sinΔ𝜃𝑡 , cosΔ𝜃𝑡 ,
𝑑Δ𝜃𝑡

𝑑𝑡
, 𝑠𝑖𝑛𝜃𝑟𝑒𝑓,𝑡 , 𝑐𝑜𝑠𝜃𝑟𝑒𝑓,𝑡 , 𝑤𝑡 , 𝑞𝑡 , 𝑠𝑖𝑛𝜃𝑡 , 𝑐𝑜𝑠𝜃𝑡 } 

Where Δ𝑧 = 𝑧𝑟𝑒𝑓 − 𝑧 and Δ𝜃 = 𝜃𝑟𝑒𝑓 − 𝜃.  The angle is divided into sine and cosine components 

to avoid issues with periodicity.  The reference altitude, 𝑧𝑟𝑒𝑓, is defined as altitude above the 

surface rather than depth from the sea surface.  𝑧𝑟𝑒𝑓 = 𝑧𝑠𝑢𝑟𝑓𝑎𝑐𝑒 + 𝑧𝑎𝑙𝑡𝑖𝑡𝑢𝑑𝑒  

The reward signal generated by the signal processing block is:  

𝑟𝑡 = −(𝑐1Δ𝑧𝑡
2 + c2Δ𝜃𝑡

2 + c3𝑝𝑡
2 + c4(𝑁𝑡 − 𝑁𝑡−1)2) + 𝐴𝑡 + 𝑃𝑡 + 𝐵𝑡 

Where 𝑁𝑡 is the control signal,  𝐴𝑡 = 1 when Δ𝑧𝑡
2 ≤ 0.01 𝑚2, 𝐴𝑡 = 0 otherwise,  𝑃𝑡 = 1 when 

Δ𝜃𝑡
2 ≤ 0.00524 𝑟𝑎𝑑2, 𝑃𝑡 = 0 otherwise, and 𝐵𝑡 = −10000 when 𝑧 ≤ 𝑧𝑠𝑢𝑟𝑓𝑎𝑐𝑒  or 𝑧 ≥ 0 which 

would signify that the UUV has either collided with the surface or is out of the water, 𝐵𝑡 = 0 

otherwise.  When 𝐵𝑡 = −10000 the episode is terminated.    

The constants 𝑐1, 𝑐2, 𝑐3, 𝑐4 are used to scale components of the reward signal and are derived 

empirically. 

This study will focus on the 3 MLP architectures commonly found in Reinforcement Learning 
literature.  The 2 layer architectures studied consist of 64 nodes in each hidden layer, and 400 
and 300 nodes in each hidden layer.  The 3 layer architecture studied is comprised of 100, 50, 
and 25 nodes in each hidden layers.  Each layer uses the Rectified Linear Unit (ReLU) activation 
function.  The output of the critic network is unbounded, and the output of the actor network is 
bounded using a hyperbolic tangent function and then scaled appropriated for the action space. 
The DNN architectures are illustrated in Figure 5 and Figure 6 
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Figure 5 (a) – 2 layer critic network architecture.   

 

Figure 5 (b) – 2 layer actor network architecture.   

 

Figure 6 (a) – 3 layer critic network architecture.   
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Figure 6 (b) – 3 layer actor network architecture.   

The DDPG agent hyperparameters are described in Table 1:  

Parameter Name Value 

Critic Learning Rate 0.001 

Critic L2 Regularization Factor 0.0001  

Actor Learning Rate 0.0001 

Actor L2 Regularization Factor 0.0001 

Target Smoothing Factor 0.001 

Target Update Frequency 1 

Batch Size 64 

Buffer Size 1000000  

Discount Factor 0.99 

OU Noise Variance 0.3 (𝐴𝑐𝑡𝑖𝑜𝑛 𝑆𝑝𝑎𝑐𝑒𝑚𝑎𝑥 − 𝐴𝑐𝑡𝑖𝑜𝑛 𝑆𝑝𝑎𝑐𝑒𝑚𝑖𝑛) 

