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Executive Summary 

The ability to rapidly design materials specifically tailored to particular applications 
hinges on the use of predictive material models. Over the last few decades, 
multiscale modeling has emerged as the leading paradigm for constructing material 
models. This report summarizes efforts toward development of methodologies in 
multiscale modeling carried out as part of the US Army Combat Capabilities 
Development Command Army Research Laboratory’s cross-cutting effort, 
Enterprise for Multiscale Research of Materials spanning 2011 to 2021 (PE 
611102.AA7.13 “Multiscale Modeling for Novel Materials”). This effort included 
coupled research with two 5-year Collaborative Research Alliances (CRAs): the 
Materials in Extreme Dynamic Environments CRA and the Multi-
Scale/Multidisciplinary Modeling of Electronic Materials CRA (PE 
611104.AB7.09 “Multiscale Modeling of Materials Center”). 

Three research thrusts constituted the overall effort. The overarching goal of the 
first research thrust was to construct computational methodologies to facilitate data 
transfers between at-scale models in a multiscale model hierarchy to allow 
construction of multiscale models by directly linking at-scale models. A major 
contribution of this thrust was development of a flexible modular software 
environment for scale bridging.  

The second thrust focused on developing new approaches to enable a first-
principles exploration of the relationship between the atomic-scale structural 
features of real materials and their macroscopic properties. The thrust yielded 
significant enhancements of a leading large-scale first-principles software suite to 
substantially reduce computational requirements for condensed phase systems, 
while extending the functionality of the package to address Army problems. 

Finally, the third thrust was dedicated to new methodologies for mesoscale 
modeling of small-scale plasticity, the motion of dislocations within materials. The 
thrust led to development of a unique computational capability allowing us to fuse 
state-of-the-art computational models of small-scale plasticity with finite elements. 
This capability permits accurate modeling of small-scale plasticity in the presence 
of microstructure. 
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1. Introduction 

Our ability to rapidly design materials specifically tailored to applications rests on 
predictive material models. Such models allow us to establish direct linkages 
between material structure, processing, and performance. Over the last few 
decades, multiscale modeling has emerged as the leading paradigm for developing 
high-fidelity material models. In multiscale modeling, one starts by identifying the 
relevant scales (spatial and temporal) along with the dominant phenomena 
operating at these scales; then, at-scale models of these phenomena are constructed; 
and finally, at-scale models are combined into a single multiscale model.  

The focus of the US Army Combat Capabilities Development Command 
(DEVCOM) Army Research Laboratory’s cross-cutting effort, Enterprise for 
Multiscale Research of Materials (EMRM), spanning 2011 to 2021, was on 
research toward developing novel methodologies in multiscale modeling (PE 
611102.AA7.13 “Multiscale Modeling for Novel Materials”). The effort included 
coupled research with two 5-year Collaborative Research Alliances (CRAs): the 
Materials in Extreme Dynamic Environments CRA and the Multi-
scale/Multidisciplinary Modeling of Electronic Materials CRA (PE 
611104.AB7.09 “Multiscale Modeling of Materials Center”). Three specific 
research thrusts were pursued: one dedicated to methodologies for bridging scales 
and two devoted to crucially important at-scale models.  

The overarching goal of the first thrust was to construct methodologies (numerical 
methods and algorithms) to facilitate data exchanges between at-scale models in a 
multiscale model hierarchy. At the onset of the project, it was recognized that the 
advent of peta- and exa-scale computing offered new opportunities to allow 
construction of multiscale models by directly linking at-scale models. Yet, at the 
time, few tools and software libraries existed to enable seamless data exchanges 
between at-scale models, especially on extreme-scale computers. In addition, it was 
recognized that such tools and libraries were crucial as enabling technologies in 
multiscale modeling. A major contribution of the first research thrust was 
development of a flexible modular software environment for scale bridging called 
the hierarchical multiscale simulation (HMS). 

The focus of the second thrust was on developing new approaches to enable a first-
principles exploration of the relationship between the atomic-scale structural 
features of real materials and their macroscopic properties. At the time of the 
inception of the project, current capabilities in quantum mechanics (QM) precluded 
real material solutions. Novel order reduction and next-generation computational 
physics algorithms were needed to expand exploration of material science problems 
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using QM approaches. The QM thrust yielded significant enhancements of a 
leading large-scale density functional theory (DFT) software suite that substantially 
reduced the computational requirements for condensed phase systems while 
extending the functionality of the package to address Army problems. This included 
an ability to provide a first-ever QM description of local stress in a material, and a 
capability to calculate accurate electron transport for systems with interfaces and 
defects.  

Finally, the third thrust was dedicated to new methodologies for mesoscale 
modeling of small-scale plasticity. Small-scale plasticity, the motion of dislocations 
within materials, affects many properties, such as strength or ductility. Small-scale 
plasticity is to a large extent affected by the presence of various microstructural 
features. Yet, at the beginning of the cross-cutting effort, existing approaches, such 
as molecular dynamics (MD) or crystal plasticity, were considered not particularly 
well suited to handle all the length scales involved. Hence, new approaches, capable 
of dealing with the discrete nature of dislocations on one hand and of attaining 
proper continuum limits on the other, were needed. The third thrust led to 
development of a computational capability that allows seamless and efficient fusion 
of state-of-the-art (SOA) computational models of small-scale plasticity with finite 
elements (FEs). Such a capability is truly unique and enables accurate modeling of 
small-scale plasticity in the presence of microstructure. 

These three thrusts are described in detail in subsequent sections. 

2. Methodologies for Scale Bridging in Multiscale Simulation 

The goal of materials design is to create new materials with desired properties and 
functionality. The successful application of a materials design concept requires the 
existence of high-fidelity material models. A material model is a logical description 
of material behavior in an external environment. Typically, two material model 
classes are considered: empirical and theory-based. An empirical material model 
directly incorporates experimental observations by means of fitting them to certain 
mathematical expressions. Therefore, an empirical model is typically valid only 
within a small range of parameters and environmental conditions covered by the 
experiments on which it has been developed. Moreover, any extrapolation outside 
that range can lead to great uncertainties as confidence intervals are notoriously 
difficult to calculate. In contrast, a theory-based model is built upon fundamental 
principles developed within or across scientific disciplines (mechanics, physics, 
chemistry, etc.). Owing to its multi-science origins, the theory-based model allows 
us to sidestep the trial-and-error character of the empirical model leading to a 



 

3 

deeper understanding of a material’s behavior. For these reasons, theory-based 
models are expected to have better predictive character.  

In the last few decades, combined theoretical, computational, and experimental 
efforts have led to emergence of a new class of material models: multiscale. The 
concept of a multiscale model is an extension of the theory-based model and aims 
to systematically analyze the material behavior from the viewpoint of all spatial 
and temporal scales controlling it. In the context of multiscale material models, 
computation plays a crucial role as a primary driver for innovation. Harnessing the 
power of high-performance computing (HPC), in particular peta- or exa-scale 
computing, for materials modeling is likely to lead to significant advances in both 
fidelity and speed of predictions. However, HPC requires not only science-based 
models, but also novel numerical methods and algorithms, in particular, numerical 
methods and algorithms for multiscale modeling capable of scalable and adaptive 
computation on emerging high-performance computers. 

Prior to the DEVCOM Army Research Laboratory (ARL) research effort 
summarized in this report, no general numerical and computational framework 
existed for development of hierarchical (sequential and concurrent) multiscale 
models on peta- and exa-scale computing environments. Most of the scale bridging 
necessary to develop multiscale models was carried out “by hand” on a case-by-
case basis, offering little to no reuse between models, and few algorithms were 
available to speed development of scale bridging for multiscale models. During the 
research effort, a review article on the current state of available multiscale 
computing software was authored with European colleagues and described the 
critical need for software and tools to aid development and evaluation of multiscale 
models on emerging HPC architectures (Groen et al. 2019). The report concluded 
that current tools for multiscale modeling were still quite immature, and algorithms 
and software for multiscale modeling were in great need of development. 

The goal of the research effort was to develop an adaptive numerical and 
computational software environment for hierarchical (sequential and concurrent) 
multiscale modeling on peta- and exa-scale computing environments, specifically 
parallel, hybrid, and distributed systems. To achieve the goal, the effort consisted 
of three complementary efforts: 1) development of adaptive algorithms to quickly 
combine both new and existing at-scale models together to form a multiscale model, 
2) development of algorithms for spatial and temporal scale bridging, and  
3) development of algorithms for surrogate modeling to expedite multiscale model 
evaluation. These research efforts were envisioned to be broadly applicable to many 
materials applications of interest to the Army. Throughout the research project, 
developed algorithms were applied to and evaluated in the context of Army-
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relevant materials modeling applications, including composite materials, energetic 
materials, and electrochemistry. 

A major contribution of the research effort was development of a flexible modular 
software environment for scale bridging, the HMS software (Knap et al. 2016). The 
HMS scale-bridging software applies an adaptive computational approach to 
combine both newly developed and existing at-scale models to form multiscale 
models well suited for evaluation on large-scale heterogeneous HPC systems. Each 
at-scale model resolves the processes at a single spatial and/or temporal scale 
relevant to the overall behavior of the system. The HMS software views a 
multiscale model as a collection of two-scale model building blocks. Each two-
scale model building block consists of an upper scale model (macroscale) and lower 
scale (microscale) model. The upper scale model acquires missing quantities 
through direct evaluation of the lower scale model. Following its evaluation, 
required data is extracted from the lower scale model to inform the upper scale 
model. By combining the two-scale model building blocks together, the HMS 
software is capable of modeling a wide variety of multiscale systems.  

