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Executive Summary 

The DOD has various sensors that the warfighter can use to find a location. Some 
sensors allow the warfighter to locate a potential threat. If the warfighter does not 
currently have access to a GPS, they may need to use sensors to determine their own 
location. Sensors can be used by themselves or linked together in a more complicated 
scenario to estimate the location of an object of interest. To ensure that the U.S. Army is 
equipping warfighters with sensors capable of performing their mission, it is critical that 
a model is created that can estimate the performance of these location sensors in any 
scenario. 

The U.S. Army Combat Capabilities Development Command (DEVCOM) Analysis 
Center needed an algorithm to estimate the performance of various sensors and 
systems that are performing position, navigation, and timing (PNT) calculations. 
DEVCOM Analysis Center (DAC) developed the Multipurpose Universal Simplified TLE 
Calculator (MUSTC) model, which can be used to find the target location error (TLE) of 
a wide variety of sensors that can in turn be used to locate a wide variety of objects. 

The MUSTC algorithm does not require the user to understand how the system uses 
the measurements that the sensors take in order to determine a location. All that is 
required to add a new sensor type to the MUSTC software is a model that estimates the 
raw values that the sensor(s) would measure as a function of the sensor and target 
parameters along with their locations. 

For the algorithm to determine a TLE, the algorithm needs to know where all reference 
sensors and targets will be in the scenario, the variables that may affect the location 
measurement, and the uncertainties in these variables, as well as the location in space 
where the user would like to calculate a TLE value for the item of interest. The algorithm 
will then assume that the item of interest will nominally be located at the point where the 
user would like to estimate a TLE. Once the location is known, the software can use the 
measurement models to determine what the sensors will measure for the scenario. The 
software can then use these measurements, along with an optimization algorithm, to 
determine the TLE for the item of interest at the specified point in space. 

The main advantage of the algorithm is that it can be expanded to determine how a 
variety of uncertainties in measurements from different sensor types can affect the total 
TLE, or the uncertainty of finding the location of an item of interest.  

The main disadvantage of the algorithm is that the calculations can sometimes be time 
consuming due to repeated calls to a function that implements an optimization algorithm 
to calculate the TLE. There are many optimization algorithms that the program could 
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use, and some are faster than others. Even if the program uses a relatively fast 
optimization algorithm, the computation time can still add up if the optimization algorithm 
is called enough times. DAC has endeavored to mitigate this disadvantage by finding 
the fastest optimization algorithm available that still yields the correct answer, writing the 
program as a multi-threaded application so it can utilize the multiple cores that most 
modern computer processors have, and trying to find the best balance between 
accuracy of the final results and the number of times that the optimization algorithm 
must be called. 
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1. INTRODUCTION 
One way the U.S. Army Combat Capabilities Development Command (DEVCOM) 
Analysis Center supports the warfighter is by determining the maximum impact of 
taxpayer dollars while shaping the U.S. Army of the future. Understanding where 
various targets and assets are on the Earth is a critical part of many missions. It is 
therefore important for the DEVCOM Analysis Center (DAC) to have the tools to 
evaluate both current and potential future position, navigation, and timing (PNT) 
sensors. 

DAC needs a tool that can find the target location error (TLE) for a wide range of 
sensors in a wide range of scenarios. Typically, the warfighter will use GPS to 
determine the location of an asset. However, there may be times when GPS is not 
available. In the absence of GPS, there are various techniques the warfighter can use to 
find their location, the location of a target, or the location of a remote asset. Industry 
continues to propose new sensors and techniques to help with location. It is necessary 
to have a model that can find the TLE for almost any current or future PNT sensor, and 
the model should work even if the exact algorithm that the sensor uses to find the 
location of the target is proprietary or unknown. DAC developed the Multipurpose 
Universal Simplified TLE Calculator (MUSTC) model to fill this need. 

The program that implements the MUSTC algorithm was designed to be as modular as 
possible, making it easy to add new sensor types. All that is required to add a new 
sensor type is enough knowledge of the sensor to be able to accurately model the raw 
measurements that sensor will be making (Appendix A describes how to add new 
sensor types to the MUSTC software). Even though the model can handle a wide array 
of sensor types, this report will focus on the first three types of sensors that were added 
to the algorithm: Signals Intelligence (SIGINT), electro-optical/infrared (EO/IR) with laser 
range finders (LRFs), and photon-counting detectors measuring the radiation from 
calibrated light sources. 

SIGINT systems are designed to intercept RF radiation that is emitted by the 
adversary’s radar, jammer, and/or radio communications system. SIGINT systems are 
often tasked with determining the location of the object that is emitting the RF radiation. 
There are multiple techniques that SIGINT systems use to find the location of an 
emitter.  

1. Angle of Arrival (AOA). There are types of antennas that can be used to 
measure the angle from which incoming radiation originated. If more than one 
sensor located at more than one location relative to the emitter can measure this 
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angle, then they can use these angles and the sensor geometry to estimate the 
transmitter location.  

2. Time Difference of Arrival (TDOA). This technique involves measuring the time 
at which a given signal reaches each SIGINT sensor in an area. Since the sensor 
does not know the location of the emitter, it cannot directly measure the time it 
takes for the signal to travel from the emitter to a SIGINT sensor. However, they 
can measure how much longer it takes for the signal to reach one sensor as 
compared to another sensor. By measuring this difference between multiple 
sensors and knowing the exact geometry of the sensors receiving this signal, the 
transmitter location can be determined. 

3. Frequency Difference of Arrival (FDOA). For this technique to work, the 
SIGINT systems must be installed on platforms that are moving (e.g., an aircraft). 
When aircraft are flying at different angles relative to the transmitter, there will be 
a difference in the frequency of the received radiation due to the Doppler effect. If 
the operator knows the location, speed, and direction of travel for all sensors, 
then they can compare the frequency of the incoming radiation for all sensors 
and use this information to determine the emitter location. 

Any book on SIGINT systems will supply equations that can be used to determine the 
location of an emitter when using just TDOA, FDOA, or AOA. However, sometimes 
there are system geometries where these equations may no longer be valid. For 
example, if there are only two sensors there may not be enough information to use just 
TDOA or FDOA to find the emitter location. In this case, TDOA, FDOA, and AOA may 
need to be used at the same time to find the emitter location. If the emitter is moving, 
then FDOA calculations become much more complicated. There are also scenarios 
where the emitter location is known, but the location of one or more of the SIGINT 
sensors are not. In this way the warfighter can determine the location of an asset with a 
SIGINT sensor even if GPS is not available.  

If we use the algorithm that a SIGINT system uses to find the target location when we 
create an algorithm that determines the system TLE then we would have to create a 
new TLE model for each algorithm, or set of algorithms, that a SIGINT system might 
use. In some cases, the exact algorithm that a system uses might be proprietary and 
therefore might not be available for use as part of a TLE estimation algorithm. However, 
because the MUSTC algorithm only requires the user to model the raw measurements 
that a SIGINT system is charged with making to determine the TLE of the system, the 
MUSTC algorithm can be used to estimate the performance of almost any SIGINT 
system in any scenario using any algorithm. 
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EO/IR systems with LRF are another system used to find object location. EO/IR sensors 
are typically imaging sensors mounted on some type of gimbal mount. By determining 
where an object is in an image and noting the angle at which the gimbal mount had to 
traverse to be able to image the target, EO/IR sensors can determine the azimuth and 
elevation angles between the target and the sensor. LRF systems have lasers that are 
used to illuminate the target. By measuring the time it takes for the laser radiation to 
leave the sensor, hit the target, and then return to the sensor again, LRF sensors can 
determine the range to a target.  

EO/IR sensors with LRF are similar to SIGINT systems that use AOA to find the location 
of an RF emitter. The only difference is that when EO/IR sensors are equipped with 
LRF, they can also measure the distance to a target. Sensors that measure location by 
measuring the angle and/or distance to a target are often relatively simple to model. 
When the scenario is simple enough, complicated algorithms like the MUSTC are not 
needed to determine the performance of a system that measures the angle to a sensor. 

However, if angle sensor measurements are combined with other sensor types, then the 
algorithm can become complicated enough that MUSTC would be necessary to model 
their performance. The inclusion of these types of sensors also has the advantage of 
verifying the accuracy of the MUSTC model by seeing if it can correctly find the TLE for 
a scenario that is simple enough that the expected TLE can be calculated by hand. 

The final sensor type included in the initial set is photon counting detectors measuring 
radiation from light sources giving off a known amount of radiation. The main advantage 
of adding this sensor type is that it allowed for testing and demonstration features that 
could be needed to add additional sensor types. For example, the TLE as measured by 
a photon counting detector can depend on variables other than the location and/or 
velocity of the reference sensors/assets, and uncertainties in the direct measurements 
that the sensors are making. The uncertainty in finding a location based on the 
measurement from a radiation source emitting a known amount of energy can depend 
on the following: uncertainties in the amount of radiation the source is actually emitting, 
the extinction coefficient between the source and the sensor, and the transmittance of 
the optics that the sensor uses. Also, modeling the uncertainty with which a photon 
counting detector measures incoming radiation may require the use of a Poisson 
distribution instead of a normal distribution as required for other sensor types. 
Successfully modeling a photon counting detector measuring radiation from a calibrated 
source proves that the algorithm can handle different statistical distributions as well as 
variables affecting various aspects of the scenario. 

As with SIGINT systems using TDOA, photon counting sensors as initially modeled in 
the MUSTC algorithm measure the distance between the transmitter and the receiver. 
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However, instead of indirectly measuring the distance to the transmitter by measuring 
the additional time it takes for the radiation to travel from one sensor to the other, 
photon counting detectors are currently modeled in the MUSTC program to directly 
measure the distance based on the amount of radiation that hits the sensor. If the 
sensor is further from the target, then it will measure less radiation than if it were closer. 
The program assumes that the radiation source and the sensor have been properly 
calibrated so they can be used for this purpose. However, if the system has not been 
calibrated properly then the program can easily determine the TLE caused by that 
discrepancy. 

The inclusion of these vastly different types of sensors demonstrates the versatility of 
the MUSTC algorithm. Since the MUSTC model can handle RF as well as multiple 
types of optical sensors, it can also be expanded to model an even wider array of other 
PNT sensors. 
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2. METHODS, ASSUMPTIONS, AND PROCEDURES 
2.1. Algorithm Description 

In this section, the algorithms that drive the MUSTC program will be described. The 
algorithm is based on the fact that when a function (f) depends on multiple largely 
independent variables (A, B, and C), then the uncertainty in the function f (σf) can be 
estimated using the following equation: 

 𝜎𝜎𝑓𝑓 ≈ �𝜎𝜎𝐴𝐴2 + 𝜎𝜎𝐵𝐵2 + 𝜎𝜎𝐶𝐶2. (1) 

Here, σA, σB, and σC are the uncertainties in the three variables (A, B, and C). When 
each variable uncertainty is known, they can be combined to estimate the total 
uncertainty in the function. 

The model is also based on the fact that when trying to model the performance of a 
sensor system, the exact algorithm the system is using to find the location of a target 
may not be known. Even if the algorithm the system is using is known, creating a model 
based on this algorithm would require a different model for each sensor location 
algorithm that may be encountered. The algorithm that is used to locate an object can 
be difficult or unknown; however, if the location of the target is known ahead of time, 
then the raw measurements that the system feeds into its algorithm are often simple to 
model. Figure 1 highlights this point. 

 
Figure 1. Geometry showing how to find the time difference for each sensor if the location of 
the emitter is known and the sensor is a SIGINT system using TDOA 
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As seen from Figure 1, when the emitter location is known, then the time it takes for 
radiation to hit one sensor is the distance between the sensor and emitter divided by the 
speed of light (c). The TDOA between two SIGINT sensors is therefore equal to the time 
it takes the radiation to hit one sensor minus the time it takes the radiation to hit the 
other sensor.  

Because LRF systems can measure the range to the target directly, modeling them is 
even easier. LRF models do not need to divide by the speed of light or subtract the 
measurement that one sensor makes from the measurement of the other. 

Photon counting detectors measuring radiation from a known light source also measure 
the distance between the emitter and the detector. However, the measurements they 
make are not as straightforward as the measurements LRF systems make. To model 
raw measurements from a photon counting detector, a link budget analysis must be 
performed to determine the amount of radiation from the emitter that will make it onto 
the detector.  

If the emitter that the photon counting detector will measure is assumed to be emitting 
radiation in equal amounts in all directions, then the radiant intensity (power per solid 
angle) will be equal to the power transmitted divided by 4π. Because of the geometry of 
the experiment, the maximum amount of radiation that the sensor will have access to 
depends on the solid angle over which the sensor will have access to the emitter’s 
radiation. Assuming that the sensor is a square, this solid angle will be equal to 

 Ω = 𝑎𝑎2cos (𝜃𝜃)
𝑑𝑑2

. (2) 

Here, Ω is the solid angle, a is the area of the detector, θ is the angle between the 
incoming radiation and the direction the detector is pointed, and d is the distance 
between the emitter and the transmitter. Thus, the radiation that hits the detector will be 
equal to 

 𝑃𝑃𝑑𝑑 = 𝑇𝑇 �𝑃𝑃𝑡𝑡
4𝜋𝜋

𝑎𝑎2𝑐𝑐𝑐𝑐𝑐𝑐 (𝜃𝜃)
𝑑𝑑2

𝑒𝑒−𝛼𝛼𝑑𝑑 + 𝑃𝑃𝑏𝑏�. (3) 

Here, T is the transmittance of the optics attached to the sensor, α is the extinction 
coefficient of the atmosphere between the emitter and detector, Pt is the power of the 
transmitter, and Pb is the background radiation. Because most users will not want to 
flood their sensor with background radiation, they will either put a notch filter that blocks 
all radiation except for a very narrow band of wavelengths that covers the radiation the 
transmitter transmits, or they will only run the experiment in a dark location or at night. 
However, there will almost always be some additional background radiation. 
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Because the energy of a photon is equal to h𝜈𝜈, where h is Planck’s constant and 𝜈𝜈 is the 
frequency of the photon, it is easy to determine how many photons will hit the detector 
per second. The MUSTC algorithm uses the following formula to estimate the number of 
photons the photon counting detector will register: 

 𝑝𝑝 = �𝐸𝐸 𝑃𝑃𝑑𝑑
𝜆𝜆
ℎ 𝑐𝑐

+ 𝑛𝑛� 𝜏𝜏. (4) 

Here, p is the number of photons counted, E is the photon detection efficiency, λ is the 
wavelength, n is the dark current or shot noise, and 𝜏𝜏 is the integration time. 

Expanding on the analysis shown in Figure 1, it is possible to model the raw 
measurements that an even wider array of sensors will make if the location of the target 
and sensors are known. For EO/IR sensors, SIGINT systems using AOA, and/or 
SIGINT systems using FDOA, the algorithm only needs to consider the geometry of the 
scenario and the angles between different vectors. Figure 2 shows these angles and 
vectors. 

 
Figure 2. Geometry showing how to find the angles needed to model EO/IR, FDOA SIGINT, 
and AOA SIGINT when the location of the emitter is known 
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Figure 2 highlights the angles the algorithm requires to analyze EO/IR, AOA SIGINT, 
and FDOA SIGINT systems. In particular, the algorithm needs to find the angles that the 
radiation travels to go from the target to the sensors (called θ1, θ2, and θ3 following the 
convention from Figure 2). EO/IR sensors or SIGINT systems using AOA can measure 
these angles directly and are therefore the only values that need to be considered when 
analyzing these types of sensors. 

When analyzing SIGINT systems using FDOA, the algorithm must consider the angle 
between the vector from the sensor to the target and the velocity vector (α1, α2, and α3 
in Figure 2). Once these angles are found, the algorithm can use the following equation 
to determine the difference in Doppler shift induced frequency as measured by two 
sensors: 

 ∆𝐹𝐹12 =  𝑓𝑓𝑐𝑐
|𝑉𝑉1| 𝑐𝑐𝑐𝑐𝑐𝑐(𝛼𝛼1)− |𝑉𝑉2| 𝑐𝑐𝑐𝑐𝑐𝑐(𝛼𝛼2)

𝑐𝑐
. (5) 

Here, ΔF12 is the difference in frequency measurement between Sensor 1 and Sensor 2, 
f0 is the base frequency that the target is emitting, v1 is the velocity of Sensor 1, α1 is the 
angle between the vector from the sensor to the target and the velocity vector, v2 and α2 
are the velocity and angle for Sensor 2, and c is the speed of light. 

We now have a model that can estimate the raw measurements a sensor would make 
when the target of the location is known. DAC can therefore use this model to estimate 
how variables that could affect the final location measurement will affect the raw 
measurements that the sensors will make. Some of the variables that could affect the 
final TLE measurements include uncertainties in knowing the location of the reference 
assets and uncertainties in the actual raw measurement values that the sensors make. 

It is trivial to use these simple raw measurement models to see how a measurement 
error will affect the raw measurements that the system will make—simply add this error 
to the results of the measurement model. Likewise, it is not difficult to use these 
measurement models to see how an uncertainty in location of a reference asset can 
affect the raw measurements the system will make—simply move the asset to a 
different location and see what the sensors would measure in this new scenario. In fact, 
it is possible to model how the raw measurements change as a function of almost any 
variable that could affect the final TLE. 

However, it is not changes in the raw measurements the system will make as a function 
of these variables that is important. Instead, we would like to know how these changes 
in the raw measurements of the system can affect the final measurement of the location 
of the object of interest. To convert the uncertainties in the raw measurement errors to 
errors in the target’s location, the MUSTC algorithm uses an optimization algorithm. 
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Optimization algorithms require a cost function and an initial guess. The cost function is 
a function that reaches its minimum value (or maximum value if configured to do so) 
when it is fed the final values of the parameters that are of interest. The optimization 
algorithm will feed the initial guess to the cost function. The optimization algorithm will 
then begin searching around the initial guess to find a parameter set that returns a cost 
function that has a value that is less than the value at the initial guess. The algorithm 
will keep searching until it finds the cost function’s minimum value. Ideally, this minimum 
value will be the global minimum. 

The cost function that the MUSTC algorithm feeds to the optimization algorithm is the 
average difference between all the raw measurement values after an error has been 
added to the variable of interest and the measurement values when the error has been 
removed but the target of interest has been moved to its new location. The optimization 
algorithm will move the object of interest around until it finds a place where the average 
difference between the raw measurements at this new location is as close as possible 
to the raw measurements when the target of interest was at its original location; 
however, an error has been added to one of the variables that could affect the TLE. The 
difference between the new location of the target of interest and the starting location is 
the error in location measurement that results from the uncertainty in the variable of 
interest. In this way, the MUSTC algorithm can find the error in location for an 
uncertainty in almost any variable of interest. The algorithm can do this for a wide array 
of configurations and sensor types even if the system’s exact target location algorithm is 
not known. 

One pitfall of using an optimization algorithm is the possibility of finding a local instead 
of a global minimum. This pitfall can be mitigated by having a good initial guess and by 
using an optimization algorithm that is well suited for this particular problem. Because 
the program that implements the MUSTC algorithm is so modular, it is easy to try a 
multitude of optimization algorithms to see the one that yields the best results.  
Appendix B discusses how to select the best optimization algorithm for the application. 

One way to ensure a good initial guess is by starting with a small error on the variable of 
interest. Because the error is small, the location measurement error will also be small 
and therefore the starting location of the object of interest will be a good guess. Once 
the location error for this small measurement error or perturbation is known, we can add 
a larger perturbation to the variable of interest. The initial guess for this slightly larger 
perturbation on the variable will be the location error from the slightly smaller 
perturbation tested earlier. In this way, it is possible to map out how greater errors or 
perturbations on the variable of interest can lead to greater errors in the measurement 
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of the location of the target of interest without having to worry about hitting a local 
instead of a global minimum. 

Figure 3 highlights an example of how a perturbation or error on the time measurement 
of a single SIGINT sensor in a group of SIGINT sensors using TDOA to find an emitter 
can lead to an error in the measurement of the RF emitter location. 

 
Figure 3. Example showing how to determine the error in finding the emitter location if a 
perturbation is added to the time of arrival SIGINT system as measured by Sensor 1 

As seen in Figure 3, the MUSTC algorithm added a perturbation (dT1) to the time it 
takes for the radiation to hit Sensor 1. The new difference between the time it takes for 
the radiation to hit Sensor 2 after it hits Sensor 1 is given by 

 ∆𝑇𝑇12 = 𝑇𝑇1 + 𝑑𝑑𝑇𝑇1 − 𝑇𝑇2. (6) 

Here, ΔT12 is the time difference of arrival between Sensors 1 and 2, T2 is the time it 
takes for the radiation to hit Sensor 2, and T1 is the time it takes for the radiation to hit 
Sensor 1. They are both raw measurements a TDOA SIGINT system will make when 
finding the location of an emitter. Once the algorithm adds this perturbation, it tasks the 
optimization algorithm with moving the location of the emitter around until it finds a test 
location that will produce the same time difference of arrivals as it obtained after it 
added the perturbation (or at least it can find a location that produces time differences 
that are as close as possible to the time differences it obtained after adding the 
perturbation).  
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To translate this perturbation into an uncertainty in location based on an uncertainty in 
the time measurement for Sensor 1, the algorithm adds a series of perturbations to 
Sensor 1. If the location error caused by the ith perturbation is ΔLi, and the probability of 
the ith perturbation is Pi, then the total uncertainty in the emitter location caused by an 
uncertainty in the variable the algorithm is perturbing (σl) is given by 

 𝜎𝜎𝑙𝑙 = �∑ 𝑃𝑃𝑖𝑖 (∆𝐿𝐿𝑖𝑖)2𝑛𝑛
𝑖𝑖=1 . (7) 

If the number of perturbations is too low, and thus the distance between perturbations is 
too high, then not only will this cause the possibility of the optimization algorithm finding 
a local instead of a global minimum, but it might also cause a round-off error based on 
the fact that there might not be enough probability values in Equation (4). On the other 
hand, if there are too many perturbations the calculation could require excessive 
computational time. 

When the distance between perturbations was initially chosen, it was decided to err on 
the side of accuracy at the expense of computational time. One way to be sure that the 
perturbation size is small enough to be acceptable is to ensure that distance between 
perturbations is in a range such that small changes to these distances does not produce 
significant changes to the final calculated TLE values. Updates made to the algorithm in 
order to decrease the computational time are discussed in Appendix C. 