Noise Decay Rate 0.000001 

Noise Mean Attraction Constant 0.15 

Noise Mean 0 

Table 1 – DDPG model hyperparameters 

4.2 EXPERIMENTAL RESULTS 

The DDPG agent was trained until it reached an average reward value of 5,950 with a scoring 
window of 10 episodes.  The problem is considered solved when that average reward value is 
achieved.  Each training episode was a 600 second simulation with a timestep size of 1 second.    
Average reward curves for the DDPG agent for each of the DNN architectures being examined is 
in Figure 7 
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Figure 7 – Average reward for each DNN architecture during agent training 

Performance of the trained DDPG agents for the each of the different DNN architectures being 
examined are in Figure 8 below.                

               

Figure 8 (a) – DDPG model performance with 2 layer DNN with 64 nodes per layer 
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Figure 8 (b) – DDPG model performance with 2 layer DNN with 400 nodes in the first layer 
and 300 nodes in the second layer. 

 

Figure  8 (c) – DDPG model performance with 3 layer DNN with 100, 50, and 25 layers in the 
first, second , and third layers respectively.  
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signal than the DNN with 400 and 300 nodes per layer, but some oscillations exist.  Finally, the 
DNN with 100, 50, and 25 nodes per layer produces a near perfectly smooth control signal with 
no oscillations.   

To quantify the oscillations produced by the DNN architectures being examined, a comparison is 
made by computing the Mean Squared Error (MSE) between the control signal produced by the 
DDPG agent for each DNN being examined and a perfectly smooth control signal defined by the 
curve:  

𝑆𝑚𝑜𝑜𝑡ℎ𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑆𝑖𝑔𝑛𝑎𝑙 =  8.8223𝑒−4 + 8.6279𝑠𝑖𝑛(2𝜋𝑡 + 3.3660) 

𝑀𝑆𝐸 =  
1

𝑛
∑(𝑈𝑈𝑉_𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒DDPG,𝑖 − 𝑈𝑈𝑉_𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒Smooth,𝑖

)2

𝑛

1

 

The UUV’s pitch angle response will be examined similarly by computing the MSE between the 
UUV response of the DDPG agent’s control signal for each DNN being examined and the 
smooth control signal.  Additionally, the MSE of the UUV position will be examined by 
comparing the UUV response from the DDPG agent’s control signal for each DNN architecture 
being examined and the reference altitude.  Comparisons of the pitch angle response and UUV 
position will quantify the effects of the control signal oscillation.  Results are in Table 2.   

DNN Architecture MSE - Control Signal MSE – Pitch Angle 

64-64 0.090 0.043 

400-300  0.199 0.029 

100-50-25 0.021 0.020 

Table 2- Mean squared error comparison between control signal and pitch angle produced by 
the Reinforcement Learning control system and a smooth control signal.  

As expected, the higher MSE values correlate to oscillations in the control signal.  The values in 
Table 2 support the visual inspection.  Additionally, the MSE of the pitch angle is lowest for the 
3 layer 100-50-25 node/layer architecture, followed by the 2 layer 64 nodes/layer and 400-300 
nodes/layer architectures.  All 3 architectures produced the same MSE for altitude of 0.001.  This 
is not unexpected since altitude can be optimally controlled through bang-bang control.  

The lower MSE of the control signal and pitch angle for the 3 layer 100-50-25 node/layer 
architecture makes this the preferred DNN architecture for this problem because it will result in 
more efficient use of UUV energy by eliminating unnecessary changes of the control surfaces.  It 
will also reduce high frequency, high amplitude oscillations that can cause damage to control 
surface actuators and preserve sensor data quality by reducing unwanted changes to the UUV’s 
attitude.  
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5. CONCLUSIONS AND FUTURE WORK 

In this paper we demonstrated that there is more than just reward signal engineering and 
algorithmic considerations to be made when developing a control system based on Deep 
Reinforcement Learning methods where it is desirable to have a smooth control signal that is free 
of high frequency and high amplitude oscillations.  We showed that the DNN architecture plays a 
role in the characteristics of the control signal that is produced by a DDPG agent by varying the 
DNN architectures while keeping the DDPG agent hyperparameters fixed.  We quantified the 
results by comparing the UUV’s response to the control signal produced by the DDPG agent to a 
perfectly smooth control signal and identified an optimal DNN architecture for this problem.   

