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EXECUTIVE SUMMARY 

This technical report presents the results of recently executed research at NIWC Pacific on the 

topic of “Quantum Monitoring and Control of Biological Cells”. The primary objectives were to 

develop quantum biology chips with biological elements, i.e. brain microtubules interfaced in 

nanoscale proximity to semiconductor spin qubits (an option for quantum computing/networking 

applications). The motivation was to advance fundamental knowledge on biological elements to 

advance the field of brain-inspired electronics/neuromorphics and brain-electronic interfaces as well 

as to explore nano-scale interactions, which may be relevant to viral processes and thus current 

global health challenges such as COVID-19. The research will ultimately enable the design of new 

information systems with features of what is referred to as “consciousness” by taking the step of 

providing an unprecedented ability to monitor and control changes in these biological elements at the 

nanoscale.  

The scientific literature is currently very active with several studies focused on the key role of 

nanoscale effects including those dominated by quantum physics in understanding consciousness; 

these are including coherent energy/charge transfer, entanglement, tunneling, and spin processes that 

are assisting to understanding brain function. 

The specific steps taken in this work include: (1) Synthesizing a series of microtubules (MTs) with 

native surface chemistry as well as surface modified chemistry to induce selective 

photoluminescence, from commercial tubulin precursors; (2) Depositing these microtubules on 

semiconductor spin qubit chips where the microtubules are in nanoscale proximity to optically active 

qubits formed from vacancy states in silicon carbide crystals; (3) Performing advanced spectroscopy 

of these MT-qubit chips under vacuum and cryogenic conditions spanning 4-10K to study the impact 

of charge/energy transfer between the MTs and the qubits and the resulting impacts to the composite 

spectra when taking a scan of the system response. In addition to this technical report, a U.S. patent 

disclosure was filed on the concept and technology.  

 



 

 

 

This page is intentionally blank.  



vii 

ACRONYMS 

RNA Ribonucleic acid 

RNA

DNA

Cu

COVID-19

MTs

CCD

SiC

DNA Deoxyribonucleic acid 

RNA
DNA
Cu
COVID-19
MTs
CCD
SiC

COVID-19 Coronavirus disease 
 

RNA
DNA
Cu
COVID-19
MTs
CCD
SiC

MTs Microtubules 
 

RNA
DNA
Cu
COVID-19
MTs
CCD
SiC

CCD Charge-coupled device 
 

RNA
DNA
Cu
COVID-19
MTs
CCD
SiC

SIC Silcon Carbide Crystal 
 

RNA
DNA
Cu
COVID-19
MTs
CCD
SiC

 
 

RNA
DNA
Cu
COVID-19
MTs
CCD
SiC

QUBIT Quantum Bit



 

 

This page is intentionally blank.  



 

ix 

CONTENTS 

EXECUTIVE SUMMARY ...................................................................................................... v 

ACRONYMS ....................................................................................................................... vii 

1. INTRODUCTION............................................................................................................. 1 

2. CHIP PRODUCTION PROCESS AND  CHEM/BIO SAFETY & HAZCOM PROTOCOLS
 3 

3. MICROTUBULE RE-POLYMERIZATION ....................................................................... 5 

4. DEPOSITION OF MICROTUBULES ON QUBIT CHIPS ................................................ 9 

5. VACUUM PUMP DOWN AND CRYOGENIC COOLING OF CHIP ............................... 11 

6. OPTICAL SPECTROSCOPY AT CRYOGENIC TEMPERATURES ............................. 13 

7. DISCUSSION AND ANALYSIS .................................................................................... 19 

8. SUMMARY ................................................................................................................... 23 

9. REFERENCES ............................................................................................................. 25 

 

FIGURES  

1.  Illustration of the experimental chip design where the microtubules are deposited 

and interfaced directly with a solid-state silicon vacancy spin qubit formed in an 

optically transparent crystal substrate, i.e. Silicon Carbide. .............................................. 3 

2. Polymerization of microtubules from tubulin monomers monitored by absorbance 

at 350 nm. Microtubules were synthesized from native tubulin as well as from 

native tubulin doped with 12% w/w fluorescent tag labeled tubulin. .................................. 6 

3. Fluorescent image of Rhodamine labeled microtubules.................................................... 7 

4. Photograph of the Silicon carbide qubit substrate with the regions deposited with 

microtubules in accordance with the list in Table I. ........................................................... 9 