Figure 4 shows the results the algorithm gets when it tries to find how an uncertainty in 
the value of a single variable can cause an uncertainty in finding the object of interest’s 
location in a single direction. 
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Figure 4. Example values used to find the uncertainty of the target of interest’s location in a 
single direction caused by an uncertainty in knowing the value of a single variable 

The upper-left plot in Figure 4 shows the difference in location between the object of 
interest and the test location of the object after the algorithm adds perturbations that go 
from –4 to +4 standard deviations from the nominal value of the variable.  

The upper-right plot in Figure 4 shows the square of the difference in location. The 
bottom-left plot shows the probability of the ith perturbation. The program used a 
Gaussian distribution for the calculations in Figure 4. However, if the program were to 
explore uncertainties in the raw measurements of the photon counting detector, it would 
use a Poisson distribution instead. If additional distributions are required, it should be 
easy to add them. For all distributions, the probability function must be normalized so 
that the sum of all probabilities is equal to 1.  

The bottom-right plot shows the probability of the perturbation multiplied by the square 
of the difference in the location after adding each perturbation. If the algorithm takes the 
square root of the sum of all points in this plot, then it will be left with the total 
uncertainty in finding the location of the object in a single direction caused by an 
uncertainty in knowing the value of a single variable.  
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The algorithm must repeat the calculations in Figure 4 three times to find a 3-D TLE. 
The algorithm must then repeat these calculations for all variables that could affect the 
final TLE. Once the algorithm has all the individual TLE values, it can use Equation (1) 
to combine these into the final 3-D TLE. 

2.2. Determining the Uncertainty in Each TLE Measurement Variable 

The MUSTC algorithm determines how uncertainties in different variables can affect the 
TLE of location measurements. Before anyone can use the algorithm, they must be able 
to produce estimates on the magnitude of the uncertainties on these variables. If a 
different sensor type is added to the MUSTC program, the program will need to be 
extended so that it can find the uncertainties on the variables that can affect these new 
sensor types. This section will outline how to determine the uncertainties on the 
variables for the sensors that were initially included in the MUSTC program (i.e., SIGINT 
sensors, EO/IR sensors with LRF, and photon counting detectors). 

For some of the measurements that the sensors make, estimations for these 
uncertainties are available on the sensor’s specification sheet. For example, the 
uncertainties in angle as measured by SIGINT systems using AOA or EO/IR sensors, or 
ranges as measured by LRF sensors, are usually predetermined by the manufacturer 
and included in the specification sheet. Regarding the uncertainty in counting photons, 
because uncertainties in this variable are represented by a Poisson distribution, the 
standard deviation will be equal to the square root of the mean signal.  

There are other uncertainties that are not typically listed on a sensor’s specification 
sheet but that can still be determined relatively easily. The uncertainties in the speed 
and location of the platforms that contain sensor assets are examples of such variables. 
Many platforms will use a GPS to find their location. The uncertainty in measuring 
location via GPS will depend on the scenario, but an uncertainty of around 5 m in each 
direction is a reasonable rule of thumb for this value. However, the location uncertainty 
may be different for different scenarios and may change over time. For example, a 
moving aircraft will often pair a GPS receiver with an inertial navigation system (INS) to 
augment the location measurement.  

INS sensors are often used to augment the location measurement to ensure that the 
aircraft will have an estimation of the location even when GPS values are not available 
(i.e., if it is in between the times when the GPS will update the location value or if the 
GPS is currently being jammed or denied). In this case, the actual location uncertainty 
will depend on the INS sensor and the length of time that the sensor has gone without a 
fresh GPS location measurement. 
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Another factor that must be considered when measuring the location uncertainty is that 
this uncertainty can often be broken into two measurements: a location relative to other 
sensors that might be in use and a location relative to the center of the Earth. If each 
sensor only has a GPS and/or INS to find its location, then these two measurements are 
combined into one. However, if the scenario has systems that have a method of directly 
measuring the location of the sensors relative to each other (perhaps multiple sensors 
are attached to the same aircraft) then these measurements (the location of the 
formation relative to each other and relative to the center of the Earth) must be split in 
two and considered separately. 

As with location, the measurement of velocity can depend on the sensor and the 
scenario. For example, some sensors may use GPS and/or INS to estimate the velocity 
as well as the location. Such a velocity measurement will depend on many of the same 
factors that are used to estimate the location uncertainty. 

For SIGINT systems using TDOA and/or FDOA, it is necessary to know the 
uncertainties in the time and/or frequency measurements that the sensors make. 
However, these measurement uncertainties are not typically included in the 
specification sheets for these sensors. The algorithm can use the standard formula to 
estimate the uncertainty of these values based on standard emitter and sensor 
parameters that can be found in the specification sheets for these products. 

The standard formula for the uncertainty in time measurement that the algorithm uses is 
given by (Poisel, 2005): 
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Here, ΔT is the uncertainty in the time measurement, τ is the integration time, SNR 
stands for the signal-to-noise ratio (SNR), f is the frequency, and b is the bandwidth. 
There are other factors that could affect the time measurement uncertainty that are not 
outlined in Equation (8) such as digitization errors. 

The algorithm uses this equation to estimate the uncertainty in measuring the frequency 
of the incoming radiation (Poisel, 2005): 

 ∆𝑓𝑓 = √3
2 𝜋𝜋 𝜏𝜏

 1
√𝑏𝑏 𝜏𝜏 𝑆𝑆𝑆𝑆𝑆𝑆

.  (9) 
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Here, Δf is the uncertainty in the frequency measurement and the other variables are 
the same as in Equation (8).  

Equations (8) and (9) demonstrate that both the frequency and time measurement 
uncertainties depend on the SNR of the SIGINT system. The algorithm uses two 
different formulas to find the SNR, as seen in Equations (10) and (11). The specification 
for many SIGINT systems will include a value called the receiver sensitivity. If the 
receiver sensitivity is available, the algorithm will use the following equation to estimate 
the SNR: 

 𝑆𝑆𝑆𝑆𝑆𝑆 =  1000 𝑃𝑃 𝐺𝐺𝑟𝑟 𝐺𝐺𝑡𝑡 𝜆𝜆2

(4 𝜋𝜋 𝑟𝑟)2 𝐿𝐿𝑟𝑟 𝐿𝐿𝑡𝑡 𝑠𝑠
𝑆𝑆𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑓𝑓

  
. (10) 

Here, P is the power in watts, Gr is the receiver antenna gain, Gt is the transmitter 
antenna gain, λ is the wavelength, r is the range, Lr is the receiver loss, Lt is the 
transmitter loss, s is the receiver sensitivity, and SNRref is the reference SNR. All the 
values in Equation (10) must be linear and not in decibels (dB) (if dB values are used 
then the values in Equation [10] should be added and subtracted instead of multiplied 
and divided). If the sensor is an Electronic Intelligence (ELINT) system, then SNRref 
should be set to 8 Hz. For Communications Intelligence (COMINT) systems, SNRref 
should be set to 13 Hz. 

If the receiver sensitivity is not available, the algorithm can use the following equation to 
estimate the receiver sensitivity divided by the reference SNR: 

 𝑐𝑐
𝑆𝑆𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑓𝑓

≈ 1000 𝑘𝑘 𝑇𝑇𝑛𝑛 𝑛𝑛𝑓𝑓 𝑏𝑏. (11) 

Here, k is the Boltzmann constant, Tn is the noise temperature, nf is the noise figure, 
and b is the bandwidth. Once again, the parameters needed to calculate the SNR for a 
SIGINT system are usually given in the system’s and target’s specifications. Note that 
because the purpose of the MUSTC algorithm is to model the behavior of sensors in 
various hypothetical scenarios, the information about the scenario including the target’s 
specifications should always be available. 

2.3. Normalizing the Sensor Measurements 

The MUSTC algorithm works by collecting the different raw measurements that the 
sensors make when a perturbation is added to a variable of interest. The algorithm then 
calls an optimization algorithm to move the location of the object of interest around until 
it produces a set of measurements that matches the one that was produced after it 
added the perturbation. 
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The optimization algorithm treats each measurement equally and it does not know or 
care where those measurements come from. An optimization algorithm is only 
concerned with minimizing the overall magnitude of the cost function. 

Combining multiple types of measurements with different units together can cause a 
problem for the algorithm. If one sensor type measures the time it takes for something 
to happen in nanoseconds while another one measures in milliseconds, the 
nanosecond measurement will likely have a higher magnitude simply because of its 
units. Since the optimization algorithm strives to minimize the cost function and the 
nanosecond measurement will have a larger effect on the cost function, the optimization 
algorithm will naturally try to lower the nanosecond measurement before moving to the 
millisecond measurement. In fact, the optimization algorithm may reduce the error in the 
nanosecond measurement at the expense of the millisecond measurement. Therefore, 
before combining different measurements with different units in this way, it is important 
to find a way to normalize them so that their magnitudes are comparable. 

Before the MUSTC algorithm feeds the sensor measurements to an optimization 
algorithm, it performs a test to find the maximum and minimum value that the sensors 
will make while it processes the scenario. The algorithm does this by adding the 
maximum positive and negative errors that the algorithm will add to the assets’ locations 
and velocities (as well as any other variable that could affect the TLE besides 
uncertainties in the measurements themselves). Because the maximum and minimum 
values that the sensor finds during this test were found while the variables were at their 
extreme values, these maximum and minimum values are likely to be the maximum and 
minimum values that all of the sensors will measure during the entire TLE calculation. 

Once the algorithm finds these maximum and minimum values, it can normalize the 
sensor measurements, so that they range between 0 and 1. To do this, the algorithm 
subtracts the minimum value of each sensor’s measurement and then divides by the 
maximum value minus the minimum value. Once the sensors’ magnitudes are 
normalized, the optimization algorithm will no longer give preference to one sensor’s 
measurement over another. 

While the default configuration is that each sensor’s measurement is given the same 
consideration, there may be scenarios where this is not desirable. For example, many 
SIGINT systems cannot make as accurate an angle measurement as they can for the 
time and frequency difference of arrival measurements. These systems will often use 
TDOA and FDOA to find the exact location of the emitter and only use AOA to remove 
ambiguities that might arise from not having enough equations for the unknowns. In this 
case, it is preferable that the algorithm weigh the time and frequency measurement 
higher than the angle measurements.  
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The MUSTC program has a feature to add a weight to each sensor measurement in the 
scenario. By adding a weight of 0.1 to the angle measurement, instead of going 
between 0.0 and 1.0, the program will normalize the angle measurement, so that it 
ranges between 0.0 and 0.1. This feature will allow the optimization algorithm to try to 
get a better fit with the other measurements than it does with the angle measurement 
and may even make the angle measurement worse to get a better measurement with 
another sensor with a higher weight. This adds even more functionality to the MUSTC 
algorithm and allows users to test scenarios and configurations that may be difficult to 
predict using other methods of calculating the TLE of a location measurement. 

2.4. Algorithm Inputs and Outputs 

Before the program can find the TLE for a scenario, users must inform the program on 
the configuration of the scenario. Users must supply the algorithm with the following 
inputs to configure the scenario itself: 

• One or more points in space to find the TLE of the item of interest. These 
locations may each be given in 2- or 3-D. If the asset is on the ground, a 2-D 
coordinate will suffice since the Z direction (height) will be 0.   

• One or more scenarios. Each scenario must include one item of interest whose 
location is being determined via the system(s) described in the scenario. A 
scenario must also include one or more asset(s) whose location(s) are known 
and are to be used to determine the item of interest location. If the user supplies 
multiple scenarios, then the program will find the TLE for each location and for 
each scenario. 

• Each asset contains a list of sensors and/or targets that are mounted on the 
asset. Either the sensor or the target list can be empty; however, the asset 
should have at least one sensor or target if it is to be of use to the MUSTC 
program. If the item of interest is not linked to a sensor or target, then it is 
impossible to find its location and the algorithm will not be able to find a TLE for 
this object.  

In addition to overall inputs about the scenario, users may also have to supply input 
parameters for some of the targets and sensors that are within the scenario. These 
inputs allow the sensor and target pair to determine the magnitude as well as the 
uncertainty in the measurements that the sensor will be making. The required inputs for 
a sensor or target depend on the sensor or target type. The MUSTC program is highly 
modular and configurable; therefore, it is possible to add more sensor and/or target 
types to the program. More information on how to add a new sensor type to the MUSTC 
software is shown in Appendix A. Currently the only targets included with the MUSTC 
software are optical targets and RF and optical emitters. The only sensors currently 
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included with the MUSTC software are EO/IR sensors with LRF; photon counting 
detectors; and AOA, TDOA, and FDOA SIGINT sensors. 

Currently optical targets do not require any additional inputs. The program assumes that 
every EO/IR sensor that measures the angle to the target can detect any optical target. 
The program also assumes that the configuration of the target does not change the 
uncertainty with which an EO/IR sensor with an LRF can measure a target location. The 
program can be expanded in the future to include factors that could affect the ability of 
an EO/IR sensor to accurately determine the location of an optical target. The following 
lists the additional inputs that are required for other targets/emitters: 

• Omnidirectional optical emitters that photon counting detectors measure require 
the power and wavelength of the radiation of the emitter. The uncertainty of the 
power of the emitted radiation may also be provided. However, if the power 
uncertainty is not supplied the program assumes it is negligible. 

• The RF emitters require the following inputs to find the SNR that the sensor will 
measure: power transmitted, transmitter antenna gain, transmitter signal loss, 
and the center frequency of the emitted radiation (the center frequency is only 
used to find the SNR and not considered when determining if a sensor can detect 
an emitter). Users also have the option of adding the following inputs to inform 
the program as to which emitters can be detected by which sensors: the 
maximum and minimum frequency that the emitter will emit as well as the type of 
emitter the target is (radio, radar, or jammer). If these inputs are not included the 
software will assume that any SIGINT sensor in the scenario will have no 
problem detecting the emitter.  

The following inputs are required for sensors in the scenario: 

• For EO/IR angle sensors, it is assumed that all EO/IR angle sensors can at least 
measure the azimuth angle to the target; therefore, the MUSTC software requires 
the uncertainty with which the sensor can measure the azimuth angle to the 
target be specified. Additionally, some EO/IR angle sensors can measure the 
elevation angle to a target, and some also have an LRF that can measure the 
range to the target. The uncertainty in elevation angle and/or the uncertainty in 
range that the EO/IR sensor with LRF can measure these things can also be 
provided as inputs. If one or more of these uncertainties are not included, the 
software will assume that detector cannot measure the range and/or elevation to 
the target. 

There are three types of SIGINT sensor systems that are currently included in the 
MUSTC software: AOA, TDOA, and/or FDOA sensors. While a SIGINT sensor might be 
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able to use all of these algorithms to find the location of an object, the MUSTC software 
assumes that a sensor can only use one algorithm to find the emitter location. If the 
scenario includes a SIGINT system that can use multiple algorithms to find an emitter, it 
must be modeled as if there are multiple SIGINT sensors installed on the same asset. 
The following inputs are required for RF SIGINT sensors: 

• RF sensors have optional inputs that inform the software as to which sensor can 
detect which emitter. In particular, users can specify the maximum and minimum 
frequency that the sensor can detect along with the type of sensor. The two 
possible SIGINT sensor types are ELINT and COMINT. ELINT systems are 
designed to detect things such as radar, while COMINT sensors are designed to 
detect things such as radios. It is assumed that they can also detect jammers. If 
these optional parameters are not given, the software assumes that the sensor 
can detect any emitter in the scenario. 

• AOA SIGINT sensors require the uncertainty with which they can measure the 
angle to the sensor. The software assumes that any AOA SIGINT sensor can 
measure the azimuth angle to the emitter. If AOA sensors are added to the 
scenario, the uncertainty with which the azimuth angle can be measured must be 
included. Some AOA SIGINT sensors can also measure the elevation angle to 
the emitter. Users have the option to add the uncertainty with which the sensor 
can measure the elevation angle to the emitter. If the elevation angle uncertainty 
is not provided, the software will assume that the sensor cannot measure 
elevation angle. 

• To model TDOA and/or FDOA SIGINT sensors, the MUSTC software must know 
the uncertainty with which the sensors can measure frequency and or time 
difference between sensors. Unlike angle and range uncertainties, these 
uncertainties are scenario dependent and therefore are not typically included on 
the specification sheets supplied by manufacturers. However, most reference 
books on SIGINT systems will include formulas to determine the uncertainty with 
which a SIGINT system can measure time and/or frequency difference as a 
function of the SNR of the SIGINT measurement. Therefore, TDOA and FDOA 
sensors require inputs that allow the MUSTC software to estimate the signal and 
noise of the SIGINT measurements. Receiver antenna gain, receiver signal loss, 
system bandwidth, and integration time are required parameters to estimate the 
signal part of the SNR of an RF measurement. 

• Parameters to find the noise part of the SNR are also needed to model TDOA 
and FDOA SIGINT sensors. Some specification sheets for SIGINT sensors will 
include the receiver sensitivity of the sensors. If the receiver sensitivity as well as 
the reference SNR are supplied, the MUSTC software can model the noise in a 
SIGINT time or frequency difference measurement. However, since not all 
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specification sheets supply the receiver sensitivity, the noise figure of the SIGINT 
sensor may also be used as an input. The MUSTC software can also use this 
noise figure to estimate the noise in the measurement if receiver sensitivity 
and/or reference SNR are not given. 

• Digitization errors are uncertainties caused by a sensor’s analog-to-digital 
converter not having enough bits to measure a quantity with enough precision. 
These errors can affect a SIGINT system’s ability to measure the uncertainty in 
the time and frequency difference measurement. While the formula that relates 
the SNR to time and frequency measurement uncertainty may suggest that 
systems should be able to measure these quantities with amazing accuracy 
when the sensor has extremely high SNR—in reality, it might be difficult to 
design an actual system that can measure time and/or frequency with that much 
precision. Therefore, the option to add a digitization error component to the 
TDOA and FDOA sensors in the MUSTC software is available. 

• When it comes to photon counting detectors, inputs such as the visibility in miles 
of the atmosphere between the emitter and detector, the background radiation 
that the sensor will pick up, the dark current (a.k.a., the shot noise of the 
detector), the optical transmittance of the optics on the detector, the 
representative area of the sensor, the photon detection efficiency, and the 
integration time are needed. Optional inputs include the azimuth and elevation 
representing where the detector is pointed. If these angles are not supplied the 
system will assume that the detector is always perfectly aligned to pick up the 
maximum signal from each detector. The minimum and/or maximum wavelength 
of the radiation that the emitter can detect are optional inputs as well. 

• In addition to the required parameters, there is a list of optional photon counting 
detector parameters that can be included. These parameters inform the program 
on the uncertainties of some of the supplied parameters. The list includes 
uncertainties in the following: visibility, background radiation, dark current, photon 
detection efficiency, and the azimuth and elevation where the detector is pointed. 
If the uncertainty in azimuth and elevation are provided but not the azimuth and 
elevations themselves, the system will assume that the operator tried to point the 
sensor to the optical emitter, but their aim was off by the given amount. 

Uncertainties in knowing the location of reference objects can cause uncertainties in 
knowing the final location of the item of interest. Therefore, in addition to the 
uncertainties in the values that each sensor will measure, the algorithm must know the 
uncertainties in the locations of the reference items that will be used to find the location 
of the item of interest. 
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If there are no FDOA or other sensors in the scenario that depend on velocity, the 
software does not require the velocity of any of the assets to be set. However, if a 
scenario does use an FDOA SIGINT or similar sensor, then at least one asset must 
have its velocity set. In addition to the velocity value itself, the uncertainty in the velocity 
may also be entered. As with other uncertainties, the software will use the velocity 
uncertainty to determine how errors in the velocity measurements can lead to errors in 
the final TLE. If the velocity is not given the software will assume the asset will remain 
stationary, and if the uncertainty in the velocity is not given the software will assume that 
the uncertainty in velocity is negligible. 

The MUSTC software expects that the location of all reference assets in the scenario 
will be supplied. However, the location for the item whose location the software is 
finding the TLE for (a.k.a., the object of interest) will not be supplied. Instead, the 
software will automatically set the nominal location of the object of interest to the 
locations where it is to calculate the TLE. The location uncertainty of the assets, except 
the item of interest whose location uncertainty will be the final TLE, should also be 
supplied. If the location uncertainty is not supplied for a reference asset, then the 
software will assume that the uncertainty in finding this location is negligible. However, 
there is an option to say that the uncertainty in location of a reference asset was based 
on an earlier location TLE calculation. The program can find this TLE ahead of time and 
then set this TLE to be equal to the uncertainty in the asset location. 

For example, when an emitter location is to be found using a group of SIGINT sensors 
and the location of these sensors is not known ahead of time, the locations of the 
sensors must first be determined using a sensor such as an EO/IR sensor before they 
can be used to find the emitter location. It may be of interest to know how uncertainties 
in the initial EO/IR measurements of the location of the sensors will affect the final TLE 
of the emitter. For this type of scenario, the nominal location of the SIGINT sensors 
must still be provided. However, the user can specify that the uncertainty in the location 
of the SIGINT sensors is based on an earlier location measurement. The system will 
automatically examine the EO/IR sensors to determine the TLE in finding the location of 
the SIGINT sensors. The program will then carry over these TLE values as the 
uncertainties in knowing the location of the SIGINT sensors for the final calculation of 
the TLE of the emitter. 

What if the scenario dictates that the sensors used to find the uncertainty in finding a 
reference asset cannot be used in the calculation to find the final TLE of the target of 
interest? For example, perhaps the SIGINT sensors also have EO/IR sensors, but those 
EO/IR sensors were not available during the first part of the experiment. For this reason, 
all targets have an optional inclusion number, and all sensors have an optional inclusion 
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number range. If the inclusion number or range are not specified, the program will 
assume the sensor will always have access to the target. However, if the target is given 
an inclusion number, and that number is outside of the range that was given to the 
sensor, then the software will not allow that sensor to detect that target—even if it would 
normally be able to be based on the other parameters the target and sensor were given. 