As a first demonstration of the HMS software, a multiscale model of a composite 
material was developed that consisted of a FE upper scale model of a deforming 
body and a FE lower scale model of a composite fiber and matrix. The lower scale 
model computed the average Cauchy stress given the deformation gradient 
provided by the upper scale model. A simulation of a Taylor-impact experiment of 
a composite cylinder impacting a rigid anvil was performed that required over a 
billion lower scale model evaluations, demonstrating the ability of the HMS 
software to efficiently coordinate interactions between the individual models. One 
challenge encountered with the multiscale model was that for large deformations, 
the evaluation time of the lower scale model was greater than for small 
deformations, leading to a load imbalance among the processors. To address the 
issue, a round-robin load balancing algorithm was developed in the HMS software 
and was shown to reduce the overall evaluation time of the multiscale model by 
more than 50%. 

An important material system to the Army that motivated much of the development 
of the HMS software and scale-bridging algorithms was energetic materials (EMs). 
EMs are particularly difficult to model due to their intricate molecular structure and 
heterogeneous composition. Many energetic formulations consist of crystalline 
grains of EMs embedded in a polymer matrix, where microstructural 
heterogeneities, such as inter- and intragranular voids, grain sizes, grain 
orientations, and grain compositions dictate their macroscale properties and 
explosive response to external stimuli. When subjected to thermal or mechanical 
loading, energy localization at stress concentrators at pores or other material defects 
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initiates chemical reactivity that may ultimately lead to deflagration, detonation, or 
damage of EMs. Although chemical decomposition and energy release occur at the 
molecular scale, they are tightly coupled to the material properties and explosive 
response observed at the macroscale. Widely used molecular-based methods 
including MD and dissipative particle dynamics are restricted to modeling the EM 
behavior at short timescales and in relatively small volumes. On the other hand, 
continuum models are able to model the shock and detonation response of EMs at 
length and timescales relevant to system-level applications. However, continuum 
models developed to date require extensive fitting to material data acquired from 
experiments to make accurate predictions and therefore have limited transferability 
to conditions beyond the scope of the experimental data. Multiscale models of EMs 
that resolve relevant processes at their appropriate scales, such as chemical 
decomposition, pore collapse, and grain-scale interactions, promise to provide 
greater predictive ability, reduce or eliminate reliance on expensive and dangerous 
methods to acquire experimental data, and facilitate the design of new energetics 
formulations that have desired properties. 

An initial proof-of-concept multiscale model of the EM 1,3,5-s-triazine (RDX) has 
been developed using the HMS scale-bridging approach (Leiter et al. 2018). The 
multiscale model consists of two at-scale models: an upper scale continuum FE 
model of a deforming body implemented in ALE3D and a lower scale dissipative 
particle dynamics model implemented in the Large-scale Atomic/Molecular 
Massively Parallel Simulator (LAMMPS) (Thompson et al. 2022). In the model, 
the equation of state (EOS) of RDX utilized in the upper scale model is directly 
obtained from evaluation of the lower scale model. A Python package to automate 
evaluation of the EOS using LAMMPS has been developed (Barnes et al. 2017). 
The EOS is obtained from the dissipative particle dynamics model for every FE at 
every timestep of the upper scale model. A Taylor impact simulation has been 
performed using the developed multiscale model and despite the FE model only 
containing 1600 FEs, the entire model required nearly ten million CPU hours to 
evaluate, clearly making the multiscale model impractical for routine use.  

To reduce computational cost, a standalone module has been developed in the HMS 
software responsible for surrogate modeling. The surrogate modeling approach 
used in the HMS software is adapted from the Adaptive Sampling methodology at 
the Lawrence Livermore National Laboratory (LLNL) (Knap et al. 2008). In the 
HMS surrogate modeling module, data acquired from the microscale model during 
its evaluation is stored in a database and used to construct surrogate models during 
the multiscale model evaluation. When a new microscale model evaluation is 
required, the HMS software determines whether an existing surrogate model can 
be used to perform the evaluation in lieu of the microscale model on the basis of an 
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error estimate. When the error estimate is below a user-defined threshold, the 
surrogate model is evaluated rather than the microscale model, greatly reducing the 
computational cost. In the case where the microscale model must be evaluated, the 
obtained result is stored in the database and used to update the surrogate model so 
as the multiscale model evaluation proceeds, the surrogate model increases 
accuracy and learns the microscale model response across the input ranges relevant 
to the upper scale model. Using the developed surrogate modeling approach, the 
overall computational cost of the RDX multiscale model is shown to be 1/20 to 
1/5000 of the original computational cost, depending on the desired accuracy. 
Furthermore, the overall error in the solution is controllable.  

One challenge of the surrogate modeling approach is that it increases the 
computational variability in the simulation. It is difficult to predict a priori how 
often the surrogate model or the microscale model will be evaluated, making it 
difficult to efficiently assign computational resources to the simulation. At times, 
this can lead to idle processors that wait for lower scale model evaluations to 
complete. Barnes et al. (2020) explored the use of speculative microscale model 
evaluations in the HMS software to utilize idle processors present in a multiscale 
simulation. The use of speculative evaluations was shown to further reduce the 
overall time required to perform the multiscale simulation. Further work in Barnes 
et al. (2020) explored modeling voids in the microscale model and their impact on 
the computed EOS. 

The initial multiscale model of RDX summarized previously did not consider 
chemistry, even though decomposition of RDX into product gases is a fundamental 
process leading to its explosive properties. To incorporate chemistry into multiscale 
models of EMs, temporal scale-bridging methodologies for chemistry have been 
developed (Leiter et al. 2022) and applied to multiscale modeling of RDX. In the 
multiscale modeling literature, methodologies for temporal scale bridging are 
lacking in comparison to methodologies for spatial scale bridging, an indicator that 
temporal scale bridging is a significantly more difficult problem.  

To handle chemistry in the multiscale model of RDX, two lower scale models are 
utilized, one to evaluate the EOS and another to compute the instantaneous rates of 
chemical decomposition. Both lower scale models are based on the newly 
developed reactive dissipative particle dynamics (DPD-RX) method (Lísal et al. 
2019). In the upper scale model, a postulated model of RDX chemistry is 
formulated, described by a coupled system of ordinary differential equations that 
contain unknown reaction rate coefficients. The unknown reaction rate coefficients 
of the upper scale chemistry model are estimated from the rates of decomposition 
acquired from the lower scale model. Using the estimated reaction rate coefficients, 
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the upper scale model is able to evolve its chemistry over the timestep, which is 
orders of magnitude greater than the timestep of the lower scale model.  

Several simulations have been performed to assess the capability of the model, 
including simulation of a scaled thermal explosion experiment (STEX). The STEX 
experiment is a carefully constructed experiment used to validate models of EMs 
and consists of an EM confined within a cylindrical steel vessel that is slowly 
heated until the EM undergoes chemical decomposition. In simulations of the 
STEX experiment, the multiscale model can initiate chemical decomposition of 
RDX leading to high temperature and pressure states. A comparison of hoop strain 
measurements in the simulation compared to previously published literature of 
RDX-based explosives shows qualitative agreement indicating that the model does 
well in capturing the general material response. Overall, the temporal scale-
bridging methodology is shown to capture the strong coupling between chemical 
decomposition and provides evidence that the requisite spectrum of material 
response may be achievable with these scale-bridging algorithms. 

The most recent work on multiscale modeling of energetics is focused on applying 
the multiscale model to applications of interest to the energetics community, 
especially to plate impact simulations to obtain Pop plots that measure run distance 
to detonation. A major challenge is the extreme computational cost of the multiscale 
model. New methodologies for surrogate modeling of chemistry are required to 
reduce the computational cost. Such surrogate models are fundamentally different 
than those developed so far (i.e., for the EOS) as they must capture the temporal 
evolution of chemistry and ensure that physical constraints, such as mass balance, 
are satisfied. More developments are also needed for both spatial and temporal scale 
bridging of relevant microstructure in EMs, such as pores.  

The HMS approach to multiscale model development also has relevance to other 
materials science applications outside of multiscale modeling. For example, high-
throughput applications for discovery of materials are well suited to the distributed 
and adaptive mode of computation that the HMS software provides. To this end, 
the HMS software has been augmented with a specialized module to route 
individual model evaluations to nonlocal computational resources and a high-
throughput application has been created using the HMS software to discover 
candidate electrolytes for batteries (Borodin et al. 2015, 2015d; Knap et al. 2015). 
In the high-throughput application, a discovery algorithm searches for battery 
electrolyte solvents with desired electrochemical stability through analysis of their 
first and second reduction and oxidation potentials. A screening algorithm 
dynamically evaluates parallel DFT calculations on available remote computational 
resources. The DFT calculations either perform an initial geometry optimization or 
compute the oxidation and reduction potentials under two different fidelities, 
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depending on the requirements of the screening application. The HMS software 
was shown to successfully coordinate the high-throughput screening, restart model 
evaluations that failed over the course of the screening, and schedule DFT 
evaluations adaptively based on the current computational load at the nonlocal 
resources.  

