
AFRL-RY-WP-TR-2022-0103

ADAPTIVE LEARNING THROUGH ACTIVE
NEUROMODULATION (ALAN)

Mario Aguilar-Simon, Andrew Brna, Ryan Brown, Larking Folsom, Jared Cook, Samuel
Park, Alexandra Yanoschak, and Renee Shimizu
Teledyne Scientific & Imaging, LLC

JULY 2022
Final Report

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.
See additional restrictions described on inside pages

STINFO COPY

AIR FORCE RESEARCH LABORATORY
SENSORS DIRECTORATE

WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7320
AIR FORCE MATERIEL COMMAND

UNITED STATES AIR FORCE

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for
any purpose other than Government procurement does not in any way obligate the U.S.
Government. The fact that the Government formulated or supplied the drawings,
specifications, or other data does not license the holder or any other person or corporation;
or convey any rights or permission to manufacture, use, or sell any patented invention that
may relate to them.

This report was cleared for public release by the Air Force Research Laboratory (AFRL)
Public Affairs Office and is available to the general public, including foreign nationals.
Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RY-WP-TR-2022-0103 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH THE ASSIGNED DISTRIBUTION STATEMENT.

//Signature// //Signature//
ERIC D. BRANCH DANIEL L. LAUBACK, Chief
Program Manager Multi-Sensing Knowledge Branch
Multi-Sensing Knowledge Branch Multi-Domain Sensing Autonomy Division
Multi-Domain Sensing Autonomy Division

//Signature//
ROY L. BALLARD
Division Chief
Multi-Domain Sensing Autonomy Division
Sensors Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

*Disseminated copies will show “//signature//” stamped or typed above the signature blocks.

Page 1 STANDARD FORM 298 (REV. 5/2020)
Prescribed by ANSI Std. Z39.18

PREVIOUS EDITION IS OBSOLETE.

REPORT DOCUMENTATION PAGE

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION.

1. REPORT DATE
July 2022

2. REPORT TYPE
Final

3. DATES COVERED

START DATE
23 March 2018

END DATE
31 March 2022

4. TITLE AND SUBTITLE
 ADAPTIVE LEARNING THROUGH ACTIVE NEUROMODULATION (ALAN)
5a. CONTRACT NUMBER
FA8650-18-C-7831

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
N/A

5d. PROJECT NUMBER
N/A

5e. TASK NUMBER
N/A

5f. WORK UNIT NUMBER
Y1SD

6. AUTHOR(S)
Mario Aguilar-Simon, Andrew Brna, Ryan Brown, Larking Folsom, Jared Cook, Samuel Park, Alexandra Yanoschak, and Renee Shimizu
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Teledyne Scientific & Imaging, LLC
1049 Camino Dos Rios
Thousand Oaks, CA 91360

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND
ADDRESS(ES)
Air Force Research Laboratory, Sensors Directorate
Wright-Patterson Air Force Base, OH 45433-7320
Air Force Materiel Command, United States Air
Forces

Defense Advanced
Research Projects Agency
(DARPA/MTO)
675 North Randolph Street
Arlington, VA 22203

10. SPONSOR/MONITOR'S
ACRONYM(S)
AFRL/RYAP

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)
AFRL-RY-WP-TR-2022-0103

12. DISTRIBUTION/AVAILABILITY STATEMENT
DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.
13. SUPPLEMENTARY NOTES
PAO case number AFRL-2022-3300, Clearance Date 13 July 2022. Report contains color.
14. ABSTRACT
Under the lifelong learning machines (L2M) program, Teledyne set out to research, implement and demonstrate algorithmic approaches to
address two key problems. First, enabling intelligent agents to self-supervise in order to adapt and learn in complex environments without
external intervention. To address this problem, Teledyne developed and validated the role of uncertainty tracking and modulation to enable
agents to monitor their own performance and adapt with confidence when appropriate conditions exist. This is a significant breakthrough in that
it demonstrated self-supervised learning and task performance by an embodied agent. The second problem was to enable robust knowledge
representations that would remain accurate despite continual learning and adaptation and could accommodate the complexity of learning
multiple tasks with likely differing requirements on knowledge granularity and composition. Teledyne developed and implemented a
hierarchical learning system capable of decomposing task information across multiple layers to maximize robustness and re-use. This is a
significant breakthrough as it enables a new class of learning systems that can maintain a consistent knowledge base and update it to
accommodate multiple tasks without the requirements that they share a unified representation. The resulting algorithms were demonstrated to
have a role in enhancing performance in state-of-the-art machine learning systems, and thus can be incorporated into many present-day AI
solutions to equip them with lifelong capabilities. A key recommendation is to look for opportunities to transition these capabilities into
existing AI systems, thus facilitating their transition to next-wave AI. Another recommendation is to see these accomplishments as a first step in
elucidating lifelong learning mechanisms, and to engage in continued research to more fully understand how to achieve learning in highly
complex environments and conditions. These will likely force us to look more closely at a more complete solution for building, maintaining and
leveraging hierarchical knowledge representations.
15. SUBJECT TERMS
lifelong learning, continual learning, self-supervised learning, neural networks, machine learning, reinforcement learning, object
recognition, drones
16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT

SAR
18. NUMBER OF PAGES
84a. REPORT

Unclassified
b. ABSTRACT
Unclassified

C. THIS PAGE
Unclassified

19a. NAME OF RESPONSIBLE PERSON
Eric Branch

19b. PHONE NUMBER (Include area code)

i

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Table of Contents
Section Page

List of Figures ... v

List of Tables .. vii

List of Equations .. viii

1.0 Summary .. 1

1.1 Program Overview ... 1

1.2 General Approach .. 2

1.2.1 Theoretical Effort .. 3

1.2.2 Experimental and Demonstration Efforts ... 4

1.3 Overview of Results ... 5

1.4 Major Conclusions and Recommendations .. 6

2.0 Introduction .. 8

2.1 Program Objectives .. 8

2.2 Technical Approach ... 11

2.2.1 Teledyne-Specific Algorithm Development ... 11

2.2.2 System Group-specific algorithm and system development 13

2.3 Key Accomplishments ... 14

2.4 Transition Opportunities .. 17

3.0 Methods, Assumptions, and Procedures .. 21

3.1 Methods .. 21

3.1.1 L2M Architecture.. 21

3.1.2 Uncertainty-Modulated Learning (UML) ... 22

3.2 Novelty ... 28

3.2.1 Embodied Learning Agent .. 28

ii

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Section Page

3.3 Metrics .. 29

3.3.1 Overview ... 29

3.3.2 Application-Level Metrics .. 30

3.3.3 Lifelong Learning / Program Metrics ... 31

3.4 Testing and Evaluation ... 34

3.4.1 Phase 1a Experiments and Demonstration .. 34

3.4.2 Phase 1b Experiments and Demonstration ... 35

3.4.3 Phase 2 Learning Scenarios .. 36

3.4.4 Out-of-Nominal Recovery Experiments ... 37

3.5 Assumptions ... 37

3.6 Procedures .. 37

3.6.1 Data and Feature Extraction.. 37

3.6.2 Asset Management Tasks ... 38

3.6.3 Phase 1a Proof of Concept Experiments ... 38

3.6.4 Phase 1a Demo .. 40

3.6.5 Phase 1b Proof of Concept Experiment .. 41

3.6.6 Phase 1b Demo ... 42

3.6.7 Phase 2 Learning Scenarios .. 43

3.6.8 Noisy Conditions Experiments ... 46

3.6.9 Hardware ... 47

4.0 Results and Discussion .. 48

4.1 Proof of Concept Experiments ... 48

4.1.1 POC 1 .. 48

4.1.2 POC 2 .. 48

iii

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Section Page

4.1.3 POC 3 .. 49

4.2 Phase 1a Demo ... 50

4.2.1 Initial Performance of System .. 50

4.2.2 Learning of Aerial Views of Sedans ... 51

4.2.3 Learning of Aerial Views of Vans .. 51

4.2.4 Retention of Performance on First Task ... 52

4.2.5 Self-Supervised Acquisition of a New Class .. 53

4.3 Phase 1b Proof of Concept Experiment ... 54

4.4 Phase 1b Demo ... 56

4.4.1 Encountering an Obstacle ... 57

4.4.2 Encountering a Second Obstacle .. 58

4.4.3 Testing Avoidance of Traffic Lights... 59

4.4.4 Testing Avoidance of Street Umbrellas .. 59

4.4.5 Retention of Previous Skills.. 60

4.5 Phase 2.. 60

4.5.1 Overview and Final Results .. 61

4.5.2 Month 9 Evaluation... 62

4.5.3 Month 12 Evaluation... 62

4.5.4 Month 15 Evaluation... 63

4.5.5 Month 18 Evaluation... 64

4.6 Out-of-Nominal Recovery Experiments .. 65

4.6.1 Character Recognition .. 65

4.6.2 Reinforcement Learning ... 66

5.0 Conclusions .. 67

iv

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

6.0 Works Cited ... 69

List of Symbols, Abbreviations, and Acronyms ... 72

v

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

List of Figures

Figure Page

Figure 1. Architectures for Selective Plasticity in Hierarchical Machine Learning Systems 2

Figure 2. Deep Learning Scaling Limit .. 3

Figure 3. UML Algorithm Developed by Teledyne during L2M Phase 1.................................... 4

Figure 4. Key L2M Capabilities Integrated Based on SG Members-Developed Brain-Inspired
Mechanisms .. 5

Figure 5. ACh Modulation of Local Circuit Computations .. 10

Figure 6. Gradient of Muscarinic Receptor Distribution in Visual Brain Areas 11

Figure 7. Model of Sensory Feature Extraction and Category Processing in the "What" Pathway
of the Visual System ... 12

Figure 8. Functional Blocks of the Teledyne SG Integrated System .. 14

Figure 9. Neuromodulation Enables Neural Circuits to Quickly and Temporarily Change Their
Dynamics .. 14

Figure 10. Application of UML to a Variety of Machine Learning Problems 16

Figure 11. UML Improves Performance of a State-of-the-Art SAR-Based ATR Algorithm in Novel
(Out-of-Nominal) Conditions ... 18

Figure 12. UML Applied to Predict Performance of an Existing Machine Learning Algorithm . 19

Figure 13. UML Applied to Classify Objects in Complex Environments Outperforms State-of-the-
Art Object Classifiers .. 19

Figure 14. Teledyne’s L2M Architecture ... 21

Figure 15. Generalized Algorithm for the Uncertainty-Modulated Architecture 23

Figure 16. Algorithm 1 ... 25

Figure 17. Self-Supervised Learning of a New Object ... 29

Figure 18. AirSim Environment and Imagery .. 39

Figure 19. Sample Training Data for Phase 1b Proof of Concept .. 42

Figure 20. Proof of Concept 1 Results .. 48

vi

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Figure Page

Figure 21. Proof of Concept 2 Results .. 49

Figure 22. From Demo 1a: Initial Classification Performance of the Drone at Ground and Aerial
Viewpoints .. 51

Figure 23. From Demo 1a (Continued): Continual Learning on Sedans Results in Recovered
Ground Viewpoint without Catastrophic Forgetting .. 51

Figure 24. From Demo 1a (Continued): Performance on a Second Class of Objects Before
Continual Learning (Left) and After Continual Learning (Right) .. 52

Figure 25. From Demo 1a (Continued): First Set of Sedans Still Classified Correctly After
Learning of New Objects .. 52

Figure 26. From Demo 1a (Continued): Classification Output When Exposed to “Interesting” but
Unknown Objects.. 53

Figure 27: From Demo 1a (Continued): Self-Supervised Learning Process Where Each Unique
Object Has a Different Label .. 54

Figure 28. Demo 1a (Continued): Objects Collapsed into Single Class After a Human Operator
Provides a Label to Both ... 54

Figure 29. Self-Supervised Acquisition of Target-Relevant Behaviors 57

Figure 30. Self-Supervised Acquisition of Target-Relevant Behaviors (Continued): Learning a
New Target Does Not Interfere with the Previously Learned Obstacle 58

Figure 31. Self-Supervised Acquisition of Target-Relevant Behaviors (Continued): AVOID
Behavior Triggers an Increase in Altitude Until Obstacle can be Cleared. 59

Figure 32. Self-Supervised Acquisition of Target-Relevant Behaviors (Continued): Both the
Viewpoint and Context of Object are Considered in Triggering the Avoidance Skill 59

Figure 33. Self-Supervised Acquisition of Target-Relevant Behaviors (Continued): Retention of
Previously Learned Skills from Demo 1a ... 60

Figure 34. Continual Modulated Learning with Noisy Imagery... 65

Figure 35. Noise Rejection in Reinforcement Learning ... 66

Figure 36. UML is a Pluggable Component that can Support Lifelong Learning Capabilities in
State-of-the-Art Machine Learning Systems .. 67

vii

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

List of Tables

Table Page

Table 1. Features and Benefits of Teledyne’s Approach .. 6

Table 2. List of Transitions and Future Opportunities .. 20

Table 3. Table Describing Parameters for the UML Algorithm ... 26

Table 4. Learning Scenarios by Evaluation Period ... 36

Table 5. Scenario Types .. 37

Table 6. Asset Categories ... 38

Table 7. Scenario Tasks and Task Variants .. 44

Table 8. System Updates for Evaluation Periods.. 45

Table 9. Results Showing System Performance Through POC 1-2 and into POC 3.................... 49

Table 10. POC 4 Results ... 55

Table 11. Final Evaluation Results of Teledyne Lifelong Learner ... 61

Table 12. M9 Evaluation Results and Interpretation .. 62

Table 13. M12 and M12’ Results and Interpretation .. 63

Table 14. M15 Evaluation Results Compared to M12 Evaluation Results 64

Table 15. M18 Evaluation Results Compared to M15 Evaluation Results 64

Table 16. Performance Results with and without Memory Optimization Component C5 65

Table 17. Progression of Teledyne System against Program Metrics as Documented by APL ... 68

viii

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

List of Equations

Equation Page

Equation 1. Object Recognition Accuracy .. 30

Equation 2. Precision .. 30

Equation 3. Uncertainty Measures .. 31

1.0 SUMMARY

1.1 Program Overview
Under the DARPA lifelong learning machine (L2M) program, Teledyne conducted a two-phase
effort to develop machine learning systems capable of selective plasticity. Our effort addressed
two critical challenges faced by a life-long learning system: the needs for (1) continuous but
stable learning of its parameters, and (2) how to achieve optimal capacity allocation to obtain
effective learning and performance as tasks and conditions change. Our core premise was that
the brain solves both problems through neuromodulation: chemical signaling that continuously
regulates neural activity and plasticity. Specifically, we investigated mechanisms by which the
neuromodulator acetylcholine (ACh) regulates long-term synaptic plasticity and short-term
synaptic activity, particularly in the visual pathway that performs object recognition and
identification (ventral). We targeted ACh’s role as a feedback signal encoding the level of
uncertainty in both signal processing and inference; we explored how this signal regulates the
computation and selection of low-level sensory features, while also driving learning of higher-
level inferences.

These modulatory principles formed the core of our novel, plastic nodal network (PNN)
architecture. Our PNN has a hierarchical structure that mirrors the two-stage organization of the
brain’s ventral pathway, and which is shared by other sensory pathways, such as the auditory and
the visual localization (dorsal) pathways. Figure 1 provides a high-level overview of
architectures for selective plasticity in hierarchical machine learning systems where
heterogeneous layers are introduced to implement a continuum of dynamics to support optimal
feature extraction and capacity allocation in early layers, while achieving stable and continuous
learning in later layers. The following numbers in parentheses refer to the orange numbers in
Figure 1. Modulation is driven by measures of uncertainty (1). Uncertainty derived by analyzing
signals (bottom-up) and task requirements/rewards (top-down) are used to (2) influence feature
extraction/selection in the early layers and inference in the later layers. The result of modulation
in early layers is the rapid recruitment of specific portions of the capacity of the network (3),
while in later layers, learning is more strongly modulated to ensure stability while maintaining
appropriate plasticity for new or updated tasks (4): the network’s early layers perform feature
extraction (mirroring the occipital cortex), while the later layers compute inferences (matching
prefrontal and temporal cortex processes). An ACh-like signal (measuring uncertainty)
dynamically modulates computations and learning in the network. Our network is heterogeneous:
different layers and types of nodes respond differently to the modulatory signal.

1

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

1.2 General Approach
Life-long learning requires constant adaptation; no amount of training can prepare a network,
whether biological or artificial, for all the possible inputs that it might receive over its lifetime. In
particular, ongoing learning requires the ability to change the network’s parameters without
forgetting prior information (i.e. stable learning, also known as the stability-plasticity dilemma
[1]). Furthermore, a life-long learning system faces a second dilemma: the ability to continuously
encode new information requires vast computational resources, but very large networks are
intractable to optimize due to the huge number of free parameters. Figure 2 illustrates the scaling
limits in the case of deep learning architectures. Ongoing research [2] suggests that deep learning
networks cannot scale to arbitrary sizes, no matter how much data is used to train them. In
particular, our own internal experiments under DARPA’s TRACE program demonstrate that
once a deep network exceeds an optimal size ([a] in Figure 2), its ability to learn decreases
dramatically as it becomes larger ([b] in Figure 2). This implies that simply building larger deep
networks and feeding them more data is insufficient to achieve human-level learning. In contrast,
our modulated network recruits only a small subset of its nodes to optimize capacity (a), while
carrying large overall capacity (b) allowing it to overcome this scaling limit. In contrast, a life-
long learning system must manage its computational resources in a more intelligent manner to
achieve optimal capacity allocation and mitigate performance degradation.