Many sensors, such as SIGINT using TDOA and/or FDOA, take measurements that 
only make sense if their values are subtracted from each other. For example, SIGINT 
systems using TDOA cannot measure the exact time it takes for the radiation to travel 
from the target to the sensor. However, they can measure the additional time it takes to 
hit one sensor over another. If the MUSTC program encounters these types of sensors, 
it must determine which sensors are allowed to be paired together. When a scenario 
dictates that not all TDOA or FDOA sensors can communicate with each other, sensors 
in the MUSTC program can be assigned sensor inclusion numbers and ranges. These 
are similar to the target inclusion number as they restrict some sensors from pairing 
even if their parameters and types imply that they are compatible. 

Once the information the program needs to perform one or more TLE calculation has 
been supplied, the program can perform these calculations. Once the calculations are 
finished, the program supplies the following outputs: 

• The uncertainty (standard deviation) in measuring the location of the asset of 
interest in the X- and Y-directions is provided as an output. If this is a 3-D 
problem, the uncertainty in the Z-direction will also be given.  

• The software also can turn the uncertainties in the X- and Y-directions into a 50% 
circular error probability (CEP50). The CEP50 is the size of a circle that would 
need to be drawn to ensure that 50% of all location measurements the system 
might make are inside the circle and 50% of the measurements are outside of the 
circle. 

• The software can calculate the TLE at multiple locations and for multiple 
scenarios at once; therefore, the location where each TLE was calculated along 
with the parameters for each scenario are also outputs. Users have the option of 
naming each scenario to help reduce confusion; different scenarios can have 
similar parameters. 

2.5. Possible Sources of Error 

Depending on how the geometry is set up, it is possible there may be multiple locations 
where the target could be that would yield the exact same sensor measurements. For 
these scenarios, the sensors would not be able to determine the target location. If the 
algorithm determines this is the case, the uncertainty in all directions will be set to 



 

 
23 

positive infinity. When seeking the location uncertainty for many points, there could be 
some locations where the TLE will be set to infinity and others where they may not. This 
can happen if, for example, the user is using SIGINT AOA or EO/IR without an LRF and 
all of the sensors are in a straight line that intersects the target location being tested. 
Figure 5 demonstrates this scenario.  

 
Figure 5. Configuration in which a SIGINT AOA cannot be used to find an RF emitter 

Note in Figure 5 that if all three sensors and the transmitter are aligned, then no matter 
how far the transmitter is from Sensor 3, all three sensors will measure the exact same 
incoming angle. If the transmitter was not aligned with the sensors, the sensors in 
Figure 5 would have no problem using SIGINT AOA and/or an EO/IR with no LRF to 
find the location of the transmitter. The TLE may continue to increase as the transmitter 
moves closer to the alignment shown in Figure 5.  

A similar phenomenon can occur with FDOA sensors with certain geometries as the 
frequency difference measurements also depend on the angles in the scenario. If the 
program detects that the scenario might be similar to what is shown in Figure 5, it will 
set the TLE for all measurements along the straight line to positive infinity. 

Something similar to what is shown in Figure 5 can also happen when the systems are 
using SIGINT TDOA. Figure 6 highlights such a scenario. In Figure 6, the distance from 
Sensor 1 to Sensor 2 (listed as distance 1 in Figure 6) is equal to the distance between 
Sensor 2 and Sensor 3 (listed as distance 2 in Figure 6). No matter how far the 
transmitter is from Sensors 1 and 3, if the transmitter is on the 45° line, the sensors will 
measure the same TDOA. At a time equal to to, the radiation will hit Sensor 1 and 
Sensor 3 at once. Then, at a time equal to to plus the distance between the sensors 
divided by the speed of light, the radiation will hit Sensor 2. If the transmitter in Figure 6 
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were to move off the 45° line, the sensors would have no trouble using TDOA to find the 
target location. As before, if the program detects a scenario similar to what is shown in 
Figure 6, it will set the TLE equal to positive infinity for all TLE measurements along the 
45° line. 

 
Figure 6. Scenario where TDOA cannot be used to find the target location 

Therefore, if a user gets both finite and infinite results it is advisable to confirm the 
number of sensors being used and to recheck the geometry to ensure there are not 
multiple sensors making the exact same measurement.  

There may be times when the geometry makes it impossible for the sensors to find the 
target, but the algorithm included with the MUSTC software is not able to detect this. 
Typically, when this happens, the optimization algorithm will become unstable. When 
the algorithm finds multiple locations that yield the same value for the cost function, it 
will start searching further away from the initial guess trying to find an area where the 
cost function does decrease. Often the algorithm will give up and return a random 
location that is far away from the target of interest’s starting location.  

When the algorithm enters a scenario where there are not enough measurements, and 
it is not able to automatically detect a problem, it will typically calculate a TLE that, while 
finite, is large enough that it can easily be flagged as unrealistic. Although this is what 
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the optimization algorithm typically does, there is no guarantee it will do so in every 
instance. There may be instances where an unusually large TLE is in fact the correct 
answer and this value is not due to instabilities in the optimization algorithm. It is 
therefore advisable to try to avoid performing calculations in areas where there are not 
enough measurements to determine the location of the item of interest. 

2.6. Adding the MUSTC Algorithm to Combat Simulation Software 

Any program can use the algorithm outlined in this report by using the DAC MUSTC 
Dynamic Linked Library (DLL). Appendix A demonstrates how to use the MUSTC DLL 
in another program. Sometimes it might be better for developers to forgo the DLL and 
instead to directly implement the algorithm into their program; specifically, combat 
simulation software developers may be among those who may prefer to add the TLE 
algorithm to their programs directly. 

The TLE algorithm walks through all possible errors that each variable is likely to have. 
The algorithm then calculates the probability of each error and uses that to calculate the 
final TLE—as opposed to many combat simulation programs that use more of a Monte 
Carlo approach. 

Monte Carlo-type algorithms test how the uncertainty of one variable can affect another 
by adding a group of random values to the variable whose uncertainty is being explored. 
The programs will then examine the statistics of the values that are affected by the 
random error it placed on the variable. 

While Monte Carlo-type algorithms are performing calculations quite similar to the ones 
the MUSTC algorithm calculates, the difference is that the MUSTC algorithm 
systematically goes through a set of errors on each variable while Monte Carlo-type 
algorithms pick the errors to add to each variable randomly. The MUSTC algorithm can 
therefore be modified to work in a combat simulation program that performs Monte 
Carlo-type calculations. 

Combat simulation programs can use an optimization algorithm similar to the one that 
the MUSTC algorithm uses when adding perturbations to each variable to see how 
errors in measuring an object’s location are affected by random values added to other 
variables. The main disadvantages to using the Monte Carlo approach are that it does 
not systematically examine each possible value for the variable being explored, and it 
cannot use a previous result from the optimization algorithm as an initial guess for the 
next result the optimization algorithm is charged with finding. However, choosing an 
extremely robust optimization algorithm and testing for a distribution of variable errors 
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that is large enough to be statistically significant allows for a Monte Carlo-type approach 
to finding a sensor TLE. 
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3. CONSTRAINTS, LIMITATIONS, AND ASSUMPTIONS 
3.1. Constraints 

The major constraints for this model are as follows: 

• The algorithm must be able to find the uncertainty when locating the object of 
interest in a reasonable amount of time. 

• There are a finite number of optimization algorithms available to try and they 
usually can only find one minimum. 

• It may not be known how the uncertainty in one measurement might be 
correlated to the uncertainty in another measurement. For example, when 
analyzing a set of SIGINT sensors that are trying to locate an emitter using 
TDOA, the error in measuring the time for Sensor 1 may have the same root 
cause as the error in measuring the time for Sensor 2. If this were to happen, 
their errors might be correlated in an unknown way. 

• Items like digitization errors can have an unknown effect on the sensor’s ability to 
measure the time or frequency at which the incoming radiation is measured. 
These types of errors are normally not included on sensor specification sheets. 

• Because there is limited time that can be spent on updating the algorithm, there 
are limited models and scenario configurations that can be added.  

3.2. Limitations 

The following limitations arise because of the constraints: 

• The number of perturbation calculations the algorithm performs must be limited 
to produce finite processing times. 

• The calculated SNR is mainly used to find the uncertainty in measuring the time 
or frequency at which the radiation hits the SIGINT sensors using TDOA and 
FDOA. While it is possible for users to set an additional digitization error, most 
users probably will not. 

• The standard deviation of a Poisson distribution is equal to its mean. For photon 
counting detectors, the algorithm currently uses a link budget analysis to 
calculate the mean and therefore, the standard deviation of the photon counting 
detector measurements. The program is limited such that the calculated mean is 
assumed to be the correct mean; therefore, that is the only standard deviation 
Poisson distributions can use. 

• There may be times when there are multiple global minimums. For example, 
there may not be enough equations for the number of unknowns that arise when 
the algorithm finds the target location. Multiple locations may yield the same 
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measurements as the perturbed setup, but the optimization algorithm can only 
return one location. While the algorithm does test for this, there may be scenarios 
where the algorithm does not successfully detect this possible source of error. 

• The effects of multipath uncertainties, signal loss due to the ground or objects in 
the scenario, or differences in the way the beam will propagate in the near field 
versus the far field for SIGINT systems are not modelled. The algorithm does not 
consider the circumstance where an EO/IR angle sensor cannot detect an optical 
sensor or that the uncertainty in measuring the angle or range to the target might 
change because of circumstances in the scenario. 

3.3. Assumptions 

Because of the limitations, the following assumptions are made: 

• The distance between each perturbation is small enough to avoid the possibility 
of hitting a local minimum instead of the global minimum during optimization. 
Several tests were performed to ensure that the perturbation size is small 
enough. For example, MUSTC was tested to ensure that a small change in the 
perturbation size that is used will not have a significant impact on the calculated 
TLE. A basic validation and verification (V&V) was performed to ensure that the 
final calculated values make sense. The results of these tests are shown in 
Appendix D. It is assumed that the precautions taken ensure that the default 
perturbation size is small enough to produce accurate TLE estimations. 

• Each variable is assumed to be independent.  
• The standard formula for finding the uncertainty in measuring the time or 

frequency of the radiation based on the SNR of the sensor is assumed to be 
valid. If digitization errors are not stated in any system specification, it is 
assumed that their contributions to the final TLE are negligible. 

• The algorithm has checks in place so that the sensors in the scenario would have 
enough measurements to find a unique location for the target. If the algorithm 
determines that a unique target location could not be found, the algorithm will set 
the uncertainty of the measurement at that location to infinity. It is assumed that 
these checks will catch all instances where there are not enough equations for 
the unknowns. 

• The algorithm assumes that all RF emitters are far enough from the SIGINT 
sensors that the target can be considered a far field emitter. It also assumes that 
uncertainties caused by multiple paths to the receiver will not seriously affect the 
SIGINT sensors’ measurements. Finally, the algorithm assumes that attenuation 
caused by the ground and environment around the RF emitter and SIGINT 



 

 
29 

sensors will not seriously reduce the intensity of the radiation the sensors 
measure.  

• While different optical targets may be easier to find than others, it is assumed 
that all EO/IR angle sensors can find all optical targets and measure the angle 
and range to all targets with the same accuracy. 

• Currently we must assume that the models included in the algorithm can do a 
reasonable job of estimating the performance of the sensors. However, the 
MUSTC program is designed to be highly modular and thus can easily be 
updated in the future. As time allows, future additions and updates can be made 
to model everything that could affect the performance of photon counting 
detectors, SIGINT sensors, or EO/IR sensors with LRF. Appendix A outlines how 
to add new sensor types to the MUSTC software. 
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4. RESULTS AND DISCUSSION 
4.1. Sample Results 

The V&V section (Appendix D) outlines how the program successfully calculates the 
TLE values for an object of interest for several simple scenarios. The tests in  
Appendix D were used to confirm that the MUSTC program returns the expected values 
for all test scenarios. While these scenarios are useful for V&V purposes, they are not 
realistic and do not match the type of calculations that the algorithm would produce 
during real-world calculations. 

This section describes how the MUSTC program was able to find the TLE for an object 
in an unusual, but still realistic, scenario. Most scenarios that involve SIGINT sensors 
have sensors whose locations are known with an emitter whose location is not. The 
MUSTC program can be used for this type of scenario. However, the program is so 
adaptable it can also be used in a scenario where the locations of the emitters are 
known but the locations of the sensors are not. That is the type of scenario that will be 
detailed here. 

The scenario involves two SIGINT sensors using TDOA. The first sensor (SIGINT 
Sensor 1) is located at X = 0 and Y = 0. The location of SIGINT Sensor 1 is assumed to 
have been determined by two EO/IR with LRF sensors. The first EO/IR with LRF is at  
X = 5 m and Y = –10 m, and the second EO/IR with LRF is at X = 0 m and Y = –20 m. 
The location of both EO/IR with LRF sensors was determined ahead of time with an 
uncertainty of 1.5 m in both the X- and Y-directions. The EO/IR with LRF sensors can 
find the azimuth to an optical target with an accuracy of 10 mrad and the range to a 
target with an accuracy of 5 m. 

The location of SIGINT Sensor 1 was found using other sensors; therefore, before the 
program can find the TLE for the final target of interest, the MUSTC program must 
perform calculations to determine the TLE for the location of SIGINT Sensor 1. Once 
the MUSTC program finds a TLE for SIGINT Sensor 1 using the EO/IR with LRF 
sensors, these TLE values will automatically be used as uncertainties in the location of 
SIGINT Sensor 1 for the final TLE calculation. 

The asset carrying the second SIGINT sensor (SIGINT Sensor 2) is the object of 
interest and the location of the asset is unknown. The MUSTC program moves the 
object of interest to multiple locations and then calculates the final TLE for the asset at 
each location. In this way, the MUSTC program calculates the TLE as a function of 
location for the object of interest (the asset with SIGINT Sensor 2).  
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Even though the location of the second SIGINT system is unknown, it is assumed that 
the two SIGINT systems can communicate with each other and can measure the 
additional time it takes for RF radiation to hit one SIGINT sensor and then another; 
therefore, they are able to use TDOA. The antenna gain for each SIGINT system is 
assumed to be 0 dB, the system loss is set to 0 dB, the bandwidth is 100 Hz, integration 
time is 10 s, receiver sensitivity is –70 dB, and the reference SNR is set to 13 dB.  

To find the location of SIGINT Sensor 2, some RF emitters with known locations are 
needed. The first two RF emitters whose locations are known are assumed to be 
domestic radio stations. The first radio station (Radio Station 1) has a tower height of 
500 m and is located at X = –3 km and Y = 5 km. Although the location of the radio 
station is known, because of vibrations in the tower, wind, and so forth, the location 
uncertainty is set to 1 cm in all directions. The station frequency is 800 kHz, it outputs 
20 kW of RF radiation, has an antenna gain of 6 dB, and a system loss of 0 dB. 

This second RF emitter will be Radio Station 2. It will be located at X = 2 km, Y = –4 km, 
and will have a 600 m tower. The uncertainty of the location in the X- and Y-directions 
for this tower will be set to 3 cm; the uncertainty in the tower’s height will be 2 cm. This 
station will emit radiation at 100 MHz, the power will be 1 kW, the antenna gain is 3 dB, 
and the system loss is again assumed to be 0 dB. 

Even though this is a 2-D problem (the asset of interest with SIGINT Sensor 2 is 
assumed to be on the ground), a third emitter is needed to avoid possible location 
ambiguities. The third emitter will be a portable radio named “Portable Radio.” Portable 
Radio will output 60 W of radiation at 1 GHz and both the antenna gain and system loss 
are assumed to be 0 dB. The nominal location of Portable Radio will be X = –20 m and 
Y = –100 m. However, as with SIGINT Sensor 1, the location of the radio will be 
determined using the two EO/IR with LRF sensors. The MUSTC program must find the 
TLE for the location of Portable Radio before it can find the final TLE for the asset of 
interest (SIGINT Sensor 2). 

Figure 7 shows the relative locations of all assets in this sample experiment. 
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Figure 7. Assets used for the sample experiment 

Now that the parameters for the test experiment have been established, they are fed 
into the MUSTC program to find the 2-D TLE as a function of location. It is 2-D because 
SIGINT Sensor 2 is assumed to be on the ground; if it were on an aircraft the MUSTC 
program would find the 3-D TLE.  

Figure 8 shows the results of this experiment. 
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Figure 8. TLE in the X- and Y-directions along with CEP50 for the sample experiment at 
several locations 

This experiment setup is somewhat complicated; therefore, it can be difficult to estimate 
what the TLE as a function of location should be. However, based on the uncertainties 
that were fed into the experiment, the order of magnitude of the final TLE values, 
between approximately 0–10 m, seems reasonable. The scenario just described is 
closer to a real-world scenario than the ones tested in Appendix D. 

4.2. Discussion 

DAC has developed an algorithm that estimates the TLE as a function of location for a 
wide variety of assets of interest using a variety of sensors and techniques to find the 
asset’s location. The algorithm can be expanded to include almost any source of error 
that could affect the ability of a set of sensors or systems to find the location of an object 
of interest. 

Because the technique that DAC’s MUSTC algorithm uses is fundamentally different 
from most combat simulation algorithms, it may not be practical to directly use the 
MUSTC DLL with combat simulation software. However, Section 2.6 demonstrates how 
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the basic algorithm can be modified so it can be directly added into various combat 
simulation programs. Even if combat simulation programs are not modified to directly 
use the MUSTC algorithm, they can be modified to ingest the output of the MUSTC 
program and to then use this output to inform how various sensors and systems can 
perform when determining location. 

The main disadvantage to this algorithm is that it is computationally intensive and 
therefore time consuming. To address this, Appendix C outlines efforts to speed up 
computation times. The use of faster computers will further reduce computation times. 
Individual TLE calculations do not depend on each other so they can be completed in 
parallel; making the process multi-threaded (enabling the use of multiple processors 
and computers at once) dramatically sped up the average computation time. In addition, 
the parameters of the program can be updated to decrease computation time but at the 
expense of some accuracy. 
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5. CONCLUSION AND RECOMMENDATIONS 
DAC developed a novel TLE algorithm. The inputs to the algorithm are the location of 
targets and sensors installed on the reference assets along with the sensor(s) and/or 
target(s) installed on the object of interest whose location is to be determined. The 
algorithm will step through each of the supplied sources of error and then determine a 
final TLE for the object of interest as a function of location. The algorithm can be 
expanded to investigate almost any source of error that can be encountered when trying 
to find a location. 

The main disadvantage to this algorithm is that it can be computationally intensive and 
therefore slow. However, efforts have been taken to make the program work as fast as 
possible. The program can be forced to work even faster by modifying the program 
parameters to favor speed over some degree of accuracy. In addition, since the 
different TLE calculations are independent, multiple TLE calculations can be performed 
at the same time in parallel.  

The flexibility of the algorithm means that it has a variety of uses. DAC can use this 
algorithm to augment data sent to combat simulation models and to inform the DOD 
when decision makers are choosing optimal PNT sensors and systems for the U.S. 
Army of the future. 
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 – Using the Multipurpose Universal Simplified 
Target Location Error (TLE) Calculator Program’s Dynamic 

Linked Library 
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A C# Dynamic Linked Library (DLL) project called MultiPurposeTLEDll was written to 
implement the Multipurpose Universal Simplified TLE Calculator (MUSTC) algorithm. 
Users can reference this DLL in their visual studio projects so they can have these 
target location error (TLE) calculations available to their programs.  

To use the DLL to perform TLE calculations, users will need to create a new instance of 
the TLECalculator class. Users will then be able to use one of the following methods of 
the TLECalculator class to calculate one or more TLE value: 

• public TleResult getOneTleResults(double tlocX, double tlocY, double? tlocZ, 
Scenario scenario) 

• public TleResult getOneTleResults(OneLocation location, Scenario scenario) 

• public TleResult[] calculateAllResults(OneLocation[] locations, Scenario[] 
scenarios) 

• public List<TleResult> calculateAllResultsList(List<OneLocation> locations, 
List<Scenario> scenarios). 

As seen in the previous methods, to calculate one or more TLE result, users will need 
one or more instances of the Scenario class to configure the targets and sensors for the 
scenario. Users may also need one or more instance of the OneLocation class to tell 
the program where to calculate the TLE values (unless they explicitly tell the system 
where to calculate a single TLE value using the tlocX, tlocY, and tlocZ variables).  

The OneLocation class has the following members: 

public class OneLocation 

    { 

        public double locX_meters; 

        public double locY_meters; 

        public double? locZ_meters; 

 }. 

To find the TLE for an asset at one or more locations, a new instance of OneLocation 
for each location must be created. The location in the x-, y-, and possibly z-direction 
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must be set by hand, or one of the methods that are included with the OneLocation 
class can be called to have the program automatically set these values. 

The Scenario class has the following members: 

public class Scenario 

    { 

        /// <summary> 

        /// Asset whose location uncertainty will translate into the final calculated TLE 

        /// </summary> 

        public Asset itemToCalcTle; 

        /// <summary> 

        /// Other assets with sensors or targets that are being used to find the location of 
the TLE asset 

        /// </summary> 

        public Asset[] otherTargetsAndSensors = null; 

    }. 

The Scenario class has one member of the Asset class that is used to designate the 
object whose TLE is being calculated. The Scenario class also has an array that houses 
all reference assets being used to find the location of the object of interest. These 
values can be set by hand; however, the Scenario class also includes many methods 
that will make it easier for users to set these values. Even if these methods are used, 
new instances of the Asset class must be created to inform the class as to the assets in 
the scenario. The Asset class has the following members: 

public class Asset 

    { 

        public Location location; 

        public Velocity velocity; 



 

 
40 

        public List<ATarget> targets; 

        public List<ASensor> sensors; 

    }. 

When defining the asset that will be used to find the TLE, the Location member in the 
Asset class can be set to null. For all other instances, the location and/or the velocity of 
the asset’s platform must be set. The Location and Velocity classes have the following 
members: 

public class Location 

    { 

        public double x_meters; 

        public double y_meters; 

        public double? z_meters; 

        public double? xUncertainty_meters; 

        public double? yUncertainty_meters; 

        public double? zUncertainty_meters; 

        public bool locationNotTLEbutCanStillMove; 

        public bool? uncertaintyDeterminedByIniTleCalc; 

        } 

public class Velocity 

    { 

        public double xVel_mpers; 

        public double yVel_mpers; 

        public double? zVel_mpers; 
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        public double? xVelUncert_mpers; 

        public double? yVelUncert_mpers; 

        public double? zVelUncert_mpers;  

        }. 

