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1. INTRODUCTION:  

At least 25-30% of the nearly 700,000 U.S. veterans who served in the 1991 Gulf War continue to 
suffer from a complex, multisystem disorder called Gulf War Illness (GWI). Converging evidence 
suggests that a clear understanding of brain-immune interactions can be key to understanding the 
origin of these symptoms. In addition, the identification of immune activation, brain imaging, and 
genetic biomarkers has been recommended by GWI advisory committees as research targets. To 
date, multiple studies have suggested various candidate markers in different biological domains, 
however, they were in isolation and lacked information on how to unite these markers to better 
represent the brain-immune interactions underlying GWI. The central hypothesis of this new 
investigator project is that incorporating joint distributional information across biomarkers from 
different biological domains can provide more meaningful insight into GWI etiology than can be 
obtained from a single marker or a simple concatenation of different markers within a single 
biological domain. This study was planned to take various promising biological (i.e., brain imaging 
and immune) measures of GWI in collaboration with a large GWI Consortium (GWIC) study 
(GW120037, PI: Sullivan) and designed for combining the enormous amount of GWIC biomarker 
data into a cutting-edge machine-learning computational framework to better represent and 
understand the brain-immune interactions underlying GWI. Throughout the entire project years, 
building and assurance testing of the proposed analysis framework was performed based on the 
GWIC data. Combining this enormous amount of biomarker data into a cohesive computational 
model allows for the development of biomarkers that represent GWI and most importantly to map 
these markers in individual subject space rather than only looking at information at the group 
level. The impact of identifying validated and replicated biomarkers of GWI and identifying how 
predictive each marker is of the other can be an invaluable resource in moving the field forward 
and for reliably using those biomarkers to predict future treatment trial efficacy at the group and 
individual veteran level.  

2. KEYWORDS: 

Gulf War Illness (GWI), White matter (WM) integrity, Gray matter (GM) microstructure, Brain 
mapping, Morphometry, Neuroinflammation, Magnetic Resonance Imaging (MRI), Cognitive test, 
Machine learning, Blood Cytokine, Exposures, Symptoms, Kansas criteria, CDC criteria, Database, 
Software. 

3. ACCOMPLISHMENTS:  

What were the major goals of the project? 
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The central goal of this project is to build a comprehensive computational framework that 
incorporates joint distributional information across different biomarkers for decoding brain-immune 
interactions and providing a better illustration of GWI etiology over single modality biological 
measurements. Specific major goals of this project include: 1) Application of multimodal MRI 
processing pipeline and extract high-quality post-processed data, 2) Building unimodal classifiers on 
neuroimaging and neuroimmune marker data, 3) Building multi-modal classifiers and defining of key 
features, 4) Building multi-modality classifiers of sub-symptom clusters, 5) Present and publish the 
results, and 6) Building a software package.  

What was accomplished under these goals? 

For this reporting period describe: 1) major activities; 2) specific objectives; 3) significant results or 
key outcomes, including major findings, developments, or conclusions (both positive and negative); 
and/or 4) other achievements.  Include a discussion of stated goals not met. Description shall include 
pertinent data and graphs in sufficient detail to explain any significant results achieved.  A succinct 
description of the methodology used shall be provided.  As the project progresses to completion, the 
emphasis in reporting in this section should shift from reporting activities to reporting 
accomplishments.   

1) Major Activities

Throughout the entire project years, following major activities were performed aiming each specific 
major goal listed above.  

a. MRI image processing pipeline: We
built image processing pipelines for T1-
structural and high dimensional diffusion
MRI (hd-MRI) data. The first version of the
pipeline includes following functions: 1)
cortical surface modeling based on
Freesurfer (Fischl, 2012) and defining in
region of interest (ROI) in the brain, 2)
extraction of morphometrical features
including cortical thickness, cortical/sub-
cortical volume, hippocampal and amygdala
sub-volume, intra-cranial volume, 3) hd-
MRI data preprocessing including distortion
and motion correction, T1 to diffusion co-
registration, 4) generalized q-space imaging
(GQI) reconstruction for hd-MRI, which
provides micro-diffusivity used in our 
previous study (Koo et al., 2018), 
generalized fractional anisotropy, major and 
minor diffusivity, 5) neurite density imaging 
(NDI) reconstruction in WM, 6) NDI for GM based on maximum likelihood estimation of model-
fitting parameters, 7) diffusion tensor imaging reconstruction on b-1000 shell (DTI) and b-3000 shell 

Figure 1. Image processing pipeline. Panel A: morphometrical processing 
and surface modeling. Panel B: Cortical parcellations using surface 
modeling. Panel C: Coregistration between structural and diffusion MRI. 
Panel D: Diffusion processing pipeline.  
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(HARDI-DTI), 8) WM fiber reconstructions (using cortical ROIs to reconstruct WM tracts), 9) 
mapping and extracting morphological and diffusion measures in each ROI.   

Some features were continuously updated or added to this package throughout the project years. 
Firstly, WM fiber reconstructions were changed from ROI-to-ROI WM tracking method to defining 
major WM bundles using TRACULA (Yendiki et al., 2011). This was to reduce the number of 
features without losing critical information from the diffusion MRI. Formal method yields too many 
features compared to the sample size, which can cause overestimation problems on ML classification 
works. We also added additional features for extracting WM measures using tract-based spatial 
statistics approach TBSS, Smith et al., 2006). This extracts diffusion measures along the core WM 
pathway in each tract. Subjects with abnormal ventricles often can cause WM tract estimation errors 
in TRACULA. This additional feature supports fixing the problem. Secondly, we added other 
diffusion MRI modeling techniques. The pipeline currently offers free-water diffusion image 
reconstruction (Pasternak et al., 2009) and diffusion kurtosis image reconstruction (Zhuo et al., 2012). 
Recent publications based on diffusion MRI often use different diffusion modeling techniques, which 
makes it hard to integrate different findings. This was to give more degrees of freedom on processing 
diffusion MRI data and to give options for cross-compare results from different models. Lastly, we 
added morphological network measures based on structural MRI. Morphological network measures 
were previously used in other studies for detecting potential synchronized structural changes between 
cortical regions (Evans, 2013). This measure can be tested as an alternative marker when diffusion 
MRI is not available for the study.  

b. Statistical analysis on MRI, immune, cognitive features: We performed statistical analyses on
all extracted measures. Group differences between GWI cases and controls were first assessed on
NDI, DTI, GQI, and morphological measures. We also performed group comparisons between
exposure/symptom based GWI subgroups and controls. MRI markers were also compared with blood
immune markers, symptom scores and cognitive functions, in both whole group and subgroup levels.
We also performed correlation analysis between different MRI markers.

c. ML classification framework and benchmark tests: The initial ML framework was developed
based on random decision forest (ref). RDF performs iterative partitioning of the multivariate feature
space to identify decision boundaries that highlight differences between different groups. RDF also
provides feature importance weights to each of the features selected for the classification and thereby 
allow us to identify which combinations of features among that we have provide the best sensitivity 
for the group comparisons. RDF was then updated to random decision forest based on rotating feature 
space method (CCF; Rainforth & Wood, 2009), are applied simultaneously for estimating maximum 
performance on the selected feature sets. In our benchmark tests, CCF performed better then RDF. 
We also added a reinforcement learning ML method (Guan et al., 2020). This method allows adaptive 
and efficient parameter optimization for finding best solutions on classification. Finally, CCF was 
also updated to CCF with synthetic oversampling method (SMOTE) to handle imbalanced grouping 
issues. Based on these ML classification algorithms, classification testing was targeted to 1) GWI 
cases vs. controls based on Kansas criteria, 2) GWI cases vs. controls based on CDC criteria, and 3) 
GWI case subgroups (based on exposures and health profiles) vs controls. In each classification 
targets, we first applied single modality features from either MRI (i.e., features from NDI, GQI, DTI, 
and morphometry) or blood cytokines. Then, combinations of different features (i.e., different 
imaging modality or imaging + non-imaging markers). For the first and second classification targets, 
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we combined MRI markers with either exposure conditions (e.g., pesticides) or health profiles (e.g., 
high blood pressure, depression, or post-traumatic stress disorder) for the classification attempt. 
Performance of the classifiers were cross-validated and key features were investigated from this work. 

d. Disseminate study results: Three papers were published in scientific journals from PI's group.
We have one paper taking 2nd round review in a scientific journal. We also have one paper ready for
submission. Results were also shared through two domestic meetings, four international meetings,
and one invited seminar. Some findings and techniques were shared to GWIC collaborators and
resulted in two journal publications. We are now preparing one more manuscript for publication
through this collaboration work.

e. Building software package: We started the software package in project year 3. This work was
expanded to the NCE period and ready for sharing to the GWI research community through
collaboration. Detailed descriptions on this software package can be found in the significant results
or key outcomes section.

2) Specific objectives

In the project year 1, we aimed to acquire high quality post-processed data and neuroimaging 
classifiers. From the processed data, we also aimed to explore whether GWI is more associated with 
alterations in the local brain components especially in the microscopic structural integrity and 
connectivity in the white matter (WM).  

In the project year 2, we continued to acquire high quality post-processed data and neuroimaging 
classifiers. We aimed to explore brain imaging fingerprints on GWI. Mass-univariate statistics on 
each of the brain imaging measures was our first analytic scheme to define key neurological markers 
from imaging data. We also tested different classification designs. Defining key features and cross 
validating different types of machine learning classification methods were the specific goals for this 
project year. 

In the project year 3, we continued to add high quality post-processed data and develop neuroimaging 
classifiers. We specifically aimed to build a more efficient machine learning framework to define key 
neurological markers from imaging data to integrate different biomarkers from different biological 
domains (imaging to cytokine markers) to investigate meaningful insight into GWI etiology. In this 
project year, the research team  

In the no-cost extension (NCE) period (year 4), we aimed to add more subject data from GWIC and 
finalize building the classifiers. We also planned to start testing and combining new imaging markers 
(glial PET and resting fMRI) extracted from the existing GWIC to expand imaging feature domain to 
cover brain functional aspects. We also aimed to study associations between new and existing 
markers. Lastly, in this NCE period, we planned to finalize the building software package containing 
key results and techniques achieved from this project.  
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3) Significant results or key outcomes, including major findings, developments, or conclusions

a. High-dimensional diffusion MRI (hd-MRI) markers for GWI:

- Validation of hd-MRI in animal models: In our
first animal study, we had tested micro-diffusion
imaging on sarin-surrogate (diisopropyl
fluorophosphate DFP) and/or corticosterone
(CORT) treated rat models to assess the GW-
relevant neurotoxicant and physical stressors of
deployment (Koo et al., 2018). We had applied
500-micron image resolution using our 4.7T
Bruker MRI system. The use of the rat model
allowed us to apply a combination of standard
histological methods and advanced
immunohistochemical methods to optimally
prepare brain tissue from the same MRI assessed 
brains. We have confirmed that the micro-diffusion 
imaging successfully differentiated CORT stressor 
responses in the brain in different diffusion 
components (Figure 2A). Rats exposed to either the 
sarin surrogate DFP and/or CORT had significant 
increase in micro-diffusivity (based on GQI) especially in the hypothalamus and hippocampus, 
whereas the fast diffusion imaging did not show significant differences. Micro-diffusion imaging also 
revealed different spatial patterns in 3 different treatment models (CORT, DFP, CORT+DFP). 
Cortical regions with lowered diffusivities were correlated with tissue assessment results. We 
expanded this work to study chronic models. In the chronic model, group differences were maintained 
in CORT and CORT+DFP groups (Figure 2B). We also confirmed the layering effect (i.e., highest 
signal observed from exposure to CORT, DFP plus LPS) from the microstructural diffusion markers 
(GQI and NDI). 

- hd-MRI and translocator protein positron
emission tomography (TSPO-PET): hd-
MRI markers were also compared with
TSPO-PET. TSPO-PET can highlight
activated glial cells in the brain. NDI
markers, such as OD and isotropic
freewater fraction (IsoVF), showed
overlapping patterns in the cingulate
cortex and other regions when compared
separately for positron emission
tomography (PET) scans using the
translocator protein (TSPO) (Alshelh et
al., 2020) (Figure 3. 3D plot). Statistically
significant correlations were confirmed in
these two different imaging methods

Figure 2. hd-MRI in animal models. Panel A shows imaging 
results in acute rat model. Red marks indicate the regions 
showing difference between groups. Panel B shows imaging 
results in chronic model. We applied automatic labeling 
technique (left side). Bar graphs showing micron diffusivity in 
anterior cingulate and hippocampus in 3 groups (cort, 
cort+DFP, cort+DFP+LPS. 

Figure 3. Comparisons between hd-MRI and TSPO-PET. NDI features 
significantly correlated with TSPO pet signal. Panel A: PET vs. NDI in 
anterior cingulate (left), medial prefrontal (middle), and post-central 
(right). Panel B: NDI additionally explained the illness symptoms. Left 
graph: OD vs Anxiety. Right graph: ND vs Fatigue/Energy (high score 
better condition). Right side 3D renderings show activated signal in ACC 
(left) and lowered OD in ACC.  
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(Figure 3A). Moreover, hd-MRI markers additionally explained GWI veteran’s illness symptoms 
(e.g., fatigue, pain, anxiety) (Figure 3B). Both animal model findings and TSPO-PET results, support 
that microscopic diffusivity can fingerprint brain-immune interactions in GWI.  

- hd-MRI in WM: NDI mapping in the
major WM fibers consistently showed 
signs of weakened WM integrity (lowered 
neurite density). Overall pattern was 
consistent to our previous findings. All 
major WM tracts showed significant 
differences in ND and OD for GWI cases 
compared to controls. In neurite density 
(ND) measures, the greatest significant 
group differences between GWI cases and 
controls were seen in the bilateral 
corticospinal tracts followed by callosal 
tracts and others. Compared to our first 
analysis based on 91 subject data, only 
CST results become more significant 
(t=3.38, p<0.001 corrected). Other tracts 
revealed patterns consistent to our 
previous findings (Cheng et al., 2020). 

 Both WN ND (figure 4A) and orientation 
dispersion (OD, figure 4B) measures 
showed widespread differences. Nineteen 
out of twenty WM tracts were significantly different in ND, while all twenty WM tracts were 
significantly different between GWI cases and controls (Figure 4 graph).  

- hd-MRI in GM: NDI mapping in GM also revealed significant group differences between GWI
cases and controls. Most significant group differences were observed in anterior cingulate cortex
(ACC) bilaterally. As we discussed previously, this result coincides with glial PET findings. OD in
ACC was also significantly correlated with Kansas fatigue and pain scores. Other limbic and
paralimbic regions (e.g., parahippocampal gyrus, isthmus cingulate, precuneus, and fusiform) showed
near-significant group differences in uncorrected p<0.05 level. Difference patterns were more
significant in GWI exposure specific subgroup analysis (e.g., GWI + Pyridostigmine Bromide vs.
controls, GWI + pesticides vs. controls) (figure 4C) and GWI health profile subgroupings (e.g., GWI
+ high blood pressure, depression or post-traumatic stress disorder). However, not all the exposure or
health profile subgroups showed significant differences. For example, GWI case groups who reported
exposure to destroyed enemy vehicles did not show any significant group differences in GM NDI
measures. This heterogeneity suggests that different pathophysiology may sit in this complex multi-
symptom illness. In addition, compared to WM NDI measures, GM NDI measures showed more clear
associations with blood cytokine and symptom scores.

- DTI findings: Diffusion MRI data in two different diffusion encodings, b=1,000 s/mm2 (low-b) and
3,000 s/mm2 (high-b) were extracted separately from hd-MRI. DTI reconstruction was applied to each

Figure 3. Comparisons between hd-MRI and TSPO-PET. NDI 
features significantly correlated with TSPO pet signal. Panel A: PET 
vs. NDI in anterior cingulate (left), medial prefrontal (middle), and 
post-central (right). Panel B: NDI additionally explained the illness 
symptoms. Left graph: OD vs Anxiety. Right graph: ND vs 
Fatigue/Energy (high score better condition). Right side 3D 
renderings show activated signal in ACC (left) and lowered OD in 
ACC.

