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1.0 SUMMARY 

1.1 Program Overview 
Under the DARPA lifelong learning machine (L2M) program, Teledyne conducted a two-phase 
effort to develop machine learning systems capable of selective plasticity. Our effort addressed 
two critical challenges faced by a life-long learning system: the needs for (1) continuous but 
stable learning of its parameters, and (2) how to achieve optimal capacity allocation to obtain 
effective learning and performance as tasks and conditions change. Our core premise was that 
the brain solves both problems through neuromodulation: chemical signaling that continuously 
regulates neural activity and plasticity. Specifically, we investigated mechanisms by which the 
neuromodulator acetylcholine (ACh) regulates long-term synaptic plasticity and short-term 
synaptic activity, particularly in the visual pathway that performs object recognition and 
identification (ventral). We targeted ACh’s role as a feedback signal encoding the level of 
uncertainty in both signal processing and inference; we explored how this signal regulates the 
computation and selection of low-level sensory features, while also driving learning of higher-
level inferences. 

These modulatory principles formed the core of our novel, plastic nodal network (PNN) 
architecture. Our PNN has a hierarchical structure that mirrors the two-stage organization of the 
brain’s ventral pathway, and which is shared by other sensory pathways, such as the auditory and 
the visual localization (dorsal) pathways. Figure 1 provides a high-level overview of 
architectures for selective plasticity in hierarchical machine learning systems where 
heterogeneous layers are introduced to implement a continuum of dynamics to support optimal 
feature extraction and capacity allocation in early layers, while achieving stable and continuous 
learning in later layers. The following numbers in parentheses refer to the orange numbers in 
Figure 1. Modulation is driven by measures of uncertainty (1). Uncertainty derived by analyzing 
signals (bottom-up) and task requirements/rewards (top-down) are used to (2) influence feature 
extraction/selection in the early layers and inference in the later layers. The result of modulation 
in early layers is the rapid recruitment of specific portions of the capacity of the network (3), 
while in later layers, learning is more strongly modulated to ensure stability while maintaining 
appropriate plasticity for new or updated tasks (4): the network’s early layers perform feature 
extraction (mirroring the occipital cortex), while the later layers compute inferences (matching 
prefrontal and temporal cortex processes). An ACh-like signal (measuring uncertainty) 
dynamically modulates computations and learning in the network. Our network is heterogeneous: 
different layers and types of nodes respond differently to the modulatory signal.  
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1.2 General Approach
Life-long learning requires constant adaptation; no amount of training can prepare a network, 
whether biological or artificial, for all the possible inputs that it might receive over its lifetime. In 
particular, ongoing learning requires the ability to change the network’s parameters without 
forgetting prior information (i.e. stable learning, also known as the stability-plasticity dilemma 
[1]). Furthermore, a life-long learning system faces a second dilemma: the ability to continuously 
encode new information requires vast computational resources, but very large networks are 
intractable to optimize due to the huge number of free parameters. Figure 2 illustrates the scaling 
limits in the case of deep learning architectures. Ongoing research [2] suggests that deep learning 
networks cannot scale to arbitrary sizes, no matter how much data is used to train them. In 
particular, our own internal experiments under DARPA’s TRACE program demonstrate that 
once a deep network exceeds an optimal size ([a] in Figure 2), its ability to learn decreases 
dramatically as it becomes larger ([b] in Figure 2).  This implies that simply building larger deep 
networks and feeding them more data is insufficient to achieve human-level learning. In contrast, 
our modulated network recruits only a small subset of its nodes to optimize capacity (a), while 
carrying large overall capacity (b) allowing it to overcome this scaling limit. In contrast, a life-
long learning system must manage its computational resources in a more intelligent manner to 
achieve optimal capacity allocation and mitigate performance degradation.

2
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Figure 1. Architectures for Selective Plasticity in Hierarchical Machine Learning Systems
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1.2.1 Theoretical Effort

Our foundational premise was that the brain achieves both capabilities through 
neuromodulation: the use of chemical signals that continuously regulate synaptic activity and 
plasticity. Among the many neuromodulators in the nervous system, ACh is one of the most 
extensively studied in the mammalian brain; it has been implicated in regulating several high-
level cognitive functions, including attention, learning, and memory. More importantly, ACh 
regulates long-term synaptic plasticity and short-term neural activity levels, particularly in the 
ventral visual pathway (which performs object recognition and identification) [2]. ACh has been 
shown to encode uncertainty, specifically expected uncertainty [3] (as well as the related signal 
of unexpected reward [4]), which is a key feedback signal for triggering and regulating learning. 
In the ventral pathway in particular, ACh regulates the computation of low-level sensory features 
and drives learning of higher-level inferences.

As part of our effort, we developed a hierarchical, heterogeneous, plastic nodal network (PNN) 
algorithm called Uncertainty-Modulated Learning (UML) where neuromodulation-based 
computational properties enable optimization of the network’s capacity to permit adaptive and 
stable learning (Figure 3). UML was modeled after cortical mechanisms of hierarchical sensory 
signal decomposition and inference, feedback attention, and neuromodulation in response to 
mismatched expectations. In UML, an ACh-like signal (triggered by measured uncertainty) 
dynamically modulates computations and learning. UML achieved several groundbreaking 
capabilities in machine learning, specifically:

Stable learning that permits maximal updating without disturbing existing, learned behaviors 
(i.e., addresses the stability-plasticity dilemma)
o Which, in conjunction with top-down feedback, enables continuous and few-shot

learning of inputs and tasks that differ radically from previously learned information
Optimal capacity allocation that selects and enhances only those features that maximize 
information content and that are relevant to the current task

3
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o Leading to the co-existence of multiple computational motifs when the network is
configured for hierarchical learning (i.e., UML can multiplex between different tasks or
behaviors),

o as well as to selective recruitment of different subsets of the network at a time, allowing
it to scale to an arbitrarily number of nodes (i.e. virtually unlimited capacity to learn new
information)

UML represents a compelling new computational model for the role of local heterogeneous 
architectures, feedback signals and neuromodulation. 

1.2.2 Experimental and Demonstration Efforts

Our work demonstrated algorithms and an integrated system with learning mechanisms capable 
of life-long learning in complex learning tasks. Additionally, we demonstrated that our UML 
algorithm is capable of imbuing other machine learning algorithms with the ability to adapt, 
learn without catastrophically forgetting and recover performance under out-of-nominal 
conditions. A summary of these results will be presented in Section 1.3.

During Phase 2 of the program, Teledyne led a systems group (SG) with the goal of integrating a 
full set of lifelong learning capabilities. To accomplish this, Teledyne defined a minimum set of 
capabilities relevant and aligned with our uncertainty-modulated continual learning paradigm 
(Figure 4, also see Section 2.2.1). Two L2M performers from Phase 1 of the program were 
invited to join our SG, University of California at Irvine who collaborated with researchers from 
the University of California at San Diego (UCI/UCSD) and Missouri S&T (S&T). Throughout 
Phase 1, Teledyne had developed and demonstrated algorithms for sensory signal processing that 
employ a bottom-up signal decomposition architecture to infer goal- and decision-relevant 
hypotheses (orange and blue blocks in Figure 4). Additionally, Teledyne began to demonstrate 
the use of attentional mechanisms to modulate learning and adaptation. S&T was recruited to 
bring their experience in this family of algorithms to jointly implement a system component 
inspired by brain mechanisms of top-down attention (green/yellow blocks in Figure 4). In 
collaboration with UCI/UCSD, we set out to investigate the role of sleep-inspired algorithms to 
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Figure 3. UML Algorithm Developed by Teledyne during L2M Phase 1



optimize memory after task performance and consolidate memory (i.e., knowledge) across tasks 
(magenta and cyan blocks respectively in Figure 4). 

1.3 Overview of Results
The key premise of our proposed approach is that intelligent organisms measure and recognize 
critical changes in their environment, inputs, constraints or objectives, to enable them to adapt 
and learn without the need for external guidance (e.g., teachers, supervision, etc.). It is through 
such self-supervised monitoring and evaluation that a lifelong learning agent can be equipped to 
reliable function in complex and changing conditions. 

Through our research and experimental work, we established that as in biological intelligent 
systems, measuring and tracking uncertainty serves as a key mechanism for triggering adaptation 
and learning. Our L2M agents were shown to either adapt their learned skills or incorporate new 
skills into their repertoire without catastrophic forgetting. We also demonstrated the agents’ 
ability to leverage previous skills to improve learning efficacy (Forward and Backward transfer), 
quickly recover performance in the presence of interfering tasks or changes in conditions, 
leverage samples to adapt or acquire skills equally as efficiently or better than a single-task 
expert (see Sections 4.1-4.4).

Finally, Teledyne demonstrated the effectiveness of its integrated system through a series of 
milestone experiments conducted throughout Phase 2 of the program. These results are presented 
in Section 4.5 and highlight performance on L2M metrics in program-defined scenarios. These 
experiments served to create a steady tempo and coordination of results among all L2M SG 
teams, and document progress on performance. Additionally, we used them to identify successes 
and shortcomings of our system and/or algorithms. An analysis of the latter was leveraged to 
optimize our effort and focus system and algorithm development appropriately. The result was a 
consistent improvement of our system over the course of four milestone events from only 
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meeting one of the metrics during the first event, to meeting all five by the fourth one. These 
results are also summarized in Section 5.0. 

1.4 Major Conclusions and Recommendations 
Our work throughout the program accomplished its main goals: 

 deriving an effective algorithm inspired by biological mechanisms of neuromodulation 

 implementing an algorithm with broad applicability to existing machine learning systems 

 enabling intelligent agents that can self-supervise to adapt and learn continually 

 integrating a system that exhibits mechanisms of attention, uncertainty-based regulation, 
hierarchical learning, and sleep-inspired memory optimization to demonstrate lifelong 
learning capabilities 

A significant accomplishment of our work was the development of UML, a novel lifelong 
learning algorithm capable of self-supervising to adapt to new conditions, learn from few 
samples, and derive robust hierarchical knowledge representation. An exciting recent realization 
is the fact that the critical capabilities we set out to study and presented in our original proposal 
(see Table 1) were not only fully implemented but also thoroughly demonstrated throughout all 
the experiments and demonstrations in the program.  

Table 1. Features and Benefits of Teledyne’s Approach 
Feature Benefit(s)/Impact 
Uncertainty Modulates Learning: We posited that 
neuromodulation upregulates learning for neurons that are critical to 
resolving distinctions between two or more classes.  

Demonstrated that learned representations 
for new tasks do not overwrite previously 
learned tasks. 

Uncertainty Modulates Capacity Allocation: We proposed to 
investigate the role of neuromodulation in upregulating activation 
and learning in portions of a network that can optimally solve a 
specific task and suppress those that do not contribute to reducing 
uncertainty.  

Built networks with very large capacity to 
support life-long learning while not suffering 
from accuracy degradation by only activating 
portions of the network that optimally support 
task performance. 

Uncertainty Triggers New Learning: By tracking expectations, 
new algorithms can adjust and improve their performance over time, 
especially when new tasks or conditions are introduced. 

Demonstrated how learning is triggered 
when response certainty drops below desired 
thresholds leading to a system able to 
autonomously detect new tasks or conditions 
that require learning. 

Uncertainty Modulates Feature Extraction: Measures of signal 
uncertainty across feature layers drive modulation of transfer 
function in early layers (feature extractors). 

Implemented algorithms able to adapt 
feature extraction processing to compensate 
to changes in task, conditions, or signal 
properties. 

In the Month 18 (M18) evaluation, the Teledyne SG showed results indicating that our lifelong 
learner met or exceeded the lifelong learning threshold in the five program metrics and exceeded 
targets in two of the five. This is shown in Section 4.5.1, Table 11, with light green indicating 
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that a metric exceeds the lifelong learning threshold, and darker green indicating that a metric 
exceeds the DARPA program target. 

One of the key insights we derived from our efforts is that uncertainty has proven to be an 
effective measure that supports online learning and the creation of robust knowledge 
representations without supervision or reinforcement signals. We also established that the L2 
components we developed can be effectively integrated into existing ML system to support 
improved performance (e.g., robustness, adaptation, etc.). Hence, a significant number of 
transition opportunities exist (examples are discussed in Section 2.4). Teledyne will continue to 
pursue such opportunities through Government-funded efforts, commercial endeavors, and 
internally-funded research activities. Teledyne also welcomes any Government agency or 
individual to request discussions that could facilitate a deeper understanding or identification of 
transition opportunities.  

Our UML algorithm proved to be an effective component (Section 2.3), not only for an 
integrated L2 system, but also as a plug-in to existing machine learning systems. These include 
end-to-end systems designed for decision support, where UML can monitor out-of-nominal 
conditions or flag conditions requiring additional samples or learning. UML was also 
demonstrated to support performance recovery under novel conditions for systems as complex as 
a reinforcement learning-based agent. Due to its lightweight processing requirements, UML can 
execute at 2000Hz on a commodity processor (CPU) and is thus amenable to deployment across 
many platforms. 



2.0 INTRODUCTION 

2.1 Program Objectives 
A key objective of our work was to address two crucial problems for lifelong learning machines: 

1. Enabling deployable L2Ms that manage resources, maintain performance, acquire new
skills, and derive optimal strategies in the absence of external supervision signals. This
with the goal of enabling machine learning systems that can operate on their own, not just
based on prior knowledge, but constantly updating knowledge without human
supervision.

2. Supporting flexible, robust, and task-effective knowledge representations in L2Ms that
allow them to leverage past information and incorporate new experiences? This with the
goal of addressing the challenge of learning skills requiring multiple levels of abstraction
and that capture semantics of the task. Relevant examples of tasks using different levels
of abstraction is learning to find a target of interest (e.g., a car or a treasure in a game) vs.
learning to avoid objects that may represent threats (e.g., obstacles). Each task requires a
different set of bottom-up signals (i.e., features) to be recognized and a different set of
actions (e.g., report the car vs. avoid colliding with a wall, in the case of a drone
conducting traffic monitoring missions).

Our work focused on conducting a systematic investigation on the computational properties that 
arise from mechanisms of neuromodulation, such as expressed in ACh modulation (see Figure 5 
for an illustration). Among them are the influences that neuromodulation has in signal filtering, 
controlling learning (i.e., learning rate), and reconsidering information in the presence of 
significant uncertainty. Through experiments and demonstrations, we sought to empirically 
demonstrate the impact of these mechanism in learning and adaptive capacity utilization, most 
notably their ability to support selective plasticity and self-supervision.  

ACh is perhaps the best studied neuromodulator in the mammalian brain. ACh is released from 
the terminals of neurons that originate in the brain stem and more commonly from the nucleus 
basalis of Meynert (NBM) in the basal forebrain.  The NBM diffusely innervates and releases 
ACh in the cerebral cortex and the hippocampus where it exerts its action through two types of 
receptors: the nicotinic receptor that drives fast changes in ionic conductance and the muscarinic 
receptors that drive slower and longer lasting changes through second messenger systems 
(chained intracellular protein interactions). The actions at both receptors contribute to the 
modulation of plasticity and network tuning and are discussed below.  

ACh has been demonstrated to participate in the regulation of several cognitive functions 
including attention, learning and memory. Pharmacologic block at muscarinic ACh receptors 
degrades the encoding (learning) of new memories, while drugs which activate nicotinic ACh 
receptors lead to enhanced memory formation [5-8]. Furthermore, increasing cholinergic 
modulation through stimulation of cholinergic neurons during perceptual learning has been 
shown to directly alter the receptive fields of sensory neurons and boost long term learning [9]. 
Also, Minces et al. [10] showed that ACh plays a crucial role in enabling rats to learn to 
discriminate fine-spatial features.  
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While cholinergic signaling is often associated with attention, recent research [4], has shown that 
ACh releasing neurons are most strongly activated in response to reward surprise. This finding 
highlights the potential importance of cholinergic modulation in reinforcement learning. 
Chubykin et al. [11] presented similar findings, in which they showed that ACh encodes a 
reward timing signal that drives plasticity in the visual cortex. 