The uncertainty quantification of multiscale models is necessary for robust design 
optimization of multiscale systems and understanding the variability of system 
performance across the range of uncertain inputs. Traditional uncertainty 
quantification methods, such as Monte Carlo, polynomial chaos, and stochastic 
collocation, require repeated sampling of a model under consideration given 
different realizations of the random variables. Repeated sampling of multiscale 
models is often impossible as a single model evaluation is already extremely 
computationally demanding. New methods for uncertainty quantification 
specifically tailored to multiscale models are needed.  

For multiscale models, one particular problem of interest is uncertainty 
quantification of an individual at-scale model within the multiscale model 
hierarchy. One motivating example to consider is an at-scale model that 
incorporates microstructure, such as porosity. A probabilistic description of the 
microstructure can be formulated, for example, a distribution of pore sizes and 
shapes that leads to a distribution of model responses. To facilitate this type of 
uncertainty quantification in multiscale models, the HMS scale-bridging software 
has been extended to incorporate the UQPy uncertainty quantification package 
(Olivier et al. 2020) from the Johns Hopkins University. UQPy implements many 
SOA uncertainty quantification algorithms to compute distributions of model 
responses. Python language bindings to HMS have been developed to enable the 
use of Python packages, such as UQPy, directly in the HMS software framework. 
A simple example problem of Monte Carlo integration using HMS and UQPy was 
developed, and further work is ongoing to use the methodology for a model of 
porosity in magnesium (Mg). In the future, the HMS Python bindings can be used 
to incorporate widely used machine learning (ML) packages into the HMS software 
to facilitate surrogate model development. Furthermore, the HMS Python bindings 
allow for development of HMS-based multiscale models in Python, enabling quick 
multiscale model prototyping and development. 

The HMS scale-bridging software has been designed to allow for use of any 
existing at-scale model within a multiscale model hierarchy. When the at-scale 
model is used as the lower scale model, no software modifications to the model are 
required, which allows for the use of closed-source or proprietary software 
packages. However, when the at-scale model is used as an upper scale model in a 
multiscale model hierarchy, software modifications have traditionally been 
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required to utilize the HMS software. For example, to develop the RDX model 
discussed previously, a customized material model was implemented within 
ALE3D. To avoid the requirement to modify the source code of upper scale models, 
which are often complex and closed-source, recently a vectorized user material 
(VUMAT) model for HMS has been developed, named the HMS-VUMAT. 
VUMAT is a standardized custom material model application programming 
interface implemented in a number of widely used industry and government FE 
codes, including ALE3D, EPIC, Sierra, ALEGRA, ABAQUS, and LS-DYNA. The 
HMS-VUMAT allows for the implementation of HMS-based multiscale models in 
any software that supports the VUMAT standard without source code modification, 
and HMS-VUMAT models can be easily moved between any of the VUMAT-
supported codes. The ultimate goal is to make the HMS-VUMAT a widely used 
standard for multiscale model development in FE software. 

To summarize, the research effort on methodologies for scale bridging in multiscale 
simulation focused on developing computational methods and algorithms to enable 
efficient creation and evaluation of multiscale models on emerging HPC 
architectures. The effort resulted in the creation of the HMS scale-bridging 
software, which establishes an adaptive computational approach to multiscale 
model development and incorporates advanced surrogate modeling methodologies 
to ensure that the models have tractable computational cost. Several algorithms for 
both spatial and temporal scale bridging of microstructure and chemistry in 
materials have been developed. The scale-bridging approaches were evaluated in 
the context of several materials systems important to the Army, including 
composites, EMs, and metals. Still, much work on computational methodologies 
for multiscale modeling remains, including surrogate modeling in high dimensions, 
surrogate modeling to handle the temporal evolution of chemistry and 
microstructure, surrogate modeling tailored to physical systems, uncertainty 
quantification for multiscale models, and further maturation of the methodologies 
developed in this effort and their incorporation into widely used DOD modeling 
codes. 

3. Quantum Mechanics for Material Science 

The SOA for full-resolution quantum mechanical treatment of condensed phase 
materials was (and still is) O(N) DFT. Traditional DFT methods scale as the cube 
of the number of electrons (i.e., O(N3)]. O(N) methods attempt to reduce the order 
to a theoretical minimum of linear scaling. Historically, the main obstacle to the 
implementation of O(N) methods has been the system size required to see these 
methods outperform traditional methods, often requiring system sizes of tens of 
thousands of atoms to see improved performance over traditional methods. Recent 
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advances in both algorithms and hardware have made O(N) methods more feasible 
as we are simulating system sizes in that larger regime and algorithmic 
development has reduced the cross-over point in systems comprising a few 
thousand atoms. Furthermore, the O(N) methods have traditionally relied on 
electron localization to achieve its reduced scaling. The degree of conductivity of a 
material is inversely proportional to the electron localization of the material. 
Molecular systems naturally have localized electrons (i.e., are insulators) and are 
good targets for traditional O(N) methods. However, metals and other conducting 
materials do not have localized electrons and are a challenge for O(N) methods. 
This is a particular difficulty for the goals of the overall Quantum Mechanics for 
Material Science (QMMS) program, which is to provide large-scale DFT 
simulation capabilities for materials of Army interest, among which metals and 
conducting materials play an important role. 

After surveying SOA “large-scale” DFT codes, we found that the CP2K suite 
(Kuhne et al. 2020) had the best mix of O(N) methodologies and functionality, 
although the feature sets in CP2K were not as extensive as those of SOA small-
scale DFT codes such as the Vienna Ab initio Simulation Package (VASP) (Kresse 
and Furthmüller 1996). CP2K uses localized Gaussian orbitals augmented with 
plane waves and other basis sets and has demonstrated the capability to simulate 
thousands of atoms for picoseconds with HPC resources. CP2K is licensed under 
GNU General Public License and invites contributors to its further development. 
CP2K has been used to perform accurate Kohn–Sham (KS) DFT calculations for 
approximately 1,000,000 atoms in limited situations (e.g., a few single-point 
energies, low valence electron count). The more realistic “large-scale” practical 
KS-DFT calculations (e.g., Born–Oppenheimer molecular dynamics [BOMD]) for 
systems containing heavy atoms are limited to approximately 10,000 atoms; our 
goals were to go well beyond this. Our strategy to extend timescale and size of 
relevant simulations was to augment the CP2K program package to dramatically 
reduce memory requirements per node using distributed data types, reduce costs of 
sparse matrix multiplies, and provide more-efficient energy minimization 
algorithms.  

Even with such improvements to CP2K to enable routine simulations of systems 
composed of 1,000,000 atoms, the system size is too small to allow adequate 
depictions of important microstructural material features, such as extended defects, 
interfaces, or dopants. The depiction of these complex material features at the 
atomistic scale requires special treatment of boundary conditions in the calculations 
to mimic larger sizes. The SOA for treatment of unusual boundary conditions 
include coarse-grained DFT, Exactly Embedded (EE)-DFT, and Green’s functions 
methods. However, at the beginning of the project, those methods were in their 
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infancy and implementation into highly scalable software was in its initial stages. 
Therefore, within this effort, we explored emerging multi-resolution DFT 
approaches, including EE-DFT and quasi-continuum DFT (QC-DFT), to determine 
their viability for problems of Army interest.  

Finally, to ensure the usefulness of the proposed implementations, they were 
validated against calculations using existing codes as well as experiments for 
calculations beyond the scope of the scale of existing codes. 

3.1 Full-Resolution DFT 

3.1.1 Software Improvement  

Determining the electronic structure in a system is accomplished by minimizing its 
energy with respect to the distribution of the electrons (i.e., the electron density). 
Within this minimization, sparse matrices are prepared and used in a number of 
different ways. The number of sparse matrix multiplies required to obtain the 
energy minimum are dependent a number of factors. To accommodate the larger 
simulations required to treat systems of interest to the Army, CP2K required 
improvements in minimization algorithms and reduced memory requirements. To 
this end, we undertook several activities to improve minimization or reduce 
memory requirements. One activity (the implementation of the second-order trace 
conserving [TC2] method detailed next) accomplished both.  

We implemented methods to improve the efficiency of the energy minimization by 
including density matrix purification methods. As stated in Mullin (2014), 
“Purification is analogous to preconditioning in linear algebra, but the 
transformation is intended to resolve the Kohn–Sham matrix such that it becomes 
idempotent. This relies on predefined polynomials, which must balance the order 
of the polynomial with the number of iterations needed to create an idempotent 
matrix.” At the beginning of the project, CP2K utilized the fourth-order trace 
resetting (TRS4) method to monotonically transform the KS matrix to 
idempotency. A fourth-order method requires CP2K to maintain four sparse 
matrices for the method. We implemented a nonmonotonic approach proposed to 
treat low-bandgap systems, the TC2 method, which only requires CP2K to maintain 
two sparse matrices. This method weights a second-order polynomial based on the 
highest occupied molecular orbital (HOMO) and lowest unoccupied molecular 
orbital (LUMO) energies for use in transforming the KS matrix to idempotency. 
The reduced degree of polynomial used in TC2 compared to the fourth-order 
polynomial used in TRS4 reduces the memory requirements by half and reduces 
the number of matrix-matrix multiplications. Implementation of TC2 in CP2K 
allowed for a calculation of a single MD step for a system of 100,000 atoms. Using 



 

12 

the same resources, the largest system that could be calculated with TRS4 was 
50,000 atoms. Furthermore, we found that the TC2 method improved performance 
for materials with lower resistance to conductivity (i.e., with electrons that are less 
localized), but still does not work for metallic systems (full electron delocalization). 
Note some systems have a short-range conductivity (e.g., a shock front in an 
energetic molecular crystal) and TC2 will work better than TRS4 for those systems.  