Figure 4. NDI results from GWIC data. Panel A shows group differences in 
GWI case and controls in WM ND. Panel B shows WM OD results. Panel C 
shows subgroup analysis in GM ND. Right bar graph shows counts of 
significant features in each feature domain. 
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of diffusion encodings and used for group 
comparison between GWI cases and controls. 
This was to assess whether consistent patterns 
can be captured from different types of 
diffusion modeling and diffusion encoding 
strengths. In GWI cases vs. controls, high-b 
DTI showed group differences in anterior and 
posterior corpus callosal tracts, bilateral 
inferior longitudinal fasciculus (ILF), right 
inferior fronto-occipital fasciculus (IFOF), 
and right CST consistent to NDI results. 
However, there were no significant group 
differences shown in low-b DTI, which 
suggests that microscale diffusivity measures 
are more sensitive to detect GWI specific change patterns. Similar to what we confirmed in animal 
models, this also suggests that neuroinflammatory response accompanies changes in sub-neuronal 
(e.g., glial activation and synaptic integrity changes) scale rather than significant neuronal cell loss. 
It is also important to note that GW veterans with illness may have widespread WM changes in their 
brain rather than selective damage. Using low-b DTI setup may result in inconsistent findings due to 
the insufficient sensitivity to detect microscale changes in the brain. This may also be related to the 
inconsistencies between our low-b DTI results and the findings of increased axial diffusivity (AD) in 
IFOF (Rayhan et al., 2013; Chao et al., 2015). Low-b DTI setup can be more useful for investigating 
neurodegeneration in GW veteran's later life.    

b. Other imaging and non-imaging markers for GWI: Differences between GWI cases and
controls can be also highlighted from other MRI markers. Based on T1-weighted structural MRI,
cortical volume measures revealed significant differences in pre- and post-central area. This pattern
was consistent across different subgroups. However, only a few other ROIs were highlighted from
this measure. We also tested morphological network measures. Morphological network measures
were previously used in other studies for detecting potential synchronized structural changes between
cortical regions (Evans, 2013). For example, a previous study showed that individuals with different
types of dementia exhibited distinct structural network patterns (Seeley et al., 2009). We found that
the morphological network measures are sensitive for describing the GWI pathophysiology.
Morphological network connections successfully captured differences between GWI cases on
controls (Fig. 6A). Pattern overlap between morphological measures and diffusion MRI markers were
found in paralimbic (Fig. 6A, dotted boxes) and ROIs. Since morphological network analyses are
based on simple structural scans that are widely available in the neuroimaging research community,
this method has great potential for combining different types of large-scale databases within one
analysis framework. For better utilization of T1W-MRI scans, we are also suggesting novel T1W-
MRI measures as sensitive markers for detecting subtle structural changes of the brain that could not
be detected by conventional measures.

We also compared diffusion MRI measures with resting fMRI networks (RSNs) and confirmed strong 
associations between microstructural deterioration functional networks (Figure 6B). This suggests 
that tissue microstructural changes in GWI veterans can directly affect functional integrity of their 
brain. We confirmed consistent findings with Gopinath et al. (2019) that language and dorsal-

Figure 5. Group statistical results between GWI cases and controls 
(Kansas definition). Panel A shows group comparison results from 
OD. Panel B shows results from high-b DTI. Panel C shows results 
from low-b DTI. Color bar shows t-statistics.  Color coding is applied 
to only statistically significant results (correct p<0.05).  
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attention networks, and sensory-motor 
networks are disrupted in GWI. 
Moreover, similar to our diffusion 
biomarker results (Cheng et al., 2020), 
we also confirmed distinct alteration 
patterns in RSNs, which may be specific 
to different exposure factors (Fig 6C). 
While dorsal-attention or somato-motor 
network were consistently shown in 
most subgroups, salience network (SN) 
was additionally disrupted in GWI 
veterans who reported exposure to 
pesticides, anthrax vaccine or 
pyridostigmine bromide pill. Also, 
altered default mode network (DMN) 
was confirmed in GWI with chemical 
biological weapon (CBW), chemical 
alarms, and enemy vehicle exposures. 
RSNs were also clearly associated with 
subject symptom scores (Figure 6D). 
This suggests that alterations in 
functional network dynamics within and 
between different regions of the brain 
can be a key contributor of flexible 
behavior or illness symptoms in GWI. 

Subgroup specific patterns were also 
found in blood cytokine markers. 
Among all, TNF alpha receptor I and 
Proinflammatory cytokine markers were 
associated with chemical biological 
weapon exposure, fogged, cream and 
pesticides Figure 6C. Further, both hd-
MRI and RSNs were associated with 
these cytokine markers in some 
subgroups (figure 6E), suggesting the 
presence of exposure-specific 
pathophysiology or cross-talk between 
CNS and the innate immune system.  

c. Machine learning classification for
Kansas and CDC GWI criteria: In our
first ML model (i.e., based on RDF), the
highest classification performance was
79% accuracy from a combination of
WM ND and Cytokine markers. This

Figure 6. Other MRI imaging and non-imaging features. Panel A shows 3D rendering 
of GM ND and T1 network features in GWI cases with pesticides/fogged/cream 
exposure. Limbic/paralimbic regions are marked in yellow dotted box. Panel B shows 
correlation results between WM ND and RSN features. Left side shows default mode 
network results, middle shows central executive network results, and the right side 
shows salience network results. Panel C shows heat map combining hd-MRI, T1 
structural, RSN, and blood cytokine features and their subgroup patterns. Rows are 
different exposures/symptoms and columns are different biomarkers. Statistically 
significant group differences between subgroups and controls are marked in different 
colors (please see legends under the heatmap).  Distinct subgroup specific feature 
profiles can be confirmed from this map. Panel D shows correlation between RSNs and 
Kansas scores. Rho's are plotted in left bar graph. Scatter plot in the right shows 
correlation between dorsal attention network and Kansas neuro score. Panel E shows 
3D rendering of correlation between RSNs and TNF alpha receptor I in mild TBI (left) 
and Pesticides subgroups (right). Bar graph shows distinct correlation profiles in 
different subgroups.  
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model was updated to the CCF model in project year 2. We added GM micro-diffusivity measures 
and a new machine learning classifier (RDF-CCF). Classification tests were performed based on 91 
subjects. Among these dataset, 13 to 15 subjects in each group were randomly subsampled 200 times 
for training the classifier and rests were used as test dataset for calculating performances. In these 
almost 2 times larger samples compared to the last year’s sample size, the highest classification 
performance was confirmed in the classifier based on the combined features (ND/OD + DTI + GM 
volume) in 80% accuracy level. With the same features, GWI classification based on CDC criteria 
showed 74% accuracy. 

Reinforcement learning: In project year 3, we added a reinforcement learning framework. 
Reinforcement Learning (RL) is one of the ML techniques that enables an agent to learn through an 
interactive environment (i.e., sharing experiences between agents and also accounting for their 
previous experiences) by trial and error. Combining with the bee swarm algorithm, our classifier 
learns to search for a solution (i.e., resulting feature list) that maximizes the reward (i.e., higher 
classification accuracy) through multiple iterations. This concept is to upgrade a simple local search 
to a more adaptive and efficient search for the final solution. Our new machine learning framework 
consists of 3 parts - 1) a prior-based set-up of feature 
space, 2) key feature selection based on the 
reinforcement learning, and 3) classifier building 
based on the selected key feature subsets. In the first 
part, each imaging feature domain is used for 
initializing the feature space. The second part of this 
model is to iteratively search the key feature 
candidates in the preset feature spaces within the 
training dataset for potentially better ML outcomes. 
The last part of this method builds the classification 
model. From the RL-based feature selection in the 
training dataset, top candidate feature vectors are 
built into the KNN, support vector machine, and 
RDF classifiers. We used a majority voting strategy 
to merge key solutions to have unbiased 
classification results (Guan et al., 2020). In ML 
based on single imaging modality features, WM OD 
showed the best performance (Figure 7A). NDI 
features provided better performances than DTI 
measures. Among the DTI measures, mean 
diffusivity (MD) was the best feature for ML.   

CCF with SMOTE (CCF+SMOTE): During the NCE period, we also updated the CCF method. 
GWIC MRI data is highly imbalanced in GWI case and control groupings (in both Kansas and CDC 
criteria). This issue can be the cause for poor performance on ML classification problems. This 
updated CCF performed stratified sampling of training/testing samples and performed initial 
sampling of features based on different ranges of p-value thresholds (ranging 0.5~0.001). After 
defining the feature space, SMOTE was added into the framework to perform oversampling on 
minority training samples. CCF+SMOTE offers fast training speed (~30 minutes per classifier), 
whereas RL takes 7 to 10 hours in our multi-core computing environment. We used CCF+SMOTE 

Figure 7. ML classification testing results. Panel A shows 
RL classification results on Kansas case and controls. The 
results were based on 119 subject data. Panel B shows 
CCF+SMOTE results based on 146 subject data. Left side 
bar graph plot shows results on Kansas criteria. Right side 
bar graph plot shows classification results on CDC criteria. 
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for the benchmark test between different ML classifiers. In ML based on single imaging modality 
features for Kansas criterion, CCF+SMOTE from WM OD showed better performance than the best 
performing model of CCF, which was based on ND/OD, DTI, and GM volume features (80% 
accuracy). In CDC case vs. control classification, CCF+SMOTE from WM OD above 90 percent 
accuracy. Overall, classification performances on CDC criterion showed better performances than the 
results on Kansas criterion (Figure 7B). However, the best classification performance was found in 
WM OD features combined with subject health profiles (i.e., high blood pressure, depression, and 
PTSD) in both Kansas (92.1% accuracy) and CDC (94%) classification results. Kansas definition 
excludes subjects with concomitant medical or psychiatric conditions and also counts more non-
neurological symptom clusters (e.g., respiratory or skin) than CDC criteria. These characteristics 
underlying Kansas criterion can be a source of different ML performance. However, our ML 
classification results showed that subject health profile information can be a good complement to 
imaging features for classifying GWI cases in both criteria. Classification performances were more 
balanced in both criteria by adding the information as a feature. In addition, combining exposure 
conditions or blood cytokine features to NDI measures showed 1 to 6 percent improvements in 
classification performance compared to using only NDI measures. CCF with multimodal imaging 
features did not show significant improvements in our testing. This may be due to too many feature 
problems in the optimization process. Case subgroups based on health profiles showed 1 to 4 percent 
improvement, however, exposure-based subgroupings were not beneficial to enhance ML 
performance. For some exposure conditions, we were not able to test ML due to the small sample size 
issue. Also, compared to the imaging features, ML based on blood cytokines, cognitive tests, 
exposures, or health profiles showed 50 to 70 percent performances. These results support our 
hypothesis that GWI is associated with alterations in the local brain components especially in the 
microscopic structural integrity and connectivity, and that non-imaging markers may explain residual 
variations thereby supporting the overall classification performance. 

In summary, we developed ML classification frameworks for classifying GWI. Both RL and 
CCF+SMOTE showed promising results. RL model offers consistent feature selection protocols 
while CCF+SMOTE offers rapid testing of different parameter setups. We suggest CCF+SMOTE as 
initial feature space optimization and use RL for enhanced ML modeling. The ML classification 
framework is embedded in our software package for further research purposes. In collaboration with 
the Boston Biorepository, Recruitment, and Integrative Network (BBRAIN, PI: Sullivan), PI's group 
is planning to expand this work to do validations with larger dataset collected in multiple sites. 
Further, the ML framework has an easily expandable structure to combine new concepts, and it will 
be a good resource for further GWI research. 

d. Software developments: During the NCE period, software packages were updated from the alpha
stage version (Figure 8A). All statistical findings, linear modeling results, and ML techniques were
embedded into a smart database software package. The package contains following features: 1) 3D
visualization of key imaging biomarkers in morphological, connectional, microstructural and resting
functional network domains, 2) Highlights of statistical results (Figure 8B), 3) A single-subject level
inferencing of brain measures from subject exposure and symptom scores based on multivariate linear
modeling (Figure 8C), 4) ML classifier and feature maps for MRI data (Fig. 8D). The package consists
of both graphical user interface (GUI) tools and command line processing functions. This software
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package aims to support building more practical and robust clinical applications of GWI. PI's team 
will continuously update functions to support further research works for GWI. 

Figure 8. Graphical user interface in the software package. Panel A shows the 1st version of the 
package developed in project year 3. Panel B-D shows different options offered from updated 
version. Please see software manual for more information on the updated version (attached in 

the Appendix section).
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What opportunities for training and professional development has the project provided? 

Project year 1: 
- PI attended an international conference on June 16-22nd 2018. PI shared the preliminary findings
to the neuroimaging community. PI also had extensive discussions on diffusion MRI processing
with other research groups.

- One-on-one research mentoring was offered to 2 research assistants from the PI. Research
assistants learned the basic concept of MRI, brain mapping and statistics processing and had hands-
on training using the data from open sources.

Project year 2: 
- PI attended an international conference (International Neuropsychological Society) on Feb 21-
23rd 2019.

a. Research Assistant (Ms. Cheng) presented a poster at the meeting.

b. PI, Dr.  Koo, had a meeting with Drs. Linda Chao (UCSF) and Sullivan (BU SPH) at the
meeting and discuss GWI neuroimaging results.

c. Dr. Koo had a meeting with Dr. Nancy Klimas regarding the GWI data.

- PI attended an international conference (World Congress on Brain Injury) on Mar 13-15th 2019.
a. Dr. Koo was invited for a talk.

b. Dr. Koo shared neuroimaging findings on GWI veterans with mTBI.
c. Dr. Koo had a meeting with Drs. Naeser (Boston VA) and Lim (vielight) and discuss potential
treatment methods and imaging-based validations.

- PI provided training on computer programming and neuroimage processing to RAs. PI also
provided one-to-one mentorship on RAs in the weekly meeting.

-PI attended an in-person meeting of Boston GWIC (PI:  Dr. Sullivan) and shared up-to-date
findings with other researchers in the consortium. Co-investigators (Drs. Sullivan, Killiany, and
Hereen) and consultants in this project (Drs. Steele and Klimas) attended the meeting and discussed
the results. Dr. O’Callaghan also attended the meeting and discussed the GWI animal model study.

-PI invited Dr. Marco Loggia for a seminar on September 19th, 2019. Dr. Loggia shared TSPO PET
imaging findings in GWI.
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Project year 3: 
- All in-person laboratory meetings were changed to online zoom meetings. We had two meetings
every week for all laboratory members.

- PI's team started weekly remote meetings with Dr. Jaehoon Kim at Samsung medical center,
Seoul, Korea. This meeting was to do technical discussions on machine learning and deep learning
methods. The meeting ended December, 2020.

-PI planned to attend an international conference (PsychoNeuroImmunology Research Society) on
June 3, 2020. However, the meeting was cancelled due to the COVID19.

-PI’s team members (research technician, 2 research assistants) have been working on this project.
PI provided training on computer programming and neuroimage processing. PI also provided one
to-one mentorship on RAs in the weekly meeting.

-PI attended GWIC web meetings (PI: Dr. Sullivan) and shared up-to-date findings with other
researchers in the consortium. Co-investigators and consultants in this project (Drs. Steele and
Klimas) attended the meeting and discussed the results. Dr. O’Callaghan also participated in the
meeting and discussed the GWI animal model study.

- PI present neuroimaging works in VA-DoD Gulf War illness SOTS virtual conference, August
18th, 2018. Co-I, Dr. Sullivan presented at the meeting.

Project year 4 (NCE): 

- PI's team maintained weekly online meetings.

