
IMPLEMENTATION AND
CHARACTERIZATION OF AHR

ON A XILINX FPGA

THESIS

Andrew J. Dittrich, Captain, USSF

AFIT-ENG-MS-22-M-025

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.

AFIT-ENG-MS-22-M-025

IMPLEMENTATION AND CHARACTERIZATION

OF AHR ON A XILINX FPGA

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Electrical Engineering

Andrew J. Dittrich, B.S.E.E.

Captain, USSF

March 24, 2022

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-ENG-MS-22-M-025

IMPLEMENTATION AND CHARACTERIZATION

OF AHR ON A XILINX FPGA

THESIS

Andrew J. Dittrich, B.S.E.E.
Captain, USSF

Committee Membership:

Maj. Nicolas Hamilton, Ph.D
Chair

Lt. Col James Dean, Ph.D
Member

Douglas Hodson, Ph.D
Member

AFIT-ENG-MS-22-M-025

Abstract

A new version of the Adaptive-Hybrid Redundancy (AHR) architecture was de-

veloped to be implemented and tested in hardware using Commercial-Off-The-Shelf

(COTS) Field-Programmable Gate Arrays (FPGAs). The AHR architecture was de-

veloped to mitigate the effects that the Single Event Upset (SEU) and Single Event

Transient (SET) radiation effects have on processors and was tested on a Micropro-

cessor without Interlocked Pipeline Stages (MIPS) architecture. The AHR MIPS

architecture was implemented in hardware using two Xilinx FPGAs. A Universal

Asynchronous Receiver Transmitter (UART) based serial communication network

was added to the AHR MIPS design to enable inter-board communication between

the two FPGAs. The runtime performance of AHR MIPS was measured in hardware

and compared against the runtime performance of standalone TMR and TSR MIPS

architectures. The hardware implementation of AHR MIPS demonstrated flexible

runtime performance that was nearly as fast as TMR MIPS, never as slow as TSR

MIPS, and demonstrated performance in between those extremes. Hardware testing

and verification of AHR MIPS showed that the AHR mitigation strategy presents a

large performance tradespace, where a user can adjust both the runtime processor

performance and radiation tolerance to fit the constraints of a space mission, while

also continuing to provide adaptive performance based upon the current radiation

environment.

iv

AFIT-ENG-MS-22-M-025

For my family

v

Acknowledgements

I am thankful for being granted the opportunity to earn my Master’s degree and

further develop my technical abilities and knowledge. I am thankful for my family,

because without their support this challenge would have seemed insurmountable. I

would like to thank my research advisor for his guidance, patience, and support

throughout my research.

Andrew J. Dittrich

vi

Table of Contents

Page

Abstract . iv

Dedication . v

Acknowledgements . vi

List of Figures . x

List of Tables . xii

I. Introduction . 1

1.1 Research Context . 1
1.2 Research Questions . 6
1.3 Research Assumptions . 7
1.4 Document Overview . 8

II. Background . 9

2.1 Introduction . 9
2.2 Radiation Effects on Electronics in Space . 9

2.2.1 Long-Term Effects . 10
2.2.2 Short-Term Effects . 10

2.3 FPGAs In Space . 11
2.3.1 SRAM FPGAs . 12
2.3.2 TID . 12
2.3.3 SEUs & SETs . 13
2.3.4 SEFI . 15
2.3.5 SEL, SEGR, and SEB . 16

2.4 Methods of Mitigation for SRAM FPGAs . 17
2.4.1 Hardware . 18
2.4.2 Software . 26
2.4.3 Hybrid Redundancy . 30

2.5 V&V of Radiation Mitigation Methods for SRAM
FPGAs . 33
2.5.1 Physical Radiation Testing . 33
2.5.2 Fault Injection Campaigns . 34

2.6 Adaptive Hybrid Redundancy (AHR) . 35
2.6.1 AHR MIPS Components . 37
2.6.2 AHR MIPS Instruction Sets/Programs . 44
2.6.3 AHR MIPS Operational Modes . 45
2.6.4 Evaluation of Error Free AHR MIPS . 52
2.6.5 Evaluation of Error Prone AHR MIPS . 60

vii

Page

2.6.6 Error Prone Simulation/Calculation Results 67

III. Methodology . 69

3.1 Introduction . 69
3.2 FPGA Hardware Selection . 69

3.2.1 Previous Challenges . 70
3.2.2 Xilinx Spartan - 7 Development Board . 71
3.2.3 New Constraints . 71

3.3 SP701 AHR MIPS Design . 72
3.3.1 AHR MIPS Processor . 73
3.3.2 Forward Path . 74
3.3.3 Memory . 79
3.3.4 Return Path . 80
3.3.5 Modifications to Previous AHR MIPS

Architecture . 85
3.3.6 Finalized Design of AHR MIPS Architecture 89

3.4 Implementation of AHR MIPS on Xilinx FPGAs 90
3.4.1 Instruction Set/Program Generation . 91
3.4.2 AHR MIPS Timing Calculations . 93

3.5 Hardware Testing and Data Collection . 98
3.5.1 Modifications to AHR MIPS for Hardware

Measurements . 98
3.5.2 Architectures & Operational Modes Calculated

and Measured . 100
3.5.3 Measurement Methodology . 136
3.5.4 Summary of Hardware Testing and Data

Collection . 140
3.6 Ch. III Summary . 142

IV. Results . 143

4.1 Introduction . 143
4.2 TMR MIPS Results . 144

4.2.1 Error Free TMR MIPS Results . 144
4.2.2 Error Prone TMR MIPS Results . 146

4.3 TSR MIPS Results . 149
4.3.1 Error Free TSR MIPS Results . 149
4.3.2 Error Prone TSR MIPS Results . 151

4.4 AHR MIPS Results . 152
4.4.1 Error Free AHR MIPS Results . 153
4.4.2 Error Prone AHR MIPS Results . 154

4.5 Hardware Measurement-to-Calculation Discrepancies 162
4.6 AHR MIPS Performance Behavior Analysis . 164

viii

Page

4.6.1 EF TMR, TSR, and AHR MIPS. 165
4.6.2 TMR and AHR MIPS Type A Errors . 166
4.6.3 TMR and AHR MIPS Type B Errors . 169
4.6.4 TSR and AHR MIPS Errors . 172
4.6.5 Summary of AHR MIPS Performance Behavior

Analysis . 173
4.7 Summary of Results . 174

V. Conclusion . 176

5.1 Contributions . 178
5.2 Future Work . 180

Appendix A. Detailed Design Tables . 185

Bibliography . 207

ix

List of Figures

Figure Page

1 TMR MIPS Simplified Block Diagram . 20

2 AHR MIPS Simplified Block Diagram . 36

3 AHR MIPS Datapath w/Error Inject Module . 61

4 Diagram of the AHR MIPS Processor . 74

5 Diagram of the AHR MIPS Memory . 81

6 AHR MIPS Hardware Design . 90

7 TMR MIPS Type A Error Scenario [20] . 102

8 TMR MIPS Type B Error Scenarios [20] . 103

9 TSR MIPS Error Scenarios [20] . 106

10 AHR MIPS TMR Type A Error - Early [20] . 111

11 AHR MIPS TMR Type A Error - Late [20] . 112

12 AHR MIPS TMR Type B Error Best - Early [20] 117

13 AHR MIPS TMR Type B Error Best - Late [20] 118

14 AHR MIPS TMR Type B Error Worst - Early [20] 124

15 AHR MIPS TMR Type B Error Worst - Late [20] 124

16 AHR MIPS TSR Error - Best [20] . 130

17 AHR MIPS TSR Error - Worst [20] . 131

18 Experimental Setup of AHR MIPS in Hardware . 137

19 AHR MIPS Hardware Test Setup . 137

20 AHR MIPS Boards #1 & #2. 138

21 Calculated & Measured Runtime Performance of
Error-Free TMR MIPS . 145

22 Calculated & Measured TMR ErrA Runtimes . 146

x

Figure Page

23 Calculated & Measured TMR ErrB Best and Worst
Runtimes . 148

24 Calculated & Measured Runtime Performance of
Error-Free TSR MIPS . 150

25 Calculated & Measured TSR Err Best and Worst
Runtimes . 151

26 Calculated & Measured Runtime Performance of
Error-Free AHR MIPS . 153

27 Calculated & Measured AHR TMR ErrA Early & Late
Runtimes . 155

28 Calculated & Measured AHR TMR ErrB Best - Early
& Late Runtimes . 157

29 Calculated & Measured AHR TMR ErrB Worst - Early
& Late Runtimes . 159

30 Calculated & Measured AHR TSR Early & Late Error
Runtimes . 161

31 All Measured Runtimes of 5 Complete Instr. Sets
(Sorted) . 165

32 EF MIPS Measured Runtimes of 5 Complete Instr. Sets
(Sorted) . 166

33 Focused view of Fastest Measured Runtimes of 5
Complete Instr. Sets (Sorted) . 167

34 AHR & TMR MIPS Type B Errors Measured Runtimes
of 5 Complete Instr. Sets (Sorted) . 170

35 Measured Runtimes of Early & Late Errors for AHR
and TSR MIPS of 5 Complete Instr. Sets (Sorted) 172

36 All Measured Runtimes of 5 Complete Instr. Sets
(Sorted) . 173

xi

List of Tables

Table Page

1 Basic MIPS ADD Instruction [36] . 28

2 EDDI TSR MIPS ADD Instruction [36] . 28

3 Example AHR MIPS Instruction Set/Program [20] 45

4 Architectures and Operational Modes Measured in
Hardware . 64

5 Architectures and Operational Modes Measured in
Hardware . 100

6 SP-701 PMOD Pin Assignments for Inter-Board
Comms. & Measurements . 139

7 Percent Difference Between TMR ErrA and both AHR
ErrA Early & Late . 168

8 AHR MIPS Instr. Subset . 185

9 Architecture Specific Processes . 187

10 MIBO FSM Read Operation States . 188

11 MIBO FSM Write Operation States . 189

12 MEBI FSM Read Operation States . 193

13 MEBI FSM Write Operation States . 194

14 MEBO FSM Read Operation States . 198

15 MEBO FSM Write Operation States . 201

16 MEBO FSM Program End Operation States . 202

17 MIBI FSM Read Operation States . 203

18 MIBI FSM Write Operation States . 205

19 MIBI FSM Program End Operation States . 206

xii

IMPLEMENTATION AND CHARACTERIZATION

OF AHR ON A XILINX FPGA

I. Introduction

1.1 Research Context

Electronic devices operating in space are subjected to a significantly more volatile

radiation environment than terrestrial electronics. The Earth’s atmosphere shields

terrestrial electronics from high-energy cosmic particles, and the accumulation of radi-

ation induced defects. Without protection from the atmosphere, electronics intended

for use in space must be designed to comply with a different set of operational require-

ments than terrestrial electronics. Specifically, space electronics must be designed to

be resistant or nearly immune to the harsh radiation environment of space. The

design process used to make a radiation-tolerant or radiation-hardened (rad-hard)

device varies in complexity depending on the device type. Simple, low-level devices

composed of relatively few components can be re-designed to operate in space with

less effort than complex devices such as processors.

A space system, such as a communication satellite, is composed of an electronic

subsystem which must perform a specific set of tasks. If any component of the

electronic subsystem is not designed to operate reliably in space, the operational ca-

pabilities of that space system are jeopardized. In the past, government space system

missions were relatively simple and often only required the transmission of collected

information to ground stations for data processing and decision making. However,

modern government space systems have mission requirements that require advanced

1

electronics to enable on-orbit processing and decision making. Specifically, these

modern space systems require advanced and state-of-the-art processing capabilities.

Any processor used in traditional government space systems must be designed to

operate with near 100% reliability to support national security and defense objectives.

Oftentimes, these processors must reliably operate for mission lifetimes greater than 5

years. Processors are complex systems composed of millions, if not billions, of lower-

level electronic components. The component density and complexity of processors

makes them especially susceptible to high energy cosmic particles, which can intro-

duce errors into the device, and over time will alter the operational characteristics

of the device until failure or cause instantaneous device failure [4, 47]. A short-term

interaction between a high energy cosmic particle and a processor which causes an

upset is referred to as a single-event-effect (SEE). The most common SEEs are single-

event-upsets (SEUs) and single-event-transients (SETs), which are non-destructive

interactions that change the state of a digital memory element [59]. The long-term

effect of radiation on a processor is referred to as total ionizing dose (TID). TID

degrades the electrical characteristics of the devices that make up a processor and

eventually leads to device failure. A processor can reliably operate in space if it is

designed/modified to tolerate or be completely immune to SEUs/SETs and have a

high TID tolerance.

Development and manufacture of a new rad-hard processor requires millions of dol-

lars and years of design time. Once a rad-hard processor is ready for use, that design’s

performance will lag by several processor generations when compared to current-

generation commercial-off-the-shelf (COTS) high-performance processors. Despite

the performance difference, there are many government space missions that require

rad-hard processors and have the budget to acquire or procure one. However, due to

evolving space system mission requirements, not all government space systems require

2

the near 100% reliability offered by an expensive rad-hard processor. Oftentimes field

programmable gate arrays (FPGAs) can be used as a low-cost substitute in terms of

cost and power consumption.

FPGAs are devices that can be programmed with application specific circuit de-

signs and reprogrammed with a different design as the user sees fit. Since the oper-

ations performed by an FPGA device are specified by a user, the power consumed is

much lower than if that operation were performed on a rad-hard processor, which may

need to execute other processes just to keep the device operational. Oftentimes space

systems do not require the generalized processing power of a rad-hard processor and

can use an FPGA to efficiently perform only the operations necessary to support mis-

sion requirements. If a processor is required, soft-core processors can be implemented

in the programmable fabric of an FPGA. Soft-core processors implemented on an

FPGA are susceptible to the same radiation effects as normal processors. However,

design methodologies that provide a normal processor radiation tolerance can also be

employed for processors implemented on an FPGA. These design methodologies refer

to methods of radiation mitigation and are the subject of this research.

To ensure reliable operation of an FPGA in space, the selected radiation mitigation

method(s) must be well-proven and carefully integrated into the circuit design [37].

For this reason, research into the methods of radiation mitigation for FPGAs is a rich

and evolving field. Radiation mitigation for FPGAs can be obtained using redundancy

techniques or using radiation shielding. Radiation shielding requires that the FPGA

be packaged using specialized protective materials, and this method is not ideal when

space systems are highly constrained in terms of size and weight. This research only

focuses on mitigation methods that use redundancy. Redundancy techniques are used

to protect an FPGA against SEUs and SETs. Redundancy techniques cannot protect

an FPGA against the effects of TID, because TID resistance is determined by the

3

process used to manufacture the device. Modern methods of radiation mitigation

using redundancy can be split into three broad categories: hardware redundancy,

software redundancy, and hybrid redundancy.

Hardware redundancy refers to methods that obtain redundancy through modifi-

cation of the hardware design to detect and correct errors/faults. A commonly used

method of hardware redundancy is Triple Modular Redundancy (TMR), which im-

proves radiation tolerance by replicating a digital circuit three times and connecting

all copies to a simple majority voter which determines the correct output [32]. TMR

can be used to increase the radiation tolerance of an FPGA but does so at a cost.

Specifically, TMR offers radiation tolerance at the cost of logical resources and power.

If applied to an entire FPGA design, TMR would require over 3x the logic hardware

resources to implement and would require more power to operate, than an equivalent

non-TMR version of the design.

Software redundancy refers to methods that obtain redundancy by modifying the

software that runs on a processor implemented in an FPGA. Temporal software redun-

dancy (TSR) is a method that provides redundancy by performing each instruction

a processor executes multiple times at different points during program runtime and

comparing the results to determine the correct output. Like TMR, TSR can increase

the radiation tolerance of a processor on an FPGA, but does so at the cost of pro-

cessor performance. TSR increases the length of programs executed by a processor

which requires more time to complete than an equivalent non-TSR program, and thus

reduces processor runtime performance.

Hybrid redundancy methods are those that integrate multiple methods, such as

TMR and TSR, into the same design. The use of TMR or TSR in an FPGA design

to improve radiation tolerance is a common practice, however only one method is

typically implemented. Selecting only one method limits the performance of a radia-

4

tion tolerant FPGA processor design, because both TMR and TSR provide different

levels of radiation tolerance while providing different benefits. Hybrid methods seek

to find an optimized design that can balance the benefits of both hardware and soft-

ware redundancy, or any combination of other redundancy methods. However, hybrid

methods are not common and any that do exist are highly application specific.

The decision to apply hardware, software, or hybrid redundancy to an FPGA

processor design requires careful consideration of processing and power requirements.

The chosen redundancy method must allow for reliable device operation under the

expected worst-case radiation scenario that will be encountered on-orbit. However,

the implemented redundancy method must also be power efficient since space sys-

tems operate under constrained power budgets. Once a redundancy method has been

selected, it is applied to the FPGA during the design phase and does not change.

By implementing a redundancy method which does not change, or is static, the per-

formance characteristics of an FPGA-based processor do not change during runtime,

even if the operational radiation environment changes for better or worse. This re-

search is focused on further developing a hybrid redundancy method that is adaptive

and enables a processor to have performance characteristics that change depending

on the current radiation environment.

The Adaptive-Hybrid Redundancy (AHR) architecture was previously developed

by Hamilton in [20] and can operate in two different modes, where each utilizes

a different redundancy technique. The AHR architecture improves the radiation

tolerance of a processor by using a controller to dynamically select between the two

different operating modes, depending on the number of detected processor errors

caused by radiation effects. Each operating mode implements a different radiation

mitigation strategy: one using TMR and the other using TSR. The TMR operating

mode offers the highest radiation tolerance and processor performance and is used

5

when the number of detected upsets is high. The TSR operating mode offers less

radiation tolerance and processor performance, but consumes less power than the

TMR operating mode. AHR specifically aims to improve tolerance to SEUs/SETs

and does not improve a processors TID tolerance. AHR stands as an important

development because, based upon a literature review, no other hybrid and adaptive

radiation mitigation strategy for processors has been physically implemented on an

FPGA [27]. This research seeks to further develop AHR and verify the operation of

AHR when implemented on a COTS FPGA.

One of the goals defined in the 2020 Defense Space Strategy created by the De-

partment of Defense (DoD), was that the DoD will, “develop an agile space enterprise

that can take advantage of emerging technological and commercial innovation in order

to continually outpace adversary threats” [56]. The AHR architecture was designed

to be generic so that it could be integrated into the design of a processor implemented

on any FPGA device, even as FPGA technology continues to advance. The core de-

sign philosophy of AHR supports DoD goals to leverage lower-cost COTS electronics,

which can meet the processing performance needs of current and next-gen space sys-

tems, while also decreasing the time required to field such systems. Experimental

verification of AHR, as applied to a processor on an FPGA, would determine the

mitigation strategy’s feasibility as a low-cost alternative to rad-hard processors and

would mature the technology for integration into future space systems.

1.2 Research Questions

This research seeks to answer the following questions:

(a) Can AHR be implemented on a COTS FPGA(s)?

(b) What are the performance characteristics of AHR on a COTS FPGA? (Proces-

sor Performance)

6

(c) How does the measured performance of AHR compare to predictions and results

produced in prior research?

1.3 Research Assumptions

This research is a continuation/extension on the work in [20]. Therefore, this

research makes many of the same assumption while also including additional assump-

tions to maintain focus and scope.

1. The only radiation effects considered are SEUs and SETs [20].

(a) No other types of radiation effects occur.

(b) Multiple-bit upsets (MBUs) where a single radiation strike causes errors

in multiple adjacent registers are so unlikely that they do not occur.

2. The processor refers only to the Controller and Datapath of a processor [20].

(a) The Controller is composed of a finite state machine (FSM) which trans-

lates instructions into control signals for the Datapath.

(b) The Datapath consists of general purpose registers (GPRs), a program

counter (PC) register, logic to update the GPRs and PC register, an ALU

to process data, and logic to control data flow. The operation of the

Datapath is controlled by control signals from the controller.

3. The processor and all lower-level components contained are subject to SEUs

and SETs with the following exceptions [20].

(a) The TMR Voter in AHR MIPS described in Ch. II Section 2.6.1.2 is

immune to errors.

7

(b) The AHR Controller in AHR MIPS described in Ch. II Section 2.6.1.3

and the multiplexers used by the AHR Controller for signal routing are

immune to errors.

4. Memory refers to the location where instructions and data are stored for use by

the processor. The processor accesses memory through read and write opera-

tions [20].

5. Memory is immune to all errors caused by radiation effects [20].

(a) Memory hardening is not within the scope of this research

(b) Memory may be hardened by error correcting codes (ECCs), redundancy,

shielding, or any combination of these methods.

6. The codes used in communication operations between the Processor and Mem-

ory are immune to all errors caused by radiation effects.

(a) These codes are short-constant values which can be made immune to errors

using ECCs.

1.4 Document Overview

The research presented in this document is ordered as follows:

(a) Chapter II presents the background research performed to understand this topic.

(b) Chapter III presents the methodology employed to execute the proposed AHR

R&D.

(c) Chapter IV presents and discusses the results of the AHR R&D.

(d) Chapter V presents conclusions, contributions of this research, and discusses

future work.

8

II. Background

2.1 Introduction

This chapter presents the background necessary to understand the design/devel-

opment of AHR, and why it is important to further verify AHR in FPGA hardware.

Section 2.2 provides a high-level explanation on the different categories of radiation

effects electronics experience while operating in space. Section 2.3 discusses the differ-

ent types of modern FPGA technologies, highlights why SRAM FPGAs are commonly

used in space, and further explains the radiation effects to which they are suscepti-

ble. Section 2.4 summarizes the variety of methods used to mitigate the radiation

effects experienced by SRAM FPGAs. Section 2.5 describes the physical and simu-

lated radiation testing methods employed to verify and validate the functionality of

a given mitigation technique. This section provides insight into the testing method

selected for this research. Section 2.6 provides an in-depth discussion on AHR which

highlights why it is a novel technique to detect and correct radiation induced upsets

and why it is the foundation upon which this research is built.

2.2 Radiation Effects on Electronics in Space

Electronic devices used in space are subjected to an operational environment vastly

different than what is experienced terrestrially. The lack of an atmosphere in space

requires different device manufacturing and assembly procedures to ensure the device

can even operate. The lack of atmosphere also exposes electronic devices to high-

levels of radiation, which can damage the device or degrade device performance by

upsetting the device’s operation during runtime. The space-radiation environment

can generate short-term and long-term effects that affect device performance.

9

2.2.1 Long-Term Effects

The most prevalent long-term radiation effect on electronic devices is Total Ion-

izing Dose (TID) [59]. TID accumulates in silicon devices operating in a radiation

environment, and degrades the electrical parameters of that device until it no longer

functions as expected or at all [1, 28, 58]. The TID tolerance of a device is deter-

mined by the manufacturing and assembly process. For this reason, TID mitigation

is implemented through physical means, such as the addition of shielding to reduce

the amount of radiation the device encounters. Although shielding can be used to

mitigate TID, it is costly to implement in space systems where the size and weight

of every included component is highly constrained. Electronic devices manufactured

to have a higher TID resistance are usually preferred for use over shielding, but are

specialized products that come with a higher unit cost.

2.2.2 Short-Term Effects

Short-term radiation effects are classified as a type of Single-Event Effect (SEE).

SEEs include radiation strikes that can lead to destructive and non-destructive events.

Destructive SEEs include Single-Event Latchup (SEL), Single-Event Gate Rupture

(SEGR), and Single-Event Burnout (SEB) [28, 59]. These effects are caused by a

radiation strike on the electronic substrate of a device, which creates an unintended

low-impedance/high-current path, that can lead to damage or destruction of the

device. Non-destructive SEEs include Single-Event Upsets (SEUs) and Single-Event

Transients (SETs) [1, 28]. Both SEUs and SETs are caused when a radiation strike

generates an electronic charge large enough to change the logic state of a low-level

electronic component within an FPGA device (transistor, flip-flop, register) [4, 47].

10

2.3 FPGAs In Space

FPGAs are commonly used in space systems due to their low-design cost when

compared to the purchase of a radiation-hardened processor or cost to develop and

manufacture an Application-Specific Integrated Circuit (ASIC). There are three main

types of modern FPGAs: antifuse, flash memory-based, and SRAM-based. Selecting

the type of FPGA to use in a space system depends on a variety of factors including

mission lifetime, required computational performance, power usage, and cost. The

difference between each type of FPGA is the method in which the configuration of

the device is maintained. Antifuse FPGAs store device configuration in fuse-based

memory cells, which are one-time programmable [1, 47]. Antifuse FPGAs are less

susceptible to radiation effects because the configuration of the device is physically

fixed in hardware after being programmed once. Flash memory-based FPGAs store

configuration memory in non-volatile flash memory cells and can be reconfigured us-

ing a bitstream. These kinds of FPGAs have been found to be unreliable for space

missions with a long lifetime, due to, “low immunity to TID and SELs” [47]. SRAM-

based FPGAs are similar to Flash-based FPGAs, but instead store configuration

data in volatile SRAM memory cells. SRAM FPGAs are desirable for use in space

because they offer high performance and ease of reconfigurability. However, SRAM-

based FPGAs are more susceptible to radiation induced upsets than the other FPGA

types. Despite being more susceptible to radiation induced upsets, SRAM-based

FPGA performance is so high, that it is worth the effort and cost to design strate-

gies/methodologies that can increase the radiation tolerance of these devices. This

research is entirely focused on further developing a mitigation strategy that enables

a high-performance SRAM-based FPGA to operate in a radiation environment.

Section 2.3.1 provides details on why SRAM FPGAs are desirable for use in space

systems and why they are susceptible to radiation effects. Sections 2.3.2 - 2.3.5

11

describe the specific radiation effects that must be considered or dealt with in order

for an SRAM FPGA to function reliably in space.

2.3.1 SRAM FPGAs

SRAM FPGA performance is high because these devices are manufactured using

standard CMOS processes [58]. CMOS fabrication is an advanced process, which can

create FPGA devices that are transistor dense, thus offering higher computational

performance than a flash or antifuse FPGA device. SRAM FPGAs are easily recon-

figurable because each SRAM cell in the device can be individually programmed and

reprogrammed using a bitstream generated by any of the industry standard FPGA

design suites. SRAM FPGAs afford mission planners and hardware designers the

flexibility to perform missions beyond what the device was originally programmed to

do [1]. However, SRAM FPGAs are more susceptible to short-term radiation effects

than the other FPGA types because the state of an SRAM cell is volatile and can

easily be changed due to a radiation strike.

2.3.2 TID

SRAM-based FPGAs are susceptible to the effects of radiation-induced charge

trapping within the oxide layers of the CMOS devices that constitute the FPGA

[58]. Trapped charge in the oxide layers of CMOS devices causes ionization to occur,

which causes performance degradation due to increasing leakage currents and other

effects [47]. The accumulation of TID over time will cause SRAM-based FPGAs to

fail. As mentioned in Section 2.2.1, the TID tolerance of an SRAM-based FPGA is

determined by the manufacturer. The Xilinx Virtex-5QV FPGA device is a modern

example of an FPGA that is manufactured to be Rad-Hard By Design (RHBD) and

thus has a high TID tolerance [60]. The Virtex-5QV FPGA is manufactured using

12

a 65-nm technology process, which is many generations behind current generation

high-performance COTS devices, such as the Virtex Ultrascale+ built using a 16-nm

process [62]. Not only is the performance lower, but RHBD SRAM FPGAs are much

more expensive to produce due to the specialized process required to make RHBD

CMOS devices. This means that RHBD SRAM FPGAs present a much lower cost-

performance ratio than most COTS FPGAs. However, RHBD FPGAs such as the

Virtex-5QV are the only option when an FPGA must perform with near immunity

to all radiation effects. This research does not seek to mitigate the buildup of TID in

SRAM FPGAs, but instead focuses on mitigating short-term radiation effects, which

are more cost-effective to mitigate than TID.

2.3.3 SEUs & SETs

SEUs and SETs are the most common SEEs that affect SRAM-based FPGAs.

SEUs are single particle events that change the value held in a digital memory

element, and SETs are radiation strikes that modify the behavior of a logic cell

[19, 28, 59]. These radiation effects are common in SRAM FPGAs because these de-

vices are densely packed with bi-stable volatile memory and logic elements. Despite

being the most common SEEs, SEUs and SETs are considered soft errors that can be

cleared/dealt with as the event occurs during device runtime [4]. These soft errors,

also called transient errors, are non-permanent device faults that are highly localized

and can be corrected without a system reset.

SEUs can have various effects on the operation of a circuit on an FPGA depending

on the memory element that is struck by a particle. The effect of lowest consequence

occurs if a memory element that stores user/runtime data is struck. In this case, the

output of any operations using that memory element will be incorrect. This error can

be simply corrected by overwriting the erroneous data with corrected values. The

13

most substantial consequence occurs if a memory element that stores FPGA circuit

configuration data is struck. In this case, the operation of the circuit is fundamentally

changed, and can produce unexpected behavior. This error must be corrected by re-

loading that configuration memory cell with an error-free version. This is known as

configuration scrubbing and is discussed in Section 2.4.1.4. In either case, the memory

element that experienced an SEU is not permanently damaged and can be expected

to operate correctly after the error is corrected.

Since SETs are defined as only affecting FPGA logic cells, they cannot change the

fundamental configuration of the FPGA. SETs introduce highly transient errors to

the combinational logic used by the circuit and can result in an error at the output

of the affected logic. Within a chain of combinational logic there is some inherent

protection against SETs creating an output error. The effects of a SET can be

masked, or ignored, either electrically, logically, or temporally. A SET is electrically

masked when the radiation strike produces a logic pulse of 1 within combinational

logic, but does not persist through enough successive components/gates to manifest

a final output error. A SET can be logically masked if the produced logic pulse of 1

encounters a logic gate whose output, at that moment, cannot change due to a single

received logic 1 value. For example, if a SET produced logic pulse of 1 is an input

to an AND gate and the other input is a logic 0, then the SET does not continue to

propagate. Temporal masking occurs when the SET generates a logic pulse of 1 and

is received by a component that ignores the errant input, because that component

only reads input values under specific conditions. For example, a SET produced logic

pulse of 1 would be ignored by a D flip-flop if the pulse arrived at the input at any

point other than the rising edge of the clock. If a SET-produced error is not masked,

then the resulting output of the affected combinational logic will have an error that

could affect future operations. In the same manner as SEUs, an FPGA logic element

14

that experiences a SET is not permanently damaged and will continue to function

properly after the error is corrected [7, 20, 33].

These soft errors typically only affect a single memory/logic element and thus

only generate a Single-Bit Upset (SBU). However, if the radiation strike has suffi-

cient energy, a Multi-Bit Upset (MBU) can be generated. Therefore, all methods of

error detection and radiation mitigation must be designed to also account for MBUs,

despite MBUs accounting for a small fraction of observed total SEU rates in space

systems [4]. This research is focused on the detection and mitigation of SEUs and

SETs, and thus a redundancy scheme was created that provides protection against

SBUs. The redundancy scheme used in this research combines two redundancy meth-

ods. Each method is implemented in unique ways and as a result, each method also

provides varying degrees of protection against MBUs. The first method has higher

inherent protection against MBUs because it is a technique that provides redundancy

by physically separating circuit components in hardware. If there is more physical

separation between components in a circuit design, then a MBU is less likely to affect

more than one logic cell or group of cells that define a register for example. The second

method has lower inherent protection against MBUs because it provides redundancy

through time by repeating operations and comparing the results of those operations.

The second method provides less physical separation between circuit components,

and as a result could be more susceptible to a MBU manifesting errors in more than

one logic cell or group of cells.

2.3.4 SEFI

A Single-Event-Functional Interrupt (SEFI) is another type of soft-error, where

a radiation strike changes the logical state of a critical memory element or register

which interrupts the normal operation of the device [29]. In an FPGA, a radiation

15

strike to a system control register may cause an SEFI to occur [4]. A radiation strike

to a register that defines a program branch target can lead to an illegal branch being

taken and is also considered a SEFI. An uncorrected SEFI may persist until the device

is reset, because the affected logical element may not be accessed as often as elements

used to define user memory [29]. Although SEFIs have a profound impact on device

operation, they are still a soft-error, and do not permanently damage the affected

elements or device. This research implements a redundancy/mitigation scheme that

operates in two modes. Only one of the operational modes can detect errors that affect

branch instructions or could cause an illegal branch to occur. The other operational

mode does not provide any protection against branch instruction errors, and thus the

overall redundancy architecture only provides partial protection against SEFIs.

2.3.5 SEL, SEGR, and SEB

SRAM-based FPGAs are susceptible to potentially destructive Single-Event-

Latchup effects (SELs). A SEL is a semi-permanent error, that can destroy the

element(s) that experience the radiation event. SEL is caused by an energetic particle

interaction within a CMOS device. This interaction can create a path for current

within the parasitic structure present in CMOS devices as a result of having NMOS

and PMOS transistors next to each other [10, 20]. This parasitic current path is

low-impedance and can result in device burn-out if it is not power-cycled. SELs

can be detected and corrected using current sensors and other monitoring devices

included as part of the FPGA or device packaging. Hardening solutions for SELs

are dependent on the manufacturing process used for the FPGA. Methods used to

harden against SEL include: use of epitaxial layers, guard rings, trench isolation, and

Silicon-On-Insulator (SOI) technologies, all of which are discussed in depth in a study

by Brugier et al. in [10].

16

Single Event Gate Rupture (SEGR) and Single Event Burnout (SEB) are perma-

nent errors that are caused when a radiation strike has high enough energy to immedi-

ately destroy elements/devices within an SRAM-based FPGA. SEGR is caused when

a particle strike causes the insulating layer between the gate and device dielectric to no

longer function, thus causing device failure [20]. SEB occurs when a radiation strike

creates an un-correctable and unintended current path within the parasitic structures

inherent to CMOS devices and causes device burnout/destruction. [20, 55].

The redundancy methods used in this research do NOT protect an SRAM-based

FPGA against SEL, SEGR, or SEB.

2.4 Methods of Mitigation for SRAM FPGAs

SRAM-based FPGAs have been heavily researched and radiation tested both ter-

restrially and on-orbit because these devices offer high performance and ease of re-

configurability [11]. Many SRAM-based FPGA devices have in-depth and validated

radiation performance characteristics [1, 28, 57]. However, it has been experimen-

tally shown that SRAM-based FPGA performance in space is greatly improved by

using radiation mitigation techniques. As a result, there is great research emphasis

on creating new and novel design methodologies to mitigate and correct errors caused

by radiation effects for SRAM FPGAs. Methods of radiation mitigation and correc-

tion for SRAM FPGAs can be split into three broad categories: Hardware methods,

Software methods, and Hybrid methods. Hardware methods usually provide higher

mitigation capabilities and consume more power, as compared against software meth-

ods where less effective mitigation is provided while consuming less power. Hybrid

methods combine two or more methods to optimize the balance between mitigation

capabilities and power consumption. Within each category there exist a variety of

different mitigation methodologies, which have reached a high-level of development,

17

with some having been proven on-orbit as part of space-systems.

Section 2.4.1 discusses hardware methods that modify the physical design of the

circuit to increase radiation tolerance. Section 2.4.2 discusses software methods that

modify the programs or software architecture running on the device to increase radi-

ation tolerance. Section 2.4.3 discusses hybrid methods that combine hardware and

software methods to increase radiation tolerance. This research further develops a

unique method of hybrid redundancy called Adaptive Hybrid Redundancy (AHR).

Section 2.6 will provide an in-depth discussion on the development of the novel AHR

architecture, the ways in which the operation of AHR was verified, and how the AHR

architecture compared against other radiation mitigation methods.

2.4.1 Hardware

Hardware redundancy refers to any redundancy method that requires modifica-

tions be made to the hardware design of the circuit to detect radiation induced er-

rors during runtime. Hardware redundancy is typically implemented through spatial

redundancy combined with configuration scrubbing [47]. However, hardware redun-

dancy can also be implemented using Error Correcting Codes (ECCs).

Spatial redundancy increases radiation tolerance by duplicating either specific

modules of the circuit design or the entire circuit multiple times in the programmable

fabric of an FPGA. The duplicated circuit elements are typically connected to a voter

circuit, which is used to detect any errors that occur, and initiate the appropriate

process to correct that error. Methods of spatial redundancy are described in Sections

2.4.1.1 & 2.4.1.2 and more advanced techniques are described in Section 2.4.1.3.