5. Image of the chip while under vacuum and cryogenic conditions. The fiber probe can be 
seen in the bottom left…………………………………………………………………………..11 

6. Schematic of the experimental spectroscopy setup. Key features are the sample 

in cryo-magneto-optical chamber under vacuum. Excitation is performed with a 

fiber probe inside the chamber and collection takes place via a zoom lens. The 

collected emission is sent via fiber to a spectrometer with a cooled CCD camera 

to extract spectra. ........................................................................................................... 13 

7. Close up image of a microtubule region of the chip. ....................................................... 14 

8. Close-up image showing an example of how collection takes place where the 

fiber probe is brought in near proximity to the surface to produce a 50 micron 

excitation region. Extensive calibration and optimization of the optics is done to 

collect the emission. ....................................................................................................... 14 



 

x 

9.  Spectra collected with excitation at 532 nm and 40 mW power. Shown are the 

spectra for a) SiC qubit ensemble interfaced to MTs. (b) SiC qubit ensemble 

interfaced to native MTs i.e. without any additional fluorescence labeling (c) SiC 

qubit ensemble interface with MTs functionalized with Rhodamine and (d) SiC 

qubit ensemble interfaced to MTs functionalized with HiLyte Flor. ................................ 15 

10. Difference in the spectra collected with and without microtubules that 

demonstrates the impact due to the interfacing of the qubits with the MTs. .................. 16 

11. Difference in the spectra collected with and without microtubules that 

demonstrates the impact due to the interfacing of the qubits with the MTs. .................. 16 

12. Spectra collected with excitation at 785 nm and 250 mW power. Shown are the 

spectra for a) SiC qubit ensemble interfaced to MTs. (b) SiC qubit ensemble 

interfaced to native MTs i.e. without any additional fluorescence labeling (c) SiC 

qubit ensemble interface with MTs functionalized with Rhodamine and (d) SiC 

qubit ensemble. ............................................................................................................. 17 

13. Molecular reconstruction of tubulin protein dimer in a cluster array of 

microtubules. ................................................................................................................. 19 

14. Molecular reconstruction of tubulin protein dimer showing the c-termini. ...................... 20 

15. Molecular reconstruction of tubulin protein dimer showing the MTs c-termini 

interaction with the qubit. .............................................................................................. 20 

16. Proposed energy band diagram of the microtubule-qubit interface. .............................. 21 

 

TABLES 

1.  Summary of Qubit-MT configurations that were formed and experimented with 

on SiC crystals. .............................................................................................................. 4 

 



 

1 

1. INTRODUCTION 

Biological proteins/microtubules and RNA/DNA are amazing systems at the nanoscale that have 

very complex tertiary structures, i.e. folding into three dimensional sheets and helixes and having 

nanoscale spatial configurations. The translation of DNA drives complex expression and tertiary 

structures of proteins that are an essential part of cellular function. Viruses can infect cells, altering 

their information processing capabilities, impacting protein expression and/or microstructure and 

thus cellular functions. In addition, proteins on their own i.e. tubulin proteins, assemble into 

microtubules, cytoskeleton structural components which in addition to playing a key role in 

mechanical support, and cell migration, couple to and regulate neural-level synaptic function. Other 

proteins, i.e. metallo-proteins, contain metal centers such as Cu ions and can be used for targeting 

cancerous cells in order to induce apoptosis. Other proteins such as the Spike protein on the COVID-

19 virus are on the order of 2-3 nanometers and are critical for interacting with the human ACE-2 

enzyme and nanoscale changes result in devastating new mutations of the virus. The physical 

processes described are being actively studied for the classical and quantum physical effects involved 

including conduction, energy transfer, optical emission and quantum entanglement in the operation 

of these bionanomaterials. It is therefore important to understand the physics of these hybrid systems 

in order to design new designer proteins or to modify existing proteins-qubit complexes that could be 

used to monitor and control biological processes by means of electronic/optical/or other stimuli.  
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2. CHIP PRODUCTION PROCESS AND  
CHEM/BIO SAFETY & HAZCOM PROTOCOLS 