Figure 5 shows how ACh can induce a wide range of short-term changes to the behavior of neural 
circuits. The following numbers in parentheses refer to the orange numbers in within Figure 5. In 
the top row of Figure 5, (1) we zoom into a specific layer of our proposed architecture to reveal 
how (2) the input, which is processed by (3) excitatory nodes is regulated by (4) inhibitory 
internodes that affect (5) the output of the circuit. In the absence of ACh, the circuit computes a 
summation of its input. In the middle and bottom rows, different levels of ACh partially (6) or 
completely inhibit (7) the internodes, changing the output into contrast enhancement (middle row) 
or winner-take-all (bottom row), respectively.  



How can ACh, which is diffusely released across the cerebral cortex, precisely modulate 
learning? Within the mammalian brain the distribution of the two classes of receptors differs 
considerably from region to region and likely contributes to the modulation of learning in a 
spatiotemporally specific rather than global level (see [12] for review). In addition to the known 
differences in the expression of cholinergic receptors on different cell-types, recent research [13] 
has identified differences in the distribution of cholinergic receptors across cortex. Figure 6 
(adapted from [13]) shows a gradient of receptor densities for the ACh muscarinic receptor (M2) 
across the hierarchy of visual areas (V1-V4). This gradient (i.e. high in V1 and low in V3) 
illustrates one example of a biological mechanism of cholinergic modulation. The gradient of 
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Figure 5. ACh Modulation of Local Circuit Computations 



receptor density enables varied and specific effects of system dynamics at different levels of 
processing. This supports the idea that 
differences in dynamics and computational 
outcomes depend on the level of 
modulation [13-15]. For example, the 
nicotinic receptors are most commonly 
found on inhibitory interneurons where 
their activation leads to increased lateral 
inhibition, but also enhancement of 
thalamic input (perhaps through 
disinhibition). This may result in a spatial 
sharpening and response gain of the 
incoming sensory input at short timescales. 
Alternatively, in the primate visual system, 
muscarninic (type M1) receptors are 
located primarily postsynaptically on 
inhibitory interneurons [15] and cortico-
cortical connections [16] where they reduce 
top down and cross cortical excitation. Figure 6. Gradient of Muscarinic Receptor 
Other muscarinic receptor subtypes (M2 Distribution in Visual Brain Areas 
and M4) are mostly found presynaptically 
where they produce an inhibitory effect on their target cells.  Depending on the cell type this can 
result in net inhibition in pyramidal cells or net excitation by inhibiting inhibitory interneurons.

Taken together, the multiplicity of mechanisms for cholinergic modulation enable a wide range 
of behavior in concert with the non-homogenous network of the brain. As described above, these 
mechanisms can account for a significant amount of the varied behavior of neural circuits. A key 
contribution by Teledyne during this effort was to study and implement these heterogeneous 
mechanisms across multiple algorithmic scales (e.g., within layer “cell types” and cross-layer 
changes in modulatory “receptor expression”).

2.2 Technical Approach

2.2.1 Teledyne-Specific Algorithm Development

During both Phases 1 and 2 of the effort, we systematically studied and demonstrated the role of 
uncertainty in supporting robust continual learning in the presence of new conditions and tasks. 
In particular, we validated the use of biologically-inspired mechanisms to implement and 
demonstrate a hierarchical learning architecture capable of optimally self-managing its capacity 
while ensuring stable continuous learning. This included capturing the multiple roles of 
neuromodulatory processes mediated by acetylcholine on information processing and decision 
making by cortical circuits. Figure 7 illustrates the neural underpinnings of our architecture as 
applied to visual processing tasks and its role in processing input signals to generate action or 
decision-relevant signals. 
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Figure 7 shows a two-stage model of sensory feature extraction and category processing in the 
"What" pathway of the visual system. A first stage, mainly in Occipital Cortex, implements a 
hierarchical decomposition of signals for adaptive feature extraction, while a second stage, 
mainly in Temporal Cortex, performs category analysis and classification. Green and white 
nodes indicate neurons on a given layer. Signals from both stages are analyzed against 
expectations in non-specific thalamic areas (Thal) [6] and prefrontal cortex (PFC) [7] 
respectively. The presence of a mismatch triggers ACh modulation by projections from the 
NBM. The red arrows indicate possible targets for the influence of neuromodulation.

We successfully demonstrate the following key computational properties of our algorithms:

1. Sensory processing is organized to achieve hierarchical aggregation where raw sensory
inputs are systematically processed and analyzed at increasing levels of abstraction [17]. 
Such processing is the most fundamental basis for modern backpropagation-based 
computational networks such as deep learning networks. However, sensory processing is also 
significantly modulated by complex dynamics that ensue as a result of both local and top-
down feedback signals. At the local level, interneurons and lateral connectivity can be 
modulated to influence the transfer function and computation performed at each layer. These 
mechanisms can give rise to a number of properties that can be exploited in learning 
algorithms as will be described in the next section.
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Figure 7. Model of Sensory Feature Extraction and Category Processing in the "What" Pathway 
of the Visual System
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2. Visual decision processing leverage bidirectional cortical circuitry to achieve tasks such
as object learning, categorization and prediction. Here, local and global interactions serve to
stably learn and adapt categorization responses to visual stimuli. The details and richness of
such mechanisms are not well modeled in modern machine learning algorithms such as deep
learning. In the latter, this stage is typically modeled as a support vector machine (SVM) or
multi-layer perceptron (MLP) responding to the activations of the learned features. Such
algorithm choices have left a significant vacuum in understanding how to achieve both
discriminative and generative classification, and achieve stable learning in the presence of
continuously changing sensory information and task requirements.

3. Generated sensory hypotheses in occipital cortex (e.g., V1-V4 activations) can be
continuously reweighted, enhanced or suppressed based on the match between the
processed inputs and the expected or primed responses (e.g., the expectation of a car must be
matched with an appropriate subset of activated feature responses as compared to those for a
face). This allows a hierarchical system to adaptively bias processing to the appropriate
abstraction level and/or allocate the subset of the network’s capacity to maximally
disambiguate signals and change weights.

4. Generated category hypotheses (e.g., object ID/type/etc.) are analyzed in prefrontal
cortex (PFC) to measure the uncertainty of the inferred information/decisions and
compare it against expectations. Such mechanisms can enable tracking task performance
without supervision and triggering a recalibration that is weighted by the characteristics of
the inference process, thus demoting portions of the signals that contribute to the error and
promoting those that support the expectations.

2.2.2 System Group-specific algorithm and system development 

As described in Section 1.2.2, Teledyne assembled a team of collaborators to develop and 
implement an integrated L2M system with five critical capabilities. Our system development and 
integration approach focused on realizing the critical functional roles of each of the L2M 
capabilities under development by the SG members. As Figure 8 illustrates, our L2M system 
integrated five functional blocks. 



2.3 Key Accomplishments
We demonstrated that a heterogeneous architecture with modulatory inputs can: (1) selectively 
modify the subset of knowledge that is relevant for adapting or learning new information (stable 
learning), and (2) continuously modulate its constituent nodes to instantaneously modify their
computational properties to adapt to unexpected signal or context properties. Figure 9 illustrates
how modulation can reconfigure a network’s behavior. In this simplified example, circles denote 
neurons, triangles represent a neuromodulator, arrows and square are excitatory and inhibitory 
connections, respectively, and dashes indicate that a connection is being suppressed. The 
neuromodulator suppresses the circuit’s lateral inhibition, leading to a summation behavior; 
otherwise, the circuit behaves in a winner-take-all fashion. The result is that a single circuit (with 
the same learned weights) can quickly shift between different modes of operation by dynamic 
modulation in its connections.

A key focus of our work was to develop algorithms and computational principles that would be 
broadly applicable to many machine learning problems and systems. Therefore, we demonstrated 
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Figure 8. Functional Blocks of the Teledyne SG Integrated System
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how an algorithm that integrates the proposed mechanisms of uncertainty, attention and memory 
optimization (UML, Figure 3) can support improved performance and lifelong learning 
capabilities across multiple machine learning domains (summarized in Figure 10). In particular, 
we were interested in demonstrating that UML could also be repurposed as a plug-in component 
to improve or expand lifelong learning capabilities to state-of-the-art algorithms. Figure 10 a and 
b present results of applying UML to learn and monitor out-of-nominal conditions to trigger 
adaptation in the underlying machine learning system (deep neural network trained to recognize 
digits and reinforcement learning agent trained to play Pong, respectively).   

Additionally, the full set of mechanisms developed by our SG (Figure 5 and Figure 8), integrated 
in an embedded agent performing multiple tasks was shown to meet all L2M program metrics 
across multiple milestone experiments (described in Section 4). Figure 10c presents preliminary 
results of the integrated system we implemented in Phase 1, where the agent (a simulated drone) 
was able to self-supervise to adapt to changes in conditions (recognizing objects from the air 
after only pretraining on ground-based imagery), and discovering and learning new tasks 
(detecting and learning new object types despite not being in its existing repertoire). An 
important highlight is the fact that our SG was able to demonstrate consistent progress 
throughout the Phase 2 effort. While our system only met one program metric at the Month 12 
(M12) milestone, it successfully met all five metrics by the M18 milestone. 

Figure 10 shows that UML can be applied to different machine learning problems. Panel (a) 
shows the role of UML in performance recovery for deep neural networks performing in out-of-
nominal conditions (noisy MNIST samples). Panel (b) shows recovery of performance in RL 
algorithms operating in out-of-nominal conditions. Panel (c) shows self-supervised adaptation to 
new conditions, learning new tasks, and discovering new ones from a few samples.  

Our work proposed algorithms and system architectures integrating the above mechanisms to 
address the problems presented in the beginning of Section 2.1: 1) robust self-supervised 
learning and 2) robust knowledge representations. The approach to address them was 
demonstrated throughout the program and consisted of: 

1. Tracking uncertainty to allow L2Ms to measure performance against learned expectation
and trigger appropriate adaptation. The impact of this was a demonstration of self-
supervision that frees machine learning systems from requirements of supervision or
reinforcement signals external to the agent.

2. Developing a distributed and hierarchical learning system. Distributed learning was
implemented by employing different components of the system to learn elements of the
task separately but in coordination. Hierarchical learning was implemented by
architecting UML into a multi-layer learning system to decompose tasks into multiple
levels of abstraction. The impact of this work is the demonstration of knowledge
representations that are more interpretable, capable of accommodating tasks with
different levels of abstraction, and improved capabilities for transfer and maintenance
(the latter demonstrated during our M18 experiments presented in Section 4).
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(a)

(b)

(c)
Figure 10. Application of UML to a Variety of Machine Learning Problems 
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Finally, we prepared, submitted and/or published multiple publications listed below: 

 Brna, A. P., Brown, R. C., Connolly, P. M., Simons, S. B., Shimizu, R. E., & Aguilar-
Simon, M. (2019). Uncertainty-based modulation for lifelong learning. Neural 
Networks, 120, 129-142. 

 Kudithipudi, D., Aguilar-Simon, M., ... & Siegelmann, H. (2022). Biological 
underpinnings for lifelong learning machines. Nature Machine Intelligence, 4(3), 196-
210. 

 Brown, R., Brna, A., Cook, J., Park, S., Aguilar-Simon, M. (Submitted) Uncertainty-
Driven Control for a Self-Supervised Lifelong Learning Drone. 2022 IEEE International 
Geoscience and Remote Sensing Symposium. 

 Stephens, T., Corley, I., … & Aguilar-Simon, M. (Submitted) Self-Supervised 
Representation Learning Enhances Broad Area Search in Multi-Temporal Satellite 
Imagery. 2022 IEEE International Geoscience and Remote Sensing Symposium. 

 Petrenko, S., Brna, A., Wunsch, D., & Aguilar-Simon, M. (Submitted) Lifelong Context 
Recognition via Online Deep Clustering. 2022 International Conference on Machine 
Learning. [In collaboration with Missouri S&T] 

 Delanois, E., Brown, R., … & Aguilar-Simon, M. (In progress) Sleep-Inspired Replay for 
Lifelong Learning in Multi-Task Object Detection. [In collaboration with UCSD] 

2.4 Transition Opportunities 
We successfully evaluated and/or validated the use of our L2M algorithms across several non-
program activities. UML was employed in two DARPA programs also under contracts managed 
by AFRL, Competency Aware Machine Learning (CAML) and Seeker Cost-Transformation 
Closed-Loop (SECTR-CL) evaluations. Additionally, UML was evaluated for insertion into 
several Government-funded projects that are successfully transitioning ATR algorithms for SAR 
imagery developed under DARPA’s Target Recognition and Adaptation in Contested 
Environments (TRACE) program, also originally managed by AFRL.  

Figure 11 presents results obtained in our experiments with UML replacing the target 
classification stage of a state-of-the-art synthetic aperture radar (SAR) automatic target 
recognition (ATR) system (first developed under the TRACE program). The plot on the left 
shows that UML has a significant impact on the area-under-the-ROC (receiver operating 
characteristic) curve for test sets that included novel targets and conditions. Condition changes 
included time of year, geographical regions for the target sites, and background clutter. Novel 
targets included pre-trained targets in new configurations or completely new targets (i.e., 
confusers). The plot on the right demonstrates how in addition to improving ATR performance, 
UML can report the uncertainty registered for every target under each of the conditions, thus 
supporting more informed decisions for self-supervision or for operator awareness. We suggest 
that both of these capabilities are excellent targets for the use of UML in any existing ATR 
system that is susceptible to day-1 failures in the field due to novel conditions not anticipated 
during training. 
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Figure 12 presents results obtained in our experiments with UML applied to predicting the 
performance of an existing machine learning algorithm under the DARPA CAML program. 
Here, UML was used to learn the patterns of activation across different layers in the machine 
learning system in response to presentation of images in the training set post-training (top 
diagram in the figure). In our main experiment, UML was trained on a concatenated vector 
composed of the activations in layers 3 through 5 of the deep neural network. Through this 
process, UML learned to characterize the nominal responses for the training set, which we 
coined strategies in the CAML program. Then, a novel dataset was used to generate both 
activations and target classification outputs. UML used the activations to predict the probability 
of correct classification by the network on this novel dataset. As the plot on the bottom of the 
figure suggests, UML could predict network performance about 80% accuracy. These 
experiments were terminated early so there was not an opportunity to investigate additional 
means of increasing accuracy. However, the results suggest the promise that UML, without 
access to ground truth, can predict a pre-trained network’s performance in the field, a feat not 
possible today unless ground truth is available.

As these results demonstrate, our UML algorithm can be used as a drop-in replacement in any 
system/program where either supervised, unsupervised or semi-supervised algorithms are being 
used, which will equip the underlying system with a continual and self-supervised learning 
capability. We assess the TRL for this algorithm at 4-5. Our stand-alone uncertainty tracking 
algorithm can be used to inform the performance of any machine learning algorithm or system 
that relies on machine learning algorithms. Furthermore, such systems can be modified to use 
information about uncertainties to adapt their execution. We assess the TRL for this algorithm at 
3-4. Finally, both of the algorithms above, when integrated in a system for object recognition, 
can support capabilities for rapid adaptation to new environments or the addition of new object
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Figure 11. UML Improves Performance of a State-of-the-Art SAR-Based ATR Algorithm in 
Novel (Out-of-Nominal) Conditions
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types or variations. The example in Figure 13 illustrates a successful experiment we conducted to 
investigate the insertion of UML into a commercial product under development at Teledyne. The 
system uses a camera to detect and classify recyclable material on a conveyor belt. The initial 
object classification algorithm performs very well (~90%) on a small set of object classes. 
However, when the number of classes was increased to 27, performance degraded substantially.
UML was used to replace the classifier resulting in an accuracy of ~88%. In addition to the 
increased performance, UML’s lifelong learning capabilities allow users to add new object 

Figure 12. UML Applied to Predict Performance of an Existing Machine Learning Algorithm

Figure 13. UML Applied to Classify Objects in Complex Environments Outperforms State-of-the-
Art Object Classifiers
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classes (i.e., new tasks) on-demand. We assess the TRL of this system at 6-7 as it was tested 
under operationally relevant conditions.  