For both the Location and Velocity classes, the location and velocity of the platform is in 
2-D or 3-D as are the uncertainty of each.  

For the Location class, the locationNotTLEbutCanStillMove member is used to specify 
that in this scenario, this asset’s platform will move to its optimal location depending on 
how the other assets are arranged. The uncertaintyDeterminedByIniTleCalc member in 
the Location class can be set to specify that the uncertainty in the location of this 
platform will be set by another TLE calculation.  

Before estimating the location of the primary asset, it may be necessary to determine 
the location of other asset(s) that have targets and/or sensors that are used in the final 
measurement. By setting the uncertaintyDeterminedByIniTleCalc member in the 
Location class to true, the program will automatically perform an initial TLE calculation 
to find the uncertainty in the location of these intermediate assets. The program will 
carry this uncertainty over when finding the final TLE of the primary object. If some 
targets and/or sensors are only used for these initial TLE calculations and not for the 
final TLE calculation, then inclusion numbers can be used to specify which targets 
and/or sensors will be used in each part of the experiment. More discussion about 
inclusion numbers appears in the targets and sensors section. 

Once the location and/or velocity of each asset’s platform has been set, the target(s) 
and/or sensor(s) that are on each asset must be configured. Assets have members 
named targets and sensors that are lists of objects of the ASensor and ATarget abstract 
classes. As before, these lists can be set by hand or by using methods in the Asset 
class to add new targets and sensors to the asset. Regardless of how targets or 
sensors are added to an asset, instances of classes that extend the ASensor and 
ATarget abstract classes must be defined. The ASensor and ATarget abstract classes 
have the following members: 

public abstract class ASensor 

    { 

        public int? maxTargetInclusionNumberSensorCanDetect = null; 
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        public int? minTargetInclusionNumberSensorCanDetect = null; 

        public int? sensorInclusionNumberCanCompareDiff = null; 

        public int? minSensorInclusionNumberCanCompareDiff = null; 

        public int? maxSensorInclusionNumberCanCompareDiff = null; 

        public double measurementWeight = 1;  

        } 

public abstract class ATarget 

    { 

       public int? targetInclusionNumber = null; 

        } 

The ASensor class has the measurementWeight member, which by default is set to 1. If 
one sensor has a much higher accuracy than all other sensors in the scenario, it is 
possible to weigh this sensor’s measurements so that its value takes precedence over 
the values other sensors may measure. For example, to set a sensor’s measurement to 
have 10× more influence over the final location calculation than any other sensor in the 
scenario, set this sensor’s measurementWeight member value to 10. Similarly, if a 
sensor has a far lower accuracy than any other sensor’s measurement, this sensor’s 
measurements can be set to have one 10th the influence on the final location 
measurement as any other sensor’s influence in the scenario by setting the sensor’s 
measurementWeight member value to 0.1. 

The ATarget class has the targetInclusionNumber member. When this member is set to 
null, the inclusion number will not influence whether a sensor can detect a target. 
However, setting the targetInclusionNumber member of the ATarget class along with 
the maxTargetInclusionNumberSensorCanDetect and/or minTargetInclusionNumber 
SensorCanDetect member of the ASensor class prohibits the sensor from detecting the 
target when the target’s inclusion number is outside of the range defined by the sensor, 
even if the sensor would normally be able to detect the target. 

Some sensors, such as time difference of arrival (TDOA) and frequency difference of 
arrival (FDOA) Signals Intelligence (SIGINT) sensors, only work if the results of one 
sensor are subtracted from another. For example, TDOA sensors measure the 
additional time it took for the radiation to go from one sensor to another; they typically 
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cannot measure the absolute amount of time it takes for the radiation to go from the 
emitter to one of the sensors. These sensors need to be paired together to take 
measurements that make sense. There are situations where multiple TDOA or FDOA 
sensors could be paired together but the scenario dictates that they cannot. For 
example, when sensors cannot communicate with each other so they cannot compare 
their measurements. This is when the sensorInclusionNumberCanCompareDiff, 
minSensorInclusionNumberCanCompareDiff, and maxSensorInclusion 
NumberCanCompareDiff members are used; like the targetInclusionNumber member, 
these members can be used to explicitly say that one sensor cannot be paired with 
another. 

Although it is important to understand the members of the ATarget and ASensor 
abstract classes, to define the scenario to make TLE measurements, classes that 
extend the ATarget and ASensor abstract classes are needed to allow for simulation of 
real sensors and targets. The following classes extend the ATarget class to allow for 
target definition in the DLL: 

public class OpticalTarget : ATarget 

{  

} 

public class LightSourceOmnidirectional : ATarget 

{ 

        public double wavelengthNanoMeters; 

        public double? optionalUncertaintyInPowerWatts; 

        public double powerWatts; 

} 

public class RFemitter : ATarget 

{ 

        public double powerTransmittedWatts; 

        public double transmitterAntennaGainDb; 
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        public double transmitterSignalLossDB; 

        public double frequencyHz; 

        public double? optionalMinFreqHz; 

        public double? optionalMaxFreqHz; 

        public RFemitterType? optionalEmitterType; 

} 

If the scenario includes an optical angle sensor, one or more optical targets using the 
OpticalTarget class must be defined. There are currently no members in the 
OpticalTarget class; therefore, the assumption is that any optical angle sensor can 
detect any optical target with the same accuracy and reliability. 

Likewise, if the scenario includes a photon counting detector, one or more 
LightSourceOmnidirectional classes must be defined. To create such a class, the power 
and wavelength of the emitter via the powerWatts and wavelengthNanoMeters variables 
must be supplied. The uncertainty in the power can be set using the 
optionalUncertaintyInPowerWatts variable. 

Finally, if the scenario includes RF emitters that will be detected by SIGINT sensors, 
one or more instances of the RFemitter class must be defined. Since there are 
scenarios where not all SIGINT sensors can detect all RF emitters, the program can 
check to see if a SIGINT system can detect an RF emitter by using the 
optionalMinFreqHz, optionalMaxFreqHz, and optionalEmitterType members. By setting 
the optionalMinFreqHz and optionalMaxFreqHz members of the RFemitter class as well 
as the range of frequencies that the sensor will detect in their classes, the program will 
confirm that the sensor and target frequencies are in the correct range to be detected.  

Electronic Intelligence (ELINT) SIGINT sensors are designed to detect emitters such as 
radar systems and Communications Intelligence (COMINT) sensors are designed to 
detect things like radios. The optionalEmitterType member is used to specify the type of 
emitter that each target is to ensure that ELINT systems are not detecting radios. 
Setting the values of all members to null allows all RF emitter types to be detected by all 
SIGINT sensors. 

Unlike optical sensors, the uncertainty in the measurements that SIGINT systems make 
depends on the signal-to-noise ratio (SNR) of the SIGINT sensor. Because of this, RF 
emitters have members that must be defined for the program to estimate the SIGINT 
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system’s measurement SNR. The members are as follows: powerTransmittedWatts, 
transmitterAntennaGainDb, transmitterSignalLossDB and frequencyHz. 

The following classes extend the ASensor abstract class: 

public class OpticalAngleSensor: ASensor 

    { 

        public double azimuthUncertRadians; 

        public double? optionalElevationUncertRadians = null; 

        public double? optionalRangeUncertaintyMeters = null;  

         } 

 
public class PhotonCountingIntensitySensor : ASensor 
{ 
        public double? optionalMinWavelengthNanometers = null; 
        public double? optionalMaxWavelengthNanometers = null; 
 
        public double visibilityMiles; 
        public double? optionalUncertaintyVisibilityMiles = null; 
 
        public double backgroundRadiationWatts; 
        public double? optionalUncertaintyBackgroundRadiationWatts = null; 
 
        public double darkCurrentHertz; 
        public double? optionalDarkCurrentUncertaintyHertz = null; 
 
        public double systemOpticalTransmittance; 
 
        public double sensorAreaCmSq; 
 
        public double photonDetectionEfficiencyPercent; 
        public double? optionalUncertPhotonDetEffPercent = null; 
 
        public double integrationTimeSeconds; 
 
        public double? optionalAzimuthAngleSensorPointedDegrees = null; 
        public double? optionalAzimuthPointedUncertaintyDegrees = null; 
        public double? optionalElevationAngleSensorPointedDegrees = null; 

        public double? optionalElevationPointedUncertaintyDegrees = null; 
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} 

public class RFangleSensor : ArfSensor 

    { 

        public double azimuthUncertRadians; 

        public double? optionalElevationUncertRadians = null; 

        } 

public class RFsensorFDoA : A_TDOA_FDOA_RfSensor 

    { 

    } 

public class RFsensorTDoA : A_TDOA_FDOA_RfSensor 

    {  

         } 

The RFangleSensor, RFsensorFDoA, and RFsensorTDoA classes all extend the 
ArfSensor class. The members for this abstract class are as follows: 

public abstract class ArfSensor : ASensor 

    { 

        public double? optionalMinFreqHz; 

        public double? optionalMaxFreqHz; 

        public RFsensorType? optionalSensorType; 

      } 

In addition to the ArfSensor abstract class, the RFsensorFDoA and RFsensorTDoA 
classes also extend the A_TDOA_FDOA_RfSensor abstract class. The members of the 
A_TDOA_FDOA_RfSensor abstract class are as follows: 

    public abstract class A_TDOA_FDOA_RfSensor : ArfSensor 
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    { 

        public double? optionalNoiseFigure = null; 

        public double? optionalReferenceSNRinDB = null; 

        public double? optionalReceiverSensitivityDBm = null; 

        public double receiverAntennaGainDB; 

        public double receiverSystemLossDB; 

        public double bandwidthHz; 

        public double integrationTimeSec; 

        public double? optionalDigitizationError = null; 

} 

Both the optical angle sensor and the angle of arrival (AOA) SIGINT sensors can 
measure the azimuth to the target. Therefore, both the OpticalAngleSensor and 
RFangleSensor classes have an azimuthUncertRadians member that allows the 
uncertainty to be set in measuring the azimuth to the target. In addition, some AOA 
SIGINT and optical sensors can also measure the elevation to the target; therefore, 
both classes also have an optional optionalElevationUncertRadians member. When this 
member is set to null, the sensors cannot measure the elevation to the target. However, 
when they can measure the elevation angle to the target, this member is used to set the 
uncertainty in measuring this angle. Finally, many optical angle systems have a laser 
range finder (LRF) that can measure the range to the target. Therefore, the 
OpticalAngleSensor class has an optionalRangeUncertaintyMeters member that can 
either be set to null if the sensor has no LRF or to a value that represents the 
uncertainty in measuring this range. 

Unlike optical angle sensors, it is not assumed that all SIGINT sensors can detect all RF 
emitters. All RF sensors therefore extend the ArfSensor abstract class. This class has 
the optionalMinFreqHz, optionalMaxFreqHz, and optionalSensorType members that 
determine the maximum and minimum frequencies that the sensor can detect along 
with whether the sensor is an ELINT or COMINT sensor; all of these values are 
optional. Setting each to null allows the SIGINT sensor to detect any RF emitter in the 
scenario. 
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Because uncertainty in measuring the time and frequency for TDOA and FDOA SIGINT 
systems depends on the SNR of the incoming RF radiation measurements, the 
RFsensorFDoA and RFsensorTDoA classes need to estimate the SNR of their 
measurement before they determine the uncertainty in their time and frequency 
measurements. These classes extend the A_TDOA_FDOA_RfSensor abstract class 
that calculates the SNR for both TDOA and FDOA sensors. The 
A_TDOA_FDOA_RfSensor class has the following members that are used to estimate 
noise when finding the SNR of the radiation measurement: optionalNoiseFigure, 
optionalReferenceSNRinDB, and optionalReceiverSensitivityDBm. Many specification 
sheets for SIGINT systems will include the receiver sensitivity for the sensor; if this 
value is known and the reference SNR is supplied, the program will use these values to 
estimate the noise of the incoming RF radiation measurement. If the receiver sensitivity 
is not available, the system’s noise figure must be supplied so that the algorithm can 
estimate the noise in the SNR. To calculate the signal for the SNR estimation, the 
A_TDOA_FDOA_RfSensor class has the following members: receiverAntennaGainDB, 
receiverSystemLossDB, bandwidthHz, and integrationTimeSec. When the program has 
all values, it can determine the SNR and the uncertainty in measuring the time or 
frequency for TDOA and FDOA sensors. The A_TDOA_FDOA_RfSensor class also has 
an optionalDigitizationError member. Digitization errors happen when the analog-to-
digital conversion circuit the sensor is using does not have enough bits to measure the 
desired value with enough precision/accuracy. This variable allows for modeling the 
uncertainty in measuring time and frequency based on the digitization error. Nothing 
happens when this variable is set to null. 

The RFsensorFDoA and RFsensorTDoA classes do not have any members of their 
own, but once values are established for all the abstract classes that these extend to, 
there will be enough information to create new instances of these classes. Some 
SIGINT systems will be able to make angle, frequency, and time measurements at the 
same time; however, to model such a sensor using this program requires defining an 
asset that has three separate sensors installed. 

Photon counting detectors have many variables that could affect the system’s 
measurement. Using the optionalMinWavelengthNanometers and 
optionalMaxWavelengthNanometers members of the PhotonCountingIntensitySensor 
class, it is possible to set the wavelength of the emitters that the sensor can detect.  
Once the system determines that a photon counting detector can detect an emitter, the 
program uses the power and wavelength of the emitter along with the following 
variables to help determine the magnitude of the measurement: visibilityMiles, 
backgroundRadiationWatts, darkCurrentHertz, systemOpticalTransmittance, 
sensorAreaCmSq, photonDetectionEfficiencyPercent, and integrationTimeSeconds. 
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The direction the detector is pointed to relative to the axis used to define locations in the 
scenario can be set using these variables: optionalAzimuthAngleSensorPointedDegrees 
and optionalElevationAngleSensorPointedDegrees. If these values are null the detector 
will always be pointed to the emitter. 

To explore how uncertainties in the amount of power the emitter will emit will lead to 
errors in the location, the following members of the PhotonCountingIntensitySensor 
class can be set: optionalUncertaintyVisibilityMiles, optionalUncertaintyBackground 
RadiationWatts, optionalDarkCurrentUncertaintyHertz, and optionalUncertPhoton 
DetEffPercent. Uncertainties in the photon detector’s direction are set using the 
following members: optionalAzimuthPointedUncertaintyDegrees and 
optionalElevationPointedUncertaintyDegrees. If the uncertainty in the angles is given 
but the angle itself is not, then the program assumes that the operator is pointing the 
emitter towards the target but that their aim is off by the given amount. 

There are now enough classes and information to get the program to estimate TLE 
values for scenarios that involve SIGINT, photon counting, and electro-optical/infrared 
(EO/IR) with LRF sensors. The next section discusses how to add another type of target 
or sensor to the program. 

Adding Another Type of Target or Sensor to the DLL 

Although the software that implements the algorithm is currently only able to find the 
TLE for location measurements made with SIGINT systems, photon counting detectors, 
and/or EO/IR angle sensors with LRF, the software was designed with maximum 
modularity in mind; therefore, it is easy to modify the program to allow it to find the TLE 
for another type of location sensor. To add another type of target and sensor, the 
ATarget and ASensor abstract classes must be extended. Although the ATarget class is 
defined as being abstract, there are no abstract methods that need to be overridden 
when extending it; however, it is necessary to ensure that the sensor and targets work 
together when defining the sensor. There is a virtual method in the ATarget class that 
may need to be overridden: 

internal virtual List<ABasePertCalcs> getAllPertCalcs() 

This function returns all perturbations, or variables that may affect the final TLE, for this 
target. The uncertainty in the power emitted by an emitter that will be detected using a 
photon counting detector is an example of a perturbation on a target that may affect the 
sensor’s measurement. Most targets will not have perturbations; therefore, leaving this 
method to its default value is acceptable. Perturbations will be discussed in detail later. 



 

 
50 

When creating new sensors, the ASensor abstract class must be extended. The 
abstract methods that need to be implemented when extending the ASensor abstract 
class are as follows: 

internal abstract double[] getDirectMeasurementValues(LocVelForCalc thisLocation, 

            LocVelForCalc targetLocation, ATarget target, bool is2dProblem); 

internal abstract double[] getDirectMeasurementValues(LocVelForCalc thisLocation, 

            LocVelForCalc targetLocation, ATarget target, bool is2dProblem,  

            ABasePertCalcs targetPert, double tarPertAmount, 

            ABasePertCalcs sensorPert, double senPertAmount); 

internal abstract bool canOnlyMeasureDifferenceOfArrivalFromSensors(); 

internal abstract bool canSeeTarget(ATarget target); 

internal abstract bool canHandle3dScenarios(); 

internal abstract int numberOfValues(bool is2dProblem); 

internal abstract List<ABasePertCalcs> getAllPertCalcs(LocVelForCalc sensorLoc, 
LocVelForCalc targetLoc, ATarget target); 

The first method to override is the getDirectMeasurementValues method. The 
parameters that are passed to this function are the locations of the target and the 
sensor (identified as “this location”), the target the sensor is sensing, and whether this is 
a 2-D problem. In another instance of the getDirectMeasurementValues method the 
target and sensor perturbations are also passed as parameters. The return value is an 
array of measurements this sensor will make on this target.  

The next method to override to create a new sensor class is the canOnlyMeasure 
DifferenceOfArrivalFromSensors method. There are some values that a sensor cannot 
measure directly; for example, SIGINT systems cannot directly measure the time it 
takes for radiation to travel from the target to the sensor. However, it is possible for the 
SIGINT systems to measure the additional time for the radiation to hit one sensor as 
opposed to another sensor. When the canOnlyMeasureDifferenceOf 
ArrivalFromSensors method returns a true value, the software assumes that the sensor 
system cannot directly use the results of the getDirectMeasurementValues method for a 
single sensor and will instead pair the measurements from this sensor to the 
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measurements of another sensor to measure the difference between these values. 
When the method returns a false value, the software assumes that the system will be 
able to directly use the numbers from the getDirectMeasurementValues method that 
each sensor returns. A sensor that is directly measuring the angle to the target will have 
their getDirectMeasurementValues method set to always return false. 

Next up for override is the canSeeTarget method. This determination is based on it 
being theoretically possible for the sensor to see the target. Thus, this function will 
return true even when the target is so far away that the signal from it is indistinguishable 
from noise and it is not practical to take the measurement. It is best practice to ensure 
that the incoming target is of the expected type. For example, when implementing an 
optical sensor and the program asks if the sensor can see an RF target the answer 
should be false. Once ensuring the target type is correct, check whether the target is the 
right type for the sensor (e.g., ensure that COMINT SIGINT systems are not detecting a 
radar) and whether the target emits radiation within the frequency band the sensor is 
looking for. 

Not all sensors can be used to detect 3-D. When this is the case, the 
canHandle3dScenarios method must be overridden to return a false. Likewise, the 
number of measurements the system will output may change as a function of whether 
this is a 3-D problem. This may require an override of the numberOfValues method so 
that the correct number of measurements are returned when the program calls the 
getDirectMeasurementValues function. 

Finally, there is the getAllPertCalcs method, which outputs all perturbations that are 
defined for this sensor. Uncertainty in sensor measurement could affect a location 
measurement, and the MUSTC program works by adding perturbations to different 
variables that might affect the accuracy of a location measurement. The program will 
add errors or perturbations to what the sensor should measure and then determine how 
much the system’s location measurement will be off because of this perturbation. When 
there are variables or measurements the sensor or target makes or keeps track of that 
might affect the final location measurement, this is communicated by overriding the 
target or sensor’s getAllPertCalcs method. The getAllPertCalcs method returns an array 
of elements that belong to the ABasePertCalcs class. For each variable that could affect 
the location measurement, a new instance of the ABasePertCalcs class is needed. 

While an instance of any class that extends the ABasePertCalcs abstract class can be 
returned from the method, it is best practice to use the getNewPertCalc static method 
from the PertCalcFactory class to get a perturbation for a variable. The parameters that 
this method requires are as follows: 
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internal static ABasePertCalcs getNewPertCalc(DistributionType distroType, object 
distroParams, object scenarioInformationIn, UncertaintyType type, OtherVariableType? 
otherVarTypeIn, object originObject) 

The distroType variable will inform the program as to which distribution to use, and 
distroParams are the parameters that will be sent to the distribution. Currently, there are 
only two possible distribution types: Poisson and normal. For a normal distribution, 
distroParams should be a double precision variable that houses the standard deviation 
of the distribution. When the distroType is Poisson, distroParams should be a long 
integer with the distribution’s lambda value (the mean sensor count). For Poisson 
distributions, the standard deviation is always the square root of the mean value; if the 
lambda is sufficiently large, the program might automatically turn the Poisson 
distribution into normal. 

When a sensor has more than one perturbation to keep track of, the 
scenarioInformationIn object can be set to any value in order to differentiate between 
perturbations; otherwise, it can be left null. For example, if a sensor can measure both 
azimuth and elevation angle, and there can be uncertainties in both measurements, the 
scenarioInformationIn object can be used to inform the sensor as to which angle 
measurement is currently perturbing. The program may need to track the type of 
uncertainty this perturbation is when it is stepping through the perturbation values. This 
is done by setting the type variable to a member of the UncertaintyType enumerator. 
The valid options for this variable are as follows: 

public enum UncertaintyType 
    { 
        location, velocity, directionSensorMeasurement, otherVariable 
    } 
 
Perturbation type can be defined as the uncertainty in the location or velocity of a 
reference object, a direct sensor measurement, or some other type of variable that 
could affect the TLE (e.g., the power emitted by a source whose intensity at a given 
location is used to estimate the range to the emitter). If the perturbation is a variable 
other than a direct sensor measurement or an uncertainty in the location or velocity of a 
reference asset the program needs to know what type of variable it is dealing with. 
Although more options can be added to the OtherVariableType enumerator, currently 
the following are valid options: 

public enum OtherVariableType 
    { 
        opticalPower, visibility, backgroundOpticalRadiation, opticalSensorDarkCurrent, 
opticalPhotonEfficiency, angleUncert, unKnown 



 

 
53 

    } 
 
The originObject parameters house an instance of the target or sensor that created this 
perturbation. Sensors or targets that create the perturbation information can send 
instances of themselves for the originObject parameter. 