Although these results are presented as part of a simplified problem, the results of this study can 
be extended to more complex scenarios and should be considered for anyone designing control 
systems using Deep Reinforcement Learning methods.  

In future work, we will examine additional DNN architectures and also how DNN architectures 
affect the control signal produced by other Deep Reinforcement Learning algorithms that work 
with continuous action spaces such as Proximal Policy Optimization (PPO) and Twin-Delayed 
Deep Deterministic Policy Gradient (TD3).  We will also extend this type of study to more 
complex tasks and with Reinforcement Learning agents that have modified algorithms to reduce 
the computational time and memory requirements during training.   
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7. APPENDIX 

Equations of Motion for Aires UUV for each degree of freedom as described in [9] and 
implemented in [10] 

The equation of motion in the surge direction is:  
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https://www.mathworks.com/help/reinforcement-earning/ref/rlddpgagentoptions.html
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𝑚[𝑢̇ − 𝑣𝑟 + 𝑤𝑞 − 𝑥𝐺(𝑞2 + 𝑟2) + 𝑦𝐺(𝑝𝑞 − 𝑟̇) + 𝑍𝐺(𝑝𝑟 + 𝑞)̇]

=  
𝜌

2
𝐿4[𝑋𝑝𝑝𝑝2 + 𝑋𝑞𝑞𝑞2 + 𝑋𝑟𝑟𝑟2 + 𝑋𝑝𝑟𝑝𝑟]

+
𝜌

2
𝐿3 [𝑋𝑢̇𝑢̇ + 𝑋𝑤𝑞𝑤𝑞 + 𝑋𝑣𝑝𝑣𝑝 + 𝑋𝑣𝑟𝑣𝑟 + 𝑢𝑞̇ (𝑋𝑞𝛿𝑠

𝛿𝑠 + 𝑋𝑞𝛿𝑏
2

𝛿𝑏𝑝 + 𝑋𝑞𝛿𝑏
2

𝛿𝑏𝑠)

+ 𝑋𝑟𝛿𝑟𝑢𝑟𝛿𝑟] +
𝜌

2
𝐿2[𝑋𝑣𝑣𝑣2 + 𝑋𝑤𝑤𝑤2 + 𝑋𝑣𝛿𝑟𝑢𝑣𝛿𝑟

+  𝑢𝑤(𝑋𝑤𝛿𝑠𝛿𝑠 + 𝑋𝑤𝛿𝑏/2𝛿𝑏𝑠 + 𝑋𝑤𝛿𝑏/2𝛿𝑏𝑝 )

+ 𝑢2(𝑋𝛿𝑠𝛿𝑠𝛿𝑠
2 + 𝑋𝛿𝑏𝛿𝑏/2𝛿𝑏𝑠 

2 + 𝑋𝛿𝑟𝛿𝑟𝛿𝑟 
2) − (𝑊 − 𝐵)𝑠𝑖𝑛𝜃

+
𝜌

2
𝐿3𝑋𝑞𝛿𝑠𝑛𝑢𝑞𝛿𝑠𝜖(𝑛) + 

𝜌

2
𝐿2(𝑋𝑤𝛿𝑠𝑛𝑢𝑤𝛿𝑠𝑛 + 𝑋𝛿𝑠𝛿𝑠𝑛𝑢2𝛿𝑠

2)𝜖(𝑛) +
𝜌

2
𝐿2𝑢2𝑋𝑝𝑟𝑜𝑝 

  