As the previous example demonstrates, our L2M algorithms can be plugged into new or existing 
machine learning solutions or systems. They can be integrated as part of individual components 
of a solution or integrated into the various components of a complete solution. Table 2 lists 
several of the transitions facilitated through the L2M program. 

Table 2. List of Transitions and Future Opportunities 
Element TRL Link to publication or 

repository 
Details 

Components: 
UncertaintyPropagation.jl 
ObjectDetector.jl 

4 https://github.com/TDYbrownr
c/UncertaintyPropagation.jl 
https://github.com/ldfolsom2/
ObjectDetector.jl 

Julia modules for uncertainty 
propagation and object detection 

UML learns context and 
nominal conditions to 
trigger alerts and promote 
adaptation 

4 https://www.sciencedirect.co
m/science/article/pii/S0893608
019302722  

Current DARPA programs candidates 
for transition ACE, SESU 

UML to Astrocyte  7 https://www.teledynedalsa.co
m/en/products/imaging/vision-
software/astrocyte/  

Transition of algorithm into Teledyne 
product 

UML to Optical Sorting 6-7 Commercial application Demonstrated robust performance in 
the presence of increased tasks 
relative to the state-of-the-art 

UML in other Government 
programs 

4-6 CAML, SECTR, TRACE-related 
transition programs across 
multiple agencies 

“Plugged” UML to predict performance 
of pre-trained models on novel data, 
without labels  80% accuracy; 
Increased baseline accuracy by up-to 
30% in novel conditions. 
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3.0 METHODS, ASSUMPTIONS, AND PROCEDURES

3.1 Methods

3.1.1 L2M Architecture

Our chief pursuit over the 
course of this project was 
to develop and ultimately 
evaluate algorithms
capable of lifelong 
learning following 
principles of 
neuromodulation. Our 
approach in Phase 2 
utilized a sophisticated, 
multi-component 
architecture, which is 
shown in Figure 14. Our
L2M architecture allowed 
the sequestration of key 
operations deemed 
necessary for lifelong 
learning, which were brought together by the end of the program to produce an embodied 
learning agent capable of self-supervision, uncertainty management, resource optimization, 
and on-the-job learning within an open environment.

Our L2M architecture consists of six named components (denoted by C#) and an interface layer. 
The named components and their roles in the system are as follows:

C1: Search and Attention – C1 accepts raw inputs provided by a given application 
through the interface layer and extracts meaningful features for subsequent evaluation in 
other system components. Additionally, C1 provides information on potential regions of 
interest within a given input.

C2: Uncertainty Monitoring – C2 tracks uncertainties generated within system 
components and communicates them across the system. This component enables 
neuromodulatory activities across components, promoting different modes of operation in 
response to uncertainty.

C3: Task Detection/Switching – C3 provides top-down feedback within the system by 
identifying the active task during system operation and deriving contextual information. 
Its outputs subsequently drive task-specific attentional mechanisms in other components 
to enable context-specific operations. This component was developed by the SG team 
member Missouri University of Science and Technology (S&T), and it is driven by 
distributed dual-vigilance fuzzy (DDVFA) Adaptive Resonance Theory Mapping 

Figure 14. Teledyne’s L2M Architecture



Algorithm (ARTMAP) [18] and is itself capable of online continual learning without 
catastrophic forgetting [publication under review]. 

 C4: Continual Task Performance and Learning – C4 utilizes bottom-up extracted 
features, top-down contextual information and learning signals, and calculated 
uncertainties to learn multiple tasks in a self-supervised manner. This component houses 
the neuromodulation-based uncertainty-modulated learning (UML) algorithm [19] 
developed by SG team leader Teledyne during this program, and it serves as the learning 
centerpiece of the architecture (see Section 3.1.2 for more details). Inputs are evaluated in 
a hierarchical and online manner to identify appropriate system actions under changing 
circumstances, and behaviors and learning are modulated according to available 
uncertainties, including denoting high-uncertainty samples as “unknown”. 

 C5: Memory Optimization – C5 evaluates the knowledge bases (e.g. learned weights) 
accumulated by other system components during online operation and optimizes their 
organization and storage. Such consolidation both reduces the amount of memory 
required by each component, promoting long-term operations, and improves task 
performance through better arrangement of information. 

 C6:  Model Optimization & Selection – C6 coordinates the use of separate knowledge 
bases corresponding with the active context. Additionally, it handles offline modification 
of knowledge bases, including batch processing of samples accumulated over some 
duration. Algorithms to power this component were developed and tested by SG team 
members University of California, Irvine (UCI) and University of California, San Diego 
(UCSD), though they were not integrated into the architecture in time for program 
evaluations. 

 Interface: While explicitly a component of the learning architecture, the interface 
component handles communications into and out of the architecture. Its inclusion allows 
the L2M architecture to be application-agnostic, promoting its use as a plug-and-play 
algorithm in any system. 

3.1.2 Uncertainty-Modulated Learning (UML) 

The learning algorithm used in this work expands upon principles of uncertainty pioneered by 
Grossberg’s Adaptive Resonance Theory (ART) algorithm [20]. In ART, uncertainty is best 
embodied in the vigilance parameter, which controls how similar a sample’s bottom-up input needs 
to be to an existing top-down expectation to incorporate the sample into it. If the similarity metric 
does not pass the vigilance criteria, then the system is considered uncertain, and it engages a 
different learning mechanism to introduce the sample into the knowledge base. Our main 
contribution is to introduce specific mechanisms for measuring different types of uncertainty that 
an embodied agent needs to be able to track to perform robustly under a variety of conditions. 
Through an extensive review of analysis of evidence, we have identified a broad number of 
additional forms of uncertainty that we incorporate into a new uncertainty-modulated learning 
(UML) algorithm. Furthermore, we expand the mechanisms that trigger changes in the learning 
system so that new information is incorporated in a fully self-supervised manner.  
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Figure 15 illustrates the generalized form of the UML algorithm. The algorithm accepts high-
dimensional representations of data, and it makes an initial decision/hypothesis using that data 
based on its own existing knowledge base. The hypothesis, the end point of traditional machine 
learning techniques, could take different forms based on the nature of the inputs; in this work it 
represents a classification, but it could also represent a translation, a prediction, a diagnosis, or 
even a motor action. The uncertainty algorithm follows the initial hypothesis by calculating a set 
of uncertainty metrics, which represent sources of noise or confusion in the signals or 
decisions/hypotheses that may have an impact on the algorithm’s output. Uncertainty can come 
from a variety of sources, including but not limited to the hypothesis, the internal representations 
of the existing knowledge base, the inputs themselves, and the conditions under which the inputs 
were received. Figure 15 presents three such uncertainties.

Figure 15. Generalized Algorithm for the Uncertainty-Modulated Architecture

Next, the uncertainty metrics are compared against internal criteria representing the algorithm’s 
tolerance for each uncertainty type. If all uncertainty criteria are met, representing a confident 
hypothesis, the architecture finalizes its decision and passes it on to downstream components of 
the system. However, if any of the uncertainties do not pass criteria, then the algorithm changes, 
or modulates, its operations based on the specific uncertainty failure. Changes can be temporary, 
lasting only for one input, or permanent, changing the knowledge base for all subsequent inputs. 
Finally, the algorithm adjusts its criteria as appropriate for the failed uncertainties, and a new 
hypothesis is generated. This process repeats until the algorithm finds or develops a hypothesis 
that satisfies all uncertainty criteria. 

Changes resulting from uncertainty are mediated by modulation mechanisms inspired by the 
acetylcholine neuromodulatory system [21, 22] and norepinephrine [23]. These neuromodulators 
can be released in response to expected uncertainty and surprise, triggering multiple effects on 
signal processing and neuroplasticity in multiple brain regions [4, 24-26]. Some of those effects 
induce temporary adaptations in cortical networks [27], and others induce extended changes in 
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hippocampal memory [28]. These neuromodulatory mechanisms form the basis by which the UML 
algorithm can incorporate new information into its knowledge base without destroying its prior 
knowledge. 

3.1.2.1 Types of Uncertainty 
The UML algorithm measures uncertainty with the principal goal of confidently adapting to the 
environment or task changes. Specifically, uncertainty allows the algorithm to monitor its 
performance against expectations and respond with the appropriate form of adaptation or 
response. UML currently evaluates five types of uncertainty: detection, category fit, similarity, 
relevance, and persistence.  The exact sources of each type will vary among algorithm 
implementations, but as a whole, they represent critical questions that a continual learning 
system must ask to determine when, what, and how it should learn.  Detection relates to the 
uncertainty that a system has appropriately detected an object of interest.  Fit reflects uncertainty 
in how closely the inputs match internal representations of the knowledge a system has already 

 
and its “reset and search” and “match tracking” mechanisms.  Similarity asks how well a sample 
relates to everything the system has already experienced, i.e., does this sample share any 
common ground with what has already been seen, or is it something entirely new?  Relevance is 
uncertainty in the relationship between the learned information (e.g., objects it knows) and the 
current input. For instance, whether the input is related or similar enough to the classes of inputs 
it has previously learned.  Lastly, persistence relates to temporal or observational uncertainty, as 
it examines consistency in both the knowledge to be learned and the system’s understanding of 
that knowledge.   

Since a principal mechanism for measuring uncertainty in our algorithm is to compare the inputs 
or feature activations against learned expectations, it can readily incorporate any machine 
learning method that can learn priors (e.g., Bayesian networks). Algorithm 1 gives the variant 
modeled after default ARTMAP 2 for illustration purposes, which can be leveraged for 
classification tasks. Parameters related to Algorithm 1 are listed in Table 3, and rationale for 
ARTMAP’s equations and parameters are described in the associated article [29]. This variant 
examines five types of uncertainty, compares them to criteria i, and triggers modulation to 
control processing flow accordingly. Uncertainty criteria i are given values at the start of 
operation but can be modulated during operation to promote adaptation under different 
processes. 

Throughout the L2M program, we demonstrated the use of UML across multiple domains and 
applications. For each application, values for parameters i can be derived through a linear 
programming procedure to optimize task performance. In order to optimize for continual 
learning, optimization is performed on every sample on the training set (in contrast to collecting 
statistics across the entire dataset). We found that for optimization it is critical that sample order 
is preserved, as this reflects temporal dependencies in natural sensor streams. 
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ALGORITHM 1 
ARTMAP 2 variant of UML 
1. Initialize model and uncertainty criteria 1-5
2. For each frame, generate d detections with features F and objectness through object detector
3. For detections i = 1…d, perform the following:

3.1. Evaluate detection metrics against detection criteria 1
3.1.1. If detection does not pass criteria, continue to next detection

3.2. Evaluate complement-coded features A=(F,Fc) against category fit criteria 2 using the following process
3.2.1. for each network node j = 1....C, calculate node activation levels j = |A^ wj| + (1 – )(M - | wj |) 
3.2.2. collect activated node subset  = {   } 
3.2.3. set winning node J = argmax( )  
3.2.4. evaluate node activations J against category fit criteria 2 

3.2.4.1. set vigilance = category fit criteria 2 
3.2.4.2. if J does not pass vigilance , remove J from  and return to step 3.2.3 [reset] 
3.2.4.3. if J passes vigilance  assign an initial label from node J and attempt to learn 

3.2.4.3.1. if supervisory label is provided & node J’s label does not match, 
3.2.4.3.1.1. modulate criteria 2 to reject label mismatch [match tracking] 
3.2.4.3.1.2. remove J from  and return to step 3.2.3 

3.2.4.3.2. otherwise, update node weights wJ to incorporate detection i 
3.2.4.3.2.1. node weights wJ = J) + (1 – )wJ 
3.2.4.3.2.2. proceed to step 3 

3.2.5. if no nodes pass criteria 2, examine similarity of features A to existing nodes 
3.2.5.1. for top nodes in original node subset , calculate overlap( features A, node weights wj) 
3.2.5.2. for first node J that passes similarity criteria 3,  

3.2.5.2.1. otherwise, update node weights wJ to incorporate detection i 
3.2.5.2.1.1. node weights wJ = J) + (1 – )wJ 

3.2.5.2.2. proceed to step 3 
3.2.6. if no nodes pass criteria 3, self-generate new category to hold novel sample 

3.2.6.1. create new label N = n + 1 [new class] 
3.2.6.2. create new node with label = N, w = A 

3.3. store current category in memory  
3.4. if number of detections for label N or physical object remains below relevance criteria 4 for too long, 

3.4.1. remove label N or physical object from consideration and learning 
3.5. if number of detections for label N or physical object passes persistence criteria 5 is insufficient, 

3.5.1. remove label N or physical object from consideration and learning 
3.6. finalize category as hypothesis and request human-relevant label if a new label was self-generated 

4. continue to next detection (i++)
Figure 16. Algorithm 1 
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Table 3. Table Describing Parameters for the UML Algorithm 

Notation Parameter Possible 
Values 

1 uncertainty criteria for 
detection (0, 1) 

2 uncertainty criteria for category 
fit (0, 1) 

3 uncertainty criteria for 
similarity (0, 1) 

4 uncertainty criteria for 
relevance (0, 1) 

5 uncertainty criteria for 
persistence (0, 1) 

C number of nodes in system  

n number of labels known to the 
system  

a feature vector (0, 1) 

A complement-coded feature 
vector (0, 1) 

M number of complement-coded 
features -- 

 node activation level (0, 1) 

 subset of activated nodes (1, C) 

J winning node (1, C) 

w node weights (0, 1) 

 signal rule parameter (1, C) 

 learning fraction (0, 1) 

 match tracking (-1, 1) 

N self-supervised label (class) (1, n) 

H final hypothesis (-1, n) 

Each criteria i relates to a specific type of uncertainty which arises in a classification learning 
system, and their values reflect the type of uncertainty they are designed to address. Criteria 1 
relate to detection confidence, and controls whether specific objects are considered further 



(“objectness”, [30]). Criteria 2 and 3 relate to uncertainties in the analysis of the inputs, 
specifically confidence of a classification or hypothesis given pre-existing knowledge. Finally, 
criteria 4 and 5 relate to uncertainty in the observations. The former establishing the 
relatedness of the object to previously learned objects and the latter establishing the permanence 
or consistency in the observation of any new objects. 

The algorithm begins by creating or loading an ARTMAP-based network and setting the 
uncertainty criteria. A separate detector (C1) finds objects in a scene and returns multi-
dimensional features and an initial hypothesis, which are then fed to the network one-at-a-time. 
The first stage of modulation subsequently occurs in step 3.1, as the detected object is examined 
against two uncertainty criteria and potentially rejected as poor quality or undesirable.  

In Steps 3.2-3.6, object instances generated by the detector of Step 2 are processed to infer 
category label and engage continual learning and adaptation. Steps under 3.2.4 embody the core 
of ARTMAP, which is modified to evaluate multiple uncertainty criteria. Features are first 
complement-coded, and if no nodes are available in the network, the one is created using those 
features and a corresponding supervised/unsupervised label. ART then implements a “forward 
pass” on the network and generates a level of activation  in each available node. ARTMAP uses 
the node activations to find the closest approximation “winning” node J, and the fit TJ of the 
input features to node J’s calculated weights is compared against the vigilance parameter . The 
vigilance parameter  is modulated by three of the uncertainty measures ( 2, 3, and 4) to 
enable self-supervised learning under appropriate levels of uncertainty (Step 3.3-3.4). 5 is used 
to determine if sufficient evidence (observations) have been collected for a newly acquired 
object (Step 3.5). If this criterion is met, then the system preserves the new object class and can 
make it available for analysis by a human operator who can assign a human-readable label (Step 
3.6).  