- PI invited Dr. David Van Essen, PI of Human Connectome Project, for a lecture on September
24th, 2020. Dr. Van Essen introduced novel approaches on multi-modal neuroimaging and mapping
strategies. PI's team members had a one-to-one meeting with Dr. Van Essen and presented their
works.

- PI was invited for an on-line lecture at Dept. of Biomedical Engineering, Hanyang university,
Seoul Korea on October 26th 2020.

- PI invited Dr. Oscar Liang to give a talk on April 22nd, 2021. Dr. Liang is a collaborator at
BBRAIN.
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How were the results disseminated to communities of interest? 

All the work done in year 1 was reported as part of GWIC External Advisory Board (EAB) meeting 
to the CDMRP scientific officer and Program manager. Also, cortical morphometry and DTI 
measurements have been updated and shared to GWIC researchers. 

PI introduced multimodal brain mapping concepts for studying brain-immune interactions at a 
Boston Puerto-Rican Health Study (BPRHS) meeting and helped design imaging protocols for the 
study.  

All the works done in year 2 were reported as part of GWIC annual meeting. Also, all the imaging 
measures have been shared to GWIC researchers. 

Most of the work done in year 3 was reported at VA/DoD virtual meeting (Aug. 18th, 2020). 
Also, all the imaging measures have been shared to GWIC researchers, DoD officers and veterans 
who attended the meeting. 

In the NCE period, PI introduced high-dimensional diffusion MRI mapping technique and results 
from GWIC data to students and faculties with biomedical engineering backgrounds (Hanyang 
University).  

What do you plan to do during the next reporting period to accomplish the goals?  

If this is the final report, state “Nothing to Report.”   

Nothing to report. 
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4. IMPACT: 

What was the impact on the development of the principal discipline(s) of the project? 

Recent studies on GWI suggest that there is a strong brain-immune component to the disorder and 
that biological measures taken from brain imaging and immuno-genetic measures reflect different 
but potentially connected aspects of the illness. These measures have mainly only been 
studied in isolation and the predictive risk of the illness at the individual veteran level have not been 
high enough to be useful. The goal of this study was to take various promising biological 
markers of GWI in collaboration with a large ongoing GWI Consortium (GWIC) study 
(GW120037) who’s overall hypothesis is that GWI is associated with altered brain-immune 
interactions and cross-talk pathways. There were two key concepts applied to this project. One 
was to bring cutting edge neuroimage processing techniques to extract quality imaging measures 
with better sensitivity to study brain-immune interaction from GWIC imaging data. The other was 
to utilize a machine learning framework to incorporate different biomarkers (blood tests, 
cerebrospinal fluid, brain imaging) for further investigation of the complex interactions that 
represent GWI etiology. These two different concepts were complementary to each other and 
incorporated into the project design. From this idea, we could draw extended figure on GWI as 
follows: 

- Multidimensional diffusion MRI mapping revealed that veterans with GWI have clear group specific
microstructural profiles in WM connections and limbic/paralimbic regions compared to GW veteran
controls. Damage in WM in GWI veterans was associated with micro-scale diffusion components and
revealed more widespread patterns compared with previous findings. For studying brain-immune
interaction, high-b or complex diffusion MRI may provide more sensitive measures than low-b DTI.
Referring back to our animal imaging works, micro-diffusion imaging revealed that it is feasible to
discriminate different stages of neuroinflammation in different parts of the brain (Koo et al., 2018).
Considering the same measures applied in the veteran’s data, results support that microscopic
diffusivity fingerprints chronic inflammation in GWI. In addition, our findings on TSPO-PET and
diffusion MRI suggest that the high-b value encoded diffusion MRI can be a good alternative imaging
method to PET scans. Microscale diffusivity successfully captured changes in brain tissue
environment associated with glial activations and provided better explanation of illness symptoms.

- Microstructural profiles in GM can be useful markers for studying the relationships between
symptoms and imaging markers.

- Subgroup analysis results support an idea that ‘in theater’ exposure conditions are an important
neurological risk factor to describe and understand the brain health of GW veterans. We confirmed
that association between brain imaging and peripheral immune markers resides in specific conditions.
This also suggests that significant variations within GWI cases can be explained and decoded into
several clusters.

- Combining different types of biomarker data into a cohesive computational model allowed for
validating biomarkers that represent GWI and most importantly to map these markers in individual
subject space rather than only looking at information at the group level. The impact of identifying



19 

validated and replicated biomarkers of GWI and identifying how predictive each marker is of the 
other can be invaluable in moving the field forward and for reliably using those biomarkers to predict 
future treatment trial efficacy at the group and individual veteran level. 

- Our ML results also suggest that microscale diffusion measures are key features for classifying
GWI. However, results also indicate that the features highlighted from univariate statistical analysis
are not always the best solutions for classification. For example, volumetric features did not show
significant group differences between GWI cases and controls, however, classification results based
on those features were comparable to the results from some diffusion features.

- CDC definition on GWI may have more overlapped information with brain imaging features than
Kansas definition. This is because the Kansas definition excludes subjects with concomitant medical
or psychiatric conditions and also counts more non-neurological symptom clusters (e.g., respiratory
or skin) than CDC criteria. However, Kansas scores are invaluable for studying the relationships
between specific symptom clusters and CNS measures. In addition, combining subject health
conditions to imaging markers helps enhance classification performance. This also suggests that
subject health conditions can be a good complementary information to imaging biomarkers.

- Our results confirmed that there are noticeable intra-group variations within the GWI veteran
group. Further discussions on modifying Kansas criteria might help improve its diagnostic value.
We suggest using neuroimaging measures as a reference information for the fine-tuning of the
criteria.

What was the impact on other disciplines? 

Results indicate that illness symptoms in GW veterans mediates the chronic neuroinflammation which 
can be fingerprinted by microstructural imaging in limbic/paralimbic structures. Alterations in those 
brain regions has been also highlighted from other chronic inflammatory disorders and thereby can 
likely be a critical information on understanding the role of neuroinflammation in other diseases such 
as depression (Richards et al., 2018), fibromyalgia (Albrecht et al., 2018), and so on. From this work, 
we are suggesting a framework for extracting objective measures and ways to combine different 
measures to study pathophysiology of the illness. This might also be an effective method to study 
other diseases. 

- It has been demonstrated that there is a correlation between GW illness symptom severity and the 
occurrence of mTBI among veterans suffering from multiple illness symptoms (Yee et al., 2017). 
Results support that GW veterans with both mTBI and other GW-relevant exposures have a greater 
impact on the microstructural integrity in the brain compared to subjects without mTBI. This suggests 
that potentially brain damaging exposure could be present in veterans exposed to both mTBI and 
other risk factors.
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- Microstructural profiles in the brain can also provide key information to understanding neuronal
degenerative and/or regenerative mechanisms in normal and pathological aging processes. Synaptic
loss and microgliosis have been demonstrated to be the earliest features, even preceding neuronal loss
and tangle formation, in a tauopathy mouse model, suggesting the importance of understanding the
microstructural profiles that characterize the early events of human tauopathies (Yoshiyama et al.,
2007). Furthermore, alterations in synaptic/dendritic compartments are tied to tau pathology in both
Alzheimer’s disease (AD) and frontotemporal dementia (FTD), while linkage to Aß was found only
in AD (Ittner et al., 2018).

- In this project, we have found promising “hints” that the novel multi-compartmental diffusion
markers can provide key information to understand the neuro-immune interactions by capturing
microstructural change. Considering the neuroimmune component in Alzheimer’s disease and related
dementia, the data obtained here suggest that these markers can be valuable for deriving
microstructural information in those cohorts to obtain further insights in-vivo.

-Predicting the progression of AD is challenging, and the classifiers generally achieved an accuracy
ranging from 70-80% using only conventional MRI features. The ML framework using novel MRI
markers suggested in this project can be a potential solution to improve the performance.

What was the impact on technology transfer?    

The software package is opened to the GWI research community through collaborations to support 
building more practical and robust clinical applications of GWI. 

What was the impact on society beyond science and technology? 

- Providing the objective markers with a sophisticated computational framework on a single subject 
level diagnosis can help improve clinical decisions and further development of clinical protocols for 
finding better cure for GWI. Biomarkers can also be used to validate a patient’s self-report.
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5. CHANGES/PROBLEMS:  

Changes in approach and reasons for change 

Nothing to report. 

Actual or anticipated problems or delays and actions or plans to resolve them 

We initially planned for analyzing CSF biomarkers, however, the collected sample size was not 
sufficient for the analysis. To address this issue, we used TSPO-PET as an alternate CNS immune 
marker and applied it to our validation work on diffusion markers. Selective diffusion markers were 
highly correlated with TSPO-PET and applied for ML classification.  

Changes that had a significant impact on expenditures 

Nothing to report. 

Significant changes in use or care of human subjects, vertebrate animals, biohazards, and/or 
select agents 

Nothing to report. 
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Significant changes in use or care of human subjects 

Nothing to report. 

Significant changes in use or care of vertebrate animals 

Nothing to report. 

Significant changes in use of biohazards and/or select agents 

Nothing to report. 

6. PRODUCTS:  

● Publications, conference papers, and presentations

Journal publications.  

1. Koo BB*, Michalovicz LT, Calderazzo S, Kelly KA, Sullivan K, Killiany RJ, O''Callaghan 
JP. Corticosterone potentiates DFP-induced neuroinflammation and affects high-order diffusion 
imaging in a rat model of Gulf War Illness. Brain Behav Immun. 2017 Aug 04. (*1st and 
corresponding author)

2. Cheng CH, Koo BB*, Calderazzo S, Quinn E, Aenlle K, Steele L, Klimas N, Krengel M, 
Janulewicz P, Toomey R, Michalovicz LT, Kelly KA, Heeren T, Little D, O’Callaghan JP, Sullivan 
K. Alterations in high-order diffusion imaging in veterans with Gulf War Illness is associated with
chemical weapons exposure and mild traumatic brain injury. Brain Behav Immun. 2020 Oct; 
89:281-290. *corresponding 
3. Guan Y, Cheng C-H, Chen W, Zhang Y, Koo S, Krengel M, Janulewicz P, Toomey R, Yang
E, Bhadelia R, Steele L, Kim J-H, Sullivan K, Koo BB*. Neuroimaging Markers for Studying Gulf-
War Illness: Single-Subject Level Analytical Method Based on Machine Learning. Brain Sciences.
2020; 10(11):884. doi:10.3390/brainsci10110884  PMCID: PMC7699718 *corresponding
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4. Keating, D., Zundel, C.G., Abreu, M., Krengel, M., Aenlle K., Nichols, D., Toomey, R., 
Chao, L.L., Golier, J., Abdullah, L., Quinn, E., Heeren, T., Groh, J., Koo, B.B., Killiany, R., Loggia 
L.M., Younger, J, Baraniuk, J., Janulewicz, P, Ajama, J. Quay, M., Baas, P., Qiang, L., Conboy,
L., Kokkotou, E., O’Callaghan, J., Steele, L., Klimas, N., Sullivan, K*, Boston Biorepository,
Recruitment and Integrative Network (BBRAIN): A Resource for the Gulf War Illness Scientific
Community, Life Sciences, Accepted.
5. Steele L*,  Klimas N, Krengel M, Quinn E, Toomey R, Little D, Abreu M, Aenlle K, Koo
BB, Killiany R, Janulewicz P, Heeren T, Clark AN, Ajama J, Cirillo J, Buentello G, Lerma V,
Sullivan K, Brain Sciences, Accepted.
6. Cheng C-H, Alshelh Z, Guan Y, Loggia LM, Sullivan K, Koo BB*, Association of the
tissue microstructural diffusivity and translocator protein PET in Gulf War Illness, Brain Behav
Immun. Health. In-review (2nd round) - draft attached in the end of this document. *corresponding 

Books or other non-periodical, one-time publications.  

Nothing to report. 

Other publications, conference papers and presentations.  

1. Koo et al., A comparison of different brain connectivity markers for classifying Gulf-war 
illness, International Society of Magnetic Resonance in Medicine (ISMRM), Abstract, Poster 
Presentation, 2018 
2. Multimodal MRI imaging protocol introduced to Philips Medical Systems in ISMRM user
group meeting (slide attached).
3. Cheng J, Little D, Steele L, Heeren T, Killiany R, Sullivan K, Koo B*, Preliminary 
evaluation of diffusion imaging features for classifying veterans with Gulf war illness, International 
Neurological Society, Abstract, Poster Presentation 2019 
4. Koo BB, Presentation on Gulf War Illness Imaging Protocol in the External Advisory Board
(EAB) meeting, June 14th 2018.
5. Koo B, Cheng C, Little D, Steele L, Heeren T, Sullivan K, Mild TBI during war is
associated with further microstructural alterations in the cortical gray and white matter in 1991 Gulf
War Veterans with Gulf War Illness, World Congress on Brain Injury, Oral Presentation 2019.
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6. Clara G. Zundel, R. Killiany, B. Koo, M. Krengel, R. Toomey, J. Ajama, P. Janulewicz-
Lloyd, M. Abreu, T. Heeren, E. Sisson, D. Little, L. Steele, N. Klimas and K. Sullivan, Objective
Biomarkers of Gulf War Illness: White Matter Microstructural Integrity, Cognition, and Blood
Biomarkers in Gulf War Veterans, International Neurological Society, Abstract, Poster Presentation 
2019 
7. Koo BB, Multi-modal diffusion MRI and Machine Learning, Invited Seminar, Dept. of
Biomedical Engineering, Hanyang University, Seoul Korea. 2020.
8. Koo BB, VA-DoD Gulf War Illness SOTS Virtual Conference 2020 Oral Presentation -
Multi-modal MRI imaging Boston GWIC Consortium 

● Website(s) or other Internet site(s)

Nothing to report. 

● Technologies or techniques

Multi-modal MRI processing pipeline was designed for studying GWI and is available for 
BBRAIN data.  

● Inventions, patent applications, and/or licenses

Nothing to report. 
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● Other Products

Brain-imaging features and Informatics package for Gulf war illness (BIG): available through 
collaboration. 

7. PARTICIPANTS & OTHER COLLABORATING ORGANIZATIONS

What individuals have worked on the project? 

Name: Bang-Bon Koo  

Project Role: Principal Investigator / No Change 

Name: Kimberly Sullivan 

Project Role: Co-investigator / No Change 

Name: Ron Killiany 

Project Role: Co-investigator / No Change 

Name: Timothy Heeren 

Project Role: Co-investigator / No Change 

Name: Jasmine Cheng 

Project Role: Research Technician 
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Researcher Identifier (e.g. 
ORCID ID): 

Nearest person month 
worked: 12 

Contribution to Project: Ms. Cheng has been working on software programming, data 
processing and organizing the imaging measurement outcomes. 

Funding Support: 

Name: Guan Yi 

Project Role: Research Assistant (Graduate Student) 

Researcher Identifier (e.g. 
ORCID ID): 

Nearest person month 
worked: 3 

Contribution to Project: Ms. Yi performed work on working on data processing and 
programming. 

Funding Support: Started supporting on July 2019. 

Has there been a change in the active other support of the PD/PI(s) or senior/key personnel 
since the last reporting period?  

Nothing to report. 

What other organizations were involved as partners?    

- Organization Name: Baylor College of Medicine
Location of Organization: One Baylor Plaza, Houston TX 77030
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Partner's contribution to the project: Consultant 
Financial support: none 
In-kind support (e.g., partner makes software, computers, equipment, etc., available to 
project staff): Discussions on the project 
Facilities: None 
Collaboration: responsible for managing the Texas site data and consulting on GWI 
symptoms on this project. 
Personnel exchanges  
Other. 