Configuration scrubbing refers to the process used to correct any errors that affect

the configuration memory of an FPGA device. Section 2.4.1.4 discusses the different

methods and benefits of scrubbing. An FPGA circuit design that uses some form

18

of spatial redundancy specifically paired with scrubbing decreases the likelihood that

a radiation induced upset (SEU or SET) generates a disruptive error during circuit

operation.

ECCs, also called Error Detection and Correction (EDAC) codes, are used to

protect data against errors/upsets that occur in memory or in transmission channels

[45]. Various types of ECCs are discussed in Section 2.4.1.5.

2.4.1.1 TMR

The most common duplication scheme for hardware redundancy is Triple Modular

Redundancy (TMR) [32, 47]. TMR is a static redundancy scheme where the specified

circuit modules are triplicated in the FPGA programmable fabric. TMR is a static

redundancy scheme because the device’s radiation tolerance does not change during

operation after implementing the triplicated modules in the FPGA fabric [32]. The

TMR scheme has each triplicated module connected to either one majority voter,

or to a network of triplicated voters to further increase circuit reliability [32]. By

connecting modules to a voter, single faults/errors caused by a radiation upset are

effectively masked. The voter masks errors by constantly monitoring the output of

each module, and if an error is found in one of the modules, the voter can use the

output of the other two modules in agreement, while ignoring the module in error.

A diagram of a TMR Microprocessor Without Interlocked Pipeline Stages (MIPS)

architecture is shown in Figure 1 as an example of the redundancy scheme.

19

Figure 1. TMR MIPS Simplified Block Diagram

TMR is a popular choice for improving the redundancy of a circuit design not

only because of the error masking capabilities, but also because of the relative ease of

usability in any circuit design. Implementing TMR in a circuit design only requires

module duplication, and insertion of voter circuitry. These design modifications are

relatively easy to implement, with several commercial and academic software tools

available for automating this process [47]. Although TMR is not complex to imple-

ment it does come with cost tradeoffs.

First, TMR is costly in terms of FPGA logical fabric resources. Any given module

to which TMR is applied will be triplicated, and therefore requires at a minimum 3x

the FPGA resources to implement [32]. Voter circuitry must also be inserted which

requires more FPGA resources. By consuming more FPGA resources, TMR also

increases the amount of power used by the FPGA device. The high cost of TMR

must be considered by mission planners/designers when FPGA resources and the

power budget of a space system are constrained.

Despite the high cost of implementation, the reliability improvements gained by

20

using TMR are so great that implementation of the technique at any level is beneficial.

In a study performed by [32], the reliability improvements vs. resource utilization of

TMR was compared against other well-known techniques in custom circuit technolo-

gies: quadded logic, state machine encoding, and temporal redundancy. The results

of the study were that none of the other techniques could provide the same level

of reliability as TMR and often incurred higher resource utilization than TMR [32].

Since TMR is one of the best methods for providing hardware redundancy against

radiation induced upsets/errors, it is often important to at least triplicate critical

modules in a circuit design. Selective TMR is a method used to determine what the

critical modules are in a design and only apply TMR to those modules. Selective

TMR is discussed further in Section 2.4.1.3.

TMR is an effective method for increasing the reliability of a circuit design imple-

mented on an FPGA, intended for use in a radiation environment. A standalone TMR

architecture can detect both single-bit and multi-bit errors and can correct single-bit

errors. TMR does incur a high resource and power cost, however if it cannot be fully

applied to a circuit design, it is still important to apply TMR selectively on critical

circuit components. The redundancy architecture developed in this research imple-

ments full TMR, specifically for a MIPS processor as will be discussed in Section

2.6.

2.4.1.2 DMR

Although TMR is a powerful means for implementing radiation mitigation, the

associated power and hardware resource cost may be too great for certain applications.

In these cases, Dual Modular Redundancy (DMR) is an option which provides some

radiation mitigation. DMR uses two redundant circuit modules connected to a voter

to detect errors, and requires up to 33% less hardware resources than TMR [53].

21

A simple implementation of DMR is only able to detect errors and cannot mask

errors as was described for TMR. This is because if an error is detected in one of

the two redundant copies, then the system must either reset to a previous state

or re-do the operation that used the errant module. This method alone provides

some radiation mitigation, but would negatively affect the performance of an FPGA

device in a high-radiation environment. However, there have been DMR architectures

created that have increased mitigation capabilities by implementing additional logic

on the output of either the DMR modules or DMR voter [2, 38, 63].

The redundancy architecture developed for this research does not use DMR, but

DMR could be implemented into the architecture to improve performance during

specific scenarios where a radiation strike has produced a permanent error in one of

the TMR modules. This is described in Ch. V Section 5.2

2.4.1.3 Optimizing Spatial Redundancy

The biggest drawback of applying full TMR or DMR to an FPGA design is the

amount of hardware resources consumed. However, the resources consumed can be

reduced by evaluating which components within a given FPGA design actually require

spatial redundancy. P. Samudrala et al. in [43] presented the Selective Triple Modular

Redundancy (STMR) design technique, which applies TMR only to gates that have

been determined to be sensitive to SEUs, using a specialized algorithm. Pratt in

[39] also developed both an approach and software tool to decompose a circuit design

into structures that are classified based upon their importance within the design,

and selectively apply TMR to the most important structures until FPGA resource

utilization is maximized. Another method of selective hardware redundancy was

shown by S. Bahramnejad et al. in [3]. This method determined the System Failure

Rate (SFR) of a given FPGA design, and iteratively applied hardware redundancy

22

to components in the design to reduce the SFR [3]. All these methods are considered

static optimizations, meaning that the final design is determined after analysis and

cannot be easily changed during runtime.

Another means of optimizing spatial redundancy is through adaptive redundancy.

These are techniques that are dynamic and can change the level of hardware re-

dundancy for the FPGA design based upon detected radiation upset rates. Most of

these techniques are reliant on FPGAs that support partial reconfiguration (PR). An

FPGA that supports PR allows a user to modify portions of an FPGA’s configuration

while the remainder of the FPGA continues to operate. This capability was a key

feature in the adaptive architectures described in [16, 17, 26]. These studies used a

radiation sensor connected to a specialized controller to either increase or decrease

the number of redundant hardware modules, with respect to the detected number of

radiation induced errors, using FPGA partial reconfiguration.

The performance flexibility gained by using a redundancy architecture on an

FPGA that can change depending on the current radiation environment was a fun-

damental driver in the development of AHR, discussed in Section 2.6.

2.4.1.4 Scrubbing

The spatial redundancy methods previously described improve the radiation tol-

erance of an FPGA design by observing the output of logical operations in the FPGA

to determine if an error occurred and perform error correction. However, these meth-

ods are unable to correct errors that accumulate in the configuration memory of the

FPGA. The configuration memory defines the operation of the circuit design imple-

mented on the FPGA. A radiation induced upset in configuration memory can modify

the operation of the circuit and can cause an incorrect output to be generated until

the configuration memory is corrected. Although spatial redundancy methods such

23

as TMR can mask an error produced by a single errant module, they cannot correct

an error in the configuration memory of an FPGA [32]. One method for correcting

configuration memory is called configuration scrubbing. Configuration scrubbing uses

an, assumed to be, error-free copy of the original configuration FPGA bitstream to

periodically re-write configuration memory on the device [39]. The error-free copy

of the original FPGA configuration is typically stored off-chip in radiation hardened

memory and is commonly referred to as the “golden copy.” Periodic configuration

scrubbing is essential for preventing the build-up of radiation induced errors/faults

in the FPGA, and reducing the time an invalid circuit is allowed to operate [1].

FPGA configuration memory scrubbing can be implemented using either an exter-

nal or internal scrubber. An external scrubber uses a highly radiation tolerant off-chip

resource to perform the scrubbing operations. An internal scrubber instantiates the

circuit required to perform scrubbing operations on the FPGA fabric. Whether the

scrubber is external or internal, both methods use a scrubbing circuit to perform

a readback of device configuration memory. The configuration read from memory

corresponds to a specific portion of the FPGA design. The current configuration of

that portion of the FPGA is compared against the corresponding configuration data

read. If an error is detected during this comparison, the configuration memory at

that location of the FPGA is corrected using the “golden copy” [50].

Both scrubber implementations perform the same operation, but each have dif-

ferent operational characteristics. An external scrubber uses no FPGA resources,

but uses more physical space, is more radiation tolerant, and performs scrubbing op-

erations slower than an internal scrubber. An internal scrubber has the scrubbing

circuitry closer to the FPGA configuration memory and therefore performs scrub-

bing faster [50]. However, the internal scrubber circuitry itself is susceptible to errors

in configuration memory, and is therefore unable to detect certain errors that could

24

modify its own operation, and thus is less radiation tolerant [50]. A study by Berg

et al. experimentally found that an external configuration scrubber performed better

than an internal one under the same radiation conditions for a Xilinx Virtex-4 FPGA

[6].

By combining a method of spatial redundancy and configuration scrubbing, the

reliability of an SRAM-based FPGA is drastically improved. For this reason, config-

uration scrubbing paired with TMR is commonly implemented on FPGAs to provide

runtime data and configuration memory fault tolerance. This research recognizes the

importance of configuration scrubbing, but does not currently implement it. This

is because AHR needs to demonstrate correct operation in hardware before adding

further capabilities, such as configuration scrubbing.

2.4.1.5 ECCs

Error Correcting Codes (ECCs) are typically implemented by modifying the data

stored/transmitted in a system to include extra bits called check bits, which also

requires that changes be made to the communication buses transmitting that data.

As a high-level summary on the usage of ECCs, any data that needs to be sent is first

encoded to produce a specified number of check bits. These encoded check bits are

attached to the original data and transmitted to a receiver. The receiver will then

perform its own encoding of the data bits received and determine if the re-produced

check bits match those that were sent with the data. Systematic codes refer to any

ECCs that maintain separation between the data bits and check bits as described in

the generalized example given earlier [45]. Non-systematic codes are ECCs where the

data bits themselves are fully encoded to produce a unique data packet that must be

entirely decoded [45, 48].

One of the most prevalent ECCs used are Hamming codes. Depending on the com-

25

plexity of the Hamming code scheme implemented, Single Error Correction (SEC)

up-to SEC and Double Error Detection (SEC-DED) can be performed [24]. This

means that in the context of a radiation environment, Hamming codes can only be

used to correct for a SBU. If a MBU affects multiple adjacent bits within a data word,

then there are cases where Hamming codes will not detect those errors. However, a

solution that can perform Double Adjacent Error Detection (SEC-DAED) and even

Triple Adjacent Error Detection (SEC-TAED) was presented in [44]. The decoders

and encoders used to implement Hamming codes can either be in hardware or soft-

ware. A comparison between a hardware and software implementation performed in

[46] found that, although a hardware implementation has superior reliability, a soft-

ware implementation can be used as a low-cost solution to improve system reliability.

A summary of other modern ECCs is given in [48], however only Hamming codes

are relevant to this research. The redundant architecture implemented as part of this

research, assumes the use of Hamming codes within the communication network to

satisfy the last research assumption given in Ch. 1 Section 1.3.

2.4.2 Software

Software redundancy refers to any redundancy method that requires modifica-

tions be made to the programs/software that operate on a given FPGA circuit. A

common approach to software redundancy is through the use of duplicated instruc-

tions, as described in Section 2.4.2.1. Another method of software redundancy is to

use signature analysis to determine if a block of code has been executed properly.

Section 2.4.2.2 discusses signature analysis techniques. This research implements a

new hybrid redundancy scheme in hardware that uses both TMR and the method of

software redundancy described in Section 2.4.2.1.

26

2.4.2.1 EDDI

Software redundancy can be obtained through implementation of methods that

provide redundancy in time, called Temporal Software Redundancy (TSR). The con-

cept of TSR is, “to repeat computations in such a way that errors can be detected by

comparing computation results” [36]. TSR methods have been shown to provide a

high-level of fault detection, while only requiring code modifications and no hardware

modifications [12]. For this reason, TSR methods are typically used when a design is

resource constrained on an FPGA and cannot implement a method of spatial redun-

dancy. However, as compared to spatial redundancy methods, TSR methods suffer

from additional execution time overhead and reduce processor performance, because

duplicate instructions are either added or repeated. The research presented in this

document uses the concept of Error Detection by Duplicated Instructions (EDDI) to

provide TSR [36].

EDDI is a software redundancy method that duplicates each instruction in a pro-

gram during compilation, while using separate registers and variables for each instruc-

tion in a pair [36]. By using separate registers and variables, each instruction is not

only executed at a different point in time, but the results of each operation are stored

in physically separate locations in register space. This method provides redundancy

because a radiation strike will typically only affect a small area on a device. Thus,

the generated bit-flip will likely only modify the data stored in a single register used

by one of the duplicated instructions in a pair. An EDDI instruction set will detect

this bit-flip using an added comparison instruction, specifically a Branch if Not Equal

(BNE), before writing any user registers to memory. The comparison instruction is

used to detect whether an error has occurred and affected one of the registers in a pair.

Error detection is performed only before writing a register value to permanent/main

memory, because any error produced by an intermediate computation will propagate

27

to the final result that is written to memory [36].

If an error is detected by the BNE instruction comparing the data held in user

registers, the BNE instruction branches to error recovery code. The method of error

recovery used in EDDI is determined by the user, and the constraints of the system

EDDI is implemented on. Since this research uses EDDI TSR, the method of error

recovery selected was to reload/revert all user registers and the program to an earlier

state stored as a “Save and Restore Point” (SRP). Further details on this process are

given in Section 2.6.3.2. An example of EDDI TSR applied to a single instruction

(Table 1) is shown in Table 2.

Table 1. Basic MIPS ADD Instruction [36]

ADD R3, R1, R2

Table 2. EDDI TSR MIPS ADD Instruction [36]

ADD R3, R1, R2 Main Instr.

ADD R23, R21, R22 Secondary Instr.

BNE R3, R23, gotoErrorRec Comparison Instr.

EDDI TSR is a software redundancy scheme that is effective and relatively simple

to implement at a high-level. However, the performance cost overhead associated

with processing an EDDI TSR program is significant. For this reason an improved

scheme was created by G. Reis et al. called Software Implemented Fault Tolerance

(SWIFT) [40].

SWIFT uses duplicated instructions to provide redundancy, but has greater perfor-

mance than EDDI TSR by reducing memory usage. EDDI duplicates all instructions

28

including store word (SW) instructions, and thus creates redundant copies of data

in memory as well. SWIFT eliminates all duplicate SW copies by assuming that the

memory connected to the processor already incorporates ECCs or some other form of

redundancy [40]. A SWIFT program contains 50% less SWs than an equivalent EDDI

program, and thus improves processor performance by reducing the number of inter-

actions with main memory. SWIFT also incorporates a software only signature-based

control-flow checking scheme to further improve the fault coverage of an EDDI-like

redundancy scheme [40].

As previously mentioned, this research uses EDDI TSR, but specifically uses an

EDDI-SWIFT hybrid TSR scheme. Like SWIFT, there are no duplicate SW instruc-

tions; but unlike SWFIT, there is no signature-based control-flow checking. This

research assumes that all memory modules are radiation hardened, and because of

this, the performance benefits of SWIFT over a standard EDDI TSR implementation

were obtained [40].

2.4.2.2 Signature Analysis

Software implementations of signature analysis techniques can provide software

redundancy by comparing pre-compiled signatures against signatures computed dur-

ing runtime [34]. N. Oh et al. developed the first purely software implementation

of signature analysis called Control-Flow Checking by Software Signatures (CFCSS)

in [35]. That research defined the basic flow of signature analysis techniques to be

[18, 35]:

1. Decompose a program into basic functional blocks (Code w/o a branch instr.)

2. Generate a reference signature associated with each block during pre-compilation

3. Store reference signatures in memory

29

4. Re-compute signatures of functional blocks during runtime

5. Compare corresponding signatures to detect an error

The basic signature analysis scheme defined above, can detect radiation induced

errors that occur within a basic block, but cannot detect errors that affect branch

or jump instructions, since they are not included as part of the signatures that are

created. In research performed by B. Nicolescu et al. a more robust signature analysis

technique was developed and tested to account for radiation effects that generate

errors in branch instruction targets [34]. Another approach used to improve the fault

detection of basic signature analysis was presented by O. Goloubeva et al. in [18],

which added assertions to the basic blocks that could detect faults affecting branches.

Signature analysis techniques provide physically constrained systems with a means

to implement some form of radiation mitigation. However, as was seen with EDDI

TSR, these methods incur a code size overhead and thus reduce system performance.

The reduction in performance using signature analysis scales with the number of

branch instructions in the program [35]. This research does not utilize signature

analysis techniques, because the preferred method of software redundancy was previ-

ously selected to be EDDI TSR [20].

2.4.3 Hybrid Redundancy

Hybrid redundancy methods refer to methods that implement a combination of

hardware and software redundancy. Hybrid methods are implemented to leverage the

benefits of both hardware and software redundancy. Hardware redundancy provides

increased resilience to radiation effects at a higher resource utilization and power cost.

Software redundancy lowers processor performance, operates at lower power, and

offers less resilience as compared to hardware methods. For SRAM-FPGAs intended

for use in space, there exists a large application domain where radiation resilience must

30

be considered along with system cost, power, and performance [14]. The large trade

space that mission planners need to consider often leads towards optimized mitigation

strategies that implement some form of hybrid redundancy [14]. Oftentimes these

developed hybrid redundancy solutions are non-generalizable, because of the diversity

of options for combining hardware and software redundancy methods.

A hybrid redundancy method was developed in [8], that combined the use of a

specialized hardware watchdog monitor and software method that combined EDDI

and control flow checking. The research in [8] showed promising results for the le-

gitimacy of hybrid redundancy methods applied to a processor as part of a System-

on-Chip (SoC). In that research high fault detection capabilities were provided with

reduced software and memory overhead as compared to pure software approaches.

However, implementation of the described hybrid redundancy approach required ex-

tensive changes to the programs that ran on the processor, and required integration

of specialized infrastructure IP cores [8]. The methodology was not experimentally

tested on an SRAM FPGA, but still provides valuable insight on the performance

benefits gained using a method of hybrid redundancy.

The research presented in [14] developed a hybrid redundancy architecture that

can be applied to ASICs and FPGAs. The architecture that was developed provides

hardware redundancy using selective TMR. TMR was only applied to FPGA circuit

components that were identified to be most susceptible to SEUs, using a specialized

hardware tool. Software redundancy was provided using an enhanced version of

SWIFT called SWIFT-R that triplicated data and instructions. As was seen with the

hardware method, SWIFT-R was selectively applied to a subset of instructions that

use specific critical registers. The specialized software hardening tool developed could

not only apply SWIFT-R, but could also provide estimated fault-coverage results

using only the applied software redundancy method. The architecture was tested

31

by simulating the performance of an 8-bit PicoBlaze microprocessor with the hybrid

architecture applied. The simulations that were performed explored the trade space

between full implementation of selective TMR paired with SWIFT-R, and a non-

hardened processor. The results highlighted that the full redundancy implementation

provided 100% reliability, but with the highest overhead, where some intermediate

redundancy implementations demonstrated a better reliability/overhead relationship

[14].

Hybrid redundancy methods generally present greater design complexity, but pro-

vide an optimized design solution while considering performance, cost, and reliability.

Applications instantiated on SRAM FPGAs intended for use in space are subject to

strict Size, Weight, Power, and Cost (SWAP-C) constraints, and thus hybrid redun-

dancy methods are most suited towards these systems. However, hybrid redundancy

methods are typically static methods, which are designed to operate under a specific

radiation profile. Even greater performance gains and reliability robustness can be

achieved using a form of hybrid-redundancy that can respond dynamically or adapt

to the current operational environment, as was seen with the adaptive spatial redun-

dancy methods described in Section 2.4.1.3.

Adaptive Hybrid Redundancy (AHR) [20] was designed and developed to offer a

unique radiation mitigation strategy unlike those previously discussed, that provides

flexibility in terms of system performance and reliability. This research is focused on

further maturing AHR and experimentally validating its performance as applied to

a MIPS processor implemented on an FPGA. The design of AHR MIPS and simula-

tion results of its performance are described in-depth in Section 2.6. However, before

discussing AHR further background is necessary on the ways in which radiation mit-

igation strategies are tested to determine their efficacy.

32

2.5 V&V of Radiation Mitigation Methods for SRAM FPGAs

To appropriately verifiy the performance of an SRAM FPGA that uses a radia-

tion mitigation methodology requires either physical testing and/or testing through

simulation.

2.5.1 Physical Radiation Testing

Radiation testing is a necessary step to determine the TID and SEU characteristics

of an FPGA device. TID characterization is performed by exposing the target FPGA

to a constant radiation source, such as Cobalt-60 [13]. TID performance of a device

is mostly determined by the design and manufacture of the device, and thus the TID

performance for a given FPGA device is usually available through the manufacturer

or through membership to a radiation test consortium.

Unlike TID, SEU testing must usually be independently performed on the FPGA

with the implemented design of interest. Typically, SEU characteristics are tested

by exposing the target FPGA to high-energy particles produced by a generator or

accelerator [9, 47]. SEU testing can be executed in two different ways: static testing

and dynamic testing [28, 41, 47]. The static testing strategy involves continuous

readback of the FPGA Device Under Test’s (DUT’s) configuration bitstream while

being subjected to radiation, which is then compared against an error-free copy to

count the number of bit-flips that occur during testing [5, 28]. The dynamic testing

strategy focuses on observing the output of a test program executed by the target

FPGA. The test program is used to activate sensitive portions of the design, which are

then subjected to radiation. The dynamic testing strategy is not as comprehensive

as the static strategy, but can still be used to determine the performance of the

implemented mitigation strategy [28, 42]. The results of both static and dynamic

testing can be used to determine the register-bit cross-section, or SEU cross-section,

33

and application error rate [42]. The SEU cross-section and application error rate are

necessary to characterize the performance of the target FPGA design/device.

Radiation testing can approximate the space-radiation environment and is an im-

portant step towards maturing development and readiness of a circuit design on an

FPGA. However, radiation testing is expensive to perform and the current demand

for testing has led to long-lead times for scheduling testing time [9]. The scheduling

constraints caused by radiation testing are not ideal for space programs, where it is

beneficial to perform analysis of SEU effects on the target design early to determine

feasibility and identify vulnerabilities [57]. For these reasons, methods have been de-

veloped to characterize the radiation performance of a design by simulating radiation

effects.

2.5.2 Fault Injection Campaigns

Fault injection refers to the random injection of bit flips in both time and location

on the target device while executing a test or benchmark program. A method of

fault injection used to simulate an SEUs effect on an FPGA memory cell is the Code

Emulating an Upset (CEU) method [41]. CEU involves injecting a bit-flip into a

random memory cell of the DUT that is running a test application. The output of the

application is monitored to determine the effect of the randomly injected bit-flip. By

executing enough CEU tests, a statistically valid result can be obtained for the number

of faults required to produce a specific type of error in the FPGA DUT [41]. CEU tests

are used to perform SEU characterization of a redundancy strategy implemented on

an FPGA. The execution of many CEU tests for characterization purposes is referred

to as a fault injection campaign. Carefully constructed and thorough fault injection

campaigns can provide SEU characterization results with nearly negligible error rates

as compared to results obtained through radiation testing [42].

34

Fault injection campaigns also need to quantify the effects of radiation induced

errors produced in the configuration memory of an FPGA. Fault injection in configu-

ration memory usually requires the use of two FPGA devices. One FPGA is used as

the error-free reference, and the other is subjected to configuration memory errors.

Configuration memory bit-flips are introduced to one of the FPGAs by modifying

the bitstream used to configure that device. The operation of each device is then

compared to determine the effect(s) of the injected configuration error. Each bit in

the bitstream is modified and tested in this way, to determine the effects of an SEU

on every configuration cell in the FPGA design. A new bitstream must be generated

and used to re-configure the FPGA DUT, and it is for this reason that configuration

memory fault injection campaigns can take a significant amount of time to perform

[28]. Many automated or optimized fault injection methods have been developed to

reduce the amount of time required to perform a fault injection campaign on the

configuration memory of an FPGA design [15, 30, 49].

This research uses a specialized hardware module to perform the CEU method

of fault injection and is described in Section 2.6.5.1. The fault injection campaign

executed for this research does not include tests on configuration memory and does

not perform a full factorial injection campaign on memory elements used by the test

application. The fault injection campaign was de-scoped in this manner, because only

specific error scenarios needed to be tested and due to time constraints.

2.6 Adaptive Hybrid Redundancy (AHR)

The AHR architecture was previously developed by Hamilton in [20], and that

work is the foundation upon which this research is built. The design and testing

performed to verify that AHR is a viable redundancy method in [20] is technically

dense, because it involves the design of many custom hardware components, including

35

a customized processor that could utilize AHR. This section will present the aspects

of the research in [20] that were directly used to accomplish the research presented

in Ch. 3, and because of this some aspects of the original AHR design will not be

discussed in-depth.

AHR is a hybrid hardware & software redundancy scheme that was applied to a

custom MIPS architecture defined in Very High-Speed Integrated Circuit (VHSIC)

Hardware Description Language (VHDL). The AHR MIPS architecture consists of

three basic MIPS processors, a voter module, an AHR controller, and memory. The

AHR architecture design combines the TMR hardware design philosophies discussed

in Section 2.4.1.1, and the EDDI - TSR software redundancy method discussed in

Section 2.4.2.1. A diagram of this architecture is shown in Figure 2.

Figure 2. AHR MIPS Simplified Block Diagram

The AHR MIPS architecture can operate in either a TMR or TSR mode. In

TMR mode the architecture actively uses all components shown in Figure 2. In TSR

mode the architecture does not use the TMR Voter and only uses one of the three

available basic MIPS processors. Section 2.6.1 will discuss the design and purpose of

each component in the AHR MIPS architecture.

36

2.6.1 AHR MIPS Components

2.6.1.1 Basic MIPS Processor

The AHR architecture was designed to provide redundancy to a MIPS processor

system. The AHR architecture uses three Basic MIPS processors while operating

in TMR mode and only uses one Basic MIPS processor while operating in TSR

mode. The Basic MIPS processor is a custom built component that implements

a 33 instruction subset of the MIPS32® architecture [31]. This instruction subset

is listed in Table 8 in Appendix A. The Basic MIPS processor performs operations

sequentially and does not implement a pipelined or super-scalar design. The processor

was designed to only process a subset of MIPS instructions and be sequential, because

implementing a feature rich and complex MIPS processor would have detracted from

the goal of the research. A simple sequential MIPS processor that used a subset of

the MIPS instruction set was efficient to implement, and was all that was necessary

to determine the effectiveness of AHR for mitigating and protecting a device against

radiation induced errors.

The Basic MIPS processor is split into a Controller and Datapath. The Controller

consists of a controller Finite State Machine (FSM), an instruction register, a module

that generates state dependent control signals, and an instruction decoder/encoder

that provides the appropriate data and control signals to the Datapath [20]. As a

high-level summary, the operation of the Controller is dictated by the controller FSM

module. The controller FSM module has 10 states and uses information about the

current state and the type of instruction being executed to iterate through those 10

states. The controller FSM uses an output from memory called the MEM READY

signal to determine when memory has completed a read or write operation. The

instruction decoder/encoder module informs the controller FSM module what type

of instruction needs to be processed. The Controller begins processing an instruction

37

once MEM READY is high, which indicates that memory is ready to perform a new

operation. An instruction is then fetched from memory and decoded by the instruction

decode/encode module. The instruction decode/encode module outputs data signals

to the Datapath to perform the mathematical operation necessary to process that

instruction and also outputs a control signal to the controller FSM. The outputs of

the controller FSM change depending on what type of instruction is being executed,

as indicated by a control signal provided by the instruction decode/encode module.

The Datapath component contains a bank of 32-32-bit registers, a program counter,

an Arithmetic Logic Unit (ALU), and multiplexers used to control data flow between

Datapath components [20]. As a high-level summary, the operation of the Datapath is

dictated by the control signals and decoded instruction received from the Controller.

The data used by instructions and the results of those instructions are stored in the

General Purpose Register (GPR) bank. The Datapath modifies the contents of the

GPR bank depending on the instruction processed and can also modify the contents

of memory.

The Basic MIPS processor designed by Hamilton in [20] was used without modi-

fication in this research, since this research seeks to take the AHR MIPS architecture

and implement it in hardware.

Detailed information on the design of the Basic MIPS processor can be found in

the Basic MIPS Architecture Technical Report by Hamilton [22].

2.6.1.2 TMR Voter

In the AHR MIPS architecture, the TMR Voter is the component that decides

what the output of the three Basic MIPS processors to the AHR Controller and by

extension memory should be. The TMR Voter component functionally operates in the

same way as a majority voter described previously in Section 2.4.1.1. The TMR Voter

38

receives a READ, WRITE, 32-bit ADDRESS, and 32-bit MEM IN/DATA signal from

each of the three MIPS processors. The TMR Voter also receives a MEM READY

signal and a 32-bit data signal provided by the AHR Controller and by extension

memory. The TMR Voter is implemented as an FSM, whose operation is dependent

upon all input signals except for the input 32-bit data signal from the AHR Controller.

The voter FSM was designed to not only check that all incoming signals from the

MIPS processors are equivalent, but also that they arrive at the same time.

The voter FSM includes states that compare the control signal and data inputs

provided by each Basic MIPS processor. Under normal operating circumstances, the

voter FSM iterates through a series of error free states if the control and data inputs

of all processors are determined to be equivalent or in agreement. The voter FSM

iterates through distinct error states depending on whether one processor or every

processor produce control or data inputs that are not in agreement. The overall

behavior of AHR MIPS as a result of the TMR Voter operating under error free

conditions or after an error is detected is described in Section 2.6.3.1.

The voter FSM also includes states that determine whether the control signal and

data inputs provided by each MIPS processor arrive at nearly the same time. In the

ideal case, each connected processor is supplied the same instructions at the same

time, and therefore are expected to produce equivalent responses that appear at the

input of the TMR Voter at the same time. However, in any complex logical system

there are expected to be propagation/line delays that could cause signals expected

to appear at the same time, to arrive at slightly different times. The voter FSM

accounts for propagation delays by using a pre-defined TIMEOUT value. Whenever

the voter FSM expects signals from the MIPS processors, a counter begins and if

the counter value exceeds the TIMEOUT value, then the processor(s) that did not

supply the expected signal are assumed to have experienced an error. The voter FSM

39

iterates through the same error states whether an error was detected in data or the

TIMEOUT value was exceeded.

Traditional majority voters are only used for error detection and notify some other

component to execute error recovery operations after an error is detected. The TMR

Voter component used in the AHR MIPS architecture was designed to perform all

the operations of a traditional majority voter while also performing new functions.

These additional functions are that the TMR Voter needed to manage/create Save

Restore Points (SRPs) and perform error recovery when a discrepancy was observed

between the inputs provided by the processors.

The TMR Voter creates SRPs after a pre-defined number of instructions are pro-

cessed without error, this pre-defined number is referred to as the SAVE POINT.

The voter FSM will iterate through specific SAVE states once the SAVE POINT is

reached. As mentioned in Section 2.6.1.1, each Basic MIPS processor has a 32 register

GPR bank: 31 user registers, one of which contains the current program loop count,

and one immutable zero register. As a high-level summary, once a SAVE POINT is

reached the TMR Voter will instruct each processor to store each of its 31 registers

and the current PC value to a specified location in memory. The TMR Voter can

store a copy of those registers to one of two allocated locations in memory, one rep-

resenting SRP0 and the other SRP1. The block of memory chosen is dependent on

a pointer value that is held in memory directly following the blocks allocated for the

SRPs. During both SRP creation and error recovery operations, the TMR Voter will

load the SRP pointer from memory and PC value at which that special process be-

gan into its own registers. The retrieved pointer value indicates which SRP was most

recently made, referred to as the active SRP, whereas the older SRP is referred to as

the inactive SRP. When a new SRP needs to be made, the voter determines which

SRP is inactive and incrementally writes the 31 registers and PC value, retrieved at

40

the beginning of SRP creation, to the portion of memory that corresponds to that

SRP. The pointer value itself is used as an address offset to write the 31 registers and

PC value to the block of memory that corresponds to the SRP being made. After the

31 registers and PC value have been written to the new SRP location, the voter FSM

will update the pointer value location in memory to indicate the new active SRP. The

voter FSM will then issue a branch command to each processor to return to the PC

value at which SRP creation began, and execution of program instructions resumes.

The TMR Voter also needs to perform error recovery when discrepancies are found

between the inputs provided by the processors. When an error has been found in

only one of the three MIPS processors, the voter FSM performs single processor error

recovery or Type A error recovery. The voter FSM iterates through the Type A error

recovery states which begin by resetting the processor in error and storing the PC

value at which the error was detected (supplied by the two processors in agreement).

The voter then issues store word (SW) instructions to the processors in agreement,

which both present the first of the 31 registers (R1) to the voter. The voter does

not store R1 to memory, but instead issues a load word (LW) to the reset processor

to load R1 into its GPR bank. This process repeats for all 31 registers. Once all

the Type A error voter FSM states have been completed, all of the processors hold

the same data, and the voter instructs each processor to branch to the PC value at

which the error was detected and continue program execution. During Type A error

recovery, the TMR Voter does not use either of the SRPs created during program

execution. SRPs are only used when the voter identifies that none of the processors

agree.

When none of the processors agree, the voter FSM has to perform multi-processor

error recovery or Type B error recovery. If a multi-processor error occurs, the TMR

Voter can no longer determine which processor is correct and requires that all pro-

41

cessors revert to a previous state held in the active SRP. To perform Type B error

recovery, the voter FSM iterates through Type B error recovery states which begin

by resetting all the processors. Each of the processors are issued LW instructions

that copy the SRP register values held in memory to their own GPR banks. The

active SRP is used to provide each register with the most up-to-date values from the

corresponding location in memory. Once all 31 registers have been loaded, the TMR

Voter loads the PC value at which the SRP was written, from memory, and issues a

branch instruction to each processor to resume processing program instructions from

that point.

The TMR Voter component designed by Hamilton in [20] was used without mod-

ification in this research since this research seeks to take the AHR MIPS architecture

and implement it in hardware.

Detailed information on the design of the TMR Voter can be found in the Triple

Modular Redundancy MIPS Architecture Technical Report by Hamilton [23].

2.6.1.3 AHR Controller

The AHR Controller component determines when the AHR MIPS architecture

transitions from operating in one mode to the other, whether it be the transition

from TMR to TSR or vice versa. The AHR Controller is implemented as an FSM

and includes all the states necessary to seamlessly orchestrate the transition between

modes. The AHR Controller component sits between the Basic MIPS processors,

TMR Voter, and memory. The AHR Controller generates control signals and inputs

to different multiplexers that control how signals are distributed between the Basic

MIPS processors, TMR Voter, and memory. While in TMR mode, the Basic MIPS

processors are connected to the TMR Voter and the AHR Controller routes signals

from the TMR Voter to memory through the multiplexers. While in TSR mode, the

42

AHR Controller routes signals from one Basic MIPS processor to memory through

the multiplexers, while holding the other two processors and the TMR Voter in a low

power reset state. During a transition from one operating mode to another, the AHR

Controller uses the multiplexers to route signals between the Basic MIPS processors,

TMR Voter, and memory as necessary to ensure a seamless transition while also

preparing the system for operation in the new mode. The design and operation of the

AHR Controller is more easily discussed by putting its operation into context. The

various ways in which the AHR Controller operates is described in Section 2.6.3.

Hamilton assumes in [20] that the AHR Controller and multiplexers used for signal

routing are radiation hardened, therefore no redundancy methods were integrated

into the design of those components. The AHR Controller component designed by

Hamilton in [20] was modified for use in this research. The modifications made to

the AHR Controller are described in Ch. 3 Section 3.3.5.1. These modifications only

slightly modify the behavior of the controller to enable testing in hardware.

Detailed information on the design of the AHR Controller can be found in the

Adaptive-Hybrid Redundancy MIPS Architecture Technical Report by Hamilton [21].

2.6.1.4 Memory

The memory component of the AHR MIPS architecture contains the AHR MIPS

program that will be executed. As a result, a new memory module must be generated

for each unique AHR MIPS program. The composition of an AHR MIPS memory

module is determined by the AHR MIPS instruction set/program it contains. The

structure of an AHR MIPS instruction set is described in Section 2.6.2.