The equation of motion in the sway direction is:  

𝑚[𝑣̇ + 𝑢𝑟 − 𝑤𝑝 + 𝑥𝐺(𝑝𝑞 + 𝑟̇) − 𝑦𝐺(𝑝2 + 𝑟2) + 𝑧𝐺(𝑞𝑟 − 𝑝̇)] =  
𝜌

2
𝐿4[𝑌𝑝̇𝑝̇ + 𝑌𝑟̇𝑟̇ + 𝑌𝑝𝑞𝑝𝑞 +

𝑌𝑞𝑟𝑞𝑟] +
𝜌

2
𝐿3[𝑌𝑣̇𝑣̇ + 𝑌𝑝𝑢𝑝 + 𝑌𝑟𝑢𝑟 + 𝑌𝑣𝑞𝑣𝑞 + 𝑌𝑤𝑝𝑤𝑝 + 𝑌𝑤𝑟𝑤𝑟] +

𝜌

2
𝐿2[𝑌𝑣𝑢𝑣 + 𝑌𝑣𝑤𝑣𝑤 +

𝑌𝛿𝑟𝑢2𝛿𝑟]  − ∫ [𝐶𝑑𝑦ℎ(𝑥)(𝑣 + 𝑥𝑟)2 + 𝐶𝑑𝑧𝑏(𝑥)(𝑤 − 𝑥𝑞)2]
𝑥𝑛𝑜𝑠𝑒

𝑥𝑡𝑎𝑖𝑙

𝑣+𝑥𝑟

𝑈𝑐𝑓(𝑥)
𝑥𝑑𝑥 + (𝑊 − 𝐵)𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜙  

The equation of motion in the heave direction is:  

𝑚[𝑤̇ + 𝑢𝑞 − 𝑣𝑝 + 𝑥𝐺(𝑝𝑟 − 𝑞̇) + 𝑦𝐺(𝑞𝑟 + 𝑝̇) − 𝑧𝐺(𝑝2 + 𝑞2)]

=
𝜌

2
𝐿4[𝑍𝑞̇𝑞̇ + 𝑍𝑝𝑝𝑝2 + 𝑍𝑝𝑟𝑝𝑟 + 𝑍𝑟𝑟𝑟2] +

𝜌

2
𝐿3[𝑍𝑤̇𝑤̇ + 𝑍𝑞𝑢𝑞 + 𝑍𝑣𝑝𝑣𝑝 + 𝑍𝑣𝑟𝑣𝑟]

+
𝜌

2
𝐿2[𝑍𝑤𝑢𝑤 + 𝑍𝑣𝑣2 + 𝑢2(𝑍𝛿𝑠𝛿𝑠 + 𝑍𝛿𝑏/2𝛿𝑏𝑠 + 𝑍𝛿𝑏/2𝛿𝑏𝑝)]

+
𝜌

2
∫ [𝐶𝑑𝑦ℎ(𝑥)(𝑣 + 𝑥𝑟)2 + 𝐶𝑑𝑧𝑏(𝑥)(𝑤 − 𝑥𝑞)2]

𝑥𝑛𝑜𝑠𝑒

𝑥𝑡𝑎𝑖𝑙

𝑤 − 𝑥𝑞

𝑈𝑐𝑓(𝑥)
𝑥𝑑𝑥

+ (𝑊 − 𝐵)𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜙 +
𝜌

2
𝐿3𝑍𝑞𝑛𝑢𝑞𝜖(𝑛) +

𝜌

2
𝐿2[𝑍𝑤𝑛𝑢𝑤 + 𝑍𝛿𝑠𝑛𝑢2𝛿𝑠)𝜖(𝑛) 

 

The roll equation of motion is: 

𝐼𝑥𝑝̇ + (𝐼𝑧 − 𝐼𝑦)𝑞𝑟 − 𝐼𝑥𝑦(𝑝𝑟 − 𝑞̇) − 𝐼𝑦𝑧(𝑞2 − 𝑟2)̇ +  𝐼𝑥𝑧(𝑝𝑞 + 𝑟̇)