- Organization Name: Nova Southeastern University
Location of Organization: 3301 College Ave, Fort Lauderdale, FL 33314
Partner's contribution to the project: Consultant
Financial support: none
In-kind support (e.g., partner makes software, computers, equipment, etc., available to
project staff): Discussions on the project
Facilities: None
Collaboration: consulting immunogenetics part on this project.
Personnel exchanges
Other.

8. SPECIAL REPORTING REQUIREMENTS

COLLABORATIVE AWARDS: 

Nothing to report. 
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9. APPENDICES:

a. References cited

b. Software manual

c. Publication & Presentation materials
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Overview 

BIG is a cross-platform, interactive graphical user interface (GUI) designed for the Gulf War 
Illness (GWI) research community to provide GWI-specific clinical inferences based on robust 
clinical and neuroimaging data from multiple GWI research sites. The BIG GUI is designed for 
the display, analysis, and diagnostic inferencing of structural, diffusion, and functional measures 
for GWI, using subject-specific GW-related and health-related information.  

In the current version, BIG provides a summary of measures from all subjects used for 
developing the GUI and has additional options for users to input new subject data, either 
clinical symptom scores or specific neuroimaging data, to provide inferences on GWI-related 
brain alterations or predictions on GWI case status.  

Installing the GUI: 
Download and unzip MyAppInstaller_web.zip from GitHub and follow the installation 

instructions. 
Requirements:  

MATLAB Runtime Compiler R2021a (9.10) (Note: This will be downloaded if you follow 
the instructions in the MyAppInstaller_web.zip) 
To start the GUI:  

Double click the GUI icon once installation is complete. 

Note: The BIG GUI is still being developed and we are working on improving its functionality 
and practicality for the GWI research community. Currently we are sharing the OSX compiled 
version, Windows and Linux versions will be available in the next distribution. To report any 
errors or provide any feedback, please email Jasmine Cheng at chiahsin@bu.edu.  

BIG GUI is free for research collaborative purposes under the Attribution-NonCommercial-
ShareAlike 4.0 International (CC BY-NC-SA 4.0) license.  
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Gulf War Illness Consortium results overview - Step 1: Select one group for 
display

The Overview tab lists 15 groups for display, including a whole group analysis that compared 
GWI cases and controls based on the Kansas GWI criteria. The other 14 subgroups compared 
GWI cases (KS criteria) with specific wartime exposures or health risk factors to GW controls. 11 
GW-related wartime exposures were defined by self-reported questionnaire responses that 
asks GW veterans about their experiences/exposures to specific wartime exposures (Steele, 
2000). 3 health related risk factors were defined by GW veterans’ self-reported responses on 
whether they are diagnosed with the specific health risk factor. Some wartime exposures were 
combined to provide a more holistic result.  
All group comparisons are performed by age and sex-controlled general linear models, diffusion 
measures (ND&OD) are controlled for site variances additionally.  
Once users select a group to view, the bar graph in the middle panel displays the percentage of 
regions of interest (ROI) that showed significant patterns in group analysis (p<0.05), the number 
on top of each bar lists the actual number of ROIs that showed significant group differences. 
The numbers in parentheses indicate the total number of ROIs for each measure. For gray 
matter (GM) and T1 measures, it also displays an additional red bar for 18 paralimbic ROIs 
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(caudal anterior cingulate, entorhinal, fusiform, isthmus cingulate, parahippocampal, posterior 
cingulate, precuneus, rostral anterior cingulate, insula).  
The default selection shows the Whole group bar graph, and the WM ND superior whole brain 
results in the bottom panel.  
When None is selected for the Correlation Analysis panel, the color bar displays the t-statistic of 
the significant (p<0.05) ROIs.  
Lastly, ROIs that showed significant group differences after doing the false discovery rate (FDR) 
test are given a higher opacity value in the brain rendering figure (Benjamini and Hochberg, 
1995).  
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Gulf War Illness Consortium results overview - Step 2: Select one measure 
for display 

6 different brain imaging measures are available for users to select for display: GM and WM 
neurite density measures (ND), orientation dispersion measures (OD), T1 volumetric measures, 
and resting state functional network measures (RSN).  
20 WM tracts are defined based on the JHU WM tractography atlas.  
68 T1 ROIs are defined based on DKT cortical parcellation atlas.  
78 GM ROIs are defined by the 68 cortical ROIs from the DKT atlas plus 10 subcortical ROIs (5 
per hemisphere: hippocampus, thalamus, amygdala, anterior amygdala, putamen).  
12 RSNs are average resting state functional network connectivity measures defined by the 
Cole-Anticevic Brain-wide Network Partition (CAB-NP; Ji et al., 2019).  
ND and OD diffusion imaging measures that estimate microscale intracellular diffusivity and the 
spatial configuration of neurites, respectively (Cheng et al., 2020).  
T1 volume measures are processed and extracted from FreeSurfer T1 reconstruction pipeline 
(Fischl, 2012).   
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Gulf War Illness Consortium results overview - Step 3: Select brain view 

For all six measures, users have 6 view options: superior, inferior, anterior, posterior, left lateral 
(Lateral -L), and the right lateral (Lateral - R) view. 
For GM and T1 measures, users can also opt to view only the left or right hemisphere for better 
visualization of subcortical and medial brain structures.  
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Gulf War Illness Consortium results overview - Step 4: Additional result 
options – correlation analysis display 

In addition to group comparisons, users can view the correlation results between the selected 
brain imaging measure and 1 out 9 different GW-related symptomatic measures: 
Multidimensional Fatigue Inventory (MFI), Pittsburgh Sleep Quality Index (PSQI), pro- and anti-
inflammatory, TNFR1, and TNFR2 cytokines, Kansas GWI criteria neurological, pain, fatigue, 
skin, gastrointestinal, and respiratory domains.  
Once users select a measure in the Correlation Analysis panel, the brain rendering figure in the 
middle will display the ROIs that are significant in both group analysis and correlation analysis, 
and the color bar will display the range of Pearson’s rho values of the significant ROIs.  
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Gulf War Illness Consortium results overview - Step 5: Additional result 
options – export results 

The Results Summary tab lists out the bar graph results for the selected group in text format 
and displays the statistical results of the selected measure as a scrollable table. Significant 
(p<0.05) ROIs are highlighted in red and paralimbic ROIs are marked with an asterisk (*) sign 
next to the ROI names.  
Lastly, users have the option to view the results in text/table summarized format in the “Results 
Summary” tab, export statistical results as a csv file, or export the bar graph or 3D brain figures 
as png files.  
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Single subject resting state network inferencing – Subject demographics 
and clinical data input

The Single Subject Score – Biomarker Analysis tab allows users to simulate brain alterations 
based on single subject demographics, symptom scores, and available wartime exposure 
information.  
In the current version, we provide simulation based on generalized linear models for RSN 
measures. The models were built using subjects from GWIC, controlled for age and gender.  
Networks of interest included the somatomotor, language, frontoparietal, cingulo-opercular, 
and default mode networks.  
Available models were prescreened based on correlation analyses between RSNs and each self-
reported symptom score, using each wartime exposure as subgroup criteria. Correlations with 
p-values less than 0.001 and rho values greater than 0.3 or less than -0.3 were selected and
built as available models.
The GUI will search through available models based on user’s inputs and select the best model
for each RSN (lowest p-value) based on significance levels from correlation analyses and display
the total available models along with prediction results, listing each available RSN model and
each model’s accuracy level.
For “Pesticide cream” and “Pesticide uniform” exposures, in addition to the binary (Yes and No)
options, users have an extra option if the subject’s exposure duration is longer than 31 days. If



11 

this option is selected, the BIG GUI will search through all available models for both “Yes (any 
duration)” and “Yes (31 days or more)” and return the best model prediction. 
In addition, we used the 30th percentile as a threshold: network measure lower than the 
threshold is considered to be severely altered. The GUI displays the number of RSN below the 
threshold and list each RSN in the textbox.  
The GUI provides a brain rendering of the RSNs below the threshold, each network is plotted in 
a different color.  
Once users fill in all available information, click the “Run analysis” button and the GUI will 
display the results on the side. 
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Machine learning classification for Gulf War Illness case prediction - Step 1: 
Subject demographics data input and imaging measure import 

The MRI – GWI Analysis tab is designed for users who have diffusion or T1 volumetric data to 
import their single subject measure, select applicable wartime exposure or health risk factors to 
predict the GWI status of the given subject.  
The current version provides GWI case status prediction for the Kansas GWI criteria and the 
CDC GWI criteria and displays the probability of GWI case status of the given subject. The 
prediction is calculated by a canonical correlation forest (CCF; Rainforth and Wood, 2015) 
model using subjects from GWIC.  
The current version allows users to import 1 of the 3 brain imaging measures: T1 volume, WM 
OD, or DTI mean diffusivity (MD). User imported measure should be a 1 (row) by n (column) (n 
= number of ROIs for the selected measure) Excel spreadsheet. Users can select a file by clicking 
the Import measures button.  
Compatible brain imaging measures can be created by (1) our in-house image processing 
pipeline that will be available upon request, (2) T1 volume measures can be extracted by 
FreeSurfer T1 reconstruction pipeline, DTI MD measures can be extracted by FSL TBSS steps, 
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and WM OD measures can be created by using our in-house diffusion processing script 
(available upon request).  
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Machine learning classification for Gulf War Illness case prediction - Step 2: 
Run and interpret prediction results 

Once users hit the “Run Prediction” button, the GUI will start running the prediction. A message 
box will pop up while the prediction is running.  
The GUI displays the classifier accuracy (red circle), which is calculated by a 10-fold cross 
validation process. In specific, subject data available from our repository are randomly 
separated into training (9-folds) and testing (1-fold) sets, where the model was first trained 
using training set, and then tested on the testing set for estimating performance. This process is 
repeated 10 times and the average accuracy is calculated and reported. The bar graphs display 
the predicted GWI case status probability based on users’ imported measures and selections. 
The 3D brain figures display the ROIs that are selected as significant features for the classifier.   
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Glossary
DTI: Diffusion tensor imaging 
GM: Gray matter 
GWI: Gulf War Illness 
MFI: Multidimensional Fatigue Inventory 
ND: Neurite density measure 
OD: Orientation dispersion measure 
RSN: Resting state functional network 
WM: White matter 
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Abstract

Veterans of the 1991 Gulf War were potentially exposed to a variety of toxic chemicals, including 

sarin nerve agent and pesticides, which have been suspected to be involved in the development of 

Gulf War Illness (GWI). Several of these exposures cause a neuroinflammatory response in mice, 

which may serve as a basis for the sickness behavior-like symptoms seen in veterans with GWI. 

Furthermore, conditions mimicking the physiological stress experienced during the war can 

exacerbate this effect. While neuroinflammation has been observed post-exposure using animal 

models, it remains a challenge to evaluate neuroinflammation and its associated cellular and 

molecular changes in vivo in veterans with GWI. Here, we evaluated neuroimmune-associated 

alterations in intact brains, applying our existing GWI mouse model to rats, by exposing them to 4 

days of corticosterone (CORT; 200 mg/L in the drinking water), to mimic high physiological 

stress, followed by a single injection of the sarin nerve agent surrogate, diisopropyl 

fluorophosphate (DFP; 1.5 mg/kg, i.p.). Then, we evaluated the neuroinflammatory responses 

using qPCR of cytokine mRNA and also examined brain structure with a novel high-order 

diffusion MRI. We found a CORT-enhancement of DFP-induced neuroinflammation, extending 

our mouse GWI model to the rat. High order diffusion MRI revealed different patterns among the 

different treatment groups. Particularly, while the CORT + DFP rats had more restricted spatial 

patterns in the hippocampus and the hypothalamus, the highest and most wide-spread differences 

were shown in DFP-treated rats compared to the controls in the thalamus, the amygdala, the 

piriform cortex and the ventral tegmental area. The association of these diffusion changes with 

neuroinflammatory cytokine expression indicates the potential for GW-relevant exposures to result 

in connectivity changes in the brain. By transferring this high order diffusion MRI into in vivo 
imaging in veterans with GWI, we can achieve further insights on the trajectories of the 

neuroimmune response over time and its impacts on behavior and potential neurological damage.

*Corresponding author at: Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA. 
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1. Introduction

More than 25 years after the 1991 Gulf War, nearly one-third of the 697,000 U.S. troops 

who served continue to suffer from a complex, multi-symptom illness that is not well-

explained by established medical or psychiatric diagnoses (White et al., 2016). The 

similarity of the symptoms associated with Gulf War Illness (GWI) to the classic symptoms 

of sickness behavior, including fatigue, chronic pain, memory complaints, and headaches, 

has high-lighted the possibility for GWI to be driven by underlying neuroinflammation 

(Dantzer and Kelley (2007)).

DoD modeling estimates 100,000 U.S. troops were potentially exposed to low level sarin 

and studies have found a potential impact of sarin in veterans with GWI (White et al., 2016). 

Accordingly, we developed a GWI mouse model incorporating exogenous corticosterone 

(CORT), to mimic physiological stress, and acute exposure to diisopropyl fluorophosphate 

(DFP), to mimic sarin nerve agent exposure experienced by GW veterans. This paradigm 

resulted in a marked brain-wide neuroinflammatory response in the absence of evidence of 

brain damage (O’Callaghan et al., 2015), highlighting the potential for these exposures to 

contribute to an underlying neuroinflammatory condition in GWI. In addition to mimicking 

sarin, DFP shares chemical characteristics with other irreversible acetylcholinesterase, 

organophosphate compounds that veterans were exposed to during the Gulf War, like the 

insecticides chlorpyrifos and dichlorvos. As such, we have demonstrated the potential for 

both DFP, as a sarin surrogate, and chlorpyrifos to instigate similar neuroinflammatory 

responses following CORT pretreatment (Locker et al., 2017), supporting a role for these 

classes of compounds in the development of GWI.

To draw an in-depth relationship between altered neuroinflammatory response and sickness 

behavior shown in veterans with GWI, it is important to have a monitoring method which is 

minimally invasive and allows for the combined evaluation of immuno-logical and 

neurological consequences of the toxic insults. Currently, there are different ways to 

examine neuroinflammatory responses in vivo. Measuring cytokine levels in CSF 

(Lenzlinger et al., 2004) may allow for the identification of proinflammatory markers in 

GWI. Also, positron emission tomography (PET) imaging can offer brain physiological 

information in GWI (Yehuda et al., 2010). However, the high invasiveness of lumbar 

puncture to obtain CSF and the costliness and insensitivity of PET (e.g., see Vivash and 

O’Brien, 2016) creates limits to the usefulness of these methods to address 

neuroinflammation in veterans with GWI. In order to bridge the animal to human 

extrapolation gap, magnetic resonance imaging (MRI) has been used to assess neural 

structural changes in association with an altered immune response, such as that proposed to 

underlie GWI. Morphometric MRI analysis of veterans with GWI confirmed overall 

reduction in the grey matter (GM) (Chao et al., 2010) and white matter (WM) (Heaton et al., 
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2007; Chao et al., 2011), as well as a reduction in hippocampal and cortical GM volumes 

compared to healthy veterans (Chao et al., 2010). These regional morphometric changes 

have been tied to alterations in brain connectivity using diffusion MRI (Rayhan et al., 2013, 

Chao et al., 2011). Higher axial diffusivity measures have been reported in some WM major 

fiber pathways in the brains of GWI-suffering veterans. These findings may indicate that 

there are focal spots primarily involved in illness propagation in the brain; specifically, 

diffusion mapping may identify underlying structural and connectivity changes between 

brain cells (Anwander et al., 2010; McNab et al., 2013; Leuze et al., 2012).