During lifelong learning, if node J satisfies criterion 2-3, and the provided label matches node 
J’s label if supervised, then the network incorporates the input features into node J’s weights 
using the following the equation in Step 3.2.4.3.2.1. A node’s weights can be considered the 
node’s “internal representation” or template of the part of feature space it has learned to 
recognize. However, if the node J does not pass criterion 2, UML engages a “reset and search” 
to select a new node for evaluation. This allows the algorithm to modify the network’s 
knowledge base intelligently by focusing attention on the information relevant to the most likely 
hypothesis (i.e., category). If the 2 criterion is passed, but node J’s label does not match the 
assigned label, then the algorithm performs match tracking, increasing the value of 2 before 
starting reset and search. In this way, the algorithm is self-supervised, adjusting its uncertainty 
criteria automatically. Both match tracking and reset and search constitute modulatory 
mechanisms. 

Once the algorithm has determined an appropriate category for a sample (including “I don’t 
know”), the algorithm places that category into a list containing candidate-values for a specific 
object over time in Step 3.3. Categories in this list are replaced with non-detections (zeros) over 
time, so if the list does not contain enough recognitions of an object to pass criteria 4-5, then 
there is uncertainty of the object’s permanence, and the current detection is rejected (Step 3.4). If 
criterion 4 is passed, but the frequency of the most common hypothesis in the list is below 
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criterion 5, then there is uncertainty in the algorithm’s ability to form a hypothesis, and the 
detection is also rejected (Step 3.5). Both rejection instances further exemplify modulation. The 
algorithm only continues to Step 4 and outputs the final hypothesis for a detected object if all 
uncertainty criteria have been passed. 

3.2 Novelty 
The UML algorithm also includes the option of examining an input’s novelty to determine if it 
constitutes a not-yet-seen category. Algorithm Step 6.3.2 shows that during learning, if an input 
does not match any existing nodes, the algorithm will create a new category or class for that 
input. The new class is immediately available for further refinement and classification. In this 
way, the algorithm can add entirely new classes in an unsupervised manner. This function, which 
is inherent in ARTMAP, represents a form of modulation, but more importantly, it provides the 
algorithm with a form of one-shot learning. 

3.2.1 Embodied Learning Agent 

During this program, we developed the L2M architecture and its underlying algorithms using the 
application of a flying drone performing asset recognition tasks. This application featured an 
embodied learning agent maneuvering within an open simulated environment seeking out and 
identifying objects related to discrete asset categories (see Section 3.6.2 for asset details). The 
challenge in this application lay primarily in the agent’s learning of how to recognize novel 
objects and views, and as additional asset categories became relevant, incorporating knowledge 
necessary to recognize such assets without reducing performance on prior ones. Such an 
application required that the agent learn during live operation to improve its performance 
while on-the-job, simultaneously evaluating and learning upon streaming information in a 
continuous manner. 

We promoted learning of asset appearances in the drone agent through uncertainty-driven self-
supervised learning. Under this paradigm the agent uses generated uncertainties to determine 
when and how to learn on a given object. Figure 17 illustrates one version of self-supervised 
learning utilized by the agent. In this scenario, a drone agent pretrained on vehicle appearances 
from the ground only encounters a sedan from the air, where it generates high uncertainty. 
Recognizing a need to learn, the drone flies to the ground where it has low uncertainty and 
acquires the learning label (“sedan”) for the object. This label is then retained as the agent flies 
back up to its operational altitude, and uncertainty in the views encountered is used to trigger 
additional learning using the UML algorithm within C4.  At altitudes where the agent was 
originally trained, UML algorithm operates without modulation or learning, as low uncertainty in 
its results reflect an appropriate level of understanding. At altitudes near to those where the agent 
was originally trained, views generate moderate uncertainty, and the UML algorithm both returns 
its hypotheses on given views and engages neuromodulatory mechanisms to learn by changing 
existing weights to tune its understanding of the object. At high altitudes where the agent has no 
prior training, views generate high uncertainty, and the UML algorithm rejects its hypotheses on 
given views (“van”) and engages novelty-related neuromodulatory mechanisms to learn by 
generating additional weights and associating them with the label acquired from low-uncertainty 
samples (“sedan”). This provides one-shot learning capabilities to the agent. In this way, the 
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agent learns to recognize assets from new views, improving its performance on an asset 
recognition task during live operation.

Following development, embodied learning agents using the L2M architecture were 
subsequently put through a series of demonstrations (Phase 1) and learning scenarios (Phase 2) to 
demonstrate L2M capabilities. Demonstrations consisted of learning scenarios showcasing the 
ability of learning agents to improve asset recognition task performance over time and acquire 
new skills. Learning scenarios were defined by the L2M Program and consisted of the agent 
learning multiple asset recognition tasks in sequence with evaluation periods following each 
learning period. Program metrics generated during these scenarios were used to demonstrate 
overall success during the program.

3.3 Metrics

3.3.1 Overview

Metrics consisted of two types: application-level metrics and lifelong learning metrics. 
Application-level metrics are defined as those generated within the L2M application itself; such 
metrics carry application-specific units and characterize the ability of the learning agent to 
perform a given task. Lifelong learning metrics are those that characterize the overall learning 
abilities of a learning system; such metrics are unitless, are generated using application metrics 
for a given system, and are agnostic to a given application or system configuration. For the latter 
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Figure 17. Self-Supervised Learning of a New Object



reason, lifelong learning metrics were used as the L2M program metrics and will be referred to 
as such in subsequent sections. 

3.3.2 Application-Level Metrics 

Application-level metrics calculated in this project were generated by performing a series of 
asset recognition tasks during learning scenarios. Generally, a drone agent with or without some 
level of pretraining was flown through an open simulated environment, simultaneously 
performing object recognition tasks and learning at key locations. Learning was disabled at 
certain locations to allow evaluation without concurrent learning.  

Firstly, object recognition accuracy and later precision were monitored during operation, 
quantifying the ability of the system to return an appropriate classification for given objects. 
Accuracy was initially measured to quantify the benefit of UML’s ability to report “unknown” 
instead of committing to a poor decision. The metric thus gives partial credit for potential True 
Negatives as follows:  

( ) = #  + # 2 
Equation 1. Object Recognition Accuracy 

UML is unique among most machine learning algorithms in being able to confidently declare 
that it does not have enough information to produce an output. This should be highlighted as an 
important contribution to the field. However, as the program progressed, and more emphasis was 
placed on comparing performance across performers, we opted to adopt the standard metric for 
precision as follows: =   

Equation 2. Precision 

These metrics were adjusted to incorporate the identification of context, active task, or task-
relevancy in those configurations of the agent able to generate them; in such cases, partial credit 
was awarded for accuracy metrics for correct recognitions of either object or context labels. 
Additionally, accuracy metrics awarded partial credit when samples were labeled as “unknown”, 
indicating successful identification of when the agent could not confidently classify a sample 
based on prior knowledge. Precision metrics were calculated using only those samples given a 
confident identification, with the agent treating “unknown” samples as too high uncertainty to 
use for task execution.  

Additionally, levels of uncertainty were measured as application-level metrics. These metrics 
included uncertainty of similarity between a sample and the agent’s knowledge base (“fit”), 
uncertainty in an object’s classification over time (“persistence”), uncertainty in a classification 
given conflicting alternatives (“contested”), and uncertainty in knowledge base organization 
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(“fragmentation”), among several others (see [19] for additional details). These uncertainties 
were used to both monitor and drive the decision-making ability of the learning agent: 

 = ( , )  (1) 

 = ( |  ) (2) 

 = ( )( ) (3) = ( | ) (4) 

where,  

distL1 is the L1 distance, and 

WT are all the candidate categories. Thus, fragmentation measures the percentage 
of those candidates that match the most likely category. 

Equation 3. Uncertainty Measures 

Lastly, memory requirements (measured as total number of bytes allocated in RAM) for the 
learned knowledge base were monitored during operation as an application-level metric. 
Lifelong learning methods such as ours that allow the creation of additional weights will 
practically be limited by the platforms on which they operate, making memory optimization an 
important part of long-term lifelong learning. Metrics calculated here were used to promote such 
optimization operations. 

3.3.3 Lifelong Learning / Program Metrics 

The program metrics calculated for this project served to evaluate the lifelong learning agent in a 
system and application-agnostic way, allowing for comparison against other agents. Methods and 
logic for each metric are described briefly below, with a more in-depth description and 
calculation being available in [31].  

 Performance Maintenance (PM) – the ability of a lifelong learning system to retain 

reflects a system that does not catastrophically forget following new learning.  

Computed by:  
 Select an application-specific metric to monitor for the given environment (accuracy 

or precision) 
 Set up a learning scenario with a sequence of Learning Blocks alternating with 

Evaluation Blocks. Each Evaluation Block exercises all the previously learned tasks. 
 For a given task and Evaluation Block: 
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 Calculate the Maintenance Value, defined as the difference between each the 
Task’s most recent Evaluation Performance and second-most-recent 
Evaluation Performance 

 Performance Maintenance for a lifetime = mean Maintenance Value across the 
lifetime 

 Forward Transfer (FT) – the ability of a lifelong learning system to utilize information 
learned on one task to improve the learning on a set of different, subsequent tasks. A 

uch a way that it can be utilized 
by subsequent tasks to improve their own learning. 

Computed by: 
 Select an application-specific metric to monitor for the given environment 
 Set up a learning scenario beginning with initial Evaluation Blocks for all tasks, 

followed by a sequence of Learning Blocks (for different tasks) alternating with 
Evaluation Blocks. 

 Assuming a block sequence like: Eval Block 1, Learning Block 1 (Task-1), Eval Block 
2, then Task-2’s Forward Transfer (from Task-1) is computed as the contrast of the 
Evaluation Performances of Task-2 in Eval Block 2 to Eval Block 1. 

 A task’s Forward Transfer is this FT calculation, the first time it appears in the 
learning scenario. 

 The Forward Transfer for a lifetime is the mean of each task pair’s Forward 
Transfers. 

 Backward Transfer (BT) – the ability of a lifelong learning system to utilize 
information learned on a new task to improve the performance on a set of different, 

r tasks 
using information acquired during a new task, which suggests shaping the underlying 
knowledge base in a way that is helpful to multiple tasks. 

Computed by:  
 Select an application-specific metric to monitor for the given environment 
 Set up a learning scenario with a sequence of Learning Blocks. Between each 

Learning Block, there are Evaluation Blocks for each of the other tasks. 
 For each task: 

 Compute the Backward Transfer Contrast, defined as the contrast of the 
average performance within the most recent Evaluation Block to the second-
most recent Evaluation Block 

 Backward Transfer for task T = the average of the Backward Transfer 
Contrasts 

 The Backward Transfer for a scenario is the mean of each task pair’s first calculated 
Backward Transfer value. 
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 Relative Performancee (RP) – the ability of a lifelong learning system to utilize the 
knowledge shaped from multiple tasks to improve its performance on a given task. This 
metric compares the lifelong learner against a learner trained only on the given task, and 

performance overall. 

Computed by:  
 Select an application-specific metric to monitor for the given environment that has 

also been logged for a Single Task Expert (STE; e.g. a non-lifelong learner) 
 Set up a learning scenario with some sequence of Learning Blocks for some number 

of tasks 
 For a given task T: 

 Consider only the Learning Blocks for Task T, in order of appearance 
 Intuitively, compare the “area under the curve” for the lifelong learner 

experiencing Task T with the area under the curve for the equivalent Single 
Task Expert. 

 Formally, Compute the Single Task Expert Ratio, defined as the ratio of the 
sum of the application-specific metric over all of the Learning Experiences in 
the lifetime to the sum of the same application-specific metric over the same 
amount of learning experiences for the Single Task Expert 

 Relative Performance for Task T = the Single Task Expert Ratio 
 The RP for a lifetime is the mean of each task’s RP score. 

 Sample Efficiency – the ability of a lifelong learning system to utilize the knowledge 
shaped from multiple tasks to achieve competence on new tasks more rapidly. This 
metric also compares the lifelong learner against a learner trained only on the new task, 
and it measures the relative number of learning experiences required to achieve the same 

knowledge to acquire new tasks over time. 

Computed by: 
 Select an application-specific metric to monitor for the given environment that has 

also been logged for a Single Task Expert 
 Set up a learning scenario with some sequence of Learning Blocks for some number 

of tasks 
 Intuitively, compare the saturation value of the Single Task Expert with that of the 

lifelong learner. 
 For each task T: 

o Consider only the Learning Blocks for Task T, in order of appearance
o Compute Saturation Value (the max of the rolling average of the application-

specific metric) and the Experience to Saturation (the number of Learning



Experiences it takes to achieve the Saturation Value) for both the L2 agent 
and the Single Task Expert system 

o Compute the ratio of the Saturation Values of the L2 agent and the STE
o Compute the ratio of the Experience to Saturation (ETS) for the STE and the

L2 Agent
o Sample Efficiency = Saturation Value Ratio * Experience to Saturation Ratio

 Performance Recovery (PR) – the ability of a lifelong learning system to progressively 
reduce the time required to return to prior performance on a given task following learning 

learning. (This metric was removed from program metrics late in Phase 2 due to erratic 
results across multiple performers.) 

Computation: 
 For each Task: 

o Select an application-specific metric to monitor for the given environment
(e.g. precision)

o Set up a learning scenario with a sequence of LX blocks. Each LX block
introduces a parametric change to an already-learned task.

o From the second Learning Block onwards, calculate the Recovery Time
relative to the most recent Terminal Learning Performance. The “Recovery
Time” is the number of LXs for performance to return to the previous
Terminal Learning Performance.

o Task-Specific Performance Recovery = negative slope of the line of (Learning
Block index, recovery time) values.

 Report Lifetime PR as the mean of all Task-Specific PRs 
Our system calculated program metrics using the accuracy, then later precision, metrics 
described above. While our system is capable of concurrently evaluating and learning upon 
streaming information, following the learning scenarios outlined in [31] and described in Section 
3.3.3, the first three metrics were calculated using evaluation periods without learning engaged; a 
similar format was used with sequestered validation data for the last two metrics later in the 
program. Metrics requiring single task learning algorithms measured the performance of learning 
agents using the L2M architecture with equivalent settings as a lifelong learning algorithm but 
only trained using samples from singular tasks. 

3.4 Testing and Evaluation 
We evaluated our L2M architecture and associated learning agents through algorithm 
demonstrations and learning scenarios with associated program metrics, as well as through 
separate experiments exploring other applications of the system. 

3.4.1 Phase 1a Experiments and Demonstration 

During Phase 1a, we began by executing a consecutive series of three proof-of-concept (POC) 
learning experiments examining fundamentals of uncertainty-based algorithms for lifelong 
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learning. The results of these and other related experiments informed the design of a 
demonstration at the end of Phase 1a, which verified the applicability of our lifelong learning 
algorithm, dubbed UML [19], within an embodied learning agent performing asset recognition 
tasks. 

POC 1 examined the ability of uncertainty-based algorithms to recover task performance under 
novel contexts. Under this experiment, a learning agent was pre-trained using randomized views 
of sedans, vans, and city clutter from the ground only, which imitated an agent restricted to 
ground-based movement. Then, this agent was exposed to randomized views of sedans from the 
air, representing a significant change in the sedans’ appearance and leading to poor recognition 
performance. The agent was then allowed to learn on the new views in periods of high 
uncertainty, which recovered performance on the task for the novel view without affecting its 
performance on ground-based views. 

POC 2 pushed this capability to recover performance on a separate set of resources in a new 
context without catastrophically forgetting prior learning. Continuing from the same model as 
POC 1, this experiment exposed the learning agent to randomized views of vans from the air, 
which it initially performed poorly on. After subsequently learning on views of vans from the air 
according to sample uncertainties, the agent recovered performance on that asset as well 
without impacting prior performance on ground-based imagery nor air-based sedan imagery.  