The inputs to memory are a READ and WRITE signal, a 32-bit ADDRESS

signal, and a 32-bit data signal (MEM IN). The outputs are a memory ready sig-

nal (MEM READY), a 32-bit memory data signal (MEM OUT), and a PROGRAM

43

DONE signal. The memory component receives the READ and WRITE command

signals from the AHR Controller, which determine how memory uses the provided

ADDRESS and DATA IN signals. If the READ signal is high, memory will ac-

cess the address specified by the ADDRESS signal and will output that data on the

MEM OUT signal. The output MEM READY signal will be set high to indicate that

the operation is complete and that the data on MEM OUT is ready to be retrieved.

If the WRITE signal is high, memory will write the MEM IN data to the specified

ADDRESS. Memory will then set the output MEM READY signal high to indicate

the write operation is complete.

Hamilton assumes in [20] that the memory module is radiation hardened, therefore

no redundancy methods were integrated into its design. This memory design was not

modified as part of this research, however new memory modules were generated using

the same methods used by Hamilton [20] and described in Section 2.6.2.

Detailed information on the design of the AHR memory can be found in the

Adaptive-Hybrid Redundancy for Radiation Hardening dissertation by Hamilton [20].

2.6.2 AHR MIPS Instruction Sets/Programs

The AHR MIPS architecture processes custom generated AHR instruction sets.

An AHR instruction set is comprised of a set of TMR instructions, a set of TSR

instructions which are functionally equivalent to the TMR set, temporary and per-

manent memory, TSR MIPS SRP creation instructions, TSR MIPS error recovery

instructions, and SRP memory [20]. The TMR portion of an AHR instruction set

is a standard un-modified version of the program that is executed while AHR MIPS

operates in TMR mode. The TSR portion of an AHR instruction set is a modified

version of the program which uses the EDDI software redundancy method discussed

in Section 2.4.2.1. Table 3 provides an example of an AHR instruction set.

44

Table 3. Example AHR MIPS Instruction Set/Program [20]

Line Numbers Description

1 - 49 TMR MIPS Program

50 - 152 TSR MIPS Program

153 - 161 Temporary and Permanent Memory

162 - 268 TSR MIPS SRP Creation Instructions

269 - 344 TSR MIPS Error Recovery Instructions

345 - 409 SRP Memory

Hamilton developed a set of MATLAB scripts to randomly generate instruction

sets for TMR, TSR, and AHR MIPS as part of the research in [20]. Each gener-

ated instruction set is formatted with respect to the architecture by which it will be

processed, where an example of an AHR MIPS instruction set was given in Table 3.

The instruction sets are composed only of the 33 MIPS instructions listed in Table

8 of Appendix A. The MATLAB scripts allow a user to specify the number of in-

structions in a program, the number of variables, and other parameters to define the

composition of the generated instruction sets. The MATLAB scripts ensure that the

generated instruction sets will not produce an error due to illegal operations. The

method used to generate random instruction sets by Hamilton was used to generate

instruction sets for this research.

2.6.3 AHR MIPS Operational Modes

The AHR controller determines whether the AHR MIPS architecture operates

in TMR or TSR mode. In TMR mode the controller uses all three processors and

the voter module to process instructions supplied by memory. The AHR controller

45

continuously supplies new instructions to each of the processors and accepts incoming

data supplied by the TMR Voter. In TSR mode the controller only uses output from

one of the processors to process instructions supplied by memory, while the other two

processors and the TMR Voter are held in a reset state. The AHR controller controls

the state and operation of the AHR MIPS system, and performs different functions

when errors are detected in each mode.

2.6.3.1 AHR MIPS - TMR Mode

The TMR operating mode is used as a high-performance, enhanced-redundancy

operating mode. The MIPS processors in TMR mode execute the un-modified TMR

portion of the AHR program which does not contain any additional duplicated in-

structions or branches, as seen in the TSR portion. Without the need to process

additional instructions, the overall system runtime performance in TMR mode is the

highest available in AHR MIPS. In addition, TMR mode provides the fastest error de-

tection and correction capability, because single errors can be detected and corrected

without the need to revert to an SRP. TMR SRPs are created during the execution

of an AHR program. The TMR Voter initiates SRP creation after a user-specified

number of instructions have processed without error. AHR MIPS operating in TMR

mode uses two distinct SRPs stored in memory. Two SRPs are used in case an error

is detected while writing one SRP, so that the other can be used to reload the system

to a known state. The TMR Voter and AHR controller work together to dictate

how the AHR MIPS architecture operates under normal conditions and also how the

architecture detects and corrects any errors during runtime.

In an error-free scenario, the voter presents data that was equivalently produced

by all three processors to the AHR Controller. In this scenario, the AHR controller

simply passes data between memory and the TMR Voter, which is then distributed

46

to the Basic MIPS processors.

The AHR Controller is notified when the TMR Voter detects an error by setting

a TMR error signal between the voter and controller high. Only the TMR Voter

can detect errors while AHR MIPS operates in TMR mode. The TMR Voter de-

tects discrepancies between the three connected Basic MIPS processors anytime the

processors attempt to read from or write to memory.

The processors perform read operations whenever a new instruction is fetched

from memory and while executing a LW instruction. During a read operation, the

TMR Voter determines whether all three processors are attempting to read from the

same address in memory or stated another way, have the same Program Counter

(PC) values. The TMR Voter provides protection against program flow errors/illegal

branches by continuously ensuring all processors have synchronized PC values.

The processors only perform a write operation while executing a SW instruction.

During a write operation, the TMR Voter determines whether all three processors

are attempting to write the same data from their GPRs to the same address at the

same time. The TMR Voter ensures that a specific register in the GPR bank of

each processor are equivalent by comparing them while executing SW instructions.

A register in the GPR bank of all three processors is only checked for equivalency

during SW instructions, because it would be inefficient to check every intermediate

instruction for an error, when any radiation induced error will propagate until a

request is made to write that final value to memory.

In an AHR TMR Type A error scenario, the voter will conduct TMR Type A error

recovery and will keep the error signal to the AHR Controller high to indicate that

the detected error is still being corrected. AHR MIPS in TMR mode performs Type

A error recovery by copying the data contained in the two processors in agreement

over to the processor that presented incorrect data in the same manner as described

47

in Section 2.6.1.2. This ensures that all the processors contain the same data before

resuming program execution. Once error recovery is complete the TMR Voter will

set the error signal low, indicating to the AHR Controller that an error has been

corrected and normal program execution has begun.

In an AHR TMR Type B error scenario, the voter determines that none of the

attached processors produced data equivalent to one another. The voter will set the

error signal to the AHR Controller high and will execute TMR Type B error recovery

operations. AHR MIPS in TMR mode performs Type B error recovery by pausing

program execution, and using an SRP stored in memory to restore each processor

back to a previous state in the same manner as described in Section 2.6.1.2. After

each processor has been loaded with the values held in SRP memory, the voter will set

the error signal to the AHR Controller low, and the AHR MIPS architecture resumes

normal program execution.

AHR MIPS transitions from TMR mode to TSR mode only after a specified

number of TMR instructions have been processed without error. The number of error

free instructions that need to be processed before transitioning is called the TMR to

TSR Transition Point. A counter in the AHR Controller is used to track how many

instructions have been processed without error. If this counter reaches the TMR to

TSR Transition Point, then a transition can be executed. Anytime an error occurs

in TMR mode this counter is reset. The other transition condition that must be met

to move to TSR mode, is that the TMR program be at the beginning of a program

loop. The AHR program performs the TMR to TSR transition by splitting user-data

register space at that point in time into two distinct sets. These sets will hold the data

produced while processing the TSR portion of the AHR program, and are compared

against each other during runtime in accordance with EDDI TSR [36]. By performing

the TMR to TSR transition at the beginning of a loop, the only value that must be

48

maintained during and after the transition is the loop count. All other data will

be re-calculated because the program begins execution at the beginning of the TSR

portion of the AHR program, and despite taking longer the TSR portion will produce

the same results and interact with memory in the same way as the TMR portion.

Once the transition has completed, the AHR MIPS architecture begins executing the

TSR portion of the AHR program. The AHR MIPS architecture operates in TSR

mode until either the AHR MIPS program is completed or a specific error scenario

occurs.

2.6.3.2 AHR MIPS - TSR Mode

The TSR operating mode is used as a low-power operating mode with reduced

processing performance. While in TSR mode, the AHR Controller holds two out of

the three processors in reset and only accepts data coming out of the last remaining

processor. AHRMIPS in TSR mode must process a little over 2x as many instructions

as AHR MIPS in TMR mode. By processing more instructions, the system perfor-

mance is reduced as compared to operation in TMR mode. However, because less of

the FPGA fabric is used to operate AHR MIPS in TSR mode, the power utilization

is less than AHR MIPS in TMR mode. AHR MIPS operating in TSR mode is not

as quick to recover from errors as in TMR mode because a single error detected in

TSR mode requires that the processor revert to a previous state by loading from an

SRP. Also, TSR mode is not as resilient as TMR mode because the selected method

of TSR provides no protection against control flow/illegal branching errors.

TSR SRPs are created at specific loop counts during program execution. The loop

counts at which TSR SRPs are made are set by the user and included as instructions

in the TSR program. AHR MIPS operating in TSR mode uses two distinct SRPs

stored in memory to provide an additional backup system state in case an error is

49

detected while writing one of the SRPs. TSR mode SRP creation is dictated by a

set of instructions and writes each register-pair to the inactive block of TSR SRP

memory, which is determined by inspecting the TSR SRP location pointer. The TSR

SRP creation process is similar to TMR mode SRP creation, except that there are

less registers to write to memory and the TSR SRP location pointer is loaded into a

register in the active processor, for use as a memory index while executing the TSR

SRP creation instructions.

In error-free and error scenarios, the AHR Controller only interfaces with one

processor and memory. AHR MIPS in TSR mode can only detect errors just before

a SW instruction is processed. The TSR portion of the AHR program adheres to

the concepts set by EDDI TSR [36], which uses a BNE instruction inserted before

a SW to detect an error in the register pair of interest. If the data in the register

pair matches, the program continues execution and the agreed upon value is stored

to memory. If the BNE instruction determines that the values in the register pair

are not equivalent, then the program jumps to the TSR error recovery section of the

AHR program which executes a system reload from the active SRP. TSR mode error

recovery is similar to TMR mode Type B error recovery, except that in TSR mode,

the process is executed using instructions rather than iterating through a series of

states defined in a FSM like the TMR Voter, and the TSR SRP location pointer

is loaded into a register in the active processor, for use as a memory index while

executing the error recovery instructions.

AHR MIPS transitions from TSR mode back to TMR mode when two consecu-

tive errors are detected while executing the same portion of the TSR program. As

described previously, a single detected error in TSR mode requires that the processor

revert to a previous state using an SRP. After re-loading from an SRP, a flag is set

which indicates that an error occurred. This flag is cleared after creating the next

50

TSR SRP, which occurs at specific points during program execution. If the flag is set

high and another error is detected before writing the next TSR SRP, then the AHR

Controller will execute a TSR to TMR transition in order to maintain acceptable pro-

cessor performance. During a TSR to TMR transition, the AHR Controller begins by

holding all processors in reset. The controller will then access the active TSR SRP

and load the loop count held in that SRP into the appropriate loop counter locations

of the TMR SRPs memory. These loop counts are decremented by one because after

transition AHR MIPS will resume operation at the beginning of the TMR program

rather than the end where TMR decrements the loop counter. The controller also

loads each TMR SRP with the PC address that corresponds with the start of the

TMR program and sets the active TMR SRP to SRP0. After properly configuring

the TMR SRPs, the AHR Controller will stop sending the reset signal to the three

Basic MIPS processors and will instruct each processor to load the loop counter to

begin TMR program execution.

Despite being included in the design of the AHR Controller, the TSR to TMR

transition process is not explicitly included in AHR MIPS performance evaluations

by Hamilton in [20]. The TSR to TMR transition was verified in simulation, but

was not included during performance evaluations because it was determined that

the anticipated on-orbit error rate is low enough that it is unlikely that the criteria

necessary to perform the TSR to TMR transition would be met. The criteria to

perform the TSR to TMR transition may only be met during cosmic or man-made

events that increase the radiation level of the operational environment. As a result,

the TSR to TMR transition was not tested in this research.

51

2.6.4 Evaluation of Error Free AHR MIPS

After developing the AHR MIPS architecture shown in Figure 2, which operates

as described in Section 2.6.3, the function of the architecture was verified through

simulation and its performance was evaluated.

2.6.4.1 Simulation of Error Free AHR MIPS

AHR MIPS was functionally verified by first simulating the operation of both

a standalone TMR MIPS architecture and TSR MIPS architecture. An incremental

approach was taken to ensure that AHR MIPS would operate correctly, by simulating

each architecture that it operated in separately. Every component of TMR, TSR, and

AHR MIPS were written in VHDL, and were functionally verified using the Mentor

Graphics QuestaSim software [20]. A basic program was run on TMR MIPS and TSR

MIPS to see that the architectures could properly execute their respective programs

and were correctly creating SRPs. Once it was shown that TMR and TSR MIPS were

functioning correctly, AHR MIPS was functionally verified. The operation of AHR

MIPS in each mode was correct, mode specific SRPs were correctly created, and the

TMR to TSR transition was correctly executed.

This incremental approach for functional simulation was also used in this research,

because it allows for errors to be more easily identified and addressed at lower levels

before integration into higher level components.

2.6.4.2 Timing of Error Free AHR MIPS

After functional verification was complete, equations were created to calculate

the error-free runtime of any program processed on its respective architecture. The

error free timing equations were created after measuring the time it took to process

basic instructions, branch instructions, SW/LW instructions, perform SRP creation,

52

and various other processes using simulations. In the context of timing, “operations”

will be used to refer to basic instructions, branch instructions, SW/LW instructions,

perform SRP creation, and various other processes. With knowledge on how long

each of the previously listed operations takes to perform, the runtime of any error

free program could be calculated after determining how many instructions of each type

were in a program, and how many SRPs would be created. The 33 MIPS instructions

measured are listed in Table 8 in Appendix A.

All of the error free timing equations created by Hamilton [20] and discussed in

this section are used and/or modified for use in this research presented in Ch. 3

Section 3.4.2. All of these equations are written in MATLAB.

The runtime of an error free TMR MIPS program is calculated using Equation 1

[20] where TTMR MIPS is the time to complete the entire TMR program, TTMR init is

the time to initialize the loop counter of the program which only has to occur once per

program, TTMR loop is the time it takes to complete one loop of the program, nSRP

is the number of TMR SRPs that are made during the program, TTMR SRP is the

time it takes to create a TMR SRP, and TTMR conc is the time to complete the TMR

program after the last loop. Equation 2 [20] calculates TTMR loop by summing the time

it takes to complete every instruction in one program loop where NTMR is the total

number of program instructions and tITMR n
is the time it takes to process instruction

n. Equation 3 [20] calculates nSRP where nTMR init is the number of instructions to

initialize a TMR program, nloops is the total number of program loops, nTMR conc is

the total number of instructions processed after the final loop has been processed,

and nsave is the number of instructions that need to be processed before creating an

SRP.

TTMR MIPS = TTMR init + nloops · TTMR loop + (nSRP − 1) · TTMR SRP + TTMR conc

(1)

53

TTMR loop =
∑NTMR

n=1 tITMR n
(2)

nSRP =
⌊
nTMR init+NTMR·nloops+nTMR conc

nsave

⌋
+ 1 (3)

The runtime of an error free TSR MIPS program is calculated using Equation

4 [20] where TTSR MIPS is the time to complete the entire TSR program, TTSR init

is the time to initialize the loop counter of the program which only has to occur

once per program, TTSR loop is the time it takes to complete one loop of the program,

TTSR SRP0 is the time it takes to create SRP0, TTSR SRP1 is the time it takes to create

SRP1, TTSR conc is the time to complete the TSR program after the last loop, and

TTSR skip is the time it takes to perform the 6 instructions that determine when the

3 TSR SRPs are created.

Equation 5 [20] calculates the time required to complete a single error free TSR

program loop, where NTSR is the total number of instructions in one TSR program

loop and tITSR n
is the amount of time it takes to process instruction number n of the

program. The TSR programs used during the research in [20], and in this research,

always create a total of 3 SRPs during a given program. SRP0 is initialized at the

beginning of a TSR program, so the first SRP created in the program is SRP1,

then SRP0, and finally SRP1 again. This is why TTSR SRP1 is multiplied by 2 and

TTSR SRP0 is not in Equation 4. There are a total of 6 program instructions that are

used to determine if an SRP should be made, where one pair determines when the first

SRP is made, the second pair determines when the second SRP is made, and the third

pair determines when the third SRP is made. A TSR SRP is made by branching to the

portion of the instruction set that contains SRP creation instructions and processing

those instructions. Once those instructions are completed, the program branches back

54

to the main program at the next instruction after the 6 that determine when an SRP

is made. Due to these branching characteristics, by the end of a TSR program each

pair of SRP create instructions will be skipped once. TTSR skip is subtracted from the

total TSR runtime in Equation 4 to ensure that the skipped instructions are properly

taken into account.

TTSR MIPS = TTSR init + nloops · TTSR loop + TTSR SRP0 + 2 · TTSR SRP1 + · · ·

TTSR conc − TTSR skip

(4)

TTSR loop =
∑NTSR

n=1 tITSR n
(5)

An error free AHR MIPS program is executed in both TMR and TSR mode.

Calculating the total runtime of an AHR MIPS program requires knowledge on how

long the program was executed in each mode. The user specifies the number of

instructions that must be processed to initiate the transition from TMR to TSR

mode represented by ntransition, and therefore determines how many program loops

are completed in each mode. Equation 6 [20] determines the number of loops that

complete before transitioning called Ploops and is calculated by subtracting nTMR init

from ntransition, because the divisor NTMR accounts for all instructions in one TMR

program loop, but this value does not include nTMR init which occur outside of the

program loop. The ceiling is taken of the result because the TMR to TSR transition

must occur at the beginning of a loop.

Ploops =
⌈
ntransition−nTMR init

NTMR

⌉
(6)

The number of TMR SRPs created during a given AHR MIPS program (nCSRP)

was calculated using Equation 7 [20]. The nCSRP can be found by determining how

55

many total TMR instructions are processed before transitioning to TSR mode, di-

viding that number by the number of TMR instructions that need to be processed

before creating a TSR SRP (nsave), and taking the floor of that value.

nCSRP =
⌊
nTMR init+NTMR·Ploops

nsave

⌋
(7)

The runtime of an error free AHR MIPS program was calculated using Equation

8 [20], where the runtime TAHR MIPS is found by determining how long the program

ran in TMR mode (tAHR TMR) and in TSR mode (tAHR TSR). The instruction sets

generated in [20] set the program loop count to be 999. Equation 8 uses an if

statement to calculate the time spent in TSR operations. The tAHR TSR value is

dependent on Ploops because TSR SRPs are created at user defined loop counts. If

the transition point occurs early, Ploops < 250, then all TSR SRPs need to be made

and the tAHR TSR value can be calculated directly using Equation 4. However, if the

transition point occurs later in the program, 500 ≤ Ploops < 750, then only one TSR

SRP is made before the program ends, and only two out of the six TSR SRP creation

instructions are executed, thus requiring that 2
3
TTSR skip be subtracted to properly

calculate tAHR TSR.

56

tAHR TMR = tTMR init + Ploops · TTMR loop + · · ·

TTMR SRP · nCSRP + tTMR→TSR

if Ploops < 250

tAHR TSR = (nloops − Ploops) · tTSR loop + TTSR SRP0 + · · ·

2 · TTSR SRP1 + TTSR conc − TTSR skip

elseif 250 ≤ Ploops < 500

tAHR TSR = (nloops − Ploops) · tTSR loop + TTSR SRP0 + · · ·

TTSR SRP1 + TTSR conc − TTSR skip

elseif 500 ≤ Ploops < 750

tAHR TSR = (nloops − Ploops) · tTSR loop + TTSR SRP1 + · · ·

TTSR conc − 2
3
TTSR skip

elseif Ploops ≥ 750

tAHR TSR = (nloops − Ploops) · tTSR loop + TTSR conc

end

TAHR MIPS = tAHR TMR + tAHR TSR

(8)

After collecting the timing information and creating the above runtime equations,

Hamilton predicted in [20] that TMR MIPS would have the fastest runtimes, followed

by AHR MIPS, and then TSR MIPS. TSR MIPS was expected to take the longest

because TSR programs contained twice as many instructions and interface with mem-

ory more frequently than the other architectures. TMR MIPS was expected to run

the fastest because the TMR instruction sets are unmodified and do not incur the

overhead seen with TSR MIPS. AHR MIPS was expected to have runtimes faster

than TSR MIPS because AHR MIPS begins in TMR mode and processes a portion

of the program quickly. However, AHR MIPS was expected to have runtimes slower

than TMR MIPS because AHR MIPS does transition to TSR mode and takes longer

57

to complete the program.

2.6.4.3 Error Free Test Methodology

The runtime performance of each architecture was determined using the equations

developed in Section 2.6.4.2 for a total of 1,000 randomly generated instruction sets.

Each instruction set had three variants, where TMR MIPS used the Basic MIPS

program, TSR MIPS used the TSR MIPS program, and AHR MIPS used the AHR

program. Each variant of an instruction set produces the same results and store

the same results to memory. The only difference between variants is how they are

processed by their respective architecture. Hamilton [20] also determined the energy

consumed by each architecture using separately developed power equations similar to

those presented in Section 2.6.4.2. These equations are not included in this discussion,

because energy calculations/measurements were determined to be out of scope for this

research as will be discussed in Ch. 3 of this document.

40 additional instruction sets were generated for hardware in the loop (HITL)

testing of each architecture. HITL testing was first conducted for the TMR MIPS

and TSR MIPS architectures by programming a single Terasic SoCKit development

board [52] with an Altera Cyclone V FPGA chip. A Keysight DSOS054A Infiniium

S-Series Digital Storage Oscilloscope was used to measure the DONE signal produced

at the end of program execution. The DONE signals were measured, and the program

timings appeared to match those calculated, while also confirming the prediction that

TMR MIPS would have the fastest runtimes as compared to TSR MIPS. However,

using a single FPGA board for HITL testing was discovered to produce energy data

that did not match calculations, and so a second HITL testing method was created.

The second HITL testing method split a given MIPS architecture across two Tera-

sic DE10-Standard boards [54]: one containing the MIPS processor and the other

58

containing the corresponding memory module. This method was created to collect

energy measurements of the processor independently from memory. Communication

between the boards, or between processor and memory, was performed using a paral-

lel communication scheme that assigned all 100 necessary signals to on-board GPIO

pins. Each of the 100 signals was then transmitted to the other board using wires.

This second HITL testing method was unable to implement any of the MIPS architec-

tures, due to timing issues caused by implementing a parallel communication scheme.

These challenges encountered by Hamilton during HITL testing are explained in more

detail in Ch. 3 Section 3.2.1. The focus of the research presented in this document

is to successfully implement error free TMR, TSR, and AHR MIPS in hardware by

using a serial communication scheme to overcome the described HITL challenges.

2.6.4.4 Error Free Simulation/Calculation Results

Since HITL testing could not be performed, the performance results of each error

free architecture were derived from simulation and calculations. Only a high-level

summary of the results will be given, with emphasis on the runtime performance

behaviors, which are the only results pertinent to this research. For an in-depth dis-

cussion of the results consult Adaptive-Hybrid Redundancy for Radiation Hardening

[20] by Hamilton.

The results of the error free simulations/calculations for TMR, TSR, and most

importantly AHR MIPS were determined to match predictions. Hamilton found that

TMR MIPS completes programs faster than AHR MIPS, and AHR MIPS completes

programs faster than TSR MIPS. Hamilton also found that TMR MIPS uses more

energy than AHRMIPS, and AHRMIPS uses more energy than TSRMIPS. Hamilton

was able to show that changing the TMR to TSR transition point allows AHR MIPS

to have runtimes that fall between the maximum, set by only operating in TSR

59

mode, and the minimum set by only operating in TMR mode. This demonstrated

the versatility provided by AHR to space system designers and mission planners,

where AHR enables a MIPS processor to have flexible performance characteristics in

terms of runtime and energy consumption determined by the TMR to TSR transition

point.

These results are only for the architectures under error free operating conditions.

The next portion of Hamilton’s research effort [20] was to perform the same evaluation

steps that were presented in Section 2.6.4, but for each architecture operating under

various radiation induced error scenarios.

2.6.5 Evaluation of Error Prone AHR MIPS

The novelty of AHR MIPS was that it was designed to provide not only energy

and runtime performance flexibility, but also provide variable radiation tolerance by

either operating in TMR or TSR mode. Evaluation of AHR MIPS under various error

scenarios was accomplished in the same way as was done in the error free case, where

the performance of TMR MIPS, TSR MIPS, and AHR MIPS were all compared to

contextualize the benefits provided by the AHR scheme.

2.6.5.1 Error Injection Module

To evaluate the performance of each architecture under various error scenarios

required that simulated radiation induced errors be generated and injected into the

architectures during operation. These simulated radiation induced errors were gen-

erated using an error inject module. A diagram of the MIPS datapath including the

error inject module (shown in red) is given by Figure 3.

60

Figure 3. AHR MIPS Datapath w/Error Inject Module

The inputs to the module are a 32-bit data signal (i data), a 4-bit state signal

(i state), a 30-bit PC signal (i PC), and a 32-bit loop count signal (i loop count).

The i data and i loop count signals come from the GPR bank used by a Basic MIPS

processor. The i state signal is provided by the MIPS controller (not shown in Figure

3). The i PC signal comes from the output of the PC register. The module is pre-

configured to inject an error into a specific register at a specific PC value and loop

count. Thus, the i data signal is hardwired to the register that will be injected with

an error, once the specified i PC and i loop count are met. The i state signal is used

to ensure that the error is injected during state 0 of the MIPS controller, or before

the MIPS processor begins processing the next program instruction. More details

on the Basic MIPS controller FSM can be found in [22]. The error inject module

61

will inject a specified bit-flip error into the data on i data and will only write that

erroneous data (o data) to the specified register so long as both the register select

(o REG SEL) and the error signal (o error) are set high. These signals are inputs to

control multiplexers on the input of the GPR bank, and go high once the state, PC,

and loop count conditions have been met. The error injector module was designed to

have an interface compatible with TMR, TSR, and AHR MIPS. However, the point

at which an error should be injected differs by architecture.

Datapath errors can only be detected at specific points during program execution,

and these points differ depending on the MIPS architecture. As discussed in Section

2.6.3.1, TMR MIPS can only detect errors in user registers when an instruction that

wants to write a register value to memory is processed. TMR MIPS can also detect

PC value discrepancies when each processor retrieves an instruction from memory or

performs a branch instruction. However, the error injector was used to only inject

errors into user registers, and not registers that dictate the control flow of a program.

Similarly, as discussed in Section 2.6.3.2, TSR MIPS uses comparison instructions to

detect errors, which can occur in either one or both registers in a register pair. AHR

MIPS processes an AHR program that contains both a TMR and TSR version of the

program. AHR MIPS can either operate in TMR or TSR mode, and thus can only

detect errors that are properly injected with respect to the mode that it is currently

operating in. The differences in how each architecture detects errors in user registers

required that the error injector be configured in slightly different ways to produce

valid and detectable errors.

After design, the error inject module was simulated to perform functional verifi-

cation. The error module was found to be compatible with each MIPS architecture

and was able to properly inject errors into each. Using the error inject module, vari-

ous new operational modes and error scenarios for each architecture were able to be

62

simulated.

The error inject module component designed by Hamilton in [20] was modified for

use in this research. The modifications made to the error inject module are described

in Ch. 3 Section 3.3.5.2. These modifications alter when the error is injected to

account for specific edge cases.

2.6.5.2 Error Scenarios/Operational Modes of AHR MIPS

The error inject module was developed to simulate an SEU in the datapath of a

Basic MIPS processor used in a given MIPS architecture. A Basic MIPS processor

that incorporates an error inject module is referred to as an error-prone processor. The

error performance of a MIPS architecture refers to the runtime of a program on that

architecture which experiences an error during operation. To determine the effects of

a single error in each architecture, required the use of one error-prone processor. To

determine the effects of two independent errors in TMR and AHR MIPS, required

the use of two error-prone processors. Only TMR and AHR MIPS were subjected to

two errors because TSR MIPS and AHR MIPS operating in TSR mode perform the

same error recovery operations whether one or two errors are detected.

All the error scenarios/operational modes tested for each MIPS architecture are

listed in Table 5, where the results of operations in error free modes were previously

discussed in Section 2.6.4.

63

Table 4. Architectures and Operational Modes Measured in Hardware

MIPS Architecture Operational Mode

TMR No Error (NE)

Error A

Error B - Best

Error B - Worst

TSR No Error (NE)

Best Single Error

Worst Single Error

AHR No Error (NE)

TMR Mode - Error A - Early

TMR Mode - Error A - Late

TMR Mode - Error B - Best Early

TMR Mode - Error B - Best Late

TMR Mode - Error B - Worst Early

TMR Mode - Error B - Worst Late

TSR Mode - Best Single Error

TSR Mode - Worst Single Error

The new AHR MIPS architecture developed in this research operates in every

mode listed in Table 5, and for this reason an in-depth description of each error mode

and how they are realized is described in Ch. 3 Section 3.5.2.

64

2.6.5.3 Simulation of Error Prone AHR MIPS

Each MIPS architecture was slightly modified to incorporate the error injector

module(s) in order to realize every error scenario. Each architecture was then func-

tionally simulated in the same way presented in Section 2.6.4.1. Having shown that

each error scenario could be produced in simulation, various new architecture specific

processes were measured/timed to create the timing equations used to calculate the

runtime of programs processed on the error prone MIPS architectures.

2.6.5.4 Timing of Error Prone AHR MIPS

After functional verification of each error prone MIPS architecture was complete,

revised equations based upon those discussed in Section 2.6.4.2 were created. These

new equations were used to calculate the runtime of any program processed on its

respective architecture that experienced either an SEU or two simultaneous and sep-

arate SEUs. The timing equations were created by measuring the time it took to

perform error detection and execute error recovery processes for each unique archi-

tecture using simulations. The error detection and recovery processes timed for each

architecture are listed in Table 9 of Appendix A.

The error prone MIPS timing equations developed by Hamilton in [20] are gen-

eralized and can determine the runtime of an instruction set and can calculate the

instruction and loop count where an error needs to be injected to realize each error

scenario. All of the error prone equations developed by Hamilton in [20] were mod-

ified and used for this research, and because of the length and complexity of these

equations, the discussion on how they were both developed and used is presented in

Ch. 3 Section 3.5.2.

65

2.6.5.5 Fault Injection Test Methodology

To satisfy Hamilton’s research goals [20], the performance of error prone TMR,

TSR, and AHR MIPS in terms of program runtimes and energy were compared. As

was done in Section 2.6.4.3, the error prone timing equations developed in Section

2.6.5.4 were used to calculate the program runtimes for each generated instruction set.

The same 1,000 randomly generated instruction sets used to compare the error free

performance of each MIPS architecture were used to compare the error prone perfor-

mance of each MIPS architecture. Using the same instruction sets for both error free

and error prone testing provided a comprehensive understanding of the performance

of a given MIPS architecture in every tested operational mode. Hamilton [20] also

determined the energy consumed by each error prone architecture using separately

developed power equations similar to those presented in Section 2.6.5.4. These equa-

tions are not included in this discussion, because energy calculations/measurements

were determined to be out of scope for this research as will be discussed in Ch. 3 of

this document.

HITL testing of the various error prone architectures could only provide timing

data for TMR and TSR MIPS when both the processor and memory were imple-

mented on a single FPGA board. HITL timing data for AHR MIPS was not obtained

because the architecture was too large to be implemented on a single board due to

FPGA resource constraints. No HITL energy measurements were obtained for any

of the error prone architectures due to the difficulties implementing the architecture

across two FPGA boards, as was discussed in Section 2.6.4.3. The focus of the re-

search presented in this document is to successfully implement error prone TMR,

TSR, and AHR MIPS in hardware by implementing a serial communication scheme

to overcome the HITL challenges faced by Hamilton in [20].

66

2.6.6 Error Prone Simulation/Calculation Results

The results collected for the simulation of each error prone architecture provided

an understanding on the performance benefits of AHR MIPS over implementing only

TMR or TSR redundancy. AHR MIPS can experience the most error scenarios, and

because of this was found to have a rich performance trade space dependent upon

the TMR to TSR transition point and the point at which an error was detected.

Hamilton’s results in [20] found that the performance of AHR MIPS due to a TMR

Type A Early, TMR Type B-Best Early, TSR Best, and the error free performance

of AHR MIPS were similar because those error scenarios have a minimal impact on

the runtime performance of AHR MIPS. The AHR MIPS TMR Type A Late and

TMR Type B-Best late error scenarios were found to use more energy and run faster

than error free AHR MIPS, because both these error scenarios extend the time AHR

MIPS stays in the TMR operating mode. The AHR MIPS TMR Type B-Worst Early,

TMR Type B-Worst Late, and TSR Worst error scenarios were found to use more

energy and take more time than error free AHR MIPS because these errors required

the most program re-computation.

Hamilton also demonstrated the performance flexibility of AHR MIPS by showing

how increasing the TMR to TSR point makes AHR MIPS perform more like TMR

MIPS and reducing the TMR to TSR point makes AHR MIPS perform more like TSR

MIPS. The results demonstrated that AHR provided distinct performance advantages

over using just TMR or TSR redundancy. AHR MIPS was found to always use less

energy than TMR MIPS and process programs faster than TSR MIPS, however AHR

MIPS could not process as fast as TMR MIPS or with the same energy efficiency as

TSR MIPS. Overall, the performance and energy tradeoffs of AHR MIPS compared to

TMR and TSR MIPS were found to be acceptable given how flexible the performance

of AHR MIPS can be.

67

The error prone simulation results were able to prove the viability of AHR as

a redundancy scheme and were able to provide an answer to all research questions

posed by Hamilton. However, HITL testing was unable to provide the necessary re-

sults to experimentally verify the performance seen in simulation. HITL testing was

performed using one program for TMR MIPS and TSR MIPS, where each was tested

in error free operating conditions and in every possible error scenario for that archi-

tecture. The HITL results found that the runtime performance for most of the error

scenarios for TMR and TSR MIPS matched what was calculated/simulated. Any

minor discrepancies found between the real-world and simulated performance were

due to clock jitter and skew. However, for some of the error scenarios the discrep-

ancy between real-world and simulated was too large to be due to the performance

of the clock. The larger discrepancies were hypothesized to be due to timing delays

introduced by the Quartus design software during the place-and-route step used to

program the FPGAs, or due to the way in which the timing of error injection in

software simulation was translated to HITL [20].

The HITL results provided some insight into how AHR MIPS could be experi-

mentally proven in hardware, and along with the design of AHR itself, were used to

both act as the foundation of this research and provide the direction/goals of this

research.

68

III. Methodology

3.1 Introduction

This chapter presents the methods employed to modify the AHR MIPS architec-

ture discussed in Ch. II Section 2.6 for implementation on a low Size, Weight, Power,

and Cost (SWAP-C) Consumer Off the Shelf (COTS) FPGA. Section 3.2 discusses

the FPGA that was chosen as the hardware target for this research. Section 3.3

describes how the original AHR MIPS architecture created in [20] was modified to

enable hardware implementation. These modifications include the addition of four

new components and changes to pre-existing components to create a new AHR MIPS

architecture that operates correctly in hardware. Section 3.4 discusses how the new

AHR MIPS design was implemented on the selected FPGA. This section explains how

programs were created to run on the AHR MIPS architecture. This section also ex-

plains how program instructions and architecture specific processes were timed using

simulations to support the development of the equations used to calculate program

runtimes. Section 3.5 presents the final modifications made to the AHR MIPS archi-

tecture to facilitate hardware measurements, explains which MIPS architectures and

operational modes were measured in hardware for comparison against calculations,

defines the equations used to calculate the hardware runtimes of programs processed

on each MIPS architecture and operational mode, and the methodology used to collect

hardware measurements.

3.2 FPGA Hardware Selection

This section describes the process used to select the low SWAP-C COTS FPGA

used in this research. The FPGA hardware chosen for this research was selected

to overcome the hardware implementation issues encountered in the previous AHR

69

MIPS research [19, 20]. An explanation of those challenges is given in Section 3.2.1.

Section 3.2.2 explains which FPGA was selected for use in this research, and provides

a brief overview of the device specifications. Section 3.2.3 explains the new constraints

that were encountered due to the FPGA hardware that was selected.