We also implemented a method proposed by Suryanarayana (2013) that claimed to 
allow O(N) methods to function for conductive materials. The test system that he 
demonstrated in his paper was idealized and we found that in real systems of 
interest to the Army, the method did not improve upon the TC2 method. 

Reduced memory footprint: CP2K previously had a large amount of replicated data, 
which significantly expands the memory footprint, thus limiting the possible 
simulation size and the scalability of the software package. We updated and tested 
the hybrid OpenMP/MPI implementation to reduce the frequency of data 
replication. We further reduced the memory footprint by modifying the replicated 
data structures and their communication protocols so that they are distributed as 
needed across the simulation. Furthermore, the TC2 linear-scaling method that we 
implemented reduces the memory requirement by 33% for large systems.  

Optimizing the sparse matrix multiply: Sparse matrix multiplies account for at least 
95% of the computational time for large systems. Developing algorithms for ever-
more-efficient sparse matrix multiplies has been of considerable interest for 
decades; however, there is no unique solution, as the efficiency is dependent on 
basis set and the physics of the problem. CP2K has a very efficient Gaussian-
augmented plane-wave basis set that gives fairly good spatial localization of the 
electrons; however, the plane-wave augmentation tends to make the sparsity more 
diffuse than a strictly Gaussian basis would. The implementation of the sparse-
matrix multiplies in CP2K is not optimal for this basis set; thus, we implemented a 
more efficient methodology for sparse matrix multiplies. Specifically, we 
implemented a hypergrid communication pattern to replace the Cartesian grid 
pattern currently used (leftmost frame of Fig. 1) to reduce the cost of the sparse 
matrix multiply. The rightmost frame of Fig. 1 shows a resulting communication 
grid based on the new method. It is clear that the new method provides a pattern 
that is more localized, thus reducing communication (number of MPI calls), and 
therefore more efficient for sparse-matrix multiplies. 
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Fig. 1 Communication grids for Gaussian-augmented plane-wave basis in CP2K, with 
process numbers along the axes. A color in any element indicates communication between the 
two processes. (Left) Example of the original Cartesian communication pattern. (Right) 
Example of a modified communication pattern.  

Optimizing the calculation of the density: Direct Inversion in the Iterative Subspace 
(DIIS) (Pulay 1980, 1982) is a method that reduces the number of sparse matrix 
multiplies per self-consistent cycles required to obtain the density. DIIS was 
implemented for the O(N3) methods in CP2K, but not for the linear-scaling 
methods. We adapted the DIIS method for use with linear scaling, first for the TRS4 
algorithm already implemented in CP2K and then for the TC2 algorithm that we 
implemented into CP2K.  

We also implemented the Krylov Subspace Accelerated Inexact Newton (KAIN) 
method (Harrison 2004) for solving a multiple linear equation in the O(N) version 
of CP2K and compared with the optimized DIIS method. The KAIN method did 
not outperform the optimized DIIS and was not further pursued.  

Further improvement was obtained through modifying the initial guess of the 
density matrix, which originally used the sum of isolated atomic densities. Such 
initial guesses show difficulty in convergence for bonded systems due to the 
“empty” density space between the atoms. To overcome this, we added random 
fluctuations to the initial guess (i.e., into the “empty” density space between the 
atoms). This allowed the methods for calculating the density to more rapidly 
converge to the correct density in those empty spaces, thus reducing the number of 
sparse matrix multiplies needed. 

3.1.2 Enhanced Functionality 

BOMD: This popular MD approach allows for simulation of the time evolution of 
a system of interacting atoms. This is accomplished by integrating Newton’s 
equations of motion for each atom, in which the forces are obtained “on the fly” 
directly from QM simulations. Despite improvements in HPC, BOMD studies are 
computationally prohibitive for long simulation times for large systems due to the 
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large computational cost for the nonlinear self-consistent field (SCF) optimization 
of the electronic ground state at each integration step.  

We explored an enhanced BOMD approach developed to reduce this cost per step, 
known as the extended Lagrangian-BOMD (XL-BOMD) approach (Niklasson 
2008; Niklasson et al. 2009). The idea behind XL-BOMD is that rather than 
recalculating the density at each step, an extended Lagrangian is used to extrapolate 
the density, with regular DFT self-consistent calculations periodically performed 
to update the correct density for further extrapolation. We implemented the original 
XL-BOMD method into CP2K and found that it provided greater scalability for 
systems in equilibrium, but worked poorly for material regimes for which bond 
breaking or bond formation occurred. For example, we found that XL-BOMD 
simulations of shocked energetic molecular crystals required that the self-consistent 
cycle be performed at every step in order to get the accuracy needed at the shock 
front. Thus, this important Army use case could not take advantage of the 
computational speed-up afforded by the extrapolation of the density in the XL-
BOMD approach. Therefore, we no longer pursued the method.  

Tight-binding DFT (DFTB). In attempting to improve the applicability of CP2K to 
treat systems of Army interest larger than full-resolution DFT would allow, we 
explored semiempirical methods. The DFTB (Elstner et al. 1998) method has 
proved to be fairly accurate for some systems, somewhat transferable to a broad 
range of systems and applications, and its computational efficiency lies in between 
that of DFT and classical reactive atomistic potentials. In addition, DFTB was 
already implemented in the CP2K program as an order N method. However, the 
applications of DFTB to Army materials depend on the availability of the atomic 
input parameters, which were very limited and somewhat system-dependent.  

We first assessed DFTB performance in CP2K using as our test system 
polyethylene (PE). DFTB-MD/CP2K calculations were performed with up to 
108,000 atoms and up to 16,384 processors. The performance transition between 
traditional and O(N) DFTB methods was found to be approximately  
8,000 electrons. Parallel efficiency is poor above 4096 processors, with better than 
linear scaling observed with an increase in the system size (number of atoms). We 
also evaluated the accuracy of DFTB relative to DFT, by comparing BOMD 
simulations of the shock Hugoniot of PE; agreement between the QM-DFT was 
very good from pressures ranging from ambient to 45 GPa (Fig. 2).  
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Fig. 2 Pressure vs. relative volume in simulations of compressed PE using different levels 
of theory (Chantawansri et al. 2012): DFTB and QM-DFT (dispersion corrected atom 
centered pseudopotential). Becke, 3-parameter, Lee–Yang–Parr (B3LYP)-D3 curves were 
calculated using CP2K. MD-polymer consistent force-field and reactive bond order-based 
force field (ReaxFF) curves were calculated using LAMMPS. Theoretical values provided by 
Carter and Marsh (1995). 

A separate calculation assessed DFTB’s prediction of optimized crystallographic 
parameters for the explosive 1,1-diamino-2,2-dinitroethylene (FOX-7); unit cell 
lengths were within 3%, but overall density was smaller than experiment by 4.75%, 
outside of the metric of what we consider acceptable performance (3%). Extensive 
analysis of DFTB performance in predicting properties of RDX was performed; 
DFTB predictions of crystallographic parameters and density of α-RDX were in 
acceptable agreement with experiment for pressures up to 10 GPa, as were 
predictions of shock Hugoniot values. Comparison of DFTB predictions with DFT 
results are also in reasonable agreement, indicating that DFTB has an overall good 
performance in predicting RDX properties. However, DFTB failed to predict boron 
carbide structures, a relevant Army ceramic; since DFTB well predicted carbon 
structures, we concluded that new DFTB parameters for boron would need to be 
determined.  

We next produced a code that fits the DFTB parameters from reference data; our 
approach differs from that of others in that we minimized the error in the pressure 
and forces relative to the reference system under pressure. The difference between 
the DFT and DFTB energies was captured through the DFTB repulsive term, 
represented by a polynomial of order N and the cutoff radius. The method was 
validated in calculations on diamond and PE, with results for cubic diamond shown 
in Fig. 3. 
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Fig. 3 Comparison of DFTB MD predictions of volume per atom vs. pressure at various 
temperatures with DFT reference values 

Not only do the DFTB values reproduce the DFT (PBE) (Perdew et al. 1996, 1997) 
values very well, there was no need for adding explicit three-body terms to DFTB 
within the fitted repulsive term. Transferability of the fitted DFTB potentials was 
explored in MD simulations of the pressure–volume–temperature properties for 
diamond allotropes. The DFTB results showed excellent agreement with all DFT 
reference calculations up to 50 GPa, whereas DFTB results using the original DFTB 
parameters were in substantially poorer agreement with the DFT reference values 
for pressures ranging from 0‒30 GPa for hexagonal diamond and 0‒20 GPa for C8 
superhard diamond. 