+  𝑚[𝑦𝐺(𝑤̇ − 𝑢𝑞 + 𝑣𝑝) − 𝑧𝐺(𝑣̇ + 𝑢𝑟 − 𝑤𝑞)]

=
𝜌

2
𝐿5[𝐾𝑝̇𝑝̇ + 𝐾𝑟̇𝑟̇ + 𝐾𝑝𝑞𝑝𝑞 + 𝐾𝑞𝑟𝑞𝑟]

+
𝜌

2
𝐿4[𝐾𝑣̇𝑣̇ + 𝐾𝑝𝑢𝑝 + 𝐾𝑟𝑢𝑟 + 𝐾𝑣𝑞𝑣𝑞 + 𝐾𝑤𝑝𝑤𝑝 + 𝐾𝑤𝑟𝑤𝑟]

+
𝜌

2
𝐿3[𝐾𝑣𝑢𝑣 + 𝐾𝑣𝑤𝑣𝑤 + 𝑢2(𝐾𝛿𝑏/𝑠𝛿𝑏𝑝 + 𝐾𝛿𝑏/2𝛿𝑏𝑠)] + (𝑦𝐺𝑊 − 𝑦𝐵𝐵)cosθcosϕ

− (𝑧𝐺𝑊 − 𝑧𝐺𝐵)𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜙 + 
𝜌

2
𝐿4𝐾𝑝𝑛𝑢𝑝𝜖(𝑛) +

𝜌

2
𝐿3𝑢2𝐾𝑝𝑟𝑜𝑝 
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The equation of motion in the pitch direction is:  

𝐼𝑦𝑞̇ + (𝐼𝑥 − 𝐼𝑧)𝑝𝑟 − 𝐼𝑥𝑦(𝑞𝑟 + 𝑝) + 𝐼𝑦𝑧(𝑝𝑞 − 𝑟̇)̇ +  𝐼𝑥𝑧(𝑝2 − 𝑟2)

−  𝑚[𝑥𝐺(𝑤̇ − 𝑢𝑞 + 𝑣𝑝) − 𝑧𝐺(𝑢 − 𝑣𝑟̇ + 𝑤𝑞)]

=  
𝜌

2
𝐿5[𝑀𝑞̇𝑞̇ + 𝑀𝑝𝑝𝑝2 + 𝑀𝑝𝑟𝑝𝑟 + 𝑀𝑟𝑟𝑟2]

+
𝜌

2
𝐿4[𝑀𝑤̇𝑤̇ + 𝑀𝑢𝑞𝑢𝑞 + 𝑀𝑣𝑝𝑣𝑝 + 𝑀𝑣𝑟𝑣𝑟] +

𝜌

2
𝐿3[𝑀𝑢𝑤𝑢𝑤 + 𝑀𝑣𝑣𝑣2

+ 𝑢2(𝑀𝛿𝑠𝛿𝑠 + 𝑀𝛿𝑏/2𝛿𝑏𝑝 + 𝑀𝑗𝛿𝑏/2𝛿𝑏𝑠)]

− ∫ [𝐶𝑑𝑦ℎ(𝑥)(𝑣 + 𝑥𝑟)2 + 𝐶𝑑𝑧𝑏(𝑥)(𝑤 − 𝑥𝑞)2]

𝑥𝑛𝑜𝑠𝑒

𝑥𝑡𝑎𝑖𝑙

𝑤 + 𝑥𝑞

𝑈𝑐𝑓(𝑥)
𝑥𝑑𝑥

− (𝑥𝐺𝑊 − 𝑥𝐵𝐵)cosθcosϕ − (𝑧𝐺𝑊 − 𝑧𝐵𝐵)𝑠𝑖𝑛𝜃 +  
𝜌

2
𝐿4𝑀𝑞𝑛𝑢𝑞𝜖(𝑛)