POC 3 investigated the algorithm’s ability to identify and learn upon entirely novel information. 
In this experiment, the model from the end of POC 2 was exposed to random samples of a new 
class of never-before-seen objects, fire trucks, which it could not correctly identify based on 
prior knowledge.  Using different uncertainties focused on novelty, the agent then identified 
select views of the object to learn upon, adding the new object class to its knowledge base in a 
self-supervised manner. Finally, labels were applied manually to the novel learned information, 
ultimately learning to recognize a new object class in a one-shot or few-shot manner. 

Following POC 1-3 and two smaller experiments confirming the suitability of self-supervised 
learning with continuous imagery, Phase 1a efforts culminated in a demonstration of an 
embodied learning agent operating within an open environment. In this demo, a drone agent 
pre-trained with ground-based imagery of vans, sedans, and city clutter encounters sedans at an 
intersection from the air and executes a series of maneuvers to learn to recognize them from its 
new operating altitude using continuous imagery. Following this, the agent flies to another 
intersection containing both sedans and vans, where it repeats similar maneuvers to acquire 
recognition skills with vans from the air. Finally, the agent encounters fire trucks at a third 
intersection, which it learns as new classes following self-supervision before then adding a 
unifying label, thus acquiring recognition skills with an entirely new class. 

3.4.2 Phase 1b Experiments and Demonstration 

During Phase 1b, we examined the uses of additional uncertainties and contextual signals to 
enable discovery and on-the-job learning. Following two smaller experiments examining 
focused, uncertainty-driven, self-supervised learning of asset objects of interest, we ran a fourth 
POC experiment. POC 4 utilized a hierarchical version of UML including drone altitude as a 
contextual signal, which provided a top-down attentional mechanism to promote differential 
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treatment of assets based on context. In this experiment, a learning agent was trained using 
randomized imagery to perform 1 of 3 actions (COUNT, AVOID, IGNORE) based on a 
combination of an object’s class and the altitude from which it was viewed, which required 
appropriate recognition of both class and an active task directly based on context.

The Phase 1b demonstration utilized an embodied learning agent with the ability to execute 
different actions in response to recognized objects based on contextual signals. This demo 
continues from that of Phase 1a, using a drone-based agent trained on ground and aerial views 
vehicles locating vehicles it needs to count. The agent in this demo additionally utilizes a 
distance sensor to discover objects within its flight path, which prompt it to learn to avoid such 
objects at operating altitudes and ignore them at higher altitudes. Finally, the agent uses its new 
knowledge to autonomously maneuver in the environment while continuing its counting task.

3.4.3 Phase 2 Learning Scenarios

During Phase 2, we ran a series of Learning Scenarios defined during the program to evaluate the 
capabilities of UML and the L2M Architecture based around it. Learning scenarios consisted of 
having a learning agent attempt to learn on multiple tasks and variants in sequence, which tested 
its ability to acquire new skills without adversely affecting prior ones. Tasks were defined as 
asset recognition/management tasks using discrete object categories, as described in Section 3.1; 
task variants were defined as different versions of a given task, such as from different altitudes or 
using different times-of-day. Tasks, variants, and object categories are defined in Section 3.6.7. 

Learning scenarios were run at discrete months into the Phase 2 period of performance (denoted 
M#) following Table 4. Scenarios were progressive in difficulty and were routinely repeated to 
evaluate development progress. A given scenario 
included a series of learning blocks where the Table 4. Learning Scenarios by 
agent learned to perform a single task variant Evaluation Period
during each block; these were followed by an 
evaluation block where the agent was tested on 
each task it would encounter during the scenario. 
Each scenario type used a different number of 
tasks and variants to increase the complexity and 
difficulty of evaluations over time. The 
organization of tasks and variants encountered was 
determined by the scenario type as described in 
Table 5.

Program metrics were accumulated across several runs of each learning scenario for the learning 
agent. Each run included randomization in the order of tasks and task variants. Finalized metrics 
were calculated by the Johns Hopkins University Applied Physics Lab (APL), the independent 
test and evaluation partner for the program, using logs generated during each run.
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3.4.4 Out-of-Nominal Recovery Experiments 

Separately from the learning in the embodied agent, we carried out two additional experiments 
during the program focusing on adaptations under noisy conditions. These experiments explored 
how uncertainty caused by deviations from expected operating conditions could be used to 
recover performance in a trained system. The first experiment explored uncertainty as a means of 
retraining a deep neural network to handle noisy inputs on a character recognition task. The 
second experiment expanded the applications of the UML algorithm into reinforcement learning 
(RL) by detecting errant model states caused by corrupted frames in an ATARI game and 
adjusting the behavior of the RL agent to minimize performance loss. 

3.5 Assumptions 
To develop a learning agent with self-supervised learning capabilities, our application included 
an object tracker enabled through the testing environment (see Section 3.6.1). This tracker 
provided unique identifiers for each object within the field of view, which were used to monitor 
detections of a given object over time, to provide ground truth labels as needed, and to filter 
objects not directly related to any evaluated tasks. Transitions with this architecture would 
benefit from a separate object tracker (implemented within C1) to enable similar functionality in 
a functional agent. 

Additionally, for our chosen application it was assumed that task descriptions, including relevant 
assets types and contexts, were defined by a human operator and provided to the agent during 
initial learning. The agent is capable of improving task performance and learning new classes in 
a self-supervised manner, but it relies on such definitions to identify the boundaries of a given 
task within which it can then improve autonomously. 

3.6 Procedures 

3.6.1 Data and Feature Extraction 

Data for each experiment, demonstration, and learning scenario was collected using AirSim [32], 
a software package capable of generating simulated imagery for autonomous vehicle and drone 
platforms. Data consisted of sequences of RGB imagery captured during varied movements and 
flight patterns within a custom urban environment with accompanying segmentation information, 
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Table 5. Scenario Types 
Scenario Type Tasks Variants Ordering

Permuted (simplified) 3 1 variant, equivalent across tasks 1 learning block for each task, order randomized

Alternating (simplified) 2 1 variant, equivalent across tasks 3 learning blocks for each task, order alternating

Permuted 4 1 variant for each task 1 learning block for each task variant, order randomized

Alternating 2 1 variant for each task 3 learning blocks for each task variant, order alternating

Condensed 3 2 variants for each task 1 learning block for each task variant, order randomized

Dispersed 3 2 variants for each task 3 learning blocks for each task variant with total number 
of samples equivalent to condensed, order randomized



operating altitudes, and in specific cases distance information to objects within view. Each task-
relevant object was assigned a unique segmentation id, which was subsequently used to track 
objects over multiple views and assign ground truth values as needed. 

Following data collection, RGB imagery was run through a feature extractor (YOLO v3 [30] or 
YOLO v4 [33]) to produce features and bounding boxes of relevant objects and imagery. The 
feature extractor was pre-trained on the COCO dataset [34], and features were collected from a 
convolutional layer towards the end of the network. Bounding boxes provided an attentional 
mechanism for the system and were used to localize objects within view. Vectors of features 
representing individual objects were formed by spatially averaging all pixels within each 
bounding box. 

3.6.2 Asset Management Tasks 

Learning tasks in this program consisted of asset recognition tasks wherein a learning agent was 
required to recognize target assets within an environment and report the appropriate class and 
later relevance to the active task. Asset recognition tasks were designed to mirror potential 
applications wherein a given agency, such as the department of transportation, would task the 
learner with locating and identifying resources relevant to that department. Lifelong learning 
would be necessary for such an agent both during operation to improve its performance over 
time and in the case where another agency acquired the agent and assigned it to their own 
resources. 

Tasks utilized assets from the following four major categories: personal vehicles, emergency 
management agency vehicles (EMA), department of transportation resources (DOT), and urban 
clutter. Table 6 gives assets included in each category. Asset categories were used to define the 
general bounds for training and 
testing. Phase 1 utilized resources Table 6. Asset Categories 
from all four categories in Asset Category Assets
different combinations as Sedans (including sedans, taxis), vans 
described in respective Personal Vehicles (including mail, delivery, and police vans

 
) experiments; Phase 2 utilized Benches, crosswalk signs, fire hydrants, 

resources from the EMA and Urban Clutter trash cans, and patio umbrellas 
DOT assets, specifically. Emergency Management
Additionally, certain evaluations Agency (EMA)

 Fire trucks, ambulances, police cars 
split a given asset category into Department of
multiple tasks based on agent Transportation (D

 
OT) Traffic lights, stop signs 

altitude, requiring analysis of 
context as well as asset 
appearance.  

3.6.3 Phase 1a Proof of Concept Experiments 

(Detailed descriptions of POC 1-3 is available in the related publication [19].) 

The first proof of concept (POC) experiment in Phase 1a utilized principles of uncertainty to 
drive continual learning to recover skill performance under a new context without affecting 
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performance on the prior context. First, imagery of personal vehicles and urban clutter was 
collected at ground level (0-2 m) within a custom simulated environment. Assets within the 
imagery were organized into the following three sets:

Set A: sedans, including all sedan objects from the personal vehicle asset category as well 
as police cars

Set B: vans, including all van objects from the personal vehicle asset category

Set O: other, including all urban clutter category objects (except for umbrellas) as well as 
traffic lights and stop signs

Example imagery from Sets A and B as well as the simulated environment are shown in Figure 
18: (a) shows an overhead view of the custom AirSim environment used during Phase 1a 
development and testing; (b,d) and (c,e) show paired ground and aerial images used in data 
collection. The graphic is taken from a related publication [19].

Following object localization and feature extraction (YOLO v3), this ground-based imagery was 
then randomized and used to train a UML network. All samples within a given set were assigned 
the same learning label, producing a network with three total classes. This formed the baseline 
ground-based network.

Next, imagery of the assets from Set A was captured from the air (5-35 m). As before, object 
instances and features were identified using the same feature extractor. Object instances were 
randomized and split to form training and testing sets, respectively. 

Finally, the ground-based network was trained sequentially on samples from the aerial Set A 
training set to learn to recognize them from a substantially different context and view. Following 
principles of uncertainty, the network only learned on samples it identified with high uncertainty, 
such as having a poor fit with existing network expectations or following an incorrect 
classification. The network was configured such that one of the three classes was returned for 
each sample, as opposed to returning an “unknown” designation. Accuracy on the ground-based 
Set A and B imagery and the aerial Set A testing set were calculated at regular intervals during 
training to monitor learning performance on both tasks over time.
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Figure 18. AirSim Environment and Imagery



The second POC experiment in Phase 1a built upon POC 1 to show recovery of performance on 
additional resources without catastrophically forgetting prior ones. This experiment built on the 
network formed in POC 1, which could classify objects from Set A and B from the ground and 
Set A from the air. Similarly to POC 1, imagery of assets from Set B were captured from the air 
(5-35m), and object instances and features were collected using the feature extractor. 
Subsequently, training and testing sets were formed from the imagery through sample 
randomization. The training set was then used to progressively train the network from POC 1 on 
Set B assets from the air using principles of uncertainty. Accuracy on the ground-based Set A 
and B imagery, aerial Set A testing set, and aerial Set B testing set were calculated at regular 
intervals during training to monitor learning performance on each task over time. 

The third POC experiment in Phase 1a continued from POC 2 to demonstrate few-shot learning 
on entirely new information using the additional image set using new objects defined as: Set C: 
fire trucks. Imagery for Set C was collected from the air (5-35 m), and extracted instances and 
features were randomized and split to form training and testing sets. The trained model from 
POC 2 was subsequently trained on the Set C training imagery without any learning labels, 
allowing the network to form new classes as needed to accommodate the new information. 
Afterwards, any new classes formed were assigned the same class label, and this updated 
network was used to calculate accuracy on the Set C test set and all prior test sets to show the 
acquisition of a new class without impacting performance on prior classes. 

3.6.4 Phase 1a Demo 

(A detailed description of this demonstration is available in the related publication [19].) 

The first program demonstration showcased an embodied learning agent capable of using self-
supervised learning to recover skills under a new context and acquire new skills while learning 
on-the-job within an open environment. This demonstration built on principles examined during 
POC 1-3 and illustrated their use on a potential application for the algorithms developed during 
this program. 

The mode of self-supervised learning used during this demo was developed using two additional, 
smaller experiments. In the first, it was found that training on multiple altitudes boosted 
performance for a given altitude, providing transfer during learning across altitudes [19]. In the 
second experiment, it was observed that using continuous, related imagery reduced network 
memory requirements without affecting learning performance. These smaller experiments 
provided confidence in the mode of learning employed below. 

During the demo, a drone agent pre-loaded with the baseline ground-based UML network from 
POC 1 was flown through three intersections. At each intersection, objects and features were 
collected using the feature extractor, and features for vehicular objects were passed to the UML 
network for classification and potentially learning. In all cases, objects were classified prior to 
learning on any given sample, and detection/classification labels were assigned to each object 
following evaluation of uncertainties in their temporal characteristics. 

At intersection 1, the agent first viewed sedans from the air at 30 m, where it has not been 
trained. Following principles of self-supervised learning as illustrated in Figure 17, the agent 
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flew to a lower altitude, where it could better identify objects with lower uncertainty and acquire 
ground truth labels for them. The agent subsequently flew back upwards to its operating altitude 
then in a semicircle around the sedans to learn to recognize them from this new view and 
context, using object tracking and principles of uncertainty to learn on each object using its 
acquired labels as needed. 

At intersection 2, the agent encountered both sedans and vans from the air. Similarly to 
intersection 1, the agent flew to a lower altitude to acquire self-supervised learning labels for 
each object. Then, it flew back up to its operating altitude of 30m, learning to identify vans from 
the air. The agent was then flown back to intersection 1 to demonstrate its performance on prior 
information. 

Finally, at intersection 3, the agent encountered fire trucks, which represented a class the agent 
had never before encountered. Here, the agent’s uncertainty thresholds were modulated to 
promote identification of novel information and subsequent self-supervised learning of novel 
classes. After being allowed to develop new classes based on individual objects in view, new 
classes were assigned the same unique label, achieving one/few-shot learning for the new object 
type.  

3.6.5 Phase 1b Proof of Concept Experiment 

The Phase 1b proof of concept experiment, POC 4, focused on the application of context signals 
to modulate agent behavior on recognition of a task-relevant asset. A task was set up where the 
appropriate reaction to a given asset was based on both the identity of the asset and the context in 
which it was recognized, thus requiring multiple layers of processing and providing modulation 
to the actions taken by a given embodied agent. 

For this experiment, data was collected that mimicked operation of a drone learning agent flying 
down a street attempting to count vehicles while changing altitudes to avoid traffic lights. Views 
of traffic lights from high altitudes (5-30 m) were to trigger AVOID actions to avoid collision, 
while views from low altitudes (0-2 m) were to trigger IGNORE actions. For vehicles, views 
from high altitude were to trigger COUNT actions to perform the given task, while views from 
low altitude were to trigger AVOID actions to avoid collision. Vehicles included objects from 
Sets A, B, and C from POC 1-3, and samples were presented without any distinct order. Figure 
19 shows examples of the training and testing data for POC 4. 
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To learn this task, a hierarchical UML network with two layers representing object class and 
agent action was constructed. Inputs to the first layer consisted of object features, and inputs to 
the second layer included the object features as filtered by the first layer. Additionally, drone 
altitude was included as a feature for the second layer to provide context to learning. During 
training, the network identified when and what to learn on provided samples following 
evaluation of uncertainties, and labels were provided as needed.