3.2.1 Previous Challenges

In the work preceding this research [20], TMR, TSR, and AHR MIPS were all suc-

cessfully shown to operate in a simulated environment. However, after implementing

the TMR and TSR MIPS architectures onto a single Terasic SoCKit Development

board [52], a discrepancy was found between the simulated and measured energy us-

age of the MIPS processor for each architecture. The cause of this discrepancy was

postulated to be due to the method used to measure the power consumed by the pro-

cessor. By combining both the processor and memory onto one FPGA device, there

was no reasonable way to determine how much energy was being consumed solely by

the processor in hardware. The collected measurements represented the combined

energy consumption of both the processor and memory. To collect the appropriate

energy results, an additional FPGA board was used to physically separate the pro-

cessor from memory. The decision to use two FPGA devices was carried over to this

research to avoid any possible issues collecting component specific data.

The decision to separate the processor and memory using two FPGA boards re-

quired that all the signals output by the processor needed to be communicated off-

board to the memory board and vice-versa. The method chosen to perform inter-

board communication was to assign signals to GPIO pins on Terasic DE10-Standard

development boards [25]. In total 100 separate wires were used to connect the two

boards and perform data transmission between the processor and memory. Each

MIPS processor type was tested using this communication scheme, but none of the

70

architectures operated correctly in hardware. After troubleshooting, it was deter-

mined that the Quartus II software used to program the FPGA may have been mak-

ing hardware implementation decisions that caused real-world timing issues, despite

simulations showing that timing for these architectures was being met. In conclusion,

it was determined that an approach that utilizes a serial communication scheme be-

tween the boards may yield better results in hardware than an approach using parallel

communication. The timing issues found in the work preceding this research informed

the design decisions made to develop new hardware buffers/communication modules.

These modules implement a serial communication scheme between the selected MIPS

processor and memory where each resides on a separate FPGA board.

3.2.2 Xilinx Spartan - 7 Development Board

Having determined that it was necessary to use two FPGA boards to test any of

the MIPS architectures in hardware, the next design decision was to select an FPGA

board to use. This research used Xilinx Spartan 7 development boards because the

boards/chips are low SWAP-C components. Also, Xilinx products are commonly

used in the government space community and the design software/tools for Xilinx

products are well supported. The specific Xilinx product used was the SP701 Spartan

7 Evaluation Board [61].

3.2.3 New Constraints

A potential benefit of separating the MIPS processor and memory across two

FPGA boards was that it would be possible to collect power measurements and

calculate the energy usage of the processor while executing programs. However, the

SP701 Spartan 7 board used for this research is an evaluation/development board

with many on-board peripherals and components. These peripherals and additional

71

components are all attached to the Spartan 7 FPGA chip and draw power while the

board is powered on. Since all these components require power, it was determined

that accurate power measurements of only the MIPS processor instantiated on the

FPGA chip would be difficult to collect amongst all the other power demands on

the board. Also, the SP701 FPGA board is powered by a 6-pin PCIe style power

connector. This style of connector does not facilitate easy power measurements using

an oscilloscope, whereas the previous research using the DE10 had a single DC 12V

connection which was simpler to use for power measurements.

As a consequence of the new constraints incurred by use of the SP701 Develop-

ment boards, power measurements of the MIPS processors during operation were not

included as part of this research effort.

3.3 SP701 AHR MIPS Design

This section describes the new AHR MIPS architecture that was implemented on

the two Xilinx Spartan 7 FPGAs. The new AHR MIPS architecture was designed to

physically separate the AHR MIPS processor from memory. This was done for two

purposes:

1. Previous attempts found that the AHR architecture and memory were too large

to fit onto one low-cost COTS FPGA

2. Physical separation of the AHRMIPS processor and memory will support future

radiation test campaigns of the processor

To ensure the AHR MIPS processor and memory properly functioned while exist-

ing on two physically separate FPGAs, required the design of additional modules to

appropriately buffer and transmit data signals between the two major components.

Four additional modules were designed to support inter-board communication. These

72

modules are the:

1. MIPS Buffer Out (MIBO)

2. Memory Buffer In (MEBI)

3. Memory Buffer Out (MEBO)

4. MIPS Buffer In (MIBI)

The AHR MIPS architecture designed and implemented in this research consists

of the AHR MIPS processor, MIBO, MEBI, Memory, MEBO, and MIBI modules.

The purpose, design, and standard operation of the four new modules are described

in Sections 3.3.2 & 3.3.4. Only the purpose and standard operation of the AHR

MIPS processor and memory module are described, because these components were

previously developed in [20] and were not heavily modified as part of this research.

3.3.1 AHR MIPS Processor

The AHR MIPS processor module decodes instructions retrieved from memory

and performs all arithmetic or logical operations required to process that instruction.

The AHRMIPS processor is a radiation tolerant component that can operate in either

a TMR or TSR mode depending on the current radiation environment.

The AHR MIPS processor inputs are a clock signal, reset signal, ready signal,

32-bit data signal, and PROGRAM DONE signal. The outputs are a read signal,

write signal, 32-bit address, and 32-bit data signal. A diagram of the AHR MIPS

processor is shown below in Figure 4. The clock and reset signals are not shown.

73

Figure 4. Diagram of the AHR MIPS Processor

After the AHR MIPS processor decodes an instruction, the output signals shown

in Figure 4 are transmitted to the memory module to complete the specified read

or write operation in memory. The AHR MIPS processor processes AHR program

instructions supplied by memory until the processor sees the PROGRAM DONE

input signal go high. When the PROGRAM DONE signal is high, the AHR MIPS

processor resets itself and retrieves the first instruction from memory to restart the

program. A more in-depth background on the design of the AHR MIPS processor

was given in Ch. II Section 2.6.

3.3.2 Forward Path

Data output from the MIPS processor is transmitted to memory through a com-

munications channel referred to as the Forward Path. The Forward Path consists

of two modules. The first module is the MIPS Buffer Out (MIBO) which accepts

all output signals from the AHR MIPS processor and serializes the data to send to

Memory. The design of MIBO is described in Section 3.3.2.1. The second module

is the Memory Buffer In (MEBI), which receives the serialized data from MIBO,

74

converts the data back to non-serialized AHR MIPS outputs, and supplies them to

memory. The design of MEBI is described in Section 3.3.2.2. The communications

path between the MIBO and MEBI modules implements the Universal Asynchronous

Receiver-Transmitter (UART) hardware communication protocol. Contained in the

MIBO and MEBI modules are a UART transmitter (TX) and UART receiver (RX).

These UART modules are used in tandem with the Forward Path components to

implement a radiation tolerant communications path that connects the AHR MIPS

processor and memory

3.3.2.1 MIPS Buffer Out (MIBO)

The MIBO module is responsible for transmitting the output of the AHR MIPS

processor to the MEBI module. The output signals of the AHR MIPS processor are

the read and write operation flags, the address from which data needs to be read or

to which data needs to be stored, and data to be written to memory when performing

a write operation. The relevant output signals are transmitted using a UART TX

module to the MEBI. The MIBO is implemented as an FSM which executes either

a read or write process dependent upon the AHR MIPS processor read and write

operation flag outputs. The MIBO module includes the logic necessary to determine

whether an error occurred during transmission to MEBI. If the read flag output from

the AHR processor is high, then the MIBO FSM enters state s read0 and iterates

through the states listed in Table 10 in Appendix A. The MIBO FSM read process

completes four steps:

1. Transmit a unique 8-bit read code to MEBI (assumed to be error-free as de-

scribed in Ch. I Section 1.3).

2. Transmit the 16-bit address from which data will be read in memory to MEBI.

3. Receive the 16-bit address back from MEBI.

75

4. Determine whether a radiation strike caused an error during transmission of the

read address.

(a) Compare the read address that was sent to MEBI against the read address

received back from MEBI.

(b) If they match, send a unique 8-bit correct code to MEBI and then return

to the idle state of the FSM.

(c) If they do not match, send a unique 8-bit error code to MEBI and repeat

Steps 2-4 until it is determined that the read address was not corrupted

during transmission.

If the write flag output from the AHR processor is high, then the MIBO FSM

enters state s write0 and iterates through the states listed in Table 11 in Appendix

A. The MIBO FSM write process completes seven steps, where the first four are

nearly identical to the read process:

1. Transmit a unique 8-bit write code to MEBI (assumed to be error-free as de-

scribed in Ch. I Section 1.3).

2. Transmit the 16-bit address to which data will be written in memory to MEBI.

3. Receive the 16-bit address back from MEBI.

4. Determine whether a radiation strike caused an error during transmission of the

write address.

(a) Compare the write address that was sent to MEBI against the write address

received back from MEBI.

(b) If they match, send a unique 8-bit correct code to MEBI and proceed to

Step 5.

76

(c) If they do not match, send a unique 8-bit error code to MEBI and repeat

Steps 2-4 until it is determined that the write address was not corrupted

during transmission.

5. Transmit the 32-bit data signal which will be written to the previously specified

address in memory to MEBI.

6. Receive the 32-bit data signal back from MEBI.

7. Determine whether a radiation strike caused an error during transmission of the

write data.

(a) Compare the write data that was sent to MEBI against the write data

received back from MEBI.

(b) If they match, send a unique 8-bit correct code to MEBI and then return

to the idle state of the FSM.

(c) If they do not match, send a unique 8-bit error code to MEBI and repeat

Steps 5-7 until it is determined that the write address was not corrupted

during transmission.

The MIBO module also accepts a PROGRAM DONE signal that initiates a return

to the FSM idle state, while the AHR MIPS processor re-starts program execution

from the beginning.

3.3.2.2 Memory Buffer In (MEBI)

The MEBI module is responsible for receiving the output from MIBO, organizing

the received data, and interfacing with memory. The output of MEBI to memory

consists of a read and write enable, a 32-bit address, and a 32-bit data signal. The

MEBI is an FSM which executes either a read or write operation in coordination

77

with MIBO. MEBI does not include any logic to determine whether a transmission

error occurred because all received addresses and data are sent back to MIBO where

error detection occurs. Operation of the MEBI FSM is dependent upon the unique

8-bit operation code sent by MIBO. While in the idle state, if the code received is the

read code, then the FSM enters state s read0 and iterates through the states listed

in Table 12 in Appendix A. The MEBI FSM read process completes four steps:

1. Receive 16-bit read address from MIBO.

2. Transmit the 16-bit read address back to MIBO for error checking.

3. Receive the unique 8-bit code from MIBO which indicates whether an error

occurred.

(a) If the code received matches the correct code, then set the memory read

enable signal high and supply the read address.

(b) If the code received matches the error code, then repeat Steps 1-3 until it

is determined that the read address was sent correctly.

While in the idle state, if the code received is the write code, then the FSM enters

state s write0 and iterates through the states listed in Table 13 in Appendix A. The

MEBI FSM write process completes six steps, where the first three are nearly identical

to the read process:

1. Receive 16-bit write address from MIBO.

2. Transmit the 16-bit write address back to MIBO for error checking.

3. Receive the unique 8-bit code from MIBO which indicates whether an error

occurred.

(a) If the code received matches the correct code, then proceed to Step 4.

78

(b) If the code received matches the error code, then repeat Steps 1-3 until it

is determined that the write address was sent correctly.

4. Receive 32-bit write data from MIBO.

5. Transmit the 32-bit write data back to MIBO for error checking.

6. Receive the unique 8-bit code from MIBO which indicates whether an error

occurred.

(a) If the code received matches the correct code, then set the memory write

enable signal high and supply the write address and data. Return FSM to

idle state.

(b) If the code received matches the error code, then repeat Steps 4-6 until it

is determined that the write data was sent correctly.

After completion of either a read or write operation, MEBI sets all output signals

to memory back to low/zeros to prevent the MIPS architecture from processing the

same instruction again.

3.3.3 Memory

The memory module stores the program instructions that are executed by the

AHR MIPS processor, acts as external storage for register data should a program

require more space, and stores the SRPs created during program execution along with

the SRP location pointer. An AHR program loaded into memory contains space for

TMR instructions, equivalent TSR instructions, temporary and permanent memory,

TSR MIPS SRP creation instructions, TSR MIPS error recovery instructions, and

SRP memory. The AHR program length determines the size of the memory module

implemented in the FPGA fabric. For this research, AHR programs and hardware

79

design files were randomly generated using a series of MATLAB scripts and used a

33 - instruction subset of the standard MIPS Instruction Set Architecture (ISA). The

instruction subset used for this research is listed in Table 8 of Appendix A.

During normal operation, an AHRMIPS processor will only read from the sections

of memory that contain instructions, temporary, permanent, or SRP memory. Also,

AHR MIPS will only write to temporary, permanent, and SRP memory. The memory

module determines when a program has completed execution by setting the output

PROGRAM DONE signal high when a read request is made at a memory location

outside the bounds of the AHR program. The previously described Forward Path

presents data to the memory module. This data indicates whether a read or write

operation is required while also supplying the corresponding read address or write

address and data. The memory module accesses the specified address and either

outputs the data to complete a read operation or writes the supplied data to the

specified address to complete a write operation. The memory module does not output

any data during a write operation. The hardware implementation of the AHRmemory

module does not utilize any radiation hardening techniques, and is instead assumed to

be immune to radiation as stated in Ch. I Section 1.3. The memory module outputs

the data to the Return Path, which will transmit the data back to AHR MIPS to

complete that instruction or begin processing the next instruction.

3.3.4 Return Path

The Return Path is the communications channel used to send data from memory

to the AHR MIPS processor. The Return Path consists of two modules. The first

module is the Memory Buffer Out (MEBO). The inputs to MEBO are the memory

outputs and the output of MEBO is a serialized version of the memory outputs. The

design of MEBO is described in Section 3.3.4.1. The second module is the MIPS

80

Buffer In (MIBI). The input to MIBI is a serialized version of the memory outputs

from MEBO. MIBI then converts the serialized data to non-serialized memory outputs

and supplies them to the AHR MIPS processor. The design of MIBI is described in

Section 3.3.4.2.

3.3.4.1 Memory Buffer Out (MEBO)

The MEBO module is responsible for transmitting the output from memory to

the MIBI module. The output signals of memory are the ready signal, 32-bit data

output signal, and PROGRAM DONE signal. A diagram of memory is shown below

in Figure 5.

Figure 5. Diagram of the AHR MIPS Memory

The MEBO is an FSM which executes a read, write, or PROGRAMDONE process

dependent upon whether MEBI set the read or write enable high, or if the PROGRAM

DONE signal coming out from memory is high. The MEBO module includes the logic

necessary to determine whether an error occurred during transmission to MIBI. If the

read enable output from MEBI was high, then the MEBO FSM enters state s read0

and iterates through the states listed in Table 14 in Appendix A. The MEBO FSM

read process completes 4 steps:

1. Transmit a unique 8-bit read code to MIBI (assumed to be error-free as de-

81

scribed in Ch. I Section 1.3).

2. Transmit the 32-bit data read from the specified address supplied to memory,

to MIBI.

3. Receive the 32-bit read data back from MIBI.

4. Determine whether a radiation strike caused an error during transmission of the

read data.

(a) Compare the read data that was sent to MIBI against the read data re-

ceived back from MIBI.

(b) If they match, send a unique 8-bit correct code to MIBI and then return

to the idle state of the FSM.

(c) If they do not match, send a unique 8-bit error code to MIBI and repeat

Steps 2-4 until it is determined that the read data was not corrupted during

transmission.

If the write enable output from MEBI is high, then the MEBO FSM enters state

s write0 and iterates through the states listed in Table 15 in Appendix A. The MEBO

FSM write process completes only one step:

1. Transmit a unique 8-bit ready code to MIBI (assumed to be error-free as de-

scribed in Ch. I Section 1.3).

The MEBO FSM write process is only one step because a write operation does not

return any data from memory in the AHR MIPS architecture. Therefore, the only

information that needs to be transmitted to the MIPS processor is that the write

operation was completed.

82

If the PROGRAM DONE signal output from memory is high, then the MEBO

FSM enters state s reset0 and iterates through the states listed in Table 16 in Ap-

pendix A. The MEBO FSM reset/PROGRAM DONE process completes only one

step:

1. Transmit a unique 8-bit PROGRAM DONE code to MIBI (assumed to be

error-free as described in Ch. I Section 1.3).

The MEBO FSM reset/PROGRAM DONE process transmits the PROGRAM

DONE code to MIBI, which MIBI uses to reset both the MIPS processor and MIBO.

Meanwhile, MEBO also signals MEBI to reset, which ensures that all signals to

memory are cleared, and no further instructions are executed until the MIPS processor

makes a new request.

3.3.4.2 MIPS Buffer In (MIBI)

The MIBI module is responsible for receiving the output from MEBO, organizing

the received data, and interfacing with the AHR MIPS processor. The MIBI outputs

to the AHR MIPS processor are a ready signal, 32-bit data signal, and a PROGRAM

DONE signal. The MIBI is an FSM which executes a read, write, or reset/PRO-

GRAM DONE operation in coordination with MEBO. MIBI does not include any

logic to determine whether a transmission error occurred because all received data

is sent back to MEBO where error detection occurs. The MIBI FSM operation is

dependent upon the unique 8-bit operation code sent by MEBO. While in the idle

state, if the code received is the read code, then the FSM enters state s read0 and

iterates through the states listed in Table 17 in Appendix A. The MIBI FSM read

process completes three steps:

1. Receive 32-bit read data from MEBO.

83

2. Transmit the 32-bit read data back to MEBO for error checking.

3. Receive the unique 8-bit code from MEBO which determines whether an error

occurred.

(a) If the code received matches the correct code, then set the ready signal to

the processor high and supply the read data. Return FSM to idle state.

(b) If the code received matches the error code, then repeat Steps 1-3 until it

is determined that the read data was sent correctly.

While in the idle state, if the code received is the write code, then the FSM enters

state s write0 and iterates through the states listed in Table 18 in Appendix A. The

MIBI FSM write process completes only one step:

1. After receipt of the unique 8-bit ready code, set the output ready signal high.

The MIBI FSM write process only needs to signal to the processor that a write

operation was completed in memory.

While in the idle state, if the code received is the reset/PROGRAM DONE code,

then the FSM enters state s reset0 and iterates through the states listed in Table 19

in Appendix A. The MIBI FSM reset process completes only one step:

1. After receipt of the unique 8-bit reset code, set the output PROGRAM DONE

signal high to restart AHR MIPS operation.

The MIBI FSM reset/PROGRAM DONE process only needs to initiate an AHR

MIPS processor and MIBO reset to restart program execution.

3.3.4.3 Summary of Communication Module Design

The communication modules were all designed to provide an error/radiation tol-

erant method of inter-board data transmission between the AHR MIPS processor

84

and the corresponding memory module. The communication modules adhere to the

UART communication protocol, and thus can be easily modified to operate at a

user-defined baud rate. The baud rate is set by specifying the number of clock-cycle

counts that will occur between the transmission of bits. The number of counts is

set low to allow the new AHR MIPS architecture to be simulated. The number of

counts is set high to produce a baud rate that can be physically realized in FPGA

hardware. The AHR MIPS architecture cannot be physically implemented without

the communication modules for the reasons specified in Section 3.2.1. In conjunction

with the design of the communication modules, components of the AHR MIPS archi-

tecture also needed to be modified to produce a hardware design that had stable and

repeatable performance. The AHR MIPS architecture required these performance

characteristics to facilitate hardware measurements and data collection.

3.3.5 Modifications to Previous AHR MIPS Architecture

The AHR MIPS architecture was designed to begin operation in TMR mode

upon start-up, and transition to TSR mode after processing a user-defined number

of program instructions without error. The design established in [20] has the AHR

MIPS system remain in TSR mode even after the current program being executed

has completed. This design decision was made because in a real-world scenario the

only time the AHR MIPS system would return to TMR mode is either after multiple

radiation-induced errors are detected, or the increased processing performance in

TMR mode is required to meet mission requirements. However, in this research the

AHR MIPS architecture needed to be implemented in hardware, and its operation

processing an AHR instruction set needed to be repeatable to verify that the hardware

implementation functioned in the same way as was simulated. The runtime of an

AHR instruction set is measured assuming that the AHR MIPS system begins in

85

TMR mode and transitions to TSR mode during that time. This means that for

hardware verification, the AHR MIPS processor needed to be modified to completely

reset after an AHR program was fully executed. This change forced the AHR MIPS

processor to repeat the same behavior and program runtimes until the device was

powered off. To produce this repeatable behavior, the AHR controller component of

the AHR MIPS processor was modified as described in Section 3.3.5.1.

An error inject module is used to simulate the effects of up-to two independent

simultaneous radiation-induced upsets, and although this module was previously cre-

ated it also required modifications to produce expected behavior in hardware. The

design of the error inject module was described in Ch. II Section 2.6.5.1. The error

injector is programmed by the user to modify a specific bit within a specific register of

the AHR MIPS datapath at a specific PC value. However, the error injector cannot

inject an error if the AHR MIPS system is performing TMR SRP creation or TMR

error recovery and should not inject an error while executing a transition between

operating modes. This design decision was made for two reasons. First, the portion

of a program’s overall runtime dedicated to TMR SRP creation, TMR error recov-

ery, or transitions between operating modes is small. Thus, in a real-world scenario

the likelihood of a radiation strike producing an error in a user register during those

operations is small in comparison to the likelihood of an error occurring during the

processing of program instructions. Secondly, the error injector module would have

required significant modifications to exactly simulate an upset during TMR SRP cre-

ation, TMR error recovery, or transitions between operating modes. To simulate an

upset occurring during those processes using the current error inject module only

requires that an error be injected into the target register before that process begins.

These errors are not difficult to inject, and thus any modifications to the error injec-

tor to exactly simulate those error scenarios would have unnecessarily increased the

86

design complexity of the error injector module. This research maintained the design

decision for the error inject module and did not modify it to inject errors during

those special processes. However, the error injector was modified to operate correctly

during another error scenario.

Through preliminary analysis, it was determined that there was an edge case

where the error injector would prematurely inject an error while trying to generate a

specific error scenario. Section 3.3.5.2 describes how the error injector was modified

to exhibit proper behavior for that edge case.

3.3.5.1 Modifications to the AHR Controller

The AHR controller is a component of the AHR MIPS architecture. The AHR

controller is implemented as an FSM that monitors the operation of the AHR MIPS

system and determines whether to operate in TMR or TSR mode and when to transi-

tion from one mode to the other. The operation of the controller is described in detail

in Ch. II Section 2.6.1.3 & 2.6.3. The controller monitors various control signals out-

put by other MIPS components to determine what the current system state should

be. Two of the main control signals pertinent to the new design are the RESET and

PROGRAM DONE signals. In the previous AHR MIPS design, the controller would

only fully reset the entire system back to TMR mode upon receipt of the global RE-

SET signal. To produce stable and repeatable behavior, the AHR controller in the

new design was modified so that the PROGRAM DONE signal would trigger system

behavior equivalent to a global RESET.

3.3.5.2 Modifications to the Error Injector

The error injector is a component of the Basic MIPS processors used within the

AHR MIPS architecture. The error injector uses an ERROR OVERRIDE control

87

signal to determine when an error can be injected depending on whether the program

is actively being executed, or if a special process is occurring. The error injector only

modifies the data held in a user register at a specific PC value and if the ERROR

OVERRIDE control signal is low. The ERROR OVERRIDE control signal is exter-

nally generated and supplied by the TMR Voter. While AHR MIPS is operating in

TMR mode, the TMR Voter will set the ERROR OVERRIDE signal high when it

determines that a special process needs to be executed. One of these processes is the

creation of a TMR SRP.

A SRP is created in TMR mode after a user-defined number of instructions are

processed. Since the TMR Voter is implemented as a FSM, it takes a couple clock

cycles for the ERROR OVERRIDE signal to be set high after the requisite number

of instructions have been processed. Meanwhile, the error injector is only waiting for

the specified PC value to occur, and if the ERROR OVERRIDE signal is low, then

the error is injected. This means that an error will be injected prematurely if a TMR

SRP needs to be created on the same PC value at which an error needs to be injected.

The error injector will identify that the current PC value matches the user-specified

value and will inject an error a few clock cycles before the TMR Voter has determined

a SRP needs to be made and raises the ERROR OVERRIDE signal. In this edge case

the error should be injected at that PC value, but only after a SRP has been created

and processing of program instructions resumes. To exhibit expected behavior in

this edge case, the error injector was modified to have a few clock cycles of internal

delay before determining if an error needs to be injected. The internal delay is long

enough to allow for the ERROR OVERRIDE signal to be raised and received by the

error injector, should the system need to perform TMR SRP creation or TMR error

recovery. These modifications to the error injector were required to realize specific

error scenarios for the AHR MIPS architecture during hardware testing.

88

3.3.5.3 Summary of AHR MIPS Architecture Modifications

The AHR controller and error injector modules were modified to produce repeat-

able behavior in hardware and to realize specific error scenarios required for system

verification. The original AHR controller is the component design that should be used

on-orbit as part of a space system. However, the previous controller design required

the modifications described in Section 3.3.5.1 to gather hardware data on the average

runtime of AHR instruction sets. The original error injector component design did

not produce the expected behavior in the edge case described in Section 3.3.5.2, and

thus required modification to realize that scenario in hardware.

3.3.6 Finalized Design of AHR MIPS Architecture

Figure 6 below shows the final design of the AHR MIPS architecture which was

implemented in hardware using two Xilinx Spartan 7 SP701 - Development Boards.

This design incorporates the original AHR MIPS design, the four communication

modules, and the revisions made to the AHR controller and error injector.

89

Figure 6. AHR MIPS Hardware Design

3.4 Implementation of AHR MIPS on Xilinx FPGAs

Hardware verification of the SP701 AHR MIPS hardware design described in

Section 3.3 requires the following:

1. AHR MIPS can be implemented in hardware and operates as designed and

verified through simulations.

2. Runtime performance of AHR MIPS in hardware is measurable and matches a

calculated prediction.

The runtime performance of the original AHR MIPS design was calculated us-

ing measurements of the time it took to process MIPS instructions and architecture

90

specific processes. This research collected the timing measurements of all necessary

operations using Xilinx Vivado simulations. This research applied the same method-

ology used by Hamilton in [20] to measure the MIPS instructions and architecture

specific processes. The methodology employed by Hamilton was described in Ch. II

Sections 2.6.4.2 and 2.6.5.4. Section 3.4.2 provides detailed information on what op-

erations were measured, how they were measured, and how equations were made to

predict the runtime of those operations at different communication baud rates. These

operation timing equations were required to create the program runtime equations

that were used to predict the hardware program runtimes.

Additional modifications were made to the AHR MIPS architecture to correctly

measure program runtimes using an oscilloscope. Section 3.5 describes the modifica-

tions that were made to AHR MIPS, as well as the methodology used to experimen-

tally measure the runtimes of programs executed on TMR, TSR, and AHR MIPS

under various operational conditions.

3.4.1 Instruction Set/Program Generation

The architecture specific programs (TMR, TSR, and AHR) used for simulation

and hardware testing were generated in the same way as discussed in Ch. II Section

2.6.2. The same MATLAB scripts and code used in [20] were used to generate pro-

grams that remain compatible with the various MIPS architectures. The instruction

sets were randomly generated while adhering to the following constraints:

1. Min & Max Number of Program Instructions - 100/150

2. Number of Program Loops - 3

3. TSR SRP Creation Points - [-1, -2, -3]

4. Number of Instructions before Generating TMR SRPs - 40

91

5. TMR to TSR Transition Instruction Count - 60

This research focuses on verifying that the AHR MIPS architecture can function

in hardware, that the real-world program runtimes can be accurately calculated,

and that the overall behaviors of each MIPS architecture match what was found in

the previous research [20]. For this reason, the number of program loops was set

to 3 to allow for PROGRAM DONE signals to be generated in reasonable time in

both simulation and hardware. The previous AHR MIPS architecture was designed

with the AHR MIPS processor directly connected to memory. In the new design

the communication modules were required to facilitate inter-board communication

between the processor and memory. These communication modules increased the

runtime of a program significantly, and therefore all instruction set parameters were

reduced to make verification of the architecture simpler.

100 instruction sets were randomly generated using the constraints previously

listed and 20 were randomly selected for functional testing in hardware. A sub-

set of the 20 sets were selected for functional verification using Vivado simulations.

The subset included the shortest program, longest program, and two programs with

lengths in-between those two extremes. Each instruction set in the subset was sim-

ulated for an entire program run and the simulated runtimes were compared against

the predicted/calculated runtimes produced by the program runtime equations. This

subset was selected with the intent to exercise the extremes of the timing equations in

MATLAB and create edge case scenarios that could be used to either correct or refine

those timing equations. The selected instruction subset was used in this way to build

confidence that all the other instruction set runtimes across all MIPS architectures

would be correctly calculated.

92

3.4.2 AHR MIPS Timing Calculations

The timing information required to calculate the runtime of an AHR instruction

set is listed below:

1. TMR Mode

(a) TMR Instruction Timing

(b) TMR Non-Instruction Process Timing

2. TSR Mode

(a) TSR Instruction Timing

(b) TSR Non-Instruction Process Timing

3. AHR Non-Instruction Process Timing

The timing of a TMR or TSR instruction refers to the measured simulation time

it took for the corresponding MIPS system to process each of the 33 individual MIPS

instructions used in this research. The instruction timings were obtained by measuring

how long it took for a Basic MIPS controller FSM to progress from its base state

(state 0), process the instruction, and return to state 0. Each MIPS architecture uses

at least one Basic MIPS processor, and thus has at least one Basic MIPS controller

to use for timing measurements. All MIPS processors were simulated/configured to

operate at 50 MHz.

The timing of a TMR, TSR, or AHR non-instruction process refers to the timing

of architecture specific processes such as creating a TMR SRP, performing TSR error

recovery, and AHR MIPS transitioning from TMR to TSR mode. These are just

a few examples with a full list of the non-instruction processes listed in Table 9 in

Appendix A. The measurement points used to collect the timing for each of these

93

non-instruction processes varied depending on whether execution of that process was

controlled by a set of instructions or a component.

For example, TSR SRP creation is executed by processing a set of instructions ex-

plicitly listed in a TSR program. Therefore, TSR SRP creation timing was measured

from when the Basic MIPS controller was in state 0 for the first TSR SRP instruction,

until state 0 of the first instruction following execution of all the TSR SRP creation

instructions. An example of a non-instruction process that is dictated by a compo-

nent is TMR MIPS Type B Error Recovery. If a Type B error is detected, the TMR

Voter FSM will enter the corresponding error state (FSM ERR1), will perform the

appropriate error recovery, and will return to its base state. Timing of TMR MIPS

Type B Error Recovery starts when the TMR Voter is in state FSM ERR1, and ends

at state 0 of the Basic MIPS controller at the first program instruction following the

successful reload of all three Basic MIPS processors.

The new AHR MIPS architecture developed in this research had timing measure-

ments for instructions and non-instruction processes that were much different than

what was measured previously by Hamilton in [20]. For brevity, instructions and

non-instruction processes will be referred to collectively as “operations” for the re-

mainder of this section. The difference in timing measurements was caused by the

communication modules implemented in the new AHR MIPS architecture. Each of

the communication modules used a UART TX and RX component and because the

UART protocol is used, the new timings measured were much higher than what was

previously seen. The timings collected for the new AHR MIPS architecture also scale

with the baud rate at which the UART modules operate. The baud rate of each

UART module was set by specifying the number of clock cycles, or counts that pass

between UART bit-to-bit transmissions. For all simulations this count was set to a

simulation rate of 10, where the MIPS processors were simulated to operate at 50

94

MHz. A simulation rate of 10 was selected to allow the various MIPS architectures

to simulate within reasonable time.

The goal of collecting the timing for all operations was to build timing equations

that could be used to calculate the runtime of any program on any MIPS architecture.

Since the timing of operations are affected by the UART baud rate, it was necessary to

further inspect the timing of each process and mathematically define which portions

were affected by a baud rate change. The portion of the overall time of an operation

that scales with the baud rate is referred to as the variable delay. The portion of the

overall time of an operation that does not scale with the baud rate is referred to as

the fixed delay.

The general formula used to determine the timing of any operation is given by

Equation 9, where TC is the total time of an operation while the communication mod-

ules are operating at count C, FDT represents the total fixed delay of that operation,

and VDTC represents the total variable delay of that operation at count C.

TC = FDT + VDTC (9)

At the simulation rate where C = 10, FDT was found by subtracting the measured

VDTC from TC . The VDTC was obtained by first measuring the time it took for a single

byte of information to be sent from one UART TXmodule to the corresponding UART

RX module, this process is hereafter referred to as a UART transaction. The time it

took to complete a single UART transaction was then multiplied by the total number

of UART transactions that occurred during a given operation to determine the total

VDTC . Once VDTC was found FDT could be calculated. An illustrative example of this

process to measure the delays and determine the timing equation for that process is

given below.

Example: A TSR MIPS architecture was simulated and processed a set of in-

95

structions, while operating with C = 10. To determine the timing equation for a

basic instruction, the total time was measured using the Basic MIPS controller, as

described earlier. TC for a basic instruction at C = 10 was found to be:

T10 = 33.02µs (10)

The simulation was inspected and 16 UART transactions occurred to process that

instruction. The time it took for one UART transaction (UTran) was found to be:

UTran = 1.9µs (11)

Equation 9 can now be used to determine FDT using TC , UTran, and the number

of UART transactions that occurred.

TC = FDT + VDTC

(33.02µs) = FDT + [(16)(1.9µs)]

FDT = 33.02µs− [(16)(1.9µs)]

FDT = 33.02µs− 30.4µs

FDT = 2.62µs

(12)

In this example, FDT = 2.62µs and VDTC = 30.4µs as shown in Equation 12.

The process described in the example was used to determine FDT and VDTC for

all operations at the simulation rate C = 10. Once all fixed and variable delays were

calculated, Equation 13 was created to calculate/predict the timing of any operation

at higher C values.

TC = FDT + (C
10
)VD10 (13)

Equation 13 expands the VDTC term of Equation 9 to define the variable delay

96

contributed by processing an operation at count C. Since the simulation count value

is C = 10, all calculated variable delay values must be modified with respect to that

simulation value. VD10 represents the measured variable delay of that operation at

C = 10. This simulation variable delay, VD10, is then modified by C
10

to return the total

variable delay of an operation at a new C value. The denominator of the modifier is

10, because the simulation UART count value is C = 10. This modifier was intended

to easily calculate VDTC and thus TC at higher C values, but it was discovered that

the timing values calculated using Equation 13 differed from simulation at higher C

values. Equation 13 was used to calculate operation timings at C = 12 and C = 14,

and these calculations did not match what was simulated at those C values. Using

those calculated timings, the error growth as C increased was found and indicated

that an additional variable delay term was necessary to account for variable delay

being added to the system at higher C that was not taken into account by Equation

13.

Equation 14 was created to correctly calculate the TC of any operation at any

C value, and includes a third term that accounts for the additional variable delay

not included in the second term of Equation 13. The additional variable delay term

was determined to be dependent upon the number of UART transactions that an

operation performed. Specifically, it was found that for every 16 UART transactions

an additional (C−10
10

) of delay was added. Basic instructions and Branch instructions

each perform 16 UART transactions, while LW/SW and all non-instruction processes

perform 32 or more UART transactions. The (n
16
) modifier in the third term required

that the number of UART transactions, n, for every operation be counted.

TC = FDT + [(C
10
)VD10 + (n

16
)(C−10

10
)] (14)

Equation 14 was used to calculate TC for operations at higher C values and was

97

found to match simulations of those processes.

In total, timing information was collected and used to create timing equations for

all 33 instructions in the reduced-MIPS set used in this research and for 10 architec-

ture specific non-instruction processes.

3.5 Hardware Testing and Data Collection

Hardware testing was performed to both experimentally verify that the AHR

MIPS architecture was operating as designed, and to demonstrate that the program

runtimes matched what was calculated using timing equations in MATLAB. Demon-

strating that the program runtimes in hardware matched calculations would show

that the performance of the new AHR MIPS architecture is predictable in hardware.

The runtime of any program executed by the AHR MIPS architecture in hardware

was measured from the rising edge of a PROGRAM DONE signal until the rising

edge of the next PROGRAM DONE signal. In this research the PROGRAM DONE

signal was measured at the input of the AHR MIPS processor. Despite measuring off

the AHR MIPS processor, the PROGRAM DONE signal is an output of the memory

module. Memory keeps the PROGRAM DONE signal low when MIPS accesses mem-

ory locations within the bounds of the program and sets the signal high when MIPS

attempts to access a memory location outside the program bounds. The PROGRAM

DONE signal was easily inspected using the Vivado simulation environment, but to

measure the PROGRAM DONE signal input to the MIPS processor in hardware

required additional modifications to the AHR MIPS hardware design.