2. Materials and methods

In this study, we expanded our established GWI mouse model (O’Callaghan et al., 2015; 

Locker et al., 2017) by exposing adult male Sprague Dawley rats (Hilltop Lab Animals, 

Scottdale, PA, USA) to CORT in the drinking water (200 mg/L in 0.6% EtOH) for 4 days, 

followed by a single injection of DFP (1.5 mg/kg, i.p.). Rats were sacrificed 6 h post-DFP 

by either decapitation for the evaluation of cortex cytokine mRNA (n = 5 rats/group), or by a 

fatal dose of pentobarbital-based euthanasia solution (Fatal Plus; 300 mg/kg, i.p.) followed 

by transcardial perfusion with 0.9% saline and fixation with 4% paraformaldehyde (n = 5 

rats/group) for MRI. Total RNA from the frontal region of one cortical hemisphere was 

isolated as previously described (Locker et al., 2017). Real-time PCR analysis of the 

housekeeping gene, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and of the 

proinflammatory mediators, TNFα, IL-6, CCL2, IL-1β, leukemia inhibitor factor (LIF), and 

oncostatin M (OSM) was performed in an ABI7500 Real-Time PCR System (Thermo Fisher 

Scientific, Waltham, MA, USA) in combination with TaqMan® chemistry as previously 

described (Locker et al., 2017). Relative quantification of gene expression was performed 

using the comparative threshold (ΔΔCT) method. Changes in mRNA expression levels were 

calculated after normalization to GAPDH. The ratios obtained after normalization are 

expressed as fold change over corresponding saline-treated con- trols and two-way ANOVAs 

(pretreatment [water or CORT]× exposure [saline or DFP]; p ≤0.05) were conducted on log 

transformed values using SigmaPlot v12.5 (Systat Software, Inc., San Jose, CA, USA). If 

statistical significance was detected between groups by two-way ANOVA, then Bonferroni 

post hoc analysis (statistical significance, p ≤ 0.05) was performed to evaluate the statistical 

significance of all pairwise multiple comparisons. For diffusion MRI imaging analysis, 

paraformaldehyde-perfused brains were scanned for 10 h on a 4.7 T Bruker MRI with an 

applied diffusion weighted spin-echo echo planar imaging sequence (SE-EPI) with the 

following parameters: 500 lm isotropic voxel, coronal slice acquisition with 515 independent 

diffusion gradient directions using b-values up to 40,000 s/mm2 (Wedeen et al., 2008). For 

each brain, five non-diffusion weighted (b0) images were averaged to perform pre-

processing of the raw diffusion scans and a modified in-house processing pipeline (Koo et 

al., 2013) was used to perform sequential pre-processing steps on the data. Q-space imaging 

method (Yeh et al., 2010) were used for the reconstruction of diffusion parameters. Three 

dimensional probability information on the diffusion displacement was calculated in each 

voxel in the brain scans and then formed the spin distribution function. Micro-scale 

diffusivity was modeled for partial diffusion encoding length based on the weighted sum of 

partial spin distributions below upper bound of the diffusion displacement (Yeh et al., 2016). 
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In this study, we applied 2 μm, 10 μm and 20 μm upper bounds for calculating the micro-

scale diffusivity maps. We also calculated generalized fractional anisotropy (GFA) based on 

the spin distribution in q-space reconstruction. GFA has been used for quantifying 

microstructural integrity (similar to fractional anisotropy in diffusion tensor imaging) for q-

space diffusion imaging. From the pre-processing, all diffusion indices on each brain were 

nonlinearly transformed to the atlas space to perform group-level statistics and all brain 

images were smoothed based on the Gaussian kernel (1.5 mm FWHM). Regional impacts 

were highlighted using unpaired group statistics between controls and the other groups 

(CORT, DFP, CORT+DFP) per each diffusion index separately. We conducted permutation-

based random effect corrections for multiple comparison corrections with 5000 permutations 

to correct for possible random effects. Voxels with significant differences were defined by p 

< 0.05 and significant clusters were then mapped to the atlas to confirm anatomical 

information.

3. Results

Similar to our mouse model (O’Callaghan et al., 2015), we found that not only does DFP 

alone increase the expression of several of the evaluated genes, but also that prior CORT 

exposure significantly exacerbated this response (Fig. 1). The micro-scale diffusivity 

mapping successfully differentiated either CORT and/or DFP responses in the brain (Fig. 

2A, first row) with higher micro-scale diffusivity values in the CORT, DFP, and CORT+DFP 

groups compared to controls (Fig. 2B). Among the diffusion upper bounds evaluated (Fig. 

2A, second row), the 10 lm partial diffusion encoding revealed more statistically significant 

group differences, identifying more widespread clusters covering the hippocampus and outer 

cortices in the CORT+DFP group over controls. Furthermore, while the CORT+DFP treated 

brains had more restricted patterns in the hippocampus and the hypothalamus, the highest 

and most widespread differences were shown in the thalamus, amygdala, piri-form cortex 

and ventral tegmental area of DFP-treated (corrected p < 0.001) followed by CORT-treated 

(corrected p<0.01) rats. Generalized fractional anisotropy (GFA) revealed less significant 

differences compared to the micro-scale diffusivity measures. Differences between the 

controls and DFP-treated brains had spatial pattern overlap with the micro-scale diffusivity 

mapping results in regions including the medial frontal and hippocampal regions (Fig. 2 

third row), whereas CORT and CORT+DFP had distinct patterns compared to their micro-

scale mapping results.

4. Discussion

Here, we have shown that the CORT-enhanced DFP-induced neuroinflammatory model 

developed for the mouse (O’Callaghan et al., 2015) can be extended to the rat and that 

diffusion MRI can successfully differentiate between the exposure conditions of this GWI 

model. We have demonstrated previously that our model of GWI is an instigation of 

neuroinflammation without evidence of brain damage. This has been shown previously with 

immunohisto-chemistry at relevant, short-term time points in mice (O’Callaghan et al., 

2015) through an absence of positive silver stain and Fluoro-Jade markers for degenerating 

neurons, as well as a lack of changes in microglia or astrocytes. Similar results have been 

confirmed in our rat model at comparable time points (unpublished data). Therefore, at this 
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early time point, we have shown the neuroinflammatory potential of DFP and CORT+DFP 

exposure in the absence of damage. Furthermore, what we have demonstrated here is that 

this neuroinflammatory response results in subtle, but differentiable changes in diffusion 

MRI, which highlights the ability to detect inflammatory-induced changes in MRI patterns 

early and without the requirement of severe damage to the brain tissue. Recent studies using 

similar diffusion parameters also reported successful discrimination of microstructural 

changes in neuronal or glial cell elements (Johnson et al., 2014, Blumenfeld-Katzir et al., 

2011). In addition, high-order diffusion MRI successfully captured statistically significant 

changes in diffusion indices in a rat model of mild traumatic brain injury as early as 2 h 

post-injury (Zhuo et al., 2012). While the current study evaluates early time points in 

relation to a chronic illness, these conditions model what we would hypothesize to have been 

experienced immediately following exposure in theater or the proposed initiating events of 

GWI. Various studies of long-term time points that are more closely relevant to the current 

condition of veterans with GWI are on-going in our rodent models of GWI. Future studies 

will aim to address the potential for this model of “in theater” exposure conditions to 

progress into the chronic condition we associate with GWI and evaluate how these early 

diffusion changes may correlate or predict MRI results in a long-term model of GWI.

By using higher-order diffusion MRI, the limitations in the ability to assess minor changes 

in subcellular components typically associated with clinical diffusion MRI (typically, around 

b = 1000 s/mm2) can be avoided (Palacios et al., 2014, Wang et al., 2015). Furthermore, the 

addition of GFA mapping, which is a common index for assessing the intactness of white 

matter tracts, revealed different patterns than the micro-scale assessments, indicating that 

exposure to DFP may affect micro-structural changes in major cortical connections. While 

more work is needed to understand how these patterns directly correlate to 

neuroinflammation, the identification of these unique MRI patterns in our GWI rodent 

model indicates the potential for underlying neuroinflammation to be associated with 

morphological and/or connectivity changes in neurons and glia. Considering that published 

and preliminary immunohistochemistry studies in both mice (O’Callaghan et al., 2015) and 

rats (unpublished data) have indicated no major, macroscopic changes indicative of cell 

death or morphological alterations of neurons or glia, we would hypothesize that these 

diffusivity changes are the result of more microscale changes in morphology like the 

arborization of dendrites or glial processes. These would be subtle changes in response to 

neuroinflammation that do not result in traditional, damage-induced “activation” of either 

microglia or astrocytes. Overall, since the high-order diffusion imaging protocol is also 

available to 3T clinical scanners, these results help to establish high-order diffusion MRI as 

a means to evaluate subtle ultra-structural changes in neural cells, which may be associated 

with in vivo neuroinflammation, in veterans with GWI.

Acknowledgments

Drs. Koo and Michalovicz contributed equally to this work. We appreciate the excellent technical assistance 
provided by Samantha Calderazzo, Brenda K. Billig and Christopher M. Felton. This work is supported by a 
department of Defense CDMRP GWI consortium award (W81XWH-13-2-0072). Disclaimer: The findings and 
conclusions in this report are those of the author(s) and do not necessarily represent the views of the National 
Institute for Occupational Safety and Health. This work was supported by the Assistant Secretary of Defense for 
Health Affairs, through the Gulf War Illness Research Program, GW120037. Opinions, interpretations, conclusions 
and recommendations are those of the author and are not necessarily endorsed by the Department of Defense.

Koo et al. Page 5

Brain Behav Immun. Author manuscript; available in PMC 2019 February 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



References

Anwander A, Pampel A, Knosche TR, 2010 In vivo measurement of cortical anisotropy by diffusion 
weighted imaging correlates with cortex type. Proc. Int. Soc. Magn. Reson. Med 18, 109.

Blumenfeld-Katzir T, Pasternak O, Dagan M, Assaf Y, 2011 Diffusion MRI of structural brain 
plasticity induced by a learning and memory task. PLoS ONE 6 (6), e20678. [PubMed: 21701690] 

Chao LL, Abadjian L, Hlavin J, Meyerhoff DJ, Weiner MW, 2011 Effects of low-level sarin and 
cyclosarin exposure and Gulf War Illness on brain structure and function: a study at 4T. 
NeuroToxicol. 32 (6), 814–822.

Chao LL, Rothlind JC, Cardenas VA, Meyerhoff DJ, Weiner MW, 2010. Effects of low-level exposure 
to sarin and cyclosarin during the 1991 Gulf War on brain function and brain structure in US 
veterans. NeuroToxicol. 31 (5), 493–501. 10.1016/j.neuro.2010.05.006.

Dantzer R, Kelley KW, 2007 Twenty years of research on cytokine-induced sickness behavior. Brain 
Behav. Immun 21 (2), 153–160. [PubMed: 17088043] 

Heaton KJ, Palumbo CL, Proctor SP, Killiany RJ, Yurgelun- Todd DA, White RF, 2007 Quantitative 
magnetic resonance brain imaging in US army veterans of the 1991 Gulf War potentially exposed to 
sarin and cyclosarin. Neurotoxicology 28 (4), 761–769. [PubMed: 17485118] 

Johnson GA, Calabrese E, Little PB, Hedlund L, Qi Y, Badea A, 2014 Quantitative mapping of 
trimethyltin injury in the rat brain using magnetic resonance histology. Neurotoxicology 42, 12–23. 
[PubMed: 24631313] 

Koo B-B, Oblak AL, Zhao Y, Farris CW, Bowley B, Rosene DL, Killiany RJ, 2013 Hippocampal 
network connections account for differences in memory performance in the middle-aged rhesus 
monkey. Hippocampus 23 (12), 1179–1188. [PubMed: 23780752] 

Lenzlinger PM, Hans VHJ, Joller-Jemelka HI, Trentz O, Morganti-Kossmann MC, Kossmann C, 2004 
Markers for cell-mediated immune response are elevated in cerebrospinal fluid and serum after 
severe traumatic brain injury in humans. J. Neurotrauma 18 (5), 479–489.

Leuze CW, Anwander A, Bazin PL, Stüber C, Reimann K, Geyer S, Turner R, 2012 Layer specific 
intracortical connectivity revealed with diffusion MRI. Cereb. Cortex 24 (2), 328–339. [PubMed: 
23099298] 

Locker AR, Michalovicz LT, Kelly KA, Miller JV, Miller DB, O’Callaghan JP, 2017 Corticosterone 
primes the neuroinflammatory response to Gulf War Illness-relevant organophosphates 
independently of acetylcholinesterase inhibition. J. Neuorchem 10.1111/jnc.14071.

McNab JA, Polimeni JR, Wang R, Augustinack JC, Fujimoto K, Stevens A, Janssens T, Farivar R, 
Folkerth RD, Vanduffel W, Wald LL, 2013 Surface based analysis of diffusion orientation for 
identifying architectonic domains in the in vivo human cortex. NeuroImage 69, 87–100. [PubMed: 
23247190] 

O’Callaghan JP, Kelly KA, Locker AR, Miller DB, Lasley SM, 2015 Corticosterone primes the 
neuroinflammatory response to DFP in mice: potential animal model of Gulf War Illness. J. 
Neurochem 133 (5), 708–721. [PubMed: 25753028] 

Palacios RDY, Verhoye M, Henningsen K, Wiborg O, Van der Linden A, 2014 Diffusion kurtosis 
imaging and high-resolution MRI demonstrate structural aberrations of caudate putamen and 
amygdala after chronic mild stress. PLoS ONE 9 (4), e95077. [PubMed: 24740310] 

Rayhan RU, Stevens BW, Timbol CR, Adewuyi O, Walitt B, VanMeter JW, Baraniuk JN, 2013 
Increased brain white matter axial diffusivity associated with fatigue, pain and hyperalgesia in 
Gulf War illness. PLoS ONE 8 (3), e58493. [PubMed: 23526988] 

Vivash L, O’Brien TJ, 2016 Imaging microglial activation with TSPO PET: lighting up neurologic 
diseases? J. Nucl. Med 57 (2), 165–168. [PubMed: 26697963] 

Wang Y, Sun P, Wang Q, Trinkaus K, Schmidt RE, Naismith RT, et al., 2015 Differentiation and 
quantification of inflammation, demyelination and axon injury or loss in multiple sclerosis. Brain 
138 (5), 1223–1238. [PubMed: 25724201] 

Wedeen R, Wang J, Schmahmann T, Benner W, Tseng G, Dai D, Pandya P, Hagmann Arceuil H de 
Crespigny A, 2008 Diffusion spectrum magnetic resonance imaging (DSI) tractography of 
crossing fibers. Neuroimage 41 (4), 1267–1277. [PubMed: 18495497] 

Koo et al. Page 6

Brain Behav Immun. Author manuscript; available in PMC 2019 February 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



White RF, Steele L, O’Callaghan JP, Sullivan K, Binns JH, Golomb BA, et al., 2016 Recent research 
on Gulf War illness and other health problems in veterans of the 1991 Gulf War: effects of toxicant 
exposures during deployment. Cortex 74, 449–475. [PubMed: 26493934] 

Yeh FC, Wedeen VJ, Tseng WY, 2010 Generalized q-sampling imaging. IEEE Trans. Med. Imaging 29 
(9), 1626–1635. [PubMed: 20304721] 

Yeh FC, Liu L, Hitchens TK, Wu YL, 2016 Mapping immune cell infiltration using restricted diffusion 
MRI. Magn. Reson. Med 77 (2), 603–612. [PubMed: 26843524] 

Yehuda R, Golier JA, Bierer LM, Mikhno A, Pratchett LC, Burton CL, et al., 2010 Hydrocortisone 
responsiveness in Gulf War veterans with PTSD: effects on ACTH, declarative memory 
hippocampal [18F]FDG uptake on PET. Psychiatry Res. 184 (2), 117–127. [PubMed: 20934312] 

Zhuo J, Xu S, Proctor JL, Mullins RJ, Simon JZ, Fiskum G, Gullapalli RP, 2012 Diffusion kurtosis as 
an in vivo imaging marker for reactive astrogliosis in traumatic brain injury. Neuroimage 59 (1), 
467–477. [PubMed: 21835250] 

Koo et al. Page 7

Brain Behav Immun. Author manuscript; available in PMC 2019 February 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Chronic CORT exacerbates DFP induced inflammation in rats. Effects of chronic CORT 

pretreatment (200 mg/L 0.6% EtOH in drinking water for 4 days) on DFP (1.5 mg/kg, i.p.) 

induced neuroinflammation in the cortex at 6 h post DFP exposure is shown with TNFα, 

IL-6, CCL2, IL-1β, LIF, and OSM qPCR. Data represents mean ± SEM (n = 5 rats/group). 