2

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Figure 1. Architectures for Selective Plasticity in Hierarchical Machine Learning Systems

Feature
Extraction

Layers

Inference
Layers

Uncertainty-driven
neuromodulation

More modulation
due to decision

uncertainty

More modulation
due to signal/feature
uncertainty

Capacity Modulation

Learning Modulation

Bottom-up Top-down

Dual influence of
modulation on multi-

layer architectures

Select the more relevant
features or portions of capacity

more

moreless

less

Continuous and stable
learning are more relevant

1

2

3

4

Se
ns

or
y

In
pu

ts

De
cis

io
ns

1.2.1 Theoretical Effort

Our foundational premise was that the brain achieves both capabilities through
neuromodulation: the use of chemical signals that continuously regulate synaptic activity and
plasticity. Among the many neuromodulators in the nervous system, ACh is one of the most
extensively studied in the mammalian brain; it has been implicated in regulating several high-
level cognitive functions, including attention, learning, and memory. More importantly, ACh
regulates long-term synaptic plasticity and short-term neural activity levels, particularly in the
ventral visual pathway (which performs object recognition and identification) [2]. ACh has been
shown to encode uncertainty, specifically expected uncertainty [3] (as well as the related signal
of unexpected reward [4]), which is a key feedback signal for triggering and regulating learning.
In the ventral pathway in particular, ACh regulates the computation of low-level sensory features
and drives learning of higher-level inferences.

As part of our effort, we developed a hierarchical, heterogeneous, plastic nodal network (PNN)
algorithm called Uncertainty-Modulated Learning (UML) where neuromodulation-based
computational properties enable optimization of the network’s capacity to permit adaptive and
stable learning (Figure 3). UML was modeled after cortical mechanisms of hierarchical sensory
signal decomposition and inference, feedback attention, and neuromodulation in response to
mismatched expectations. In UML, an ACh-like signal (triggered by measured uncertainty)
dynamically modulates computations and learning. UML achieved several groundbreaking
capabilities in machine learning, specifically:

Stable learning that permits maximal updating without disturbing existing, learned behaviors
(i.e., addresses the stability-plasticity dilemma)
o Which, in conjunction with top-down feedback, enables continuous and few-shot

learning of inputs and tasks that differ radically from previously learned information
Optimal capacity allocation that selects and enhances only those features that maximize
information content and that are relevant to the current task

3

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Figure 2. Deep Learning Scaling Limit

o Leading to the co-existence of multiple computational motifs when the network is
configured for hierarchical learning (i.e., UML can multiplex between different tasks or
behaviors),

o as well as to selective recruitment of different subsets of the network at a time, allowing
it to scale to an arbitrarily number of nodes (i.e. virtually unlimited capacity to learn new
information)

UML represents a compelling new computational model for the role of local heterogeneous
architectures, feedback signals and neuromodulation.

1.2.2 Experimental and Demonstration Efforts

Our work demonstrated algorithms and an integrated system with learning mechanisms capable
of life-long learning in complex learning tasks. Additionally, we demonstrated that our UML
algorithm is capable of imbuing other machine learning algorithms with the ability to adapt,
learn without catastrophically forgetting and recover performance under out-of-nominal
conditions. A summary of these results will be presented in Section 1.3.

During Phase 2 of the program, Teledyne led a systems group (SG) with the goal of integrating a
full set of lifelong learning capabilities. To accomplish this, Teledyne defined a minimum set of
capabilities relevant and aligned with our uncertainty-modulated continual learning paradigm
(Figure 4, also see Section 2.2.1). Two L2M performers from Phase 1 of the program were
invited to join our SG, University of California at Irvine who collaborated with researchers from
the University of California at San Diego (UCI/UCSD) and Missouri S&T (S&T). Throughout
Phase 1, Teledyne had developed and demonstrated algorithms for sensory signal processing that
employ a bottom-up signal decomposition architecture to infer goal- and decision-relevant
hypotheses (orange and blue blocks in Figure 4). Additionally, Teledyne began to demonstrate
the use of attentional mechanisms to modulate learning and adaptation. S&T was recruited to
bring their experience in this family of algorithms to jointly implement a system component
inspired by brain mechanisms of top-down attention (green/yellow blocks in Figure 4). In
collaboration with UCI/UCSD, we set out to investigate the role of sleep-inspired algorithms to

4

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Figure 3. UML Algorithm Developed by Teledyne during L2M Phase 1

optimize memory after task performance and consolidate memory (i.e., knowledge) across tasks
(magenta and cyan blocks respectively in Figure 4).

1.3 Overview of Results
The key premise of our proposed approach is that intelligent organisms measure and recognize
critical changes in their environment, inputs, constraints or objectives, to enable them to adapt
and learn without the need for external guidance (e.g., teachers, supervision, etc.). It is through
such self-supervised monitoring and evaluation that a lifelong learning agent can be equipped to
reliable function in complex and changing conditions.

Through our research and experimental work, we established that as in biological intelligent
systems, measuring and tracking uncertainty serves as a key mechanism for triggering adaptation
and learning. Our L2M agents were shown to either adapt their learned skills or incorporate new
skills into their repertoire without catastrophic forgetting. We also demonstrated the agents’
ability to leverage previous skills to improve learning efficacy (Forward and Backward transfer),
quickly recover performance in the presence of interfering tasks or changes in conditions,
leverage samples to adapt or acquire skills equally as efficiently or better than a single-task
expert (see Sections 4.1-4.4).

Finally, Teledyne demonstrated the effectiveness of its integrated system through a series of
milestone experiments conducted throughout Phase 2 of the program. These results are presented
in Section 4.5 and highlight performance on L2M metrics in program-defined scenarios. These
experiments served to create a steady tempo and coordination of results among all L2M SG
teams, and document progress on performance. Additionally, we used them to identify successes
and shortcomings of our system and/or algorithms. An analysis of the latter was leveraged to
optimize our effort and focus system and algorithm development appropriately. The result was a
consistent improvement of our system over the course of four milestone events from only

5

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Figure 4. Key L2M Capabilities Integrated Based on SG Members-Developed Brain-Inspired
Mechanisms

meeting one of the metrics during the first event, to meeting all five by the fourth one. These
results are also summarized in Section 5.0.

1.4 Major Conclusions and Recommendations
Our work throughout the program accomplished its main goals:

 deriving an effective algorithm inspired by biological mechanisms of neuromodulation

 implementing an algorithm with broad applicability to existing machine learning systems

 enabling intelligent agents that can self-supervise to adapt and learn continually

 integrating a system that exhibits mechanisms of attention, uncertainty-based regulation,
hierarchical learning, and sleep-inspired memory optimization to demonstrate lifelong
learning capabilities

A significant accomplishment of our work was the development of UML, a novel lifelong
learning algorithm capable of self-supervising to adapt to new conditions, learn from few
samples, and derive robust hierarchical knowledge representation. An exciting recent realization
is the fact that the critical capabilities we set out to study and presented in our original proposal
(see Table 1) were not only fully implemented but also thoroughly demonstrated throughout all
the experiments and demonstrations in the program.

Table 1. Features and Benefits of Teledyne’s Approach
Feature Benefit(s)/Impact
Uncertainty Modulates Learning: We posited that
neuromodulation upregulates learning for neurons that are critical to
resolving distinctions between two or more classes.

Demonstrated that learned representations
for new tasks do not overwrite previously
learned tasks.

Uncertainty Modulates Capacity Allocation: We proposed to
investigate the role of neuromodulation in upregulating activation
and learning in portions of a network that can optimally solve a
specific task and suppress those that do not contribute to reducing
uncertainty.

Built networks with very large capacity to
support life-long learning while not suffering
from accuracy degradation by only activating
portions of the network that optimally support
task performance.

Uncertainty Triggers New Learning: By tracking expectations,
new algorithms can adjust and improve their performance over time,
especially when new tasks or conditions are introduced.

Demonstrated how learning is triggered
when response certainty drops below desired
thresholds leading to a system able to
autonomously detect new tasks or conditions
that require learning.

Uncertainty Modulates Feature Extraction: Measures of signal
uncertainty across feature layers drive modulation of transfer
function in early layers (feature extractors).

Implemented algorithms able to adapt
feature extraction processing to compensate
to changes in task, conditions, or signal
properties.

In the Month 18 (M18) evaluation, the Teledyne SG showed results indicating that our lifelong
learner met or exceeded the lifelong learning threshold in the five program metrics and exceeded
targets in two of the five. This is shown in Section 4.5.1, Table 11, with light green indicating

6

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

7

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

that a metric exceeds the lifelong learning threshold, and darker green indicating that a metric
exceeds the DARPA program target.

One of the key insights we derived from our efforts is that uncertainty has proven to be an
effective measure that supports online learning and the creation of robust knowledge
representations without supervision or reinforcement signals. We also established that the L2
components we developed can be effectively integrated into existing ML system to support
improved performance (e.g., robustness, adaptation, etc.). Hence, a significant number of
transition opportunities exist (examples are discussed in Section 2.4). Teledyne will continue to
pursue such opportunities through Government-funded efforts, commercial endeavors, and
internally-funded research activities. Teledyne also welcomes any Government agency or
individual to request discussions that could facilitate a deeper understanding or identification of
transition opportunities.

Our UML algorithm proved to be an effective component (Section 2.3), not only for an
integrated L2 system, but also as a plug-in to existing machine learning systems. These include
end-to-end systems designed for decision support, where UML can monitor out-of-nominal
conditions or flag conditions requiring additional samples or learning. UML was also
demonstrated to support performance recovery under novel conditions for systems as complex as
a reinforcement learning-based agent. Due to its lightweight processing requirements, UML can
execute at 2000Hz on a commodity processor (CPU) and is thus amenable to deployment across
many platforms.

2.0 INTRODUCTION

2.1 Program Objectives
A key objective of our work was to address two crucial problems for lifelong learning machines:

1. Enabling deployable L2Ms that manage resources, maintain performance, acquire new
skills, and derive optimal strategies in the absence of external supervision signals. This
with the goal of enabling machine learning systems that can operate on their own, not just
based on prior knowledge, but constantly updating knowledge without human
supervision.

2. Supporting flexible, robust, and task-effective knowledge representations in L2Ms that
allow them to leverage past information and incorporate new experiences? This with the
goal of addressing the challenge of learning skills requiring multiple levels of abstraction
and that capture semantics of the task. Relevant examples of tasks using different levels
of abstraction is learning to find a target of interest (e.g., a car or a treasure in a game) vs.
learning to avoid objects that may represent threats (e.g., obstacles). Each task requires a
different set of bottom-up signals (i.e., features) to be recognized and a different set of
actions (e.g., report the car vs. avoid colliding with a wall, in the case of a drone
conducting traffic monitoring missions).

Our work focused on conducting a systematic investigation on the computational properties that
arise from mechanisms of neuromodulation, such as expressed in ACh modulation (see Figure 5
for an illustration). Among them are the influences that neuromodulation has in signal filtering,
controlling learning (i.e., learning rate), and reconsidering information in the presence of
significant uncertainty. Through experiments and demonstrations, we sought to empirically
demonstrate the impact of these mechanism in learning and adaptive capacity utilization, most
notably their ability to support selective plasticity and self-supervision.

ACh is perhaps the best studied neuromodulator in the mammalian brain. ACh is released from
the terminals of neurons that originate in the brain stem and more commonly from the nucleus
basalis of Meynert (NBM) in the basal forebrain. The NBM diffusely innervates and releases
ACh in the cerebral cortex and the hippocampus where it exerts its action through two types of
receptors: the nicotinic receptor that drives fast changes in ionic conductance and the muscarinic
receptors that drive slower and longer lasting changes through second messenger systems
(chained intracellular protein interactions). The actions at both receptors contribute to the
modulation of plasticity and network tuning and are discussed below.

ACh has been demonstrated to participate in the regulation of several cognitive functions
including attention, learning and memory. Pharmacologic block at muscarinic ACh receptors
degrades the encoding (learning) of new memories, while drugs which activate nicotinic ACh
receptors lead to enhanced memory formation [5-8]. Furthermore, increasing cholinergic
modulation through stimulation of cholinergic neurons during perceptual learning has been
shown to directly alter the receptive fields of sensory neurons and boost long term learning [9].
Also, Minces et al. [10] showed that ACh plays a crucial role in enabling rats to learn to
discriminate fine-spatial features.

8

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

9

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

While cholinergic signaling is often associated with attention, recent research [4], has shown that
ACh releasing neurons are most strongly activated in response to reward surprise. This finding
highlights the potential importance of cholinergic modulation in reinforcement learning.
Chubykin et al. [11] presented similar findings, in which they showed that ACh encodes a
reward timing signal that drives plasticity in the visual cortex.

Figure 5 shows how ACh can induce a wide range of short-term changes to the behavior of neural
circuits. The following numbers in parentheses refer to the orange numbers in within Figure 5. In
the top row of Figure 5, (1) we zoom into a specific layer of our proposed architecture to reveal
how (2) the input, which is processed by (3) excitatory nodes is regulated by (4) inhibitory
internodes that affect (5) the output of the circuit. In the absence of ACh, the circuit computes a
summation of its input. In the middle and bottom rows, different levels of ACh partially (6) or
completely inhibit (7) the internodes, changing the output into contrast enhancement (middle row)
or winner-take-all (bottom row), respectively.

How can ACh, which is diffusely released across the cerebral cortex, precisely modulate
learning? Within the mammalian brain the distribution of the two classes of receptors differs
considerably from region to region and likely contributes to the modulation of learning in a
spatiotemporally specific rather than global level (see [12] for review). In addition to the known
differences in the expression of cholinergic receptors on different cell-types, recent research [13]
has identified differences in the distribution of cholinergic receptors across cortex. Figure 6
(adapted from [13]) shows a gradient of receptor densities for the ACh muscarinic receptor (M2)
across the hierarchy of visual areas (V1-V4). This gradient (i.e. high in V1 and low in V3)
illustrates one example of a biological mechanism of cholinergic modulation. The gradient of

10

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Figure 5. ACh Modulation of Local Circuit Computations

receptor density enables varied and specific effects of system dynamics at different levels of
processing. This supports the idea that
differences in dynamics and computational
outcomes depend on the level of
modulation [13-15]. For example, the
nicotinic receptors are most commonly
found on inhibitory interneurons where
their activation leads to increased lateral
inhibition, but also enhancement of
thalamic input (perhaps through
disinhibition). This may result in a spatial
sharpening and response gain of the
incoming sensory input at short timescales.
Alternatively, in the primate visual system,
muscarninic (type M1) receptors are
located primarily postsynaptically on
inhibitory interneurons [15] and cortico-
cortical connections [16] where they reduce
top down and cross cortical excitation. Figure 6. Gradient of Muscarinic Receptor
Other muscarinic receptor subtypes (M2 Distribution in Visual Brain Areas
and M4) are mostly found presynaptically
where they produce an inhibitory effect on their target cells. Depending on the cell type this can
result in net inhibition in pyramidal cells or net excitation by inhibiting inhibitory interneurons.

Taken together, the multiplicity of mechanisms for cholinergic modulation enable a wide range
of behavior in concert with the non-homogenous network of the brain. As described above, these
mechanisms can account for a significant amount of the varied behavior of neural circuits. A key
contribution by Teledyne during this effort was to study and implement these heterogeneous
mechanisms across multiple algorithmic scales (e.g., within layer “cell types” and cross-layer
changes in modulatory “receptor expression”).

2.2 Technical Approach

2.2.1 Teledyne-Specific Algorithm Development

During both Phases 1 and 2 of the effort, we systematically studied and demonstrated the role of
uncertainty in supporting robust continual learning in the presence of new conditions and tasks.
In particular, we validated the use of biologically-inspired mechanisms to implement and
demonstrate a hierarchical learning architecture capable of optimally self-managing its capacity
while ensuring stable continuous learning. This included capturing the multiple roles of
neuromodulatory processes mediated by acetylcholine on information processing and decision
making by cortical circuits. Figure 7 illustrates the neural underpinnings of our architecture as
applied to visual processing tasks and its role in processing input signals to generate action or
decision-relevant signals.

11

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Figure 7 shows a two-stage model of sensory feature extraction and category processing in the
"What" pathway of the visual system. A first stage, mainly in Occipital Cortex, implements a
hierarchical decomposition of signals for adaptive feature extraction, while a second stage,
mainly in Temporal Cortex, performs category analysis and classification. Green and white
nodes indicate neurons on a given layer. Signals from both stages are analyzed against
expectations in non-specific thalamic areas (Thal) [6] and prefrontal cortex (PFC) [7]
respectively. The presence of a mismatch triggers ACh modulation by projections from the
NBM. The red arrows indicate possible targets for the influence of neuromodulation.

We successfully demonstrate the following key computational properties of our algorithms:

1. Sensory processing is organized to achieve hierarchical aggregation where raw sensory
inputs are systematically processed and analyzed at increasing levels of abstraction [17].
Such processing is the most fundamental basis for modern backpropagation-based
computational networks such as deep learning networks. However, sensory processing is also
significantly modulated by complex dynamics that ensue as a result of both local and top-
down feedback signals. At the local level, interneurons and lateral connectivity can be
modulated to influence the transfer function and computation performed at each layer. These
mechanisms can give rise to a number of properties that can be exploited in learning
algorithms as will be described in the next section.

12

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Figure 7. Model of Sensory Feature Extraction and Category Processing in the "What" Pathway
of the Visual System

13

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

2. Visual decision processing leverage bidirectional cortical circuitry to achieve tasks such
as object learning, categorization and prediction. Here, local and global interactions serve to
stably learn and adapt categorization responses to visual stimuli. The details and richness of
such mechanisms are not well modeled in modern machine learning algorithms such as deep
learning. In the latter, this stage is typically modeled as a support vector machine (SVM) or
multi-layer perceptron (MLP) responding to the activations of the learned features. Such
algorithm choices have left a significant vacuum in understanding how to achieve both
discriminative and generative classification, and achieve stable learning in the presence of
continuously changing sensory information and task requirements.

3. Generated sensory hypotheses in occipital cortex (e.g., V1-V4 activations) can be
continuously reweighted, enhanced or suppressed based on the match between the
processed inputs and the expected or primed responses (e.g., the expectation of a car must be
matched with an appropriate subset of activated feature responses as compared to those for a
face). This allows a hierarchical system to adaptively bias processing to the appropriate
abstraction level and/or allocate the subset of the network’s capacity to maximally
disambiguate signals and change weights.

4. Generated category hypotheses (e.g., object ID/type/etc.) are analyzed in prefrontal
cortex (PFC) to measure the uncertainty of the inferred information/decisions and
compare it against expectations. Such mechanisms can enable tracking task performance
without supervision and triggering a recalibration that is weighted by the characteristics of
the inference process, thus demoting portions of the signals that contribute to the error and
promoting those that support the expectations.