We developed a process for the construction of the experimental device, i.e. MTs interfaced with 

semiconductor spin qubits. A schematic of the chip is shown in Figure 1. The key elements of the 

process were the synthesis of the microtubules via the polymerization of fluorescent tagged and, or 

native tubulin  precursors, procured from Cell, Inc. In order to prevent depolymerization of the 

microtubules after synthesis, they are drop-casted on silicon carbide qubit substrates and dried under 

vacuum at room temperature. Substrates contain  qubits formed near the surface via ion implantation 

and annealing i.e. in the top 5 nm near the interface. The short nanoscale distance is key as the qubits 

need to be in nanoscale proximity to the microtubules in order to ensure efficient energy transfer, 

dominated by quantum physical processes occurring between these elements. Following synthesis of 

the microtubules and drop-casting on the qubit substrates, the bio-chips are transferred to the 

quantum lab where the chips are loaded in the vacuum chamber of a cryo-magneto-optical probe 

station and vacuum pumped and cooled to the 10-4 Kelvin range. At this stage advanced 

characterization via spectroscopy is conducted.  

 

Approach: 
 Procure brain tubulin monomers and polymerize a series of microtubules  

 Develop deposition process for attaching microtubules to qubits 

 Liquid nitrogen freezing of qubit-cellular biological chips 

 Dry cryogenic cool of chips in cryo-magneto-optical station under vacuum 

 Imaging and spectroscopic/electronic characterization to examine feasibility of process  

 Refinement of invention disclosure Navy Case 111354  
 

 

- The nanoscale proximity of the microtubules and the qubits enable coupling/exchange of energy between these elements 
from electrostatic charge transfer mediated by high speed tunneling processes.   

Figure 1. Illustration of the experimental chip design where the microtubules are deposited and 
interfaced directly with a solid-state silicon vacancy spin qubit formed in an optically transparent 
crystal substrate, i.e. Silicon Carbide.  

Tubulin dimer composed of 
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Biological cellular structure
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Table 1. Summary of Qubit-MT configurations that were formed and experimented with on SiC 
crystals. 

 Qubit Microtubule 

1 Silicon vacancy in Silicon Carbide (Vsi) Zero microtubules, i.e. control sample 

2 Silicon vacancy in Silicon Carbide (Vsi) Unmodified microtubules i.e. native 

3 Silicon vacancy in Silicon Carbide (Vsi) Fluorescein labeled microtubules 

4 Silicon vacancy in Silicon Carbide (Vsi) Rhodamine labeled microtubules 

5 Silicon vacancy in Silicon Carbide (Vsi) HiLyte labeled microtubules 
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3. MICROTUBULE RE-POLYMERIZATION 

Microtubule Polymerization was performed according to the vendor Cytoskeleton, Inc. instructions 

with minor modifications to control for density of surface fluorescent tags: 

 

Microtubule assembly: 

Freshly prepared MTs in solution are stable for several hours for typical characterization at room 

temperature, but will depolymerize at lower temperatures. Dried microtubules are stable for extended 

times. Microtubules added to substrates through liquid deposition can be dried to impart longer term 

stability for cryogenic analysis. 

 

Polymerization Method: 

1. Defrost the taxol solution; this solution can be kept at room temperature during the course of 

the experiment as it will be needed throughout the procedure. 

 

2. Aliquot 200 μl of General Tubulin Buffer into a labeled centrifuge tube and place at 35°C. 

 

3. Defrost one 20 μl aliquot of Tubulin Protein by incubating for several minutes in a room 

temperature water bath. Once thawed IMMEDIATELY transfer to ice, add 2 μl of Cushion 

Buffer 

a. Typically, at this point reactions are incubated at 35°C for exactly 20 minutes, allowing 

tubulin to polymerize to microtubules (MTs). In this particular case the reaction was 

monitored in real time by carrying out the incubations in 96 well plates and observing 

optical density at regular intervals until polymerization rate was observed to plateau in 

the native microtubules (encouraging longer microtubules). 

 

4. In this case, after 60 minutes incubation, remove the 200 μl of General Tubulin Buffer from 

35°C and add 2 μl of 2 mM Taxol stock solution (green cap). Mix well. 

 

5. Immediately remove the MTs from incubation and dilute with the 200 μl of General Tubulin 

Buffer plus Taxol. Mix thoroughly but gently and leave the MTs at room temperature. The 

Taxol will stabilize MTs. 

 

6. You now have a population of stable MTs that are –approximately 10-15 μm in length and that 

are at a concentration of approximately 3.0 x 1011 MT/ml. This is equivalent to 5 μM tubulin 

dimer or 0.4 nM microtubules. 