Statistical significance of at least p < 0.05 is denoted by * as compared within pretreatment 

(vehicle or CORT), # as compared within exposure (saline or DFP), and § for a significant 

interaction between pretreatment and exposure.
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Fig. 2. 
Microscale diffusivity mapping in CORT + DFP treated rats. Group differences in 

microscale diffusivity is shown in panel A. Statistically significant differences between 

controls and DFP treated rats are shown in the clusters with yellow color encodings. Green 

clusters are overlapped to the yellow clusters and indicates differences between controls and 

CORT-treated rats. Red clusters are overlapped to the previous two clusters and show 

differences between controls and CORT + DFP treated rats. We confirmed that diffusion 

encoding length at 10 lm had more sensitivity to detect statistically significant group 

differences in between controls and CORT + DFP treated rats as shown in the second row of 

panel A. Generalized fractional anisotropy maps revealed distinct patterns with lower 

statistical thresholds compared to the micro diffusivity maps (third row in panel A). Panel B 

shows quantification of micro diffusivities in the frontal cortex and the hippocampus. In both 

graphs, white and black bar in Veh section shows average micro-diffusivity value of each 

region of interest in saline and DFP accordingly. Also, white and black bar in CORT section 

shows average micro-diffusivity value of each region of interest in CORT and CORT + DFP. 

(For interpretation of the references to color in this figure legend, the reader is referred to the 

web version of this article.)
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A B S T R A C T

The complex etiology behind Gulf War Illness (GWI) has been attributed to the combined exposure to neuro-
toxicant chemicals, brain injuries, and some combat experiences. Chronic GWI symptoms have been shown to be 
associated with intensified neuroinflammatory responses in animal and human studies. To investigate the 
neuroinflammatory responses and potential causes in Gulf War (GW) veterans, we focused on the effects of 
chemical/biological weapons (CBW) exposure and mild traumatic brain injury (mTBI) during the war. We ap-
plied a novel MRI diffusion processing method, Neurite density imaging (NDI), on high-order diffusion imaging 
to estimate microstructural alterations of brain imaging in Gulf War veterans with and without GWI, and col-
lected plasma proinflammatory cytokine samples as well as self-reported health symptom scores. Our study 
identified microstructural changes specific to GWI in the frontal and limbic regions due to CBW and mTBI, and 
further showed distinctive microstructural patterns such that widespread changes were associated with CBW and 
more focal changes on diffusion imaging were observed in GW veterans with an mTBI during the war. In ad-
dition, microstructural alterations on brain imaging correlated with upregulated blood proinflammatory cyto-
kine markers TNFRI and TNFRII and with worse outcomes on self-reported symptom measures for fatigue and 
sleep functioning. 

Taken together, these results suggest TNF signaling mediated inflammation affects frontal and limbic regions 
of the brain, which may contribute to the fatigue and sleep symptoms of the disease and suggest a strong 
neuroinflammatory component to GWI. These results also suggest exposures to chemical weapons and mTBI 
during the war are associated with different patterns of peripheral and central inflammation and highlight the 
brain regions vulnerable to further subtle microscale morphological changes and chronic signaling to nearby 
glia.   

1. Introduction

About a third of the nearly 700,000 U.S. troops who served in the

Gulf War (GW) suffer from a complex, often debilitating symptomatic 
illness known as Gulf War Illness (GWI) (White et al., 2016). Symptoms 
of GWI typically include fatigue, chronic pain, memory and attention 

https://doi.org/10.1016/j.bbi.2020.07.006 
Received 6 March 2020; Received in revised form 11 June 2020; Accepted 8 July 2020    

⁎ Corresponding authors. 
E-mail address: bbkoo@bu.edu (B.-B. Koo).

1 co-1st authors.

Brain, Behavior, and Immunity 89 (2020) 281–290

Available online 31 July 2020
0889-1591/ © 2020 Elsevier Inc. All rights reserved.

T

http://www.sciencedirect.com/science/journal/08891591
https://www.elsevier.com/locate/ybrbi
https://doi.org/10.1016/j.bbi.2020.07.006
https://doi.org/10.1016/j.bbi.2020.07.006
mailto:bbkoo@bu.edu
https://doi.org/10.1016/j.bbi.2020.07.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bbi.2020.07.006&domain=pdf


problems, headaches, gastrointestinal and respiratory symptoms which 
encompass the six symptom domains of the National Academy of Sci-
ences recommended Kansas GWI criteria (Steele, 2000; National 
Academics of Sciences, Engineering, and Medicine, 2016). GWI has 
been associated with altered central nervous system (CNS) functioning 
(White et al., 2016). Chronic GWI symptoms are thought to develop as a 
result of a heightened innate immune response in the CNS to multiple 
exposures during the war including stress, neurotoxicant chemicals 
(organophosphate pesticides and nerve agents) and to other CNS in-
sults, such as mild traumatic brain injury (mTBI) (Gade and Wenger, 
2011; O’Callaghan et al., 2015; Rathbone et al., 2015; Yee et al., 2016; 
Yee et al., 2017; Janulewicz et al., 2018). mTBI as defined by the 
American Academy of Neurology has proven to be the most sensitive 
measure of mTBI in prior GWI research (Vynorius et al., 2016; Yee 
et al., 2016; Yee et al., 2017; Janulewicz et al., 2018). As such, the 
persisting symptoms of GWI have been hypothesized to coincide with a 
heightened, chronic neuroinflammatory reaction observed in animal 
models while increased blood levels of proinflammatory cytokines in 
veterans with GWI has also been reported (Whistler et al., 2009; 
O’Donovan et al., 2015, O’Callaghan et al., 2015; Khaiboullina et al., 
2014; Parkitny et al., 2015; Locker et al., 2017; Koo et al., 2018; Miller 
et al., 2018; Janulewicz et al., 2019). However, we are not aware of any 
publications to date examining microstructural integrity and neuroin-
flammatory responses by utilizing brain imaging techniques to focus on 
mTBI and organophosphate (OP) exposure in GWI veterans. 

Exposure to neurotoxicants including OP pesticides and sarin nerve 
agents has been a unique risk factor associated with GWI (Golomb, 
2008; White et al., 2016; Sullivan et al., 2017). In animal models, ex-
posure to OP nerve agents and pesticides, such as sarin and its surrogate 
diisopropyl fluorophosphate (DFP) and chlorpyrifos, was shown to 
produce neuroinflammation as indicated by increased proinflammatory 
cytokine signaling in the brain (Spradling et al., 2011; O’Callaghan 
et al., 2015; Locker et al., 2017). Neuroinflammatory cytokines were 
further associated with microstructural changes in the brain in the OP- 
exposed animal model of GWI indicating potential damage associated 
signaling and activation of proinflammatory cytokine release from 
nearby glia (Banks and Lein 2012; Koo et al., 2018). 

These microstructural changes need not reflect neuronal damage or 
apoptosis but could rather reflect more subtle microscale morphological 
changes including dendritic or glial cell arborization (Spradling et al., 
2011; Koo et al., 2018). In humans, brain morphometric analysis based 
on T1 weighted magnetic resonance imaging (MRI) scans of GW ve-
terans exposed to the chemical weapon sarin showed overall reductions 
in grey matter (GM) and selective reductions in hippocampal subfield 
volumes when compared with unexposed veterans (Chao et al., 2011, 
2015). In the white matter (WM), an overall reduction in tissue volume 
was observed in a dose–response manner in GW veterans with air 
plume-modeled exposure to sarin (Heaton et al., 2007). These WM 
volumetric changes in sarin exposed veterans have also been validated 
in other cohorts and correlated with cognitive outcomes (Proctor et al., 
2006; Chao et al., 2010). More recently, two investigations using dif-
fusion tensor imaging (DTI) have reported altered brain connectivity 
which correlated with fatigue, pain, or hyperalgesia in GW veterans 
with sarin exposure and in those with GWI (Rayhan et al., 2013; Chao 
et al., 2015). In both studies, enhanced axial diffusivity in the major 
WM tract pathways was suggested as a potential biomarker for GWI and 
was associated with more severe health symptom reporting (Rayhan 
et al., 2013; Chao et al., 2015). These findings indicate a structure–-
function relationship between WM changes and chronic health symp-
toms in GW veterans that may be related to chronic microglial activa-
tion and neuroinflammatory cytokine signaling from damaged neural 
cells including more subtle neurite microstructural alterations signaling 
to nearby glia (O’Callaghan et al., 2015; Banks and Lein, 2012; 
Rathbone et al., 2015). 

Mild traumatic brain injury (mTBI) is another factor that can pro-
duce a secondary neuroinflammatory response post-injury (Kumar and 

Loane; 2012, Rathbone et al., 2015). mTBI is the most common type of 
traumatic brain injury affecting military personnel. More than 15 per-
cent of returning members experienced mTBI (Hoge et al., 2008) and it 
has recently been shown to be highly prevalent (~30%) in the large, 
longitudinally-followed Ft. Devens cohort of GW veterans and in the 
Boston Gulf War Illness Consortium (GWIC) cohort of GW veterans 
(Hoge et al., 2008; Yee et al., 2016; Janulewicz et al., 2018). Increasing 
evidence suggests that a single mTBI may produce long-term pro-
gressive damage in GM and WM, and accelerate age-related neurode-
generation and neuroinflammatory signaling (Bramlett and Dietrich, 
2002; Smith et al., 2013; Rathbone et al., 2015; Chao, 2018). In addi-
tion, it has recently been shown that GW veterans with a mTBI history 
alone or in addition to sarin chemical weapons (CBW) exposure during 
the war are more likely to report persistent and debilitating chronic 
health symptoms and medical conditions suggesting that multiple 
mTBIs or a single mTBI and chemical weapons exposure act as multiple- 
hits to the neuroimmune system that primes stronger and longer neu-
roinflammatory signaling in those exposed (Yee et al., 2017; Janulewicz 
et al., 2018; O’Callaghan and Miller 2019). However, brain imaging 
outcomes in GW veterans with mTBI and with chemical weapons ex-
posures during the war and their effect on microscale morphological 
changes including dendritic or glial cell arborization and neuroin-
flammatory signaling have yet to be reported. 

We have previously demonstrated that high-order diffusion MRI 
showed a sensitivity to discriminate different stages of neuroin-
flammatory signaling in our established, OP exposed GWI animal model 
utilizing combined exposure to exogenous corticosterone at levels mi-
micking high physiological stress and the sarin surrogate, DFP (Koo 
et al., 2018). When combined with findings from other similar animal 
model studies, results suggest a strong brain-immune component to 
GWI that could be measured through brain imaging and peripheral 
blood immune markers and validated in GW veteran cohorts 
(O’Callaghan et al., 2015, Spradling et al., 2011). 

Neurite density imaging (NDI, Zhang et al., 2012) and Q-space 
imaging (Yeh et al., 2010) are two novel diffusion processing methods 
of the high-order diffusion MRI measures that have been shown to 
successfully detect local microscale diffusivity of axon and dendrite 
processes in animals and human studies of neurological disorders 
(Colgan et al., 2016, Zhang et al., 2012, Koo et al., 2018, McCunn et al., 
2019). NDI compartmentalizes the brain environment into three com-
ponents to sample microstructural diffusivity, and restricted diffusion 
imaging measure (RDI) in Q-space imaging method provides diffusion 
displacement in the three-dimensional space that could provide similar 
diffusion information of NDI by analyzing different boundaries in the 
three-dimensional space (Zhang et al., 2012; Yeh et al., 2010, 2017). 
Both NDI and RDI can provide detailed description of microscale dif-
fusivity of brain tissues and nearby free water space without applying 
predefined linear diffusion models as seen in conventional DTI ap-
proaches (Tuch, 2004; Zhang et al., 2012). Decomposing slow diffusion 
components with links to subneuronal, glial or extracellular compart-
ments may give detailed insights on pathophysiologic profile of disease. 

In this study, we investigate whether an NDI processing model of 
high-order diffusion MRI can successfully identify and validate the 
different levels of microstructural and macrostructural brain alterations 
previously seen in animal models of GWI by utilizing RDI (Koo et al., 
2018) and assessing how these patterns overlap in veterans with GWI 
from the Boston Gulf War Illness Consortium. We also assessed the 
relationship between brain imaging measures, blood neuroin-
flammatory markers, and self-reported health symptoms in veterans 
with GWI and GW control veterans. Lastly, we compared the separate 
and combined effects of mTBI and chemical weapons exposure on high- 
order microstructural diffusion MRI, blood neuroinflammatory mar-
kers, and health symptom outcomes. 
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2. Materials and methods

2.1. Participants

The study population included 91 GW veterans from the Boston 
University Gulf War Illness Consortium (GWIC). The GWIC is a multi- 
site study that includes a series of preclinical and clinical studies de-
signed to understand the pathobiological mechanisms responsible for 
the chronic symptoms of GWI and to identify diagnostic markers and 
targeted treatments for the disorder. GWIC inclusion criteria required 
deployment to the Persian Gulf between August 1990 and July 1991. 
GWIC exclusion criteria included diagnoses of chronic medical illnesses 
that could otherwise account for the symptoms experienced by GW 
veterans. These diagnoses included autoimmune, central nervous 
system, or major psychiatric disorders that could affect brain and im-
mune functions (e.g., epilepsy, stroke, severe head injury, brain tumor, 
multiple sclerosis, Parkinson’s disease, Alzheimer’s disease, schizo-
phrenia, bipolar disorder, and autoimmune disorders). Each of the 
study participants completed an assessment protocol including health 
surveys, a neuropsychological test battery, brain imaging, and collec-
tion of blood and saliva samples (Janulewicz et al., 2018). All partici-
pants provided written informed consent to participate in the study. 
This study was reviewed and approved by the Boston University in-
stitutional review board. 

2.1.1. Gulf war illness criteria 
GWI case status was defined from the Kansas GWI case definition 

(Steele, 2000). The Kansas GWI case definition requires GWI cases to 
endorse multiple or moderate-to-severe chronic symptoms in at least 
three of six statistically-defined symptom domains: fatigue/sleep pro-
blems, somatic pain, neurological cognitive/mood symptoms, gastro-
intestinal symptoms, respiratory symptoms and skin abnormalities 
(Steele, 2000). GWIC participants not meeting Kansas GWI or exclu-
sionary criteria were considered controls. Veterans were excluded from 
being considered GWI cases, for purposes of the research study, if they 
reported being diagnosed by a physician with medical or psychiatric 
conditions that would account for their symptoms or interfere with 
their ability to report their symptoms. 

2.1.2. Self-Reported mild traumatic brain injury (mTBI) 
To determine mTBI status, participants were given a concussion 

definition that follows the current guidelines from the American 
Academy of Neurology and was used in our prior GW veteran mTBI 
publications (Vynorius et al., 2016; Robbins et al., 2014; Seichepine 
et al., 2013; Janulewicz et al., 2018; Yee et al., 2016; Yee et al., 2017). 
Participants were provided with the mTBI definition and examples of 
common symptoms associated with mTBI and were then asked to report 
if they had experienced mTBI during their deployment, they were also 
asked to self-report how many mTBIs they had experienced during the 
war. 