2.2.2 System Group-specific algorithm and system development

As described in Section 1.2.2, Teledyne assembled a team of collaborators to develop and
implement an integrated L2M system with five critical capabilities. Our system development and
integration approach focused on realizing the critical functional roles of each of the L2M
capabilities under development by the SG members. As Figure 8 illustrates, our L2M system
integrated five functional blocks.

2.3 Key Accomplishments
We demonstrated that a heterogeneous architecture with modulatory inputs can: (1) selectively
modify the subset of knowledge that is relevant for adapting or learning new information (stable
learning), and (2) continuously modulate its constituent nodes to instantaneously modify their
computational properties to adapt to unexpected signal or context properties. Figure 9 illustrates
how modulation can reconfigure a network’s behavior. In this simplified example, circles denote
neurons, triangles represent a neuromodulator, arrows and square are excitatory and inhibitory
connections, respectively, and dashes indicate that a connection is being suppressed. The
neuromodulator suppresses the circuit’s lateral inhibition, leading to a summation behavior;
otherwise, the circuit behaves in a winner-take-all fashion. The result is that a single circuit (with
the same learned weights) can quickly shift between different modes of operation by dynamic
modulation in its connections.

A key focus of our work was to develop algorithms and computational principles that would be
broadly applicable to many machine learning problems and systems. Therefore, we demonstrated

14

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Figure 8. Functional Blocks of the Teledyne SG Integrated System

Top-Down
Attention

Bottom-Up
Attention Task Learning

Memory
Optimizatio

n
Memory

Consolidatio
n

STM
LTM

Where

Why (self-supervision/-reward)

What/How

Over tasksWithin
tasks

inputs outputs

Teledyne SG L2M:

Figure 9. Neuromodulation Enables Neural Circuits to Quickly and Temporarily Change Their
Dynamics

15

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

how an algorithm that integrates the proposed mechanisms of uncertainty, attention and memory
optimization (UML, Figure 3) can support improved performance and lifelong learning
capabilities across multiple machine learning domains (summarized in Figure 10). In particular,
we were interested in demonstrating that UML could also be repurposed as a plug-in component
to improve or expand lifelong learning capabilities to state-of-the-art algorithms. Figure 10 a and
b present results of applying UML to learn and monitor out-of-nominal conditions to trigger
adaptation in the underlying machine learning system (deep neural network trained to recognize
digits and reinforcement learning agent trained to play Pong, respectively).

Additionally, the full set of mechanisms developed by our SG (Figure 5 and Figure 8), integrated
in an embedded agent performing multiple tasks was shown to meet all L2M program metrics
across multiple milestone experiments (described in Section 4). Figure 10c presents preliminary
results of the integrated system we implemented in Phase 1, where the agent (a simulated drone)
was able to self-supervise to adapt to changes in conditions (recognizing objects from the air
after only pretraining on ground-based imagery), and discovering and learning new tasks
(detecting and learning new object types despite not being in its existing repertoire). An
important highlight is the fact that our SG was able to demonstrate consistent progress
throughout the Phase 2 effort. While our system only met one program metric at the Month 12
(M12) milestone, it successfully met all five metrics by the M18 milestone.

Figure 10 shows that UML can be applied to different machine learning problems. Panel (a)
shows the role of UML in performance recovery for deep neural networks performing in out-of-
nominal conditions (noisy MNIST samples). Panel (b) shows recovery of performance in RL
algorithms operating in out-of-nominal conditions. Panel (c) shows self-supervised adaptation to
new conditions, learning new tasks, and discovering new ones from a few samples.

Our work proposed algorithms and system architectures integrating the above mechanisms to
address the problems presented in the beginning of Section 2.1: 1) robust self-supervised
learning and 2) robust knowledge representations. The approach to address them was
demonstrated throughout the program and consisted of:

1. Tracking uncertainty to allow L2Ms to measure performance against learned expectation
and trigger appropriate adaptation. The impact of this was a demonstration of self-
supervision that frees machine learning systems from requirements of supervision or
reinforcement signals external to the agent.

2. Developing a distributed and hierarchical learning system. Distributed learning was
implemented by employing different components of the system to learn elements of the
task separately but in coordination. Hierarchical learning was implemented by
architecting UML into a multi-layer learning system to decompose tasks into multiple
levels of abstraction. The impact of this work is the demonstration of knowledge
representations that are more interpretable, capable of accommodating tasks with
different levels of abstraction, and improved capabilities for transfer and maintenance
(the latter demonstrated during our M18 experiments presented in Section 4).

16

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

(a)

(b)

(c)
Figure 10. Application of UML to a Variety of Machine Learning Problems

• Network Architecture
IMAGE Conv2d ACh Conv2d ACh

10FC

10 Output
Classes

Feature Extraction Classification

ACh C 2d AAChACh
10FC

M
od

ul
at

io
n

O
N

Degraded performance in
a new circumstance

Adapting to a new circumstance

Selected
Action

Pr
ed

ic
to

r

Predicted
State at
Time t+1

Decoder
State at
Time t

Encoder
D

ecoder

Input at Time t

Reconstruction
of Input at Time t

Prediction of Input
at Time t+1

@20m

“Sedan”

high
uncertainty

learn

yyyyyyyyyyyyy
reset network, create
new node, perform 1-

shot learning

van

Set new weights

Neuromodulation

(A)

(B)

@2m
(as pretrained)

“Sedan”

low
uncertainty

system carries
“label” as it flies

higher

@10m
“Sedan”

learn

moderate
uncertainty

allow output through
and tune weights to
include current view

Update weights

C
on

tin
ua

l l
ea

rn
in

g
as

th
e

dr
on

e
fli

es
 to

 h
ig

he
r a

lti
tu

de
s

High
Uncertainty
Mode

Moderate
Uncertainty
Mode

Low
Uncertainty
Mode

Pretrained
Task A

Self-
Supervised

Task B1

Self-
Supervised

Task B2

Self-
Discovered

Task C

1. Initial
Performance 97.6% 92.3% 94.1% 0%

2. After few-
shot learning

of self-
discovered

task

97.6% 92.3% 94.1% 42%

%

%

N
O

 catastrophic forgetting

N
O

 catastrophic forgetting

%

%

N
O

 catastrophic forgetting

0%

42%

Blue: Task A; Orange: Task B1; Green: Task B2

Continual learning and adaptation under new conditions

Few-shot discovery and learning of new task

Finally, we prepared, submitted and/or published multiple publications listed below:

 Brna, A. P., Brown, R. C., Connolly, P. M., Simons, S. B., Shimizu, R. E., & Aguilar-
Simon, M. (2019). Uncertainty-based modulation for lifelong learning. Neural
Networks, 120, 129-142.

 Kudithipudi, D., Aguilar-Simon, M., ... & Siegelmann, H. (2022). Biological
underpinnings for lifelong learning machines. Nature Machine Intelligence, 4(3), 196-
210.

 Brown, R., Brna, A., Cook, J., Park, S., Aguilar-Simon, M. (Submitted) Uncertainty-
Driven Control for a Self-Supervised Lifelong Learning Drone. 2022 IEEE International
Geoscience and Remote Sensing Symposium.

 Stephens, T., Corley, I., … & Aguilar-Simon, M. (Submitted) Self-Supervised
Representation Learning Enhances Broad Area Search in Multi-Temporal Satellite
Imagery. 2022 IEEE International Geoscience and Remote Sensing Symposium.

 Petrenko, S., Brna, A., Wunsch, D., & Aguilar-Simon, M. (Submitted) Lifelong Context
Recognition via Online Deep Clustering. 2022 International Conference on Machine
Learning. [In collaboration with Missouri S&T]

 Delanois, E., Brown, R., … & Aguilar-Simon, M. (In progress) Sleep-Inspired Replay for
Lifelong Learning in Multi-Task Object Detection. [In collaboration with UCSD]

2.4 Transition Opportunities
We successfully evaluated and/or validated the use of our L2M algorithms across several non-
program activities. UML was employed in two DARPA programs also under contracts managed
by AFRL, Competency Aware Machine Learning (CAML) and Seeker Cost-Transformation
Closed-Loop (SECTR-CL) evaluations. Additionally, UML was evaluated for insertion into
several Government-funded projects that are successfully transitioning ATR algorithms for SAR
imagery developed under DARPA’s Target Recognition and Adaptation in Contested
Environments (TRACE) program, also originally managed by AFRL.

Figure 11 presents results obtained in our experiments with UML replacing the target
classification stage of a state-of-the-art synthetic aperture radar (SAR) automatic target
recognition (ATR) system (first developed under the TRACE program). The plot on the left
shows that UML has a significant impact on the area-under-the-ROC (receiver operating
characteristic) curve for test sets that included novel targets and conditions. Condition changes
included time of year, geographical regions for the target sites, and background clutter. Novel
targets included pre-trained targets in new configurations or completely new targets (i.e.,
confusers). The plot on the right demonstrates how in addition to improving ATR performance,
UML can report the uncertainty registered for every target under each of the conditions, thus
supporting more informed decisions for self-supervision or for operator awareness. We suggest
that both of these capabilities are excellent targets for the use of UML in any existing ATR
system that is susceptible to day-1 failures in the field due to novel conditions not anticipated
during training.

17

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Figure 12 presents results obtained in our experiments with UML applied to predicting the
performance of an existing machine learning algorithm under the DARPA CAML program.
Here, UML was used to learn the patterns of activation across different layers in the machine
learning system in response to presentation of images in the training set post-training (top
diagram in the figure). In our main experiment, UML was trained on a concatenated vector
composed of the activations in layers 3 through 5 of the deep neural network. Through this
process, UML learned to characterize the nominal responses for the training set, which we
coined strategies in the CAML program. Then, a novel dataset was used to generate both
activations and target classification outputs. UML used the activations to predict the probability
of correct classification by the network on this novel dataset. As the plot on the bottom of the
figure suggests, UML could predict network performance about 80% accuracy. These
experiments were terminated early so there was not an opportunity to investigate additional
means of increasing accuracy. However, the results suggest the promise that UML, without
access to ground truth, can predict a pre-trained network’s performance in the field, a feat not
possible today unless ground truth is available.

As these results demonstrate, our UML algorithm can be used as a drop-in replacement in any
system/program where either supervised, unsupervised or semi-supervised algorithms are being
used, which will equip the underlying system with a continual and self-supervised learning
capability. We assess the TRL for this algorithm at 4-5. Our stand-alone uncertainty tracking
algorithm can be used to inform the performance of any machine learning algorithm or system
that relies on machine learning algorithms. Furthermore, such systems can be modified to use
information about uncertainties to adapt their execution. We assess the TRL for this algorithm at
3-4. Finally, both of the algorithms above, when integrated in a system for object recognition,
can support capabilities for rapid adaptation to new environments or the addition of new object

18

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Figure 11. UML Improves Performance of a State-of-the-Art SAR-Based ATR Algorithm in
Novel (Out-of-Nominal) Conditions

19

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

types or variations. The example in Figure 13 illustrates a successful experiment we conducted to
investigate the insertion of UML into a commercial product under development at Teledyne. The
system uses a camera to detect and classify recyclable material on a conveyor belt. The initial
object classification algorithm performs very well (~90%) on a small set of object classes.
However, when the number of classes was increased to 27, performance degraded substantially.
UML was used to replace the classifier resulting in an accuracy of ~88%. In addition to the
increased performance, UML’s lifelong learning capabilities allow users to add new object

Figure 12. UML Applied to Predict Performance of an Existing Machine Learning Algorithm

Figure 13. UML Applied to Classify Objects in Complex Environments Outperforms State-of-the-
Art Object Classifiers

20

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

classes (i.e., new tasks) on-demand. We assess the TRL of this system at 6-7 as it was tested
under operationally relevant conditions.

As the previous example demonstrates, our L2M algorithms can be plugged into new or existing
machine learning solutions or systems. They can be integrated as part of individual components
of a solution or integrated into the various components of a complete solution. Table 2 lists
several of the transitions facilitated through the L2M program.

Table 2. List of Transitions and Future Opportunities
Element TRL Link to publication or

repository
Details

Components:
UncertaintyPropagation.jl
ObjectDetector.jl

4 https://github.com/TDYbrownr
c/UncertaintyPropagation.jl
https://github.com/ldfolsom2/
ObjectDetector.jl

Julia modules for uncertainty
propagation and object detection

UML learns context and
nominal conditions to
trigger alerts and promote
adaptation

4 https://www.sciencedirect.co
m/science/article/pii/S0893608
019302722

Current DARPA programs candidates
for transition ACE, SESU

UML to Astrocyte 7 https://www.teledynedalsa.co
m/en/products/imaging/vision-
software/astrocyte/

Transition of algorithm into Teledyne
product

UML to Optical Sorting 6-7 Commercial application Demonstrated robust performance in
the presence of increased tasks
relative to the state-of-the-art

UML in other Government
programs

4-6 CAML, SECTR, TRACE-related
transition programs across
multiple agencies

“Plugged” UML to predict performance
of pre-trained models on novel data,
without labels 80% accuracy;
Increased baseline accuracy by up-to
30% in novel conditions.

21

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

3.0 METHODS, ASSUMPTIONS, AND PROCEDURES

3.1 Methods

3.1.1 L2M Architecture

Our chief pursuit over the
course of this project was
to develop and ultimately
evaluate algorithms
capable of lifelong
learning following
principles of
neuromodulation. Our
approach in Phase 2
utilized a sophisticated,
multi-component
architecture, which is
shown in Figure 14. Our
L2M architecture allowed
the sequestration of key
operations deemed
necessary for lifelong
learning, which were brought together by the end of the program to produce an embodied
learning agent capable of self-supervision, uncertainty management, resource optimization,
and on-the-job learning within an open environment.

Our L2M architecture consists of six named components (denoted by C#) and an interface layer.
The named components and their roles in the system are as follows:

C1: Search and Attention – C1 accepts raw inputs provided by a given application
through the interface layer and extracts meaningful features for subsequent evaluation in
other system components. Additionally, C1 provides information on potential regions of
interest within a given input.

C2: Uncertainty Monitoring – C2 tracks uncertainties generated within system
components and communicates them across the system. This component enables
neuromodulatory activities across components, promoting different modes of operation in
response to uncertainty.

C3: Task Detection/Switching – C3 provides top-down feedback within the system by
identifying the active task during system operation and deriving contextual information.
Its outputs subsequently drive task-specific attentional mechanisms in other components
to enable context-specific operations. This component was developed by the SG team
member Missouri University of Science and Technology (S&T), and it is driven by
distributed dual-vigilance fuzzy (DDVFA) Adaptive Resonance Theory Mapping

Figure 14. Teledyne’s L2M Architecture

Algorithm (ARTMAP) [18] and is itself capable of online continual learning without
catastrophic forgetting [publication under review].

 C4: Continual Task Performance and Learning – C4 utilizes bottom-up extracted
features, top-down contextual information and learning signals, and calculated
uncertainties to learn multiple tasks in a self-supervised manner. This component houses
the neuromodulation-based uncertainty-modulated learning (UML) algorithm [19]
developed by SG team leader Teledyne during this program, and it serves as the learning
centerpiece of the architecture (see Section 3.1.2 for more details). Inputs are evaluated in
a hierarchical and online manner to identify appropriate system actions under changing
circumstances, and behaviors and learning are modulated according to available
uncertainties, including denoting high-uncertainty samples as “unknown”.

 C5: Memory Optimization – C5 evaluates the knowledge bases (e.g. learned weights)
accumulated by other system components during online operation and optimizes their
organization and storage. Such consolidation both reduces the amount of memory
required by each component, promoting long-term operations, and improves task
performance through better arrangement of information.

 C6: Model Optimization & Selection – C6 coordinates the use of separate knowledge
bases corresponding with the active context. Additionally, it handles offline modification
of knowledge bases, including batch processing of samples accumulated over some
duration. Algorithms to power this component were developed and tested by SG team
members University of California, Irvine (UCI) and University of California, San Diego
(UCSD), though they were not integrated into the architecture in time for program
evaluations.

 Interface: While explicitly a component of the learning architecture, the interface
component handles communications into and out of the architecture. Its inclusion allows
the L2M architecture to be application-agnostic, promoting its use as a plug-and-play
algorithm in any system.

3.1.2 Uncertainty-Modulated Learning (UML)

The learning algorithm used in this work expands upon principles of uncertainty pioneered by
Grossberg’s Adaptive Resonance Theory (ART) algorithm [20]. In ART, uncertainty is best
embodied in the vigilance parameter, which controls how similar a sample’s bottom-up input needs
to be to an existing top-down expectation to incorporate the sample into it. If the similarity metric
does not pass the vigilance criteria, then the system is considered uncertain, and it engages a
different learning mechanism to introduce the sample into the knowledge base. Our main
contribution is to introduce specific mechanisms for measuring different types of uncertainty that
an embodied agent needs to be able to track to perform robustly under a variety of conditions.
Through an extensive review of analysis of evidence, we have identified a broad number of
additional forms of uncertainty that we incorporate into a new uncertainty-modulated learning
(UML) algorithm. Furthermore, we expand the mechanisms that trigger changes in the learning
system so that new information is incorporated in a fully self-supervised manner.

22

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Figure 15 illustrates the generalized form of the UML algorithm. The algorithm accepts high-
dimensional representations of data, and it makes an initial decision/hypothesis using that data
based on its own existing knowledge base. The hypothesis, the end point of traditional machine
learning techniques, could take different forms based on the nature of the inputs; in this work it
represents a classification, but it could also represent a translation, a prediction, a diagnosis, or
even a motor action. The uncertainty algorithm follows the initial hypothesis by calculating a set
of uncertainty metrics, which represent sources of noise or confusion in the signals or
decisions/hypotheses that may have an impact on the algorithm’s output. Uncertainty can come
from a variety of sources, including but not limited to the hypothesis, the internal representations
of the existing knowledge base, the inputs themselves, and the conditions under which the inputs
were received. Figure 15 presents three such uncertainties.