If the program wants the sensor class to add these perturbation values to its 
measurement values it will call the version of the getDirectMeasurementValues method 
that has the targetPert, tarPertAmount, sensorPert, and senPertAmount parameters. 
The targetPert and sensorPert parameters are the instances of the ABasePertCalcs 
class that were created when the program called the sensor or target’s getAllPertCalcs 
method. The tarPertAmount and senPertAmount parameters are the magnitude of the 
perturbation that the program is currently asking for.  

An example detailing the addition of a 0.1-radian error to the azimuth measurement is 
explained here. The program will call the getDirectMeasurementValues method with the 
parameter sensorPert set to the instance of the class that informed the program of this 
azimuth uncertainty. The senPertAmount parameter will be set to 0.1 and the program 
expects to add 0.1 radians to the sensor’s final azimuth measurement. If the sensor can 
make multiple angle measurements, then using the scenarioInformationIn object 
ensures that the error is being added to the correct angle. The program will only add a 
perturbation to a single variable at a time. The targetPert and/or sensorPert parameter 
will always be set to null and the values that the program sends the 
getDirectMeasurementValues function via the tarPertAmount and senPertAmount 
parameters can be negative or positive. 

The program will often use serialization to log the calculations progress or to make 
clones of a particular instance of a class for multithreading purposes. Therefore, if a 
new function is defined for use with the program’s calculation, it is important to declare 
the class serializable. 

Using the instructions in this section, a C# program can be configured to use the 
MUSTC DLL to find the TLE for almost any scenario that includes the sensor types that 
have already been defined. Likewise, a C# programmer can use these instructions to 
add new sensor types. 
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 – Choosing an Optimization Algorithm 
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The Multipurpose Universal Simplified TLE Calculator (MUSTC) program requires an 
optimization algorithm to determine how the uncertainty in one position, navigation, and 
timing (PNT) sensor variable can affect the final target location error (TLE). The 
literature is full of optimization algorithms that the MUSTC algorithm could use. 
Optimization algorithms move parameters around (in this case, the parameters are the 
location of the target of interest) to minimize (or maximize, depending on how they are 
configured) a cost function. For the MUSTC algorithm, the cost function is defined as 
the average of all the differences between the sensor measurements at a new test 
location and the sensor measurements at the original location but with a perturbation 
added to one of the variables that could affect the TLE; the input parameter for this cost 
function is simply the new test location of the item of interest.  

Optimization algorithms have different techniques for finding a new test location, 
determining if the new test location is closer or farther away from the final location that 
minimizes the cost function, and figuring out how to avoid local minima in favor of a 
global minimum. The algorithms will continue trying new test locations until a final 
location that minimizes the cost function is found. 

Using a simplistic brute-force optimization algorithm that sets up a grid pattern and then 
finds the cost function at each location in the grid is one way to show that algorithms 
can find a minimum of the cost function. The upside to this type of algorithm is that it is 
less likely to find a local minimum over a global minimum. The downside is that the 
precision of the final location result will be limited by the distance between each point in 
the grid pattern, and that the algorithm can be extremely time consuming to perform 
because it requires the system to find the cost function at many locations. Therefore, 
while this would be a less than ideal algorithm to use for any real-world calculations, it 
does make for a good test because if this algorithm cannot find a global minimum it is 
unlikely that any algorithm can. Additionally, if the algorithm works, it adds confidence to 
the idea that other optimization algorithms can also find a good minimum for the cost 
function. 

Gradient descent is a faster and more advanced optimization algorithm than the brute-
force algorithm previously mentioned. The gradient-descent algorithm finds the gradient 
of the cost function at the initial guess and then multiplies the gradient by a 
predetermined constant before adding it back to the initial guess. The algorithm 
identifies this new location as a better guess as to the location that minimizes the cost 
function and will repeat this process until it finds a location where the gradient is small 
enough that it assumes that it has reached an inflection point. This algorithm has the 
advantage of requiring significantly fewer calls to the cost function than the simplistic 
brute-force algorithm did; however, since the MUSTC program does not have a closed-
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form solution to the gradient of the cost function, the algorithm must estimate the 
gradient numerically. The gradient is estimated numerically by adding a small delta to 
each location component to see how this change in delta changes the cost function. 
Thus, finding the gradient still requires the program to find a value of the cost function at 
many locations. Also, if the constant that the gradient is multiplied by to find the next 
value is too small it may take a long time to reach the cost function’s minimum; 
conversely, if the constant is too large it might bounce past the minimum and may never 
find it. Finally, this algorithm does not have any way of ensuring that it finds the global 
minimum instead of a local minimum. 

A popular algorithm that improves on gradient descent is Nelder–Meade Simplex. A 
simplex is a shape that has one more side than the number of dimensions in the space 
where the shape is defined. For a 2-D space, a simplex would be a triangle; for a 3-D 
space, a simplex would be a triangular pyramid with four sides. Instead of a single initial 
guess, Nelder–Meade Simplex requires enough initial guesses to form a simplex. Thus, 
for a 2-D problem, the algorithm requires three initial guesses. 

Based on the magnitude of the cost function at those initial guesses, the Nelder–Meade 
Simplex algorithm will determine an additional guess at a point where the cost function 
should have a smaller magnitude. Using the actual cost function, the algorithm will see if 
the cost function at this new location does have a smaller magnitude than the cost 
function at the other locations. If the magnitude is lower, it will replace one of the other 
guesses to create a new simplex. If it is not lower, it will move in the opposite direction 
to find another guess that does in fact lower the value of the cost function as expected. 
As the algorithm works, the simplex will morph and change its shape as it walks down a 
hill in the cost function until it converges on the minimum. Like gradient descent, 
Nelder–Meade Simplex can find a local instead of a global minimum. However, Nelder–
Meade Simplex is usually faster than gradient descent and is therefore usually 
preferred. 

Additional algorithms are available in the external libraries from Microsoft Visual 
Studio’s NuGet package manager. One of those libraries is the “libOptimization” library 
by “tomitomi3.” This library is distributed under the Massachusetts Institute of 
Technology (MIT) software license. The MIT software license allows anyone to use this 
library free of charge, and the library includes a large collection of optimization 
algorithms that the MUSTC program can try. A series of tests were performed to see 
which algorithm would work best for this application. 

For the first test case, each optimization algorithm was fed a problem where the answer 
could be easily and independently verified. Normally, the MUSTC algorithm will add one 
perturbation to one variable that might affect the TLE to see how an error in this variable 



 

  
57 

can create an error in the location measurement. For example, the MUSTC algorithm 
will add a perturbation to the location of one of the scenario’s reference assets to see 
how an error in the reference location can lead to an error in the final location 
measurement. However, we cannot use this type of test to find the correct optimization 
algorithm to use because it may be difficult to determine the location error that we 
should get for a perturbation on only one reference location. 

When the MUSTC algorithm works in its stock configuration, it can be difficult to 
determine how a perturbation on one variable can affect the error in the final 
measurement; however, what would happen if we were to perform a test where we 
modify the behavior of the algorithm so that several locations were perturbed at once? 
In particular, what if simultaneous perturbations were added to all locations in the same 
direction and by the same amount for all assets used to measure the location of the 
object of interest? Such a configuration would not be of much use when finding the TLE 
of a target. However, it would make a useful test of the optimization algorithms. This is 
because the optimal location of the target after all the perturbations have been added 
can be easily determined ahead of time. When the optimization algorithm moves the 
location of the object of interest in the same direction and by the same amount as the 
perturbation that was added to all the other objects, the cost function should be 
minimized. Figure B-1 illustrates this setup. 

 
Figure B-1. Experimental setup where the location of each sensor is perturbed by the same 
amount to see if the location of the sensor moves by the same amount 

The initial set of tests examined just the Nelder–Mead Simplex algorithm and the brute-
force algorithm. The first test scenario had four Signals Intelligence (SIGINT) sensors 
flying in formation and were using time difference of arrival (TDOA), frequency 
difference of arrival (FDOA), and angle of arrival (AOA) at the same time to find the 
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emitter location. After adding a small perturbation to the location of all the sensors in the 
formation at once (0.56 m in the X-direction, –0.56 m in the Y-direction, and 0.5 m in the 
Z-direction), the algorithms were evaluated to see if they correctly determined that the 
cost function would be minimized when the target location was moved in the same 
direction by the same amount. The experiment was then repeated with a larger 
perturbation on all locations (13 m in the X-direction, 33 m in the Y-direction, and 7 m in 
the Z-direction). Finally, the two experiments were repeating as a 2-D problem. In the  
2-D problem, the location of all assets in the scenario (both the sensors and the target 
itself) were limited so that their location in the Z-direction had to be 0. The results of this 
initial test case are shown in Table B-1.  

In particular, Table B-1 shows the name of the algorithm, the name of the test (near 
move, far move, in 2- or 3-D), and the error in the algorithm’s calculation for each 
direction. This error is the difference between the algorithm’s expected location (a 
movement from the starting location equal to that which all the other assets were 
perturbed by) subtracted from the actual location that the algorithm came up with. Note 
that a far move test for the brute-force algorithm could not be performed as that 
distance would be outside the grid that it used. 

Table B-1. DAC Implemented Optimizations Algorithm Performed on the Initial Algorithm Test 
Cases 

Algorithm Test Name 
Error in the  
X-Direction 

(m) 

Error in the  
Y-Direction 

(m) 

Error in the  
Z-Direction 

(m) 
Time 
(ms) 

NM Simplex 2-D near move –1.68e-13 8.55e-15 NA 71 
NM Simplex 2-D far move –2.05e-12 2.84e-13 NA 3 
NM Simplex 3-D near move –0.94 0.093 0.12 5 
NM Simplex 3-D far move –4.30 0.56 0.30 7 
Brute force 2-D near move 4.00e-13 8.44e-13 NA 439 
Brute force 3-D near move 4.00e-13 8.44e-13 –1.07e-14 96,000 

 
As seen in Table B-1, the Nelder–Mead Simplex was fast and performed well for 2-D 
problems (errors smaller than 10-3 are likely due to round off errors and are therefore 
acceptable); however, the algorithm did poorly when faced with 3-D problems. The 
brute-force grid algorithm performed well for both 2- and 3-D problems, and the small 
error resulted from the spacing in the search grid. As expected, the brute-force 
algorithm was extremely slow and could not be used if the perturbation was outside of 
the test grid; it was only included in the test case as a proof of concept.  

Using the “libOptimization” library, the test in Table B-1 was expanded to include many 
more optimization algorithms. Table B-2 shows which optimization algorithms from the 
library were tested. The 2-D near move test was discontinued as it did not yield any 
additional useful information on the performance of the algorithms. 
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Table B-2. How the Optimization Algorithms in the “libOptimization” Library Performed in the 
Initial Algorithm Test Case 

Algorithm Test Name 
Error in the 
X-Direction 

(m) 

Error in the 
Y-Direction 

(m) 

Error in the 
Z-Direction 

(m) 
Time 
(ms) 

CS 2-D far move 0 0 NA 16,000 

CS 3-D near 
move –5.46e-14 –5.66e-15 2.31e-12 16,000 

CS 3-D far move 2.27e-13 –5.66e-15 2.31e-12 16,000 
DE 2-D far move 0 0 NA 410 

DE 3-D near 
move 5.46e-14 –6.66e-15 –7.57e-13 660 

DE 3-D far move 0 0 –3.39e-12 630 
DEJADE 2-D far move 0 0 NA 1,400 

DEJADE 3-D near 
move –1.68e-13 8.55e-15 1.82e-12 72,000 

DEJADE 3-D far move 0 0 –2.15e-12 2,300 
ES 2-D far move 43.1 –5.66 NA 600 

ES 3-D near 
move 8.49 –0.843 4.89 600 

ES 3-D far move –27.7 3.64 –12.2 600 
FA 2-D far move 3.21e-5 –1.35e-5 NA 89,000 

FA 3-D near 
move –0.0072 0.00082 0.0011 82,000 

FA 3-D far move 0.0037 –0.00050 –0.0071 77,000 
hillClimbing 2-D far move 7.65e-4 –1.1e-4 NA 5,800 

hillClimbing 3-D near 
move 4.34e-3 –5.22e-4 –0.0100 5,800 

hillClimbing 3-D far move –0.0165 0.0022 –0.00045 6,000 
nmSimplex 2-D far move 13.1 –1.724 NA 4 

nmSimplex 3-D near 
move –1.57 0.156 –0.479 3 

nmSimplex 3-D far move 65.4 –8.59 –10.54 4 
nmSimplexWiki 2-D far move 1.61e-11 –2.04e-12 NA 8 

nmSimplexWiki 3-D near 
move 2.195e-6 –1.95e-7 –3.20 5 

nmSimplexWiki 3-D far move –25.9 3.40 –49.8 8 

patternSearch 2-D near 
move –0.503 0.0500 NA 4 

patternSearch 3-D near 
move –0.503 0.0500 3.71e-3 7 

patternSearch 3-D far move 13.7 –1.80 –0.26 9 
PSO 2-D far move 0 0 NA 1,200 

PSO 3-D near 
move –1.68e-13 8.55e-15 1.50e-12 1,200 

PSO 3-D far move 2.27e-13 –2.84e-14 –2.45e-13 1,200 
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Table B-2. How the Optimization Algorithms in the “libOptimization” Library Performed in the 
Initial Algorithm Test Case 

Algorithm Test Name 
Error in the 
X-Direction 

(m) 

Error in the 
Y-Direction 

(m) 

Error in the 
Z-Direction 

(m) 
Time 
(ms) 

PSOAIW 3-D near 
move –5.46e-14 –5.66e-15 1.46e-12 300 

PSOAIW 3-D far move 2.27e-13 –2.84e-14 –4.44e-12 800 
PSOChaoticIW 2-D far move 0 0 NA 1,800 

PSOChaoticIW 3-D near 
move –5.56e-14 –5.66e-15 –5.42e-13 1,900 

PSOChaoticIW 3-D far move 0 0 –3.56e-12 1,600 
PSOCPSO 2-D far move 0 0 NA 1,500 

PSOCPSO 3-D near 
move –5.46e-14 –5.66e-15 –2.13e-13 1,300 

PSOCPSO 3-D far move 0 0 –6.12e-13 1,400 
PSOLDIW 2-D far move 0 0 NA 5,400 

PSOLDIW 3-D near 
move –1.68e-13 8,55e-15 2.20e-12 5,000 

PSOLDIW 3-D far move 0 0 –3.93e-12 5,400 
RealGABLX 2-D far move –9.09e-13 1.14e-13 NA 14,000 

RealGABLX 3-D near 
move –1.68e-13 8.55e-15 2.00e-12 12,000 

RealGABLX 3-D far move 2.27e-13 –2.84e-14 –2.88e-12 17,000 
RealGAREX, 2-D far move 0 0 NA 17,000 

RealGAREX, 3-D near 
move –5.46e-14 –5.66e-15 4.28e-13 24,000 

RealGAREX, 3-D far move 1.02e-12 1.42e-13 –3.80e-12 24,000 
RealGASPX 2-D far move –9.09e-13 1.14e-13 NA 850 

RealGASPX 3-D near 
move –5.46e-14 –5.66e-15 3.52e-13 1,000 

RealGASPX 3-D far move 0 0 –2.77e-12 1,300 

RealGAUNDX 2-D far move –2.066e + 
140 2.78e + 139 NA 1,400 

RealGAUNDX 3-D near 
move -682 74.6 150 14,000 

RealGAUNDX 3-D far move –1.65e + 70 2.22e + 69 –1.96e + 69 15,000 
SimulatedAnnealing 2-D far move 13.8 -13.4 NA 402 

SimulatedAnnealing 3-D near 
move –0.227 0.0231 –0.0117 420 

SimulatedAnnealing 3-D far move 14.7 –13.6 6.90 410 
SteepestDescent 2-D far move 5.82 –0.729 NA 440 

SteepestDescent 3-D near 
move –0.133 –0.0889 0.0358 664 

SteepestDescent 3-D far move 7.29 –0.99 –0.15 664 
Template 2-D far move 16.4 –28.2 NA 100 

Template 3-D near 
move –3.03 0.240 –0.169 100 

Template 3-D far move 15.0 –28.2 5.55 100 
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As seen in Table B-2, there are several optimization algorithms in the “libOptimization” 
library that performed well in this test. In particular, the following algorithms did a good 
job at finding the correct location of the target that minimized the cost function: CS, DE, 
DEJADE, PSO, PSOChaoticIW, PSOAIW, PSOCPSO, PSOLDIW, RealGABLX, 
RealGAREX, and RealGASPX. The FA and hillClimbing algorithms also did a 
reasonable job although the accuracy was not as high as it was for some of the other 
algorithms. The remaining optimization algorithms did not perform well for this 
application although they no doubt perform well for other applications. 

While the first test case did a good job of determining which algorithms work well for this 
application and which do not, it does not show how well these algorithms will perform 
when the MUSTC program is tasking them with performing real-world calculations. 
Thus, a second test was performed where the MUSTC algorithm uses the different 
optimization algorithms to find a single TLE measurement for a more realistic scenario.  

The scenario was similar to the previous scenario. However, instead of adding 
perturbations to the locations of all sensor locations at once, the algorithm went back to 
its default configuration of only perturbing one variable at a time. To ensure that each 
perturbation will have a larger effect on the final TLE, the number sensor assets were 
reduced to two. The sensors were configured to use TDOA, AOA, and FDOA SIGINT 
measurements as well as electro-optical/infrared (EO/IR) with laser range finder (LRF) 
measurements to find the TLE of a single object of interest. The object of interest has 
both an RF emitter and an optical target installed. Table B-3 shows the TLE in the X-,  
Y-, and Z-direction that the algorithm calculated along with the time it took for the 
MUSTC algorithm to complete all of its calculations. 

Table B-3. Results of a Test Designed to Demonstrate How Different Optimization Algorithms 
Will Perform in Real-World MUSTC Calculations 

Algorithm Name Time (ms) X-Direction 
Uncertainty (m) 

Y-Direction 
Uncertainty (m) 

Z-Direction 
Uncertainty (m) 

CS 8,000,000 0.0953 0.0953 0.0500 
DE 940,000 0.0953 0.0953 0.0500 

DEJADE 3,500,000 0.0953 0.0953 0.0500 
ES 1,700,000 4.13 4.17 0.0579 

hillClimbing 15,000,000 0.0870 0.0975 0.00988 
nmSimplex 19,000 5.60 6.13 1.35 

PSO 1,100,000 0.0953 0.0953 0.0500 
PSOAIW 450,000 0.0850 0.0999 0.0500 

PSOChaoticIW 1,300,000 0.0953 0.0953 0.0500 
PSOCPSO 1,100,000 0.0953 0.0953 0.0500 

RealGASPX 1,700,000 0.0953 0.0953 0.0500 
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Although it is not easy to independently determine the TLE that the algorithms should 
find for this test, based on the performance of the algorithms that did well in the first 
test, it can be inferred that the uncertainty in the X- and Y-directions should be 0.0953 
m, and the uncertainty in the Z-direction should be 0.0500 m. Thus, the optimization 
algorithm that successfully passed both tests and had the shortest computation time 
was the one called DE. Interestingly, PSOAIW was even faster than DE but its results 
from the second test did not exactly match the results that the other algorithms 
calculated. Therefore, if speed is the only concern the PSOAIW algorithm may be a 
viable choice. However, the DE algorithm appears to combine both speed and 
accuracy. 

Even though the DE algorithm was the fastest algorithm that correctly found the answer, 
it still took 940,000 ms, or 16 min, to find a single TLE measurement. Depending on the 
number of TLE calculations that the user wants to perform and the time in which the 
algorithm can perform these calculations, this may be unacceptable. Appendix C 
outlines the improvements that were made after this test was performed to improve the 
speed of the calculations. 



 

  
63 

 – Optimizing the Algorithm for Speed
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Optimize Computational Time Overview 

The main drawback of the Multipurpose Universal Simplified TLE Calculator (MUSTC) 
program, as configured during the verification and validation (V&V) process, is that it 
was time consuming to run. To make the program more useful, it was important to try to 
overcome this drawback. There were some simple changes made to improve the 
computational time. For example, because one target location error (TLE) calculation 
does not typically depend on another, the application was made to be multi-threaded so 
that more than one TLE value could be calculated at once. Another change was to tailor 
the settings in Visual Studio so that the final application is better optimized to run on the 
U.S. Army Combat Capabilities Development Command (DEVCOM) Analysis Center 
hardware. However, these simple fixes can only do so much. To have a significant 
decrease in computational time, changes were needed that would optimize the MUSTC 
program code itself. 

There is a general rule in computer science that says that a program will typically spend 
around 90% of its time running around 10% of the code. The most efficient way to 
speed up a program is to find the 10% of code that the program is spending most of its 
time running and then to optimize that. Optimizing the other 90% of code is a waste of 
time and may be counterproductive as it may make the code more complicated, error 
prone, and harder to maintain. 

For the MUSTC algorithm, it is easy to determine which bit of code is spending the most 
time calculating. For each variable that might affect the final TLE calculation, the 
MUSTC algorithm will set a perturbation to this variable. The algorithm will then ask an 
optimization algorithm to find the error in the location of the target of interest that relates 
to the specified variable perturbation. Finding this value requires the optimization 
algorithm to make repeated calls to the cost function. As a result, the program spends 
most of its time calling this cost function at the request of the optimization algorithm. 

The first step in speeding up the program was to find the best optimization algorithm to 
meet the requirements. A good optimization algorithm should be able to find the final 
location error while calling the cost function method as few times as possible. In 
Appendix B, various optimization algorithms were tested to see which could be used for 
this application and which return TLE values that may be in error. The speed it took for 
each algorithm to perform the calculations was also a factor in determining which was 
the best optimization algorithm for the MUSTC algorithm to use. While the chosen 
optimization algorithm consistently found the correct answer and was faster than all the 
other optimization algorithms, it still must repeatedly call the cost function before 
calculating the final TLE value. This leaves room for additional improvements. 
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Another change that could be done to speed up the algorithm would be to increase the 
speed of the code that implements the cost function. Since calling the cost function is 
the process that takes the most time, speeding up that code could speed up the 
optimization algorithm. However, this might not be a good idea as the cost function is 
already pretty fast and making it even faster could affect the program’s expandability 
and modularity. This leads to the conclusion that the best way to decrease 
computational time is to decrease the number of times that the optimization algorithm is 
called in the first place. For example, if the program can be modified so it only needs to 
call the optimization algorithm 1/10th of the number of times, then the program will run 
10× faster. However, decreasing the number of times that the program calls the 
optimization algorithm could decrease the accuracy of the final TLE estimate.  