Training and testing of the network took place in three stages. Firstly, the lower layer of the 
hierarchy was first trained using all available samples to be able to accurately classify objects 
from multiple altitudes. Secondly, the upper layer was trained on a sparse subset of the training 
data, providing it with the means of returning any of the three actions (AVOID, IGNORE, and 
COUNT) during inference. Finally, the upper layer was trained sequentially on the remainder of 
the training data. Following the second and third stages, network performance was measured 
against the whole dataset as a “test” set, showing performance before and after sequential 
training. During the third stage, performance of the upper layer was monitored before learning on 
every sample, allowing evaluation of the network as it learned. Additionally, during the third 
stage, the layer was configured such that it could also return an “unknown” designation if the 
sample was too high uncertainty, representing an identification of samples outside the 
distribution of previous samples.

3.6.6 Phase 1b Demo

The demonstration for Phase 1b incorporated principles from POC 4 into the trained agent from 
Phase 1a, adding self-supervised flight capabilities enabled through recognition of appropriate 
actions given recognized assets and current context. Additionally, this demo included elements 
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Figure 19. Sample Training Data for Phase 1b Proof of Concept



of discovery, allowing the agent to use a second type of contextual signal to provide a means of 
discovering and learning on novel object classes requiring new flight patterns. 

Here, the embodied learning agent as described for the Phase 1a demo was upgraded in two 
ways. Firstly, its learning network was updated to use hierarchical UML as described for POC 4; 
this enabled it to learn appropriate actions for recognized assets using altitude as a contextual 
signal. Additionally, the agent was given a proximity alarm utilizing AirSim depth imagery; this 
alarm allowed the agent to discover new objects it previously had not been trained to recognize, 
and it would initiate new actions when those objects were subsequently detected using more 
standard imagery. 

The demo started by having the agent run through the intersections of the Phase 1a demo with its 
new configuration, learning to perform a COUNT action for all vehicular assets from Sets A, B, 
and C from the air. Subsequently, the agent’s proximity alarm was triggered by a patio umbrella 
directly in its path, which it did not recognize through RGB imagery due to its lack of similarity 
with other learned objects. Once the alarm was triggered, the learning agent initiated a pre-
programmed flight pattern to learn to recognize the object from multiple altitudes, to AVOID the 
object at operational altitudes, and to IGNORE the object at great altitudes. The agent used self-
supervised methods to learn the new object, assigning it an internally consistent label unrelated 
to prior resources and using uncertainty in object views to determine when learning was 
necessary. Use of this method of learning was supported through two small experiments, which 
showed that uncertainty could be used to identify appropriate views for learning of objects, and 
that uncertainty in views could drop over time, providing a means of self-guided learning. 

After learning to recognize and apply appropriate flight patterns when viewing an umbrella, the 
drone then encountered a traffic light in its path. This again triggered the proximity alarm, 
initiating self-supervised learning on the object in the same fashion and creating another 
internally consistent label for it. The agent then encountered both traffic lights and umbrellas 
again in turn, where it would recognize them from its RGB imagery and autonomously maneuver 
to AVOID them. Finally, the agent encountered vehicular assets again to show a lack of 
catastrophic forgetting after discovering the two new classes and learning on them in a few-shot 
manner. 

3.6.7 Phase 2 Learning Scenarios 

In Phase 2, the learning system code was reconfigured to operate within the L2M architecture 
described in Section 3.1, and learning scenarios were utilized to evaluate the whole system’s 
learning abilities. Scenarios at each evaluation period increased in difficulty over time according 
to Table 4 and using numbers of tasks and task variants outlined in Table 5. 
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Our learning scenarios utilized a flying drone agent learning to perform a series of asset 
recognition/management tasks. In each portion or “block” of the scenario, the agent would 
encounter assets for single task as defined in Table 7 and potentially learn on streaming samples 
in a self-supervised manner. To expedite the execution of a given scenario, the agent was 
assumed to have already acquired a self-supervised label for each object by flying to a low-
uncertainty view prior to the block. As in the Phase 1 demos, objects were classified prior to 
learning on any given sample, and labels were reported for each detection following evaluation 
of uncertainties in their temporal characteristics. Scenarios increased in difficulty in later 
evaluation periods, encountering task-specific assets under multiple times of day (see Table 7). 

Learning scenarios consisted of repeating units of evaluation blocks and learning blocks. During 
a learning block, the agent would be allowed to learn as determined necessary through 
uncertainty analyses on a single task variant as outlined in Table 7; task performance was 
calculated using labels inferred for each task-relevant detected object and logged using APL’s 
l2logger software. During an evaluation block, the agent would perform on imagery 
corresponding to each of the run’s task variants in sequence, obtaining a task score for each. The 
agent was allowed to adapt to changing circumstances in evaluation blocks, but not to make any 
changes to long-term weights. Each learning block was preceded and followed by an evaluation 
block to monitor how continual learning on a task variant affected performance on all task 
variants, and the total number of learning blocks was determined by the scenario setup and 
number of task variants used. Additionally, for condensed and dispersed scenarios an offline 
learning block was often inserted at the end of each learning block. During these blocks, the 
agent used model self-evaluations or samples from prior learning blocks to optimize its internal 
representations, functionally executing a “sleep” cycle.  
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Table 7. Scenario Tasks and Task Variants 

Evaluation
Periods Scenario Types Tasks Variants

Month 9 Permuted (simplified)
Alternating (simplified)

EMA Low (10 m) Noon

EMA Med (20 m) Noon

EMA High (30 m) Noon

Month 12 Permuted
Alternating

EMA Low (10 m) Dusk

EMA High (30 m) Morning

DOT Low (2 m) Noon

DOT High (5 m) Afternoon

Month 15
Month 18

Condensed
Dispersed

EMA Low (10 m) Morning
Dusk

EMA High (30 m) Morning
Dusk

DOT  (2 m) Morning
Dusk
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Using logs generated by individual runs of each scenario, program metrics were generated both 
by sending APL training logs and by running APL’s l2metrics software internally. Additionally, 
training logs were generated for a single-task expert (STE) for each task variant used in a 
scenario; here, an STE was defined as a learning agent described above which encounters only 
samples from a single task variant. STE logs were used to enable calculation of two program 
metrics, as noted in Section 3.3.3. 

To continue development on lifelong learning algorithms, updates were made to the learning 
system continuously between Phase 2 evaluation periods. Teledyne Scientific lead development 
efforts and both designed and implemented in the L2M architecture, C1, C2, C4, C5, and the 
interface layer (see Figure 14 for component definitions). Missouri S&T developed algorithms in 
C3, and UCI and UCSD developed algorithms in C6. Updates incorporated into the learning 
system for each evaluation period are noted in Table 8; updates included changes in model 
pretraining, adding components and connections, updating components, and updating application 
metrics as needed. 

Table 8. System Updates for Evaluation Periods 
Evaluation Period System Updates

Month 9

L2M Architecture – Implemented.
C1 – Enabled with with Yolo V3.
C2 – Enabled with communications with other components.
C4 – Enabled with UML. Pretrained on ground imagery.

Month 12

Interface – Implemented. 
C4 – Hierarchy added with task relevance. Pretraining 
removed.
C5 – Initial version implemented but not enabled.

Month 15

Metrics updated to use precision.
C3 – Enabled, but context output not fed to other 
components.
C4 – Learning rules and uncertainty calculations updated.
C5 – Enabled with optimization rules updated.

Month 18

C1 – Updated to Yolo V4.
C3 – Context fed to to C4 hierarchy.
C4 – Hierarchy updated to apply top-down modulation of 
recognition results. Learning rules and uncertainty 
calculations updated.
C5 – Optimization rules updated.



3.6.8 Noisy Conditions Experiments 

The noise filtration experiments examined how uncertainty analyses could impact recovery in 
trained systems encountering noisy inputs or circumstances. The first experiment examined how 
a deep neural network classifier could be retrained to recover performance on a character 
recognition task with noisy inputs. The second experiment applied UML alongside a 
reinforcement learning (RL) agent playing an ATARI game and modulated its actions during 
corrupted frames to recover performance. 

For the character recognition task, a small convolutional network was initially trained to classify 
clean, well-defined handwritten characters from the MNIST dataset [35]. Following this, the 
network was evaluated on the noisy-MNIST dataset [36], which includes low-contrast versions 
of the characters with noise added. Classification accuracy was recorded to show how 
performance changed in the presence of such noise. Reflecting potential operations in a system 
capable of recognizing the change in operations state represented by the noise, the network was 
subsequently trained on test data from the noisy MNIST dataset, but with a substantially reduced 
learning rate, promoting minor tuning of parameters. Following this, performance on both the 
MNIST and noisy-MNIST test sets was tested to examine how this modulation to training 
affected both variations.  

For the ATARI task, an RL agent was trained to play Pong using original frames that were 
visually ideal and uncorrupted by noise or perturbation. Concurrently, a variational auto-encoder 
was trained to predict the next frame of the game using the current frame and the chosen action 
from the RL agent; the portion of this network following encoding then represented a high-
dimensional feature representation of a prediction for the next frame. A UML network was then 
trained in an unsupervised manner on activations of this encoded region using uncorrupted 
imagery and RL agent actions. After training on the ideal data, the UML network was set to 
inference mode to identify novel, high-uncertainty predicted states and produce a modulatory 
signal back to the RL agent. 

Following training, the RL agent was tasked with playing Pong but with some percentage of 
frames randomly corrupted prior to input to the agent. Methods of corruption included adding a 
level of noise (10% or 30%) or perturbing the image vertically or horizontally, shifting portions 
of the image to new locations. Gameplay performance of the RL agent in the presence of such 
corruption was recorded. Subsequently, the UML network was connected to the RL agent such 
that it could modulate the action chosen by the agent for a given frame prior to its impact on the 
environment. The UML network was run in parallel with the RL agent, evaluating each predicted 
state during gameplay; when UML identified a high uncertainty state, one that did not fall within 
the known state-action distributions, it would change the action taken by the RL agent to NO-OP 
and preventing any action from being taken that frame. In this way, the UML network modulated 
the RL agent’s actions in the environment under high uncertainty conditions. Gameplay 
performance of the RL agent was again evaluated on corrupted games but with UML modulation 
engaged. 
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3.6.9 Hardware 

All training and testing were performed using high-performance desktop units running Ubuntu 
16.04 or 18.04 with NVIDIA GPUs and related software. Operations involving a feature 
extractor/C1 were run on a single GPU, while operations involving UML were run on 
multithreaded CPUs. Phase 1 proof of concept experiments and Phase 2 learning scenarios 
utilized stored imagery to improve reproducibility during software development, while the Phase 
1a and 1b demonstrations operated in real-time with continuous data collection and streaming. 
Individual runs of Phase 2 learning scenarios were completed using Docker images run on a 
Slurm cluster to enable parallel execution. All software and associated documentation were 
packaged and delivered as part of our end-of-phase submissions. 



4.0 RESULTS AND DISCUSSION

The experiments in Phase 1 were focused on refining the core UML algorithm to exhibit 
characteristics of lifelong learning. These capabilities would be demonstrated in a set of 
demonstrations at the midpoint (Phase 1a demo) and the end of the phase (Phase 1b demo). For 
detailed descriptions of each of the experiments conducted, please refer to Section 3.5.

4.1 Proof of Concept Experiments
To ensure that we had confidence in our algorithm improvements to support lifelong learning 
capabilities, we set up three proof-of-concept (POC) experiments that would sequentially build 
capability towards the Phase 1a demonstration. Each POC focused on a simple version of a 
component of the Phase 1a demo. POCs 1-2 both used two sets of vehicle targets, sets A and B. 
Each set has both ground and aerial viewpoint images that are used for training and testing. POC 
3 included aerial images of a third vehicle target type, set C. 

4.1.1 POC 1

This experiment focused on transferring knowledge from a known task to a new task. Set A and 
B vehicles were initially classified with high accuracy from the ground, and low accuracy from 
the air. The system was allowed to incrementally learn on aerial views of Set A. The results 
showed that it could learn the 
new task of aerial 
classification of Set A without 
forgetting the previously 
known task of classifying set 
A and B from ground level. 
Figure 20 shows a graph of the 
results of this experiment as 
the learning is occurring. 
When allowed to learn on 
more than 3 targets, the system 
recovers to within 3% of the 
ground level accuracy. These 
results in POC 1 show that the 
algorithm can acquire new 
viewpoints of known objects 
without catastrophic Figure 20. Proof of Concept 1 Results
forgetting.

4.1.2 POC 2

This experiment focused on extending the capability demonstrated in POC 1 to a second aerial 
set, displaying the capability to learn new viewpoints of multiple types of known targets. This 
POC was functionally a continuation of the behaviors in POC 1, and this is shown in the timeline 
graph in Figure 21, where the first half of the figure is same as POC 1, but the second half of the 
graph shows the acquisition of new viewpoints of Set B. 
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Figure 21 shows a repeat of the learning of Set A aerial views (orange line), and includes a new 
line (gray), which is the performance of Set B aerial views. The performance curve shows that 
the system can learn aerial viewpoints of the Set B objects without forgetting either the ground 
level views or the previously learned Set A aerial views. These results gave us confidence that 
UML could learn multiple new tasks without catastrophic forgetting.  

4.1.3 POC 3

This experiment again follows on after the previous two POC experiments and tests self-
supervised acquisition of previously unknown targets, vehicle Set C in this experiment. A new 
target is presented to the system and triggers an attentional mechanism. In this experiment, the 
target is an unknown vehicle, which triggers the attentional mechanism due to its similarity to 
other known vehicles.  

The self-supervision mechanism in UML identifies that the object is relevant and begins to learn 
its appearance for future classification tasks. Table 9 shows the results from POC 3 and confirms 
that the self-supervised acquisition of new tasks does not interfere with the previously learned 
tasks, either the initial knowledge, or tasks learned through continual learning. The results from 
these three proofs of concept gave confidence that the UML algorithm could achieve the full 
scope of lifelong learning tasks displayed in the Phase 1a demo. 

Table 9. Results Showing System Performance Through POC 1-2 and into POC 3. 
Ground – A&B Aerial – Set A Aerial – Set B Aerial – New Set C

1. Initial Performance 99.9 88.9 97.5 0%

2. After Few-shot Learning Aerial C 99.9 88.9 97.5 42%

Figure 21. Proof of Concept 2 Results



4.2 Phase 1a Demo 
This demonstration tied together all the different capabilities demonstrated in the POC 
experiments in a single continuous “lifetime”, where our embodied drone agent, equipped with 
UML, would interact with the environment, and achieve all the previously demonstrated 
capabilities, but continuously and in real-time.  

There were three major results from the Phase 1a demo that mirror the results shown in POCs 1-
3. First, new variants of a previously known task were learned without catastrophic forgetting 
(POC 1). Second, new variants of a second previously known task are learned without 
catastrophic forgetting, and backward transfer is observed where previous tasks improve from 
learning on new tasks. Third, self-supervised acquisition of new tasks was shown to effectively 
acquire new classes without interfering with old tasks.

The results from this demonstration are shown in a narrative set of images, containing a view of 
the environment that the embodied drone agent exists within, an inset view of the classification 
performance of the agent and some text overlay to indicate what is occurring in each frame.  

It is important to note the system architecture to correctly interpret these images. The UML 
algorithm is fed objects through a pretrained object detection algorithm, YOLO v3. This 
algorithm provides the attentional mechanism that drives UML to classify and learn in a self-
supervised manner. However, the detection rate of YOLO v3 is not 100%, and occasionally 
objects are not detected. UML is only able to operate on detected objects, so a failure in YOLO 
detection will cause a failure to classify the object in UML.  