Figure 15. Generalized Algorithm for the Uncertainty-Modulated Architecture

Next, the uncertainty metrics are compared against internal criteria representing the algorithm’s
tolerance for each uncertainty type. If all uncertainty criteria are met, representing a confident
hypothesis, the architecture finalizes its decision and passes it on to downstream components of
the system. However, if any of the uncertainties do not pass criteria, then the algorithm changes,
or modulates, its operations based on the specific uncertainty failure. Changes can be temporary,
lasting only for one input, or permanent, changing the knowledge base for all subsequent inputs.
Finally, the algorithm adjusts its criteria as appropriate for the failed uncertainties, and a new
hypothesis is generated. This process repeats until the algorithm finds or develops a hypothesis
that satisfies all uncertainty criteria.

Changes resulting from uncertainty are mediated by modulation mechanisms inspired by the
acetylcholine neuromodulatory system [21, 22] and norepinephrine [23]. These neuromodulators
can be released in response to expected uncertainty and surprise, triggering multiple effects on
signal processing and neuroplasticity in multiple brain regions [4, 24-26]. Some of those effects
induce temporary adaptations in cortical networks [27], and others induce extended changes in

23

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

hippocampal memory [28]. These neuromodulatory mechanisms form the basis by which the UML
algorithm can incorporate new information into its knowledge base without destroying its prior
knowledge.

3.1.2.1 Types of Uncertainty
The UML algorithm measures uncertainty with the principal goal of confidently adapting to the
environment or task changes. Specifically, uncertainty allows the algorithm to monitor its
performance against expectations and respond with the appropriate form of adaptation or
response. UML currently evaluates five types of uncertainty: detection, category fit, similarity,
relevance, and persistence. The exact sources of each type will vary among algorithm
implementations, but as a whole, they represent critical questions that a continual learning
system must ask to determine when, what, and how it should learn. Detection relates to the
uncertainty that a system has appropriately detected an object of interest. Fit reflects uncertainty
in how closely the inputs match internal representations of the knowledge a system has already

and its “reset and search” and “match tracking” mechanisms. Similarity asks how well a sample
relates to everything the system has already experienced, i.e., does this sample share any
common ground with what has already been seen, or is it something entirely new? Relevance is
uncertainty in the relationship between the learned information (e.g., objects it knows) and the
current input. For instance, whether the input is related or similar enough to the classes of inputs
it has previously learned. Lastly, persistence relates to temporal or observational uncertainty, as
it examines consistency in both the knowledge to be learned and the system’s understanding of
that knowledge.

Since a principal mechanism for measuring uncertainty in our algorithm is to compare the inputs
or feature activations against learned expectations, it can readily incorporate any machine
learning method that can learn priors (e.g., Bayesian networks). Algorithm 1 gives the variant
modeled after default ARTMAP 2 for illustration purposes, which can be leveraged for
classification tasks. Parameters related to Algorithm 1 are listed in Table 3, and rationale for
ARTMAP’s equations and parameters are described in the associated article [29]. This variant
examines five types of uncertainty, compares them to criteria i, and triggers modulation to
control processing flow accordingly. Uncertainty criteria i are given values at the start of
operation but can be modulated during operation to promote adaptation under different
processes.

Throughout the L2M program, we demonstrated the use of UML across multiple domains and
applications. For each application, values for parameters i can be derived through a linear
programming procedure to optimize task performance. In order to optimize for continual
learning, optimization is performed on every sample on the training set (in contrast to collecting
statistics across the entire dataset). We found that for optimization it is critical that sample order
is preserved, as this reflects temporal dependencies in natural sensor streams.

24

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

25

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

ALGORITHM 1
ARTMAP 2 variant of UML
1. Initialize model and uncertainty criteria 1-5
2. For each frame, generate d detections with features F and objectness through object detector
3. For detections i = 1…d, perform the following:

3.1. Evaluate detection metrics against detection criteria 1
3.1.1. If detection does not pass criteria, continue to next detection

3.2. Evaluate complement-coded features A=(F,Fc) against category fit criteria 2 using the following process
3.2.1. for each network node j = 1....C, calculate node activation levels j = |A^ wj| + (1 –)(M - | wj |)
3.2.2. collect activated node subset = { }
3.2.3. set winning node J = argmax()
3.2.4. evaluate node activations J against category fit criteria 2

3.2.4.1. set vigilance = category fit criteria 2
3.2.4.2. if J does not pass vigilance , remove J from and return to step 3.2.3 [reset]
3.2.4.3. if J passes vigilance assign an initial label from node J and attempt to learn

3.2.4.3.1. if supervisory label is provided & node J’s label does not match,
3.2.4.3.1.1. modulate criteria 2 to reject label mismatch [match tracking]
3.2.4.3.1.2. remove J from and return to step 3.2.3

3.2.4.3.2. otherwise, update node weights wJ to incorporate detection i
3.2.4.3.2.1. node weights wJ = J) + (1 –)wJ
3.2.4.3.2.2. proceed to step 3

3.2.5. if no nodes pass criteria 2, examine similarity of features A to existing nodes
3.2.5.1. for top nodes in original node subset , calculate overlap(features A, node weights wj)
3.2.5.2. for first node J that passes similarity criteria 3,

3.2.5.2.1. otherwise, update node weights wJ to incorporate detection i
3.2.5.2.1.1. node weights wJ = J) + (1 –)wJ

3.2.5.2.2. proceed to step 3
3.2.6. if no nodes pass criteria 3, self-generate new category to hold novel sample

3.2.6.1. create new label N = n + 1 [new class]
3.2.6.2. create new node with label = N, w = A

3.3. store current category in memory
3.4. if number of detections for label N or physical object remains below relevance criteria 4 for too long,

3.4.1. remove label N or physical object from consideration and learning
3.5. if number of detections for label N or physical object passes persistence criteria 5 is insufficient,

3.5.1. remove label N or physical object from consideration and learning
3.6. finalize category as hypothesis and request human-relevant label if a new label was self-generated

4. continue to next detection (i++)
Figure 16. Algorithm 1

26

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Table 3. Table Describing Parameters for the UML Algorithm

Notation Parameter Possible
Values

1 uncertainty criteria for
detection (0, 1)

2 uncertainty criteria for category
fit (0, 1)

3 uncertainty criteria for
similarity (0, 1)

4 uncertainty criteria for
relevance (0, 1)

5 uncertainty criteria for
persistence (0, 1)

C number of nodes in system

n number of labels known to the
system

a feature vector (0, 1)

A complement-coded feature
vector (0, 1)

M number of complement-coded
features --

 node activation level (0, 1)

 subset of activated nodes (1, C)

J winning node (1, C)

w node weights (0, 1)

 signal rule parameter (1, C)

 learning fraction (0, 1)

 match tracking (-1, 1)

N self-supervised label (class) (1, n)

H final hypothesis (-1, n)

Each criteria i relates to a specific type of uncertainty which arises in a classification learning
system, and their values reflect the type of uncertainty they are designed to address. Criteria 1
relate to detection confidence, and controls whether specific objects are considered further

(“objectness”, [30]). Criteria 2 and 3 relate to uncertainties in the analysis of the inputs,
specifically confidence of a classification or hypothesis given pre-existing knowledge. Finally,
criteria 4 and 5 relate to uncertainty in the observations. The former establishing the
relatedness of the object to previously learned objects and the latter establishing the permanence
or consistency in the observation of any new objects.

The algorithm begins by creating or loading an ARTMAP-based network and setting the
uncertainty criteria. A separate detector (C1) finds objects in a scene and returns multi-
dimensional features and an initial hypothesis, which are then fed to the network one-at-a-time.
The first stage of modulation subsequently occurs in step 3.1, as the detected object is examined
against two uncertainty criteria and potentially rejected as poor quality or undesirable.

In Steps 3.2-3.6, object instances generated by the detector of Step 2 are processed to infer
category label and engage continual learning and adaptation. Steps under 3.2.4 embody the core
of ARTMAP, which is modified to evaluate multiple uncertainty criteria. Features are first
complement-coded, and if no nodes are available in the network, the one is created using those
features and a corresponding supervised/unsupervised label. ART then implements a “forward
pass” on the network and generates a level of activation in each available node. ARTMAP uses
the node activations to find the closest approximation “winning” node J, and the fit TJ of the
input features to node J’s calculated weights is compared against the vigilance parameter . The
vigilance parameter is modulated by three of the uncertainty measures (2, 3, and 4) to
enable self-supervised learning under appropriate levels of uncertainty (Step 3.3-3.4). 5 is used
to determine if sufficient evidence (observations) have been collected for a newly acquired
object (Step 3.5). If this criterion is met, then the system preserves the new object class and can
make it available for analysis by a human operator who can assign a human-readable label (Step
3.6).

During lifelong learning, if node J satisfies criterion 2-3, and the provided label matches node
J’s label if supervised, then the network incorporates the input features into node J’s weights
using the following the equation in Step 3.2.4.3.2.1. A node’s weights can be considered the
node’s “internal representation” or template of the part of feature space it has learned to
recognize. However, if the node J does not pass criterion 2, UML engages a “reset and search”
to select a new node for evaluation. This allows the algorithm to modify the network’s
knowledge base intelligently by focusing attention on the information relevant to the most likely
hypothesis (i.e., category). If the 2 criterion is passed, but node J’s label does not match the
assigned label, then the algorithm performs match tracking, increasing the value of 2 before
starting reset and search. In this way, the algorithm is self-supervised, adjusting its uncertainty
criteria automatically. Both match tracking and reset and search constitute modulatory
mechanisms.

Once the algorithm has determined an appropriate category for a sample (including “I don’t
know”), the algorithm places that category into a list containing candidate-values for a specific
object over time in Step 3.3. Categories in this list are replaced with non-detections (zeros) over
time, so if the list does not contain enough recognitions of an object to pass criteria 4-5, then
there is uncertainty of the object’s permanence, and the current detection is rejected (Step 3.4). If
criterion 4 is passed, but the frequency of the most common hypothesis in the list is below

27

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

criterion 5, then there is uncertainty in the algorithm’s ability to form a hypothesis, and the
detection is also rejected (Step 3.5). Both rejection instances further exemplify modulation. The
algorithm only continues to Step 4 and outputs the final hypothesis for a detected object if all
uncertainty criteria have been passed.

3.2 Novelty
The UML algorithm also includes the option of examining an input’s novelty to determine if it
constitutes a not-yet-seen category. Algorithm Step 6.3.2 shows that during learning, if an input
does not match any existing nodes, the algorithm will create a new category or class for that
input. The new class is immediately available for further refinement and classification. In this
way, the algorithm can add entirely new classes in an unsupervised manner. This function, which
is inherent in ARTMAP, represents a form of modulation, but more importantly, it provides the
algorithm with a form of one-shot learning.

3.2.1 Embodied Learning Agent

During this program, we developed the L2M architecture and its underlying algorithms using the
application of a flying drone performing asset recognition tasks. This application featured an
embodied learning agent maneuvering within an open simulated environment seeking out and
identifying objects related to discrete asset categories (see Section 3.6.2 for asset details). The
challenge in this application lay primarily in the agent’s learning of how to recognize novel
objects and views, and as additional asset categories became relevant, incorporating knowledge
necessary to recognize such assets without reducing performance on prior ones. Such an
application required that the agent learn during live operation to improve its performance
while on-the-job, simultaneously evaluating and learning upon streaming information in a
continuous manner.

We promoted learning of asset appearances in the drone agent through uncertainty-driven self-
supervised learning. Under this paradigm the agent uses generated uncertainties to determine
when and how to learn on a given object. Figure 17 illustrates one version of self-supervised
learning utilized by the agent. In this scenario, a drone agent pretrained on vehicle appearances
from the ground only encounters a sedan from the air, where it generates high uncertainty.
Recognizing a need to learn, the drone flies to the ground where it has low uncertainty and
acquires the learning label (“sedan”) for the object. This label is then retained as the agent flies
back up to its operational altitude, and uncertainty in the views encountered is used to trigger
additional learning using the UML algorithm within C4. At altitudes where the agent was
originally trained, UML algorithm operates without modulation or learning, as low uncertainty in
its results reflect an appropriate level of understanding. At altitudes near to those where the agent
was originally trained, views generate moderate uncertainty, and the UML algorithm both returns
its hypotheses on given views and engages neuromodulatory mechanisms to learn by changing
existing weights to tune its understanding of the object. At high altitudes where the agent has no
prior training, views generate high uncertainty, and the UML algorithm rejects its hypotheses on
given views (“van”) and engages novelty-related neuromodulatory mechanisms to learn by
generating additional weights and associating them with the label acquired from low-uncertainty
samples (“sedan”). This provides one-shot learning capabilities to the agent. In this way, the

28

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

agent learns to recognize assets from new views, improving its performance on an asset
recognition task during live operation.

Following development, embodied learning agents using the L2M architecture were
subsequently put through a series of demonstrations (Phase 1) and learning scenarios (Phase 2) to
demonstrate L2M capabilities. Demonstrations consisted of learning scenarios showcasing the
ability of learning agents to improve asset recognition task performance over time and acquire
new skills. Learning scenarios were defined by the L2M Program and consisted of the agent
learning multiple asset recognition tasks in sequence with evaluation periods following each
learning period. Program metrics generated during these scenarios were used to demonstrate
overall success during the program.

3.3 Metrics

3.3.1 Overview

Metrics consisted of two types: application-level metrics and lifelong learning metrics.
Application-level metrics are defined as those generated within the L2M application itself; such
metrics carry application-specific units and characterize the ability of the learning agent to
perform a given task. Lifelong learning metrics are those that characterize the overall learning
abilities of a learning system; such metrics are unitless, are generated using application metrics
for a given system, and are agnostic to a given application or system configuration. For the latter

29

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Figure 17. Self-Supervised Learning of a New Object

reason, lifelong learning metrics were used as the L2M program metrics and will be referred to
as such in subsequent sections.

3.3.2 Application-Level Metrics

Application-level metrics calculated in this project were generated by performing a series of
asset recognition tasks during learning scenarios. Generally, a drone agent with or without some
level of pretraining was flown through an open simulated environment, simultaneously
performing object recognition tasks and learning at key locations. Learning was disabled at
certain locations to allow evaluation without concurrent learning.

Firstly, object recognition accuracy and later precision were monitored during operation,
quantifying the ability of the system to return an appropriate classification for given objects.
Accuracy was initially measured to quantify the benefit of UML’s ability to report “unknown”
instead of committing to a poor decision. The metric thus gives partial credit for potential True
Negatives as follows:

() = # + # 2
Equation 1. Object Recognition Accuracy

UML is unique among most machine learning algorithms in being able to confidently declare
that it does not have enough information to produce an output. This should be highlighted as an
important contribution to the field. However, as the program progressed, and more emphasis was
placed on comparing performance across performers, we opted to adopt the standard metric for
precision as follows: =

Equation 2. Precision

These metrics were adjusted to incorporate the identification of context, active task, or task-
relevancy in those configurations of the agent able to generate them; in such cases, partial credit
was awarded for accuracy metrics for correct recognitions of either object or context labels.
Additionally, accuracy metrics awarded partial credit when samples were labeled as “unknown”,
indicating successful identification of when the agent could not confidently classify a sample
based on prior knowledge. Precision metrics were calculated using only those samples given a
confident identification, with the agent treating “unknown” samples as too high uncertainty to
use for task execution.

Additionally, levels of uncertainty were measured as application-level metrics. These metrics
included uncertainty of similarity between a sample and the agent’s knowledge base (“fit”),
uncertainty in an object’s classification over time (“persistence”), uncertainty in a classification
given conflicting alternatives (“contested”), and uncertainty in knowledge base organization

30

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

31

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

(“fragmentation”), among several others (see [19] for additional details). These uncertainties
were used to both monitor and drive the decision-making ability of the learning agent:

 = (,) (1)

 = (|) (2)

 = ()() (3) = (|) (4)

where,

distL1 is the L1 distance, and

WT are all the candidate categories. Thus, fragmentation measures the percentage
of those candidates that match the most likely category.

Equation 3. Uncertainty Measures

Lastly, memory requirements (measured as total number of bytes allocated in RAM) for the
learned knowledge base were monitored during operation as an application-level metric.
Lifelong learning methods such as ours that allow the creation of additional weights will
practically be limited by the platforms on which they operate, making memory optimization an
important part of long-term lifelong learning. Metrics calculated here were used to promote such
optimization operations.

3.3.3 Lifelong Learning / Program Metrics

The program metrics calculated for this project served to evaluate the lifelong learning agent in a
system and application-agnostic way, allowing for comparison against other agents. Methods and
logic for each metric are described briefly below, with a more in-depth description and
calculation being available in [31].

 Performance Maintenance (PM) – the ability of a lifelong learning system to retain

reflects a system that does not catastrophically forget following new learning.

Computed by:
 Select an application-specific metric to monitor for the given environment (accuracy

or precision)
 Set up a learning scenario with a sequence of Learning Blocks alternating with

Evaluation Blocks. Each Evaluation Block exercises all the previously learned tasks.
 For a given task and Evaluation Block:

32

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

 Calculate the Maintenance Value, defined as the difference between each the
Task’s most recent Evaluation Performance and second-most-recent
Evaluation Performance

 Performance Maintenance for a lifetime = mean Maintenance Value across the
lifetime

 Forward Transfer (FT) – the ability of a lifelong learning system to utilize information
learned on one task to improve the learning on a set of different, subsequent tasks. A

uch a way that it can be utilized
by subsequent tasks to improve their own learning.

Computed by:
 Select an application-specific metric to monitor for the given environment
 Set up a learning scenario beginning with initial Evaluation Blocks for all tasks,

followed by a sequence of Learning Blocks (for different tasks) alternating with
Evaluation Blocks.

 Assuming a block sequence like: Eval Block 1, Learning Block 1 (Task-1), Eval Block
2, then Task-2’s Forward Transfer (from Task-1) is computed as the contrast of the
Evaluation Performances of Task-2 in Eval Block 2 to Eval Block 1.

 A task’s Forward Transfer is this FT calculation, the first time it appears in the
learning scenario.

 The Forward Transfer for a lifetime is the mean of each task pair’s Forward
Transfers.

 Backward Transfer (BT) – the ability of a lifelong learning system to utilize
information learned on a new task to improve the performance on a set of different,

r tasks
using information acquired during a new task, which suggests shaping the underlying
knowledge base in a way that is helpful to multiple tasks.