+
𝜌

2
𝐿3[𝑀𝑤𝑛𝑢𝑤 + 𝑀𝛿𝑠𝑛𝑢2𝛿𝑠)𝜖(𝑛) 

 

The yaw equation of motion is:  

𝐼𝑧𝑟̇ + (𝐼𝑦 − 𝐼𝑥)𝑝𝑞 − 𝐼𝑥𝑦(𝑝2 − 𝑞2) − 𝐼𝑦𝑧(𝑝𝑟 + 𝑞̇) + 𝐼𝑥𝑧(𝑞𝑟 − 𝑝̇)

+  𝑚[𝑥𝐺(𝑣̇ − 𝑢𝑟 + 𝑤𝑝) − 𝑦𝐺(𝑢̇ − 𝑣𝑟 + 𝑤𝑞)]

=
𝜌

2
𝐿5[𝑁𝑝̇𝑝̇ + 𝑁𝑟̇𝑟̇ + 𝑁𝑝𝑞𝑝𝑞 + 𝑁𝑞𝑟𝑞𝑟]

+
𝜌

2
𝐿4[𝑁𝑣̇𝑣̇ + 𝑁𝑝𝑢𝑝 + 𝑁𝑟𝑢𝑟 + 𝑁𝑣𝑞𝑣𝑞 + 𝑁𝑤𝑝𝑤𝑝 + 𝑁𝑤𝑟𝑤𝑟]

+
𝜌

2
𝐿3[𝑁𝑣𝑢𝑣 + 𝑁𝑣𝑤𝑣𝑤 + 𝑁𝛿𝑟𝑢2𝛿𝑟]

− ∫ [𝐶𝑑𝑦ℎ(𝑥)(𝑣 + 𝑥𝑟)2 + 𝐶𝑑𝑧𝑏(𝑥)(𝑤 − 𝑥𝑞)2]

𝑥𝑛𝑜𝑠𝑒

𝑥𝑡𝑎𝑖𝑙

𝑣 + 𝑥𝑟

𝑈𝑐𝑓(𝑥)
𝑥𝑑𝑥

+ (𝑥𝐺𝑊 − 𝑥𝐵𝐵)cosθsinϕ − (𝑦𝐺𝑊 − 𝑦𝐵𝐵)𝑠𝑖𝑛𝜃 + 
𝜌

2
𝐿3𝑢2𝑁𝑝𝑟𝑜𝑝 

The Euler angle rates, global positions, crossflow velocity, and propulsion terms used in the 
above equations of motion are:  

𝜙̇ = 𝑝 + 𝑞𝑠𝑖𝑛𝜙𝑡𝑎𝑛𝜃 + 𝑟𝑐𝑜𝑠𝜙𝑡𝑎𝑛𝜃 

𝜃̇ = 𝑞𝑐𝑜𝑠𝜙 − 𝑟𝑠𝑖𝑛𝜙 

𝜓̇ = (𝑞𝑠𝑖𝑛𝜙 − 𝑟𝑐𝑜𝑠𝜙)/𝑐𝑜𝑠𝜃 

𝑋̇ = 𝑢𝑐0 + 𝑢𝑐𝑜𝑠𝜓𝑐𝑜𝑠𝜃 + 𝑣[𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙 − 𝑠𝑖𝑛𝜓𝑐𝑜𝑠𝜙] + 𝑤[𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙 − 𝑠𝑖𝑛𝜓𝑠𝑖𝑛𝜙] 

𝑌̇ = 𝑣𝑐0 + 𝑢𝑠𝑖𝑛𝜓𝑐𝑜𝑠𝜃 + 𝑣[𝑠𝑖𝑛𝜓𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙 − 𝑐𝑜𝑠𝜓𝑐𝑜𝑠𝜙] + 𝑤[𝑠𝑖𝑛𝜓𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙 − 𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜙] 
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𝑍̇ = 𝑤𝑐0 − 𝑢𝑠𝑖𝑛𝜃 + 𝑣𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜓 + 𝑤𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜙 