O(N) scaling time-dependent DFT (TD-DFT) methods: TD-DFT allows modeling 
of optical and electronic properties of materials. This involves determining how the 
electrons respond to external stimuli within the frequency or time domains. 
Methods current at the inception of the QMMS program included only the 
frequency-domain solutions to the time-dependent problem. These frequency-
dependent methods have limitations for O(N) methods, because the matrixes are 
inherently not sparse and the parallelism of these algorithms had not been 
demonstrated. Time-domain methods allow the use of dynamical simulations in 
real time (RT), which have been shown to work with O(N) methods. In conjunction 
with the CP2K development group at the ETH-Zurich, we implemented the RT-
TD-DFT method for calculating optical properties. This method is truly an O(N) 
method for doing time-dependent calculations and has allowed TD-DFT 
calculations of significantly larger systems than were possible before the 
implementation of this new method.  

QM local stress tensor method. In better understanding the interplay between the 
mechanical and chemical phenomena occurring in shocked materials (of significant 

DFTB, new fit 

DFT, reference 
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relevance to the Army), the capacity to calculate local pressure throughout a 
heterogeneous material is required. Without such a capability, detailed mechanisms 
of reaction, deformation, or failure of materials subjected to high strain rates cannot 
be elucidated. Currently, there is no universally accepted QM definition for the 
local stress tensor, although a classical definition based on atomic contributions is 
available. In order to provide a QM definition for the local stress tensor, we 
extended the classical definition to include the electronic contributions. This was 
accomplished by partitioning the electronic contributions of the global pressure 
onto atomic centers and adding them to the atomic contributions within the QM 
definition. We implemented the approach into CP2K and validated it against well-
known properties of the local pressure for diamond (i.e., the average of local 
pressure equals the global pressure, the atomic pressure is uniform in a 
homogeneous system).  

A more difficult validation of the approach was found in a BOMD simulation of 
overdriven shock in the high explosive pentaerythritol tetranitrate (PETN). This 
system is an example of Army-relevant materials subjected to high strain rates. The 
simulation cell was of 32 × 2 × 2 unit cells of PETN, thus comprising 256 PETN 
molecules (7,424 atoms). This simulation cell was equilibrated at 300 K using 
isothermal-isochoric (NVT) MD and a timestep of 0.25 fs. For the shock 
simulation, the eight rightmost molecules shown in Fig. 4 were kept rigid, while 
the 64 leftmost molecules are used as a flyer plate. For all simulations, periodic 
boundary conditions were imposed in the directions perpendicular to shock 
propagation. 

 

Fig. 4 Schematic of the PETN filament at the beginning of the simulation 

At the initiation of the shock simulation, the atomic velocity of each flyer plate 
atom was increased by 10 km/s in the shock direction (i.e., from left to right in  
Fig. 4). The subsequent microcanonical (NVE) MD simulation was performed for 
1.563 ps (with an elapsed RT of greater than 18 months utilizing the US Army 
Engineer Research and Development Center, Navy, and DEVCOM ARL DOD 
Supercomputing Resource Center). The simulation was terminated as the shock 
front was reaching the rigid far-right edge of the filament; to continue the 
simulation, more material would need to be added. The local pressure calculation 
was not performed “on the fly,” but instead used in postprocessing, providing the 
following result shown in Fig. 5 for a snapshot at 1.25 ps.  



 

18 

 

Fig. 5 (Upper) Snapshot of atomic positions at 1.25 ps in BOMD simulation of shocked 
PETN. (Lower) Local pressure as a function of position along the shock direction.  

In Fig. 5, each point represents the averaged value within a volume having 
dimensions of 1/2 × 2 × 2 unit cells of PETN at 300 K, 1 atm. We have also provided 
the estimated pressure as given by the Rankine–Hugoniot jump conditions based 
on the particle (uP) and shock velocities (US) measured by us in this simulation (i.e., 
P = ρ0USuP, where ρ0 is the mass density of PETN in the ambient state). The 
agreement between those estimates and the QM predictions is very good. 

Fast, accurate MD using delta-ML potentials. The computational costs of the 
BOMD simulation of overdriven shock in PETN described previously highlights a 
need for enabling a capability that will provide high-fidelity precision in MD 
simulations with computational costs at or near that of low-fidelity models. One 
such possibility is to create and enable delta-ML approaches to predict differences 
between quick, low-accuracy and slow, higher-accuracy models used in atomistic 
simulations. These ML corrections are then used to increase the accuracy of the 
predictions of the low level model.  

Toward that end, we have implemented a Gaussian Process Regression (GPR) 
machine-learned delta model (MLDM) in LAMMPS. The MLDM captures the 
difference between an expensive, high-fidelity model and a fast, low-fidelity MD 
model as specified by the user. The low-fidelity model can then be used with the 
MLDM, under the conditions that it has been trained for, to give high-fidelity 
results at a computational cost similar to the low-fidelity model. An MLDM can be 
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constructed to connect any two models accessible in LAMMPS. To date, the 
capabilities have been tested for classical potentials; however, any QM models can 
be used by linking the QM suite with LAMMPS; this has been done for DFTB 
(using the LLNL code Latte) and DFTB+ (Hourahine et al. 2020) (using an LLNL-
developed callback function). At this time, we are pursuing linking CP2K with 
LAMMPS in a similar fashion. Also, we are working with the High Performance 
Computing Modernization Program’s (HPCMP’s) User Productivity Enhancement 
and Training (PET) program to implement an automated just in time (JIT) or 
speculative model update into the MLDM. As potentials based on GPR natively 
calculate their uncertainty, model confidence can be assessed during a dynamics 
simulation. When the estimates exceed a user-specified precision threshold, a high-
fidelity simulation can be performed, with its result used to update the MLDM 
during the simulation. In this way, the model will be updated only as needed.  

Electron transport: In support of EMRM efforts to develop modeling capabilities 
for semiconductor materials and devices, we undertook to enable a capability to 
calculate accurate electron transport for systems with interfaces and defects. As a 
result, a program package called Transire was developed and provided as open-
source software (Carlin and Rinderspacher n.d., 2017). This software package 
enables the efficient exploration and optimization of grain boundary domains, 
including rotations, translations, and Miller indices, as well as compute (electron) 
transport properties across the grain boundary. For full documentation of 
capabilities, see Carlin and Rinderspacher (2017). It integrates with the highly 
scalable HPC packages CP2K and LAMMPS to access the necessary large interface 
regions. 

Transire has been successfully used to predict gallium nitride (GaN)/silicon carbide 
interfaces and electron transport through bridging molecules (Carlin and 
Rinderspacher 2017, 2019). It has further been used to optimize cleavage surfaces 
by coupling it to machine-learned surrogates. 

3.2 Multi-Resolution DFT 

QC-DFT: We collaborated with the group of Professor Vikram Gavini at the 
University of Michigan on development of real-space methodologies for large-
scale DFT simulations. These methodologies employ a conventional FE basis to 
solve both the orbital free and KS-DFT equations (Gavini et al. 2007; Motamarri et 
al. 2013; Lee et al. 2015) The FE basis offers numerous advantages over traditional 
approaches, such as the plane-wave basis, as it allows for coarse-graining, has 
excellent scalability on parallel computing platforms, and can handle complex 
geometries and boundary conditions. The use of a high-order FE basis with 
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specialized spectral Gauss–Lobatto quadrature leads to an efficient numerical 
algorithm for solving the discrete eigenvalue problem in KS-DFT.  

Comparison of the developed FE method to ABINIT (Gonze et al. 2020), a widely 
used DFT software that uses the plane-wave basis, was performed for electronic 
structure calculations of large clusters of aluminum atoms. The computational cost 
of the FE basis was found to be less than ABINIT with comparable error in ground 
state energy. For an aluminum cluster of 1688 atoms, ABINIT is not able to 
compute a solution due to its large memory requirements, whereas the FE method 
successfully obtains the electronic structure. More recently, Professor Gavini’s 
group has extended the method to include an enriched FE basis (Kanungo and 
Gavini 2017), applied the method to TD-DFT (Kanungo and Gavini 2019), and 
formulated algorithms to compute configurational forces for geometry optimization 
(Motamarri and Gavini 2018). Professor Gavini’s group released the open-source 
software DFT-FE and demonstrated its capability to perform electronic structure 
calculations of systems containing 50,000 to 100,000 electrons with scalability 
demonstrated up to 192,000 processors (Motamarri et al. 2020). 

EE-DFT: Our approach was to expand upon a concept introduced to overcome 
limitations in orbital-free embedded-density functional theory (E-DFT) (Cortona 
1991; Wesolowski and Warshel 1993; Govind et al. 1998; Wesołowski 2006), 
which provides a framework for dividing a system’s total electron density into 
subsystems to be calculated separately. The E-DFT hypothesis is that subsystems 
composing a larger system, each defined by its electron density, interact solely via 
their electronic densities. If true, the subsystems could be used in the QM equations. 
Furthermore, the approach is massively parallelizable. The E-DFT approach allows 
for potential computational cost savings, as the subsystems can be treated with 
varying degrees of QM accuracy, including subsystems that are adequately treated 
using extremely low levels of theory. Unfortunately, its original formulation was to 
applications involving nonbonded or weakly interacting molecular groups, and 
shown to fail for covalently bonded embedded subsystems.  