Computed by:
 Select an application-specific metric to monitor for the given environment
 Set up a learning scenario with a sequence of Learning Blocks. Between each

Learning Block, there are Evaluation Blocks for each of the other tasks.
 For each task:

 Compute the Backward Transfer Contrast, defined as the contrast of the
average performance within the most recent Evaluation Block to the second-
most recent Evaluation Block

 Backward Transfer for task T = the average of the Backward Transfer
Contrasts

 The Backward Transfer for a scenario is the mean of each task pair’s first calculated
Backward Transfer value.

33

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

 Relative Performancee (RP) – the ability of a lifelong learning system to utilize the
knowledge shaped from multiple tasks to improve its performance on a given task. This
metric compares the lifelong learner against a learner trained only on the given task, and

performance overall.

Computed by:
 Select an application-specific metric to monitor for the given environment that has

also been logged for a Single Task Expert (STE; e.g. a non-lifelong learner)
 Set up a learning scenario with some sequence of Learning Blocks for some number

of tasks
 For a given task T:

 Consider only the Learning Blocks for Task T, in order of appearance
 Intuitively, compare the “area under the curve” for the lifelong learner

experiencing Task T with the area under the curve for the equivalent Single
Task Expert.

 Formally, Compute the Single Task Expert Ratio, defined as the ratio of the
sum of the application-specific metric over all of the Learning Experiences in
the lifetime to the sum of the same application-specific metric over the same
amount of learning experiences for the Single Task Expert

 Relative Performance for Task T = the Single Task Expert Ratio
 The RP for a lifetime is the mean of each task’s RP score.

 Sample Efficiency – the ability of a lifelong learning system to utilize the knowledge
shaped from multiple tasks to achieve competence on new tasks more rapidly. This
metric also compares the lifelong learner against a learner trained only on the new task,
and it measures the relative number of learning experiences required to achieve the same

knowledge to acquire new tasks over time.

Computed by:
 Select an application-specific metric to monitor for the given environment that has

also been logged for a Single Task Expert
 Set up a learning scenario with some sequence of Learning Blocks for some number

of tasks
 Intuitively, compare the saturation value of the Single Task Expert with that of the

lifelong learner.
 For each task T:

o Consider only the Learning Blocks for Task T, in order of appearance
o Compute Saturation Value (the max of the rolling average of the application-

specific metric) and the Experience to Saturation (the number of Learning

Experiences it takes to achieve the Saturation Value) for both the L2 agent
and the Single Task Expert system

o Compute the ratio of the Saturation Values of the L2 agent and the STE
o Compute the ratio of the Experience to Saturation (ETS) for the STE and the

L2 Agent
o Sample Efficiency = Saturation Value Ratio * Experience to Saturation Ratio

 Performance Recovery (PR) – the ability of a lifelong learning system to progressively
reduce the time required to return to prior performance on a given task following learning

learning. (This metric was removed from program metrics late in Phase 2 due to erratic
results across multiple performers.)

Computation:
 For each Task:

o Select an application-specific metric to monitor for the given environment
(e.g. precision)

o Set up a learning scenario with a sequence of LX blocks. Each LX block
introduces a parametric change to an already-learned task.

o From the second Learning Block onwards, calculate the Recovery Time
relative to the most recent Terminal Learning Performance. The “Recovery
Time” is the number of LXs for performance to return to the previous
Terminal Learning Performance.

o Task-Specific Performance Recovery = negative slope of the line of (Learning
Block index, recovery time) values.

 Report Lifetime PR as the mean of all Task-Specific PRs
Our system calculated program metrics using the accuracy, then later precision, metrics
described above. While our system is capable of concurrently evaluating and learning upon
streaming information, following the learning scenarios outlined in [31] and described in Section
3.3.3, the first three metrics were calculated using evaluation periods without learning engaged; a
similar format was used with sequestered validation data for the last two metrics later in the
program. Metrics requiring single task learning algorithms measured the performance of learning
agents using the L2M architecture with equivalent settings as a lifelong learning algorithm but
only trained using samples from singular tasks.

3.4 Testing and Evaluation
We evaluated our L2M architecture and associated learning agents through algorithm
demonstrations and learning scenarios with associated program metrics, as well as through
separate experiments exploring other applications of the system.

3.4.1 Phase 1a Experiments and Demonstration

During Phase 1a, we began by executing a consecutive series of three proof-of-concept (POC)
learning experiments examining fundamentals of uncertainty-based algorithms for lifelong

34

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

learning. The results of these and other related experiments informed the design of a
demonstration at the end of Phase 1a, which verified the applicability of our lifelong learning
algorithm, dubbed UML [19], within an embodied learning agent performing asset recognition
tasks.

POC 1 examined the ability of uncertainty-based algorithms to recover task performance under
novel contexts. Under this experiment, a learning agent was pre-trained using randomized views
of sedans, vans, and city clutter from the ground only, which imitated an agent restricted to
ground-based movement. Then, this agent was exposed to randomized views of sedans from the
air, representing a significant change in the sedans’ appearance and leading to poor recognition
performance. The agent was then allowed to learn on the new views in periods of high
uncertainty, which recovered performance on the task for the novel view without affecting its
performance on ground-based views.

POC 2 pushed this capability to recover performance on a separate set of resources in a new
context without catastrophically forgetting prior learning. Continuing from the same model as
POC 1, this experiment exposed the learning agent to randomized views of vans from the air,
which it initially performed poorly on. After subsequently learning on views of vans from the air
according to sample uncertainties, the agent recovered performance on that asset as well
without impacting prior performance on ground-based imagery nor air-based sedan imagery.

POC 3 investigated the algorithm’s ability to identify and learn upon entirely novel information.
In this experiment, the model from the end of POC 2 was exposed to random samples of a new
class of never-before-seen objects, fire trucks, which it could not correctly identify based on
prior knowledge. Using different uncertainties focused on novelty, the agent then identified
select views of the object to learn upon, adding the new object class to its knowledge base in a
self-supervised manner. Finally, labels were applied manually to the novel learned information,
ultimately learning to recognize a new object class in a one-shot or few-shot manner.

Following POC 1-3 and two smaller experiments confirming the suitability of self-supervised
learning with continuous imagery, Phase 1a efforts culminated in a demonstration of an
embodied learning agent operating within an open environment. In this demo, a drone agent
pre-trained with ground-based imagery of vans, sedans, and city clutter encounters sedans at an
intersection from the air and executes a series of maneuvers to learn to recognize them from its
new operating altitude using continuous imagery. Following this, the agent flies to another
intersection containing both sedans and vans, where it repeats similar maneuvers to acquire
recognition skills with vans from the air. Finally, the agent encounters fire trucks at a third
intersection, which it learns as new classes following self-supervision before then adding a
unifying label, thus acquiring recognition skills with an entirely new class.

3.4.2 Phase 1b Experiments and Demonstration

During Phase 1b, we examined the uses of additional uncertainties and contextual signals to
enable discovery and on-the-job learning. Following two smaller experiments examining
focused, uncertainty-driven, self-supervised learning of asset objects of interest, we ran a fourth
POC experiment. POC 4 utilized a hierarchical version of UML including drone altitude as a
contextual signal, which provided a top-down attentional mechanism to promote differential

35

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

treatment of assets based on context. In this experiment, a learning agent was trained using
randomized imagery to perform 1 of 3 actions (COUNT, AVOID, IGNORE) based on a
combination of an object’s class and the altitude from which it was viewed, which required
appropriate recognition of both class and an active task directly based on context.

The Phase 1b demonstration utilized an embodied learning agent with the ability to execute
different actions in response to recognized objects based on contextual signals. This demo
continues from that of Phase 1a, using a drone-based agent trained on ground and aerial views
vehicles locating vehicles it needs to count. The agent in this demo additionally utilizes a
distance sensor to discover objects within its flight path, which prompt it to learn to avoid such
objects at operating altitudes and ignore them at higher altitudes. Finally, the agent uses its new
knowledge to autonomously maneuver in the environment while continuing its counting task.

3.4.3 Phase 2 Learning Scenarios

During Phase 2, we ran a series of Learning Scenarios defined during the program to evaluate the
capabilities of UML and the L2M Architecture based around it. Learning scenarios consisted of
having a learning agent attempt to learn on multiple tasks and variants in sequence, which tested
its ability to acquire new skills without adversely affecting prior ones. Tasks were defined as
asset recognition/management tasks using discrete object categories, as described in Section 3.1;
task variants were defined as different versions of a given task, such as from different altitudes or
using different times-of-day. Tasks, variants, and object categories are defined in Section 3.6.7.

Learning scenarios were run at discrete months into the Phase 2 period of performance (denoted
M#) following Table 4. Scenarios were progressive in difficulty and were routinely repeated to
evaluate development progress. A given scenario
included a series of learning blocks where the Table 4. Learning Scenarios by
agent learned to perform a single task variant Evaluation Period
during each block; these were followed by an
evaluation block where the agent was tested on
each task it would encounter during the scenario.
Each scenario type used a different number of
tasks and variants to increase the complexity and
difficulty of evaluations over time. The
organization of tasks and variants encountered was
determined by the scenario type as described in
Table 5.

Program metrics were accumulated across several runs of each learning scenario for the learning
agent. Each run included randomization in the order of tasks and task variants. Finalized metrics
were calculated by the Johns Hopkins University Applied Physics Lab (APL), the independent
test and evaluation partner for the program, using logs generated during each run.

36

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

3.4.4 Out-of-Nominal Recovery Experiments

Separately from the learning in the embodied agent, we carried out two additional experiments
during the program focusing on adaptations under noisy conditions. These experiments explored
how uncertainty caused by deviations from expected operating conditions could be used to
recover performance in a trained system. The first experiment explored uncertainty as a means of
retraining a deep neural network to handle noisy inputs on a character recognition task. The
second experiment expanded the applications of the UML algorithm into reinforcement learning
(RL) by detecting errant model states caused by corrupted frames in an ATARI game and
adjusting the behavior of the RL agent to minimize performance loss.

3.5 Assumptions
To develop a learning agent with self-supervised learning capabilities, our application included
an object tracker enabled through the testing environment (see Section 3.6.1). This tracker
provided unique identifiers for each object within the field of view, which were used to monitor
detections of a given object over time, to provide ground truth labels as needed, and to filter
objects not directly related to any evaluated tasks. Transitions with this architecture would
benefit from a separate object tracker (implemented within C1) to enable similar functionality in
a functional agent.

Additionally, for our chosen application it was assumed that task descriptions, including relevant
assets types and contexts, were defined by a human operator and provided to the agent during
initial learning. The agent is capable of improving task performance and learning new classes in
a self-supervised manner, but it relies on such definitions to identify the boundaries of a given
task within which it can then improve autonomously.

3.6 Procedures

3.6.1 Data and Feature Extraction

Data for each experiment, demonstration, and learning scenario was collected using AirSim [32],
a software package capable of generating simulated imagery for autonomous vehicle and drone
platforms. Data consisted of sequences of RGB imagery captured during varied movements and
flight patterns within a custom urban environment with accompanying segmentation information,

37

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Table 5. Scenario Types
Scenario Type Tasks Variants Ordering

Permuted (simplified) 3 1 variant, equivalent across tasks 1 learning block for each task, order randomized

Alternating (simplified) 2 1 variant, equivalent across tasks 3 learning blocks for each task, order alternating

Permuted 4 1 variant for each task 1 learning block for each task variant, order randomized

Alternating 2 1 variant for each task 3 learning blocks for each task variant, order alternating

Condensed 3 2 variants for each task 1 learning block for each task variant, order randomized

Dispersed 3 2 variants for each task 3 learning blocks for each task variant with total number
of samples equivalent to condensed, order randomized

operating altitudes, and in specific cases distance information to objects within view. Each task-
relevant object was assigned a unique segmentation id, which was subsequently used to track
objects over multiple views and assign ground truth values as needed.

Following data collection, RGB imagery was run through a feature extractor (YOLO v3 [30] or
YOLO v4 [33]) to produce features and bounding boxes of relevant objects and imagery. The
feature extractor was pre-trained on the COCO dataset [34], and features were collected from a
convolutional layer towards the end of the network. Bounding boxes provided an attentional
mechanism for the system and were used to localize objects within view. Vectors of features
representing individual objects were formed by spatially averaging all pixels within each
bounding box.

3.6.2 Asset Management Tasks

Learning tasks in this program consisted of asset recognition tasks wherein a learning agent was
required to recognize target assets within an environment and report the appropriate class and
later relevance to the active task. Asset recognition tasks were designed to mirror potential
applications wherein a given agency, such as the department of transportation, would task the
learner with locating and identifying resources relevant to that department. Lifelong learning
would be necessary for such an agent both during operation to improve its performance over
time and in the case where another agency acquired the agent and assigned it to their own
resources.

Tasks utilized assets from the following four major categories: personal vehicles, emergency
management agency vehicles (EMA), department of transportation resources (DOT), and urban
clutter. Table 6 gives assets included in each category. Asset categories were used to define the
general bounds for training and
testing. Phase 1 utilized resources Table 6. Asset Categories
from all four categories in Asset Category Assets
different combinations as Sedans (including sedans, taxis), vans
described in respective Personal Vehicles (including mail, delivery, and police vans

) experiments; Phase 2 utilized Benches, crosswalk signs, fire hydrants,

resources from the EMA and Urban Clutter trash cans, and patio umbrellas
DOT assets, specifically. Emergency Management
Additionally, certain evaluations Agency (EMA)

 Fire trucks, ambulances, police cars
split a given asset category into Department of
multiple tasks based on agent Transportation (D

OT) Traffic lights, stop signs

altitude, requiring analysis of
context as well as asset
appearance.

3.6.3 Phase 1a Proof of Concept Experiments

(Detailed descriptions of POC 1-3 is available in the related publication [19].)

The first proof of concept (POC) experiment in Phase 1a utilized principles of uncertainty to
drive continual learning to recover skill performance under a new context without affecting

38

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

performance on the prior context. First, imagery of personal vehicles and urban clutter was
collected at ground level (0-2 m) within a custom simulated environment. Assets within the
imagery were organized into the following three sets:

Set A: sedans, including all sedan objects from the personal vehicle asset category as well
as police cars

Set B: vans, including all van objects from the personal vehicle asset category

Set O: other, including all urban clutter category objects (except for umbrellas) as well as
traffic lights and stop signs

Example imagery from Sets A and B as well as the simulated environment are shown in Figure
18: (a) shows an overhead view of the custom AirSim environment used during Phase 1a
development and testing; (b,d) and (c,e) show paired ground and aerial images used in data
collection. The graphic is taken from a related publication [19].

Following object localization and feature extraction (YOLO v3), this ground-based imagery was
then randomized and used to train a UML network. All samples within a given set were assigned
the same learning label, producing a network with three total classes. This formed the baseline
ground-based network.

Next, imagery of the assets from Set A was captured from the air (5-35 m). As before, object
instances and features were identified using the same feature extractor. Object instances were
randomized and split to form training and testing sets, respectively.

Finally, the ground-based network was trained sequentially on samples from the aerial Set A
training set to learn to recognize them from a substantially different context and view. Following
principles of uncertainty, the network only learned on samples it identified with high uncertainty,
such as having a poor fit with existing network expectations or following an incorrect
classification. The network was configured such that one of the three classes was returned for
each sample, as opposed to returning an “unknown” designation. Accuracy on the ground-based
Set A and B imagery and the aerial Set A testing set were calculated at regular intervals during
training to monitor learning performance on both tasks over time.

39

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Figure 18. AirSim Environment and Imagery

The second POC experiment in Phase 1a built upon POC 1 to show recovery of performance on
additional resources without catastrophically forgetting prior ones. This experiment built on the
network formed in POC 1, which could classify objects from Set A and B from the ground and
Set A from the air. Similarly to POC 1, imagery of assets from Set B were captured from the air
(5-35m), and object instances and features were collected using the feature extractor.
Subsequently, training and testing sets were formed from the imagery through sample
randomization. The training set was then used to progressively train the network from POC 1 on
Set B assets from the air using principles of uncertainty. Accuracy on the ground-based Set A
and B imagery, aerial Set A testing set, and aerial Set B testing set were calculated at regular
intervals during training to monitor learning performance on each task over time.

The third POC experiment in Phase 1a continued from POC 2 to demonstrate few-shot learning
on entirely new information using the additional image set using new objects defined as: Set C:
fire trucks. Imagery for Set C was collected from the air (5-35 m), and extracted instances and
features were randomized and split to form training and testing sets. The trained model from
POC 2 was subsequently trained on the Set C training imagery without any learning labels,
allowing the network to form new classes as needed to accommodate the new information.
Afterwards, any new classes formed were assigned the same class label, and this updated
network was used to calculate accuracy on the Set C test set and all prior test sets to show the
acquisition of a new class without impacting performance on prior classes.

3.6.4 Phase 1a Demo

(A detailed description of this demonstration is available in the related publication [19].)

The first program demonstration showcased an embodied learning agent capable of using self-
supervised learning to recover skills under a new context and acquire new skills while learning
on-the-job within an open environment. This demonstration built on principles examined during
POC 1-3 and illustrated their use on a potential application for the algorithms developed during
this program.

The mode of self-supervised learning used during this demo was developed using two additional,
smaller experiments. In the first, it was found that training on multiple altitudes boosted
performance for a given altitude, providing transfer during learning across altitudes [19]. In the
second experiment, it was observed that using continuous, related imagery reduced network
memory requirements without affecting learning performance. These smaller experiments
provided confidence in the mode of learning employed below.

During the demo, a drone agent pre-loaded with the baseline ground-based UML network from
POC 1 was flown through three intersections. At each intersection, objects and features were
collected using the feature extractor, and features for vehicular objects were passed to the UML
network for classification and potentially learning. In all cases, objects were classified prior to
learning on any given sample, and detection/classification labels were assigned to each object
following evaluation of uncertainties in their temporal characteristics.