3.5.1 Modifications to AHR MIPS for Hardware Measurements

The PROGRAMDONE signal is transmitted from memory to AHRMIPS through

the Return Path of the communication network described in Section 3.3.4. To fa-

98

cilitate hardware measurements, an additional DONE signal trace was added that

branched off from the PROGRAM DONE signal output by MIBI to the MIPS pro-

cessor. This DONE signal trace was routed to one of the PMOD pins available on

the SP701 Spartan 7 development board. Since two Spartan 7 boards are used, the

board that contained the processor also contained the MIBI module to ensure that the

DONE signal was measured at the same time as it was presented to the MIPS proces-

sor. However, before reaching a PMOD pin the DONE signal needed to be modified

to produce a signal that was stable and easily measurable by an oscilloscope.

In the AHR MIPS architecture, the PROGRAM DONE signal is only set high

for a few clock cycles before returning to a low value. The amount of time a PRO-

GRAM DONE signal is set high is marginal compared to the rest of the program

runtime. The oscilloscope used in this research can measure with high-fidelity at a

small time scale, but loses fidelity as the time scale of measurement increases. This

fidelity scaling occurs because the oscilloscope is limited by the amount of RAM it

can use to store measured data. This limitation required that a modified DONE

signal be created that could be measured, but did not modify the behavior of the

internally generated PROGRAM DONE signal. A modified DONE signal that could

be measured was created using a new hardware component called the LED oscillator.

The LED oscillator accepts the DONE signal as input and outputs a modified version

of the DONE signal to both a PMOD pin and LED on the SP701 development board.

The LED oscillator acts as a simple toggle whose output switches between high and

low when a rising edge of the incoming DONE signal is detected. The output of

the LED oscillator is a signal that can be more easily detected and measured by the

oscilloscope to determine program runtimes. The AHR MIPS hardware design could

be physically implemented after making the previously described modifications, thus

enabling collection of runtime data.

99

3.5.2 Architectures & Operational Modes Calculated and Measured

Verification of the new AHR MIPS architecture required that the calculated pro-

gram runtimes for all versions of the MIPS architecture, in each unique operational

mode, be shown to match the times measured in hardware. Table 5 shows all the

MIPS architectures and their respective operational modes whose program runtimes

were measured in hardware.

Table 5. Architectures and Operational Modes Measured in Hardware

MIPS Architecture Operational Mode

TMR No Error (NE)

Error A

Error B - Best

Error B - Worst

TSR No Error (NE)

Best Single Error

Worst Single Error

AHR No Error (NE)

TMR Mode - Error A - Early

TMR Mode - Error A - Late

TMR Mode - Error B - Best Early

TMR Mode - Error B - Best Late

TMR Mode - Error B - Worst Early

TMR Mode - Error B - Worst Late

TSR Mode - Best Single Error

TSR Mode - Worst Single Error

100

Each operational mode shown in Table 5 was caused by injecting zero, one, or two

errors using the error injector discussed in Section 3.3.5.2.

3.5.2.1 TMR Operational Modes/Error Scenarios

The error free operation (EF) of TMR MIPS was expected to produce the fastest

overall program runtimes. The timing equations used to calculate the error free

runtime of a given TMR program were Equations 1, 2, and 3, presented in Ch. II

Section 2.6.4.2.

The first meaningful operational mode, or error scenario, of the basic TMR MIPS

architecture occurred when a single error was injected during program execution. A

single error is referred to as a Type A error. A Type A error results in a minimal

impact to the program runtime. This is because a single error in one of the three

Basic MIPS processors can be detected and corrected by the TMR Voter. The TMR

Voter will select the correct result produced by the other two processors and use those

processors to overwrite and correct the processor that produced an error. Figure 7

below generalizes the runtime of a TMR program from start to end, and shows that

a Type A error can be corrected with minimal impact to the runtime of a program,

where the red “X” indicates that an error was detected in Basic MIPS processor 1

and the green circles indicate that MIPS 0 & 2 were in agreement when the error was

detected. The blue arrows indicate the error recovery operation that occurred and

provides insight into how that error recovery process added to the program runtime,

where in the case of a Type A error, the runtime was not noticeably affected. This

error was produced in hardware across all selected instruction sets, by injecting a

single error at any point during program execution.

101

Figure 7. TMR MIPS Type A Error Scenario [20]

The equation used to calculate the runtime of any TMR MIPS program that

experienced a Type A error is given by Equation 15 [20], where TTMR MIPS is the

error free runtime of the TMR program that is calculated using Equation 1, TTMR ttdA

is the time it takes the TMRVoter to detect that a single error has occurred, TTMR recA

is the time it takes to perform TMR Type A error recovery, and TTMR retA is the time

it takes the architecture to resume program execution after completing the Type A

error recovery process. The last three terms were measured in simulation and general

timing equations were made for them as described in Section 3.4.2.

TTMR ErrA = TTMR MIPS + TTMR ttdA + TTMR recA + TTMR retA (15)

The remaining error scenarios tested for the TMR MIPS architecture occurred

when two simultaneous errors were injected into separate processors during program

execution. This type of error is referred to as a Type B error. A Type B error results

in a larger impact on program runtime and the magnitude of that impact depends

on when the errors are detected. Recovery from a Type B error always requires that

the processors revert to a previous state held by a SRP. The best-case Type B error

occurs soon after a SRP has been created, because only a few instructions will need

to be re-processed after reverting to that SRP. The worst-case Type B error occurs

102

near the end of SRP creation and creates a scenario where the maximum number of

instructions need to be re-processed. The worst-case Type B error requires that the

oldest/inactive SRP be loaded, and that all instructions up-to creation of the SRP

where the error was detected be re-processed.

Figure 8 below shows these two Type B error scenarios and how they can affect

program runtime.

Figure 8. TMR MIPS Type B Error Scenarios [20]

The equation used to calculate the runtime of any TMR MIPS program that

experienced a Type B Best error is given by Equation 16 [20], where TTMR ttdB is the

time it takes the TMR Voter to detect that a Type B error has occurred, TTMR recB

is the time it takes to perform TMR Type B error recovery, and TTMR retB Best is the

time it takes the architecture to resume program execution after completing the Type

B error recovery process. TTMR ttdB and TTMR recB were measured in simulation and

general timing equations were made for them as described in Section 3.4.2.

TTMR ErrBBest = TTMR MIPS + TTMR ttdB + TTMR recB + TTMR retB Best (16)

103

TTMR retB Best in Equation 16 is calculated using the following process:

1. Locate every point in the TMR program at which a SRP is created, called a

Save Index (SI)

2. Calculate the time between a SI and the nearest SW that comes after that SI

3. Repeat Step 2 for all SI’s in the program

4. Select the minimum time between SI and SW as TTMR retB Best

The equations used to calculate TTMR retB Best were developed by Hamilton in [20]

and were not modified for this research. Equation 39 in Ch. 5 Section 5.4.1.1 in [20]

was specifically used to calculate TTMR retB Best.

The equation used to calculate the runtime of any TMR MIPS program that ex-

perienced a Type B Worst error is given by Equation 17 [20], where TTMR SRP Err

is the time it takes the TMR Voter to detect an error while writing the last regis-

ter of the MIPS processors to memory during the TMR SRP creation process, and

TTMR retB Worst is the time it takes the architecture to resume program execution

after completing the Type B error recovery process. TTMR SRP Err was measured in

simulation and the general timing equation for it was made as described in Section

3.4.2.

TTMR ErrBWorst = TTMR MIPS + TTMR SRP Err + TTMR recB + TTMR retB Worst

(17)

TTMR retB Worst in Equation 17 is calculated using the following process:

1. Calculate the time between one SI and the next SI

2. Repeat Step 1 until all times between consecutive SI’s have been calculated

104

3. Select the maximum time between consecutive SI’s as TTMR retB Worst

The equations used to calculate TTMR retB Worst were developed by Hamilton in

[20] and were not modified for this research. Equation 43 in Ch. 5 Section 5.4.1.1 in

[20] was specifically used to calculate TTMR retB Worst.

The MATLAB code modified/used to calculate program runtimes also returned

both the loop count and instruction at which a TMR Type B error should be detected

to realize both the best and worst-cases in hardware.

It was predicted that the runtime speeds of all TMR operational modes would be

from fastest to slowest: EF TMR, TMR Type A error, TMR Type B Best error, and

TMR Type B Worst error. Relative to the other architectures and operational modes,

EF TMRMIPS and all TMR MIPS error scenarios were expected to process programs

the fastest because TMR MIPS only processes TMR programs, whereas AHR MIPS

must process a portion of the program in TSR mode using TSR instructions and TSR

MIPS must process the entire program using TSR instructions.

3.5.2.2 TSR Operational Modes/Error Scenarios

The error free operation of TSR MIPS was expected to produce one of the slowest

overall program runtimes. The timing equations used to calculate the error free

runtime of a given TSR program were Equations 4 & 5, presented in Ch. II Section

2.6.4.2.

The TSR MIPS architecture only uses SRPs to correct any detected errors during

program runtime and cannot mask a single error like the TMRMIPS architecture can.

Any error detected in a TSR MIPS architecture will increase the program runtime.

The first error scenario tested for the TSR MIPS architecture was the Best-case

single error. The Best-case TSR error is an error that minimizes the amount of

instruction re-processing that must be performed after loading a SRP. Thus, the

105

Best-case error is injected before and detected by the first BNE-SW pair of a TSR

program, either after program start or after a TSR SRP has been made. Since EDDI-

TSR is specifically implemented for standalone TSR MIPS and AHR MIPS, errors

are detected in register pairs using a BNE instruction processed before executing a

SW to write the value in the register pair to memory.

The Worst-case TSR error occurs while writing the last user register to memory

during SRP creation. Since TSR SRP creation occurs at the end of a TSR loop,

this Worst-case error scenario guarantees that one or more program loops must be

re-processed, thus drastically increasing the program runtime. Both the Best and

Worst-case TSR error scenarios are depicted in Figure 9 below.

Figure 9. TSR MIPS Error Scenarios [20]

The instruction sets used for hardware testing in this research only performed three

program loops, therefore the Worst-case TSR error was realized in hardware across

all sets by injecting an error before creation of SRP1. The number of instructions

in a TSR program to create SRP1 is slightly more than the number of instructions

to create SRP0, thus SRP1 always takes longer to create than SRP0. The Best-case

error was produced in hardware for each instruction set by injecting an error before

106

the first BNE-SW pair.

The equation used to calculate the runtime of any TSR MIPS program that expe-

rienced a Best-case error is given by Equation 18, where TTSR MIPS is the error free

runtime of the TSR program that is calculated using Equation 4, TTSR Rec is the time

it takes TSR error recovery to complete, TTSR ret is the time it takes to re-process

instructions from the loaded SRP up-to the point at which the error was detected,

TTSR SRP0 is the time it takes to create SRP0, TTSR SRP1 is the time it takes to create

SRP1, and TTSR skip is the time it takes to process the six instructions that are used

to determine when the three SRPs are made. TTSR Rec, TTSR SRP0, TTSR SRP1, and

TTSR skip were measured in simulation and general timing equations were made for

them as described in Section 3.4.2.

TTSR Best = TTSR MIPS + TTSR Rec + TTSR ret + TTSR SRP0 + · · ·

2 · TTSR SRP1 − TTSR skip

(18)

TTSR ret in Equation 18 is calculated using Equation 19 [20], where NTSR is the

total number of instructions in one TSR program loop, tITSR n
is the amount of time

it takes to process instruction number n of the program, nTSR init is the number of

instructions that are used to initialize a TSR program (4 total), and SWTSR is an

array that contains the index of all SW instructions in the TSR program.

TTSR ret =
∑NTSR

n=NTSR−3 tITSR n
+
∑SWTSR(1)

n=nTSR init+1 tITSR n
(19)

The equation used to calculate the runtime of any TSR MIPS program that ex-

perienced a Worst-case error is given by Equation 20, where TTSR Loop is the time

required to complete a single TSR MIPS program loop as previously given by Equa-

tion 2. TTSR SRP1 Err is the time it takes to perform creation of SRP1 up-to the last

point at which an error can be detected, which is while writing the last user registers

107

to memory. For the short programs used in this research, the Worst-case error is

always realized by detecting an error during the first program loop while creating

SRP1. Although SRP1 is created during the first and last program loops, the first

loop processes more instructions because none of the instructions used to determine if

a SRP should be made are skipped. Injecting an error during the first loop while cre-

ating SRP1 increases the total program length by a full TTSR Loop. TTSR SRP1 Err was

measured in simulation and a general timing equation was made for it as described

in Section 3.4.2.

TTSR Worst = TTSR MIPS + TTSR Rec + TTSR Loop + · · ·

TTSR SRP1 Err + TTSR SRP0 + 2 · TTSR SRP1 − TTSR skip

(20)

It was predicted that the runtime speeds of all TSR operational modes would be

from fastest to slowest: EF TSR, TSR Best-case error, and TSR Worst-case error.

Relative to the other architectures and operational modes, EF TSR MIPS and both

error scenarios of TSR MIPS were expected to process programs the slowest because

TSR MIPS only processes TSR programs, whereas AHR MIPS processes a portion

of the program in TMR mode using TMR instructions and TMR MIPS processes the

entire program using TMR instructions.

3.5.2.3 AHR Operational Modes/Error Scenarios

In this research, the AHRMIPS architecture always processed an AHR instruction

set in TMR mode first, transitioned to TSR mode if possible, and completed the

program in TSR mode. None of the AHR MIPS error scenarios listed earlier in Table

5 result in AHR MIPS transitioning from TSR mode back to TMR mode, and thus

none of the timing calculations take that process into consideration. The tested AHR

MIPS error scenarios were established by Hamilton in [20] and this research is focused

108

on showing that every error scenario previously simulated can be realized in hardware,

thus no new error scenarios were created and tested.

The error free operation of AHR MIPS was expected to have program runtimes

that fell between TSR MIPS and TMR MIPS. The timing equations used to calculate

the error free runtime of a given AHR program are given in Equation 21, which is

a modified version of Equation 8. In Equation 21, nASRP is the number of TMR

SRPs made during the AHR program, tTMR→TSR is the time it takes AHR MIPS to

complete the transition from TMR to TSR mode, Ploops is the number of program

loops that complete before transitioning, TTSR BrI is the time it takes to process a

single TSR branch instruction, nSRP is the number of TMR SRPs created if AHR

does not transition to TSR mode, and TTMR BrI is the time it takes to process a

single TMR branch instruction.

Ploops was calculated using Equation 6 and nASRP was calculated using Equation

7 where nASRP = nCSRP . Both tTMR→TSR and TTSR BrI were measured in simulation

and general timing equations were made for these operations as described in Section

3.4.2. The value of nSRP was calculated using Equation 3.

The instruction sets generated for this research only perform a total of three

program loops for the reasons discussed in Section 3.4.1. As a result, most of the AHR

timing equations that will be discussed use if statements to calculate the portion of

time AHR MIPS spent in TSR mode. These if statements are dependent upon the

calculated number of loops that complete before transitioning to TSR mode. The

total program runtime of an EF AHR MIPS program (TEF AHR MIPS) is calculated

by adding the amount of time the architecture spent in TMR mode and TSR mode,

represented by tAHR TMR and tAHR TSR respectively.

109

tAHR TMR = tTMR init + Ploops · TTMR loop + · · ·

TTMR SRP · nASRP + tTMR→TSR

if Ploops = 0

tAHR TSR = (nloops − Ploops) · tTSR loop + TTSR SRP0 + · · ·

2 · TTSR SRP1 + TTSR BrI − TTSR skip

elseif Ploops = 1

tAHR TSR = (nloops − Ploops) · tTSR loop + TTSR SRP0 + · · ·

TTSR SRP1 + TTSR BrI − TTSR skip

elseif Ploops = 2

tAHR TSR = (nloops − Ploops) · tTSR loop + TTSR SRP1 + · · ·

TTSR BrI − 2
3
TTSR skip

else

tAHR TSR = 0

tAHR TMR = tTMR init + nloops · TTMR loop + · · ·

TTMR SRP · (nSRP − 1) + TTMR BrI

end

TEF AHR MIPS = tAHR TMR + tAHR TSR

(21)

There are multiple error scenarios that can occur while AHR MIPS operates in

TMR mode. As seen in Table 5, the number of error scenarios possible for AHR

MIPS while operating in TMR mode is greater than the number standalone TMR

MIPS can experience. There are more error scenarios for AHR MIPS because TMR

errors can either have a minor or significant effect on runtime performance depending

on where they are detected. In AHR MIPS the TMR to TSR transition point is

dependent upon the number of TMR instructions that are processed without error,

so the location at which a TMR error is detected will determine how much of the

110

program is completed in TMR mode. For AHR MIPS, each TMR Type A and B error

scenario can be expanded into error scenarios that are labeled as Early or Late. Early

errors are the AHR TMR mode errors that are detected early and have a minimal

effect on the TMR to TSR transition point. Late errors are the AHR TMR errors

that are detected late and have a significant effect on the TMR to TSR transition

point.

AHR TMR Mode Type A Errors: An AHR TMR mode Type A - Early error

is one that is detected at the first SW of the program. An AHR TMR mode Type A

- Late error is one that is detected at the last SW before the TMR to TSR transition

point occurs. AHR TMR Type A errors are masked due to the use of a TMR voter

and do not initiate a system reload from a SRP. AHR TMR Type A errors are quickly

corrected, but cause the TMR to TSR transition point to occur later while executing

an AHR program. Since each Type A error causes the TMR to TSR transition point

to occur later, more of the program is performed in TMR mode. As a result, both

Type A errors cause the runtime of an AHR MIPS program to be faster than if it

was processed without error. Figures 10 & 11 below depict what each AHR Type A

error variation looks like as applied to a generic AHR program.

Figure 10. AHR MIPS TMR Type A Error - Early [20]

111

Figure 11. AHR MIPS TMR Type A Error - Late [20]

The process used to calculate the runtime of any AHR MIPS program that experi-

enced a TMR Type A - Early error is given by Equation 22 [20], where Ploops TMR A Early

is the number of program loops that occur before transitioning from TMR to TSR

caused by a Type A error as determined by Equation 23 [20], and nASRP A Early is

the number of TMR SRPs created by AHR MIPS before the transition occurs which

is calculated using Equation 24 [20].

The if/else process presented in Equation 22 was written to appropriately calculate

the runtime for any of the instruction sets generated for this research, by consider-

ing how the calculated Ploops TMR A Early value affects the program loop distribution

between the TMR and TSR modes. The variable tnom AE represents the nominal

AHR - TMR mode operation time, or specifically represents the runtime of the TMR

program that executes outside of the processes that correct the Type A error. The

variable terr AE represents the time spent correcting the Type A error. The total

runtime TATMR A Early is calculated by adding the time AHR MIPS spent in both

112

TMR and TSR mode, tATMRAE TMR and tATMRAE TSR respectively.

tnom AE = tTMR init + Ploops TMR A Early · TTMR loop + · · ·

TTMR SRP · nASRP A Early

terr AE = TTMR ttdA + TTMR recA + TTMR retA

if Ploops TMR A Early = 0

tATMRAE TMR = tnom AE + terr AE + tTMR→TSR

tATMRAE TSR = (nloops − Ploops TMR A Early) · TTSR loop + · · ·

TTSR SRP0 + 2 · TTSR SRP1 + TTSR BrI − TTSR skip

elseif Ploops TMR A Early = 1

tATMRAE TMR = tnom AE + terr AE + tTMR→TSR

tATMRAE TSR = (nloops − Ploops TMR A Early) · TTSR loop + · · ·

TTSR SRP0 + TTSR SRP1 + TTSR BrI − TTSR skip

elseif Ploops TMR A Early = 2

tATMRAE TMR = tnom AE + terr AE + tTMR→TSR

tATMRAE TSR = (nloops − Ploops TMR A Early) · TTSR loop + · · ·

TTSR SRP1 + TTSR BrI − 2
3
TTSR skip

else

tATMRAE TMR = tTMR init + nloops · TTMR loop + · · ·

TTMR SRP · (nSRP − 1) + terr AE + TTMR BrI

tATMRAE TSR = 0

end

TATMR A Early = tATMRAE TMR + tATMRAE TSR

(22)

Equation 23 calculates Ploops TMR A Early in nearly the same way as error free

Ploops in Equation 6. The Ploops TMR A Early calculation must consider that additional

instructions equivalent to the number of instructions up-to the first SW of the program

113

(SWTMR(1)) must be processed before transitioning to TSR mode.

Ploops TMR A Early =
⌈
SWTMR(1)+ntransition−nTMR init

NTMR

⌉
(23)

Equation 24 uses the Ploops TMR A Early value, but is calculated in the same manner

as described for nCSRP in Equation 7.

nASRP A Early =
⌊
Ploops TMR A Early ·NTMR+nTMR init

nsave

⌋
(24)

The process used to calculate the runtime of any AHR MIPS program that experi-

enced a TMR Type A - Late error is given by Equation 25 [20]. This process is nearly

identical to what was presented in Equation 22, but differs in the way Ploops TMR A Late

is calculated using Equation 26 [20]. The new transition point Ploops TMR A Late is

found by considering that a TMR Type A - Late error is detected at the last SW

of the TMR program (SWTMR(length(SWTMR))) before transitioning, whereas the

Best error occurred when the error was detected at the first TMR SW. Equation 27

[20] calculates the number of TMR SRPs that occur before the new transition point

caused by a late error. The total runtime TATMR A Late is calculated by adding the

time AHR MIPS spent in both TMR and TSR mode, tATMRAL TMR and tATMRAL TSR

respectively.

114

tnom AL = tTMR init + Ploops TMR A Late · TTMR loop + · · ·

TTMR SRP · nCSRP A Late

terr AL = TTMR ttdA + TTMR recA + TTMR retA

if Ploops TMR A Late = 0

tATMRAL TMR = tnom AE + terr AE + tTMR→TSR

tATMRAL TSR = (nloops − Ploops TMR A Late) · TTSR loop + · · ·

TTSR SRP0 + 2 · TTSR SRP1 + TTSR BrI − TTSR skip

elseif Ploops TMR A Late = 1

tATMRAL TMR = tnom AE + terr AE + tTMR→TSR

tATMRAL TSR = (nloops − Ploops TMR A Late) · TTSR loop + · · ·

TTSR SRP0 + TTSR SRP1 + TTSR BrI − TTSR skip

elseif Ploops TMR A Late = 2

tATMRAL TMR = tnom AE + terr AE + tTMR→TSR

tATMRAL TSR = (nloops − Ploops TMR A Late) · TTSR loop + · · ·

TTSR SRP1 + TTSR BrI − 2
3
TTSR skip

else

tATMRAL TMR = tTMR init + nloops · TTMR loop + · · ·

TTMR SRP · (nSRP − 1) + terr AE + TTMR BrI

tATMRAL TSR = 0

end

TATMR A Late = tATMRAL TMR + tATMRAL TSR

(25)

Ploops TMR A Late =
⌈
SWTMR(length(SWTMR))+ntransition−nTMR init

NTMR

⌉
(26)

nCSRP A Late =
⌊
Ploops TMR A Early ·NTMR+nTMR init

nsave

⌋
(27)

115

The AHR Type A - Early error was produced in hardware by injecting an error

and detecting it at the first SW of each instruction set. The AHR Type A - Late error

was produced in hardware using the MATLAB code to return both the loop count

and instruction at which to inject an error, so that it was detected by the last SW in

the TMR portion of the AHR program before the TMR to TSR transition occurred.

It was predicted that AHR MIPS experiencing an AHR Type A - Late error would

process a program faster than AHR Type A - Early. An AHR Type A - Late error

causes AHR MIPS to transition from TMR to TSR later in the program, thus more

of the program is performed in TMR mode. An AHR Type A - Early error has a

minimal effect on the TMR to TSR transition point and thus AHR MIPS performs

more of the program in TSR mode compared to AHR Type A - Late. An AHR Type

A - Early error produces a runtime that is slightly slower than EF AHR because if

the error does not cause the architecture to perform an additional program loop in

TMR mode, then the Type A - Early runtime takes longer than EF AHR by the same

amount of time it takes to perform Type A error recovery. The predicted runtime

speeds of the AHR MIPS Type A errors with respect to EF AHR were from fastest

to slowest: AHR Type A - Late, EF AHR, and AHR Type A - Early.

If an AHR Type A - Early or Late error occurs and the program is short enough,

AHR MIPS may not be able to transition from TMR to TSR mode. If AHR MIPS

does not transition to TSR mode due to a Type A Early or Late error, then AHR

MIPS processes the entire program in TMR mode using the TMR instructions. The

corresponding Type A - Early & Late runtimes are not only equivalent to each other,

but nearly equivalent to the runtime of TMR MIPS with a Type A error because

each architecture would process the program using TMR instructions and perform

the same error recovery. If the programs are too short to tolerate an AHR Type A

error and AHR MIPS cannot transition to TSR mode, then the predicted runtime

116

speeds of the AHR MIPS Type A errors with respect to EF AHR were from fastest

to slowest: AHR Type A - Early & Late and then EF AHR.

AHR TMR Mode Type B Best Errors: An AHR TMR mode Type B Best -

Early error occurs when the errors are detected at the first SW in the TMR portion

of an AHR program. An AHR Type B Best - Late error occurs when the errors are

detected at the first SW that follows the creation of a TMR SRP before the original

TMR to TSR transition point. When multiple TMR SRPs are created in an AHR

program, the Best - Late error location is the one which adds the least time to the

overall AHR program runtime. The AHR Type B Best - Early error scenario causes

the runtime of the program to increase when compared to the error free scenario, but

does not change the location of the TMR to TSR point. The AHR Type B Best -

Late error scenario causes the TMR to TSR point to occur later and causes more of

the program to be processed in TMR mode, thus producing runtimes faster than the

error free scenario. Figures 12 & 13 below depict what each AHR Type B Best error

variation looks like.

Figure 12. AHR MIPS TMR Type B Error Best - Early [20]

117

Figure 13. AHR MIPS TMR Type B Error Best - Late [20]

The process used to calculate the runtime of any AHR MIPS program that expe-

rienced a TMR Type B Best - Early error is given by Equations 28, 29, and 30 [20].

Equation 29 and Equation 30 should be considered as one continuous process, but

were split into two in order to better fit this document.

Equation 28 is used to determine the new TMR to TSR transition point

(Ploops TMR B Best) due to a Type B error detected at a SW for the nth save index

(SIATMR(n)) in TMR mode. The variable SIATMR is an array that contains the

instruction indices where TMR SRPs are created before the original TMR to TSR

transition point was expected to occur [20]. The variable SLATMR is an array that

contains the program loop count values where the TMR SRPs are created before

transitioning to TSR mode. The variable b2 is an array containing the candidate SW

indices that should be used as error injection points to realize either the slowest or

fastest program completion times. SIATMR and SLATMR were calculated in Ch. 5

Section 5.4.1.3 of Hamilton’s dissertation using Equation 53 [20]. b2 was calculated in

Ch. 5 Section 5.4.1.3 of Hamilton’s dissertation using Equations 54, 55, and 56 [20].

Equation 28 is used to determine nASRP B Best(n), which is the new number of

TMR SRPs created due to a detected error with respect to the nth save index [20].

118

Equation 28 is also used to determine the time it takes AHR MIPS to return to the

SW at which the error was detected after recovering from the Type B error for the

nth save index, represented by the variable Tadd(n).

for n = 1 to length(b2)

Flag = 0

if SIATMR = 1

Ploops TMR B Best(n) = Ploops

else

Ploops TMR B Best(n) = · · ·⌈
SIATMR(n)+SLATMR·NTMR+ntransition−nTMR init

NTMR

⌉
end

nASRP B Best(n) =
⌊
Ploops TMR B Best(n)·NTMR+nTMR init

nsave

⌋
if SIATMR(n) ≤ SWATMR(b2(n))− 1

Tadd(n) =
∑SWATMR(b2(n))−1

m=SIATMR(n) tITMR m

elseif SIATMR(n) = SWATMR(b2(n))

Tadd(n) = 0

elseif SLATMR(n) < Ploops TMR B Best(n)

Tadd(n) =
∑nTMR init+NTMR

m=SIATMR(n) tITMR m
+
∑SWATMR(b2(n))−1

m=nTMR init+1 tITMR m

else

Tadd(n) = 0

Flag = 1

end

end

(28)

Equations 29 and 30 use the values Ploops TMR B Best, nASRP B Best, and Tadd for ev-

119

ery save index n, to calculate an array of AHR MIPS Type B Best-case error runtimes

(TATMR B Best T imes). The Flag is used to indicate whether the current save index

and SW are valid, where Flag = 1 if the SW following the save index occurs after the

new Ploops TMR B Best, and the resulting calculations should not be considered valid.

TATMR B Best T imes is calculated by adding tATMRBB TMR(n) and tATMRBB TSR(n),

which are the times AHR MIPS takes to complete the TMR and TSR portions of the

program respectively for the nth save index. The array TATMR B Best V iable T imes is a

modified version of TATMR B Best T imes used to eliminate any possibility of selecting a

Type B error runtime produced by detecting the error after the TMR to TSR transi-

tion Ploops. The AHR MIPS Type B Best - Early error runtime is found by selecting

the maximum calculated TATMR B Best T imes. The AHR MIPS Type B Best - Worst

error runtime is found by selecting the minimum calculated TATMR B Best T imes. The

indices b3 and b4 were used to determine the instruction index and loop count at

which a Type B error should be injected to realize the Best - Early and Best - Worst

runtimes in hardware respectively.

120

for n = 1 to length(b2)

if F lag = 1

tATMRBB TMR(n) = NaN

tATMRBB TSR(n) = NaN

else

tnom BB = tTMR init + Ploops TMR B Best(n) · TTMR loop + · · ·

TTMR SRP · nASRP B Best(n)

terr BB = TTMR ttdB + TTMR recB + Tadd(n)

if Ploops TMR B Best(n) = 0

tATMRBB TMR(n) = tnom BB + terr BB + tTMR→TSR

tATMRBB TSR(n) = (nloops − Ploops TMR B Best(n)) · tTSR loop + · · ·

TTSR SRP0 + 2 · TTSR SRP1 + TTSR BrI − TTSR skip

elseif Ploops TMR B Best(n) = 1

tATMRBB TMR(n) = tnom BB + terr BB + tTMR→TSR

tATMRBB TSR = (nloops − Ploops TMR B Best(n)) · tTSR loop + · · ·

TTSR SRP0 + TTSR SRP1 + TTSR BrI − TTSR skip

elseif Ploops TMR B Best(n) = 2

tATMRBB TMR(n) = tnom BB + terr BB + tTMR→TSR

tATMRBB TSR = (nloops − Ploops TMR B Best(n)) · tTSR loop + · · ·

TTSR SRP1 + TTSR BrI − 2
3
TTSR skip

else

tATMRBB TMR(n) = tTMR init + nloops · TTMR loop + · · ·

TTMR SRP · (nSRP − 1) + terr BB + TTMR BrI

tATMRBB TSR = 0

(29)

121

end

end

end

TATMR B Best T imes = TABBT = tATMRBB TMR + tATMRBB TSR

TATMR B Best V iable T imes = TABBT (1 : length(TABBT)− (3− Ploops(n)))

[TATMR B Best Early, b3] = max(TATMR B Best V iable T imes)

[TATMR B Best Late, b4] = min(TATMR B Best V iable T imes)

(30)

It was predicted that AHR MIPS experiencing an AHR Type B Best - Late error

would process a program faster than AHR Type B Best - Early. An AHR Type B Best

- Late error causes AHR MIPS to transition from TMR to TSR later in the program,

even after performing Type B error recovery, thus more of the program is performed

in TMR mode. An AHR Type B Best - Early error has no effect on the original TMR

to TSR transition point because the error is detected early enough in a program that

effectively all that occurs is that Type B error recovery is performed and the program

restarts execution. An AHR Type B Best - Early error produces a runtime that is

slower than EF AHR because if the error does not cause the architecture to perform

an additional program loop in TMR mode, then the Type B Best - Early runtime

takes longer than EF AHR by the same amount of time it takes to perform Type

B error recovery and re-process instructions up-to the point at which the error was

detected. The predicted runtime speeds of the AHR MIPS Type B errors with respect

to EF AHR were from fastest to slowest: AHR Type B Best - Late, EF AHR, and

AHR Type B Best - Early.

If an AHR Type B Best - Early or Late error occurs and the program is short

enough, AHR MIPS may not be able to transition from TMR to TSR mode. If

122

AHR MIPS does not transition to TSR mode due to a Type B Best - Early or Late

error, then AHR MIPS processes the entire program in TMR mode using the TMR

instructions. The corresponding Type B Best - Early & Late runtimes will be similar

to each other and will be nearly equivalent to the runtime of TMR MIPS with a

Type B Best error because each architecture would process the program using TMR

instructions and perform the same error recovery. Depending on the structure of the

program, the Type B Best - Late runtime may be faster than Type B Best - Early

because the Early error is always detected at the first SW of the TMR program,

but the Late error is detected at the SW that follows the creation of an SRP and

contributes the least to the overall runtime. If the programs are too short to tolerate

an AHR Type B Best error and AHR MIPS cannot transition to TSR mode, then

the predicted runtime speeds of the AHR MIPS Type B Best errors with respect to

EF AHR were from fastest to slowest: AHR Type B Best - Early or Late and then

EF AHR.

AHR TMR Mode Type B Worst Errors: Both the AHR TMR mode Type

B Worst - Early and Late scenarios require that the error is detected while writing

the loop counter during creation of a TMR SRP. An AHR Type B Worst - Early

error occurs while creating the first TMR SRP of the AHR program. An AHR Type

B Worst - Late error occurs while creating the last TMR SRP of the AHR program.

The AHR Type B Worst - Early error scenario causes the overall runtime of the AHR

program to increase by the number of instructions processed up-to the creation of the

first SRP, but does not affect the TMR to TSR transition point. The AHR Type B

Worst - Late error scenario requires that the maximum amount of TMR instructions

be re-processed and extends the TMR to TSR transition point. Figures 14 & 15

below depict what each AHR Type B Worst error variation looks like.

123

Figure 14. AHR MIPS TMR Type B Error Worst - Early [20]

Figure 15. AHR MIPS TMR Type B Error Worst - Late [20]

The process used to calculate the runtime of any AHR MIPS program that experi-

enced a TMR Type B Worst - Early error (TATMR B Worst Early) is given by Equations

31 and 32 [20], where Ploops TMR B Worst Early is the new TMR to TSR transition point

due to the detected error during creation of the first SRP, nASRP B Worst Early is the

number of TMR SRPs created before the transition, and SDTATMR is an array con-

taining the save time differences between save indices that occur during the TMR

portion of the AHR program. Equations 31 and 32 should be considered as one

process, but were split due to formatting.

124

The values held in the SDTATMR array represent the calculated runtimes be-

tween consecutive TMR SRPs and are calculated using Equation 65 in Ch. 5 Section

5.4.1.3 of Hamilton’s dissertation [20]. Ploops TMR B Worst Early is calculated using

Equation 66 in Ch. 5 Section 5.4.1.3 of Hamilton’s dissertation [20]. The value of

nASRP B Worst Early is calculated using Equation 67 in Ch. 5 Section 5.4.1.3 of Hamil-

ton’s dissertation [20].

TATMR B Worst Early is calculated by adding the time AHR MIPS spent in TMR

mode and TSR mode due to a Type BWorst - Early error, represented by the variables

tATMRBWE TMR and tATMRBWE TSR respectively. In Equation 31, SDTATMR(2) is

used because the Worst - Early error is detected while creating the first TMR SRP,

so the time it takes to reach the first SRP, not including the default SRP created at

program start, is the value held at SDTATMR(2). To realize a Type B Worst - Early

error in hardware, the error is always injected into the TMR registers that store the

loop counter before creating the first SRP.

tnom BWE = tTMR init + Ploops TMR B Worst Early · TTMR loop + · · ·

TTMR SRP · nASRP B Worst Early

terr BWE = TTMR SRP Err + TTMR recB

if Ploops TMR B Worst Early = 0

tATMRBWE TMR = tnom BWE + terr BWE + SDTATMR(2) + tTMR→TSR

tATMRBWE TSR = (nloops − Ploops TMR B Worst Early) · tTSR loop + · · ·

TTSR SRP0 + 2 · TTSR SRP1 + TTSR BrI − TTSR skip

elseif Ploops TMR B Worst Early = 1

tATMRBWE TMR = tnom BWE + terr BWE + SDTATMR(2) + tTMR→TSR

tATMRBWE TSR = (nloops − Ploops TMR B Worst Early) · tTSR loop + · · ·

TTSR SRP0 + TTSR SRP1 + TTSR BrI − TTSR skip

(31)

125

elseif Ploops TMR B Worst Early = 2

tATMRBWE TMR = tnom BWE + terr BWE + SDTATMR(2) + tTMR→TSR

tATMRBWE TSR = (nloops − Ploops TMR B Worst Early) · tTSR loop + · · ·

TTSR SRP1 + TTSR BrI − 2
3
TTSR skip

else

tATMRBWE TMR = tTMR init + nloops · TTMR loop + · · ·

TTMR SRP · (nSRP − 1) + terr BWE + SDTATMR(2) + TTMR BrI

tATMRBWE TSR = 0

end

TATMR B Worst Early = tATMRBWE TMR + tATMRBWE TSR

(32)

The process used to calculate the runtime of any AHR MIPS program that expe-

rienced a TMR Type B Worst - Late error (TATMR B Worst Late) is given by Equations

33 and 34 [20], where Ploops TMR B Worst Late is the new TMR to TSR transition point

due to the detected error during creation of the last SRP and nASRP B Worst Late is

the number of TMR SRPs created before the transition. Equations 33 and 34 should

be considered as one process, but were split due to formatting.