The EE-DFT provided a “general and formally exact protocol for treating the 
nonadditive kinetic potential” in E-DFT, the source of significant error (Goodpaster 
et al. 2010), and was shown to successfully describing breaking of covalent bonds 
and hydrogen bonds with chemical accuracy (Goodpaster et al. 2011). 
Conceptually, the EE-DFT formalism allows for the partitioning of heterogeneous 
macroscale systems into material subsystems ranging from the atomistic up through 
the continuum. Following that concept, we were interested in applying the 
methodology to the full multiscale system, partitioning it into subsystems of 
different scales (i.e., atomistic, meso, and continuum subsystems). The electron 
density for each subsystem would be determined independently (and in parallel), 
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with the results from the subsystem calculations stitched together using the QM 
equations without introducing error. Before attempting this modification, we 
applied the EE-DFT methodology to a variety of partitions, with the first being the 
most simple, in which the systems could be partitioned neatly into individual 
molecules. For this simple case, we tested partitioning water into different 
subsystems:  

• Trimer system: Three individual molecules 

• Pentamer system: Five individual molecules, two subsystems, three 
subsystems, and permutations on these 

• Decamer: Ten individual molecules 

Errors were very reasonable, ranging from less than 0.2 kcal/mol up to 1.4 kcal/mol 
(for the decamer). The next set of calculations involved complex polymer partitions 
to test three major questions: 1) effect of bond cleavages across partitioning,  
2) effect of separation distance of partitioned systems, and 3) effect of size of 
partitioned systems. The calculations did not proceed as smoothly as systems with 
natural partitioning into individual molecules, with the discovery that partitioning 
must result in “closed” subsystems (i.e., no radical moieties). In general, large 
errors were seen due to convergence issues regardless of prototype polymer system.  

To test the most complex types of molecules, those with delocalization and multiple 
bonds, we studied benzene and the explosive triamino trinitrobenzene (TATB). 
Benzene was completely non-convergent, with egregiously large oscillations in the 
“converging” energy, with similar errors seen for TATB. Finally, as a simple 
prototype of armor materials, we studied the B12 cluster, a unit of the B12-CCC 
structure in boron carbide. No conclusive results were achieved due to non-
convergence issues. Not only did it fail to produce accurate results, it required a 
computationally demanding matrix inversion that would limit application to small 
systems. While we understand that later iterations of this method replaced the 
rigorously correct matrix inversion with a less computationally demanding 
approximation, we did not further pursue this interesting idea. 

QM/molecular modeling (MM): QM/MM is a currently well-developed embedding 
methodology use to model the atomic scale. While the general technique is more 
mature than the other efforts in this program, the maturity for a given procedure for 
any specific material system can wildly vary. For example, no reliable force fields 
for accurate prediction of polarization are available for hybrid QM/MM 
calculations for battery materials. As polarization can have a strong effect on a wide 
range of materials (Bedrov et al. 2019), we address this deficiency within this task. 
Two approaches were pursued. One is the development and applications of the 
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many-body polarizable force fields based on the point permanent charges and 
screened atomic dipoles to a wide range of ionic materials from liquid electrolytes 
to ionic liquids, polymer electrolytes, and crystalline solid electrolyte interphase 
(SEI) components. The second approach is to further improve predictive 
capabilities by modifying the functional form of the Atomistic Polarizable Potential 
for Liquids, Electrolytes, and Polymers (APPLE&P) force field by including 
Gaussian electrostatics and implementing it in the community-supported MD 
simulation code Tinker-HP. MD simulation of bulk and electrochemical interfaces 
are combined with DFT calculations to provide mechanisms for reductive and 
oxidative decomposition of electrolyte components (Borodin et al. 2017a; Borodin 
2019). 

MD simulations using developed force field parameters for the APPLE&P force 
field accurately predicted electrolyte structure and transport, and established a 
connection between the cation first solvation shell and preferential reduction 
obtained from DFT calculations and experiments, and complemented DFT studies 
of the reactivity and bare and passivated electrode materials (Allen et al. 2014; 
Bauschlicher et al. 2014; Borodin 2014, 2019; Borodin and Bedrov 2014; 
Geiculescu et al. 2014; Han et al. 2014, 2015; Haskins et al. 2014; Hu et al. 2014; 
Jow et al. 2014; Lesch et al. 2014, 2016; McOwen et al. 2014; Seo et al. 2014; 
Smith et al. 2014; Wang et al. 2014, 2018a, 2018b, 2019; Barnes et al. 2015; 
Borodin et al. 2015a, 2015b, 2015c, 2016a, 2106b, 2017a, 2017b, 2018, 2020;  
Islam et al. 2015; Kim et al. 2015a, 2015b; Knap et al. 2015; Li et al. 2015, 2019; 
Qian et al. 2015; Suo et al. 2015, 2016, 2017a, 2017b; von Wald Cresce et al. 2015; 
Wu et al. 2015, 2017a, 2017b, 2018, 2020; Delp et al. 2016; Deng et al. 2016; Gu 
et al. 2016; He et al. 2016; Luo et al. 2016, 2018; McClure et al. 2016; 
Mogurampelly et al. 2016; Vatamanu et al. 2016, 2017a, 2917b, 2018; Wan et al. 
2016; Bedrov et al. 2017, 2019; Chapman et al. 2017; Cresce et al. 2017; Lu et al. 
2017; Price et al. 2017; Vatamanu and Borodin 2017; Yang et al. 2017a, 2017b, 
2019a, 2019b, 2020; Alvarado et al. 2018, 2019; Bieker et al. 2018; Fan et al. 2018; 
Peng et al. 2018; Song et al. 2018, 2020; Steinrück et al. 2018, 2020a, 2020b; Zhang 
et al. 2018, 2020, 2021; Zhao et al. 2018; Huang et al. 2019; Mao et al. 2019; 
Raberg et al. 2019; Chen et al. 2020a, 2020b, 2020c, 2020d; Cho et al. 2020b; 
González et al. 2020; Henderson et al. 2020; Jiang et al. 2020; Ma et al. 2020a, 
2020b, 2021a, 2021b; von Aspern et al. 2020; Zhou et al. 2020; Cao et al. 2021a, 
2021b; Davies et al. 2021; Glaser et al. 2021; Ho et al. 2021; Hou et al. 2021a, 
2021b, 2021c; Shadike et al. 2021; Widstrom et al. 2021).  

Specifically, MD simulations of the electrified electrode–electrolyte interfaces 
provided molecular scale insight into the behavior of carbonate-based lithium (Li)-
salt-based electrolyte at graphite electrodes (Vatamanu et al. 2012) and uncovered 
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a mechanism for extending water-in-salt electrolyte (WiSE) oxidation stability and 
cathodic challenges for stabilizing WiSE and hybrid electrolytes (Borodin et al. 
2017a; Vatamanu and Borodin 2017; Yang et al. 2017a; Chen et al. 2020c). 
Electrical double layer (EDL) structure of the hybrid zinc (Zn) electrolyte combined 
with a detailed DFT analysis suggested a mechanism for forming a robust SEI for 
aqueous Zn electrolyte that resulted in an aqueous Zn battery in which a dilute and 
acidic aqueous electrolyte with an alkylammonium salt additive assists the 
formation of a robust, Zn2+-conducting and waterproof SEI (Cao et al. 2021b). The 
presence of this SEI enables excellent performance: dendrite-free Zn 
plating/stripping at 99.9% coulombic efficiency in a titanium (Ti)||Zn asymmetric 
cell for 1,000 cycles; steady charge–discharge in a Zn||Zn symmetric cell for  
6,000 cycles (6,000 h) (Cao et al. 2021b). A combination of MD of bulk 
electrolytes, EDL simulations, and DFT studies of the reduction and oxidation 
reactions also guided development of alkyl phosphonium-additives to aqueous Zn 
electrolytes (Ma et al. 2021b).  

A combination of DFT calculations, MD simulations led to discovery of WiSEs for 
Li batteries in collaboration with University of Maryland group’s (Suo et al. 2015; 
Yang et al. 2017a) (2016 University of Maryland Invention of the Year Award), 
development of the high-energy-density halide intercalation graphite cathode 
(Yang et al. 2019a) and extension of this approach to Zn batteries (Wang et al. 
2018b). 

Rechargeable Mg and calcium metal batteries (rechargeable magnesium batteries 
[RMBs] and rechargeable calcium batteries [RCBs]) are promising alternatives to 
Li-ion batteries because of the high crustal abundance and capacity of Mg and 
calcium. Yet, they are plagued by sluggish kinetics and parasitic reactions. A 
combination of MD simulations and DFT calculations of the outer sphere electron 
transfer kinetics and interfacial electrochemistry guided a search for chelants that 
greatly promote interfacial charge transfer kinetics and suppress side reactions on 
both the cathode and metal anode through solvation sheath reorganization, thus 
enabling stable and highly reversible cycling of the RMB and RCB full cells with 
energy densities of 412 and 471 W⋅h/kg, respectively. This work provided a 
versatile electrolyte design strategy for divalent metal batteries (Hou et al. 2021a).  