At intersection 1, the agent first viewed sedans from the air at 30 m, where it has not been
trained. Following principles of self-supervised learning as illustrated in Figure 17, the agent

40

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

flew to a lower altitude, where it could better identify objects with lower uncertainty and acquire
ground truth labels for them. The agent subsequently flew back upwards to its operating altitude
then in a semicircle around the sedans to learn to recognize them from this new view and
context, using object tracking and principles of uncertainty to learn on each object using its
acquired labels as needed.

At intersection 2, the agent encountered both sedans and vans from the air. Similarly to
intersection 1, the agent flew to a lower altitude to acquire self-supervised learning labels for
each object. Then, it flew back up to its operating altitude of 30m, learning to identify vans from
the air. The agent was then flown back to intersection 1 to demonstrate its performance on prior
information.

Finally, at intersection 3, the agent encountered fire trucks, which represented a class the agent
had never before encountered. Here, the agent’s uncertainty thresholds were modulated to
promote identification of novel information and subsequent self-supervised learning of novel
classes. After being allowed to develop new classes based on individual objects in view, new
classes were assigned the same unique label, achieving one/few-shot learning for the new object
type.

3.6.5 Phase 1b Proof of Concept Experiment

The Phase 1b proof of concept experiment, POC 4, focused on the application of context signals
to modulate agent behavior on recognition of a task-relevant asset. A task was set up where the
appropriate reaction to a given asset was based on both the identity of the asset and the context in
which it was recognized, thus requiring multiple layers of processing and providing modulation
to the actions taken by a given embodied agent.

For this experiment, data was collected that mimicked operation of a drone learning agent flying
down a street attempting to count vehicles while changing altitudes to avoid traffic lights. Views
of traffic lights from high altitudes (5-30 m) were to trigger AVOID actions to avoid collision,
while views from low altitudes (0-2 m) were to trigger IGNORE actions. For vehicles, views
from high altitude were to trigger COUNT actions to perform the given task, while views from
low altitude were to trigger AVOID actions to avoid collision. Vehicles included objects from
Sets A, B, and C from POC 1-3, and samples were presented without any distinct order. Figure
19 shows examples of the training and testing data for POC 4.

41

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

To learn this task, a hierarchical UML network with two layers representing object class and
agent action was constructed. Inputs to the first layer consisted of object features, and inputs to
the second layer included the object features as filtered by the first layer. Additionally, drone
altitude was included as a feature for the second layer to provide context to learning. During
training, the network identified when and what to learn on provided samples following
evaluation of uncertainties, and labels were provided as needed.

Training and testing of the network took place in three stages. Firstly, the lower layer of the
hierarchy was first trained using all available samples to be able to accurately classify objects
from multiple altitudes. Secondly, the upper layer was trained on a sparse subset of the training
data, providing it with the means of returning any of the three actions (AVOID, IGNORE, and
COUNT) during inference. Finally, the upper layer was trained sequentially on the remainder of
the training data. Following the second and third stages, network performance was measured
against the whole dataset as a “test” set, showing performance before and after sequential
training. During the third stage, performance of the upper layer was monitored before learning on
every sample, allowing evaluation of the network as it learned. Additionally, during the third
stage, the layer was configured such that it could also return an “unknown” designation if the
sample was too high uncertainty, representing an identification of samples outside the
distribution of previous samples.

3.6.6 Phase 1b Demo

The demonstration for Phase 1b incorporated principles from POC 4 into the trained agent from
Phase 1a, adding self-supervised flight capabilities enabled through recognition of appropriate
actions given recognized assets and current context. Additionally, this demo included elements

42

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Figure 19. Sample Training Data for Phase 1b Proof of Concept

of discovery, allowing the agent to use a second type of contextual signal to provide a means of
discovering and learning on novel object classes requiring new flight patterns.

Here, the embodied learning agent as described for the Phase 1a demo was upgraded in two
ways. Firstly, its learning network was updated to use hierarchical UML as described for POC 4;
this enabled it to learn appropriate actions for recognized assets using altitude as a contextual
signal. Additionally, the agent was given a proximity alarm utilizing AirSim depth imagery; this
alarm allowed the agent to discover new objects it previously had not been trained to recognize,
and it would initiate new actions when those objects were subsequently detected using more
standard imagery.

The demo started by having the agent run through the intersections of the Phase 1a demo with its
new configuration, learning to perform a COUNT action for all vehicular assets from Sets A, B,
and C from the air. Subsequently, the agent’s proximity alarm was triggered by a patio umbrella
directly in its path, which it did not recognize through RGB imagery due to its lack of similarity
with other learned objects. Once the alarm was triggered, the learning agent initiated a pre-
programmed flight pattern to learn to recognize the object from multiple altitudes, to AVOID the
object at operational altitudes, and to IGNORE the object at great altitudes. The agent used self-
supervised methods to learn the new object, assigning it an internally consistent label unrelated
to prior resources and using uncertainty in object views to determine when learning was
necessary. Use of this method of learning was supported through two small experiments, which
showed that uncertainty could be used to identify appropriate views for learning of objects, and
that uncertainty in views could drop over time, providing a means of self-guided learning.

After learning to recognize and apply appropriate flight patterns when viewing an umbrella, the
drone then encountered a traffic light in its path. This again triggered the proximity alarm,
initiating self-supervised learning on the object in the same fashion and creating another
internally consistent label for it. The agent then encountered both traffic lights and umbrellas
again in turn, where it would recognize them from its RGB imagery and autonomously maneuver
to AVOID them. Finally, the agent encountered vehicular assets again to show a lack of
catastrophic forgetting after discovering the two new classes and learning on them in a few-shot
manner.

3.6.7 Phase 2 Learning Scenarios

In Phase 2, the learning system code was reconfigured to operate within the L2M architecture
described in Section 3.1, and learning scenarios were utilized to evaluate the whole system’s
learning abilities. Scenarios at each evaluation period increased in difficulty over time according
to Table 4 and using numbers of tasks and task variants outlined in Table 5.

43

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Our learning scenarios utilized a flying drone agent learning to perform a series of asset
recognition/management tasks. In each portion or “block” of the scenario, the agent would
encounter assets for single task as defined in Table 7 and potentially learn on streaming samples
in a self-supervised manner. To expedite the execution of a given scenario, the agent was
assumed to have already acquired a self-supervised label for each object by flying to a low-
uncertainty view prior to the block. As in the Phase 1 demos, objects were classified prior to
learning on any given sample, and labels were reported for each detection following evaluation
of uncertainties in their temporal characteristics. Scenarios increased in difficulty in later
evaluation periods, encountering task-specific assets under multiple times of day (see Table 7).

Learning scenarios consisted of repeating units of evaluation blocks and learning blocks. During
a learning block, the agent would be allowed to learn as determined necessary through
uncertainty analyses on a single task variant as outlined in Table 7; task performance was
calculated using labels inferred for each task-relevant detected object and logged using APL’s
l2logger software. During an evaluation block, the agent would perform on imagery
corresponding to each of the run’s task variants in sequence, obtaining a task score for each. The
agent was allowed to adapt to changing circumstances in evaluation blocks, but not to make any
changes to long-term weights. Each learning block was preceded and followed by an evaluation
block to monitor how continual learning on a task variant affected performance on all task
variants, and the total number of learning blocks was determined by the scenario setup and
number of task variants used. Additionally, for condensed and dispersed scenarios an offline
learning block was often inserted at the end of each learning block. During these blocks, the
agent used model self-evaluations or samples from prior learning blocks to optimize its internal
representations, functionally executing a “sleep” cycle.

44

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Table 7. Scenario Tasks and Task Variants

Evaluation
Periods Scenario Types Tasks Variants

Month 9 Permuted (simplified)
Alternating (simplified)

EMA Low (10 m) Noon

EMA Med (20 m) Noon

EMA High (30 m) Noon

Month 12 Permuted
Alternating

EMA Low (10 m) Dusk

EMA High (30 m) Morning

DOT Low (2 m) Noon

DOT High (5 m) Afternoon

Month 15
Month 18

Condensed
Dispersed

EMA Low (10 m) Morning
Dusk

EMA High (30 m) Morning
Dusk

DOT (2 m) Morning
Dusk

45

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Using logs generated by individual runs of each scenario, program metrics were generated both
by sending APL training logs and by running APL’s l2metrics software internally. Additionally,
training logs were generated for a single-task expert (STE) for each task variant used in a
scenario; here, an STE was defined as a learning agent described above which encounters only
samples from a single task variant. STE logs were used to enable calculation of two program
metrics, as noted in Section 3.3.3.

To continue development on lifelong learning algorithms, updates were made to the learning
system continuously between Phase 2 evaluation periods. Teledyne Scientific lead development
efforts and both designed and implemented in the L2M architecture, C1, C2, C4, C5, and the
interface layer (see Figure 14 for component definitions). Missouri S&T developed algorithms in
C3, and UCI and UCSD developed algorithms in C6. Updates incorporated into the learning
system for each evaluation period are noted in Table 8; updates included changes in model
pretraining, adding components and connections, updating components, and updating application
metrics as needed.

Table 8. System Updates for Evaluation Periods
Evaluation Period System Updates

Month 9

L2M Architecture – Implemented.
C1 – Enabled with with Yolo V3.
C2 – Enabled with communications with other components.
C4 – Enabled with UML. Pretrained on ground imagery.

Month 12

Interface – Implemented.
C4 – Hierarchy added with task relevance. Pretraining
removed.
C5 – Initial version implemented but not enabled.

Month 15

Metrics updated to use precision.
C3 – Enabled, but context output not fed to other
components.
C4 – Learning rules and uncertainty calculations updated.
C5 – Enabled with optimization rules updated.

Month 18

C1 – Updated to Yolo V4.
C3 – Context fed to to C4 hierarchy.
C4 – Hierarchy updated to apply top-down modulation of
recognition results. Learning rules and uncertainty
calculations updated.
C5 – Optimization rules updated.

3.6.8 Noisy Conditions Experiments

The noise filtration experiments examined how uncertainty analyses could impact recovery in
trained systems encountering noisy inputs or circumstances. The first experiment examined how
a deep neural network classifier could be retrained to recover performance on a character
recognition task with noisy inputs. The second experiment applied UML alongside a
reinforcement learning (RL) agent playing an ATARI game and modulated its actions during
corrupted frames to recover performance.

For the character recognition task, a small convolutional network was initially trained to classify
clean, well-defined handwritten characters from the MNIST dataset [35]. Following this, the
network was evaluated on the noisy-MNIST dataset [36], which includes low-contrast versions
of the characters with noise added. Classification accuracy was recorded to show how
performance changed in the presence of such noise. Reflecting potential operations in a system
capable of recognizing the change in operations state represented by the noise, the network was
subsequently trained on test data from the noisy MNIST dataset, but with a substantially reduced
learning rate, promoting minor tuning of parameters. Following this, performance on both the
MNIST and noisy-MNIST test sets was tested to examine how this modulation to training
affected both variations.

For the ATARI task, an RL agent was trained to play Pong using original frames that were
visually ideal and uncorrupted by noise or perturbation. Concurrently, a variational auto-encoder
was trained to predict the next frame of the game using the current frame and the chosen action
from the RL agent; the portion of this network following encoding then represented a high-
dimensional feature representation of a prediction for the next frame. A UML network was then
trained in an unsupervised manner on activations of this encoded region using uncorrupted
imagery and RL agent actions. After training on the ideal data, the UML network was set to
inference mode to identify novel, high-uncertainty predicted states and produce a modulatory
signal back to the RL agent.

Following training, the RL agent was tasked with playing Pong but with some percentage of
frames randomly corrupted prior to input to the agent. Methods of corruption included adding a
level of noise (10% or 30%) or perturbing the image vertically or horizontally, shifting portions
of the image to new locations. Gameplay performance of the RL agent in the presence of such
corruption was recorded. Subsequently, the UML network was connected to the RL agent such
that it could modulate the action chosen by the agent for a given frame prior to its impact on the
environment. The UML network was run in parallel with the RL agent, evaluating each predicted
state during gameplay; when UML identified a high uncertainty state, one that did not fall within
the known state-action distributions, it would change the action taken by the RL agent to NO-OP
and preventing any action from being taken that frame. In this way, the UML network modulated
the RL agent’s actions in the environment under high uncertainty conditions. Gameplay
performance of the RL agent was again evaluated on corrupted games but with UML modulation
engaged.

46

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

47

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

3.6.9 Hardware

All training and testing were performed using high-performance desktop units running Ubuntu
16.04 or 18.04 with NVIDIA GPUs and related software. Operations involving a feature
extractor/C1 were run on a single GPU, while operations involving UML were run on
multithreaded CPUs. Phase 1 proof of concept experiments and Phase 2 learning scenarios
utilized stored imagery to improve reproducibility during software development, while the Phase
1a and 1b demonstrations operated in real-time with continuous data collection and streaming.
Individual runs of Phase 2 learning scenarios were completed using Docker images run on a
Slurm cluster to enable parallel execution. All software and associated documentation were
packaged and delivered as part of our end-of-phase submissions.

4.0 RESULTS AND DISCUSSION

The experiments in Phase 1 were focused on refining the core UML algorithm to exhibit
characteristics of lifelong learning. These capabilities would be demonstrated in a set of
demonstrations at the midpoint (Phase 1a demo) and the end of the phase (Phase 1b demo). For
detailed descriptions of each of the experiments conducted, please refer to Section 3.5.

4.1 Proof of Concept Experiments
To ensure that we had confidence in our algorithm improvements to support lifelong learning
capabilities, we set up three proof-of-concept (POC) experiments that would sequentially build
capability towards the Phase 1a demonstration. Each POC focused on a simple version of a
component of the Phase 1a demo. POCs 1-2 both used two sets of vehicle targets, sets A and B.
Each set has both ground and aerial viewpoint images that are used for training and testing. POC
3 included aerial images of a third vehicle target type, set C.

4.1.1 POC 1

This experiment focused on transferring knowledge from a known task to a new task. Set A and
B vehicles were initially classified with high accuracy from the ground, and low accuracy from
the air. The system was allowed to incrementally learn on aerial views of Set A. The results
showed that it could learn the
new task of aerial
classification of Set A without
forgetting the previously
known task of classifying set
A and B from ground level.
Figure 20 shows a graph of the
results of this experiment as
the learning is occurring.
When allowed to learn on
more than 3 targets, the system
recovers to within 3% of the
ground level accuracy. These
results in POC 1 show that the
algorithm can acquire new
viewpoints of known objects
without catastrophic Figure 20. Proof of Concept 1 Results
forgetting.

4.1.2 POC 2

This experiment focused on extending the capability demonstrated in POC 1 to a second aerial
set, displaying the capability to learn new viewpoints of multiple types of known targets. This
POC was functionally a continuation of the behaviors in POC 1, and this is shown in the timeline
graph in Figure 21, where the first half of the figure is same as POC 1, but the second half of the
graph shows the acquisition of new viewpoints of Set B.

48

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

49

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Figure 21 shows a repeat of the learning of Set A aerial views (orange line), and includes a new
line (gray), which is the performance of Set B aerial views. The performance curve shows that
the system can learn aerial viewpoints of the Set B objects without forgetting either the ground
level views or the previously learned Set A aerial views. These results gave us confidence that
UML could learn multiple new tasks without catastrophic forgetting.

4.1.3 POC 3

This experiment again follows on after the previous two POC experiments and tests self-
supervised acquisition of previously unknown targets, vehicle Set C in this experiment. A new
target is presented to the system and triggers an attentional mechanism. In this experiment, the
target is an unknown vehicle, which triggers the attentional mechanism due to its similarity to
other known vehicles.

The self-supervision mechanism in UML identifies that the object is relevant and begins to learn
its appearance for future classification tasks. Table 9 shows the results from POC 3 and confirms
that the self-supervised acquisition of new tasks does not interfere with the previously learned
tasks, either the initial knowledge, or tasks learned through continual learning. The results from
these three proofs of concept gave confidence that the UML algorithm could achieve the full
scope of lifelong learning tasks displayed in the Phase 1a demo.

Table 9. Results Showing System Performance Through POC 1-2 and into POC 3.
Ground – A&B Aerial – Set A Aerial – Set B Aerial – New Set C

1. Initial Performance 99.9 88.9 97.5 0%

2. After Few-shot Learning Aerial C 99.9 88.9 97.5 42%

Figure 21. Proof of Concept 2 Results

4.2 Phase 1a Demo
This demonstration tied together all the different capabilities demonstrated in the POC
experiments in a single continuous “lifetime”, where our embodied drone agent, equipped with
UML, would interact with the environment, and achieve all the previously demonstrated
capabilities, but continuously and in real-time.

There were three major results from the Phase 1a demo that mirror the results shown in POCs 1-
3. First, new variants of a previously known task were learned without catastrophic forgetting
(POC 1). Second, new variants of a second previously known task are learned without
catastrophic forgetting, and backward transfer is observed where previous tasks improve from
learning on new tasks. Third, self-supervised acquisition of new tasks was shown to effectively
acquire new classes without interfering with old tasks.

The results from this demonstration are shown in a narrative set of images, containing a view of
the environment that the embodied drone agent exists within, an inset view of the classification
performance of the agent and some text overlay to indicate what is occurring in each frame.

It is important to note the system architecture to correctly interpret these images. The UML
algorithm is fed objects through a pretrained object detection algorithm, YOLO v3. This
algorithm provides the attentional mechanism that drives UML to classify and learn in a self-
supervised manner. However, the detection rate of YOLO v3 is not 100%, and occasionally
objects are not detected. UML is only able to operate on detected objects, so a failure in YOLO
detection will cause a failure to classify the object in UML.

In the inset classification images for each of the demo stages, some target objects do not have
boxes drawn around them. This indicates a failure in the detection stage, and as UML operates
afterwards, this causes a lack of classification for that object. For the purposes of evaluating the
lifelong learning characteristics of UML, we do not consider YOLO v3 false negatives in the
accuracy evaluation of UML

4.2.1 Initial Performance of System

At the beginning of the demonstration, the system exhibits high performance at ground level on
sedans (marked in blue in the following figures), but poor performance on the same sedans from
an aerial view. This can be seen in Figure 22, where the sedans are misclassified as vans (green
in the following figures). This demonstrates the baseline performance of the system before any
learning has occurred.