Ploops TMR B Worst Late is calculated using Equation 70 in Ch. 5 Section 5.4.1.3

of Hamilton’s dissertation [20]. The value of nASRP B Worst Early is calculated using

Equation 71 in Ch. 5 Section 5.4.1.3 of Hamilton’s dissertation [20].

TATMR B Worst Late is calculated by adding the time AHR MIPS spent in TMR

mode and TSR mode due to a Type B Worst - Late error, represented by the vari-

ables tATMRBWL TMR and tATMRBWL TSR respectively. Throughout Equation 33, the

SDTATMR array is indexed using (length(SDTATMR)− (3− Ploops(n))) to select the

calculated time between creation of the last TMR SRP and the prior SRP, while also

126

accounting for the current nth instruction set’s original TMR to TSR transition point

and the total number of loops performed. To realize a Type B Worst - Late error

in hardware, the error is always injected into the TMR registers that store the loop

counter before creating the last TMR SRP.

tnom BWL = tTMR init + Ploops TMR B Worst Late · TTMR loop + · · ·

TTMR SRP · nASRP B Worst Late

terr BWL = TTMR SRP Err + TTMR recB

if Ploops TMR B Worst Late = 0

tATMRBWL TMR = tnom BWL + terr BWL + tTMR→TSR + · · ·

SDTATMR(length(SDTATMR)− (3− Ploops(n)))

tATMRBWL TSR = (nloops − Ploops TMR B Worst Late) · tTSR loop + · · ·

TTSR SRP0 + 2 · TTSR SRP1 + TTSR BrI − TTSR skip

elseif Ploops TMR B Worst Late = 1

tATMRBWL TMR = tnom BWL + terr BWL + tTMR→TSR + · · ·

SDTATMR(length(SDTATMR)− (3− Ploops(n)))

tATMRBWL TSR = (nloops − Ploops TMR B Worst Late) · tTSR loop + · · ·

TTSR SRP0 + TTSR SRP1 + TTSR BrI − TTSR skip

elseif Ploops TMR B Worst Late = 2

tATMRBWL TMR = tnom BWL + terr BWL + tTMR→TSR + · · ·

SDTATMR(length(SDTATMR)− (3− Ploops(n)))

tATMRBWL TSR = (nloops − Ploops TMR B Worst Late) · tTSR loop + · · ·

TTSR SRP1 + TTSR BrI − 2
3
TTSR skip

(33)

127

else

tATMRBWL TMR = tTMR init + nloops · TTMR loop + · · ·

TTMR SRP · (nSRP − 1) + terr BWL + · · ·

SDTATMR(length(SDTATMR)− (3− Ploops(n))) + TTMR BrI

tATMRBWL TSR = 0

end

TATMR B Worst Late = tATMRBWL TMR + tATMRBWL TSR

(34)

It was predicted that AHR MIPS experiencing an AHR Type B Worst - Late error

would process a program faster than AHR Type B Worst - Early. An AHR Type B

Worst - Late error causes AHR MIPS to transition from TMR to TSR later in the

program, even after performing Type B error recovery and re-processing instructions

up-to creation of the SRP where the error was detected, thus more of the program is

performed in TMR mode. An AHR Type B Worst - Early error has no effect on the

original TMR to TSR transition point because the error is detected while creating the

first SRP of the program and effectively all that occurs is that Type B error recovery

is performed and the program restarts execution. An AHR Type B Worst - Early

error produces a runtime that is slower than EF AHR because if the error does not

cause the architecture to perform an additional program loop in TMR mode, then

the Type B Worst - Early runtime takes longer than EF AHR by the same amount

of time it takes to perform Type B error recovery and re-process instructions up-to

creation of the SRP where the error was detected. The predicted runtime speeds of

the AHR MIPS Type B errors with respect to EF AHR MIPS were from fastest to

slowest: AHR Type B Worst - Late, EF AHR, AHR Type B Worst - Early.

The previous predictions were made for large programs based upon the results

from the prior research [20]. For this research the programs only perform 3 loops.

New predictions are necessary to capture the performance relationship between AHR

128

Type BWorst - Early & Late for the short programs used in this research. Specifically,

if AHR MIPS can still transition from TMR to TSR mode after a Type B Worst -

Early or Late error is injected, there may be only one TMR SRP created before

transitioning and thus only one location where a Type B Worst error can be injected.

In that case, the runtimes of both AHR Type B Worst - Early & Late are equivalent

and will be slower than EF AHR MIPS.

For this research, if an AHR MIPS program is long enough to create two TMR

SRPs then both an AHR Type B - Worst Early & Late error can be realized and

will produce different results. If AHR MIPS does not transition to TSR mode due

to a Type B Worst - Late error, then AHR MIPS processes the entire program in

TMR mode using the TMR instructions. The corresponding Type B Worst - Late

runtime will be nearly equivalent to the runtime of TMR MIPS with a Type B Worst

error because both architectures would process the program using TMR instructions,

perform the same Type B error recovery, and re-process instructions up-to creation

of the SRP where the error was detected. In that case, where AHR MIPS cannot

transition from TMR to TSR mode due to a Type B - Worst Late error, the predicted

runtime speeds of the AHR MIPS Type B Worst errors with respect to EF AHR were

from fastest to slowest: AHR Type B Worst - Late, EF AHR, and AHR Type B

Worst - Early.

AHR TSR Mode Errors: After AHR MIPS transitions from TMR mode to

TSR mode, only the TSR Best and TSR Worst error scenarios can occur. The AHR

TSR Best &Worst error scenarios are realized in the same manner as was described for

TSR MIPS. While in TSR mode errors are detected using a BNE instruction executed

before a SW that writes the values in an EDDI-TSR register pair to memory.

An AHR TSR Best error occurs when an error is detected at the first BNE-SW

pair of the TSR portion of the AHR instruction set or at the first BNE-SW pair after

129

a TSR SRP is created. For the short instruction sets used in this research, whether

the error is detected at the first BNE-SW pair after TMR to TSR transition or after

a TSR SRP has been made, the effect on the runtime is the same. An AHR TSR

Worst error occurs when an error is detected either while writing the loop counter

during TSR SRP creation or at the last BNE instruction of the program during the

last program loop. The short instruction sets used in this research created a TSR

SRP every loop, therefore there was never a case where detecting an error at the last

BNE instruction of the program produced a runtime worse than detecting an error

during SRP creation.

Both AHR TSR error scenarios increase the total runtime of an AHR program.

Figures 16 & 17 below depict what each AHR TSR error variation looks like as applied

to a generic AHR program.

Figure 16. AHR MIPS TSR Error - Best [20]

130

Figure 17. AHR MIPS TSR Error - Worst [20]

The runtime of any AHR MIPS program that experienced a TSR Best-case error

(TATSR Best) is given by Equation 35 [20] where TEF AHR MIPS is calculated using

Equation 21, tAHR TMR & tAHR TSR are calculated using Equation 21, TTSR Rec is the

time it took to perform TSR error recovery, and TTSR ret is calculated using Equation

19. To realize a TSR Best error in hardware, the error is always injected into one of

the source registers evaluated by the first BNE-SW pair of the TSR portion of the

AHR program.

TATSR Best = TEF AHR MIPS + TTSR Rec + TTSR ret

TATSR Best = tAHR TMR + tAHR TSR + TTSR Rec + TTSR ret

tATSRB TMR = tAHR TMR

tATSRB TSR = tAHR TSR + TTSR Rec + TTSR ret

TATSR Best = tATSRB TMR + tATSRB TSR

(35)

The process used to calculate the runtime of any AHR MIPS program that expe-

rienced a TSR Worst-case error is given by Equation 36 [20].

The total AHR TSR Worst error runtime (TATSR Worst) is calculated by adding

the amount of time AHR MIPS operated in TMR mode and TSR mode, represented

by tATSRW TMR and tATSRW TSR respectively. The amount of time spent in either

131

mode is dependent on the TMR to TSR transition point Ploops. Equation 36 uses an

if statement dependent upon the value of Ploops to calculate the AHR TSR Worst

error runtime. The value for tATSRW TMR was calculated as part of Equation 21,

where tATSRW TMR = tAHR TMR. The value for tAHR TSR was calculated as part of

Equation 21. A TSR Worst-case error is always realized in hardware by detecting

an error while writing the last register containing the loop counter during the SRP

creation process, but the loop count at which the error should be injected depends

on Ploops.

When Ploops = 1 the program completes two TSR loops and creates two TSR SRPs.

The Worst-case error can either occur while writing TSR SRP1 or TSR SRP0. The

extra runtime caused by an error while writing SRP1 is calculated and represented

by the variable atsrw1. The extra runtime caused by an error while writing SRP0 is

calculated and represented by the variable atsrw2. Once those values are calculated

an if statement is used to determine which value is larger, or which value represents

the overall TSR Worst-case error. If atsrw1 was larger, then the error should be

injected/detected when the program loop count is two. If atsrw2 was larger, then the

error should be injected/detected when the program loop count is one.

When Ploops = 2 the program completes only one TSR loop. In this case, the

TSR Worst-case error is always detected during creation of the only TSR SRP that

is made. The extra runtime caused by an error while writing SRP1 is calculated and

represented by the variable atsrw3. If Ploops = 2 then only one TSR SRP is created,

and the error should be injected/detected when the program loop count is one.

When Ploops > 2 the generated program was too short and never transitioned into

TSR mode, therefore no TSR Worst error can be injected and the overall runtime is

just the error free TMR runtime (tAHR TMR).

132

if Ploops = 0

tATSRW TMR = tAHR TMR

tATSRW TSR = tAHR TSR + TTSR Rec + · · ·

TTSR loop + TTSR SRP1 Err

elseif Ploops = 1

atsrw1 = TTSR Rec + TTSR loop − · · ·
1
3
TTSR skip + TTSR SRP1 Err

atsrw2 = TTSR Rec + TTSR loop − · · ·
2
3
TTSR skip + TTSR SRP0 Err

tATSRW TMR = tAHR TMR

if atsrw1 > atsrw2

tATSRW TSR = tAHR TSR + atsrw1

else

tATSRW TSR = tAHR TSR + atsrw2

end

elseif Ploops = 2

atsrw3 = TTSR Rec + (3− Ploops) · TTSR loop + · · ·

TTSR SRP1 Err − 2
3
Tskip

tATSRW TMR = tAHR TMR

tATSRW TSR = tAHR TSR + atsrw3

else

tATSRW TMR = tAHR TMR

tATSRW TSR = 0

end

TATSR Worst = tATSRW TMR + tATSRW TSR

(36)

133

It was predicted that AHR MIPS experiencing an AHR TSR Best error would

process a program faster than an AHR TSR Worst error. An AHR TSR Best error

is detected at the first BNE-SW pair of the TSR portion of the AHR program, and

only increases the runtime by the time it takes to perform TSR error recovery and

re-process instructions up-to the point at which the error was detected. An AHR

TSR Worst error is detected while writing a SRP and requires that an additional

TSR loop must be performed. Since both error recovery and an additional loop must

be performed it was predicted that an AHR TSR Worst error produces program

runtimes slower than EF TSR MIPS. Both AHR TSR errors perform slower than EF

AHR because additional TSR instructions must be processed. The predicted runtime

speeds of the AHR MIPS TSR errors with respect to EF AHR and EF TSR were

from fastest to slowest: EF AHR, AHR TSR Best error, EF TSR, and AHR TSR

Worst error.

3.5.2.4 Predicted Order of Runtime Performance

The list below rank orders the predicted/expected performance of each MIPS

architecture processing the short programs generated for this research for all operating

modes discussed in Section 3.5.2. The list ranks performance in terms of program

runtime from fastest to slowest. The ranking assumes that AHR MIPS does not

transition to TSR mode after experiencing a Type A Early, Type A Late, Type B

Best - Late, and Type B Worst error. These predictions were discussed throughout

Section 3.5.2 and potential differences to the rank order listed below were discussed

as well as the error scenarios that could produce runtimes nearly equivalent to others.

1. EF TMR

2. TMR Type A

134

3. AHR Type A Early

4. AHR Type A Late

5. TMR Type B Best

6. AHR Type B Best - Late

7. TMR Type B Worst

8. EF AHR

9. AHR Type B Best - Early

10. AHR Type B Worst - Early

11. AHR Type B Worst - Late

12. AHR TSR Best Error

13. EF TSR

14. AHR TSR Worst Error

15. TSR Best Error

16. TSR Worst Error

3.5.2.5 Summary of MIPS Archs. & Operational Modes Measured

Timing equations were developed to calculate the runtime of a program processed

by the TMR, TSR, and AHR MIPS architectures. Each architecture responds to

simulated radiation-induced errors in different ways. TMR MIPS can operate in

4 modes: error free, Type A error, Type B Best error, and Type B Worst error.

The runtime of a program processed by TMR MIPS in each operational mode was

135

calculated using the equations developed in Section 3.5.2.1. TSR MIPS can operate

in 3 modes: error free, Best-case error, and Worst-case error. The runtime of a

program processed by TSR MIPS in each operational mode was calculated using

equations developed in Section 3.5.2.2. AHR MIPS processes programs in both TMR

and TSR mode. Therefore, AHR MIPS can not only experience all the errors that

each constituent architecture can, but also has new error scenarios classified as Early

or Late. AHR MIPS can operate in 9 modes: error free, Type A Early, Type A

Late, Type B Best - Early, Type B Best - Late, Type B Worst - Early, Type B

Worst - Late, TSR Early/Best error, and TSR Late/Worst error. The runtime of

a program processed by AHR MIPS in each operational mode was calculated using

equations developed in Section 3.5.2.3. Every operational mode for each architecture

was measured in hardware and compared against the results produced by the timing

equations.

3.5.3 Measurement Methodology

The AHR MIPS hardware design used two SP701 Spartan 7 development boards.

The first board (Board #1) contained the AHR MIPS processor, MIBO, MIBI, and

LED oscillator components. The second board (Board #2) contained the Memory,

MEBI, and MEBO components. A Keysight DSOSO54A Digital Storage Oscilloscope

[51] was connected to Board #1 to measure program runtimes. The oscilloscope was

connected to a ground pin on Board #1 and specifically measured the output of

the LED oscillator that was routed to an on-board PMOD pin. A diagram of the

experimental setup is shown in Figure 18 below.

136

Figure 18. Experimental Setup of AHR MIPS in Hardware

An image of the experimental setup connected to the oscilloscope is shown in

Figure 19.

Figure 19. AHR MIPS Hardware Test Setup

An image providing a close-up view of Boards #1 & #2, the connection between

them, and the measurement probe connections to Board #1 is shown in Figure 20.

137

Figure 20. AHR MIPS Boards #1 & #2

Table 6 describes how the PMOD pins on each SP701 Spartan 7 development

board were configured to enable inter-board communications.

138

Table 6. SP-701 PMOD Pin Assignments for Inter-Board Comms. & Measurements

Board # PMOD Pin Signal Name

Board #1 D14 i MIBI RX

C13 i MIBO RX

C14 o MIBI TX

A13 o MIBO TX

D16 o DONE M

Board #2 C13 i MEBI RX

D14 i MEBO RX

A13 o MEBI TX

C14 o MEBO TX

The oscilloscope user manual did not provide any steps for calibration, so all mea-

surements were made assuming that the oscilloscope was functioning within speci-

fications [51]. Every MIPS architecture and program implemented on the FPGAs

were allowed to operate for one minute before collecting hardware runtime data to

allow the temperature of each device to settle after programming. The hardware

runtime of each program was measured 10 consecutive times and used to calculate

an average hardware runtime. The calculated runtime of each program was used to

set the oscilloscope timescale to be large enough to capture 10 consecutive hardware

program runs. The oscilloscope was also configured to provide a real-time runtime

measurement between the rise and fall of one DONE signal and output that value to

the screen. This value was used during each runtime data measurement to quickly

determine whether the architecture & program combination behaved as predicted by

the runtime calculation.

139

Any program runtime measured in hardware was expected to be longer than the

calculated runtime due to signal propagation delays. For the longest program pro-

cessed by the slowest architecture & operating mode (TSR MIPS Worst Error) the

difference between the measured runtime and calculated runtime was roughly 50µs.

For the shortest program processed by the fastest architecture & operating mode (EF

TMRMIPS) the difference between the measured runtime and calculated runtime was

roughly 15µs. These observed differences provided the upper and lower limits for the

total signal propagation delay that should accumulate during execution of one of the

programs used in this research. Having established the upper and lower limits for to-

tal signal propagation delay, if the difference between the measured program runtime

and the calculated runtime was less than 50µs, then that measurement was consid-

ered valid, and the data was collected. If the difference between the measured runtime

and calculated runtime was greater than 50µs or less than the calculated value, then

the measurement was considered invalid. An invalid measurement indicated that the

difference between the measured runtime and calculated runtime could not be solely

attributed to accumulated signal propagation delays and would require further inves-

tigation to determine the cause of the discrepancy. Invalid runtime measurement data

was not collected. Every valid program runtime measurement was saved to a unique

file, and the average hardware runtime was calculated as part of post-processing using

that file.

3.5.4 Summary of Hardware Testing and Data Collection

The AHR MIPS architecture was modified as described in Section 3.5.1 to produce

PROGRAM DONE signals that could be measured by an oscilloscope to determine

the runtime of programs in hardware.

20 out of 100 randomly generated instruction sets were tested in hardware for each

140

architecture and for each operational mode described in Section 3.5.2. To test each

instruction set a Board #1 and Board #2 hardware project were generated using the

Xilinx Vivado software.

Board #2 always contained the memory, MEBI, and MEBO components. Er-

rors were never injected into Board #2 to realize the various error scenarios for each

MIPS architecture. Since Board #2 was never modified, regardless of the error sce-

nario tested, only 20 Board #2 hardware projects were generated for each MIPS

architecture tested.

Board #1 contained the specific MIPS architecture, MIBO, and MIBI, but since all

the various operational modes are realized by injecting errors into the MIPS processor,

this required that a unique hardware project be generated for every operational mode.

This research tested the following operational modes: three error free (one for each

MIPS processor), three TMR MIPS error scenarios, two TSR MIPS error scenarios,

and eight AHR MIPS error scenarios. Thus, to test all 20 instructions sets, a total of

60 Board #2 and 320 Board #1 hardware projects were generated and measured in

hardware.

Each program was repeatedly processed in hardware, and the oscilloscope was

used to capture 10 consecutive program runs which were measured using the output

DONE signal from Board #1. The program run captures were then post-processed

to calculate a final average runtime for each program. These final averages were

compared against what was calculated using the equations developed in Section 3.5.2

to not only verify that the hardware implementation of AHR MIPS is correct and

predictable, but also that AHR MIPS exhibits the same operational behaviors seen

in the results of the previous research [20].

141

3.6 Ch. III Summary

This chapter discussed the rationale behind using two Xilinx Spartan 7 FPGAs

as the implementation targets for the new AHR MIPS architecture. This chapter

described how AHR MIPS was modified to be successfully implemented in hard-

ware, which focused on developing the communications path necessary to support

inter-board communication. This chapter defined the parameters of the instruction

sets generated and used to test the operation of TMR, TSR, and AHR MIPS in

hardware. The process used to collect the timing information of instructions and

non-instruction processes necessary to predict/calculate program runtimes was also

described. Finally, this chapter defined the operational modes tested on each MIPS

architecture, described how the runtime of programs under error free and various

error scenarios were calculated, and discussed the methodology employed to collect

hardware program runtime measurements. The next chapter will discuss the results

of hardware testing and compare the collected program runtime results against those

that were calculated.

142

IV. Results

4.1 Introduction

This chapter discusses the runtime performance results of the error free and error

prone TMR, TSR, and AHR MIPS architectures. These results compare the run-

time of programs on each architecture under various operating conditions against

the measured program runtimes on each architecture implemented in hardware. The

equations used to calculate the runtime of a given program operating on an architec-

ture under various operating conditions were discussed in Ch. III Section 3.5.2. The

methodology used to measure the runtime of a program in hardware was described in

Ch. III Section 3.5.3. This chapter provides analyses that demonstrate AHR MIPS

can successfully be implemented on a COTS FPGA, and that the runtime perfor-

mance of AHR MIPS under various operating conditions in hardware matches what

was predicted in not only this research but in the previous AHR research as well [20].

Section 4.2 discusses the runtime results that were calculated and measured in

hardware for every operating mode of TMR MIPS. Section 4.3 discusses the runtime

results that were calculated and measured in hardware for every operating mode

of TSR MIPS. Section 4.4 discusses the runtime results that were calculated and

measured in hardware for every operating mode of AHR MIPS. Section 4.5 describes

the challenges that were encountered during hardware measurements and how those

challenges affected the collected results. Section 4.6 compares the performance of

AHR MIPS against TMR MIPS and TSR MIPS, and analyzes each AHR MIPS error

scenario to determine whether the performance matched predictions and expectations.

143

4.2 TMR MIPS Results

TMR MIPS was simulated and tested under four operating modes: Error Free,

Type A Error, Type B - Best, and Type B - Worst. The TMR MIPS versions of the 20

randomly generated instruction sets were processed by the TMR MIPS architecture

under each operating mode. The results of TMR MIPS operating without error is

presented in Section 4.2.1. The results of TMR MIPS operating while a Type A,

Type B - Best, or Type B - Worst error were injected is presented in Section 4.2.2.

4.2.1 Error Free TMR MIPS Results

The program runtime results that were calculated and measured for each of the

20 TMR MIPS instruction sets processed by an Error Free (EF) TMR MIPS archi-

tecture are shown in Figure 21. Plots like the one presented in Figure 21 are used

throughout this chapter. The X-Axis represents the “Instruction Set #” and merely

indicates which 20 instruction sets out of the 100 randomly generated were measured

in hardware. The “Instruction Set #” itself is arbitrary and has no effect on per-

formance. The Y-Axis presents the measured runtime of an instruction set/program

in milli-seconds (ms). A calculated value always exists for every instruction set and

the calculated runtime is indicated using a red “x”. The measured runtime of an

instruction set is indicated using a green dot “.”. The measured values are connected

via lines to better distinguish the values measured from the values calculated. The

differences between the error free program runtimes that were calculated and those

measured cannot be seen in this figure.

144

Figure 21. Calculated & Measured Runtime Performance of Error-Free TMR MIPS

The average percent difference between the error free program runtimes that were

calculated and those measured was found using Equation 37 [20].

PDT ime TMR EF = · · ·
∑Nprograms

n=1

[
TTMR EF Meas−TTMR EF Calc

TTMR EF Calc
·100%

]
Nprograms

(37)

The average percent difference is:

PDT ime TMR EF = 1.301 · 10−3% (38)

The average percent difference indicates that the equations used to calculate the

runtime performance of EF TMRMIPS closely predict the runtime that was measured

in hardware. The average percent difference is non-zero because the new TMR MIPS

architecture is distributed across two Spartan 7 FPGA boards that are connected

using wires, and thus the runtime measurements made in hardware are expected to

145

be higher due to signal propagation delays and clock mismatches between the two

boards.

4.2.2 Error Prone TMR MIPS Results

4.2.2.1 TMR MIPS Type A Error

The program runtime results that were calculated and measured for each of the

20 TMR MIPS instruction sets processed by a TMR MIPS architecture experiencing

a Type A error are shown in Figure 22. The differences between the Type A program

runtimes that were calculated and those measured cannot be seen in this figure.

Figure 22. Calculated & Measured TMR ErrA Runtimes

The average percent difference between the Type A program runtimes that were

calculated and those measured was found using Equation 39.

PDT ime TMR ErrA = · · ·
∑Nprograms

n=1

[
TTMR ErrA Meas−TTMR ErrA Calc

TTMR ErrA Calc
·100%

]
Nprograms

(39)

146

The average percent difference is:

PDT ime TMR ErrA = 1.301 · 10−3% (40)

The average percent difference indicates that the equations used to calculate the

runtime performance of TMR MIPS with a Type A Error closely predict the runtime

that was measured in hardware. The average percent difference is non-zero due to

signal propagation delays.

4.2.2.2 TMR MIPS Type B Errors

The runtime results for the 20 instruction sets processed by a TMR MIPS archi-

tecture experiencing a Type B - Best or Type B - Worst error are shown on the same

plot in Figure 23. Calculated results are shown for each of the 20 instruction sets

for both the Type B - Best & Worst scenarios, but only 19 hardware measurements

for each scenario were within 50µs of the calculated result and were considered valid.

The invalid measurements were not collected because the measured runtimes were

either faster than the calculated value or had a difference greater than 50µs. These

measurement-to-calculation runtime discrepancies were due to implementation issues

that will be discussed in Section 4.5. For the remainder of Ch. IV, if a hardware

result was considered invalid and was not collected, the line connecting measured

points in figures like Figure 23 will be broken to indicate the absence of a measured

runtime. The differences between the Type B - Best or Worst program runtimes that

were calculated and those measured cannot be seen in this figure.

147

Figure 23. Calculated & Measured TMR ErrB Best and Worst Runtimes

The average percent differences between the Type B - Best or Worst program

runtimes that were calculated and those measured were found using Equations 41 &

42.

PDT ime TMR ErrBB = · · ·
∑Nprograms

n=1

[
TTMR ErrBB Meas−TTMR ErrBB Calc

TTMR ErrBB Calc
·100%

]
Nprograms

(41)

PDT ime TMR ErrBW = · · ·
∑Nprograms

n=1

[
TTMR ErrBW Meas−TTMR ErrBW Calc

TTMR ErrBW Calc
·100%

]
Nprograms

(42)

The average percent difference for TMR Type B - Best is:

PDT ime TMR ErrBB = 1.246 · 10−3% (43)

148

The average percent difference for TMR Type B - Worst is:

PDT ime TMR ErrBW = 1.265 · 10−3% (44)

The average percent differences indicate that the equations used to calculate the

runtime performance of TMR MIPS with a Type B - Best or Worst Error closely

predict the runtime that was measured in hardware. The average percent difference

is non-zero due to signal propagation delays.

4.3 TSR MIPS Results

TSR MIPS was simulated and tested under three operating modes: Error Free,

Best Single Error, and Worst Single Error. The TSR MIPS versions of the 20 ran-

domly generated instruction sets were processed by the TSR MIPS architecture under

each operating mode. The results of TSR MIPS operating without error is presented

in Section 4.3.1. The results of TSR MIPS operating while a Best case error or Worst

case error were injected is presented in Section 4.3.2.

4.3.1 Error Free TSR MIPS Results

The program runtime results that were calculated and measured for each of the

20 TSR MIPS instruction sets processed by an EF TSR MIPS architecture are shown

in Figure 24. The differences between the EF program runtimes that were calculated

and those measured cannot be seen in this figure.

149

Figure 24. Calculated & Measured Runtime Performance of Error-Free TSR MIPS

The average percent difference between the EF program runtimes that were cal-

culated and those measured was found using Equation 45 [20].

PDT ime TSR EF = · · ·
∑Nprograms

n=1

[
TTSR EF Meas−TTSR EF Calc

TTSR EF Calc
·100%

]
Nprograms

(45)

The average percent difference is:

PDT ime TSR EF = 1.296 · 10−3% (46)

The average percent difference indicates that the equations used to calculate the

runtime performance of EF TSR MIPS closely predict the runtime that was measured

in hardware. The average percent difference is non-zero due to signal propagation

delays.

150

4.3.2 Error Prone TSR MIPS Results

The runtime results for the 20 instruction sets processed by a TSR MIPS archi-

tecture experiencing a Best case error or Worst case error are shown on the same plot

in Figure 25. The differences between the Best or Worst program runtimes that were

calculated and those measured cannot be seen in this figure.

Figure 25. Calculated & Measured TSR Err Best and Worst Runtimes

The average percent differences between the Best Error or Worst Error program

runtimes that were calculated and those measured were found using Equations 47 &

48.

PDT ime TSR ErrB = · · ·
∑Nprograms

n=1

[
TTSR ErrB Meas−TTSR ErrB Calc

TTSR ErrB Calc
·100%

]
Nprograms

(47)

151

PDT ime TSR ErrW = · · ·
∑Nprograms

n=1

[
TTSR ErrW Meas−TTSR ErrW Calc

TTSR ErrW Calc
·100%

]
Nprograms

(48)

The average percent difference for TSR Best Error is:

PDT ime TSR ErrB = 1.365 · 10−3% (49)

The average percent difference for TSR Worst Error is:

PDT ime TSR ErrW = 1.371 · 10−3% (50)

The average percent differences indicate that the equations used to calculate the

runtime performance of TSRMIPS with a Best- or Worst-case error closely predict the

runtime that was measured in hardware. The average percent difference is non-zero

due to signal propagation delays.

4.4 AHR MIPS Results

AHR MIPS was simulated and tested under eight operating modes: EF, TMR

Type A - Early, TMR Type A - Late, TMR Type B - Best Early, TMR Type B

- Best Late, TMR Type B - Worst Early, TMR Type B - Worst Late, TSR Error

Early/Best, and TSR Error Late/Worst. The AHR MIPS versions of the 20 randomly

generated instruction sets were processed by the AHR MIPS architecture under each

operating mode. The results of AHR MIPS operating without error is presented in

Section 4.4.1. The results of AHR MIPS operating while the previously described

errors were injected is presented in Section 4.4.2.

152

4.4.1 Error Free AHR MIPS Results

The program runtime results that were calculated and measured for each of the 20

AHR MIPS instruction sets processed by an EF AHR MIPS architecture are shown

in Figure 26. The differences between the EF program runtimes that were calculated

and those measured cannot be seen in this figure.

Figure 26. Calculated & Measured Runtime Performance of Error-Free AHR MIPS

The average percent difference between the EF program runtimes that were cal-

culated and those measured were found using Equation 51 [20].

PDT ime AHR EF = · · ·
∑Nprograms

n=1

[
TAHR EF Meas−TAHR EF Calc

TAHR EF Calc
·100%

]
Nprograms

(51)

The average percent difference is:

PDT ime AHR EF = 1.264 · 10−3% (52)

153

The average percent difference indicates that the equations used to calculate the

runtime performance of EF AHRMIPS closely predict the runtime that was measured

in hardware. The average percent difference is non-zero due to signal propagation

delays.

4.4.2 Error Prone AHR MIPS Results

4.4.2.1 AHR TMR MIPS Type A Errors

The runtime results for the 20 instruction sets processed by an AHR MIPS ar-

chitecture experiencing a TMR Type A Early or TMR Type A Late error are shown

on the same plot in Figure 27. Calculated results are shown for each of the 20 in-

struction sets for both the Type A Early & Late scenarios, but only 18 measurements

were within 50µs of the calculated result and were considered valid for the Type A

Early scenario. The invalid measurements were not collected because the measured

runtimes were either faster than the calculated value or had a difference greater than

50µs. These measurement-to-calculation runtime discrepancies were due to imple-

mentation issues that will be discussed in Section 4.5. Figure 27 presents calculated

and measured data points that overlap for both error scenarios. To help distinguish

between overlapping results, the calculated AHR Type A Early error runtimes are

marked using a red circle “o”. The differences between the Best or Worst program

runtimes that were calculated and those measured cannot be seen in this figure.

154

Figure 27. Calculated & Measured AHR TMR ErrA Early & Late Runtimes

The average percent differences between the AHR TMR Type A Early or AHR

TMR Type A Late error program runtimes that were calculated and those measured

were found using Equations 53 & 54.

PDT ime AHR ErrAE = · · ·
∑Nprograms

n=1

[
TAHR ErrAE Meas−TAHR ErrAE Calc

TAHR ErrAE Calc
·100%

]
Nprograms

(53)

PDT ime AHR ErrAL = · · ·
∑Nprograms

n=1

[
TAHR ErrAL Meas−TAHR ErrAL Calc

TAHR ErrAL Calc
·100%

]
Nprograms

(54)

The average percent difference for AHR Type A Early is:

PDT ime AHR ErrAE = 1.316 · 10−3% (55)

155

The average percent difference for AHR Type A Late is:

PDT ime AHR ErrAL = 1.312 · 10−3% (56)

The average percent differences indicate that the equations used to calculate the

runtime performance of AHR MIPS with a TMR Type A Early or TMR Type A

Late error closely predict the runtime that was measured in hardware. The average

percent difference is non-zero due to signal propagation delays.

4.4.2.2 AHR TMR MIPS Type B Best Errors

The runtime results for the 20 instruction sets processed by an AHR MIPS archi-

tecture experiencing a TMR Type B Best - Early or TMR Type B Best - Late error

are shown on the same plot in Figure 28. Calculated results are shown for each of the

20 instruction sets for both the Type B Best - Early & Late scenarios, but only 13 sets

and 19 sets, respectively, had measured runtimes within 50µs of the calculated result

and were considered valid. The invalid measurements were not collected because the

measured runtimes were either faster than the calculated value or had a difference

greater than 50µs. These measurement-to-calculation runtime discrepancies were due

to implementation issues that will be discussed in Section 4.5. The differences be-

tween the Best or Worst program runtimes that were calculated and those measured

cannot be seen in this figure.

156

Figure 28. Calculated & Measured AHR TMR ErrB Best - Early & Late Runtimes

The average percent differences between the AHR TMR Type B Best - Early or

Best - Late error program runtimes that were calculated and those measured were

found using Equations 57 & 58.

PDT ime AHR ErrBBE = · · ·
∑Nprograms

n=1

[
TAHR ErrBBE Meas−TAHR ErrBBE Calc

TAHR ErrBBE Calc
·100%

]
Nprograms

(57)

PDT ime AHR ErrBBL = · · ·
∑Nprograms

n=1

[
TAHR ErrBBL Meas−TAHR ErrBBL Calc

TAHR ErrBBL Calc
·100%

]
Nprograms

(58)

The average percent difference for AHR Type B Best - Early is:

PDT ime AHR ErrBBE = 1.318 · 10−3% (59)

157

The average percent difference for AHR Type B Best - Late is:

PDT ime AHR ErrBBL = 1.441 · 10−3% (60)

The average percent differences indicate that the equations used to calculate the

runtime performance of AHR MIPS with a TMR Type B Best - Early or Best - Late

error closely predict the runtime that was measured in hardware. The average percent

difference is non-zero due to signal propagation delays.

4.4.2.3 AHR TMR MIPS Type B Worst Errors

The runtime results for the 20 instruction sets processed by an AHR MIPS archi-

tecture experiencing a TMR Type B Worst - Early or TMR Type B Worst - Late error

are shown on the same plot in Figure 29. Calculated results are shown for each of the

20 instruction sets for both the Type B Worst - Early & Late scenarios, but only 11

sets and 12 sets, respectively, had measured runtimes within 50µs of the calculated re-

sult and were considered valid. The invalid measurements were not collected because

the measured runtimes were either faster than the calculated value or had a difference

greater than 50µs. These measurement-to-calculation runtime discrepancies were due

to implementation issues that will be discussed in Section 4.5. Multiple calculated

and measured data points overlap in Figure 29. To help distinguish between data

points, the calculated AHR Type B Worst - Early values are marked by a red circle

“o”, and the measured AHR Type B Worst - Early values are marked by a green star.

The differences between the Early or Late program runtimes that were calculated and

those measured cannot be seen in this figure.

158

Figure 29. Calculated & Measured AHR TMR ErrB Worst - Early & Late Runtimes

The average percent differences between the AHR TMR Type B Worst - Early or

Worst - Late error program runtimes that were calculated and those measured were

found using Equations 61 & 62.