ReaxFF (Islam et al. 2015) and non-reactive MD simulations (Wu et al. 2020; 
Glaser et al. 2021; Yang et al. 2017b) and DFT calculations (Wu et al. 2018; Luo 
et al. 2016; Bieker et al. 2018; Zhang et al. 2020) of Li-sulfur (S)–based electrolytes 
guided improvement Li-S battery performance to enable better electrode wetting, 
greatly improved high-rate capability, stable cycle performance for high S loading 
cathodes and low electrolyte/S ratio in Li-S cells, and the extraordinary ability of 
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such electrolyte systems to suppress short-chain polysulfide dissolution and 
polysulfide shuttle effects.  

The newly developed projection-based embedding method was jointly applied to 
understanding electrolyte oxidation. It corrected qualitative inaccuracies in the 
electronic densities and ionization energies obtained from conventional KS-DFT 
methods. Our wave function-in-DFT embedding approach enables accurate 
calculation of the vertical ionization energy (IE) of individual molecules at the 
CCSD(T) level of theory while explicitly accounting for the solvent using a 
combination of DFT and molecular mechanics interactions, as shown in Fig. 6 
(Barnes et al. 2015).  

 

Fig. 6 Summary of the embedding protocol. (a) MD simulations are performed to generate 
the equilibrium ensemble of solvent configurations. (b) An embedded CCSD(T) calculation is 
performed on a single molecule from the MD simulation (the “active region”), indicated by 
the red circle. The electron hole created upon oxidation of the active region is illustrated by 
the blue electron cloud. Nearby molecules are treated at the B3LYP level, indicated by the 
blue circle. More distant molecules are treated using a point-charge MM model, indicated by 
the brown circle. 

We found that the ensemble-averaged distributions of vertical IEs are consistent 
with a linear response interpretation of the statistics of the solvent configurations, 
enabling determination of both the intrinsic oxidation potential of the solvents and 
the corresponding solvent reorganization energies (Barnes et al. 2015). 
Interestingly, we reveal that large contributions to the solvation properties of 
dimethyl carbonate (DMC) originate from quadrupolar interactions, resulting in a 
much larger solvent reorganization energy than that predicted using simple 
dielectric continuum models. Demonstration that the solvation properties for two 
molecules of interest to Li battery electrolytes, ethylene carbonate (EC) and DMC, 
are governed by fundamentally different intermolecular interactions provides 
insight into key aspects of Li-ion batteries, with relevance to electrolyte 
decomposition processes, SEI formation, and the local solvation environment of Li 
cations. 
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4. Mesoscale Modeling of Dislocation Evolution in the 
Presence of Microstructure 

The mechanical and electronic properties of crystalline materials are strongly 
influenced by the presence and evolution of dislocations. The evolution of 
dislocations is, in turn, greatly affected by a wide variety of microstructural features 
commonly present in crystalline materials, such as surfaces, interfaces, grain 
boundaries, and precipitates. The goal of this project was to develop computational 
methodologies (i.e., numerical methods and associated algorithms) to enable 
accurate predictions of dislocation evolution in crystalline materials with 
microstructure. Through predictive modeling of dislocation–microstructure 
interactions, novel microstructures can be designed and tested on a computer. For 
example, the size, shape, and distribution of nanoscale precipitates could be 
optimized to impede dislocation motion for increased yield strength and hardening 
behavior of Mg alloys for lighter vehicle armor. Or free surface and interface 
geometry could be optimized to facilitate dislocation annihilation in GaN thin films 
to improve efficiency in high-powered electronics. The process of exploring these 
design spaces takes years, if not decades, with the traditional “build and test” 
paradigm. Computational design can drastically accelerate the pace of innovation 
in improving material properties. 

At the onset of this project, it was computationally intractable to accurately model 
dislocation evolution in crystalline materials with microstructure. A discrete 
treatment of dislocations and microstructural features is necessary for accurate 
models of dislocation multiplication, pileup, and annihilation. Yet, discrete 
treatments of these features cause an exponential growth in the number of degrees 
of freedom due to the large number of interacting dislocations and microstructural 
features that are present in crystalline materials. Furthermore, high gradients in the 
stress fields surrounding both dislocations and microstructure require fine 
resolution at the spatial and temporal scales. While larger and larger HPC resources 
would be able to address these computational challenges, a fundamental obstacle 
to efficient, large-scale simulations was the inherent incompatibility in domain 
decomposition and load balancing between the numerical treatments of dislocations 
and microstructure.  

The SOA in the explicit modeling of dislocations is the discrete dislocation 
dynamics (DDD) method, while the FE method is the most effective and efficient 
method for computing the stress fields of arbitrarily shape microstructural features. 
Due to the rapid multiplication of dislocations during a DDD simulation, dynamic 
load balancing is desired, where the boundaries of the parallel domain 
decomposition evolve to maintain an equal number of dislocation segments on each 
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process. In contrast, the FE computations are most efficient with a static domain 
decomposition strategy, where the number of elements on each processor are equal. 
Additionally, the relative computational cost of the FE and DDD calculations will 
vary if, for example, one is modeling a few dislocation segments in a highly refined 
FE mesh versus modeling hundreds of thousands of dislocation segments in a 
coarse FE mesh. Due to these computational challenges, simulation capabilities for 
incorporating microstructure into DDD simulations were limited to serial academic 
codes that could only model a few dislocations interacting with a single 
microstructural feature. Scalable algorithms and codes capable of modeling 
realistic densities of dislocations and microstructure were nonexistent. 

Three components were required to achieve the required scalability and efficiency 
for modeling realistic dislocation–microstructure interactions. First, a method for 
computing interaction forces between dislocations that is highly scalable and 
efficient on HPC resources is needed. For this component, the project leveraged the 
Parallel Dislocation Simulator (ParaDiS) (Arsenlis et al. 2007) developed at LLNL. 
ParaDiS has proven to be the SOA for single-crystal DDD simulations on HPC 
architectures. Therefore, it made a logical foundation on which the algorithms for 
incorporating microstructural effects could be added. The ParaDiS development 
team at LLNL was frequently consulted throughout this project to ensure the 
microstructure effects were incorporated accurately and efficiently and to leverage 
their expertise in DDD simulations. The second component was a FE-based method 
for computing the forces on dislocations due to the presence of microstructure. This 
capability did not exist in any simulation tools and would therefore need to be 
developed. The third and final component was a method for load balancing the 
DDD and FE calculations, while maintaining separate domain decomposition 
strategies to ensure parallel scalability. To achieve the desired flexibility, the FE 
calculations were developed into a separate executable, rather than integrating the 
FE calculations directly into existing DDD software, following the multiple-
program-multiple-data (MPMD) paradigm. This allows a user to independently 
select the number of CPU resources for the FE and DDD components and enables 
the use of independent domain decomposition strategies. A tightly coupled 
communication pattern was established between the DDD and FE codes to enforce 
concurrency during the phases of the simulation with the highest computational 
expense. A parallel virtual filesystem was employed to efficiently share data 
between simulators. Coupling of FE to the DDD simulators was achieved through 
the use of an HDF5-based distributed shared memory (DSM) library (Soumagne et 
al. 2010).  

In addition to the algorithmic developments, additional physical insights were 
needed before microstructural effects could be accurately modeled in the 
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representative crystalline materials, Mg and GaN. Both these materials follow the 
hexagonal close-packed (HCP) crystal structure. Modeling of dislocations in HCP 
structures was limited in comparison face-centered cubic (FCC) and body-centered 
cubic (BCC) crystals. Therefore, theoretical, numerical, and experimental 
techniques were employed to further elucidate the structure and mobility of 
dislocations in HCP materials, so that the FE-DDD simulations could incorporate 
the unique behavior of dislocation evolution in HCP materials. 

Initial studies were focused on assessing and improving the computational 
efficiency and parallel scalability of the coupled FE-DDD simulator. In Leiter et al. 
(2013), a strong scalability study was performed where the size of the simulation 
was fixed as the number of CPUs was varied. The results showed good parallel 
efficiency on over 1,000 CPUs. The study also varied the ratio of processors 
dedicated to the FE and DDD executables, demonstrating effective load balancing 
between applications. Finally, profiling of each phase in the FE computation was 
performed and revealed that the primary computational expense was in the linear 
solve of the elastostatic boundary value problem.  

Based on the profiling results, an emphasis was placed on improving the linear 
solvers and preconditioners employed in the FE calculations. New iterative and 
direct solvers were incorporated in the FE code to speed up the linear solve. A 
comprehensive study on the efficiency and scalability of these solvers under a 
variety of preconditioners was performed in Crone and Munday (2014). It was 
found that the new iterative solver, based on the HYPRE (Falgout and Yang 2002) 
library, provided a 10× speedup on the solve time over the existing iterative solver 
by employing an algebraic multigrid (AMG) preconditioner. Through a high-
dimensional parametric study of the AMG parameters, a combination of parameters 
was found that produced the best serial and parallel efficiency across a range of FE 
mesh sizes. The direct solver, based on the Multifrontal Massively Parallel Solver 
(MUMPS) (Amestoy et al. 2001) library, provided a 100× speedup on the solve 
time over the existing iterative solver. However, the initial setup time and memory 
usage grew rapidly with increasing FE mesh size; therefore, the direct solver was 
found to be best suited for small- to medium-sized FE meshes.  