 

The ease of characterization, both due to stability, and available excitation sources, made the 

rhodamine samples ideal for further optical characterization. Their emission would also align well with 

the absorbance of the Si vacancy qubits for future optical coupling characterization. The deposited 

rhodamine labeled microtubules are approximately 10-15 um in length (Figure 4a) in good agreement 

with the observed optical density. Images were obtained using a 64x immersion lens on a fluorescence 

microscope. The high quantum yield allows visualization of these fluorescent structures, but native 

microtubules are not visible at this magnification.   

The growth curves collected (Figure 1) show reproducible growth using native monomer with an 

enhanced nucleation with the addition of 12% rhodamine, evidenced by an earlier onset of growth.  
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Logically, the increase in the number of nucleation sites results in an increased concentration of 

microtubules, and thus ultimately shorter structures, corresponding to the lower equilibrium optical 

density. The even faster nucleation observed in the HiLyte microtubules also appears to lead to a slow 

decrease in average microtubule length. This effect is more obvious in the AMCA based microtubules 

where there is a significantly lower peak in microtubule size, and what appears to be a degradation of 

the microtubules over time. Under standard conditions, typical microtubules are fairly stable at room 

temperature, but can de-polymerize at lower temperatures if not chemically stabilized with a species 

such as taxol. The seemingly rapid degradation observed here suggests a destabilizing effect of the 

blue fluorescent label. This result implies that either improved chemical stability, or adjusting the 

chemistry of the blue dye would be necessary for further studies of that particular system. 

 

 

Figure 2. Polymerization of microtubules from tubulin monomers monitored by absorbance at 350 
nm. Microtubules were synthesized from native tubulin as well as from native tubulin doped with 
12% w/w fluorescent tag labeled tubulin.  
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Figure 3. Fluorescent image of Rhodamine labeled microtubules.  
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4. DEPOSITION OF MICROTUBULES ON QUBIT CHIPS 

In accordance with the experimental illustration (Figure 1), all four varying microtubules were 

deposited onto a qubit substrate (Figure 2). A micropipette was used to extract a micro-liter of the 

MT material including taxol. The micro-liter was drop-casted in a fume hood directly on the qubit 

substrate. Following deposition, the remaining taxol was allowed to air dry and the samples were 

placed in a vacuum oven for 15 minutes at 80 degrees Celsius.  

 

 

Figure 5. Photograph of the Silicon carbide qubit substrate with the regions deposited with 
microtubules in accordance with the list in Table I.  
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5. VACUUM PUMP DOWN AND CRYOGENIC COOLING OF CHIP 

Safety protocols were developed for characterizing the qubit-microtubule chips in the quantum lab. 

This required adhering to guidance on the PPE required and the handling and disposal of the chips.  

Chips were transferred from the bio lab to the quantum lab in a sealed petri dish and inserted in the 

cryo-magneto-optical probe station, MicroXact Inc. Vacuum was established, pumping down with a 

roughing/turbo pump combo. Next, dry cooling via two Sumitomo Helium compressors was done to 

reach a base temperature of 8 Kelvin. At this point spectroscopy was done according to the 

experimental arrangement in Figure 4. A multimode fiber installed inside the vacuum chamber was 

used to excite the various samples with 532 nm laser light with an excitation power of 40 mW and 

also a 785 nm laser light with a maximum power of 250 mW. The fiber was brought in near 

proximity to the surface using a micro-manipulator probe arm and producing a 500 micron spot size 

as shown in Figure 6.   

 

 

 

 

Figure 5. Image of the chip while under vacuum and cryogenic conditions. The fiber probe can be 
seen in the bottom left. 
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6. OPTICAL SPECTROSCOPY AT CRYOGENIC TEMPERATURES 

Our experimental arrangement for cryogenic optical spectroscopy is shown in Figure 6. A 

microscope is used to collect the optical emission through a quartz window of the station. A beam 

splitter is used so that concurrently a CCD camera is enabled to simultaneously view the region of 

interest. After beam splitting a long pass filter is used to filter out the excitation light and a Horiba 

ihr-550 equipped with cooled CCD camera is used to detect the spectrum spanning a wide band of 

wavelengths. The emitted signal is routed via fiber to the spectrometer. This arrangement also 

enables the use of various detectors such as avalanche photo-diodes, photo-multiplier tubes and 

nanowire single photon detectors.  