PDT ime AHR ErrBWE = · · ·
∑Nprograms

n=1

[
TAHR ErrBWE Meas−TAHR ErrBWE Calc

TAHR ErrBWE Calc
·100%

]
Nprograms

(61)

PDT ime AHR ErrBWL = · · ·
∑Nprograms

n=1

[
TAHR ErrBWL Meas−TAHR ErrBWL Calc

TAHR ErrBWL Calc
·100%

]
Nprograms

(62)

The average percent difference for AHR Type B Worst - Early is:

PDT ime AHR ErrBWE = 1.399 · 10−3% (63)

159

The average percent difference for AHR Type B Worst - Late is:

PDT ime AHR ErrBWL = 1.332 · 10−3% (64)

The average percent differences indicate that the equations used to calculate the

runtime performance of AHR MIPS with a TMR Type B Worst - Early or Worst -

Late error closely predict the runtime that was measured in hardware. The average

percent difference is non-zero due to signal propagation delays.

4.4.2.4 AHR TSR MIPS Errors

The runtime results for the 20 instruction sets processed by an AHR MIPS archi-

tecture experiencing a TSR Early or Late error are shown on the same plot in Figure

30. Calculated results are shown for each of the 20 instruction sets for both the TSR

Early & Late error scenarios, but only 17 sets and 12 sets, respectively, had measured

runtimes within 50µs of the calculated result and were considered valid. The invalid

measurements were not collected because the measured runtimes were either faster

than the calculated value or had a difference greater than 50µs. These measurement-

to-calculation runtime discrepancies were due to implementation issues that will be

discussed in Section 4.5. The differences between the Early or Late program runtimes

that were calculated and those measured cannot be seen in this figure.

160

Figure 30. Calculated & Measured AHR TSR Early & Late Error Runtimes

The percent differences between the AHR TSR Early or Late error program run-

times that were calculated and those measured were found using Equations 65 &

66.

PDT ime AHR TSR ErrE = · · ·
∑Nprograms

n=1

[
TAHR TSR ErrE Meas−TAHR TSR ErrE Calc

TAHR TSR ErrE Calc
·100%

]
Nprograms

(65)

PDT ime AHR TSR ErrL = · · ·
∑Nprograms

n=1

[
TAHR TSR ErrL Meas−TAHR TSR ErrL Calc

TAHR TSR ErrL Calc
·100%

]
Nprograms

(66)

The average percent difference for AHR TSR Early error is:

PDT ime AHR TSR ErrE = 1.364 · 10−3% (67)

161

The average percent difference for AHR TSR Late error is:

PDT ime AHR TSR ErrL = 1.324 · 10−3% (68)

The average percent differences indicate that the equations used to calculate the

runtime performance of AHR MIPS with a TSR Early or Late error closely predict the

runtime that was measured in hardware. The average percent difference is non-zero

due to signal propagation delays.

4.5 Hardware Measurement-to-Calculation Discrepancies

As mentioned throughout the discussion of results in Sections 4.2, 4.3, and 4.4,

there were many hardware measurements that were not collected because the run-

times measured did not match the calculated runtimes. These mismatches indicated

that either the timing equations were not properly predicting/calculating the hard-

ware runtimes, or that the Xilinx Vivado (Version 2020.2) software used to program

the Xilinx Spartan 7 FPGA development boards was incorrectly implementing the

architecture in hardware.

The timing equations used to calculate program runtimes were provided by Hamil-

ton in [20], modified for use in this research, and tested for correctness on a subset

of the randomly selected instruction sets using simulations. The instruction subset

was selected with the intent to exercise the extremes of the timing equations, to

draw out edge cases or scenarios where the equations would not properly calculate

the runtimes that were simulated. The equations were found to correctly predict

the runtimes of the subset of instructions that were then verified to run in the same

time in simulations. After the described verification was complete, there was high

confidence going into hardware testing that the timing equations correctly calculated

162

the program runtimes for every operational mode possible for TMR, TSR, and AHR

MIPS.

All EF architectures tested in hardware had program runtimes that matched the

calculated runtimes. The measurement-to-calculation discrepancies only appeared on

architectures where errors were injected. Out of the 320 total hardware measure-

ments performed (20 instruction sets x 16 Architectures & Operating Modes), 43

measurements were rejected because the oscilloscope measurements of the runtime

were either not within 50µs of the calculated/predicted value or were faster than the

calculated/predicted value. At the end of data collection, only two instruction sets

had a measurement-to-calculation match across all 16 different architectures and op-

erating modes. Six instruction sets had one mismatch, four sets had two mismatches,

and eight sets had three or more mismatches. The instruction sets with only one

mismatch were prioritized for further analysis because correcting one mismatch took

less work than the sets with more mismatches.

The six instruction sets with one mismatch were individually simulated and the

runtime was compared against the calculated value. All sets showed simulation-

to-calculation matches, which indicated that for those sets the calculated/predicted

runtimes were correct. Thus, the measurement runtime discrepancy was hypothesized

to have been caused by the way in which the architectures were implemented on the

FPGA by the design software. To test this hypothesis, the hardware projects of Board

#1 for each of the six instruction sets with one mismatch were completely rebuilt

to determine if the mismatches were caused by a software generated implementation

error. Hardware runtime measurements were made for the six re-generated instruction

sets, and only 3/6 measurement-to-calculation discrepancies were corrected despite

the simulations matching calculations for all six sets.

These results supported the hypothesis that the design decisions made by Vivado

163

during the hardware “Place and Route” steps were not correctly implementing some of

the instruction sets. In most cases, when a mismatch occurred the runtime measured

in hardware was faster than the predicted/calculated runtime. For nearly all AHR

MIPS mismatches the measured runtimes were faster than calculated because that

architecture was encountering unexpected errors that would cause it to operate in

TMR mode for longer. Due to time constraints, the source of these errors was not

able to be investigated further and in total only 5/20 instruction sets were able to be

used for the analysis performed in Section 4.6.

4.6 AHR MIPS Performance Behavior Analysis

Calculated runtimes were obtained for all 20 instruction sets on each architecture

for all operating modes. However, not all these runtimes were able to be verified/mea-

sured in hardware. This section will use the instruction sets that were able to be

measured on each architecture for all operating modes to analyze the performance

behaviors of AHR MIPS. These performance behaviors will be compared against the

expected behaviors predicted in Ch. III Section 3.5.2.4 and the behaviors found

through simulation in the previous AHR research [20].

Only 5/20 instruction sets were able to be measured across all operating modes

for TMR, TSR, and AHR MIPS. The complete runtime results for the five instruction

sets are shown in Figure 31. These instruction sets were sorted from the shortest to

longest runtimes, as determined using the error free AHR MIPS runtimes. Sorting

the data sets in this manner makes the performance behaviors easier to analyze and

can provide insight into the ways certain errors affect the runtimes of programs with

different lengths. Figure 31 will be referenced multiple times throughout this section,

but groups of operational modes will be inspected in isolation to determine whether

the measured results match predictions.

164

Figure 31. All Measured Runtimes of 5 Complete Instr. Sets (Sorted)

4.6.1 EF TMR, TSR, and AHR MIPS

The EF program runtimes of TMR, TSR, and AHR MIPS are shown separated

from all other operational modes in Figure 32. EF TSR MIPS was predicted to run

the slowest, EF TMR MIPS was predicted to run the fastest, and EF AHR MIPS was

predicted to have runtimes that fell between TSR and TMR MIPS. The measured

data presented in Figure 32 supports the predictions, and also mirrors the behaviors

seen in the previous research [20].

165

Figure 32. EF MIPS Measured Runtimes of 5 Complete Instr. Sets (Sorted)

Referencing Figure 31, EF TMR MIPS appears to have produced the fastest

runtimes, but that conclusion cannot be made without further analysis.

4.6.2 TMR and AHR MIPS Type A Errors

The fastest runtimes appear to have been produced by EF TMR, AHR ErrA

Early, AHR ErrA Late, and TMR ErrA, however the runtime differences between

these operational modes cannot be seen in Figure 31. The only noticeable difference

is that the AHR ErrA Early time for the last instruction set converges on the EF

AHR runtime. Figure 33 focuses on the measured results of EF TMR, AHR ErrA

Early, AHR ErrA Late, and TMR ErrA.

166

Figure 33. Focused view of Fastest Measured Runtimes of 5 Complete Instr. Sets
(Sorted)

The fastest overall runtimes were produced by the EF TMR architecture which

matches predictions, where EF TMR MIPS always processes programs the fastest.

However, even with the focused view provided in Figure 33 the runtime differences

between AHR ErrA Early, AHR ErrA Late, and TMR ErrA are indiscernible except

for AHR ErrA Early on the last instruction set. AHR ErrA Early was noticeably

different for the longest of the five instruction sets, because only Instruction Set

#5 was long enough to allow AHR MIPS to transition to TSR mode, even after

experiencing a Type A Early error. None of the other instruction sets were long

enough to allow AHR MIPS to transition out of TMR mode. If AHR MIPS does not

transition out of TMR mode, then it essentially operates as TMR MIPS with one

extra component, the AHR Controller. This explains why the runtime performance

of AHR ErrA Early, AHR ErrA Late, and TMR ErrA are so close that they are

indiscernible. Despite being indiscernible, it was predicted that TMR ErrA would

operate faster than both AHR ErrA Early & Late. This is because AHR MIPS

signals must pass through the TMR Voter and the AHR Controller to reach memory,

167

whereas in TMR MIPS signals must only pass through the voter to reach memory,

thus the path delay in AHR MIPS is always greater than TMR MIPS. To determine

if this predicted behavior was realized in hardware requires additional analysis.

Upon further inspection and based upon the data shown in Figure 33, neither

AHR ErrA Early, TMR ErrA, nor AHR ErrA Late establish steady runtime behaviors

because no architecture was shown to always run faster than the others. For some

of the instruction sets AHR ErrA Early or AHR ErrA Late ran faster than TMR

ErrA. The runtime relationship between AHR ErrA Early or AHR ErrA Late and

TMR ErrA does not match what was predicted. In calculations, excluding the last

set, AHR ErrA Early, TMR ErrA, and AHR ErrA Late have the same runtime when

AHRMIPS cannot transition to TSR mode. However, the calculations do not account

for the path signals must take through real-world hardware components.

If the real-world signal propagation time through the AHR Controller could be

considered zero, then TMR ErrA and AHR ErrA Early & Late should have equivalent

runtimes, but the measured data sometimes shows AHR ErrA Early & Late operated

slightly faster than TMR ErrA. Further analysis was performed by calculating the

percentage difference between AHR Err A Early, AHR Err A Late, and TMR ErrA,

shown in Table 7.

Table 7. Percent Difference Between TMR ErrA and both AHR ErrA Early & Late

Instr. Set 1 2 3 4 5

AHR ErrA Early 3 · 10−4% −1 · 10−5% −3 · 10−4% −1 · 10−4% 52.57%

AHR ErrA Late 1 · 10−4% 5 · 10−5% −6 · 10−4% 2 · 10−5% −3 · 10−5%

The percentage differences were found to be so small that the cause of this dis-

crepancy between the predicted and measured behavior is most likely either due to

168

how Vivado chose to perform the Place & Route step for each architecture or caused

by signal jitter in the DONE signal used to measure program runtimes in hardware.

This explains the behaviors seen using the measured data for these operational modes,

however the predicted behaviors of AHR Type A Early & Late are different when the

programs are long enough to tolerate an error and can transition to TSR mode.

If the AHR MIPS program is long enough, then it was predicted that AHR ErrA

Early would run slower than AHR ErrA Late, because a Type A Early error would

not greatly affect the TMR to TSR transition point, and the resulting runtime would

only be slightly more than EF AHR MIPS. A Type A Late error would push the

transition point further into program execution causing AHR MIPS to operate longer

in TMR mode, and the resulting runtime would be faster than EF AHR MIPS.

The predicted behavior of an AHR ErrA Early error was observed in hardware

because for the longest instruction set in Figure 31, the measured runtime was slightly

greater than the EF AHR MIPS runtime.

4.6.3 TMR and AHR MIPS Type B Errors

Figure 34 shows all of the Type B error operational modes for both TMR and

AHR MIPS. The data for EF AHR and EF TMR are included to provide context

into how the Type B errors for AHR and TMR MIPS affect program runtimes.

169

Figure 34. AHR & TMR MIPS Type B Errors Measured Runtimes of 5 Complete
Instr. Sets (Sorted)

The TMR ErrB Worst error has a significant effect on the runtime of TMR pro-

grams, and produces runtimes that approach EF AHR, but do not ever equal EF

AHR since EF AHR performs portions of the program in TSR mode.

In between the performance of TMR ErrB Worst and EF TMR are AHR ErrB

Best - Late and TMR ErrB Best. TMR ErrB Best errors and AHR ErrB Best -

Late errors appear to perform similarly, when the AHR Type B error is late enough

to cause AHR MIPS to never transition to TSR mode. These results are interesting

because for the longest instruction set, the runtime of TMR ErrB Best and AHR ErrB

Best - Late are nearly identical, whereas the other points have noticeable performance

differences. The AHR ErrB Best - Late errors are detected at the SW following SRP

creation that contributes the least to the overall runtime, and TMR ErrB Best errors

are detected in the same manner. This means that for the instruction sets presented

in Figure 34, all AHR ErrB Best - Late runtimes should be nearly identical to TMR

ErrB Best. Therefore, I believe there is an error in the equations I developed to both

select the point at which to inject an AHR ErrB Best - Late error and calculate the

170

corresponding runtime. For four out of the five instruction sets, my calculations and

corresponding hardware measurements appear to select the second-best location at

which to inject an AHR ErrB Best - Late error and thus do not represent the true

AHR ErrB Best - Late error scenario. Only, the longest instruction set showed the

expected relationship between AHR ErrB Best late and TMR ErrB Best.

The AHR ErrB Worst - Early, AHR ErrB Worst - Late, and AHR ErrB Best -

Early all produced runtimes slower than EF AHR MIPS. AHR ErrB Best - Early

should run slower than EF AHR MIPS, because if the TMR to TSR transition point

does not change due to the error, then the added runtime is equivalent to the time

required to recover from the error and return to the point at which the error was

detected from the loaded SRP.

Except for the last instruction set, the runtime differences between AHR ErrB

Worst - Early & Late are indiscernible. This is an expected result because of how

short the tested instruction sets were. For a short instruction set that can tolerate

a Type B Worst class of error and still transition to TSR mode, there may only be

one TMR SRP made and thus only one location to inject a Type B Worst error. For

the first four instruction sets, there was only one location to inject a Type B error,

which explains why the runtime differences are equivalent/indistinguishable. For the

last instruction set, there were two locations to inject a Type B error. The AHR

ErrB Worst - Early error did not affect the TMR to TSR transition point, but the

Late error did. The late error caused one less loop to be performed in TSR mode,

and thus the runtime of the last instruction set experiencing a Type B Worst - Late

error was better than EF AHR MIPS, because more of the program was performed

in TMR mode. The runtime of the last instruction set experiencing an AHR ErrB

Worst - Late error converges on the TMR ErrB Worst runtime, which is an expected

result in this case.

171

4.6.4 TSR and AHR MIPS Errors

Figure 35 shows all of the possible TSR error scenarios for both AHR and TSR

MIPS. The data for EF AHR and EF TSR are included to provide context into how

the various TSR errors affect program runtimes.

Figure 35. Measured Runtimes of Early & Late Errors for AHR and TSR MIPS of 5
Complete Instr. Sets (Sorted)

The longest runtimes measured were produced by the TSR MIPS architecture.

Specifically, the longest times were caused by a TSR Late error and the second longest

caused by TSR Early error. These measurements match predictions because the TSR

instruction sets are longer than equivalent TMR sets, and as a result take significantly

longer to process. Also, AHRMIPS always processes a portion of the program in TMR

mode using the TMR instructions, thus AHR never processes an entire program in

TSR mode and was found to never operate as slowly as either of the TSR error

scenarios.

The AHR TSR Early error runtimes were slower than EF AHR MIPS and faster

than EF TSR MIPS. This result matches the expected behavior because an Early

172

TSR error is detected by the first BNE-SW pair of the TSR portion of the AHR

instruction set. This type of error is corrected by reloading an SRP, and re-processing

instructions up-to the point at which the error was detected. Therefore, not enough

TSR instructions are performed to make the AHR TSR Early error runtimes greater

than EF TSR, but the resulting runtimes do move towards the EF TSR runtimes.

On the other hand, an AHR TSR Late error is detected while writing an SRP at the

end of a TSR loop. This error requires that error recovery occur and that an entire

TSR loop be re-processed. The addition of an extra TSR loop causes the AHR TSR

Late error runtimes to not only be slower than AHR TSR Early but also EF TSR

MIPS.

4.6.5 Summary of AHR MIPS Performance Behavior Analysis

Figure 36 is a copy of Figure 31 and shows the five instruction sets that were

sorted and used to determine the performance characteristics of TMR, TSR, and

AHR MIPS in every tested error scenario.

Figure 36. All Measured Runtimes of 5 Complete Instr. Sets (Sorted)

173

The previous research simulated much larger programs that performed 999 loops;

therefore the observed performance behaviors and relationships are slightly different

than what was observed in this research. However, nearly all the performance be-

haviors and relationships between the MIPS architectures physically measured were

found to match calculations and the predictions made in Ch. III Section 3.5.2.4,

despite using the smaller programs that were tested in this research. The only result

that was different than what was expected for these smaller programs was the perfor-

mance relationship between AHR ErrB Best - Late and TMR ErrB Best, which was

discussed in Section 4.6.3. These hardware results for five complete instruction sets

provide insight into how AHR MIPS operates when implemented on a COTS FPGA.

However, further experimentation and developments will be necessary to overcome

the implementation issues that did not allow for all 20 instruction sets to be used

during behavioral analysis. A discussion of the future work for AHR MIPS research

is given in Ch. V Section 5.2.

4.7 Summary of Results

Sections 4.2, 4.3, and 4.4 discussed the hardware results collected for TMR, TSR,

and AHR MIPS operating under every possible error scenario. The results discussed

in those sections highlighted how the timing equations used to calculate the runtime of

a given program were able to accurately predict the runtime of that program measured

in hardware. It was common to see percent differences of 10−3%, when both a calcu-

lated and measured result existed. Section 4.5 discussed the challenges encountered

during hardware measurements, sought to provide an explanation for those challenges,

and indicated future work that can be conducted to deal with those challenges. Sec-

tion 4.6 used the five instruction sets that had complete measurement-to-calculation

matches to evaluate and compare the runtime performance of the newly developed

174

AHR MIPS against both TMR and TSR MIPS. The results demonstrated that AHR

MIPS has flexible runtime performance characteristics, where it can perform nearly

as well as error free TMR, never perform as poorly as TSR with errors, and can pro-

vide performance profiles in between those two extremes. The hardware performance

profiles of AHR MIPS mostly match what was predicted, and have demonstrated the

value AHR MIPS could offer space mission designers seeking a cost effective method

of integrating advanced radiation mitigation techniques into a space system.

175

V. Conclusion

The conclusion of the research presented in this dissertation returns to a discussion

of the research questions presented in Ch. I Section 1.2.

(a) Can AHR be implemented on a COTS FPGA(s)?

(b) What are the performance characteristics of AHR on a COTS FPGA? (Proces-

sor Performance)

(c) How does the measured performance of AHR compare to predictions and results

produced in prior research?

Answering the first research question was the primary purpose of this research

and the work presented throughout this dissertation showed that Adaptive-Hybrid

Redundancy (AHR) applied to a Microprocessor Without Interlocked Pipeline Stages

(MIPS) architecture can be successfully implemented on a Consumer Off-The-Shelf

(COTS) Field-Programmable Gate Array (FPGA).

Ch. II Section 2.6 described the previous work performed by Hamilton to de-

sign and simulate AHR MIPS. During the previous research, two different attempts

were made to implement AHR MIPS in FPGA hardware and neither were successful.

The first attempt used a single FPGA board to implement AHR, but due to size

constraints and the need to collect accurate power measurements, the single board

implementation of AHR MIPS was not pursued further. The second attempt used

two FPGA boards to split the AHR MIPS design, thus avoiding size constraint limi-

tations and enabling more accurate power measurements of the AHR MIPS processor.

However, this second attempt was not successful due to signal timing issues caused

by the parallel communication scheme used for inter-board communication.

176

Ch. III of this dissertation addressed the previous AHR MIPS implementation

issues by modifying the design to use a Universal Asynchronous Receiver-Transmitter

(UART) based serial communication scheme for inter-board communication. Four

communication modules were designed and added to the AHR MIPS architecture

that enabled the architecture to successfully operate on a COTS FPGA. The COTS

FPGA selected was the Xilinx Spartan 7 FPGA packaged in the Spartan 7 SP701

Evaluation Kit. By successfully implementing AHR MIPS in hardware using two

Spartan 7 FPGAs the first research question can be answered as “Yes”.

The second and third research questions were answered in Ch. IV, where the

runtime performance of AHR MIPS was collected and then compared against col-

lected results of Triple Modular Redundancy (TMR) MIPS and Temporal Software

Redundancy (TSR) MIPS.

The runtime performance of AHR MIPS was determined by measuring the time

it took to process programs. Program runtime measurements were collected while

AHR MIPS operated without error and while AHR MIPS was subjected to simulated

radiation induced errors. Either a single error caused by a Single Event Upset (SEU)

or two errors caused by two separate SEUs were simulated. Various AHR MIPS error

scenarios were produced depending on the point at which the error(s) were injected.

Every operational mode (error free & w/error) of AHR MIPS was tested in hardware

using 20 randomly generated programs. The runtime of each program processed by

AHR MIPS for all operational modes was measured and enabled the performance of

AHR MIPS on a COTS FPGA to be quantified, thus answering the second research

question.

The runtime performance of TMR and TSR MIPS were also determined in the

same way as described for AHR MIPS. Both TMR and TSR MIPS were injected with

errors to determine the runtime of programs under similar error scenarios tested on

177

AHR MIPS. The same 20 randomly generated programs tested on AHR MIPS were

used to test TMR and TSR MIPS. After collecting all runtime data for every program

on every architecture, the measured performance of AHR MIPS was compared against

TMR and TSR MIPS. The analysis performed in Ch. IV found that in all but one

operational mode AHRMIPS performed in hardware as predicted during this research

and by the prior research. The results found that AHR MIPS had flexible runtime

performance, where at best AHR MIPS processed programs nearly as fast as Error

Free (EF) TMR MIPS, and at worst processed programs slower than EF TSR MIPS.

The performance analysis performed in Ch. IV Section 4.6 answered the third research

question.

5.1 Contributions

Adaptive Hybrid Redundancy (AHR) was shown to correctly operate in Con-

sumer Off-The-Shelf (COTS) Field Programmable Gate Array (FPGA) hardware

and demonstrated nearly the same runtime behaviors that were seen in the previous

research where AHR was simulated. AHR demonstrated correct operation during

Triple Modular Redundancy (TMR) mode, Temporal Software Redundancy (TSR)

mode, and while transitioning from TMR to TSR mode. Successful implementation

of AHR in COTS FPGA hardware required the design of new hardware modules.

Four new communication modules specific to the Basic MIPS processors and mem-

ory used in AHR were designed, written in Very High-Speed Integrated Circuit (VH-

SIC) Hardware Description Language (VHDL), and integrated into the AHR architec-

ture to facilitate communication between the Basic MIPS processor(s) on one FPGA

board to the associated memory module on another FPGA board. The design of

both the processor board and memory board, Board #1 and Board #2 respectively,

were written in VHDL and used to implement AHR MIPS in hardware. The error

178

inject module used to perform fault injection was re-designed in VHDL to produce

expected behavior when an error needed to be injected at an instruction that would

also trigger the creation of a TMR Save Restore Point (SRP). The AHR Controller

component of the AHR MIPS architecture was modified in VHDL to restart the ar-

chitecture after a program completed which enabled consecutive program runs to be

functionally equivalent. This modification was necessary to produce repeatable be-

havior that could be measured using an oscilloscope. A component named the LED

Oscillator was designed, written in VHDL, and implemented to produce a reference

DONE signal used by the oscilloscope to measure the runtimes of programs processed

by the AHR MIPS architecture.

A Xilinx Vivado software specific workflow was developed to program each Spartan

7 SP701 FPGA board. This workflow used Vivado to package VHDL files as Custom

Intellectual Property (IP) Blocks and integrate them into a block diagram used to

define the hardware design that was transformed into a bitstream. The workflow also

made use of Tool Command Language (TCL) scripting to remove the possibility of

user error while defining the connections between blocks in the block diagram.

The timing equations/processes developed and written in MATLAB by Hamilton

in [20] were modified to correctly calculate the runtimes of the short programs that

were used for testing in this research. The previous research calculated the runtimes

of much larger programs, and because of this consecutive program runs could not be

observed. In this research short programs were used and because consecutive program

runs could be observed, errors within the timing equations could be easily identified

and corrected. The timing equations were also improved by adding additional equa-

tions/processes in MATLAB to account for new edge cases encountered during this

research.

179

5.2 Future Work

While performing hardware measurements numerous program runtimes were not

collected due to hypothesized implementation errors introduced by Vivado during

the “Place and Route” step of design implementation. At the end of data collection,

only 5/20 instruction sets had valid calculated and measured runtimes across all

architectures and operational modes. The final performance/behavioral analysis of

AHR MIPS using those five instruction sets was not as comprehensive due to the

implementation errors that required the other 15 sets be excluded. Immediate future

work would involve further investigation into the cause of the observed hardware

implementation errors. If the current hypothesis is correct, then the way Vivado

performs “Place and Route” will need to be researched in order to determine how

to ensure every implemented design is stable and performs as simulated. Solving

these implementation issues would enable a more thorough analysis of AHR MIPS in

hardware to occur using all 20 instruction sets.

Immediate future work would be to investigate the discrepancy seen for the pre-

dicted relationship between AHR ErrB Best - Late and TMR ErrB Best in hardware.

As discussed in Ch. IV Section 4.6.3, there may be an error with how the minimum

runtime and associated error injection point and loop count are being selected to

realize the true AHR ErrB Best - Late error scenario for every program in hardware.

After solving the implementation issues and correcting calculation discrepancies,

future work on AHR MIPS should increase the baud rate at which the UART modules

within the communications network operate. This research set the clock frequency

of all MIPS processors to 50 MHz and used a UART baud rate of 115, 200. Al-

though, this research was focused on getting AHR MIPS to function in hardware,

the tested AHR MIPS architecture took a substantial runtime performance hit by

using serial communication between the processors and memory. The UART-induced

180

delays dominated the calculated and measured runtimes of AHR MIPS programs and

should be reduced. In future work, the baud rate should be increased from 115, 200

until communication errors begin to occur, at which point the highest baud rate that

enables successful communication should be used. Increasing the UART baud rate

would allow for longer instruction sets to be tested on the AHR MIPS architecture,

which would only further mature the AHR MIPS technology towards use on actual

systems that would require the execution of long programs.

The research presented in this dissertation only determined the performance of

AHR MIPS using program runtimes. In the previous work by Hamilton [20], simu-

lated results were presented for the energy usage of AHR MIPS and were compared

against TMR and TSR MIPS. The energy usage was calculated using separate energy

equations and were calculated with respect to a different FPGA chip than the Xilinx

Spartan 7 used in this research. Since this research used Xilinx products, future work

could use the power estimation tools available for Xilinx products to either modify

the previously developed energy equations or create new ones. The Vivado software

performs power analysis as part of the “Implementation” step in the hardware de-

sign workflow and returns estimates of on-chip power. Future work could use Vivado

to perform an in-depth power analysis of just the FPGA that contains the MIPS

processors used to implement TMR, TSR, or AHR MIPS and new energy equations

could be made to predict the energy consumption of each in hardware. The hard-

ware energy consumption could be measured using Spartan 7 FPGA boards that are

only packaged with the chip and a few I/O interfaces to accurately measure only the

energy used by the processors. Alternatively, there may be other Spartan 7 FPGA

boards that either have or are compatible with, specialized power supplies that only

power the FPGA chip, can measure the power utilization, and can report that power

utilization to the user. If it is determined that there are no Spartan 7 FPGA boards

181

that enable accurate power measurement, the new AHR MIPS design could be im-

plemented on another Xilinx FPGA that does offer the desired functionality. The

AHR MIPS design is completely defined in VHDL and can be implemented on any

two FPGA devices with enough resources to support the architecture.

Future work to enhance AHR MIPS would be to design and integrate a third

operating mode into the architecture. Dual Modular Redundancy (DMR), described

in Ch. II Section 2.4.1.2, could be added to the AHR MIPS architecture and would

enhance the architecture’s performance and radiation mitigation capabilities. For

example, if AHR MIPS operating in TMR mode encounters a permanent SEE that

damages one of the redundant modules, that module could continuously produce

incorrect results for the remainder of that device’s operational lifetime. A DMR

mode could be introduced where the AHR Controller monitors the number of times

a redundant module produces an error, and if it is above a threshold that redundant

module is considered to be permanently damaged and is held in reset. The AHR

Controller would then transition AHR MIPS to DMR mode, which would use the

two redundant modules identified as undamaged to continue processing instructions.

This mode would have reduced radiation tolerance compared to TMR, but could act

as a backup tolerance mode during the aforementioned error scenario. DMR mode

could also be used as an intermediate performance mode that does not use as much

energy as TMR yet offers the same program runtime performance.

Improvements could also be made to the method of software redundancy used

in AHR MIPS as future work. EDDI TSR was chosen as the software redundancy

method for AHR MIPS, but as discussed in Ch. II Section 2.4.2.1 improved versions

of EDDI TSR have been designed. One of these advanced EDDI methods could

be integrated into the AHR MIPS architecture to increase the radiation tolerance

of AHR MIPS while operating in TSR mode. Also, an entirely different method of

182

software redundancy could be integrated into the AHR MIPS architecture such as

signature analysis. Signature analysis was discussed in Ch. II Section 2.4.2.2, and

although these methods incur code size overheads like EDDI TSR they could provide

enhanced radiation tolerance over any EDDI-like method of software redundancy.

Another important development necessary for AHR MIPS would be the inclu-

sion of configuration memory scrubbing or dynamic partial reconfiguration to correct

errors that accumulate in the configuration memory of the target FPGA. The AHR

MIPS architecture developed in this research cannot correct radiation-induced config-

uration memory errors. Configuration memory scrubbing could be implemented using

an off-chip radiation-hardened memory module to periodically re-write the configu-

ration memory of AHR MIPS and could provide passive correction of configuration

memory. Dynamic partial reconfiguration could also correct configuration memory,

but would require that suspected configuration memory errors be identified, so only

that portion of the FPGA would be reconfigured. The inclusion of either method

into the AHR MIPS design would be necessary if AHR were to be implemented on

an FPGA for use in a space system. FPGA designs intended for use in space must

include redundancy for configuration memory and memory cells that hold user data.

Configuration memory scrubbing and dynamic partial reconfiguration were described

in Ch. II Sections 2.4.1.4 & 2.4.1.3 respectively.

The AHR MIPS architecture developed during this research has the processor

and memory split across two FPGA boards. This design decision is one that would

enable future work radiation testing the AHR MIPS architecture at a radiation test

facility. Since the AHR MIPS processors are split from the memory, it is feasible

to just use longer wires between Board #1 and #2 to facilitate radiation testing

on Board #1. Longer wires could be used to move Board #2 either outside the

radiation test chamber or some distance away from the radiation source where it

183

can be shielded. Physical radiation testing of AHR MIPS would be a necessary and

important step towards determining the real-world feasibility of using AHRMIPS over

a standalone TMR or TSRMIPS implementation. The error injection results collected

during this research and any future error injection results would also require that real-

world radiation test data be collected, before a space mission planner/designer would

consider using AHR MIPS.