𝑈𝑐𝑓(𝑥) = [(𝑣 + 𝑥𝑟)2 + (𝑤 − 𝑥𝑞)2]1/2 

𝑋𝑝𝑟𝑜𝑝 = 𝐶𝑑0(𝜂|𝜂| − 1);  𝜂 = 0.012𝑛/𝑢 

𝜖(𝑛) = −1 + 𝑠𝑖𝑔𝑛(𝑛)/𝑠𝑖𝑔𝑛(𝑢)∗ (√𝐶𝑡 + 1 − 1)/(√𝐶𝑡1 + 1 − 1) 

𝐶𝑡 = 0.008𝐿2𝜂|𝜂|/2 

𝐶𝑡1 = 0.008𝐿2/2 

 

Constants uses in the equations of motion: 

𝑊 = 53.4𝑘𝑁   𝐵 = 55.4𝑘𝑁   𝐿 = 5.3𝑚  𝐼𝑥 = 13587𝑁𝑚𝑠2 

𝐼𝑥𝑦 = −13.58 𝑁𝑚𝑠2 𝐼𝑦𝑥 = −13.58 𝑁𝑚𝑠2 𝐼𝑥𝑧 = −13.58 𝑁𝑚𝑠2  𝐼𝑦 = 13587 𝑁𝑚𝑠2 

𝐼𝑥 = 2038 𝑁𝑚𝑠2 𝑥𝐺 = 0   𝑥𝐵 = 0   𝑦𝐺 = 0 

𝑦𝐵 = 0.0  𝑧𝐺 = 6.1𝑐𝑚  𝑧𝐵 = 0   𝑔 = 9.8 𝑚/𝑠2 

𝜌 = 1000 𝑘𝑔/𝑚3 𝑚 = 5454.54 𝑘𝑔  

𝑋𝑝𝑝 = 7.0𝑒 − 3 𝑋𝑞𝑞 = −1.5𝑒 − 2 𝑋𝑟𝑟 = 4.0𝑒 − 3 𝑋𝑝𝑟 = 7.5𝑒 − 4 

𝑋𝑢̇ = −7.6𝑒 − 3 𝑋𝑤𝑞 = −2.0𝑒 − 1 𝑋𝑣𝑝 = −3.0𝑒 − 3 𝑋𝑣𝑟 = 2.0𝑒 − 2 

𝑋𝑞𝛿𝑠 = 2.5𝑒 − 2 𝑋𝑞𝛿𝑏/2 = −1.3𝑒 − 3 𝑋𝑟𝛿𝑟 = −1𝑒 − 3 𝑋𝑣𝑣 = 5.3𝑒 − 2 

𝑋𝑤𝑤 = 1.7𝑒 − 1 𝑋𝑣𝛿𝑟 = 1.7𝑒 − 3 𝑋𝑤𝛿𝑠 = 4.6𝑒 − 2 𝑋𝑤𝛿𝑏/2 = 0.5𝑒 − 2 

𝑋𝛿𝑠𝛿𝑠 = −1𝑒 − 2 𝑋𝛿𝑏𝛿𝑏/2 = −4𝑒 − 3 𝑋𝑤𝛿𝑠 = 4.6𝑒 − 2 𝑋𝑞𝛿𝑠𝑛 = 2𝑒 − 3 

𝑋𝑤𝛿𝑠𝑛 = 3.5𝑒 − 3 𝑋𝛿𝑠𝛿𝑠𝑛 = −1.6𝑒 − 3 

𝑌𝑝̇ = 1.2𝑒 − 4  𝑌𝑟 = 1.2𝑒 − 3  𝑌𝑝𝑞 = 4𝑒 − 3  𝑌𝑞𝑟 = −6.5𝑒 − 3 

𝑌𝑣̇ = −5.5𝑒 − 2 𝑌𝑝 = 3.0𝑒 − 3  𝑌𝑟 = 3.0𝑒 − 2  𝑌𝑣𝑞 = 2.4𝑒 − 2 