 
 

Figure 6. Schematic of the experimental spectroscopy setup. Key features are the sample in cryo-
magneto-optical chamber under vacuum. Excitation is performed with a fiber probe inside the 
chamber and collection takes place via a zoom lens. The collected emission is sent via fiber to a 
spectrometer with a cooled CCD camera to extract spectra.  
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Figure 7. Close up image of a microtubule region of the chip. 

 

 

 

 

 

Figure 8. Close-up image showing an example of how collection takes place where the fiber probe is 
brought in near proximity to the surface to produce a 50 micron excitation region. Extensive 
calibration and optimization of the optics is done to collect the emission. 
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Figure 9. Spectra collected with excitation at 532 nm and 40 mW power. Shown are the spectra for 
a) SiC qubit ensemble interfaced to MTs. (b) SiC qubit ensemble interfaced to native MTs i.e. 
without any additional fluorescence labeling (c) SiC qubit ensemble interface with MTs functionalized 
with Rhodamine and (d) SiC qubit ensemble interfaced to MTs functionalized with HiLyte Flor.  
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Figure 10. Difference in the spectra collected with and without microtubules that demonstrates the 
impact due to the interfacing of the qubits with the MTs.  

 
 

Figure 11. Difference in the spectra collected with and without microtubules that demonstrates the 
impact due to the interfacing of the qubits with the MTs.  
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Figure 12. Spectra collected with excitation at 785 nm and 250 mW power. Shown are the spectra 
for a) SiC qubit ensemble interfaced to MTs. (b) SiC qubit ensemble interfaced to native MTs i.e. 
without any additional fluorescence labeling (c) SiC qubit ensemble interface with MTs functionalized 
with Rhodamine and (d) SiC qubit ensemble. 
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7. DISCUSSION AND ANALYSIS 

In analyzing the microtubule-qubit interaction and interface it is helpful to look at the molecular 

reconstruction including at the atomic level of MTs and qubits. Figure 12 shows the ball and stick 

and cartoon visualizations of MTs. The visualizations were formed from configuration files available 

on the protein data bank. In analyzing the interactions of MTs with qubits, it is important to consider 

the surface of the MTs and the presence of c-termini. These c-termini can be clearly identified on the 

MTs structure as shown in Figure 13. Numerous biological and neurological studies in the literature 

have highlighted the key role of c-termini in the electronic and opto-electronic properties of MTs. In 

this analysis we therefore focus on the interaction of the atoms of the c-termini with the atomic states 

that form the qubits operation i.e. the potential to form a charge transfer complex involving the c-

termini with the charged vacancy atomic center in the silicon qubit. The possible mechanisms for this 

interaction are described as a nanoscale interaction where short-range coupling can occur and be a 

dominant mechanism as well as an energy band diagram in Figure 15 that considers the current 

understanding of the atomic energy levels of both MTs and vacancy qubits. It should be noted that 

long range interactions could also occur between atomic states in the MTs and the qubits, though in 

analyzing these experimental results where there is predominately surface interaction between the 

MTs and qubits due to the type of design structure i.e. MTs interfaced with qubits formed at the 

surface of a bulk substrates. In considering the surface interaction of MTs with qubits several 

mechanisms can be considered for this coupling including excitation and subsequent electron transfer 

tunneling, effects as well as resonant energy transfer. The processes can be modulated via the 

collective or individual optical excitation of the MTs and qubits depending on the energy of the light 

utilized and our experimental results demonstrate a key step in this effort. The vision is where this 

coupling can be optimized to modulate the quantum optical activity of these complexes to alter the 

quantum computing behavior via the spin-photon properties used in addressing qubit control 

including rotations and entanglement.  

       

Figure 13. Molecular reconstruction of tubulin protein dimer in a cluster array of microtubules.  
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Figure 14. Molecular reconstruction of tubulin protein dimer showing the c-termini.  

 

 

Figure 15. Molecular reconstruction of tubulin protein dimer showing the MTs c-termini interaction 
with the qubit.  
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Figure 16. Proposed energy band diagram of the microtubule-qubit interface.   
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8. SUMMARY  

The ability to prepare synthetic microtubules at NIWC was established. The four target 

microtubule structures were successfully synthesized, and their polymerization kinetics characterized 

through optical absorption studies. Fluorescently modified microtubules were deposited onto 

prepared substrates and confirmation of their presence and structure obtained by collection of 

fluorescence microscopy images. A qubit-cellular interface substrate was prepared containing four 

types of microtubules then loaded under high vacuum into the cryo-magneto-optical station and 

advances spectroscopy performed of the resulting system. 
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