While developing the algorithm, DEVCOM Analysis Center (DAC) erred on the side of 
making the calculation more accurate at the expense of computational time. If errors or 
problems were found while debugging the program or performing V&V, DAC wanted to 
be sure that the errors were from problems in the underlying code and not because of 
optimizing the algorithm for speed before it was ready. After performing V&V and 
debugging the code, the program seems to be working as expected and now is the time 
to become more aggressive with the optimization. Now we can try to speed up the 
processing time while only imparting a nominal impact on the accuracy of the 
calculation. 

The first way to decrease the number of times that the optimization algorithm is called is 
by increasing the step size between perturbation values. When finding how a change in 
value of a single variable can affect the TLE of the object, the program steps through a 
bunch of errors on the variable. The program adds these errors to the variable of 
interest in the form of perturbations. The perturbations range from –4 to +4 standard 
deviations from the variables starting value. If the step size between perturbation values 
is set to 0.01 standard deviations, the program would calculate the error in location for 
the target of interest when the variable has a perturbation that is –4.00, –3.99, –3.98, . . 
. , +3.98, +3.99, +4.00 standard deviations from the starting value. This means that the 
optimization algorithm will be called 800 times (there is no need to find the error when 
the perturbation is set to zero). However, if the step size between perturbation values 
were set to 0.1 standard deviations, the program would call the optimization algorithm to 
find the error in the location when the variable has a perturbation that is  
–4.0, –3.9, –3.8, . . . , +3.8, +3.9, +4.0 standard deviations from the starting value of the 
variable. In this case, it would only need to call the optimization algorithm 80 times. With 
this change, the program could run 10× faster. 
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Before increasing the step size between perturbations in the name of decreased 
computational time, it is important to examine how this change will affect the final TLE 
value. The first way in which the step size could affect the final TLE value is that it could 
interfere with the optimization algorithm itself and cause it to select a local instead of a 
global minimum. This is because the program actually adds these perturbations to the 
variable in a very specific order. If the step size between perturbation values is set to 
0.01 standard deviations, the program would start by adding a perturbation that is 0.01 
and then –0.01 standard deviations from the starting value of the variable. For these 
calculations, the program would feed the starting location of the object of interest as the 
initial guess for the optimization algorithm. This is a good initial guess as 0.01 and –0.01 
represent a very small perturbation to the variable. This makes it much less likely that 
the optimization algorithm will find a local instead of a global minimum. Once the 
program finds the error when the variable is 0.01 and –0.01 standard deviations from 
the starting value, it will use those values to try to find the error in the target of interest’s 
location when the perturbation is set to 0.02 and –0.02 standard deviations from the 
starting value. This process will continue until it uses the errors at 3.99 and –3.99 as the 
starting guesses when computing the error at 4 and –4 standard deviations from the 
starting value. 

When the program adds 4 and –4 standard deviations of error to the variable it is likely 
that the optimization algorithm will find that this will equate to quite a large error in the 
location of the target of interest. Even with this large error, the optimization algorithm 
can still avoid a local minimum as it will feed the error when the variable was at 3.99 
standard deviations from the starting value as the initial guess. 

As the step size becomes large, the optimization algorithm may be more likely to return 
location errors that are incorrect because of local minima in the cost function. An 
optimization algorithm that is less prone to such errors was selected, but it is still 
possible for even the best algorithm to make such an error if it is fed a bad starting 
guess. Because the next calculation is somewhat dependent on the last value, an error 
at a smaller perturbation value can propagate and cause even greater errors at 
perturbations with larger magnitudes.  

Another problem with making the step size between perturbations too large is that it can 
still interfere with the final TLE accuracy even if it is not large enough to confuse the 
optimization algorithm. Selecting a step size between perturbations of 0.01 is essentially 
stating that the error when the perturbation is set to 0.005 is basically the same as when 
the perturbation is set to 0.015. This might be a good assumption if the step size 
between perturbations is 0.01 standard deviations, but what if the step size is set to 1 
standard deviation? Is the error at 0.5 standard deviations basically the same as at 1.5 
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standard deviations? Setting the step size to 1 standard deviation would mean that only 
eight calculations are needed to find the TLE; how accurate would the TLE calculation 
be in this case? The best way to answer these questions is with an empirical test. 

Another question that may need an empirical test to answer is as follows: does the 
algorithm need to keep the step size between perturbations constant while it is 
calculating how this variable will affect the final TLE? Perhaps the algorithm could 
decrease the step size in the areas that most contribute to the final TLE while increasing 
the step size in areas that contribute the least to the final TLE value. Figure C-1 
highlights this point. 

 
Figure C-1. Perturbation values that contribute most to the final TLE value 

Figure C-1 shows the probability that a perturbation will happen multiplied by the square 
of the error that the optimization algorithm found when adding the perturbation to the 
variable. Remember, the amount of TLE a single variable will add to the total TLE of the 
object of interest in a single direction will be the square root of the sum of all values in 
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Figure C-1. The algorithm performs a similar calculation in each direction and for each 
variable that could affect the final TLE value. Once the program determines how each 
variable affects the final TLE, it gathers this information together to find the final TLE 
value in each direction. See Equation (7) and Figure 4. 

The shaded areas in Figure C-1 are areas that contribute the most to the final TLE 
value. The areas to the far right and left of the graph do not contribute much to the final 
TLE value because there is a small likelihood that the error in the variable will be that 
large. Even though the error in location these perturbations will cause is likely to be 
quite large, the probability of the error is so small that the probability multiplied by the 
square of the error in location quickly drops its contribution to zero. Similarly, the area in 
the center of Figure C-1 does not contribute much to the final TLE value because the 
error in location from such a small perturbation to the variable is also small. Thus, 
although the probability in the center part of Figure C-1 is extremely high, the probability 
multiplied by the square of the error is small. 

Is it possible to keep the perturbation step size constant in the areas that are shaded in 
Figure C-1 but then start increasing the step size for areas further away from the 
shaded parts of the graph? Increasing and decreasing the perturbation step size 
throughout the calculation could make the probability calculation more complicated; it is 
much simpler to increase the step size by assuming that the location error from adjacent 
perturbation values are basically the same. In this way we can skip calculations and 
essentially increase the perturbation step size in different areas of the TLE calculation. 

The damage that could come from skipping perturbation values at the start of the TLE 
calculation can be controlled only by starting to skip perturbation values when it has 
been determined that the error caused by these perturbations will be small. At that 
point, setting the initial guess to locations very close to the starting location of the object 
of interest would still be acceptable for the optimization algorithm. The following are 
questions to ask:  

• What is the nominal perturbation step size?  
• At what point is the error in location caused by small perturbations small enough 

that it can be skipped without the likelihood of causing the optimization algorithm 
to pick local instead of global minima and thus making the final TLE value 
inaccurate?  

• At what point are the probabilities of large perturbations from the starting value 
small enough that they can start to be skipped without adversely affecting the 
accuracy of the final TLE value?  



 

  
69 

Algorithms are needed to find answers to these questions. These algorithms will likely 
need parameters to determine how aggressive the program should be when setting the 
step size, skipping calculations, and determining the optimal balance between the 
speed of calculation and the accuracy of the final TLE value. 

Algorithms to Determine the Perturbation Step Size and When Calculations Can 
Be Skipped 

The first step in maximizing the accuracy of the TLE calculation for a given 
computational time is to find an algorithm that finds the starting perturbation step size. 
Sometimes the correct perturbation step size can directly relate to a parameter that the 
user may have access to. For example, one of the variables that affects the TLE 
calculation is the uncertainty in location or velocity. The perturbation step size for these 
variables would represent the minimum precision in location or velocity for this scenario. 
The user can set these values, and therefore the starting perturbation step size for 
these variables. 

However, how would the program find the perturbation step size for other variables that 
do not directly relate to a location and/or velocity precision parameter? Is there a way to 
set the step size for these variables based on parameters that we could set such as the 
precision in location or velocity? Luckily, the program already performs a set of 
calculations that can be used to determine the step size for additional varieties based 
on the location and velocity precision parameters that the user can supply. Section 2.3 
outlined how each sensor measurement should be normalized so it goes from zero to 
one before it is fed into the optimization algorithm. This normalization algorithm can also 
be used to determine the step size for additional variables. 

To normalize the measurement, the algorithm will examine each variable that the 
program might need to perturb in order to find the TLE. The program will perturb each 
variable by its maximum and minimum amount to determine the maximum and 
minimum measurements that each sensor should make while the system is performing 
its TLE calculation. Once the algorithm finds these maximum and minimum values, it 
can normalize the sensor measurements. The maximum and minimum sensor value 
calculations can also be used to determine how a perturbation in location or velocity will 
cause a change in the raw sensor measurements. This is because the program will set 
the location and velocity of all the objects in the scenario to their maximum and 
minimum values to see how those changes affect all the sensor’s raw measurement 
values. In this way, the program will determine how a given change in velocity and or 
location can affect the raw measurement value and can therefore find a perturbation 
step size for all the raw sensor measurements that are matched to the user-supplied 
location and velocity-precision parameters. However, there are variables other than the 
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location, velocity, and the raw-sensor measurements. The program needs an algorithm 
that finds the step size for these variables as well. 

During normalization, the program will also need to consider how changes to all the 
variables will affect the raw measurements. Therefore, not only will the program know 
how changes in velocity and location will affect the raw measurements, the program will 
also know how changes in all variables of interest will affect the raw measurements as 
well. By examining how location and velocity changes affect the raw measurements, 
and then examining how changes in other variables will also change the raw 
measurements, the program can determine a perturbation step size for any variable of 
interest that is matched to the desired location and velocity precision that was supplied 
by the user.  

The program is now able to calculate a nominal perturbation step size for any variable 
that might affect the TLE calculation based on a location or velocity precision parameter 
that is supplied by the user. However, there may be times when the algorithm should 
use a different perturbation step size than the one it found using this procedure. 

For example, if the user set the location precision parameter to 1 mm and added a 
reference object whose location uncertainty is 1 km, would the program really need to 
go from –4 standard deviations to +4 standard deviations (–4 km to +4 km) from the 
starting value of the sensor with a step size equal to 1 mm? Such a calculation would 
take an extraordinary amount of time and produce a calculation with a significantly 
larger precision than is necessary. Allowing the user to supply a maximum number of 
perturbations as a parameter would essentially set a limit to the number of calculations 
that the program would need to make for any single TLE calculation. This could 
significantly reduce the run time. 

Similarly, allowing the user to set a minimum number of perturbations needed to 
perform a single TLE calculation is worth considering. If a reference object is added 
whose location is defined within 1 mm, and the location precision is set to 1 mm, then 
the program would only perform eight calculations (from –4 mm to 4 mm with a step 
size of 1 mm and no need to perform a calculation at 0 mm). While the TLE from this 
variable is likely to be small, it would still be a good idea to perform more than eight 
calculations when analyzing this variable. Therefore, it is also a good idea to set the 
minimum number of perturbations. 

Now the user has a set of parameters that will allow them to easily inform the program 
as to the perturbation step size it should be using while performing TLE calculations. 
These parameters will match the TLE calculation to the user’s desired precision. The 
parameters are as follows: location precision, velocity precision, and minimum and 
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maximum number of calculations. These parameters can speed the computational time 
significantly by ensuring that the program does not spend a large amount of time 
performing calculations with precisions that are much higher than what the user actually 
needs.  

Recall from Figure C-1 there is another way to speed up the program’s calculation. If 
the program were to skip some of the perturbation calculations in the non-shaded areas 
of Figure C-1 the computational time could be sped up even more with only a nominal 
impact on the accuracy of the final TLE measurement. This is because the calculations 
in the non-shaded areas in Figure C-1 will not have much effect on the final TLE value. 

When the program is performing calculations that are inside the shaded area, the 
program should not skip any calculations at all. Therefore, the first two parameters the 
user needs to supply are the ones that define the starting and stopping points where the 
program should not speed up the calculations by skipping values. 

Once the program makes it into an area where it can start to skip values, it needs to 
determine how aggressive it can be with the calculation skipping. One instance may be 
when the error probability is extremely small and therefore the calculations do not affect 
the final TLE value very much. The program needs to know what the value of the 
probability should be before it starts skipping calculations, and it may even skip multiple 
calculations at once as the probability gets smaller. 

The program does a quick calculation to see if it can avoid sending a given perturbation 
value to the optimization algorithm to find the actual location error. Because the 
optimization algorithm can be time consuming, this quick calculation can save time. In 
particular, the quick calculation will determine if the probability of the perturbation value 
on the variable is so low that it will not have much effect on the final TLE value. To 
perform this quick calculation, the program defines the variable Np. This variable is 
found using the following formula: 

 𝑆𝑆𝑝𝑝 = 𝑝𝑝𝑖𝑖
�̅�𝑝

. (C-1) 

Here, pi is the probability of the measurement the algorithm is considering skipping 
because it will not affect the TLE much and �̅�𝑝 is the mean of the probabilities for all 
measurements. To use this variable to decide whether a calculation should be skipped, 
the program needs a probability reference parameter from the user. The algorithm takes 
the probability reference parameter and divides it by the Np variable it found using 
Equation (C-1). The program will then round the resultant value to the nearest integer. 
This integer represents the number of calculations that the program should skip 
because these values will not affect the final TLE much anyway. The user can also 
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define a maximum number of skips parameter. If the integer that it calculates is larger 
than the maximum number of skips given by the user, then the program will set the 
number of values to skip to the maximum number. 

As an example, assume that the program is about to determine the error in the location 
of the object of interest caused by the next perturbation to a variable. Normally the 
program would just feed this problem to the optimization algorithm. However, to save 
time it might be advantageous to skip this calculation and assume the error for this 
perturbation is more or less equal to the error from the previous perturbation. Even if 
this assumption is not ideal, it might not matter since the probability of this perturbation 
is low enough as to not affect the final TLE calculation very much anyway. 

To see if it can skip this perturbation because of lack of probability, the program will first 
compare the probability of this perturbation happening to the mean of the probabilities 
for all perturbations. Assume that the probability of this perturbation happening is one 
quarter of the mean probability for all perturbation values. In this case, Np would be 
equal to 0.25. Assume that the user set the probability reference parameter to 0.5. This 
would imply that the user would like the program to start skipping calculations when the 
probability of the perturbation is roughly half that of the mean probability of all 
perturbations. The program would divide 0.5 by 0.25 and then round the value to the 
nearest integer. In this case, 0.50/0.25 = 2. The program would conclude that it can 
save time by skipping two calculations in a row. It would find the error value from the 
previous perturbation calculation and assume that it will be the same as the error value 
for this as well as the next perturbation values. Remember that the user does have the 
option to define the maximum number of skips.  

If the user set the maximum number of skips to 1 the program would only be able to 
save time by skipping the calculation for this perturbation value. When the program gets 
to the next perturbation value it would have to send that perturbation value to the 
optimization algorithm to find the actual error in location caused by the perturbation on 
the variable. As an alternative, the user could have set the maximum number of skips to 
0 (or clear a flag that tells the program that it should perform these skip calculations) 
and the program will just find the error value for each perturbation no matter the 
probability of this perturbation. 

The program will perform a similar calculation when considering whether to start 
skipping calculations because the error caused by a perturbation in this region is too 
small. As with the algorithm designed to skip calculations because of low probability, the 
algorithm needs a variable similar to Np to rate how likely it is that the program can skip 
this calculation as compared to other calculations. In the case of skipping because of 
low error values, this variable is just equal to the magnitude of the error caused by the 
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previous perturbation. As with the algorithm that skips because of low probability, the 
algorithm will divide the “small error skip” parameter given by the user by the magnitude 
of the error from the previous calculation to determine how many subsequent 
calculations the program can skip. 

As an example, assume the program adds a small perturbation to the variable that it is 
calculating the TLE for. Because the perturbation is small, the error is also small. For 
this example, assume the error is equal to 10-4 m. Before the program calculates the 
error from the next perturbation on the variable, the program will check if the previous 
error of 10-4 m is small enough that the program can skip this calculation. The program 
will determine this by looking at the small error skip parameter that the user supplied. If 
the user set this parameter to 10-3 m, the program will divide 10-3 by 10-4 and round that 
value to the nearest integer. In this case, the nearest integer is 10. The program would 
conclude that it can skip this calculation and the nine subsequent ones.  

When skipping calculations because of a small error, be careful not to skip too many 
calculations. Recall that the optimization algorithm uses the error calculation from the 
previous perturbation as an initial guess for the error for the next perturbation. If too 
many values are skipped the initial guess can be off, leading to the optimization 
algorithm returning error values from local instead of global minima. This problem could 
not only affect this calculation, but also all subsequent error calculations. This is why the 
user is given the option to set the maximum number of calculations that can be skipped; 
if the user set that value to 2 then the program would skip only 2 calculations even if the 
algorithm concludes that it might be able to skip 10. 

The user has four parameters to use when deciding how aggressive the program should 
be when it is setting the step size between perturbation values. Those parameters are 
as follows: location precision, velocity precision, maximum number of perturbations, and 
minimum number of perturbations. 

The user also has five variables that will inform the algorithm as to how aggressively it 
will skip calculations because the probability of the perturbation is too small or because 
the magnitude of the calculated error in a location is too small. Those parameters are as 
follows: the maximum and minimum magnitude values that define the area where the 
calculations should not be skipped, the probability reference parameter, the small error 
skip parameter, and the maximum number of calculations the program can skip in a 
row. There is also a flag that can tell the program to not skip calculations at all. 

As the user becomes more aggressive with these parameters, the computational time 
for the TLE measurements will decrease. However, as the computational time 
decreases the accuracy of the final TLE calculation may decrease as well. A sweet spot 
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exists where the calculation times are as short as possible while still yielding valid TLE 
calculations. The next section explores how to determine the optimal values for each 
parameter. 

Experiment to Determine Optimal Performance Parameters 

Now that the parameters that can speed up the TLE calculations at the expense of 
some accuracy in the calculated values have been defined, it is necessary to determine 
how aggressive to be with these parameters. The goal will be to increase the 
computation speed as much as possible while trying to keep the errors caused by this 
speed up to an acceptable level. 

To find the optimal parameters, a series of test calculations were performed. Sample 
scenarios were set up that would match the type of calculations the program would 
perform while doing more realistic calculations. For each scenario, location, and 
variable that might affect the TLE the program performed multiple calculations showing 
how the uncertainty in the variable would affect the final TLE. For the first calculation the 
program performed for each variable, the parameters were set to match the values used 
when debugging the program and performing V&V. In other words, the initial 
parameters produced accurate TLE calculations, but at the expense of computational 
time. The program then repeated each calculation multiple times with new parameters 
that could improve the computational time. Each time the program tried a new set of 
parameters, the parameters became more aggressive.  

It is important to compare the TLE values the program calculated when the parameters 
were set to their least aggressive value to TLE values the program calculated as the 
parameters became more aggressive. This comparison shows how more aggressive 
parameter values lead to decreases in overall TLE calculation accuracy. Figure C-2 
shows the result of this comparison.  
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Figure C-2. Accuracy in the TLE estimation drops as the algorithm speeds up calculation time 
by not performing as many calculations 

Each subplot in Figure C-2 shows the percent error in a set of TLE calculations for a 
different level of aggressiveness when it comes to the step size between perturbation 
calculations. The colors in Figure C-2 represent the additional percent error in a set of 
TLE calculations that resulted because the program was configured to skip calculations 
when they are outside the shaded areas shown in Figure C-1. 

For the upper-left graph of Figure C-2 the step size between perturbations was set to 
their least aggressive value. The red circles in the upper-left graph were performed 
when the program did not skip calculations and the step size was set to its least 
aggressive value. All red circles in the upper-left graph show a 0% error in calculation. 
This is because the red circles in the upper-left graph were the reference TLE values. 

In addition to red circles in the upper-left graph, there are also green, black, and blue 
circles. The changes in color represents an increase in the aggressiveness the program 
used when skipping calculations because they were outside the shaded areas in  
Figure C-1. Therefore, the green dots in the upper-left graph do show some error in TLE 
as seen by looking at the Y-axis. However, they also had some speed increase caused 
by skipping calculations as shown in the X-axis. As the program cycled through the 
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different colors, it skipped more calculations because they were outside the shaded 
area in Figure C-1 however, they also yielded ever-increasing errors in the TLE 
calculation. 

As the subplots moved from the upper left to the bottom right in Figure C-2, the program 
became increasingly aggressive regarding the baseline step size between 
perturbations. Therefore, the bottom-right graph had a base step size that was 
significantly larger than what is shown in the upper-left graph. Thus, the red circles in 
the bottom-right graph show errors in the TLEs even though they are not skipping 
calculations because they are outside the shaded areas in Figure C-1. However, as the 
program cycles through the colors in the bottom-right graph, the TLE errors further 
increase as the program skips more calculations because they are outside the shaded 
areas. The aggressiveness of the parameters that dictate the perturbation step size was 
increased until the program removed up to 90% of its calculations.  

The red circles in Figure C-2 graph the percent error in the TLE calculation when 
calculations were removed based on the aggressiveness of the perturbation step size 
parameters. These red circles show that becoming extremely aggressive when picking 
the perturbation step size will only impart a nominal hit on the accuracy of the 
calculation. Even when around 90% of the calculations were removed, most TLE 
calculation errors were under approximately 10%. In fact, there were only two 
calculations where the error was between approximately 30% to 40%. Having a percent 
error approaching 40% may be deemed unacceptable, but it is still possible to remove 
80% of the calculations due to the perturbation step size parameters without reaching a 
40% error in the TLE calculation. 

The plots in Figure C-2 are only a sample of possible TLE calculations. As the sample 
size increases, calculations will have larger errors because of the aggressiveness of the 
perturbation step size parameters. However, the examples in Figure C-2 are reasonably 
representative of the types of calculations the MUSTC algorithm will perform. 