184

Appendix A. Detailed Design Tables

Table 8. AHR MIPS Instr. Subset

Instr. Instr. Abbreviation Instr. Name

1 SLL Shift Word Left Logical

2 NOP No operation

3 SRL Shift Word Right Logical

4 SRA Shift Word Right Arithmetic

5 SLLV Shift Word Left Logical Variable

6 SRLV Shift Word Right Logical Variable

7 SRAV Shift Word Right Arithmetic Variable

8 LW Load Word

9 SW Store Word

10 ADD Add Word

11 ADDU Add Unsigned Word

12 SUB Subtract Word

13 SUBU Subtract Word Unsigned

14 AND And

15 OR Or

16 XOR Exclusive Or

17 NOR Nor

18 SLT Set Less Than

19 SLTU Set Less Than Unsigned

20 BGEZ Branch on Greater Than or Equal to Zero

21 BLTZ Branch on Less Than Zero

Table 8 – Continued on next page

185

Table 8 – Continued from previous page

Instr. Instr. Abbreviation Instr. Name

22 BEQ Branch on Equal

23 BNE Branch on Not Equal

24 BLEZ Branch on Less Than or Equal to Zero

25 BGTZ Branch on Greater Than Zero

26 ADDI Add Immediate Word

27 ADDIU Add Immediate Unsigned Word

28 SLTI Set on Less Than Immediate

29 SLTIU Set on Less Than Immediate Unsigned

30 ANDI And Immediate

31 ORI Or Immediate

32 XORI Exclusive Or Immediate

33 LUI Load Upper Immediate

186

Table 9. Architecture Specific Processes

MIPS Architecture Process

TMR SRP Creation

Detect a Type A Error

Perform Type A Error Recovery

Return to Beginning of Instruction where

Type A Error was Detected

Detect a Type B Error

Perform Type B Error Recovery

TSR SRP 0 Creation

SRP 1 Creation

Error Recovery

AHR TMR to TSR Transition Time

187

Table 10. MIBO FSM Read Operation States

Current Next Transition Description
State State Condition
s idle s read0 i READ = 1 Receive read signal from MIPS
s read0 s read1 i DONE TX = 1 Send read code and signal UART-TX
s read1 s read2 i DONE TX = 0 Wait for UART-TX to return to idle state
s read2 s read3 i DONE TX = 1 Send 1st byte of Address
s read3 s read4 i DONE TX = 0 Wait for UART-TX to return to idle state
s read4 s read5 i DONE TX = 1 Send 2nd byte of Address
s read5 s read6 i DONE TX = 0 Wait for UART-TX to return to idle state
s read6 s read7 i READY = 1 Receive 1st byte of Address back from MEBI
s read7 s read8 i READY = 0 Advance UART-RX towards idle state
s read8 s read9 i READY = 1 Receive 2nd byte of Address back from MEBI

Return UART-RX to idle state
s read9 s read10 i READY = 0 Advance UART-RX towards idle state
s read10 s read11 i C DATA(15:0) == o DATA(15:0) Address data sent is equivalent to address data received

Return UART-RX to idle state
s read10 s read10a i C DATA(15:0) != o DATA(15:0) Address data sent is NOT equivalent to addr. data received

Return UART-RX to idle state
s read10a s read10b i DONE TX = 1 Transmit 8-bit error code to MEBI
s read10b s read2 i DONE TX = 0 Jump to s read2 to re-do address transmit

Wait for UART-TX to return to idle state
s read11 s read12 i DONE TX = 1 Transmit 8-bit correct code to MEBI
s read12 s read13 i DONE TX = 0 Wait for UART-TX to return to idle state
s read13 s idle i READ = 0 Return to idle state once MIPS lowers read signal

188

Table 11. MIBO FSM Write Operation States

Current Next Transition Description

State State Condition

s idle s write0 i WRITE = 1 Receive write signal from MIPS

s write0 s write1 i DONE TX = 1 Send write code and signal UART-TX

s write1 s write2 i DONE TX = 0 Return UART-TX to idle state

s write2 s write3 i DONE TX = 1 Send 1st byte of Address

s write3 s write4 i DONE TX = 0 Return UART-TX to idle state

s write4 s write5 i DONE TX = 1 Send 2nd byte of Address

s write5 s write6 i DONE TX = 0 Return UART-TX to idle state

s write6 s write7 i READY = 1 Receive 1st byte of Address back from MEBI

s write7 s write8 i READY = 0 Advance UART-RX towards idle state

s write8 s write9 i READY = 1 Receive 2nd byte of Address back from MEBI

Return UART-RX to idle state

s write9 s write10 i READY = 0 Advance UART-RX towards idle state

Table 11 – Continued on next page

189

Table 11 – Continued from previous page

Current Next Transition Description

State State Condition

s write10 s write11 i C DATA(15:0) == o DATA(15:0) Address data sent is equivalent to address data received

Return UART-RX to idle state

s write10 s write10a i C DATA(15:0) != o DATA(15:0) Address data sent is NOT equivalent to address data received

Return UART-RX to idle state

s write10a s write10b i DONE TX = 1 Transmit 8-bit error code to MEBI and signal UART-TX

s write10b s write2 i DONE TX = 0 Jump to s write2 to re-do address transmit

Return UART-TX to idle state

s write11 s write12 i DONE TX = 1 Transmit 8-bit correct code to MEBI

s write12 s write13 i DONE TX = 0 Return UART-TX to idle state

s write13 s write14 i DONE TX = 1 Send 1st byte of data

s write14 s write15 i DONE TX = 0 Return UART-TX to idle state

s write15 s write16 i DONE TX = 1 Send 2nd byte of data

s write16 s write17 i DONE TX = 0 Return UART-TX to idle state

s write17 s write18 i DONE TX = 1 Send 3rd byte of data

Table 11 – Continued on next page

190

Table 11 – Continued from previous page

Current Next Transition Description

State State Condition

s write18 s write19 i DONE TX = 0 Return UART-TX to idle state

s write19 s write20 i DONE TX = 1 Send 4th byte of data

s write20 s write21 i DONE TX = 0 Return UART-TX to idle state

s write21 s write22 i READY = 1 Receive 1st byte of data from MEBI

s write22 s write23 i READY = 0 Advance UART-RX towards idle state

s write23 s write24 i READY = 1 Receive 2nd byte of data from MEBI

s write24 s write25 i READY = 0 Advance UART-RX towards idle state

s write25 s write26 i READY = 1 Receive 3rd byte of data from MEBI

s write26 s write27 i READY = 0 Advance UART-RX towards idle state

s write27 s write28 i READY = 1 Receive 4th byte of data from MEBI

s write28 s write29 i READY = 0 Advance UART-RX towards idle state

s write29 s write30 i C DATA(31:0) == o DATA(31:0) Data sent is equivalent to data received

Return UART-RX to idle state

Table 11 – Continued on next page

191

Table 11 – Continued from previous page

Current Next Transition Description

State State Condition

s write29 s write29a i C DATA(31:0) != o DATA(31:0) Data sent is NOT equivalent to data received

Return UART-RX to idle state

s write29a s write29b i DONE TX = 1 Transmit 8-bit error code to MEBI and signal UART-TX

s write29b s write13 i DONE TX = 0 Jump to s write13 to re-do data transmit

Return UART-TX to idle state

s write30 s write31 i DONE TX = 1 Transmit 8-bit correct code to MEBI

s write31 s write32 i DONE TX = 0 Return UART-TX to idle state

s write32 s idle i WRITE = 0 Return to idle state once MIPS lowers write signal

192

Table 12. MEBI FSM Read Operation States

Current Next Transition Description
State State Condition
s idle s read0 i DATA = READ CODE Receive 8-bit read code from MIBO

i READY = 1
s read0 s read1 i READY = 0 Advance UART-RX towards idle state
s read1 s read2 i READY = 1 Receive 1st byte of Address back from MIBO
s read2 s read3 i READY = 0 Advance UART-RX towards idle state
s read3 s read4 i READY = 1 Receive 2nd byte of Address back from MIBO
s read4 s read5 i READY = 0 Advance UART-RX towards idle state
s read5 s read6 i DONE TX = 1 Transmit 1st byte of address to MIBO
s read6 s read7 i DONE TX = 0 Return UART-TX to idle state
s read7 s read8 i DONE TX = 1 Transmit 2nd byte of address to MIBO
s read8 s read9 i DONE TX = 0 Return UART-TX to idle state
s read9 s read10 i DATA = CORRECT CODE Receive 8-bit correct code from MIBO

i READY = 1
s read9 s read9a i DATA = ERROR CODE Receive 8-bit error code from MIBO

i READY = 1
s read9a s read9b i READY = 0 Advance UART-RX towards idle state
s read9b s read1 Jump to s read1 to re-receive address
s read10 s read11 i READY = 0 Advance UART-RX towards idle state
s read11 s read12 i INSTR COMP ACK = 1 Set memory read enable high and supply read address until

instruction complete signal is set high
s read12 s idle i INSTR COMP ACK = 0 Clear output to memory once instruction complete signal is set low

193

Table 13. MEBI FSM Write Operation States

Current Next Transition Description

State State Condition

s idle s write0 i DATA = WRITE CODE Receive 8-bit write code from MIBO

i READY = 1

s write0 s write1 i READY = 0 Advance UART-RX towards idle state

s write1 s write2 i READY = 1 Receive 1st byte of Address from MIBO

s write2 s write3 i READY = 0 Advance UART-RX towards idle state

s write3 s write4 i READY = 1 Receive 2nd byte of Address from MIBO

s write4 s write5 i READY = 0 Advance UART-RX towards idle state

s write5 s write6 i DONE TX = 1 Transmit 1st byte of address to MIBO

s write6 s write7 i DONE TX = 0 Return UART-TX to idle state

s write7 s write8 i DONE TX = 1 Transmit 2nd byte of address to MIBO

s write8 s write9 i DONE TX = 0 Return UART-TX to idle state

s write9 s write10 i DATA = CORRECT CODE Receive 8-bit correct code from MIBO

i READY = 1

Table 13 – Continued on next page

194

Table 13 – Continued from previous page

Current Next Transition Description

State State Condition

s write9 s write9a i DATA = ERROR CODE Receive 8-bit error code from MIBO

i READY = 1

s write9a s write1 i READY = 0 Advance UART-RX towards idle state

Jump to s write1 to re-receive address

s write10 s write11 i READY = 0 Advance UART-RX towards idle state

s write11 s write12 i READY = 1 Receive 1st byte of data from MIBO

s write12 s write13 i READY = 0 Advance UART-RX towards idle state

s write13 s write14 i READY = 1 Receive 2nd byte of data from MIBO

s write14 s write15 i READY = 0 Advance UART-RX towards idle state

s write15 s write16 i READY = 1 Receive 3rd byte of data from MIBO

s write16 s write17 i READY = 0 Advance UART-RX towards idle state

s write17 s write18 i READY = 1 Receive 4th byte of data from MIBO

s write18 s write19 i READY = 0 Advance UART-RX towards idle state

s write19 s write20 i DONE TX = 1 Transmit 1st byte of data to MIBO

Table 13 – Continued on next page

195

Table 13 – Continued from previous page

Current Next Transition Description

State State Condition

s write20 s write21 i DONE TX = 0 Return UART-TX to idle state

s write21 s write22 i DONE TX = 1 Transmit 2nd byte of data to MIBO

s write22 s write23 i DONE TX = 0 Return UART-TX to idle state

s write23 s write24 i DONE TX = 1 Transmit 3rd byte of data to MIBO

s write24 s write25 i DONE TX = 0 Return UART-TX to idle state

s write25 s write26 i DONE TX = 1 Transmit 4th byte of data to MIBO

s write26 s write27 i DONE TX = 0 Return UART-TX to idle state

s write27 s write28 i DATA = CORRECT CODE Receive 8-bit correct code from MIBO

i READY = 1

s write27 s write27a i DATA = ERROR CODE Receive 8-bit error code from MIBO

i READY = 1

s write27a s write11 i READY = 0 Advance UART-RX towards idle state

Jump to s write11 to re-receive address

s write28 s write29 i READY = 0 Advance UART-RX towards idle state

Table 13 – Continued on next page

196

Table 13 – Continued from previous page

Current Next Transition Description

State State Condition

s write29 s write30 i INSTR COMP ACK = 1 Set memory write enable high and supply address and write data

until instruction complete signal is set high

s write30 s idle i INSTR COMP ACK = 0 Clear output to memory once instruction complete signal is set low

197

Table 14. MEBO FSM Read Operation States

Current Next Transition Description

State State Condition

s idle s read0 (i READ = 1 and i MEM READY = 1) Receive read signal from MEBI and memory ready signal

s read0 s read1 i DONE TX = 1 Send 8-bit read code to MIBI

s read1 s read2 i DONE TX = 0 Return UART-TX to idle state

s read2 s read3 i DONE TX = 1 Send 1st byte of data

s read3 s read4 i DONE TX = 0 Return UART-TX to idle state

s read4 s read5 i DONE TX = 1 Send 2nd byte of data

s read5 s read6 i DONE TX = 0 Return UART-TX to idle state

s read6 s read7 i DONE TX = 1 Send 3rd byte of data

s read7 s read8 i DONE TX = 0 Return UART-TX to idle state

s read8 s read9 i DONE TX = 1 Send 4th byte of data

s read9 s read10 i DONE TX = 0 Return UART-TX to idle state

s read10 s read11 i READY = 1 Receive 1st byte of data from MIBI

s read11 s read12 i READY = 0 Advance UART-RX towards idle state

Table 14 – Continued on next page

198

Table 14 – Continued from previous page

Current Next Transition Description

State State Condition

s read12 s read13 i READY = 1 Receive 2nd byte of data from MIBI

s read13 s read14 i READY = 0 Advance UART-RX towards idle state

s read14 s read15 i READY = 1 Receive 3rd byte of data from MIBI

s read15 s read16 i READY = 0 Advance UART-RX towards idle state

s read16 s read17 i READY = 1 Receive 4th byte of data from MIBI

s read17 s read18 i READY = 0 Advance UART-RX towards idle state

s read18 s read19 i C DATA(31:0) == o DATA(31:0) Data sent is equivalent to data received

Return UART-RX to idle state

s read18 s read18a i C DATA(31:0) != o DATA(31:0) Data sent is NOT equivalent to data received

Return UART-RX to idle state

s read18a s read18b i DONE TX = 1 Transmit 8-bit error code to MIBI

s read18b s read2 i DONE TX = 0 Jump to s read2 to re-do data transmit

Return UART-TX to idle state

s read19 s read20 i DONE TX = 1 Transmit 8-bit correct code to MEBI

Table 14 – Continued on next page

199

Table 14 – Continued from previous page

Current Next Transition Description

State State Condition

s read20 s read21 i DONE TX = 0 Return UART-TX to idle state

s read21 s read22 i MEM READY = 0 Set instruction complete signal to MEBI high

s read22 s idle Set instruction complete signal low and return to idle state

200

Table 15. MEBO FSM Write Operation States

Current Next Transition Description
State State Condition
s idle s write0 (i WRITE = 1 and i MEM READY = 1) Receive write signal from MEBI and memory ready signal
s write0 s write1 i DONE TX = 1 Send 8-bit ready code to MIBI
s write1 s write2 i DONE TX = 0 Return UART-TX to idle state
s write2 s write3 i MEM READY = 0 Set instruction complete signal to MEBI high
s write3 s idle Set instruction complete signal low and return to idle state

201

Table 16. MEBO FSM Program End Operation States

Current Next Transition Description
State State Condition
s idle s reset0 i PRGM DONE = 1 Receive program done signal from memory
s reset0 s reset1 i DONE TX = 1 Send 8-bit program done code to MIBI and set instruction complete

signal to MEBI high
s reset1 s reset2 i DONE TX = 0 Return UART-TX to idle state
s reset2 s idle Set instruction complete signal low and return to idle state

202

Table 17. MIBI FSM Read Operation States

Current Next Transition Description

State State Condition

s idle s read0 (i READ = 1 and i READY = 1) Receive read signal from MIBO and ready signal from MEBO

s read0 s read1 i READY = 0 Advance UART-RX towards idle state

s read1 s read2 i READY = 1 Receive 1st byte of data from MEBO

s read2 s read3 i READY = 0 Advance UART-RX towards idle state

s read3 s read4 i READY = 1 Receive 2nd byte of data from MEBO

s read4 s read5 i READY = 0 Advance UART-RX towards idle state

s read5 s read6 i READY = 1 Receive 3rd byte of data from MEBO

s read6 s read7 i READY = 0 Advance UART-RX towards idle state

s read7 s read8 i READY = 1 Receive 4th byte of data from MEBO

s read8 s read9 i READY = 0 Advance UART-RX towards idle state

s read9 s read10 i DONE TX = 1 Transmit 1st byte of data back to MEBO

s read10 s read11 i DONE TX = 0 Return UART-TX to idle state

s read11 s read12 i DONE TX = 1 Transmit 2nd byte of data back to MEBO

Table 17 – Continued on next page

203

Table 17 – Continued from previous page

Current Next Transition Description

State State Condition

s read12 s read13 i DONE TX = 0 Return UART-TX to idle state

s read13 s read14 i DONE TX = 1 Transmit 3rd byte of data back to MEBO

s read14 s read15 i DONE TX = 0 Return UART-TX to idle state

s read15 s read16 i DONE TX = 1 Transmit 4th byte of data back to MEBO

s read16 s read17 i DONE TX = 0 Return UART-TX to idle state

s read17 s read18 i DATA = CORRECT CODE Receive 8-bit correct code from MEBO

i READY = 1

s read17 s read17a i DATA = ERROR CODE Receive 8-bit error code from MEBO

i READY = 1

s read17a s read1 i READY = 0 Jump to s read1 to re-receive data

Advance UART-RX towards idle state

s read18 s read19 i READY = 0 Advance UART-RX towards idle state

s read19 s idle i READ = 0 Send read data to MIPS processor

204

Table 18. MIBI FSM Write Operation States

Current Next Transition Description
State State Condition
s idle s write0 (i WRITE = 1 and i READY = 1) Receive write signal from MIBO and ready signal from MEBO
s write0 s write1 i READY = 0 Advance UART-RX towards idle state
s write1 s idle i WRITE = 0 Set ready signal to MIPS proc. high to begin execution

of the next instruction

205

Table 19. MIBI FSM Program End Operation States

Current Next Transition Description
State State Condition
s idle s reset0 i DATA = RESET CODE Receive reset code from MEBO
s reset0 s reset1 i READY = 0 Advance UART-RX towards idle state
s reset1 s reset2 Set prgm done signal to MIPS proc. high to initiate reset
s reset2 s idle Set prgm done signal low and return to idle state

206

Bibliography

1. P. Adell, G. Allen, G. Swift, and S. McClure, “Assessing and mitigating radiation

effects in Xilinx SRAM FPGAs,” Proceedings of the European Conference on

Radiation and its Effects on Components and Systems, RADECS, pp. 418–424,

2008.

2. S. A. Aketi, J. Mekie, and H. Shah, “Single-Error Hardened and Multiple-Error

Tolerant Guarded Dual Modular Redundancy Technique,” Proceedings of the

IEEE International Conference on VLSI Design, vol. 2018-January, pp. 250–255,

2018.

3. S. Bahramnejad and H. R. Zarandi, “An adaptive redundancy oriented method

to tolerate soft errors in SRAM-based FPGAs using unused resources,” ARES

2010 - 5th International Conference on Availability, Reliability, and Security, pp.

119–124, 2010.

4. R. C. Baumann, “Radiation-induced soft errors in advanced semiconductor tech-

nologies,” IEEE Transactions on Device and Materials Reliability, vol. 5, no. 3,

pp. 305–315, sep 2005.

5. J. Benfica, B. Green, B. C. Porcher, L. B. Poehls, F. Vargas, N. H. Medina,

N. Added, V. A. De Aguiar, E. L. MacChione, F. Aguirre, and M. A. Da Silveira,

“Analysis of FPGA SEU sensitivity to combined effects of conducted EMI and

TID,” 2016 Asia-Pacific International Symposium on Electromagnetic Compati-

bility, APEMC 2016, vol. 63, no. 2, pp. 887–889, 2016.

6. M. Berg, C. Poivey, D. Petrick, D. Espinosa, A. Lesea, K. A. LaBel, M. Friendlich,

H. Kim, and A. Phan, “Effectiveness of internal versus external SEU scrubbing

mitigation strategies in a Xilinx FPGA: Design, test, and analysis,” in IEEE

Transactions on Nuclear Science, vol. 55, no. 4, aug 2008, pp. 2259–2266.

7. M. D. Berg, H. S. Kim, A. D. Phan, C. M. Seidlick, K. A. Label, and J. A. Pellish,

“Single event induced multiple bit errors and the effects of logic masking,” IEEE

Transactions on Nuclear Science, vol. 60, no. 6, pp. 4192–4199, 2013.

8. P. Bernardi, S. Member, L. Maria, V. Bolzani, S. Member, M. Rebaudengo, M. S.

Reorda, F. L. Vargas, and M. Violante, “for Systems-on-a-Chip,” vol. 55, no. 2,

pp. 185–198, 2006.

9. L. Bozzoli, C. De Sio, B. Du, and L. Sterpone, “A Neutron Generator Testing

Platform for the Radiation Analysis of SRAM-based FPGAs,” Conference Record

207

- IEEE Instrumentation and Measurement Technology Conference, vol. 2021-May,

pp. 1–5, 2021.

10. G. Bruguier and J. M. Palau, “Single Particle-Induced Late,” IEEE Transactions

on Nuclear Science, vol. 43, no. 2, pp. 522–532, 1996.

11. M. Caffrey, K. Morgan, D. Roussel-Dupre, S. Robinson, A. Nelson, A. Salazar,

M. Wirthlin, W. Howes, and D. Richins, “On-orbit flight results from the re-

configurable cibola flight experiment satellite (CFESat),” in Proceedings - IEEE

Symposium on Field Programmable Custom Computing Machines, FCCM 2009,

2009, pp. 3–10.

12. P. Cheynet, B. Nicolescu, R. Velazco, M. Rebaudengo, M. S. Reorda, and M. Vi-

olante, “Experimentally evaluating an automatic approach for generating safety-

critical software with respect to transient errors,” in IEEE Transactions on Nu-

clear Science, vol. 47, no. 6 III, dec 2000, pp. 2231–2236.

13. S. L. Clark, K. Avery, and R. Parker, “TID and SEE testing results of altera cy-

clone Field Programmable Gate Array,” IEEE Radiation Effects Data Workshop,

pp. 88–90, 2004.

14. S. Cuenca-Asensi, A. Mart́ınez-Álvarez, F. Restrepo-Calle, F. R. Palomo,

H. Guzmán-Miranda, and M. A. Aguirre, “A novel co-design approach for soft er-

rors mitigation in embedded systems,” in IEEE Transactions on Nuclear Science,

vol. 58, no. 3 PART 2, jun 2011, pp. 1059–1065.

15. T. A. Delong, B. W. Johnson, and J. A. Profeta, “A Fault Injection Technique

for VHDL Behavioral-Level Models,” IEEE Design and Test of Computers, pp.

24–33, 1996.

16. R. Glein, F. Rittner, and A. Heuberger, “Adaptive single-event effect mitigation

for dependable processing systems,” in 2016 International Conference on Recon-

figurable Computing and FPGAs, ReConFig 2016. Institute of Electrical and

Electronics Engineers Inc., 2016.

17. R. Glein, B. Schmidt, F. Rittner, J. Teich, and D. Ziener, “A self-adaptive SEU

mitigation system for FPGAs with an internal block RAM radiation particle

sensor,” in Proceedings - 2014 IEEE 22nd International Symposium on Field-

Programmable Custom Computing Machines, FCCM 2014. Institute of Electrical

and Electronics Engineers Inc., jul 2014, pp. 251–258.

18. O. Goloubeva, M. Rebaudengo, M. S. Reorda, and M. Violante, “Soft-error detec-

tion using control flow assertions,” Proceedings - IEEE International Symposium

208

on Defect and Fault Tolerance in VLSI Systems, vol. 2003-Janua, pp. 581–588,

2003.

19. N. Hamilton, S. Graham, T. Carbino, J. Petrosky, and A. Betances, “Adaptive-

hybrid redundancy with error injection,” Electronics (Switzerland), vol. 8, no. 11,

2019.

20. N. S. Hamilton, “Adaptive-Hybrid Redundancy for Radiation Hardening,” Ph.D.

dissertation, Air Force Institute of Technology, March 2019.

21. ——, “Adaptive-Hybrid Redundancy MIPS Architecture Version 2.2,” Jul 2019.

22. ——, “Basic MIPS Architecture Verison 1.4,” Jul 2019.

23. ——, “Triple Modular Redundancy MIPS Architecture Version 1.4,” Jul 2019.

24. R. W. Hamming, “The Bell system technical journal,” The Bell System Technical

Journal, vol. 196, no. 2, pp. 147–160, 1950.

25. P. Ipa and S. Di, “DE10-Standard User Man-

ual,” Terasic Inc., Tech. Rep., 2017. [Online]. Avail-

able: https://www.intel.com/content/dam/altera-www/global/en US/portal/

dsn/42/doc-us-dsnbk-42-5505271707235-de10-standard-user-manual-sm.pdf

26. A. Jacobs, G. Cieslewski, A. D. George, A. Gordon-Ross, and H. Lam,

“Reconfigurable fault tolerance: A comprehensive framework for reliable and

adaptive FPGA-based space computing,” ACM Transactions on Reconfigurable

Technology and Systems, vol. 5, no. 4, pp. 1–30, dec 2012. [Online]. Available:

https://dl.acm.org/doi/10.1145/2392616.2392619

27. S. Kasap, E. W. Wachter, X. Zhai, S. Ehsan, and K. McDonald-Maier, “Survey of

Soft Error Mitigation Techniques Applied to LEON3 Soft Processors on SRAM-

Based FPGAs,” IEEE Access, vol. 8, pp. 28 646–28 658, 2020.

28. F. Kastensmidt and P. Rech, FPGAs and parallel architectures for aerospace

applications: Soft errors and fault-tolerant design, 2015. [Online]. Available:

https://link.springer.com/content/pdf/10.1007/978-3-319-14352-1.pdf

29. R. Koga, S. H. Penzin, K. B. Crawford, and W. R. Crain, “Single event func-

tional interrupt (SEFI) sensitivity in microcircuits,” Proceedings of the European

Conference on Radiation and its Effects on Components and Systems, RADECS,

pp. 311–318, 1998.

209

https://www.intel.com/content/dam/altera-www/global/en_US/portal/dsn/42/doc-us-dsnbk-42-5505271707235-de10-standard-user-manual-sm.pdf
https://www.intel.com/content/dam/altera-www/global/en_US/portal/dsn/42/doc-us-dsnbk-42-5505271707235-de10-standard-user-manual-sm.pdf
https://dl.acm.org/doi/10.1145/2392616.2392619
https://link.springer.com/content/pdf/10.1007/978-3-319-14352-1.pdf

30. C. A. Mao, Y. Xie, Y. Xie, H. Chen, and H. Shi, “An Automated Fault In-

jection Platform for Fault Tolerant FFT Implemented in SRAM-Based FPGA,”

International System on Chip Conference, vol. 2018-Septe, pp. 7–12, 2019.

31. Mips Technologies, “MIPS ® Architecture For Programmers Volume II-A : The

MIPS32 ® Instruction Set,” Architecture, vol. II, pp. 2008–2010, 2010.

32. K. S. Morgan, D. L. McMurtrey, B. H. Pratt, and M. J. Wirthlin, “A comparison

of TMR with alternative fault-tolerant design techniques for FPGAs,” in IEEE

Transactions on Nuclear Science, vol. 54, no. 6, dec 2007, pp. 2065–2072.

33. H. T. Nguyen and Y. Yagil, “A systematic approach to SER estimation and

solutions,” IEEE International Reliability Physics Symposium Proceedings, vol.

2003-January, pp. 60–70, 2003.

34. B. Nicolescu, Y. Savaria, S. Member, and R. Velazco, “Coverage Against Single

Bit-Flip Faults,” IEEE Transactions on Nuclear Science, vol. 51, no. 6, pp. 3510–

3518, 2004.

35. N. Oh, P. P. Shirvani, and E. J. McCluskey, “Control-flow checking by software

signatures,” IEEE Transactions on Reliability, vol. 51, no. 1, pp. 111–122, 2002.

36. ——, “Error detection by duplicated instructions in super-scalar processors,”

IEEE Transactions on Reliability, vol. 51, no. 1, pp. 63–75, 2002.

37. P. S. Ostler, M. P. Caffrey, D. S. Gibelyou, P. S. Graham, K. S. Morgan, B. H.

Pratt, H. M. Quinn, and M. J. Wirthlin, “SRAM FPGA reliability analysis for

harsh radiation environments,” in IEEE Transactions on Nuclear Science, vol. 56,

no. 6, dec 2009, pp. 3519–3526.

38. G. Popov, M. Nenova, and K. Raynova, “Reliability Investigation of TMR and

DMR Systems with Global and Partial Reservation,” 2018 7th Balkan Conference

on Lighting, BalkanLight 2018 - Proceedings, pp. 13–16, 2018.

39. B. Pratt, M. Caffrey, P. Graham, K. Morgan, and M. Wirthlin, “Improving

FPGA Design Robustness with Partial TMR,” Tech. Rep. [Online]. Available:

https://ieeexplore.ieee.org/abstract/document/4017162/

40. G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I. August, “SWIFT:

Software implemented fault tolerance,” Proceedings of the 2005 International

Symposium on Code Generation and Optimization, CGO 2005, vol. 2005, pp.

243–254, 2005.

210

https://ieeexplore.ieee.org/abstract/document/4017162/

41. S. Rezgui, G. M. Swift, R. Velazco, and F. F. Farmanesh, “Validation of an

SEU simulation technique for a complex processor: PowerPC7400,” in IEEE

Transactions on Nuclear Science, vol. 49 I, no. 6, dec 2002, pp. 3156–3162.

42. S. Rezgui, R. Velazco, R. Ecoffet, S. Rodriguez, and J. R. Mingo, “Estimating

Error Rates in Processor-Based Architectures,” IEEE Transactions on Nuclear

Science, vol. 48, no. 5, pp. 1680–1687, 2001.

43. P. K. Samudrala, J. Ramos, and S. Katkoori, “Selective triple modular redun-

dancy (STMR) based single-event upset (SEU) tolerant synthesis for FPGAs,”

IEEE Transactions on Nuclear Science, vol. 51, no. 5 IV, pp. 2957–2969, oct

2004.

44. A. Sánchez-Macián, P. Reviriego, and J. A. Maestro, “Hamming SEC-DAED and

extended Hamming SEC-DED-TAED codes through selective shortening and bit

placement,” IEEE Transactions on Device and Materials Reliability, vol. 14, no. 1,

pp. 574–576, 2014.

45. P. P. Shirvani, N. R. Saxena, and E. J. McCluskey, “Software-implemented EDAC

protection against SEUs,” IEEE Transactions on Reliability, vol. 49, no. 3, pp.

273–284, sep 2000.

46. ——, “Software implemented edac protection against seus,” IEEE Transactions

on Reliability, vol. 49, no. 3, pp. 273–284, Mar 2000.

47. F. Siegle, T. Vladimirova, J. Ilstad, and O. Emam, “Mitigation of radiation

effects in SRAM-based FPGAs for space applications,” ACM Computing Surveys,

vol. 47, no. 2, 2015.

48. J. Singh and J. Singh, “A comparative study of error detection and correction

coding techniques,” Proceedings - 2012 2nd International Conference on Advanced

Computing and Communication Technologies, ACCT 2012, pp. 187–189, 2012.

49. L. Sterpone and M. Violante, “A new partial reconfiguration-based fault-injection

system to evaluate SEU effects in SRAM-based FPGAs,” IEEE Transactions on

Nuclear Science, vol. 54, no. 4, pp. 965–970, 2007.

50. A. Stoddard, A. Gruwell, P. Zabriskie, and M. J. Wirthlin, “A Hybrid Approach

to FPGA Configuration Scrubbing,” IEEE Transactions on Nuclear Science,

vol. 64, no. 1, pp. 497–503, jan 2017.

51. K. Technologies, Keysight Infiniium S-Series Oscilloscopes User’s Guide, 4th ed.,

1400 Fountaingrove Parkway, Santa Rosa, CA 95403, Jan 2017.

211

52. T. Technologies, DE1-SoC User Manual 1 www.terasic.com March

31, 2015, 2015. [Online]. Available: https://www.terasic.com.

tw/cgi-bin/page/archive download.pl?Language=English&No=816&FID=

a9e8cb474881606fa975d2420a309fb6

53. J. Teifel, “Self-voting dual-modular-redundancy circuits for single-event-transient

mitigation,” IEEE Transactions on Nuclear Science, vol. 55, no. 6, pp. 3435–3439,

2008.

54. Terasic, DE10-Standard User Manual, 9F. No.176 Sec.2 Gongdao 5th Rd, Hsinchu

City, Taiwan, Mar 2018.

55. J. L. Titus, “An updated perspective of single event gate rupture and single event

burnout in power MOSFETs,” IEEE Transactions on Nuclear Science, vol. 60,

no. 3, pp. 1912–1928, 2013.

56. U.S. Department of Defense, “Defense Space Strategy Summary,” no. June,

pp. 1–10, 2020. [Online]. Available: https://media.defense.gov/2020/Jun/17/

2002317391/-1/-1/1/2020 DEFENSE SPACE STRATEGY SUMMARY.PDF

57. M. Violante, L. Sterpone, M. Ceschia, D. Bortolato, P. Bernardi, M. S. Reorda,

and A. Paccagnella, “Simulation-based analysis of SEU effects in SRAM-based

FPGAs,” in IEEE Transactions on Nuclear Science, vol. 51, no. 6 II, dec 2004,

pp. 3354–3359.

58. J. Wang, “Radiation effects in FPGAs,” 9th Workshop on

Electronics for LHC, vol. 900, p. 2, 2003. [Online]. Avail-

able: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.117.

6269&rep=rep1&type=pdf%5Cnhttp://lhc-electronics-workshop.web.cern.

ch/lhc-electronics-workshop/2003/plenaryt/wang.pdf

59. M. Wirthlin, “FPGAs operating in a radiation environment: lessons learned

from FPGAs in space Related content Radiation effects in reconfigurable

FPGAs Heather Quinn,” iopscience.iop.org. [Online]. Available: https:

//iopscience.iop.org/article/10.1088/1748-0221/8/02/C02020/meta

60. Xilinx, “Radiation-Hardened, Space-GradeVirtex-5QV Family Data

Sheet: Overview,” vol. 192, no. v1.6, pp. 1–17, 2018. [On-

line]. Available: https://www.xilinx.com/support/documentation/data sheets/

ds192 V5QV Device Overview.pdf

61. ——, “SP701 Evaluation Board,” pp. 1–50, 2019.

212

https://www.terasic.com.tw/cgi-bin/page/archive_download.pl?Language=English&No=816&FID=a9e8cb474881606fa975d2420a309fb6
https://www.terasic.com.tw/cgi-bin/page/archive_download.pl?Language=English&No=816&FID=a9e8cb474881606fa975d2420a309fb6
https://www.terasic.com.tw/cgi-bin/page/archive_download.pl?Language=English&No=816&FID=a9e8cb474881606fa975d2420a309fb6
https://media.defense.gov/2020/Jun/17/2002317391/-1/-1/1/2020_DEFENSE_SPACE_STRATEGY_SUMMARY.PDF
https://media.defense.gov/2020/Jun/17/2002317391/-1/-1/1/2020_DEFENSE_SPACE_STRATEGY_SUMMARY.PDF
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.117.6269&rep=rep1&type=pdf%5Cnhttp://lhc-electronics-workshop.web.cern.ch/lhc-electronics-workshop/2003/plenaryt/wang.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.117.6269&rep=rep1&type=pdf%5Cnhttp://lhc-electronics-workshop.web.cern.ch/lhc-electronics-workshop/2003/plenaryt/wang.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.117.6269&rep=rep1&type=pdf%5Cnhttp://lhc-electronics-workshop.web.cern.ch/lhc-electronics-workshop/2003/plenaryt/wang.pdf
https://iopscience.iop.org/article/10.1088/1748-0221/8/02/C02020/meta
https://iopscience.iop.org/article/10.1088/1748-0221/8/02/C02020/meta
https://www.xilinx.com/support/documentation/data_sheets/ds192_V5QV_Device_Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds192_V5QV_Device_Overview.pdf

62. Xilinx Inc., “UltraScale Architecture and Product Data Sheet : Overview

Summary of Features RF Data Converter Subsystem Overview Soft Decision

Forward Error Correction (SD-FEC) Overview,” Xilinx Technical Documen-

tation, vol. 890, pp. 1–46, 2018. [Online]. Available: https://www.xilinx.com/

support/documentation/data sheets/ds889-zynq-usp-rfsoc-overview.pdf

63. M. Zheng, Z. Wang, and L. Li, “DAO: Dual module redundancy with AND/OR

logic voter for FPGA hardening,” Proceedings of 2015 the 1st International Con-

ference on Reliability Systems Engineering, ICRSE 2015, pp. 1–5, 2015.

213

https://www.xilinx.com/support/documentation/data_sheets/ds889-zynq-usp-rfsoc-overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds889-zynq-usp-rfsoc-overview.pdf

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

12–01–2022 Master’s Thesis Sept 2020 — Mar 2022

Implementation and Characterization of AHR on a Xilinx FPGA

Dittrich, Andrew J, Capt, USSF

Air Force Institute of Technology
Graduate School of Engineering an Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENG-MS-22-M-025

Intentionally Left Blank

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The Adaptive-Hybrid Redundancy (AHR) architecture was modified and tested in hardware using
Commercial-Off-The-Shelf (COTS) Field-Programmable Gate Arrays (FPGAs). The AHR architecture mitigates the
effects that the Single Event Upset (SEU) and Single Event Transient (SET) radiation effects have on processors and was
tested on a Microprocessor without Interlocked Pipeline Stages (MIPS) architecture. The AHR MIPS architecture was
implemented on two Xilinx FPGAs using a serial based communication network. The runtime performance of AHR
MIPS was measured and compared against the performance of TMR and TSR MIPS. AHR MIPS demonstrated flexible
runtime performance that was nearly as fast as TMR MIPS, never as slow as TSR MIPS, and demonstrated performance
in between those extremes. Hardware testing and verification of AHR MIPS showed that the AHR mitigation strategy
presents a large performance tradespace, where a user can adjust both the runtime processor performance and radiation
tolerance to fit the constraints of a space mission.

Hybrid Redundancy, Adaptive Redundancy, SEU, SET, FPGA, MIPS, Radiation, Radiation-tolerant, Xilinx

U U U UU 227

Maj. Nicolas Hamilton, AFIT/ENG

(937) 255-3636 x4220; nicolas.hamilton@afit.edu

	Abstract
	Dedication
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Research Context
	Research Questions
	Research Assumptions
	Document Overview

	Background
	Introduction
	Radiation Effects on Electronics in Space
	Long-Term Effects
	Short-Term Effects

	FPGAs In Space
	SRAM FPGAs
	TID
	SEUs & SETs
	SEFI
	SEL, SEGR, and SEB

	Methods of Mitigation for SRAM FPGAs
	Hardware
	Software
	Hybrid Redundancy

	V&V of Radiation Mitigation Methods for SRAM FPGAs
	Physical Radiation Testing
	Fault Injection Campaigns

	Adaptive Hybrid Redundancy (AHR)
	AHR MIPS Components
	AHR MIPS Instruction Sets/Programs
	AHR MIPS Operational Modes
	Evaluation of Error Free AHR MIPS
	Evaluation of Error Prone AHR MIPS
	Error Prone Simulation/Calculation Results

	Methodology
	Introduction
	FPGA Hardware Selection
	Previous Challenges
	Xilinx Spartan - 7 Development Board
	New Constraints

	SP701 AHR MIPS Design
	AHR MIPS Processor
	Forward Path
	Memory
	Return Path
	Modifications to Previous AHR MIPS Architecture
	Finalized Design of AHR MIPS Architecture

	Implementation of AHR MIPS on Xilinx FPGAs
	Instruction Set/Program Generation
	AHR MIPS Timing Calculations

	Hardware Testing and Data Collection
	Modifications to AHR MIPS for Hardware Measurements
	Architectures & Operational Modes Calculated and Measured
	Measurement Methodology
	Summary of Hardware Testing and Data Collection

	Ch. III Summary

	Results
	Introduction
	TMR MIPS Results
	Error Free TMR MIPS Results
	Error Prone TMR MIPS Results

	TSR MIPS Results
	Error Free TSR MIPS Results
	Error Prone TSR MIPS Results

	AHR MIPS Results
	Error Free AHR MIPS Results
	Error Prone AHR MIPS Results

	Hardware Measurement-to-Calculation Discrepancies
	AHR MIPS Performance Behavior Analysis
	EF TMR, TSR, and AHR MIPS
	TMR and AHR MIPS Type A Errors
	TMR and AHR MIPS Type B Errors
	TSR and AHR MIPS Errors
	Summary of AHR MIPS Performance Behavior Analysis

	Summary of Results

	Conclusion
	Contributions
	Future Work

	Detailed Design Tables
	Bibliography