In the inset classification images for each of the demo stages, some target objects do not have 
boxes drawn around them. This indicates a failure in the detection stage, and as UML operates 
afterwards, this causes a lack of classification for that object. For the purposes of evaluating the 
lifelong learning characteristics of UML, we do not consider YOLO v3 false negatives in the 
accuracy evaluation of UML 

4.2.1 Initial Performance of System 

At the beginning of the demonstration, the system exhibits high performance at ground level on 
sedans (marked in blue in the following figures), but poor performance on the same sedans from 
an aerial view. This can be seen in Figure 22, where the sedans are misclassified as vans (green 
in the following figures). This demonstrates the baseline performance of the system before any 
learning has occurred.  
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4.2.2 Learning of Aerial Views of Sedans

After establishing the baseline performance, the objects are re-acquired from a ground view to 
establish a self-supervised 
ground truth, and then the 
drone flies to the desired 
altitude and position to 
acquire the required new 
skill. The objects are 
tracked frame to frame to 
associate the new views 
with the known object 
labels, which drives 
continual learning of the 
tracked objects as the drone 
moves. Figure 23 shows the 
results of this learning, 
where the previously 
misclassified sedans are 
now correctly identified 
from a new altitude
(indicated by the blue boxes 
on all the targets).

4.2.3 Learning of Aerial Views of Vans

The drone travels to a new location where vans and sedans are intermixed. The initial 
performance on the intersection is poor, with some confusion of vans as sedans. Learning occurs 
in the same manner as before, where the drone acquires the self-supervised ground truth by 
flying to a location where the objects are expected to be classified correctly, i.e., ground level. 
The objects are tracked, and the drone moves while engaging continual learning to classify the 
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Figure 22. From Demo 1a: Initial Classification Performance of the Drone at Ground and Aerial 
Viewpoints

Figure 23. From Demo 1a (Continued): Continual Learning 
on Sedans Results in Recovered Ground Viewpoint without 

Catastrophic Forgetting
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objects correctly. Figure 24 shows a “before and after” set of images, where the vans are 
incorrectly classified before continual learning (left) and correctly classified at the new altitude 
after continual learning (right). Performance on previously learned sedans is maintained.

4.2.4 Retention of Performance on First Task

After learning the aerial views of the vans, the drone navigates back to the initial location 
containing only sedans and verifies that there is no catastrophic interference on the sedan 

Figure 24. From Demo 1a (Continued): Performance on a Second Class of Objects Before 
Continual Learning (Left) and After Continual Learning (Right)

Figure 25. From Demo 1a (Continued): First Set of Sedans Still Classified Correctly After 
Learning of New Objects



classification knowledge by learning the van classification task. This is shown in Figure 25, 
where all the sedans are correctly classified from the aerial viewpoint.

4.2.5 Self-Supervised Acquisition of a New Class

Following the verification that no catastrophic forgetting has occurred in the continual learning 
process, the drone now moves to a 
new location where two unknown 
vehicles, fire trucks, are parked. 
These vehicles are not part of the 
knowledge base of YOLO or 
UML, and as such are not able to 
be classified correctly. The 
following figures in this section 
omit the environmental view 
containing the drone and the scene 
and will exclusively contain the 
classification output of the agent 
for clarity. 

The drone approaches the two fire 
trucks, and detections begin to 
appear on them. This is due to their 
similarity to other known objects in 
the YOLO knowledge base, but the 
classification of them is incorrect, 
as neither YOLO nor UML have a label for fire truck. This is shown in Figure 26. The yellow 
boxes indicate a detection has been generated, but the classification ID is unknown.  

These detections in Figure 26 trigger a self-supervised response, where UML engages in an 
unsupervised learning mode to learn the views of the objects. One consequence of this process is 
that the two fire trucks are learned as distinct unsupervised objects. The tracking ability ensures 
that views of the same object are given the same label, but there is no evidence so far to indicate 
that these objects should share a supervised label. This process is illustrated in Figure 27, where 
differently colored boxes are drawn around the two fire trucks, indicating they have unique self-
generated labels. However, these labels are now fixed and future observations of these unique 
objects will result in a correct classification.
Once the two objects have been learned, the drone simulates a process by which a human operator 
can review the self-supervised objects that have been learned and associate and group them with 
human-meaningful labels. In our demonstration, a pop-up window appears on the user interface 
asking if the user wants to associate the two objects learned through self-supervision together, with 
a label of “fire truck”. Once the user selects “Yes”, the objects are assigned the label and both 
mapped onto the same class. The result of this process is shown in Figure 28, with both objects 
sharing a red bounding box, indicating they are fire trucks.
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Figure 26. From Demo 1a (Continued): Classification 
Output When Exposed to “Interesting” but Unknown 

Objects
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The Phase 1a demo shows that 
UML exhibits continual 
learning without catastrophic 
forgetting and that it can use 
self-supervision to drive the 
acquisition of new tasks. 
Numerical results associated 
with these capabilities will be 
explored in the Phase 2 results 
discussions. 

4.3 Phase 1b Proof of 
Concept Experiment

Phase 1b focused on exploring 
new mechanisms and 
capabilities that could be 
supported through the self-
supervised properties of UML. 
A POC experiment (POC 4) was 
designed to show capability in 
this area that would lead to a 
demonstration in a real-time 
simulation environment. 

UML was arranged in a 
hierarchical structure with the 
first level classifying target ID 
(van, sedan, fire truck, etc.) and 
the second level assigning a drone 
behavior to that target (COUNT, 
AVOID, IGNORE). The second 
layer is given access to the 
environmental context to help 
inform the behavior of the object 
within its context. In POC 4, the 
contextual signal was the altitude 
of the drone. Objects should 
trigger different behaviors in 
different contexts, i.e., a ground 
view of a sedan should trigger an 
AVOID behavior, while an aerial view of a sedan should trigger a COUNT behavior. 
Conversely, an aerial view of a traffic light should trigger an AVOID behavior, while a ground 
view of a traffic light should trigger an IGNORE behavior. 

Figure 27: From Demo 1a (Continued): Self-Supervised 
Learning Process Where Each Unique Object Has a 

Different Label

Figure 28. Demo 1a (Continued): Objects Collapsed 
into Single Class After a Human Operator Provides a 

Label to Both



The results of POC 4 show that a hierarchical UML can achieve multiple functions: 1) It can learn 
multiple hierarchical tasks, 2) It can effectively leverage context to trigger classification changes, 
3) It can leverage self-supervision to monitor its own performance and trigger continual learning
to recover performance.

Table 10 shows the results from POC 4, which address the three functions stated in the previous 
paragraph. 1) Continual hierarchical task learning is supported with high accuracy, as shown in 
the Accuracy after Learning column. The high accuracy of the predicted behavior and class shows 
that the system can accurately perform both tasks simultaneously. 2) The context is leveraged in 
the second layer of the hierarchy and contributes to the high accuracy of the system. 3) The two 
confusion matrices show the performance of the system as it is continually learning the task. In 
this paradigm, a small, sparse pre-training dataset is provided to seed the algorithm, and then the 
full dataset is continually learned. The evaluation for each observation takes place prior to the 
continual learning step, so any improvement on the whole dataset is because of previous continual 
learning, not learning on the current test sample.  

The confusion matrix following initial sparse training shows the self-supervised introspection of 
the algorithm, as most targets are classified with an “Unknown” behavior. This unknown signal 
can be used to trigger further learning, or to indicate to downstream autonomy that the algorithm 
is unsure and should not be given much weight. However, as the self-supervised continual learning 
process is run, the dataset becomes much better understood and most of the unknown 
classifications transition into correct classifications.  

One important point on the self-supervised learning that is seen in Table 10 is the relative lack of 
incorrect classifications. In each column of the confusion matrix, the unknown classification is 
higher than the sum of all the incorrect classifications. This shows that even after large-scale 
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Table 10. POC 4 Results 
Learning 

Stage 
Incremental 

Accuracy 
Accuracy 

after Learning 
Confusion Matrix 

Initial 
Training on 

Sparse 
Training 

Data 

1.45% 1.45% 

Count Avoid Ignore 
Unknown 98% 100% 100% 
Count 1.99% 0% 0% 
Avoid 0.01% 0% 0%
Ignore 0% 0% 0% 

With 
Continual 
Learning 

82.7% 99.1% 

Count Avoid Ignore
Unknown 16.3% 12% 22.5% 
Count 83.67% 0% 0.55% 
Avoid 0.03% 78% 16% 
Ignore 0% 10% 61%
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learning, the self-supervised introspection can identify knowledge gaps and communicate that in 
many of the incorrect cases.  

4.4 Phase 1b Demo 
The Phase 1b demonstration was conducted in a similar fashion to the Phase 1a demo, where a 
live, real-time agent engaged in the desired activities in a simulated environment. A narrative set 
of figures below shows the agent behavior through the stages of the demonstration. The goals of 
the Phase 1b demonstration were to 1) display the hierarchical capabilities of UML, 2) show self-
supervised acquisition of new behaviors leveraging the UML hierarchy, 3) show those behaviors 
engaging in a testing location, and 4) show that the hierarchy does not interfere with the 
previously learned behaviors shown in Phase 1a.  

Functionally, this demo was designed to occur directly following the Phase 1a demo, and the 
knowledge gained in that lifetime was provided to the agent on startup. The drone has been 
equipped with a proximity sensor. If any object gets within 5 meters of the drone, a 
predetermined safety behavior is triggered. This self-preservation “instinct” is captured and uses 
as a supervisory signal for UML, creating the capability in the agent to self-supervise the 
acquisition and avoidance of obstacles.  
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4.4.1 Encountering an Obstacle

The agent approaches an obstacle, a street umbrella, and it breaches the self-preservation 
proximity threshold. This is shown in the top panel of Figure 29. The object is localized and 
learning begins. The object is assigned a self-supervised label (L1) and the behavior AVOID. 
The drone begins a learning maneuver, first at low altitudes, 1-5 meters (shown in Figure 29, 
lower left), then at high altitude, 15-20 meters (shown in Figure 29, lower right). The low 
altitude learning keeps the assigned AVOID behavior, but at high altitude, the assigned behavior 
is changed to IGNORE, as it is no longer a threat to the drone’s navigation.

Figure 29. Self-Supervised Acquisition of Target-Relevant Behaviors
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4.4.2 Encountering a Second Obstacle

The drone then continues its original path, until it encounters another obstacle, this time a traffic 
light. The same learning behavior is triggered by the proximity instinct, and the traffic light is 
learned in both low and high contexts. This encounter and learning are shown in Figure 30. The 
altitude context learned is different from the umbrella, as the traffic light is higher off the ground. 
4-9 meters are learned as the context for the AVOID behavior and 20-25 meters are learned as
the context for
IGNORE.

After the learning of 
both of these 
obstacles, the drone 
continues to the 
testing area where 
the pre-emptive 
avoidance behavior 
will be tested.

Figure 30. Self-Supervised Acquisition of Target-Relevant Behaviors 
(Continued): Learning a New Target Does Not Interfere with the 

Previously Learned Obstacle
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4.4.3 Testing Avoidance of Traffic Lights

The drone encounters 
another traffic light in 
the navigational path. 
The drone can detect 
and plan for the obstacle 
much further away than 
previously possible with 
only the self-supervised 
proximity instinct. The 
drone identifies the 
traffic lights as objects 
to be avoided, as can be 
seen in Figure 31. The 
AVOID behavior 
triggers an increase in 
altitude in the drone 
until the obstacle has 
been cleared, then the 
drone returns to the 
previously planned flightpath.

4.4.4 Testing Avoidance of Street Umbrellas

After the traffic lights 
have been 
successfully avoided, 
the drone encounters 
a series of street 
umbrellas, and 
identifies the close 
ones as objects to be 
avoided, shown in 
Figure 32. The far-
field umbrellas are 
outside of the context 
under which the 
AVOID behavior was 
learned because they 
are much further 
away than the 
training data, and as 
such are classified as 
objects to be ignored. The near-field umbrellas are correctly classified as AVOID objects, and 

Figure 31. Self-Supervised Acquisition of Target-Relevant Behaviors 
(Continued): AVOID Behavior Triggers an Increase in Altitude Until 

Obstacle can be Cleared.

Figure 32. Self-Supervised Acquisition of Target-Relevant Behaviors 
(Continued): Both the Viewpoint and Context of Object are Considered 

in Triggering the Avoidance Skill



the drone engages an increase in altitude in response to the umbrella, successfully avoiding a 
collision.

4.4.5 Retention of Previous Skills

In the final stage of the Phase 1b demonstration, the drone flies to a testing intersection 
containing sedans, vans, and fire trucks. The system can correctly identify all these objects and 
assign the COUNT behavior to them. Figure 33 shows this behavior. This shows that the drone is 
able to learn new objects and new behaviors associated with those objects without any 
catastrophic forgetting taking place over the old objects and behaviors.

4.5 Phase 2
In Phase 2, the program focus shifted from demonstration of capabilities to measurement of 
system performance. There were four evaluations that Teledyne participated in as the leader of a 
System Group (SG). The Teledyne lifelong learning architecture that comprised this system is 
fully described in Section 3.1.

The evaluations focused on generating statistically significant results in the five program metrics, 
Performance Maintenance (PM), Forward Transfer (FT), Backward Transfer (BT), Sample 
Efficiency (SE) and Single-Task-Expert (STE) Relative Performance (RP). As described in 
Section 3.3, these program metrics are secondary metrics, computed from a primary 
measurement of the system performance called the “application metric”. For the Teledyne SG, 
the application metric was classification accuracy in M9 and M12 evaluation periods, and 
classification precision in M15 and M18 periods. The metric was switched to better capture the 
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Figure 33. Self-Supervised Acquisition of Target-Relevant Behaviors (Continued): Retention of 
Previously Learned Skills from Demo 1a
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performance of the system as is operated, due to saturation in the calculated accuracy metric that 
negatively impacted the sensibility of the program metrics. The results from M9 and M12 are 
thus not directly comparable to the results in the M15 and M18 evaluations, as the application 
metric changed. However, we computed some of the M12 results again using the new application 
metric to provide a bridge to the new results showing how we are still improving over time. 

4.5.1 Overview and Final Results 

In the Month 18 (M18) evaluation, the Teledyne SG presented results showing that their lifelong 
learner met or exceeded the lifelong learning threshold in all five program metrics and exceeded 
program targets in two of five metrics. The scores with standard deviations for each of the five 
metrics are shown below in Table 11, with light green indicating that a metric exceeds the 
lifelong learning threshold, and darker green indicating that a metric exceeds the DARPA 
program target. This color legend is used throughout the rest of the Phase 2 evaluation results. A 
“*” in the table indicates a statistical significance of p < .05 and “**” indicates statistical 
significance of p < .01. 

Table 11. Final Evaluation Results of Teledyne Lifelong Learner 
Performance 
Maintenance 

Forward 
Transfer 

Backward 
Transfer 

Relative 
Performance 

Sample 
Efficiency 

M18 Agent 0.56** ± 0.98 11.69 ± 0.47 1.00* ± 0.01 1.03** ± 0.04 2.74* ± 1.70 

These results indicate that the Teledyne SG lifelong learner, with UML at its core, is a complete 
lifelong learning system. Going from left to right on the table, the results can be interpreted by 
the following statements: 

 Performance Maintenance 
o Performance on a learned task improves by 0.56% on average as more tasks are

learned.

 Forward Transfer 
o Initial task performance on a new task T is 11x better after learning a different

task as compared to the baseline performance of T at the start of the lifetime

 Backward Transfer 
o Performance on a previously learned task is the same after learning a different

task

 Relative Performance 
o The lifelong learning agent is 1.03x better at learning task T when it can leverage

information from other learned tasks, relative to learning task T in isolation

 Sample Efficiency 
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o The lifelong learning agent is 2.74x more efficient (in terms of required learning
experiences) at learning a task T when it can leverage knowledge from other
learned tasks, relative to learning task T in isolation

Taken as a whole, these results show that the Teledyne SG lifelong learning agent exhibits the 
characteristics of a lifelong learner, mitigating catastrophic forgetting, leveraging new and old 
task knowledge to improve task performance and learning speed. The following sections will 
describe the results of each of the evaluations individually. 