The parameters that skipped calculations because the location measurement error or 
the probability of the location error were too low were not as successful as the one that 
increased the step size between perturbations. When the skip parameters were at their 
most aggressive setting (level 3), as many as 40% of the calculations were skipped. 
This is in addition to the calculations that were already skipped because of perturbation 
step size.  

However, even at its least aggressive value (level 1), the percent error that is imparted 
on the final calculation could be as high as 40%. If the goal is to decrease the 
computational time to make it is as low as possible while still creating TLE 
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measurements that are at least of the correct order of magnitude, then it would be 
acceptable to set both the skip parameters and the perturbation step size parameters at 
their most aggressive values. However, if the goal is to get the best result with the 
smallest effort when removing calculations without affecting the TLE accuracy, then 
Figure C-2 suggests it is better to be more aggressive with the perturbation step size 
parameters than the parameters that skip calculations. 

Appendix B outlined the test used to find the best optimization algorithm for the 
application. It took around 16 min for the best optimization algorithm to produce a single 
TLE value for a single variable. The time to calculate a single TLE value could be much 
higher if the program has to investigate many variables. A long calculation time may be 
acceptable if the algorithm only needs to produce a few TLE values at a time. However, 
if a multitude of TLE values are needed to map out TLE as a function of location over a 
wide area, such a calculation time might not be acceptable. 

If many separate TLE calculations are required, the first step to make the program 
faster is to make it multithreaded. Modern computers typically have 16 or more 
processor cores. By making the program multithreaded, and by ensuring that the 
individual TLE calculations can be done out of order and possibly simultaneously, the 
average time it takes for the program to calculate a single TLE value can be shortened 
to 1 min or less (it is still 16 min per TLE calculation but since the computer has 16 
cores, it can calculate 16 TLE values at once). A more powerful computer may use 
high-performance computing (HPC) to calculate even more TLE values at once. 

If the average of 1 min per TLE calculation on a 16-core computer is not sufficient, the 
user can sacrifice some accuracy to speed up the program. The program can skip up to 
90% of its calculations by making the parameters that govern the perturbation step size 
more aggressive. The results from Figure C-2 suggest that this might impart an error of 
up to 40% on the final calculation values. If only an order of magnitude estimation of the 
TLE is needed, then an additional 30% of calculations can be removed by adjusting the 
parameters that govern the number of values that should be skipped to be more 
aggressive. 

While processing time may be a main drawback of this algorithm, users have options 
available to make useful TLE estimations with less processing time. The algorithm still 
creates reasonable estimations for the TLE even as the parameters that govern 
processing time get more aggressive, which adds confidence that the program is 
working correctly. If it were not working correctly, because of instabilities in the 
calculation, a small change in the parameters that govern processing time could result 
in a huge change in the TLE calculations.
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 – Verification and Validation 
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After identifying an algorithm that claims to be able to find the target location error (TLE) 
of an object of interest, it must be proven that it can do what it claims.  

Appendix B outlined two tests that were used to identify the best optimization algorithm 
to use. The first test involved simultaneously moving all reference assets that are used 
to find the location of the asset of interest in the same direction and by the same 
amount. If the algorithm is properly modeling all sensors and targets of interest, and the 
optimization algorithm is working as expected, then it is anticipated that the optimization 
algorithm will find that the cost function is minimized when it moves the object of interest 
in the same direction and by the same amount that the reference assets were moved. 
Appendix B demonstrated that there were several optimization algorithms that could 
correctly pass this test. One such algorithm was the brute-force optimization algorithm. 
This algorithm finds the location that minimizes the cost function by setting up a grid of 
locations and then testing the cost function at every point in that grid. The fact that the 
brute-force optimization algorithm passes this test adds confidence that the algorithms 
were working as intended and their positive results were not based on a coincidence. 

Although this test demonstrated that the optimization algorithm as well as the sensor 
and target models appear to be working correctly, it does not prove that the model can 
accurately estimate the TLE of a location using that algorithm. Therefore, a scenario 
where the TLE that the algorithm calculates can be verified by another means is 
needed. 

One scenario where the expected TLE can easily be estimated is when Signals 
Intelligence (SIGINT) systems using angle of arrival (AOA), or electro-optical/infrared 
(EO/IR) angle sensors that do not have laser range finders (LRFs), are used and there 
are exactly two sensors to find the location of the target. If the sensors are orthogonal to 
each other, then the uncertainty in one direction would only be from one sensor and the 
uncertainty from the other direction will only be from the other sensor. Figure D-1 
illustrates this experimental setup. 
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Figure D-1. Experimental setup where the uncertainty in one direction is only caused by a 
measurement uncertainty of a single sensor 

As can be seen Figure D-1, the target was placed at the origin (X = 0 and Y = 0). 
Sensor 1 was set at some distance from the target in the X-direction, and Sensor 2 was 
set at some distance in the Y-direction. The uncertainty in measuring the location of the 
target in the Y-direction will be equal to the distance from Sensor 1 to the target 
multiplied by the uncertainty that Sensor 1 has in measuring the azimuth angle 
(assuming that the azimuth uncertainty is small enough for the small angle 
approximation to be valid). Likewise, the uncertainty in the X-direction will be equal to 
the distance from Sensor 2 to the target multiplied by the uncertainty in using Sensor 2 
to measure the azimuth angle. Table D-1 shows the results of feeding the scenario 
shown in Figure D-1 into the Multipurpose Universal Simplified TLE Calculator (MUSTC) 
software when SIGINT with AOA is used to measure the angle. Table D-2 shows the 
results when EO/IR angle sensors are used. 
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Table D-1. Results of Feeding the Scenario in Figure D-1 into the MUSTC Program When the 
Operator is Using SIGINT AOA to Find the Azimuth Angle 

Azimuth 
Uncertainty 

(radians) 

Sensor 1 
Distance 

(m) 

Sensor 2 
Distance 

(m) 

Uncertainty 
from Sensor 1 

(m) 

Expected 
from 

Sensor 1 
(m) 

Uncertainty 
from Sensor 2 

(m) 

Expected 
from 

Sensor 2 
(m) 

0.0001 1,000 1,000 0.0999 0.1 0.0999 0.1 
0.0001 1,000 –1,000 0.0999 0.1 0.0999 0.1 
0.0001 –1,000 1,000 0.0999 0.1 0.0999 0.1 
0.0001 –1,000 –1,000 0.0999 0.1 0.0999 0.1 
0.005 1,000 1,000 4.9961 5.0 4.9961 5.0 

0.0001 70,000 1,000 6.9944 7.0 0.0991 0.1 
0.0001 1,000 70,000 0.0999 0.1 6.9910 7.0 
0.0001 70,000 7,000 6.9944 7.0 0.6994 0.7 

 
Table D-2. Results of Feeding the Scenario in Figure D-1 into the MUSTC Program and the 
Operator Using EO/IR Angle Sensors to Find the Azimuth Angle 

Azimuth 
Uncertainty 

(radians) 

Sensor 1 
Distance 

(m) 

Sensor 2 
Distance 

(m) 

Uncertainty 
from Sensor 1 

(m) 

Expected 
From 

Sensor 1 
(m) 

Uncertainty 
from Sensor 2 

(m) 

Expected 
from Sensor 

2 (m) 

0.0001 1,000 1,000 0.0999 0.1 0.0999 0.1 
0.0001 1,000 –1,000 0.0999 0.1 0.0999 0.1 
0.0001 –1,000 1,000 0.0999 0.1 0.0999 0.1 
0.0001 –1,000 –1,000 0.0999 0.1 0.0999 0.1 
0.005 1,000 1,000 4.9961 5.0 4.9961 5.0 

0.0001 70,000 1,000 6.9944 7.0 0.0991 0.1 
0.0001 1,000 70,000 0.0999 0.1 6.9910 7.0 
0.0001 70,000 7,000 6.9944 7.0 0.6994 0.7 

 
As seen in Tables D-1 and D-2, when the MUSTC algorithm models SIGINT sensors 
using AOA, or EO/IR sensors without LRF, the program returns uncertainties in each 
direction that are almost identical to what is expected. It does not matter if there is an 
increase to the azimuth uncertainty, an increase in the range to each sensor, or if we flip 
the scene so the locations of the sensors are in the opposite direction, the algorithm 
always returns a TLE that is basically equal to the expected value. The results from the 
AOA SIGINT sensors are identical to the results from the EO/IR angle sensor. This is 
expected as the program uses much of the same code to estimate the angles of interest 
for both sensor types. 

The fact that the program finds the expected result even if the scenario is flipped is 
significant as it demonstrates that the program handles angles correctly. The program 
must decide if the optimization algorithm might have to deal with angles at around 0° or 
180°. If the optimization algorithm might deal with angles at around 0° it is important that 
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the program define the angles in the scenario, so they go from 0° to 180° and 0° to  
–180°. If the program defines the angle so it goes from 0° to 360° the optimization 
algorithm will get confused because of the huge bump in the measured angle value (0° 
to 360°) from such a small change to the actual value (small positive angle to a small 
negative angle). If the optimization algorithm may have to deal with angles at around 
180° the program must do the opposite and define the angle to go from 0° to 360°. 
Once the program decides how to define the angle it must remain consistent for each 
sensor throughout the calculation. Tables D-2 and D-3 demonstrate that the program 
does this correctly. 

The experiment shown in Figure D-1 can be modified so that instead of being in the X- 
and Y-directions, the problem can be defined in the X- and Z-directions. Then testing 
can be performed to see if the algorithm can correctly perform this experiment when 
elevation angle measurements are used instead of azimuth angles, and when the 
scenario is expanded so it is in 3-D instead of 2-D. Table D-3 shows the results of this 
modified experiment in the 2-D of interest (X- and Z-directions). Table D-4 shows the 
results of this experiment for 3-D (Y-direction). Once again, the results were identical 
whether the program models EO/IR angle sensors or SIGINT AOA sensors. Therefore, 
the SIGINT AOA sensors were not shown because they were redundant. 

Table D-3. Results of the Experiment in Figure D-1 When the Scenario is Changed to be in the X- 
and Z-Directions and the Operator is Using EO/IR Angle Sensors to Measure the Elevation Angle 
to the Target 

Elevation 
Uncertainty 

(radians) 

Sensor 1 
Distance 

(m) 

Sensor 2 
Distance 

(m) 

Uncertainty 
from Sensor 1 

(m) 

Expected 
from 

Sensor 1 
(m) 

Uncertainty 
from 

Sensor 2 
(m) 

Expected 
from 

Sensor 2 
(m) 

0.0001 1,000 1,000 0.0999 0.1 0.0999 0.1 
0.0001 1,000 –1,000 0.0999 0.1 0.0999 0.1 
0.0001 –1,000 1,000 0.0999 0.1 0.0999 0.1 
0.0001 –1,000 –1,000 0.0999 0.1 0.0999 0.1 
0.005 1,000 1,000 4.9961 5.0 4.9961 5.0 

0.0001 70,000 1,000 6.9944 7.0 0.0991 0.1 
0.0001 1,000 70,000 0.0999 0.1 6.9910 7.0 
0.0001 70,000 7,000 6.9944 7.0 0.6994 0.7 
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Table D-4. Results from the Elevation Angle Experiment Shown in Table D-3 with the Results 
Shown for 3-D (Y-Direction) 

Elevation 
Uncertainty 

(radians) 

Sensor 1 
Distance 

(m) 

Sensor 2 
Distance 

(m) 

3-D 
Uncertainty 

(m) 

Expected  
3-D 

Uncertainty 
(m) 

0.0001 1,000 1,000 6.4E-13 0 
0.0001 1,000 –1,000 7.4E-13 0 
0.0001 –1,000 1,000 5.2E-13 0 
0.0001 –1,000 –1,000 6.0E-13 0 
0.0050 1,000 1,000 6.6E-13 0 
0.0001 70,000 1,000 6.6E-04 0 
0.0001 1,000 70,000 4.6E-13 0 
0.0001 70,000 7,000 4.2E-04 0 

 
As seen in Tables D-3 and D-4, the program seems to perform this 3-D calculation 
correctly. As with the 2-D azimuth experiment, the program finds values that are almost 
identical to the expected ones for the uncertainties in the X- and Z-directions. Also as 
expected, the program finds uncertainties that are basically zero for the Y-direction in 
this 3-D problem.  

This experiment demonstrates that the program can correctly model EO/IR angle 
sensors as well as SIGINT sensors using AOA. However, is there a way to expand this 
experiment to test SIGINT systems using frequency difference of arrival (FDOA) or time 
difference of arrival (TDOA) to find the location of the sensor? 

It may be possible to expand this experiment to FDOA sensors because when FDOA 
sensors measure frequency shift, they are actually measuring values that depend on 
the angles between the sensors and the emitters. Therefore, instead of measuring the 
azimuth from the sensor to the emitter directly, FDOA measurements are indirectly 
measuring something that is related to the angle between the velocity vector and the 
vector from the emitter to the sensor. Because the sensors are measuring something 
that only indirectly relates to the angles of interest, there are still some issues that we 
must address to make the scenario similar to what is shown in Figure D-1. 

The first problem with trying to make a scenario similar to Figure D-1 for FDOA sensors 
is that FDOA sensors cannot directly measure a shift in frequency. Instead, FDOA 
sensors measure the difference in frequency shifts as measured by one sensor and 
compared to another. This makes isolating different FDOA measurements difficult. But 
what would happen if one of the FDOA sensors was actually mounted on the asset that 
has the RF emitter? Such a scenario probably would not make sense in real life; 
however, the MUSTC algorithm is so versatile that it can work with this type of scenario 
anyway. If a sensor were to be mounted on the same asset as the emitter the difference 
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in frequency between the external sensor’s measurement and the measurement of the 
sensor that is mounted on the emitter would be given by 

 ∆𝐹𝐹 =  𝑓𝑓𝑐𝑐
|𝑣𝑣| 𝑐𝑐𝑐𝑐𝑐𝑐(𝛼𝛼)

𝑐𝑐
. (D-1) 

Here, ΔF is the change in frequency between the sensor mounted on the emitter and the 
sensor that is mounted elsewhere, f0 is the base frequency, v is the velocity of the 
sensor, α is the angle between the vector from the sensor to the target and the velocity 
vector, and c is the speed of light.  

Additionally, in creating an FDOA scenario similar to the AOA scenario shown in  
Figure D-1, the frequency difference as measured by Sensor 1 must be independent of 
the frequency difference as measured by Sensor 2. Not only should they be 
independent, but they should be set up so that one sensor only measures the TLE in 
one direction while the other sensor only measures the TLE in the other direction. This 
type of geometry can be achieved by setting the velocities of each sensor such that they 
are perpendicular to each other and to the location vectors between the sensors and the 
emitter. The velocity vector for Sensor 1 should only be in the Y-direction and the 
velocity vector for Sensor 2 should only be in the X-direction. 

We would like to add a small perturbation to the azimuth angle between the location of 
Sensor 1 and the location of the emitter, as was done in the AOA and EO/IR angle 
examples. However, what frequency measurement perturbation should be chosen to 
create the desired azimuth angle perturbation? Figure D-2 shows the geometry when 
adding a small perturbation angle (Δθ) between the transmitter and Sensor 1. 

 
Figure D-2. Geometry when adding an uncertainty in azimuth angle to the test FDOA setup 

As seen in Figure D-2, when adding an uncertainty to the angle between one of the 
external sensors and the item of interest (Δθ), the angle α that must be used in  
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Equation (D-1) to find the frequency that the external sensor will measure will be equal 
to 90° + Δθ. Since the velocity was perpendicular to the vector from the sensor to the 
target, the change in frequency before the uncertainty angle was added will be 0. A 
similar diagram could be made for Sensor 2. The only difference with Sensor 2 being 
that the vector between the external sensor and the transmitter would be in the Y-
direction and the velocity would be in the X-direction. 

Therefore, we must determine a frequency shift to go with the desired azimuth angle 
perturbation (Δθ) to use in the FDOA experiment. Remember that the TLE for the target 
of interest would be equal to the perturbation angle multiplied by the distance between 
the transmitter and the external sensor. Also, because the geometries are 
perpendicular, the azimuth perturbation for Sensor 1 should only affect the TLE in one 
direction and the azimuth perturbation for Sensor 2 should only affect the TLE in the 
other direction. What frequency measurement uncertainty should be added to force the 
desired azimuth angle uncertainty? Knowing that α for the scenario should be equal to 
90° + Δθ, those values can be plugged into Equation (D-1) to get a formula for the 
desired frequency measurement uncertainty (dΔF): 

 𝑑𝑑∆𝐹𝐹 =  𝑓𝑓𝑐𝑐
|𝑣𝑣| 𝑐𝑐𝑐𝑐𝑐𝑐(90𝑜𝑜+∆𝜃𝜃)

𝑐𝑐
. (D-2)

   

Therefore, if we want to set an azimuth angle uncertainty in one direction for our FDOA 
experiment, all we need to do is specify that the frequency uncertainty as measured by 
one of the external sensors should be equal to Equation (D-2). 

This experiment does have one more complication to address. In a real-life situation, 
the SIGINT systems would be able to compare the frequency difference measurement 
from Sensor 1 directly to the Sensor measurement of Sensor 2 in addition to measuring 
the difference between the sensor mounted on the emitter and the measurements made 
by Sensors 1 or 2. Normally, this additional measurement would be beneficial as more 
measurements can create a more accurate location measurement. However, it is not 
beneficial to this specific scenario as it would cause the TLE in one direction to no 
longer be independent of the geometry from the sensor that is supposed to measure the 
TLE in the other direction. Fortunately, the MUSTC algorithm is versatile enough that 
this problem can be fixed. The sensor inclusion number parameter can be used to 
inform the program that Sensor 1 cannot directly communicate with Sensor 2. This 
means that the program will understand that the frequency difference between Sensor 1 
and Sensor 2 will not be available for this test.  

With these issues addressed, it is possible to perform a test for SIGINT sensors using 
FDOA. As was the case for the AOA SIGINT experiment, an azimuth uncertainty was 
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selected ahead of time for each sensor. Unlike the AOA SIGINT, for the FDOA 
experiment, the angle uncertainty was indirectly added via an uncertainty in frequency 
as calculated by Equation (D-2). This azimuth uncertainty was the only thing that drove 
the TLE in each direction. Table D-5 shows the results for this test. 

Table D-5. Results from the FDOA Verification and Validation (V&V) Test 

Azimuth 
Uncertainty 

(radians) 

Sensor 1 
Distance 

(m) 

Sensor 2 
Distance 

(m) 

Uncertainty 
from Sensor 1 

(m) 

Expected 
from 

Sensor 1 
(m) 

Uncertainty 
from Sensor 2 

(m) 

Expected 
from 

Sensor 2 
(m) 

0.0001 1,000 1,000 0.0999 0.1 0.0999 0.1 
0.0001 1,000 –1,000 0.0999 0.1 0.0999 0.1 
0.0001 –1,000 1,000 0.0999 0.1 0.0999 0.1 
0.0001 –1,000 –1,000 0.0999 0.1 0.0999 0.1 
0.005 1,000 1,000 4.9961 5.0 4.9961 5.0 

0.0001 70,000 1,000 6.9944 7.0 0.0991 0.1 
0.0001 1,000 70,000 0.0999 0.1 6.9900 7.0 
0.0001 70,000 7,000 6.9944 7.0 0.6994 0.7 

 
As seen in Table D-5, the uncertainties in the two directions matches the expected 
values. This adds confidence that the FDOA algorithm is performing as expected and 
demonstrates that the program’s sensor-inclusion function is working. The only major 
sensor types left to examine are SIGINT systems using TDOA and photon counting 
detectors. 

Is it possible to make a similar test for TDOA SIGINT systems? In some ways, 
performing TDOA is easier than FDOA. This is because, unlike FDOA and AOA that 
either directly or indirectly measure the angles in the scenario, TDOA sensors indirectly 
measure the distance between the transmitter and sensors. Therefore, to add an 
uncertainty in location in one direction, can an uncertainty in time measurement be 
added to the sensor located in that direction that is equal to the desired distance divided 
by the speed of light? Unfortunately, there are a couple of complications that must be 
addressed first. 

As with the FDOA scenario, the first thing that must be done for this scenario is to place 
a sensor on the asset that has the transmitter. In this way, the SIGINT systems can 
directly measure the time it takes for the radiation to travel from the transmitter to both 
sensors. The second thing is to use the sensor-inclusion number parameter to once 
again inform the algorithm that Sensor 1 cannot directly communicate with Sensor 2. 
The only time differences that will be available in this scenario will be the distance from 
the transmitter to Sensor 1 divided by the speed of light and the distance from Sensor 2 
to the transmitter divided by the speed of light. 
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To increase the TLE of the object of interest in the X-direction, it is only necessary to 
add a time uncertainty to the sensor responsible for this part of the TLE equal to the 
TLE value divided by the speed of light. Unfortunately, this will also impart a TLE in the 
Y-direction. Figure D-3 highlights this point. 

 
Figure D-3. Perturbation in time measurement for one sensor can add a TLE in both directions 

As seen in Figure D-3, a perturbation to the Sensor 1 measurement can add a TLE in 
both the X- and Y-directions. However, the uncertainty in the Y-direction in Figure D-3 is 
much smaller than the uncertainty in the X-direction. By keeping the perturbation to 
each sensor measurement small, it should still mostly only affect the TLE in one 
direction. While this issue is easy to mitigate, there is another issue that presents more 
of a problem. Figure D-4 highlights this second issue. 
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Figure D-4. Location ambiguity that could affect the TDOA experiment 

As seen in Figure D-4, because a TDOA sensor was installed on the transmitter, each 
external sensor can now directly measure the distance between itself and the 
transmitter. All locations that are possible based on the Sensor 1 measurement can be 
represented as a circle centered on Sensor 1; a similar circle can be drawn around 
Sensor 2. A SIGINT system using TDOA in this scenario would determine that the 
emitter is located where the circles from Sensors 1 and 2 intersect. Figure D-4 shows 
that, because there are two circles, they intersect at two locations. This represents a 
location ambiguity that could confuse the algorithm. 

