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Progress report: Using deep reinforcement learning to simulate security
analyst

Tomáš Pevný, Viliam Lisý and Jaromír Janisch

January 21, 2021

The goal of the project was to simulate by means of a machine learning the process of investigation of a security
incident by an experienced network analyst. Main-stream classifiers require a full description of sample (in our scenario
this means all possible information about the security incident) and perform the classification in one step, which is in
a sharp contrast to a modus operandi of the analyst, whose investigation is composed of a sequence of actions and
decisions, where actions correspond to either (i) deeper investigation of some part of the incident (sample) or to (ii)
a decision about the incident if sufficient information about the incident has been collected. Moreover, a rationaly
behaving analyst wants to investigate the incident as accurately and quickly as possible. This problem is known in the
literature as Classification with Costly Features (CwCF). The cost of features can be monetary, where the analyst has
to pay for querying third part intelligence providers, or it can reflect the time.

CwCF problem belongs to a class of problems known as sequential decision making problem, which are typically
solved by Reinforcement learning (RL), as was also identified in 2011 in [1]. Despite this, subsequent works rely on
heuristic solutions instead of the principled one offered by RL. We have demonstrated in [3] that RL is indeed a good
approach. By implementing recent innovations in the field, RL scored better than heuristic solutions on a wide range
of problems. We have further demonstrated the flexibility of the RL approach by allowing to directly optimize with
respect to either average budget or hard budget per sample. This was summarized in a paper published in Machine
Learning Journal [2].

All above works have assumed the sample to be described by a feature vector with a known and fixed dimension,
where only some features are known. This simplifies the problem since the number of actions is known and fixed for all
samples and feed-forward neural networks can be used. But it suffers two drawbacks: (i) most data describing security
incidents have structure and they are stored in structured file formats like XML, JSON, ProtoBuffer, or MessagePack1

which makes them difficult to represent as a vector such that above approaches can be used; (ii) the number of actions
is dynamic and it can change between samples.

To tackle these problems, we have combined the HMIL framework from [6] with the hierarchical softmax. HMIL
framework enables us to cope with samples stored in hierarchical formats and hierarchical softmax allows us to cope
with a variable number of actions. The approach has been described in [4], where we have also demonstrated its
generality by solving seven different problems ranging from medical data to the investigation of the security incident.2
To our knowledge, our solution is unique due to its flexibility and generality. This work [4] is now being submitted to
International Joint Conference on Artificial Intelligence 2021.

In the last step, we have extended our approach to domains where one sample is a general graph with vertices of
different types. Vertices of different types can be described by different features (HMIL in general) and offer different
actions to an agent. This yields a very flexible and general framework, which we have demonstrated in [5] (and will be
submitted to International Conference on Machine Learning 2021) by solving three problems: BoxWorld, SysAdmin,
and Sokoban. We can imagine this framework to be used in automated penetration testing after some more research
work.

To summarize, our motivation of mimicking the work of a real security investigator lead to a very general solution
to Classification with Costly Features applicable outside of the originally intended domain, which has been clearly
demonstrated in our publications, and can providing substantial cost savings. For example in healthcare it allows to
optimize the set of required diagnostic procedures for each. Since our solution relies on Reinforcement Learning, it
can benefit from innovations there. In total, our work leads to one workshop, one conference [3], and one journal [2]
publication with two more publications prepared to submission to IJCAI 2021 [4] and ICML 2021 [5]. All source codes
are published as indicated in corresponding publications.
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