4.5.2 Month 9 Evaluation 

This was the first system evaluation that included the combination of multiple lifelong learning 
components into a full system. For full details of the experimental setup, see Section 3.6.7. 
Simply, there were 3 tasks that were permuted in their order and learned one time to form the 
permuted scenario. Two of the three tasks were selected and alternated learning 3 times to form 
the alternating scenario. There were 4 runs completed for each of the permuted and alternating, 
however due to time constraints only 3 permuted runs were submitted to APL. The results shown 
in Table 12 are the official evaluation results generated by APL from the 3 submitted permuted 
runs in the M9 evaluation period, apart from the performance recovery metric. The Performance 
Recovery metric was not generated by APL in their official results but was generated 
independently by Teledyne using 4 runs of the alternating scenario. Future evaluations would 
eventually remove this metric as it is ill-behaved, but it is included here for completeness. The 
second row of Table 12 provides interpretations of the results. 

Table 12. M9 Evaluation Results and Interpretation 
Performance 
Maintenance 

Forward 
Transfer 

Backward 
Transfer 

Performance 
Recovery 

Relative 
Performance 

Sample 
Efficiency 

-17.52 ± 4.24 1.19 ± 0.07 0.99 ± 0.01 -28.5 2.61 ± 0.18 1.78 ± 0.14 

17.5% worse 
average task 
performance 
after learning 
more tasks 

1.19x on new 
tasks after 
learning 

0.99x on old 
tasks after 
learning 

28% slower to 
recover 
performance 
after learning 
new task than 
initial learning 

2.6x better 
performance 
after learning 
other tasks 
relative to 
independent 
learning 

1.78x faster 
learning after 
learning other 
tasks 

4.5.3 Month 12 Evaluation 

In the M12 evaluation, the same scenario types were used as in M9: permuted and alternating. 
However, this evaluation did not define three tasks. Instead, two tasks with two variants each 
were chosen as to form the basis for the learning scenarios. See Section 3.6.7 for a complete 
description of the experimental setup. 

After submitting results to APL, we discovered a discrepancy that impacted the metric 
calculation in our evaluation blocks. Table 13 shows both the APL submitted metrics and the 



corrected metrics after discovering the calculation issue. The interpretation of the metrics (final 
row of the table) will be relative to the corrected metrics (M12’). Also, after the M12 evaluation 
it was determined by the program stakeholders that the performance recovery metric was too ill-
behaved to consider, and as such it stopped being reported as a program metric. The M12’ results 
shown below therefore do not contain a performance recovery metric value. 

Table 13. M12 and M12’ Results and Interpretation 
Performance 
Maintenance 

Forward 
Transfer 

Backward 
Transfer 

Performance 
Recovery 

Relative 
Performance 

Sample 
Efficiency 

M12 
(APL) 5.63 ± 4.88 1.49 ± 0.31 1.19 ± 0.16 -31.88 ± 61.81 1.0 ± 0.01 2.16 ± 3.28 

M12’ 1.99 ± 3.22 1.80 ± 0.22 0.99 ± 0.01 Not calculated 1.0 ± 0.01 2.16 ± 3.28 

1.99% better 
performance 
on learned 
tasks after 
learning more 
tasks 

1.8x better 
on new 
tasks after 
learning 

0.99x on old 
tasks after 
learning new 
ones 

The same 
performance 
after learning 
on other tasks 

2.16x faster 
learning 
after 
learning 
other tasks 

4.5.4 Month 15 Evaluation 

In the M15 evaluation, the scenario types were changed to a “condensed” scenario, where each 
task was learned in a single continuous block, and a “dispersed” scenario, where each task 
learning block was split into 3 mini-blocks. In this evaluation, the application metric changed 
from accuracy to precision, and thus direct comparison is not possible between M15 and 
previous evaluation results. To address this, the M12 permuted scenario was run collecting the 
new precision application metric with both the M12 agent and the M15 agent. This shows the 
improvement from M12 to M15.  

Table 14 shows the M15 scenario results in the top panel and the M12 scenario results in the 
bottom panel. This evaluation was also focused on generating more statistical significance in the 
results, and included 33 condensed runs, 34 dispersed runs, and 24 permuted runs. The precision 
metric better reflected the performance of the system and provided more meaningful metrics, but 
also resulted in a reduction in metric performance in relative performance and performance 
maintenance. Every metric apart from Relative Performance improved from M12 to M15, 
showing increased capability of the M15 agent. 
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Table 14. M15 Evaluation Results Compared to M12 Evaluation Results 
Performance 
Maintenance 

Forward 
Transfer 

Backward 
Transfer 

Relative 
Performance Sample Efficiency 

M15 Scenarios 
M15 Both Scenarios -3.20 ± 4.14 10.51 ± 1.35 0.99 ± 0.04 0.92 ± 0.04 2.20 ± 2.91 
M15 Condensed -5.24 ± 4.92 11.02 ± 1.28 0.98 ± 0.05 0.94 ± 0.04 2.62 ± 3.26 
M15 Dispersed -1.23 ± 1.59 10.01 ± 1.23 1.01 ± 0.03 0.90 ± 0.04 1.79 ± 2.56 
M12 Scenarios 
M15 on M12 
Permuted -25.26 ± 5.96 1.46 ± 0.5 0.94 ± 0.32 0.95 ± 0.00 0.64 ± 0.26 

M12 on M12 
Permuted -32.24 ± 6.31 1.05 ± 0.00 0.65 ± 0.1 0.99 ± 0.00 0.26 ± 0.14 

4.5.5 Month 18 Evaluation 

In the M18 evaluation, the condensed scenario was chosen as the primary evaluation scenario, 
but the dispersed runs were still performed to provide supplemental results. The desired 
statistical significance of the metrics specified a target of 12 runs per scenario. The goal of the 
agent improvement in this evaluation was to bring all the metrics above the lifelong learning 
threshold, and specific focus was paid to the performance maintenance metric. For specifics of 
how we improved the system by M18, see Table 8. 

Table 15 shows the results of the M15 agent and M18 agent on the condensed and dispersed 
scenarios. The condensed scenario results show an improvement in all metrics from M15 to 
M18, including meeting the lifelong learning threshold in all metrics and exceeding the program 
target values in Forward Transfer and Sample Efficiency. The dispersed scenario also shows an 
improvement in all metrics from M15 to M18. The dispersed metrics exceed the program target 
in Forward Transfer, meet the lifelong learning threshold in three of five metrics (Performance 
Maintenance, Backward Transfer and Sample Efficiency) and are within the standard deviation 
of the lifelong learning threshold in the other two metrics (Performance Maintenance, and 
Relative Performance).  

Table 15. M18 Evaluation Results Compared to M15 Evaluation Results 
Performance 
Maintenance Forward Transfer 

Backward 
Transfer 

Relative 
Performance 

Sample 
Efficiency 

M15 Condensed Scenario 
M18 Agent 0.56** ± 0.98 11.69 ± 0.47 1.00* ± 0.01 1.03** ± 0.04 2.74* ± 1.70 
M15 Agent -1.94 ± 2.33 12.31 ± 2.19 0.99 ± 0.02 0.97 ± 0.03 1.73 ± 1.54 
M15 Dispersed Scenario 
M18 Agent -0.18* ± 2.15 9.77** ± 0.77 1.00 ± 0.01 0.96** ± 0.11 1.45* ± 0.40 
M15 Agent -1.04 ± 1.05 8.70 ± 1.11 1.00 ± 0.02 0.92 ± 0.01 1.18 ± 0.34 



Additionally, an ablation study was conducted with the memory optimization component C5 to 
assess the impact of memory optimization alone on the L2M metrics (see Table 16 below for a 
summary of results). We found that memory consolidation led to improvements in forward 
transfer, relative performance, and sample efficiency. However, we did see a slight decrease in 
relative performance and a larger decrease in performance maintenance when the memory 
consolidation component was active.

4.6 Out-of-Nominal Recovery Experiments

4.6.1 Character Recognition

This experiment examined how uncertainty could be used to promote adaptation in deep neural 
networks under noisy conditions. Here, a short convolutional neural network was first trained to 
recognize hand-written characters with the MNIST dataset. The first two bars in Figure 34 show 
the performance of the trained network on the clean MNIST test set and the low-contrast, noise-
added noisy MNIST dataset; the drop in performance from 98% accuracy on clean imagery to 
74.1% on the noisy imagery reflects a drop in performance caused by alterations to the original 
inputs. In a real-world scenario, this could be representative of sensor noise or similar issues that 
often arise when using a system trained on ideal imagery on more realistic information.

Subsequently, the network was assumed to recognize this shift in performance or in image 
quality, and a learning cycle was triggered to continually learn on the new imagery, but with 
modulated hyperparameters designed to retain prior performance while adapting to the new 
circumstances. After such training with the noisy MNIST dataset without re-presenting the clean 
dataset, the last two bars in Figure 34 show the performance of the network on the clean and 
noisy datasets. The third bar 
shows that performance on 
the noisy dataset recovered 
from 74% to 92.4%, 
significantly boosting 
performance on the 
corrupted imagery; the 
fourth bar shows that 
performance on the clean 
imagery remained high at 
96.5%, retaining 
performance under prior 
conditions without 
catastrophic forgetting. Figure 34. Continual Modulated Learning with Noisy Imagery 
Together, these results 
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Table 16. Performance Results with and without Memory Optimization Component C5



suggested that recognizing uncertainty and adjusting learning parameters under such conditions 
can aid in continual learning of deep neural networks to adapt to new conditions.

4.6.2 Reinforcement Learning

In this experiment, described in Section 3.6.8, UML was tasked to identify out-of-nominal 
conditions and modulate the action chosen by the RL agent in response to the high uncertainty. 
In this experiment the action modulation was fixed, and replaced the chosen action (LEFT, 
RIGHT, NO-OP) with a NO-OP action. This caused the agent to pause in the presence of 
uncertainty, instead of performing a potentially detrimental action. Figure 35 shows example out-
of-nominal conditions on the top of the figure (Additive Noise 10% and 30%, Vertical 
Perturbation, Horizontal Perturbation), and these are matched with the baseline and UML-
enabled performance.

These results show the fraction of points scored as compared to the nominal condition with and 
without UML modulating the action in response to uncertainty. In the 10% noise case, we see 
that the baseline agent scored 60% of the points that were available, while enabling UML 
rejection resulted in capturing 65% of the available points. The 30% noise case was more 
challenging and showed a greater impact from UML intervention with a 15% difference between 
the scores. Horizontal perturbation was not a particularly challenging case, but UML still 
resulted in a 3% increase in score. Vertical perturbation was the most challenging case and 
showed the largest difference in baseline vs. UML score. The baseline agent scored 18% lower 
than the UML-equipped agent. These results clearly show that UML can detect out-of-nominal 
conditions and be used to improve an existing agent’s performance through monitoring and 
responding to high uncertainty situations.
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Figure 35. Noise Rejection in Reinforcement Learning
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5.0 CONCLUSIONS

Our efforts and results have demonstrated the role of biologically-inspired algorithms in 
advancing the state-of-the-art in machine learning. In particular, neuromodulation-inspired 
mechanisms enabled self-supervised adaptation in small networks, multi-layered neural network 
architectures, and autonomous agents (e.g., simulated drone). UML was validated as a viable 
algorithm that can be “plugged-in” to state-of-the-art (SOTA) machine learning systems to 
support lifelong learning capabilities such as robustness under novel conditions and continual 
learning. Figure 36 presents three different scenarios that were demonstrated during the program 
and a description of the role of UML in each one of them.

We showed that our lifelong learning algorithm, UML, is capable of supporting self-supervised, 
online, continual learning in an operationally relevant domain (drone-based object recognition). 
We also showed that UML can also self-supervise the detection of out-of-nominal states without 
explicit labels, both in an object classification task and a reinforcement learning task, 
demonstrating the broad capabilities of the UML algorithm.

We showed that an integrated lifelong learning system has critical components that enable its 
performance: Attentional mechanisms are critical to manage the information flow within the 
agent, uncertainty mechanisms are critical to measure internal and external state against expected 

Figure 36. UML is a Pluggable Component that can Support Lifelong Learning Capabilities in 
State-of-the-Art Machine Learning Systems



performance and drive modulatory responses, and hierarchical mechanisms are critical to derive 
robust knowledge representations within the agent’s short and long term memory.

We also showed that our system engineering approach of interconnected but independent 
components enabled ablation experiments and lifelong learning evaluations of the whole system 
and individual components simultaneously. Our system also showed improvement over the 
course of the program. Table 17 shows the progression of our lifelong learning system against 
the five core program metrics as documented by our team and validated by APL. Red boxes 
indicate that performance did not meet the lifelong learning threshold; light green boxes 
indicated that performance met the lifelong learning threshold, and darker green boxes indicated 
that performance exceeded the program target. We reached the lifelong learning threshold in all 
five in M18 while starting only reaching one metric in M12. This improvement was made 
through both individual component capability increases, as well as better system engineering to 
connect the components together.

Top-down modulation in a hierarchical learning system improves the lifelong learning 
performance of the system. Leveraging the uncertainty generated by mismatch in the hierarchical 
knowledge base induces task relevant knowledge structures as well as enforces well-conditioned 
outputs. Introducing this mechanism led to an improvement across all tracked program metrics.

We have also shown that memory consolidation mechanisms can complement online continual 
learning. Our C5 module showed improvements in transfer and performance against single task 
experts in the ablation study, confirming that memory optimization is a relevant mechanism to 
improve performance in a multi-task learning setting.

Finally, we showed that uncertainty-based modulation supports robust lifelong learning, 
particularly short and long-term adaptation. Our agent can self-supervise both the learning and 
inference processes in response to measured uncertainty, which can be driven by changes in 
environment, task, or the agent itself.
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Table 17. Progression of Teledyne System against Program Metrics as Documented by APL
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LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS 

ACRONYM DESCRIPTION 
ACh Acetylcholine
AFRL Air Force Research Laboratory 
AI Artificial intelligence
APL Johns Hopkins University Applied Physics Laboratory 
ANN Artificial neural network 
ART/ARTMAP Adaptive Resonance Theory / Mapping algorithm 
ATR Automatic target recognition 
BT Backward transfer metric 
CAML DARPA’s Competency Aware Machine Learning program 
C[#] Component [#]; e.g. C1 denotes Component 1 (in the context of our 

L2M architecture) 
COCO Common Objects in Context 
CPU Central processing unit 
DARPA Defense Advanced Research Projects Agency 
DDVFA Distributed Dual Vigilance Fuzzy ARTMAP 
DOT Department of transportation resources 
EMA Emergency management agency vehicles 
ETS Experience to Saturation 
FT Forward transfer metric 
GPU Graphics processing unit 
ID Identity
I/O Input/output
L2 Lifelong learning
L2M Lifelong Learning Machines 
M[#] Month [#] into Phase 2; e.g. M18 corresponds to Month 18 (in context 

of Phase 2 Government evaluations) 
M2 Muscarinic receptor subtype 
M4 Muscarinic receptor subtype 
ML Machine learning
MLP Multi-layer perceptron
MNIST Modified National Institute of Standards and Technology 
NBM Nucleus basalis of Meynert 
PFC Pre-frontal cortex
PM Performance maintenance metric 
POC Proof of concept 
PNN Plastic nodal network 
PR Performance recovery metric 
RGB Red, green, blue 
RL Reinforcement learning
ROC Receiver operating characteristic 
RP (Single-task expert) Relative performance metric 
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S&T Missouri University of Science and Technology 
SAR Synthetic aperture radar
SE Sample efficiency metric 
SECTR-CL Seeker Cost-Transformation Closed-Loop program 
SG Systems group
SE Sample efficiency metric 
STE Single-task expert
SVM Support vector machine 
T&E Test & Evaluation 
Thal Thalamus 
TRACE DARPA’s Target Recognition and Adaptation in Contested 

Environments program 
UCI University of California, Irvine 
UCSD University of California, San Diego 
UML Uncertainty-Modulated Learning
V1-V4 Areas 1-4 of the visual cortex 
YOLO You Only Look Once object detection algorithm 