50

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

4.2.2 Learning of Aerial Views of Sedans

After establishing the baseline performance, the objects are re-acquired from a ground view to
establish a self-supervised
ground truth, and then the
drone flies to the desired
altitude and position to
acquire the required new
skill. The objects are
tracked frame to frame to
associate the new views
with the known object
labels, which drives
continual learning of the
tracked objects as the drone
moves. Figure 23 shows the
results of this learning,
where the previously
misclassified sedans are
now correctly identified
from a new altitude
(indicated by the blue boxes
on all the targets).

4.2.3 Learning of Aerial Views of Vans

The drone travels to a new location where vans and sedans are intermixed. The initial
performance on the intersection is poor, with some confusion of vans as sedans. Learning occurs
in the same manner as before, where the drone acquires the self-supervised ground truth by
flying to a location where the objects are expected to be classified correctly, i.e., ground level.
The objects are tracked, and the drone moves while engaging continual learning to classify the

51

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Figure 22. From Demo 1a: Initial Classification Performance of the Drone at Ground and Aerial
Viewpoints

Figure 23. From Demo 1a (Continued): Continual Learning
on Sedans Results in Recovered Ground Viewpoint without

Catastrophic Forgetting

52

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

objects correctly. Figure 24 shows a “before and after” set of images, where the vans are
incorrectly classified before continual learning (left) and correctly classified at the new altitude
after continual learning (right). Performance on previously learned sedans is maintained.

4.2.4 Retention of Performance on First Task

After learning the aerial views of the vans, the drone navigates back to the initial location
containing only sedans and verifies that there is no catastrophic interference on the sedan

Figure 24. From Demo 1a (Continued): Performance on a Second Class of Objects Before
Continual Learning (Left) and After Continual Learning (Right)

Figure 25. From Demo 1a (Continued): First Set of Sedans Still Classified Correctly After
Learning of New Objects

classification knowledge by learning the van classification task. This is shown in Figure 25,
where all the sedans are correctly classified from the aerial viewpoint.

4.2.5 Self-Supervised Acquisition of a New Class

Following the verification that no catastrophic forgetting has occurred in the continual learning
process, the drone now moves to a
new location where two unknown
vehicles, fire trucks, are parked.
These vehicles are not part of the
knowledge base of YOLO or
UML, and as such are not able to
be classified correctly. The
following figures in this section
omit the environmental view
containing the drone and the scene
and will exclusively contain the
classification output of the agent
for clarity.

The drone approaches the two fire
trucks, and detections begin to
appear on them. This is due to their
similarity to other known objects in
the YOLO knowledge base, but the
classification of them is incorrect,
as neither YOLO nor UML have a label for fire truck. This is shown in Figure 26. The yellow
boxes indicate a detection has been generated, but the classification ID is unknown.

These detections in Figure 26 trigger a self-supervised response, where UML engages in an
unsupervised learning mode to learn the views of the objects. One consequence of this process is
that the two fire trucks are learned as distinct unsupervised objects. The tracking ability ensures
that views of the same object are given the same label, but there is no evidence so far to indicate
that these objects should share a supervised label. This process is illustrated in Figure 27, where
differently colored boxes are drawn around the two fire trucks, indicating they have unique self-
generated labels. However, these labels are now fixed and future observations of these unique
objects will result in a correct classification.
Once the two objects have been learned, the drone simulates a process by which a human operator
can review the self-supervised objects that have been learned and associate and group them with
human-meaningful labels. In our demonstration, a pop-up window appears on the user interface
asking if the user wants to associate the two objects learned through self-supervision together, with
a label of “fire truck”. Once the user selects “Yes”, the objects are assigned the label and both
mapped onto the same class. The result of this process is shown in Figure 28, with both objects
sharing a red bounding box, indicating they are fire trucks.

53

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Figure 26. From Demo 1a (Continued): Classification
Output When Exposed to “Interesting” but Unknown

Objects

54

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

The Phase 1a demo shows that
UML exhibits continual
learning without catastrophic
forgetting and that it can use
self-supervision to drive the
acquisition of new tasks.
Numerical results associated
with these capabilities will be
explored in the Phase 2 results
discussions.

4.3 Phase 1b Proof of
Concept Experiment

Phase 1b focused on exploring
new mechanisms and
capabilities that could be
supported through the self-
supervised properties of UML.
A POC experiment (POC 4) was
designed to show capability in
this area that would lead to a
demonstration in a real-time
simulation environment.

UML was arranged in a
hierarchical structure with the
first level classifying target ID
(van, sedan, fire truck, etc.) and
the second level assigning a drone
behavior to that target (COUNT,
AVOID, IGNORE). The second
layer is given access to the
environmental context to help
inform the behavior of the object
within its context. In POC 4, the
contextual signal was the altitude
of the drone. Objects should
trigger different behaviors in
different contexts, i.e., a ground
view of a sedan should trigger an
AVOID behavior, while an aerial view of a sedan should trigger a COUNT behavior.
Conversely, an aerial view of a traffic light should trigger an AVOID behavior, while a ground
view of a traffic light should trigger an IGNORE behavior.

Figure 27: From Demo 1a (Continued): Self-Supervised
Learning Process Where Each Unique Object Has a

Different Label

Figure 28. Demo 1a (Continued): Objects Collapsed
into Single Class After a Human Operator Provides a

Label to Both

The results of POC 4 show that a hierarchical UML can achieve multiple functions: 1) It can learn
multiple hierarchical tasks, 2) It can effectively leverage context to trigger classification changes,
3) It can leverage self-supervision to monitor its own performance and trigger continual learning
to recover performance.

Table 10 shows the results from POC 4, which address the three functions stated in the previous
paragraph. 1) Continual hierarchical task learning is supported with high accuracy, as shown in
the Accuracy after Learning column. The high accuracy of the predicted behavior and class shows
that the system can accurately perform both tasks simultaneously. 2) The context is leveraged in
the second layer of the hierarchy and contributes to the high accuracy of the system. 3) The two
confusion matrices show the performance of the system as it is continually learning the task. In
this paradigm, a small, sparse pre-training dataset is provided to seed the algorithm, and then the
full dataset is continually learned. The evaluation for each observation takes place prior to the
continual learning step, so any improvement on the whole dataset is because of previous continual
learning, not learning on the current test sample.

The confusion matrix following initial sparse training shows the self-supervised introspection of
the algorithm, as most targets are classified with an “Unknown” behavior. This unknown signal
can be used to trigger further learning, or to indicate to downstream autonomy that the algorithm
is unsure and should not be given much weight. However, as the self-supervised continual learning
process is run, the dataset becomes much better understood and most of the unknown
classifications transition into correct classifications.

One important point on the self-supervised learning that is seen in Table 10 is the relative lack of
incorrect classifications. In each column of the confusion matrix, the unknown classification is
higher than the sum of all the incorrect classifications. This shows that even after large-scale

55

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Table 10. POC 4 Results
Learning

Stage
Incremental

Accuracy
Accuracy

after Learning
Confusion Matrix

Initial
Training on

Sparse
Training

Data

1.45% 1.45%

Count Avoid Ignore
Unknown 98% 100% 100%
Count 1.99% 0% 0%
Avoid 0.01% 0% 0%
Ignore 0% 0% 0%

With
Continual
Learning

82.7% 99.1%

Count Avoid Ignore
Unknown 16.3% 12% 22.5%
Count 83.67% 0% 0.55%
Avoid 0.03% 78% 16%
Ignore 0% 10% 61%

56

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

learning, the self-supervised introspection can identify knowledge gaps and communicate that in
many of the incorrect cases.

4.4 Phase 1b Demo
The Phase 1b demonstration was conducted in a similar fashion to the Phase 1a demo, where a
live, real-time agent engaged in the desired activities in a simulated environment. A narrative set
of figures below shows the agent behavior through the stages of the demonstration. The goals of
the Phase 1b demonstration were to 1) display the hierarchical capabilities of UML, 2) show self-
supervised acquisition of new behaviors leveraging the UML hierarchy, 3) show those behaviors
engaging in a testing location, and 4) show that the hierarchy does not interfere with the
previously learned behaviors shown in Phase 1a.

Functionally, this demo was designed to occur directly following the Phase 1a demo, and the
knowledge gained in that lifetime was provided to the agent on startup. The drone has been
equipped with a proximity sensor. If any object gets within 5 meters of the drone, a
predetermined safety behavior is triggered. This self-preservation “instinct” is captured and uses
as a supervisory signal for UML, creating the capability in the agent to self-supervise the
acquisition and avoidance of obstacles.

57

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

4.4.1 Encountering an Obstacle

The agent approaches an obstacle, a street umbrella, and it breaches the self-preservation
proximity threshold. This is shown in the top panel of Figure 29. The object is localized and
learning begins. The object is assigned a self-supervised label (L1) and the behavior AVOID.
The drone begins a learning maneuver, first at low altitudes, 1-5 meters (shown in Figure 29,
lower left), then at high altitude, 15-20 meters (shown in Figure 29, lower right). The low
altitude learning keeps the assigned AVOID behavior, but at high altitude, the assigned behavior
is changed to IGNORE, as it is no longer a threat to the drone’s navigation.

Figure 29. Self-Supervised Acquisition of Target-Relevant Behaviors

58

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

4.4.2 Encountering a Second Obstacle

The drone then continues its original path, until it encounters another obstacle, this time a traffic
light. The same learning behavior is triggered by the proximity instinct, and the traffic light is
learned in both low and high contexts. This encounter and learning are shown in Figure 30. The
altitude context learned is different from the umbrella, as the traffic light is higher off the ground.
4-9 meters are learned as the context for the AVOID behavior and 20-25 meters are learned as
the context for
IGNORE.

After the learning of
both of these
obstacles, the drone
continues to the
testing area where
the pre-emptive
avoidance behavior
will be tested.

Figure 30. Self-Supervised Acquisition of Target-Relevant Behaviors
(Continued): Learning a New Target Does Not Interfere with the

Previously Learned Obstacle

59

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

4.4.3 Testing Avoidance of Traffic Lights

The drone encounters
another traffic light in
the navigational path.
The drone can detect
and plan for the obstacle
much further away than
previously possible with
only the self-supervised
proximity instinct. The
drone identifies the
traffic lights as objects
to be avoided, as can be
seen in Figure 31. The
AVOID behavior
triggers an increase in
altitude in the drone
until the obstacle has
been cleared, then the
drone returns to the
previously planned flightpath.

4.4.4 Testing Avoidance of Street Umbrellas

After the traffic lights
have been
successfully avoided,
the drone encounters
a series of street
umbrellas, and
identifies the close
ones as objects to be
avoided, shown in
Figure 32. The far-
field umbrellas are
outside of the context
under which the
AVOID behavior was
learned because they
are much further
away than the
training data, and as
such are classified as
objects to be ignored. The near-field umbrellas are correctly classified as AVOID objects, and

Figure 31. Self-Supervised Acquisition of Target-Relevant Behaviors
(Continued): AVOID Behavior Triggers an Increase in Altitude Until

Obstacle can be Cleared.

Figure 32. Self-Supervised Acquisition of Target-Relevant Behaviors
(Continued): Both the Viewpoint and Context of Object are Considered

in Triggering the Avoidance Skill

the drone engages an increase in altitude in response to the umbrella, successfully avoiding a
collision.

4.4.5 Retention of Previous Skills

In the final stage of the Phase 1b demonstration, the drone flies to a testing intersection
containing sedans, vans, and fire trucks. The system can correctly identify all these objects and
assign the COUNT behavior to them. Figure 33 shows this behavior. This shows that the drone is
able to learn new objects and new behaviors associated with those objects without any
catastrophic forgetting taking place over the old objects and behaviors.

4.5 Phase 2
In Phase 2, the program focus shifted from demonstration of capabilities to measurement of
system performance. There were four evaluations that Teledyne participated in as the leader of a
System Group (SG). The Teledyne lifelong learning architecture that comprised this system is
fully described in Section 3.1.

The evaluations focused on generating statistically significant results in the five program metrics,
Performance Maintenance (PM), Forward Transfer (FT), Backward Transfer (BT), Sample
Efficiency (SE) and Single-Task-Expert (STE) Relative Performance (RP). As described in
Section 3.3, these program metrics are secondary metrics, computed from a primary
measurement of the system performance called the “application metric”. For the Teledyne SG,
the application metric was classification accuracy in M9 and M12 evaluation periods, and
classification precision in M15 and M18 periods. The metric was switched to better capture the

60

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Figure 33. Self-Supervised Acquisition of Target-Relevant Behaviors (Continued): Retention of
Previously Learned Skills from Demo 1a

61

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

performance of the system as is operated, due to saturation in the calculated accuracy metric that
negatively impacted the sensibility of the program metrics. The results from M9 and M12 are
thus not directly comparable to the results in the M15 and M18 evaluations, as the application
metric changed. However, we computed some of the M12 results again using the new application
metric to provide a bridge to the new results showing how we are still improving over time.

4.5.1 Overview and Final Results

In the Month 18 (M18) evaluation, the Teledyne SG presented results showing that their lifelong
learner met or exceeded the lifelong learning threshold in all five program metrics and exceeded
program targets in two of five metrics. The scores with standard deviations for each of the five
metrics are shown below in Table 11, with light green indicating that a metric exceeds the
lifelong learning threshold, and darker green indicating that a metric exceeds the DARPA
program target. This color legend is used throughout the rest of the Phase 2 evaluation results. A
“*” in the table indicates a statistical significance of p < .05 and “**” indicates statistical
significance of p < .01.

Table 11. Final Evaluation Results of Teledyne Lifelong Learner
Performance
Maintenance

Forward
Transfer

Backward
Transfer

Relative
Performance

Sample
Efficiency

M18 Agent 0.56** ± 0.98 11.69 ± 0.47 1.00* ± 0.01 1.03** ± 0.04 2.74* ± 1.70

These results indicate that the Teledyne SG lifelong learner, with UML at its core, is a complete
lifelong learning system. Going from left to right on the table, the results can be interpreted by
the following statements:

 Performance Maintenance
o Performance on a learned task improves by 0.56% on average as more tasks are

learned.

 Forward Transfer
o Initial task performance on a new task T is 11x better after learning a different

task as compared to the baseline performance of T at the start of the lifetime

 Backward Transfer
o Performance on a previously learned task is the same after learning a different

task

 Relative Performance
o The lifelong learning agent is 1.03x better at learning task T when it can leverage

information from other learned tasks, relative to learning task T in isolation

 Sample Efficiency

62

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

o The lifelong learning agent is 2.74x more efficient (in terms of required learning
experiences) at learning a task T when it can leverage knowledge from other
learned tasks, relative to learning task T in isolation

Taken as a whole, these results show that the Teledyne SG lifelong learning agent exhibits the
characteristics of a lifelong learner, mitigating catastrophic forgetting, leveraging new and old
task knowledge to improve task performance and learning speed. The following sections will
describe the results of each of the evaluations individually.

4.5.2 Month 9 Evaluation

This was the first system evaluation that included the combination of multiple lifelong learning
components into a full system. For full details of the experimental setup, see Section 3.6.7.
Simply, there were 3 tasks that were permuted in their order and learned one time to form the
permuted scenario. Two of the three tasks were selected and alternated learning 3 times to form
the alternating scenario. There were 4 runs completed for each of the permuted and alternating,
however due to time constraints only 3 permuted runs were submitted to APL. The results shown
in Table 12 are the official evaluation results generated by APL from the 3 submitted permuted
runs in the M9 evaluation period, apart from the performance recovery metric. The Performance
Recovery metric was not generated by APL in their official results but was generated
independently by Teledyne using 4 runs of the alternating scenario. Future evaluations would
eventually remove this metric as it is ill-behaved, but it is included here for completeness. The
second row of Table 12 provides interpretations of the results.

Table 12. M9 Evaluation Results and Interpretation
Performance
Maintenance

Forward
Transfer

Backward
Transfer

Performance
Recovery

Relative
Performance

Sample
Efficiency

-17.52 ± 4.24 1.19 ± 0.07 0.99 ± 0.01 -28.5 2.61 ± 0.18 1.78 ± 0.14

17.5% worse
average task
performance
after learning
more tasks

1.19x on new
tasks after
learning

0.99x on old
tasks after
learning

28% slower to
recover
performance
after learning
new task than
initial learning

2.6x better
performance
after learning
other tasks
relative to
independent
learning

1.78x faster
learning after
learning other
tasks

4.5.3 Month 12 Evaluation

In the M12 evaluation, the same scenario types were used as in M9: permuted and alternating.
However, this evaluation did not define three tasks. Instead, two tasks with two variants each
were chosen as to form the basis for the learning scenarios. See Section 3.6.7 for a complete
description of the experimental setup.

After submitting results to APL, we discovered a discrepancy that impacted the metric
calculation in our evaluation blocks. Table 13 shows both the APL submitted metrics and the

corrected metrics after discovering the calculation issue. The interpretation of the metrics (final
row of the table) will be relative to the corrected metrics (M12’). Also, after the M12 evaluation
it was determined by the program stakeholders that the performance recovery metric was too ill-
behaved to consider, and as such it stopped being reported as a program metric. The M12’ results
shown below therefore do not contain a performance recovery metric value.

Table 13. M12 and M12’ Results and Interpretation
Performance
Maintenance

Forward
Transfer

Backward
Transfer

Performance
Recovery

Relative
Performance

Sample
Efficiency

M12
(APL) 5.63 ± 4.88 1.49 ± 0.31 1.19 ± 0.16 -31.88 ± 61.81 1.0 ± 0.01 2.16 ± 3.28

M12’ 1.99 ± 3.22 1.80 ± 0.22 0.99 ± 0.01 Not calculated 1.0 ± 0.01 2.16 ± 3.28

1.99% better
performance
on learned
tasks after
learning more
tasks

1.8x better
on new
tasks after
learning

0.99x on old
tasks after
learning new
ones

The same
performance
after learning
on other tasks

2.16x faster
learning
after
learning
other tasks

4.5.4 Month 15 Evaluation

In the M15 evaluation, the scenario types were changed to a “condensed” scenario, where each
task was learned in a single continuous block, and a “dispersed” scenario, where each task
learning block was split into 3 mini-blocks. In this evaluation, the application metric changed
from accuracy to precision, and thus direct comparison is not possible between M15 and
previous evaluation results. To address this, the M12 permuted scenario was run collecting the
new precision application metric with both the M12 agent and the M15 agent. This shows the
improvement from M12 to M15.