In a real-world situation, SIGINT systems might add AOA measurements to remove the 
ambiguity. Such an addition would successfully remove the ambiguity, but it would also 
make it more difficult to estimate the TLE for this scenario. Real SIGINT angle sensors 
typically have much less precision than SIGINT time or frequency measurements. Real 
systems will often use the AOA measurement to remove the ambiguity while using the 
TDOA and/or FDOA measurements to find the exact sensor location. Because of this, 
the MUSTC program allows users to add weights to the different sensors and inform the 
program as to which sensor(s) should take priority. In this way, the MUSTC algorithm 
can be configured so that the TDOA and/or FDOA measurements take priority over the 
less accurate AOA measurements.  

To complete this test, a single AOA sensor was added but the weight of the sensor was 
set to 0.01. This means that TDOA will have 100× more influence on the TLE than the 
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AOA measurement. The AOA may have a small effect on the final TLE, but the TDOA 
measurements should dominate the results. Table D-6 shows the results of this test. 

Table D-6. Results from the TDOA Test 

Perturbation 
Added Sensor 1 

(m) 

Uncertainty 
from Sensor 1 

(m) 

Perturbation 
Added Sensor 2 

(m) 

Uncertainty 
from Sensor 2 

(m) 
0.0 0.0001 0.1 0.0991 
0.1 0.0991 0.0 0.0001 
0.1 0.0991 0.1 0.0991 
0.0 0.0022 –0.5 0.4996 
–0.5 0.4996 0.0 0.0022 
–0.5 0.4996 –0.5 0.4996 

 
As seen in Table D-6, despite the AOA sensor, the TLE in each direction matches the 
time perturbation that was added to each external sensor divided by the speed of light. 
This test demonstrates that the program can successfully estimate the TLE for SIGINT 
systems using TDOA, and that the sensor weight function is working as expected. 

The program might have been able to properly work even without the AOA sensor 
because the actual location and not the alternate location is used for the initial guess 
when the algorithm starts to use the optimization algorithm. However, as the algorithm 
adds larger perturbations it might be possible for the system to select the alternate 
location instead of the desired location for the asset of interest, making the results 
unstable. It is a good idea to try to avoid situations where there are location ambiguities. 
While the program tries to detect these scenarios, it might not always be successful. 

Having demonstrated through testing that the MUSTC program can be used to find the 
TLE for EO/IR angle sensors and SIGINT systems, the next step is to demonstrate that 
the program can find TLE for photon counting detectors measuring the intensity of light 
from a known optical emitter. The MUSTC program assumes that the photon counting 
detectors measure the distance by measuring how the intensity of the radiation that the 
counters detect decreases as the distance between the sensor and the emitter 
increases. Because the photon counting detectors indirectly measure the distance from 
the sensor to the emitter, a test similar to the test for TDOA SIGINT sensors is needed. 

One issue with performing a similar test with the photon counting detector as was done 
with the SIGINT TDOA detector is that it is not possible to set the uncertainty in making 
a photon counting measurement to an arbitrary number. For TDOA SIGINT sensors, the 
uncertainty in measuring the time depends on the signal-to-noise ratio (SNR) of the RF 
measurement. To change the time uncertainty, the power that the target transmits must 
be increased or decreased to increase or decrease the SNR. However, counting 
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photons follows a Poisson distribution. In Poisson distributions, the standard deviation is 
always equal to the square root of the mean. The uncertainty cannot be set to an 
arbitrary number; therefore, another way was needed to set the total uncertainty in the 
photon counting to an arbitrary number without changing the way Poisson distributions 
work. 

The solution was to create a flag in the program that turns off the uncertainty in counting 
the photons. When this flag is set, the program assumes that the detector can somehow 
correctly count the number of photons and the algorithm will no longer automatically add 
a somewhat arbitrary (as far as this V&V test is concerned) uncertainty to the scenario. 
This flag has been marked as being for testing purposes only and should not be used 
for real-world problems. By using this flag, the affects the Poisson distribution has on 
the TLE can be avoided. However, a second test was needed to ensure that for more 
realistic scenarios, the program handles Poisson distributions correctly. An additional 
test was therefore performed to analyze the performance of the Poisson distribution 
versus a normal one; the results of that test are discussed later on in this section. 

Once the Poisson distribution is overridden so that the uncertainty in counting photons 
is arbitrarily set to zero, the program will no longer automatically add this uncertainty to 
the scenario. However, we still need to find a way to explicitly add a desired uncertainty 
to the photon counting detector’s measurement so we can confirm that such an 
uncertainty creates a TLE that makes sense. Unlike SIGINT and EO/IR angle sensors 
with LRF, there are variables other than the direct sensor measurement or the location 
of the reference assets that can affect the final location measurement that can have 
uncertainty added.  

For example, uncertainty can be added to the efficiency of the photon counting detector. 
If the efficiency of the detector is lower than expected the measurement from a known 
light sensor would be less than expected for a light source from that distance. This 
might confuse the system and make it assume that the light source was farther away 
than it actually was. In this way, an uncertainty on the measurement can be add so that 
it creates a TLE that can be independently calculated. At the same time, this will also 
prove that the software can handle uncertainties on how the sensor measures 
something other than direct uncertainties in the sensor’s final measurement. 

How much uncertainty should be added to the photon efficiency to produce a given 
TLE? Recall from Equations (3) and (4) that this uncertainty depends on parameters 
such as the distance, the power transmitted, the visibility, and the dark current/shot 
noise. If the noise is set to zero and the visibility to an arbitrarily high number, the 
photons the system will count will be equal to 
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 𝑝𝑝 = 𝐸𝐸 𝑃𝑃𝑡𝑡 𝐵𝐵
𝑑𝑑2

. (D-3) 

Here, Pt is the power transmitted, d is the distance, E is the efficiency of the detector, 
and B is a constant that includes the energy of the photon, the transmittance of the 
optics attached to the detector, the square of the effective area of the detector, and so 
forth. 

To ensure a given error in the distance between the emitter and the detector, what 
uncertainty should be added to the efficiency of the detector? To answer that question, 
use this equation: 

 𝐸𝐸 𝑃𝑃𝑡𝑡 𝐵𝐵
(𝑑𝑑+∆𝑑𝑑)2 = (𝐸𝐸+∆𝐸𝐸) 𝑃𝑃𝑡𝑡 𝐵𝐵

𝑑𝑑2
. (D-4) 

Here, Δd is the desired or set error in distance and ΔE is the uncertainty in the detector 
efficiency. Solving for the uncertainty in detector efficiency leads to the following 
equation: 

 ∆𝐸𝐸= 𝐸𝐸 � 𝑑𝑑2

(𝑑𝑑+∆𝑑𝑑)2 − 1�. (D-5) 

Equation (D-5) calculates the uncertainty in the photon detector efficiency that would 
equate to a set error in the distance. If a test were run where all uncertainties were set 
to zero except the photon detector efficiency, then the uncertainty in each direction 
should be equal to the Δd value that was fed into Equation (D-5). Table D-7 shows the 
results of such a test. 
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Table D-7. Uncertainty in the X- and Y-Directions for the Errors in Each Direction Set Via the 
Uncertainty in the Photon Counting Detector Efficiency 

Set Error in 
X-Direction 

(m) 

Calculated 
Uncertainty in 

X-Direction  
(m) 

Set Error in  
Y-Direction 

(m) 

Calculated 
Uncertainty in 

Y-Direction  
(m) 

0.10 0.099944839 –0.10 0.099944839 
–0.10 0.099944839 0.10 0.099944839 
1.00 0.999459461 1.00 0.999459461 
3.00 2.981984229 3.00 2.981984229 
5.00 4.965296625 5.00 4.965296625 
10.00 9.838557183 10.00 9.838557183 
1.00 0.999488633 3.00 2.981974452 
1.00 0.999686443 5.00 4.965250931 
1.00 1.00297647 10.00 9.838199269 
3.00 2.981974452 1.00 0.999488633 
5.00 4.965250931 1.00 0.999686443 
10.00 9.838199269 1.00 1.00297647 

 
As seen in Table D-7, the uncertainty in each direction as calculated by the MUSTC 
program closely matches the absolute value of the error that was set by changing the 
uncertainty in the photon detection efficiency. The differences in Table D-7 are likely 
due to round-off errors and the need to add an AOA SIGINT sensor with a small weight 
as was required for the SIGINT TDOA test. 

Table D-7 demonstrates that the photon detection sensor model seems to be working 
as expected and that the program can handle a variable that indirectly produces an 
uncertainty on the measurement, and not just an uncertainty on the measurement itself. 
However, can the program handle an uncertainty on a variable related to the target 
instead of the sensor? 

Unlike the other sensor types that have been explored, for photon counting detection 
sensors there is a variable related to the target that can affect the sensor measurement. 
That variable is the uncertainty in the amount of power that the light source emits. By 
how much should the power emitted change to try to set an error in location? Adding the 
error to the power instead of the efficiency changes Equation (D-4) into: 

 𝐸𝐸 𝑃𝑃𝑡𝑡 𝐵𝐵
(𝑑𝑑+∆𝑑𝑑)2 = 𝐸𝐸 (𝑃𝑃𝑡𝑡+∆𝑃𝑃) 𝐵𝐵

𝑑𝑑2
. (D-6) 

Here, ΔP is the added error to the amount of power the transmitter transmits.  
Equation (D-5) will therefore become 

 ∆𝑃𝑃= 𝑃𝑃𝑡𝑡 �
𝑑𝑑2

(𝑑𝑑+∆𝑑𝑑)2 − 1�. (D-7) 
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A similar test to the one shown in Table D-7 was performed but the uncertainty was 
added to the power and not the photon detection efficiency. The results of this test are 
shown in Table D-8. Unlike Table D-7, independent errors to the X- and Y-directions 
cannot be added. Because power affects both sensors, the same error must be induced 
in both directions. 

Table D-8. Uncertainty in the X- and Y-Directions for the Errors in Both Directions Set Via the 
Uncertainty in the Power that the Transmitter Transmits 

Set Error Both  
Directions  

(m) 

Calculated Uncertainty  
X-Direction  

(m) 

Calculated Uncertainty  
Y-Direction  

(m) 
0.10 0.099944839 0.099944839 

–0.10 0.099944839 0.099944839 
1.00 0.999459461 0.999459461 
3.00 2.983650474 2.983650474 
5.00 4.963629499 4.963629499 

10.00 9.855268966 9.855268966 
 
As seen in Table D-8, the uncertainties in each direction match the error that was set 
using the uncertainty in power. Once again, this confirms that the photon counting 
detection model in the MUSTC program is working as expected. This also proves that 
targets that have parameters that could affect the TLE can be correctly modeled. 

The tests thus far demonstrate that the program can handle uncertainties added to each 
sensor measurement as expected. The uncertainty in the sensor’s ability to make an 
accurate measurement can affect the TLE; however, in the real-world uncertainties the 
location of the reference assets often has a greater impact on the total TLE of a 
position, navigation, and timing (PNT) measurement. The final test will show how an 
increase in location uncertainty can drive the TLE in a more realistic scenario. 

For this final test, an experiment with two reference assets is set up to allow the location 
uncertainty to have as large of an effect on the TLE as possible. The uncertainty of all 
other parameters except location uncertainty in this experiment were set to zero. The 
transmitter/target of interest was located a fair distance away from the sensors. This 
represents a much more realistic scenario. Figure D-5 shows this experimental setup. 
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Figure D-5. Location uncertainty experiment 

As seen in Figure D-5, the scenario includes two sensors that are 200 m apart and 
moving towards an emitter that is 1 km away at 10 m/s. There are only two sensors, so 
the emitter was placed on the ground to remove possible ambiguities (although the 
sensors are at an altitude of 10 m), and the systems are using TDOA, FDOA, and AOA 
to find the emitter location.  

To see how an ever-increasing uncertainty in the location of a sensor can lead to an 
increasing TLE, a series of increasing uncertainties were added to the location of one or 
both sensors. For the first test, uncertainties in the location of Sensor 1 in just the X-
direction were added. For the second test, uncertainties in the location of Sensor 1 were 
added in just the Y-direction. After that, uncertainties in both the X- and Y-directions for 
Sensor 1 were added. Finally, uncertainties in both the X- and Y-directions for  
Sensors 1 and 2 were added. Figure D-6 plots the results of these experiments. 
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Figure D-6. Various results from the test for the scenario shown in Figure D-5 

The upper-left graph in Figure D-6 shows the TLE in the X- and Y-directions as a 
function of the uncertainty that was added to the location of Sensor 1 in the X-direction. 
The solid-red-line is the TLE in the X-direction while the dotted-black-line is the 
uncertainty in the Y-direction. The TLE should increase as more uncertainty is added to 
the sensor location.  

The upper-right graph in Figure D-6 plots the TLE in both directions as uncertainty is 
added to the location of Sensor 1 in the Y-direction. The algorithm determined that 
adding uncertainty in the Y-direction yields a higher TLE than was seen when an 
uncertainty was added in the X-direction. As with the upper-left graph, the upper-right 
graph shows that the TLE increases as more uncertainty is added—this is expected. 

The lower-left graph in Figure D-6 plots the TLE in both directions as uncertainty in the 
location of Sensor 1 is added in both the X- and Y-directions. Since the TLE from 
uncertainties added in the Y-direction was larger than those added in the X-direction—
and because the uncertainties in each direction are assumed to be independent—it is 
expected that the uncertainties added to the Y-direction will dominate the total 
uncertainties plotted in the bottom-left graph of Figure D-6. Indeed, it is the case that the 
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uncertainties plotted in the lower-left graph are similar but slightly larger than the 
uncertainties in the upper-right graph. 

The graph in the bottom right in Figure D-6 shows the TLE when uncertainties in the X- 
and Y-directions are added to both sensors. The setup as shown in Figure D-5 is 
symmetrical; therefore, the same TLE is expected whether the uncertainties are being 
added to Sensor 1 or Sensor 2. Since these uncertainties are assumed to be 
independent, the total uncertainty should be equal to the square root of the sum of the 
square of either uncertainty. It is expected that the numbers plotted in the lower-right 
graph in Figure D-6 should be a factor of √2 larger than the numbers plotted in the 
lower-left graph, and this seems to be the case. 

The graphs in Figure D-6show that the TLE in the X-direction is around 10× larger than 
the TLE in the Y-directions in all cases. Further, the TLE in both the X- and Y-directions 
is 10× higher when adding an uncertainty to a reference asset in the Y-direction than if it 
were added to the X-direction. This scenario is more complicated than the others, and it 
can be more difficult to tell what TLE the algorithm should find; however, a back-of-the-
envelope calculation can be performed to see if these results make sense. 

The SIGINT sensors are using AOA, TDOA, and FDOA at the same time to find the 
emitter location. AOA involves directly measuring the angle to the emitter while FDOA 
involves indirectly measuring the angle to the sensor via a change in the Doppler shift. 
TDOA is the only algorithm that involves indirectly measuring the distance to the 
sensors via measuring the time difference between measurements. There are twice as 
many angle-dependent measurements than distance measurements for this scenario; 
therefore, the difference in angle should dominate the final TLE. How do the angle 
measurements change when adding an uncertainty to the sensor location in the X- or Y-
directions? Figure D-7 shows how the azimuth angle between the emitter and the 
sensor changes (θ to θ’) as uncertainty is added in the X- and Y-directions.  

 
Figure D-7. Angle changes as errors are added in the X- and Y-directions to the sensor location 
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When adding an uncertainty equal to 5 m to the sensor’s location in the X-direction, the 
new angle (θ’) becomes equal to 𝑡𝑡𝑡𝑡𝑛𝑛−1 �1000+5

100
� ≅ 84.32𝑐𝑐. When adding that uncertainty 

to the Y-direction, then 𝑡𝑡𝑡𝑡𝑛𝑛−1 � 1000
100+5

� ≅ 84.01𝑐𝑐. The starting angle is equal to 

𝑡𝑡𝑡𝑡𝑛𝑛−1 �1000
100

� ≅ 84.29𝑐𝑐. Thus the change in angle is larger when uncertainty is added in 
the Y-direction than in the X-direction. It makes sense that, in general, the TLE should 
be larger when adding an uncertainty in the sensor location in the Y-direction than when 
adding it to the X-direction, but does it make sense that it is about 10× larger?  
Figure D-8 shows the error in the emitter location that is incurred because of an 
uncertainty in an angle measurement. 

 
Figure D-8. Error in the measured emitter location after adding an error to the angle measured 
by one sensor 

As seen in Figure D-8, variable A is defined as being equal to the distance in the Y-
direction from the erroneous location of the emitter and the location of the sensor whose 
angle measurement has an uncertainty. Variable B is this distance in the X-direction. 
This means that tan(𝜃𝜃′) = 𝐵𝐵

𝐴𝐴
. Likewise, tan(𝜃𝜃) = 𝐵𝐵

𝑐𝑐−𝐴𝐴
 where, s is the separation between 

the sensors. Solving these equations for A and B will give Equations (D-8) and (D-9): 

 𝐴𝐴 =  𝑐𝑐

1+𝑡𝑡𝑡𝑡𝑡𝑡 (𝜃𝜃′)
𝑡𝑡𝑡𝑡𝑡𝑡 (𝜃𝜃)

, (D-8) 

 𝐵𝐵 =  𝐴𝐴 𝑡𝑡𝑡𝑡𝑛𝑛 (𝜃𝜃′). (D-9) 
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Plugging in the angles found for an uncertainty in the X-direction leads to 𝐴𝐴 ≅ 99.75 and 
𝐵𝐵 ≅ 1002.5. For an uncertainty in the Y direction, 𝐴𝐴 ≅ 102.44 and 𝐵𝐵 ≅ 975.6. Based on 
this back-of-the-envelope calculation, it is possible to estimate that when adding an 
uncertainty of approximately 5 m to the location of a sensor in the X-direction, the error 
in the emitter location is around 0.25 in the Y-direction and around 2.5 in the X-direction. 
When adding this uncertainty to sensor location in the Y-direction, the target location 
error is around 2.44 in the Y-direction and around 24.4 in the X-direction. 

Using these calculations, it can be concluded that the smallest TLE would be the TLE in 
the Y-direction when an uncertainty is added to the sensor location in the X-direction. 
The TLE in the X-direction when adding an uncertainty to the sensor location in the X-
direction is around 10× larger than the TLE in the Y-direction. When the uncertainty is 
added to the Y-direction the TLE in both the X-and Y-directions increases further. This 
means that the TLE in the Y-direction after adding an uncertainty in the Y-direction is 
approximately the same as TLE in the X-direction when an uncertainty is added to the 
X-direction. However, the TLE in X-direction after adding the uncertainty to the Y-
direction is a further 10× larger than the TLE in the Y-direction. These back-of-the-
envelope calculations help to validate the TLE values that the algorithm calculates when 
an uncertainty is added to a reference asset’s location. 

Thus far, the tests demonstrate how program can model uncertainties with a normal 
distribution. However, is it possible to model uncertainties with different distributions? As 
previously mentioned, photon counting detectors follow a Poisson distribution. The two 
key differences between normal and Poisson distributions are that in Poisson 
distributions, the standard deviation is equal to the square root of the mean and the 
probability density functions are different. 

The software the MUSTC algorithm uses to calculate the probability density function for 
Poisson distributions is slower than for normal distributions when the mean, and 
therefore the standard deviation, becomes large. Fortunately, as the mean increases, 
the Poisson density function should more closely match a normal distribution density 
function. In response, for large means, the MUSTC function will switch to a normal 
distribution even when modeling an uncertainty that matches a Poisson distribution. 
How large does the mean have to become before it should switch to a normal 
distribution? Can this functionality be used to highlight the difference between values 
when using a Poisson versus a normal distribution? 

To answer this, a new test scenario is needed. For this test, all uncertainties were set to 
zero except the uncertainty in the sensor’s ability to count the photons. The program 
was then allowed to model how uncertainties in the number of photons the detector 
counts can affect the TLE.  
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Since the standard deviation is the square root of the mean for Poisson distributions, 
the only way to change the standard deviation is to increase the mean number of 
photons detected. By setting a minimum mean count value for the program to switch 
from Poisson to normal distribution, for each mean count value the program was forced 
to use Poisson and then normal distribution. The program will not use a normal 
distribution if the photon count is less than 16. This is because the program will 
calculate the error when the measure goes from –4× the standard deviation to +4× the 
standard deviation from the mean. If the mean counts were less than 16, then –4× the 
standard deviation from the mean would be less than zero. Because the program 
cannot handle negative photon counts, such an exercise would not make sense. 

Figure D-9 shows the uncertainty in location in a single direction (the uncertainty in 
location in the other direction show the same results) as a function of the mean number 
of counts the photon counter would measure. The mean number of counts was varied 
by changing the integration time. 

 
Figure D-9. Uncertainty in location caused by the uncertainty in using photon detector sensors 
to find the emitter location as a function of the mean number of photons the detector would 
measure 

As one can see in Figure D-9, when the mean count is set to around 16 (the smallest 
mean number of photons detected that was plotted on the graph), the program 
calculates a lower TLE when using the Poisson distribution than when using normal 
distribution. As the mean number of counts increases, the value using a Poisson 
distribution becomes closer to the value the program gets when using a normal 
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distribution. When the mean number of counts becomes equal to 100 or more, the 
program can safely use a normal distribution instead of a Poisson distribution and still 
get the same TLE estimation. The behavior shown in Figure D-9 is expected and is 
evidence that the program is working.  

Although it is possible that the MUSTC program still contains errors, the results from 
this Appendix D add confidence that the program is working correctly. In the future and 
as time allows, it is recommended that additional algorithm testing be performed to 
ensure calculations are still being performed as expected. 
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LIST OF ACRONYMS 
2-/3-D two-/three-dimensional 
AOA angle of arrival 
CEP circular error probability  
CEP50 50% Circular Error Probability 
COMINT Communications Intelligence 
DAC DEVCOM Analysis Center 
dB decibel 
DEVCOM U.S. Army Combat Capabilities Development Command 
DLL Dynamic Linked Library 
DOD Department of Defense 
ELINT Electronic Intelligence 
EO/IR electro-optical/infrared 
FDOA frequency difference of arrival 
GPS global positioning system 
HPC high-performance computing 
INS inertial navigation system 
LRF laser range finder 
MIT Massachusetts Institute of Technology 
MUSTC Multipurpose Universal Simplified TLE Calculator 
PNT position, navigation, and timing 
RF radio frequency 
SIGINT Signals Intelligence 
SNR signal-to-noise ratio 
TDOA time difference of arrival 
TLE target location error 
V&V verification and validation 
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