2.1.3. Chemical/Biological weapon (CBW) exposure 
GWIC subjects were administered the Kansas Gulf War Experiences 

and Exposure Questionnaire, and the Structured Neurotoxicant 
Assessment Checklist (SNAC) to assess for deployment-related ex-
posures (Proctor et al., 1998; Steele 2000; Proctor et al., 2006). Self- 
reported exposures to chemical or biological weapons (CBWs) were 
obtained from the SNAC by asking the veterans whether or not they 
were exposed to CBWs during military service (Proctor et al., 1998). 

2.1.4. Demographics and health symptom surveys 
GWIC subjects were also administered a general demographic in-

formation and medical conditions questionnaire and the Kansas Gulf 
War and Health Questionnaire (Proctor et al., 1998; Steele 2000). Ad-
ditional validated health symptom surveys were completed by study 
participants and included the Multidimensional Fatigue Inventory 

(MFI-20), McGill Pain Inventory and the Pittsburgh Sleep Quality Index 
(PSQI) where higher scores indicated more symptoms (Buysse et al., 
1989; Smets et al., 1995; Melzack, 1975). 

2.1.5. Cytokines 
EDTA plasma was separated and stored at − 80 °C until assayed. 

Cytokines were measured with an 18-multiplex chemiluminescent assay 
using Quansys Q-view Imager LS 1.3 and reagents in methods pre-
viously reported (Fletcher et al., 2009). Each 18-multiplex plate was 
imaged at 500 sec, 270 sec, 180 sec, 120 sec. Following the manu-
facture’s protocol, the 270-sec images were used for further analysis. All 
plates were normalized by using an internal plasma control (pooled 
plasma from 50 men and 50 women). This internal control (IC) was run 
on each plate, average pg/ml was calculated for IC across plates and 
each plate normalized to the percent change from IC average. This 
normalization removes variability between plates. In instances when 
the cytokine expression was below the level of detection (BLD), the 
difference between the lower limit of detection and 0 was used. To 
determine if circulating proinflammatory cytokines levels were dif-
ferent between GWI cases and controls, plasma samples were examined 
by symptom group. In this study, chemiluminescent imaging con-
centrations of three cytokines in plasma samples were examined and 
compared to the brain imaging measures. Cytokines of interest were 
Interleukin 1 alpha (IL1ɑ), Tumor necrosis factor receptor type I 
(TNFRI) and Tumor necrosis factor receptor type II (TNFRII) based on 
previously demonstrated relationships between GWI and blood cyto-
kine measures (Jaundoo et al., 2018; O’Callaghan et al., 2015; 
Khaiboullina et al., 2014; Broderick et al., 2011). 

2.2. Image acquisition 

All MRI scans were performed on an Achieva 3 T whole-body MRI 
scanner (Philips Healthcare, Best, The Netherlands) in the center of 
biomedical imaging, Boston university school of medicine. 

2.2.1. T1 MPRAGE Acquisition: The Alzheimer’s disease neuroimaging 
initiative (ADNI) 

developed an MPRAGE sequence that was used for this study 
(TR = 6.8 msec, TE = 3.1 msec, flip angle = 9°, slice thick-
ness = 1.2 mm, 170 slices, FOV = 250 mm, matrix = 256 × 256). We 
used the MPRAGE scan to generate the anatomical regions of interest 
(ROI) for assessing morphometric differences between the groups and 
also to provide anatomical co-registration with the DTI and fMRI data 
sets. 

2.2.2. Diffusion MRI: The diffusion MRI data were obtained using a single- 
shot EPI sequence 

with multi-shell diffusion encoding (b-value used = 1000, 2000, 
and 3000 s/mm2). We used 124 gradient directions utilizing parallel 
imaging on a 16-channel parallel head coil (70 slices, TR = 13214 
msec, TE = 55 msec, with a matrix size of 128 × 128 yielding a re-
solution of 2.0 × 2.0 × 2.0 mm3, no slice gap). In 

addition to distortion corrections built into the scanner, we also 
collected 6 B0 field maps for further distortion correction. 

2.3. Image processing and anatomical defining 

2.3.1. Defining GM anatomy 
Defining anatomical structures in the cortex was the first step in 

analyzing brain images. MPRAGE structural scans were analyzed using 
FreeSurfer (Fischl, 2012) to obtain measures of volume, cortical 
thickness and surface geometry for each anatomical ROIs implemented 
in the brain atlas (Desikan et al., 2006). Seventy-eight ROIs defined in 
the average template space were co-registered to each subject’s cortical 
surface by applying nonlinear coregistration parameters. The results 
were visually inspected for artifacts or incomplete segmentation. A total 
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of seventy-eight cortical and subcortical ROIs were chosen for the 
analysis. 

2.3.2. Defining WM anatomy 
Diffusion MRI was registered to the structural MRI following the 

motion and eddy current distortion correction (Jenkinson et al., 2012). 
TRACULA (TRActs Constrained by UnderLying Anatomy) software was 
used to perform tract-based analysis on the preprocessed diffusion MRI 
data (Yendiki et al., 2011). Eighteen major white matter tracts were 
reconstructed for each subject. 

2.4. High-order diffusion processing 

To reconstruct microstructural information from high-order diffu-
sion MRI, Neurite Density Imaging (NDI) processing was performed on 
merged high-order diffusion MRI images containing 3 different b- value 
encodings (Zhang et al., 2012). NDI applies a two-level approach by 
separating the volume fraction of Gaussian isotropic diffusion, re-
presenting the cerebrospinal fluid (CSF) water component. Then, the 
remaining diffusion signal is sub-compartmentalized into components 
from intra and extra-neurite water (Zhang et al., 2012). This modeling 
procedure provides a neurite density (ND) index, a fraction of tissue 
composed of axons or dendrites, and the fraction of tissue other than 
neurites. Orientation dispersion (OD) index provides the spatial con-
figuration of the neurite structures based on the composite pattern of 
intra and extracellular diffusivity. Both ND and OD measures in each 
voxel were merged into 18 WM major tracts to extract tract-wise 
measures. For the GM and subcortical GM diffusivity assessment, dif-
fusion modeling parameters were determined by iterative parameter 
selection methods based on the maximum likelihood estimation of 
modeling fitting error. These three different measures from this step 
were then merged into the 78 GM ROIs to extract ROI-wise NDI mea-
sures. 

2.5. Statistical analysis 

Group differences on ROI levels between GW veteran controls (GW 
Cont) and veterans with GWI (GWI Case) were assessed by generalized 
linear regression models controlling potential confounding variables 
such as age and gender (Gur et al., 1991). Significant p-values 
(p  <  0.05) were first calculated through nonparametric permutation 
tests with 10,000 permutations (Winkler et al., 2014), then we applied 
the Benjamini & Hochberg procedure to control the false discovery rate 
(FDR) (Benjamini and Hochberg, 1995; Groppe et al., 2014). Significant 
p-values after permutations (p) or FDR adjustment (FDR_adj_p) in the
whole GM and WM group comparisons were reported along with t-va-
lues.

Partial correlations controlling for age and gender were applied on: 
(1) Multidimensional Fatigue Inventory scale (MFI) and GM NDI data;
(2) Pittsburgh Sleep Quality Index (PSQI) sleep score and GM NDI data;
(3) plasma blood cytokine data and GM NDI data. Both whole group
and subgroup level analyses were assessed in this study. Significant p- 
values after permutations (p) or FDR adjustment (FDR_adj_p) in the
whole group and subgroup levels were reported along with the Pearson
correlation coefficients (rho). For subgroups analyses with small sample
sizes, we included 95% confidence intervals (95% CI)

3. Results

3.1. Demographic results

The first 91 GWIC veterans with brain imaging completed were the 
participants in this study. 75 GW veterans met Kansas criteria for GWI 
(GWI Cases) and 16 GW veterans did not meet Kansas GWI criteria and 
were considered GW veteran controls (GW Controls). Veterans with 
GWI were further divided into subgroups based on self-reported 

exposures to chemical weapons (CBW) or mTBI during their deploy-
ment. Those exposed to mTBI during deployment (GWI + mTBI; 
n = 23), CBW agents (GWI + CBW; n = 33) or both exposures 
(GWI + mTBI + CBW; n = 12) (Table 1). 

3.2. GWI decreases NDI measures in both WM and GM regions 

Whole group analysis in both WM and GM imaging measures in-
dicated significant differences between GWI cases and controls, with p- 
values  <  0.05 after FDR correction (Fig. 1, Sup.1, Sup.2). 

Compared to controls, significantly decreased patterns in GWI cases 
were seen in ND for all major WM tracts. Both ND and OD showed 
decreased patterns for most GM ROIs. The highest significant group 
differences between GWI cases and controls were seen in the left cin-
gulum angular bundle (cab, t = −2.963, FDR_adj_p = 0.027), the bi-
lateral uncinate fasciculus (unc, t = −2.749, FDR_adj_p = 0.026 (left), 
t = −2.941, FDR_adj_p = 0.026 (right)), the bilateral rostral anterior 
cingulate (t = −3.272, FDR_adj_p = 0.026 (left), t = −2.882, 
FDR_adj_p = 0.026 (right)), and the bilateral fusiform gyrus 
(t = −3.006, FDR_adj_p = 0.026 (left), t = −2.909, 
FDR_adj_p = 0.026 (right)) (Fig. 1, Sup.1, Sup.2). 

3.3. GWI subgroups have distinct patterns of behavioral symptoms and 
brain changes 

Specific risk factors were selected to define subgroups for correla-
tion analysis to self-reported health symptom measures. GM ND and 
self- reported symptom scores within mTBI, CBW and mTBI + CBW 
subgroups showed an overall negative relationship, but highlighted 
specific regions in each subgroup (Fig. 2, Sup. 3, Sup. 4). There were 
more localized patterns in GWI + mTBI ND and OD measures, with the 
most significant results seen in the left pars orbitalis for the MFI score 
(rho = −0.706, FDR_adj_p = 0.027, 95% CI = [−0.859, −0.389]) 
and the left lingual gyrus for the PSQI score (rho = −0.709, 
FDR_adj_p = 0.036, 95% CI = [−0.860, 0.374]) (Fig. 2, Sup. 3, Sup. 
4). Conversely, the GWI + CBW subgroup has more widespread and 
bilateral patterns for both ND and OD, some of the most significant 
results seen in the bilateral rostral anterior cingulate for the MFI score 
(rho = −0.655, FDR_adj_p = 0.002, 95% CI = [−0.803,−0.373] 
(left), rho = −0.605, FDR_adj_p = 0.002, 95% 
CI = [−0.771,−0.297] (right)) and the bilateral caudal anterior cin-
gulate for the PSQI score (rho = −0.520, FDR_adj_p = 0.038, 95% 
CI = [−0.688, −0.129] (left), rho = −0.493, FDR_adj_p = 0.038, 
95% CI = [−0.779, −0.316] (right)) (Fig. 2, Sup. 3, Sup. 4). The 
GWI + mTBI + CBW group showed enhanced patterns in restricted 
regions found in the single risk factor subgroup analysis, with the most 
significant results seen in the bilateral caudal middle frontal gyrus 
(rho = −0.804, FDR_adj_p = 0.036, 95% CI = [−0.949, 0.476] (left), 
rho = −0.808, FDR_adj_p = 0.036, 95% CI = [−0.951, 0.491] 
(right)) for the MFI score and the right parahippocampal gyrus for the 
PSQI score (rho = −0.698, p = 0.036, 95% CI = [−0.919, −0.194]) 
(Fig. 2, Sup. 3, Sup. 4). 

Table 1 
Demographic and self-reported exposure to risk factors information for GWI 
case and control subjects.      

GW Control GWI Case  

N 16 75 
Age (years) 53.85 52.07 
Gender (F/M) 1/15 16/59 
Exposure to risk factors during war (% exposed) 
Mild traumatic brain injury (mTBI) 0% 30.67% 
Chemical/Biological warfare agents (CBW) 12.50% 44% 
mTBI + Chem/Bio warfare agents (mTBI + CBW) 0% 16% 
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3.4. Peripheral immune markers are associated with decreased NDI 
measures 

Plasma cytokine markers showed negative relationships with NDI 
measures within the subgroups (Fig. 3, Sup. 5, Sup. 6, Sup. 7). Speci-
fically, in the GWI + mTBI group, TNFRI and TNFRII showed sig-
nificant negative correlations with the left entorhinal cortex (TNF RI: 
rho = −0.439, p = 0.041, 95% CI = [−0.707, −0.006]; TNF RII: 
rho = −0.523, p = 0.015, 95% CI = [−0.758, −0.115]) and the left 
parahippocampal gyrus (TNF RII: rho = −0.461, p = 0.036, 95% 
CI = [−0.735, −0.063]) regions (Sup. 5, Sup. 7). Additionally, partial 
correlation analysis of IL1A revealed the most significant relationship 
with the left middle temporal gyrus (rho = −0.567, p = 0.008, 95% 
CI = [−0.804, −0.229]) (Sup. 5, Sup. 7). In the GWI + CBW group, 
TNFRII had significant negative correlations with many bilateral cor-
tices including the entorhinal, cingulate, parahippocampal, thalamus, 
occipital and temporal regions. The bilateral entorhinal cortices had the 
most significant negative correlation to TNFRII (rho = −0.525, 
p = 0.002, 95% CI = [−0.721, −0.192] (left), rho = −0.418, 
p = 0.017, 95% CI = [−0.669, −0.093] (right)) (Fig. 3, Sup. 5, Sup. 
6). 

4. Discussion

This study showed that the NDI model of high-order diffusion MRI
processing detected detailed microstructural alterations in WM tracts 
and GM ROIs in veterans with GWI, which validated results from our 
previous work utilizing the GWI rat model where neuroinflammation, 
as measured by increased brain cytokine signaling, was correlated with 
high-order diffusion MRI in toxicant-exposed animals (Koo et al., 2018). 
Our major findings are 1) Veterans with GWI showed widespread mi-
crostructural changes compared to control veterans in both ND and OD 
measures, with the most pronounced differences in the frontal white 
matter tracts and the limbic/paralimbic cortical regions, 2) Veterans 
with more pronounced brain changes reported higher rates of exposure 
to mTBI and CBW during their deployment, 3) Veterans with CBW 
exposure showed widespread microstructural brain changes while those 
with mTBI showed more focal microstructural changes on high-order 
diffusion MRI. 4) Behavioral symptoms were associated with distinct 
brain changes across the GWI exposure subgroups, and 5) Peripheral 

immune cytokine markers correlated with increased fatigue and sleep 
symptoms and with brain NDI measures in veterans with GWI in-
dicating structure–function relationships between brain imaging, in-
flammatory markers, and behavioral outcomes. 