Table 14 shows the M15 scenario results in the top panel and the M12 scenario results in the
bottom panel. This evaluation was also focused on generating more statistical significance in the
results, and included 33 condensed runs, 34 dispersed runs, and 24 permuted runs. The precision
metric better reflected the performance of the system and provided more meaningful metrics, but
also resulted in a reduction in metric performance in relative performance and performance
maintenance. Every metric apart from Relative Performance improved from M12 to M15,
showing increased capability of the M15 agent.

63

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

64

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Table 14. M15 Evaluation Results Compared to M12 Evaluation Results
Performance
Maintenance

Forward
Transfer

Backward
Transfer

Relative
Performance Sample Efficiency

M15 Scenarios
M15 Both Scenarios -3.20 ± 4.14 10.51 ± 1.35 0.99 ± 0.04 0.92 ± 0.04 2.20 ± 2.91
M15 Condensed -5.24 ± 4.92 11.02 ± 1.28 0.98 ± 0.05 0.94 ± 0.04 2.62 ± 3.26
M15 Dispersed -1.23 ± 1.59 10.01 ± 1.23 1.01 ± 0.03 0.90 ± 0.04 1.79 ± 2.56
M12 Scenarios
M15 on M12
Permuted -25.26 ± 5.96 1.46 ± 0.5 0.94 ± 0.32 0.95 ± 0.00 0.64 ± 0.26

M12 on M12
Permuted -32.24 ± 6.31 1.05 ± 0.00 0.65 ± 0.1 0.99 ± 0.00 0.26 ± 0.14

4.5.5 Month 18 Evaluation

In the M18 evaluation, the condensed scenario was chosen as the primary evaluation scenario,
but the dispersed runs were still performed to provide supplemental results. The desired
statistical significance of the metrics specified a target of 12 runs per scenario. The goal of the
agent improvement in this evaluation was to bring all the metrics above the lifelong learning
threshold, and specific focus was paid to the performance maintenance metric. For specifics of
how we improved the system by M18, see Table 8.

Table 15 shows the results of the M15 agent and M18 agent on the condensed and dispersed
scenarios. The condensed scenario results show an improvement in all metrics from M15 to
M18, including meeting the lifelong learning threshold in all metrics and exceeding the program
target values in Forward Transfer and Sample Efficiency. The dispersed scenario also shows an
improvement in all metrics from M15 to M18. The dispersed metrics exceed the program target
in Forward Transfer, meet the lifelong learning threshold in three of five metrics (Performance
Maintenance, Backward Transfer and Sample Efficiency) and are within the standard deviation
of the lifelong learning threshold in the other two metrics (Performance Maintenance, and
Relative Performance).

Table 15. M18 Evaluation Results Compared to M15 Evaluation Results
Performance
Maintenance Forward Transfer

Backward
Transfer

Relative
Performance

Sample
Efficiency

M15 Condensed Scenario
M18 Agent 0.56** ± 0.98 11.69 ± 0.47 1.00* ± 0.01 1.03** ± 0.04 2.74* ± 1.70
M15 Agent -1.94 ± 2.33 12.31 ± 2.19 0.99 ± 0.02 0.97 ± 0.03 1.73 ± 1.54
M15 Dispersed Scenario
M18 Agent -0.18* ± 2.15 9.77** ± 0.77 1.00 ± 0.01 0.96** ± 0.11 1.45* ± 0.40
M15 Agent -1.04 ± 1.05 8.70 ± 1.11 1.00 ± 0.02 0.92 ± 0.01 1.18 ± 0.34

Additionally, an ablation study was conducted with the memory optimization component C5 to
assess the impact of memory optimization alone on the L2M metrics (see Table 16 below for a
summary of results). We found that memory consolidation led to improvements in forward
transfer, relative performance, and sample efficiency. However, we did see a slight decrease in
relative performance and a larger decrease in performance maintenance when the memory
consolidation component was active.

4.6 Out-of-Nominal Recovery Experiments

4.6.1 Character Recognition

This experiment examined how uncertainty could be used to promote adaptation in deep neural
networks under noisy conditions. Here, a short convolutional neural network was first trained to
recognize hand-written characters with the MNIST dataset. The first two bars in Figure 34 show
the performance of the trained network on the clean MNIST test set and the low-contrast, noise-
added noisy MNIST dataset; the drop in performance from 98% accuracy on clean imagery to
74.1% on the noisy imagery reflects a drop in performance caused by alterations to the original
inputs. In a real-world scenario, this could be representative of sensor noise or similar issues that
often arise when using a system trained on ideal imagery on more realistic information.

Subsequently, the network was assumed to recognize this shift in performance or in image
quality, and a learning cycle was triggered to continually learn on the new imagery, but with
modulated hyperparameters designed to retain prior performance while adapting to the new
circumstances. After such training with the noisy MNIST dataset without re-presenting the clean
dataset, the last two bars in Figure 34 show the performance of the network on the clean and
noisy datasets. The third bar
shows that performance on
the noisy dataset recovered
from 74% to 92.4%,
significantly boosting
performance on the
corrupted imagery; the
fourth bar shows that
performance on the clean
imagery remained high at
96.5%, retaining
performance under prior
conditions without
catastrophic forgetting. Figure 34. Continual Modulated Learning with Noisy Imagery
Together, these results

65

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Table 16. Performance Results with and without Memory Optimization Component C5

suggested that recognizing uncertainty and adjusting learning parameters under such conditions
can aid in continual learning of deep neural networks to adapt to new conditions.

4.6.2 Reinforcement Learning

In this experiment, described in Section 3.6.8, UML was tasked to identify out-of-nominal
conditions and modulate the action chosen by the RL agent in response to the high uncertainty.
In this experiment the action modulation was fixed, and replaced the chosen action (LEFT,
RIGHT, NO-OP) with a NO-OP action. This caused the agent to pause in the presence of
uncertainty, instead of performing a potentially detrimental action. Figure 35 shows example out-
of-nominal conditions on the top of the figure (Additive Noise 10% and 30%, Vertical
Perturbation, Horizontal Perturbation), and these are matched with the baseline and UML-
enabled performance.

These results show the fraction of points scored as compared to the nominal condition with and
without UML modulating the action in response to uncertainty. In the 10% noise case, we see
that the baseline agent scored 60% of the points that were available, while enabling UML
rejection resulted in capturing 65% of the available points. The 30% noise case was more
challenging and showed a greater impact from UML intervention with a 15% difference between
the scores. Horizontal perturbation was not a particularly challenging case, but UML still
resulted in a 3% increase in score. Vertical perturbation was the most challenging case and
showed the largest difference in baseline vs. UML score. The baseline agent scored 18% lower
than the UML-equipped agent. These results clearly show that UML can detect out-of-nominal
conditions and be used to improve an existing agent’s performance through monitoring and
responding to high uncertainty situations.

66

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Figure 35. Noise Rejection in Reinforcement Learning

67

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

5.0 CONCLUSIONS

Our efforts and results have demonstrated the role of biologically-inspired algorithms in
advancing the state-of-the-art in machine learning. In particular, neuromodulation-inspired
mechanisms enabled self-supervised adaptation in small networks, multi-layered neural network
architectures, and autonomous agents (e.g., simulated drone). UML was validated as a viable
algorithm that can be “plugged-in” to state-of-the-art (SOTA) machine learning systems to
support lifelong learning capabilities such as robustness under novel conditions and continual
learning. Figure 36 presents three different scenarios that were demonstrated during the program
and a description of the role of UML in each one of them.

We showed that our lifelong learning algorithm, UML, is capable of supporting self-supervised,
online, continual learning in an operationally relevant domain (drone-based object recognition).
We also showed that UML can also self-supervise the detection of out-of-nominal states without
explicit labels, both in an object classification task and a reinforcement learning task,
demonstrating the broad capabilities of the UML algorithm.

We showed that an integrated lifelong learning system has critical components that enable its
performance: Attentional mechanisms are critical to manage the information flow within the
agent, uncertainty mechanisms are critical to measure internal and external state against expected

Figure 36. UML is a Pluggable Component that can Support Lifelong Learning Capabilities in
State-of-the-Art Machine Learning Systems

performance and drive modulatory responses, and hierarchical mechanisms are critical to derive
robust knowledge representations within the agent’s short and long term memory.

We also showed that our system engineering approach of interconnected but independent
components enabled ablation experiments and lifelong learning evaluations of the whole system
and individual components simultaneously. Our system also showed improvement over the
course of the program. Table 17 shows the progression of our lifelong learning system against
the five core program metrics as documented by our team and validated by APL. Red boxes
indicate that performance did not meet the lifelong learning threshold; light green boxes
indicated that performance met the lifelong learning threshold, and darker green boxes indicated
that performance exceeded the program target. We reached the lifelong learning threshold in all
five in M18 while starting only reaching one metric in M12. This improvement was made
through both individual component capability increases, as well as better system engineering to
connect the components together.

Top-down modulation in a hierarchical learning system improves the lifelong learning
performance of the system. Leveraging the uncertainty generated by mismatch in the hierarchical
knowledge base induces task relevant knowledge structures as well as enforces well-conditioned
outputs. Introducing this mechanism led to an improvement across all tracked program metrics.

We have also shown that memory consolidation mechanisms can complement online continual
learning. Our C5 module showed improvements in transfer and performance against single task
experts in the ablation study, confirming that memory optimization is a relevant mechanism to
improve performance in a multi-task learning setting.

Finally, we showed that uncertainty-based modulation supports robust lifelong learning,
particularly short and long-term adaptation. Our agent can self-supervise both the learning and
inference processes in response to measured uncertainty, which can be driven by changes in
environment, task, or the agent itself.

68

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Table 17. Progression of Teledyne System against Program Metrics as Documented by APL

69

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

6.0 WORKS CITED

1. Carpenter, G.A. and S. Grossberg, Pattern recognition by self-organizing neural
networks. 1991, Cambridge, Mass.: MIT Press. 691 p.

2. Kravitz, D.J., et al.,
processing of object quality. Trends in Cognitive Sciences. 17(1): p. 26-49.

3. Angela, J.Y. and P. Dayan, Uncertainty, neuromodulation, and attention. Neuron, 2005.
46(4): p. 681-692.

4. Hangya, B., et al., Central cholinergic neurons are rapidly recruited by reinforcement
feedback. Cell, 2015. 162(5): p. 1155-1168.

5. Atri, A., et al., Blockade of central cholinergic receptors impairs new learning and
increases proactive interference in a word paired-associate memory task. Behavioral
neuroscience, 2004. 118(1): p. 223.

6. Buccafusco, J.J., et al., Long-lasting cognitive improvement with nicotinic receptor
hanisms of pharmacokinetic–pharmacodynamic discordance. Trends in

pharmacological sciences, 2005. 26(7): p. 352-360.

7. Hasselmo, M.E. and J. McGaughy, High acetylcholine levels set circuit dynamics for
attention and encoding and low acetylcholine levels set dynamics for consolidation.
Progress in brain research, 2004. 145: p. 207-231.

8. Levin, E.D., F.J. McClernon, and A.H. Rezvani,
behavioral characterization, pharmacological specification, and anatomic localization.
Psychopharmacology, 2006. 184(3-4): p. 523-539.

9. Kilgard, M.P. and M.M. Merzenich, Cortical map reorganization enabled by nucleus
basalis activity. Science, 1998. 279(5357): p. 1714-1718.

10. Minces, V., et al., The role of visual cortex acetylcholine in learning to discriminate
temporally modulated visual stimuli. Frontiers in Behavioral Neuroscience, 2013. 7(16).

11. Chubykin, Alexander A., et al., A Cholinergic Mechanism for Reward Timing within
Primary Visual Cortex. Neuron. 77(4): p. 723-735.

12. Muñoz, W. and B. Rudy, Spatiotemporal specificity in cholinergic control of neocortical
function. Current opinion in neurobiology, 2014. 26: p. 149-160.

13. Eickhoff, S.B., et al., Organizational principles of human visual cortex revealed by
receptor mapping. Cerebral Cortex, 2008. 18(11): p. 2637-2645.

70

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

14. Disney, A.A., H.A. Alasady, and J.H. Reynolds, Muscarinic acetylcholine receptors are

Brain and behavior, 2014. 4(3): p. 431-445.

15. Disney, A.A., K.V. Domakonda, and C. Aoki, Differential expression of muscarinic
acetylcholine receptors across excitatory and inhibitory cells in visual cortical areas V1
and V2 of the macaque monkey. Journal of Comparative Neurology, 2006. 499(1): p. 49-
63.

16. Amar, M., et al., Blockade of different muscarinic receptor subtypes changes the
equilibrium between excitation and inhibition in rat visual cortex. Neuroscience, 2010.
169(4): p. 1610-1620.

17. Taylor, P., et al., The globa
organizational principle of human cortical networks and functions. Scientific Reports,
2015. 5: p. 18112.

18. Brito da Silva, L.E., I. Elnabarawy, and D.C. Wunsch, Distributed dual vigilance fuzzy
adaptive resonance theory learns online, retrieves arbitrarily-shaped clusters, and
mitigates order dependence. Neural Networks, 2020. 121: p. 208-228.

19. Brna, A.P., et al., Uncertainty-based modulation for lifelong learning. Neural Networks,
2019. 120: p. 129-142.

20. Grossberg, S.,
Cognitive Science, 1987. 11(1): p. 23-63.

21. Yu, A.J. and P. Dayan, Uncertainty, Neuromodulation, and Attention. Neuron, 2005.
46(4): p. 681-692.

22. Grossberg, S., J. Palma, and M. Versace, Resonant Cholinergic Dynamics in Cognitive
and Motor Decision-
Superior Colliculus, and Optic Tectum. Frontiers in Neuroscience, 2016. 9(501).

23. Dayan, P. and A.J. Yu,
events. Network: Computation in Neural Systems, 2006. 17(4): p. 335-350.

24. Kravitz, D.J., et al.,
processing of object quality. Trends in Cognitive Sciences, 2013. 17(1): p. 26-49.

25. Disney, A.A., H.A. Alasady, and J.H. Reynolds, Muscarinic acetylcholine receptors are
expressed by most parvalbumin-immunoreactive neurons in area MT of the macaque.
Brain and Behavior, 2014. 4(3): p. 431-445.

26. Grossberg, S., Acetylcholine Neuromodulation in Normal and Abnormal Learning and

Frontiers in Neural Circuits, 2017. 11(82).

71

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

27. Dasgupta, R., F. Seibt, and M. Beierlein, Synaptic release of acetylcholine rapidly
suppresses cortical activity by recruiting muscarinic receptors in layer 4. Journal of
Neuroscience, 2018: p. 0566-18.

28. Gu, Z. and Jerrel L. Yakel, Timing-Dependent Septal Cholinergic Induction of Dynamic
Hippocampal Synaptic Plasticity. Neuron, 2011. 71(1): p. 155-165.

29. Amis, G.P. and G.A. Carpenter. Default ARTMAP 2. in 2007 International Joint
Conference on Neural Networks. 2007.

30. Redmon, J. and A. Farhadi, emental Improvement. arXiv, 2018.

31. New, A., et al., Lifelong Learning Metrics. arXiv preprint arXiv:2201.08278, 2022.

32. Shah, S., et al. -fidelity visual and physical simulation for autonomous
vehicles. in Field and service robotics. 2018. Springer.

33. Bochkovskiy, A., C.-Y. Wang, and H.-Y.M. Liao
of Object Detection. arXiv e-prints, 2020. arXiv:2004.10934.

34. Lin, T.-Y., et al., CoRR, 2014.
abs/1405.0312.

35. Lecun, Y., et al., Gradient-based learning applied to document recognition. Proceedings
of the IEEE, 1998. 86(11): p. 2278-2324.

36. Basu, S., et al., Learning sparse feature representations using probabilistic quadtrees
and deep belief nets. Neural Processing Letters, 2017. 45(3): p. 855-867.

72

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS

ACRONYM DESCRIPTION
ACh Acetylcholine
AFRL Air Force Research Laboratory
AI Artificial intelligence
APL Johns Hopkins University Applied Physics Laboratory
ANN Artificial neural network
ART/ARTMAP Adaptive Resonance Theory / Mapping algorithm
ATR Automatic target recognition
BT Backward transfer metric
CAML DARPA’s Competency Aware Machine Learning program
C[#] Component [#]; e.g. C1 denotes Component 1 (in the context of our

L2M architecture)
COCO Common Objects in Context
CPU Central processing unit
DARPA Defense Advanced Research Projects Agency
DDVFA Distributed Dual Vigilance Fuzzy ARTMAP
DOT Department of transportation resources
EMA Emergency management agency vehicles
ETS Experience to Saturation
FT Forward transfer metric
GPU Graphics processing unit
ID Identity
I/O Input/output
L2 Lifelong learning
L2M Lifelong Learning Machines
M[#] Month [#] into Phase 2; e.g. M18 corresponds to Month 18 (in context

of Phase 2 Government evaluations)
M2 Muscarinic receptor subtype
M4 Muscarinic receptor subtype
ML Machine learning
MLP Multi-layer perceptron
MNIST Modified National Institute of Standards and Technology
NBM Nucleus basalis of Meynert
PFC Pre-frontal cortex
PM Performance maintenance metric
POC Proof of concept
PNN Plastic nodal network
PR Performance recovery metric
RGB Red, green, blue
RL Reinforcement learning
ROC Receiver operating characteristic
RP (Single-task expert) Relative performance metric

73

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

S&T Missouri University of Science and Technology
SAR Synthetic aperture radar
SE Sample efficiency metric
SECTR-CL Seeker Cost-Transformation Closed-Loop program
SG Systems group
SE Sample efficiency metric
STE Single-task expert
SVM Support vector machine
T&E Test & Evaluation
Thal Thalamus
TRACE DARPA’s Target Recognition and Adaptation in Contested

Environments program
UCI University of California, Irvine
UCSD University of California, San Diego
UML Uncertainty-Modulated Learning
V1-V4 Areas 1-4 of the visual cortex
YOLO You Only Look Once object detection algorithm