𝑌𝑤𝑝 = 2.3𝑒 − 1 𝑌𝑤𝑟 = −1.9𝑒 − 2 𝑌𝑣 = −1.0𝑒 − 1 𝑌𝑣𝑤 = 6.8𝑒 − 2 

𝑍𝑞̇ = −6.8𝑒 − 3 𝑍𝑝𝑝 = 1.3𝑒 − 4 𝑍𝑝𝑟 = 6.7𝑒 − 3 𝑍𝑟𝑟 = −7.4𝑒 − 3 

𝑍𝑤̇ = −2.4𝑒 − 1 𝑍𝑞 = −1.4𝑒 − 1 𝑍𝑣𝑝 = −4.8𝑒 − 2 𝑍𝑣𝑟 = 4.5𝑒 − 2 
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𝑍𝑤 = −3.0𝑒 − 1 𝑍𝑣𝑣 = −6.8𝑒 − 2 𝑍𝛿𝑠 = −7.3𝑒 − 2 𝑍𝛿𝑏/2 = −1.3𝑒 − 2 

𝑍𝑞𝑛 = −2.9𝑒 − 3 𝑍𝑤𝑛 = −5.1𝑒 − 3 𝑍𝛿𝑠𝑛 = −1.0𝑒 − 2 

𝐾𝑤𝑝 = −1.3𝑒 − 4 𝐾𝑤𝑟 = 1.4𝑒 − 2 𝐾𝑣 = 3.1𝑒 − 3  𝐾𝑣𝑤 = −1.9𝑒 − 1 

𝐾𝛿𝑏/2 = 0.0  𝐾𝑝𝑛 = −5.7𝑒 − 4 𝐾𝑝𝑟𝑜𝑝 = 0.0 

𝑀𝑞̇ = −1.7𝑒 − 2 𝑀𝑝𝑝 = 5.3𝑒 − 5 𝑀𝑝𝑟 = 5.0𝑒 − 3 𝑀𝑟𝑟 = 2.9𝑒 − 3 

𝑀𝑤̇ = −6.8𝑒 − 2 𝑀𝑢𝑞 = −6.8𝑒 − 2 𝑀𝑣𝑝 = 1.2𝑒 − 3 𝑀𝑣𝑟 = 1.7𝑒 − 2 

𝑀𝑢𝑤 = 1.0𝑒 − 1 𝑀𝑣𝑣 = −2.6𝑒 − 2 𝑀𝛿𝑠 = −4.1𝑒 − 2 𝑀𝛿𝑏/2 = 3.5𝑒 − 3 

𝑀𝑞𝑛 = −1.6𝑒 − 3 𝑀𝑤𝑛 = −2.9𝑒 − 3 𝑀𝛿𝑠𝑛 = −5.2𝑒 − 3 

𝑁𝑝̇ = −3.4𝑒 − 5 𝑁𝑟̇ = −3.4𝑒 − 3 𝑁𝑝𝑞 = −2.1𝑒 − 2 𝑁𝑞𝑟 = 2.7𝑒 − 3 

𝑁𝑣̇ = 1.2𝑒 − 3  𝑁𝑝 = −8.4𝑒 − 4 𝑁𝑟 = −1.6𝑒 − 2 𝑁𝑣𝑞 = −1.0𝑒 − 2 

𝑁𝑤𝑝 = −1.7𝑒 − 2 𝑁𝑤𝑟 = 7.4𝑒 − 3 𝑁𝑣 = −7.4𝑒 − 3 𝑁𝑣𝑤 = −2.7𝑒 − 2 

𝑁𝛿𝑟 = −1.3𝑒 − 2 𝑁𝑝𝑟𝑜𝑝 = 0.0 
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