Following successful demonstrations of the efficiency and scalability of the FE-
DDD simulator, a large-scale simulation was performed in Crone et al. (2014). The 
large-scale simulation in this work showed the strong attraction between 
dislocations and free surfaces, creating a gradient in the density of dislocations 
throughout the thickness of a film. The simulation was the largest DDD simulation 
with microstructure at the time, in terms of the number of dislocation segments and 
the size of the FE model mesh used to represent the microstructure. The simulation 
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highlighted the unique capability of the FE-DDD simulator developed in this 
project. 

In conjunction with the algorithmic developments for the FE-DDD simulator, 
various theoretical and numerical studies were conducted to gain a better 
understanding of dislocation evolution in HCP crystals (Wu et al. 2012, 2013, 2014, 
2016). These studies characterized the strength of junctions formed when two or 
more dislocations connect. This junction strength is critical in determining the 
strain hardening effect and the stress required to induce dislocation motion to 
promote annihilation. Theoretical and experimental characterization of dislocations 
in GaN provided new insight in the formation and core structures (Batyrev et al. 
2011, 2013, 2017; Jones and Batyrev 2012; Krimsky et al. 2018). The Peierls stress 
and glide mobility of dislocations in GaN were quantified through atomistic 
simulations (Weingarten and Chung 2013; Weingarten 2015, 2018; Weingarten and 
Larentzos 2015) and experiments (Krimsky et al. 2018). These quantities determine 
the amount of stress required for a dislocation to start moving in a crystal and the 
speed at which it moves under an applied stress. Through these studies, it was 
discovered that the barriers for dislocation motion in GaN were significantly higher 
than hypothesized. Due to this discovery, the focus for eliminating dislocation in 
GaN thin films shifted from how to remove dislocations, to preventing them from 
forming in the first place. While this new direction was outside of the scope of the 
modeling capabilities being developed with the FE-DDD simulator, it was an 
important result that shifted focus to developing novel methods for GaN thin-film 
growth, such as ammonothermal growth (Liu et al. 2020). 

Due to the difficulty in inducing dislocation motion in GaN, the modeling focus of 
the FE-DDD simulator was shifted from semiconductors to structural metals. In 
particular, studying the effects of voids and nanoscale precipitates, which were 
found to be an effective microstructure for improving spall strength in Mg alloys 
(Mallick et al. 2021). The nucleation of prismatic dislocation loops (PDLs) from 
nanoscale voids and precipitates was studied in a series of FE-DDD simulations 
(Munday et al. 2015, 2016). The formation of PDLs induces void growth and 
precipitates decoherence, which are important phenomena in high-rate loading 
conditions. The studies found a strong pressure dependence on PDL formation, as 
well as variability in the PDL mechanisms among FCC, BCC, and HCP crystals. 
The strengthening effect of voids and precipitates is due to their collective ability 
to impede dislocation motion, which delays the onset of plastic deformation to 
higher stresses and strains.  

Quantifying the strengthening effects of obstacle arrays was the focus in a series of 
papers (Crone et al. 2015; Szajewski et al. 2019, 2020, 2021). These papers used a 
combination of theory and numerical simulations to determine the effects of 
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obstacle size, shape, and distribution on yield strength. Due to the modeling 
capabilities of the FE-DDD simulator, the effect of obstacle type (i.e., void vs. soft 
inclusion vs. hard inclusion) was also quantified, resulting in an analytical model 
that can predict the strengthening effect of obstacles without the need for additional 
simulations.  

The FEM-DD simulator also demonstrated the ability to capture stochasticity in 
small-scale plasticity (Crone et al. 2018; Szajewski et al. 2022). Stochasticity 
becomes important in micro- and nanotechnology, where the presence of a few 
defects can drastically change the material strength. FEM-DD is well suited to 
explore these effects because dislocations are explicitly modeled and free-surface 
effects are captured, which dominate at these scales due to the high surface-to-
volume ratios. 

Recently, the collection of algorithms developed through this project were 
implemented in a robust software package called Finite Elements for Discrete 
Dislocation Dynamics (FED3) (Crone et al. 2021). This software has been 
incorporated into the development branch of ParaDiS, allowing other researchers 
throughout DOD and Department of Energy to use and expand this modeling 
capability. Through a collaboration between DEVCOM ARL, LLNL, and NASA, 
the modeling capabilities of FED3 are currently being extended to include 
dislocation transmission between grain boundaries (Cho et al. 2020a). 

The algorithms developed in the project resulted in a modeling capability that was 
2 orders of magnitude faster than the previous SOA by focusing on algorithms that 
efficiently scale on HPC resources. The capabilities enabled the modeling of 
dislocation–microstructure interaction at a fidelity that was previously unattainable. 
However, the cost of FE-DDD simulations is still too high to serve as a replacement 
for analytical and empirical constitutive models in macroscale simulations. 
Therefore, the FE-DDD method is best suited as part of a multiscale approach to 
modeling plasticity by capturing mesoscale phenomena. Information gleaned from 
these simulations can inform constitutive models, replacing many of the time-
consuming experiments required to develop constitutive models for novel 
materials.  

Impacts of this project reach beyond the study of dislocations by proving the 
viability of a DSM approach to coupling multiphysics and multiscale applications. 
The DSM communicator enabled the coupling of two disparate codes that relied on 
drastically different numerical algorithms and parallelization strategies. The 
coupling also required large amounts of data to be transferred between codes 
numerous times over the course of a simulation. Despite these challenges, the 
coupled application was found to scale efficiently on HPC resources.  
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However, the DSM-based approach is labor intensive, as significant modifications 
are required to each code in the coupled applications. Furthermore, a strict 
communication pattern must be enforced. If large amounts of data must be 
communicated between applications and if the time and resources are available to 
implement a DSM coupling, then the approach can provide excellent performance. 
In contrast, the HMS coupling approach, also discussed in this report, provides a 
generic coupling framework that requires minimum time and resources to couple 
multiphysics and multiscale models. The HMS approach requires little, if any, 
modifications to existing software and is better suited for asynchronous and 
unpredictable communication patterns. However, the added flexibility comes at the 
cost of additional overhead in the communication and execution. These insights 
into the benefits and tradeoffs for various coupling strategies are critical to 
determining the appropriate approach in future multiphysics and multiscale 
coupling applications. 

4. Conclusions and Path Forward 

In summary, the cross-cutting effort was aimed squarely at developing new 
methodologies to improve predictive capabilities of multiscale modeling when 
applied to materials. The effort evolved around three thrusts crucially important in 
multiscale modeling of materials. In all, the research performed under the auspices 
of the cross-cutting effort yielded a number of important scientific results relevant 
not only to DEVCOM ARL researchers but also to the scientific community at 
large. For example, the scale-bridging project facilitated construction of a new 
multiscale model of the explosive RDX capable of capturing complex mechano-
chemistry under STEX conditions. Software improvements to SOA large-scale QM 
codes allowed for the first-ever full-resolution DFT simulation of overdriven shock 
in a solid PETN filament composed of 7,424 atoms for approximately 1.6 ps, the 
largest simulation of its type to date. Further, augmentation to capabilities provided 
a first-ever first-principles description of local pressure of the material behind the 
propagating shock front. Multi-resolution capabilities included advancements in 
hybrid QM/MM calculations for battery materials, which provided insight into key 
aspects of Li-ion batteries and provided an electrolyte design strategy for alternative 
divalent metal batteries. Finally, the work on the effects of voids and precipitates 
on small-scale plasticity enabled discovery of an effective microstructure for 
improving spall strength in Mg alloys. 

The legacy of the cross-cutting effort goes beyond just scientific results. The HMS 
scale-bridging software library remains under active development and continues to 
be employed to construct multiscale material models for Army applications. Efforts 
are underway to release the source code of the HMS library to ensure that the library 
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can be utilized for multiscale modeling by DEVCOM ARL’s collaborators. In this 
context, the HMS-VUMAT appears particularly advantageous as it markedly 
reduces the cost of building a multiscale material model. Moreover, the 
improvements in linear scaling and RT-TD-DFT methods have been transitioned 
to the CP2K suite, with work continuing to link LAMMPS with CP2K. The link 
will enable use of DFT models within LAMMPS, including with the MLDM we 
implemented for use with a fast, low-fidelity MD model in LAMMPS to produce 
high-accuracy results. Finally, with the sunset of the cross-cutting effort, the FED3 
software has been transitioned to LLNL and will continue to have a lasting impact 
on small-scale plasticity modeling for years to come.  

It is also important to emphasize the legacy of the cross-cutting effort in terms of 
scientific project management. In contrast to projects at DEVCOM ARL aimed at 
development of specific technologies, the cross-cutting effort was primarily a 
method development program. Hence, its main objective was not geared toward 
addressing a particular scientific or engineering problem, but instead on developing 
methods to facilitate seeking solutions of a broad classes of problems by 
computational means. To that end, the effort required multidisciplinary teams, and 
all three projects involved researchers from the Computational and Information 
Sciences Directorate, the Sensors and Electron Devices Directorate, and the 
Weapons and Materials Research Directorate at DEVCOM ARL. This 
multidisciplinary aspect cannot be overemphasized as it fostered deep and lasting 
collaborations across all the directorates involved. The cross-cutting effort appears 
an excellent model for removing organizational barriers and fostering meaningful 
collaborative research endeavors. 
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