The tissue water diffusion information captured in diffusion MRI 
can be potentially sensitive to many factors including axons, dendrites 
as well as myelinated fibers, changes in the neuroglial cells may also be 
a potential factor for differential patterns in water diffusivity (Gulani 
et al., 2001; Naughton et al., 2018; Belgrad et al., 2019). Water diffu-
sivity may differ from either loss of existing neurons or reproduced 
neurons (neurogenesis) in the tissue medium. Also, changes in mor-
phology in neuroglial cells take place during different stages of acti-
vation thereby resulting in differential patterns of water diffusivity in 
the brain (Raivich et al., 1999). Considering all these components, 
variations in the tissue environment might be expressed in a mixture of 
diverse diffusion strengths. A significant loss in cell populations can 
impact fast (i.e., macroscopic) water diffusion components since there 
will be less barriers for restricting water diffusion in the cell medium 
(Johnson et al., 2014). On the other hand, changes in sub-neuronal 
components, such as synaptogenesis or glial activation, can increase 
complexity in the medium and thereby change distinct diffusion com-
ponents compared to the neuronal loss (Zhuo et al., 2012). While DTI 
measures could provide overall information of microstructural tissue 
changes in the brain, common markers of DTI, mean diffusivity (MD) 
and fractional anisotropy (FA), take in account of changes in all tissue 
components, hence novel approaches such as NDI and RDI could pro-
vide more specific information on the aforementioned changes in dif-
ferent tissue components as well as fiber orientation estimation (Tuch, 
2004; Zhang et al., 2012) 

OP nerve agents induce neuroinflammatory responses in cortical 
structures including limbic and paralimbic structures (Spradling et al., 
2011; Rao et al., 2017; Naughton et al., 2018). Such neuroinflammatory 
responses might result from neurological damage as a result of neuro-
toxicant exposure and damage signaling to innate immune cells 
(Milligan and Watkins, 2009). However, the level of damage might also 
show mild long-lasting changes in sub-neuronal components and mor-
phometry of neurite cells including axons and dendrites rather than the 
remarkable loss of neurons (Spradling et al., 2011; O’Callaghan et al., 
2015). The lower range of diffusion encodings used in diffusion MRI 
(typically, around b = 1000 s/mm2) is the most common protocol in 

Fig. 1. ND feature mapping of whole group WM and GM analyses highlights group effects in widespread regions, most significantly seen in frontal white matter tracts 
and subcortical limbic regions. Fmaj = corpus callosum forceps major, fmin = corpus callosum forceps minor, atr = anterior thalamic radiations, cab = cingulum- 
angular bundle, ccg = cingulate gyrus bundle, cst = corticospinal tract, ilf = inferior longitudinal fasciculus, slfp = superior longitudinal fasciculus parietal, 
slft = superior longitudinal fasciculus temporal, unc = uncinate fasciculus, pars_op = pars opercularis, sup_par = superior parietal, b_st = banks of superior 
temporal sulcus, inf_temp = inferior temporal, c_aCing = caudal anterior cingulate, r_aCing = rostral anterior cingulate, m_orbFrt = medial orbitofrontal, 
php = parahippocampal, hipp = hippocampus, thal = thalamus proper, precu = precuneus, paracent = paracentral. * p  <  0.05, ̂ FDR_adj_p  <  0.05. 
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clinical imaging. Under this protocol, diffusion MRI has been a pow-
erful tool for assessing WM major pathways, edema, or brain tumors. 
However, it does not have enough sensitivity to assess the mild pro-
gressive damage in the sub-neuronal components since the sub-neu-
ronal component alterations including axonal microtubule density and 
stability changes, myelin depletion and oligodendrocyte function and 
arborization of dendrites or glial process morphometry changes might 
induce changes in variant forms of microscopic water diffusivities (Rao 
et al., 2017; Naughton et al., 2018; Belgrad et al., 2019). In our pre-
vious study on GWI animal model brain imaging, we confirmed neu-
rotoxicant-induced neuroinflammatory response accompanies micro-
scale changes in the neuronal cell environment that significantly 
correlated with proinflammatory cytokine signaling (Koo et al., 2018). 
These results also highlight the ability to detect inflammatory-induced 
changes in microstructural diffusion imaging. The results from our 

previous work were the rationale for studying separate diffusion com-
ponents on brain imaging in GW veterans with various exposures and 
peripheral cytokine markers. 

Based on the high-order diffusion MRI, we have confirmed that the 
NDI successfully and significantly differentiated between veterans with 
and without GWI. While NDI measures revealed overall and widespread 
pattern differences between groups, the clearest distinctive pattern was 
confirmed in the limbic/paralimbic structures along with the anterior 
WM connections. However, little significant differences were observed 
in DTI measures in major WM tracts (Sup. 11). In addition to WM, GM 
diffusion mapping provided a clear explanation of the relationship be-
tween microstructural damage and illness symptoms. Considering the 
cytoarchitectural profiles of the cortical structures, GM measures from 
high- order diffusion MRI may reflect distinct patterns of micro-
structural damage across regions. As previously discussed (Glasser 

Fig. 2. Self-reported symptoms correlation mapping in GWI subjects exposed to chemical or biological warfare agents or mTBI. Regions with significant correlation 
between ND and PSQI (A, left upper) or MFI (A, left lower) in GW veterans with chemical/biological warfare agent exposures are rendered based on significance 
levels. Regions with significant correlation between ND and PSQI (A, right upper) or MFI (A, right lower) in GW veterans with mTBI exposure are rendered based on 
significance levels. Panel B shows data distribution patterns of ND and PSQI (B, middle and right) or MFI (B, left) scores in representative regions within each 
subgroup. Some subjects did not have available PSQI data, therefore, the number of subjects (n) used for subgroup correlation is indicated in the figure and 95% CIs 
are provided. * p  <  0.05, ̂ FDR_adj_p  <  0.05, ̂̂ FDR_adj_p  <  0.01. 
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et al., 2014), neuronal density in brain regions co-varies with myeli-
nated axons. While NDI could be sensitive to myelinated axons 
(Fukutomi et al., 2018; Grussu et al., 2017), lowered ND in both medial 
prefrontal regions and anterior WM tracts may reflect damage in 
myelinated axons. However, other regions had more dominant changes 
in GM than in the WM. The cingulate cortex and parahippocampal area 
have relatively thick cortical layers and unmyelinated fibers. These 
regions may account for different neurological sources for NDI map-
ping. Similar to what we have confirmed from the animal model of GWI 
using RDI measure (Koo et al., 2018), we have found a strong link 
between NDI measures and RDI measure on the GW human data used in 
this study, suggesting NDI profiles may also account for neuroin-
flammatory responses in the brain (Sup. 11). Indeed, some of our NDI 
mappings, such as the precuneus and the anterior cingulate cortex, have 
overlapped patterns to those of a recent GWI study using the translo-
cator protein (TSPO) based positron emission tomography imaging 
(Alshelh et al., 2020). This may indicate that NDI contrasts can be af-
fected by activated glial cell populations in local brain regions. 

Multiple risk factors have been investigated in search of the un-
derlying causes of GWI symptoms, suggesting a neuroinflammatory 
etiology due to individual or multiple neurotoxicant exposures during 
deployment (White et al., 2016; Abou-donia et al., 2017; Sullivan et al., 
2017). Recent studies have identified mTBI to play a significant role in 
increased rates of health-related symptoms (Yee et al., 2016; Yee et al., 
2017, Chao, 2018; Janulewicz et al., 2018) in GW veterans whereas OP 
chemical warfare agents were critical risk factors to GWI symptoms 
specifically (Chao et al., 2010, 2011, 2015). Besides, high-order diffu-
sion MRI has previously been shown to detect microstructural changes 
in a rat model of mTBI (Zhuo et al., 2012). As a result, we focused on 
GWI cases with either one or both of those risk factors as separate 
subgroups for further analysis and to recapitulate existing results. In 
this study, mTBI groups showed more focal diffusion changes while the 
CBW exposed group showed more widespread diffusion changes in the 
WM tracts and the GW ROIs. Similar to what we confirmed with GWI 
animal models, this may indicate that microscale changes in the neu-
ronal cell environment can be a potential biomarker for explaining 
illness symptoms in GWI and groups with specific brain insults (phy-
sical and chemical) during the war (Koo et al., 2018). However, further 
testing in a large scale sample is needed to draw integrative and gen-
eralizable conclusions. 

4.1. Behavioral symptoms and associated brain changes 

Due to the complex, multi-symptomatic etiology of GWI, various 
clinical and self-reported symptom measures were used in our corre-
lation analysis to investigate the relationship between imaging results 
and symptom severity. Overall, subjects with more depleted ND and OD 
reported worse sleep quality on PSQI and higher fatigue levels on the 
MFI indicating objective markers for subjective symptom complaints. 
We observed the most significant correlation between imaging data and 
MFI scores indicated a strong CNS component to fatigue in GWI. 
Fatigue symptoms showed strong associations with decreased para-
hippocampal measures, which is consistent with previous studies on 
GM volumes in other disorders including chronic fatigue syndrome 
(Puri et al., 2012; Tang et al., 2015; Kimura et al., 2019). Limbic and 
nearby related paralimbic areas had the most altered GM integrity and 
also displayed the most significant negative relationships among all 
regions in addition to the particular regions responsible for each 
symptom. 

4.2. TNF mediated inflammation 

Proinflammatory cytokine levels in the blood could be used as 
markers to indirectly analyze CNS innate immune responses after ex-
posures or experiences to noxious external stimuli, which in GWI stu-
dies were often chemical warfare agents and exposures to similar 
classes of chemicals (Michalovicz et al., 2019). Exposure to neurotox-
icants such as sarin, PB, pesticides, and other chemical warfare agents 
has been identified to pose negative health effects in GW veterans in 
cohort studies (Chao et al., 2010, 2011,2015; Sullivan et al., 2003; 
Sullivan et al., 2017; Zundel et al., 2019) and controlled animal studies 
(Abdullah et al., 2011). Indeed, the GWI + CBW group displayed sig-
nificantly upregulated TNF RI and TNF RII along with decreased ND in 
frontal and subcortical limbic regions, similar regions highlighted with 
symptom-specific domains. The main ligand for both TNF RI and TNF 
RII, TNFɑ is a potent inflammatory cytokine released by macrophages 
triggering numerous events including apoptosis, edema, and leukocyte 
adhesion (Zelová and Hošek, 2013). Receptor shedding has been pro-
posed as a mechanism to counteract high levels of TNFɑ to balance 
inflammatory responses (Xanthoulea et al., 2004; Hawari et al., 2004). 
Previous studies have shown TNFɑ to be a significant biomarker for 

Fig. 3. Blood cytokine correlation mapping in GWI subjects exposed to chemical and biological warfare agents. Regions with significant correlation between ND and 
TNF_RII (A) are rendered based on significance levels. Panel B shows data distribution patterns of ND and TNF_RII levels in the representative region within the 
GWI + CBW subgroup. * p  <  0.05, ** p  <  0.01. 
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GWI (Broderick et al., 2011; Khaiboullina et al., 2014; O’Callaghan 
et al., 2015; Jaundoo et al., 2018). However, unlike what we confirmed 
from TNF RI and RII, we did not see significant patterns in TNFɑ in this 
study. The discrepancy between these measures should be determined 
in further studies to clarify the role of the TNF pathway in mediating 
inflammation, which may contribute to the fatigue and sleep symptoms 
of the disease. 

5. Conclusion

Our study provides neuroimaging evidence underlying GWI etiolo-
gies and reveals GWI-specific microstructural changes in the frontal and 
subcortical paralimbic regions due to mTBI and chemical weapons ex-
posures. We showed for the first time in GW veterans that mTBI was 
associated with discrete focal microstructural changes on MRI and that 
chemical weapons exposures resulted in more diffuse and widespread 
microstructural changes on brain imaging. In addition, these micro-
structural brain changes correlated with peripheral neuroinflammatory 
markers in the blood of veterans with GWI. When these results are 
combined with our prior studies showing correlations with brain cy-
tokines and microstructural changes in the GWI animal model, this 
provides compelling evidence for neuroinflammation in the patho-
biology of GWI. This is especially the case given that the NDI micro-
structural brain changes also negatively correlated with the self-re-
ported markers of fatigue and sleep on the MFI and PSQI which suggests 
functional consequences from these structural changes and also vali-
dates their use as objective measures and validating NDI imaging as a 
potential marker of treatment trial efficacy pre- and post-treatment for 
GWI symptoms. Correspondingly, current GWI literature on micro-
structural alterations due to neuroinflammation in the limbic areas 
have indicated changes in memory and emotion-related functions as 
evidenced by psychological and health outcome correlational studies 
(Toomey et al., 2009; Chao et al., 2010; Abdullah et al., 2011; Chao 
et al. 2011; Sullivan et al., 2003; Janulewicz et al., 2018; Sullivan et al., 
2017; Jeffrey et al., 2019). However, there are several limitations to 
human studies, which can be overcome with concurrent controlled 
animal experiments as we have done in our ongoing GWIC studies 
(O’Callaghan et al., 2015; Koo et al., 2018). Further studies are needed 
to elucidate which neuronal and glial changes are contributing to dif-
fusion imaging results seen here and how microstructural alterations 
may lead to higher risks of accelerated aging and earlier risks for 
neurodegenerative and cerebrovascular diseases in GW veterans so that 
intervention strategies can be implemented (Barnes et al., 2018; Smith 
et al., 2013; Zundel et al., 2019). 
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Abstract: Gulf War illness (GWI) refers to the multitude of chronic health symptoms, spanning from
fatigue, musculoskeletal pain, and neurological complaints to respiratory, gastrointestinal,
and dermatologic symptoms experienced by about 250,000 GW veterans who served in the 1991 Gulf
War (GW). Longitudinal studies showed that the severity of these symptoms often remain unchanged
even years after the GW, and these veterans with GWI continue to have poorer general health and
increased chronic medical conditions than their non-deployed counterparts. For better management
and treatment of this condition, there is an urgent need for developing objective biomarkers that can
help with simple and accurate diagnosis of GWI. In this study, we applied multiple neuroimaging
techniques, including T1-weighted magnetic resonance imaging (T1W-MRI), diffusion tensor imaging
(DTI), and novel neurite density imaging (NDI) to perform both a group-level statistical comparison
and a single-subject level machine learning (ML) analysis to identify diagnostic imaging features of
GWI. Our results supported NDI as the most sensitive in defining GWI characteristics. In particular,
our classifier trained with white matter NDI features achieved an accuracy of 90% and F-score of
0.941 for classifying GWI cases from controls after the cross-validation. These results are consistent
with our previous study which suggests that NDI measures are sensitive to the microstructural and
macrostructural changes in the brain of veterans with GWI, which can be valuable for designing
better diagnosis method and treatment efficacy studies.

Keywords: Gulf War illness; MRI; objective biomarker; machine learning; Kansas case criteria;
diffusion; grey matter; neurite density imaging

1. Introduction

Gulf War illness (GWI) refers to the variety of chronic symptoms experienced by about
250,000 United States veterans who served in the 1991 Gulf War (GW) [1]. According to the Kansas
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case criteria, symptoms of GWI fall into six categories: fatigue (fatigue and sleep problems),
pain (joint and muscle), neurological (cognitive, mood, headache, and dizziness), respiratory (persistent
cough and wheezing), gastrointestinal (diarrhea and nausea), and skin (rashes and other) problems.
Exposure to neurotoxicant chemicals (organophosphate pesticides and sarin) during the war and other
central nervous system (CNS) damage, such as mild traumatic brain injury (mTBI), are thought to have
caused an innate immune over-response in the CNS, resulting in the development of these chronic
GWI symptoms [2–7]). In order to meet the Kansas criteria for GWI, veterans must display chronic
symptoms in at least three of the six categories, without presenting concurrent psychiatric and medical
disorders [8]. However, accurate diagnoses of GWI remained challenging due to the heterogeneous
clinical presentation of this condition, as well as the level of subjectivity associated with self-reported
symptoms and neurotoxicant exposure history [8–10]. To improve management and treatment of GWI,
there is an urgent need for defining sensitive and objective biomarkers of the disorder.

Previous neuroimaging studies demonstrated distinct changes within brains of veterans with
GWI, which may underlie physiological symptoms. For example, T1W-MRI studies showed that GW
veterans with exposure to the neurotoxicant chemical sarin exhibit reduced gray matter (GM) and
white matter (WM) volumes, as well as reductions in hippocampal subfield volumes when compared
to non-exposed veterans [11,12]. More recent studies using diffusion tensor imaging (DTI) have shown
greater hippocampal mean diffusivity (MD) and increased axial diffusivity (AD) in the WM of sarin
and cyclosarin exposed GW veterans, which are correlated to fatigue, pain, or hyperalgesia, and may
serve as a potential biomarker for GWI [13–15]. We have previously applied a novel MRI diffusion
processing method, neurite density imaging (NDI), on high-order diffusion MRI to demonstrate that
the NDI measure scan successfully identify and validate different levels of neurological abnormalities
in veterans with GWI from the Boston Gulf War Illness Consortium cohort [16].

ML algorithms have been applied to study a wide range of neurological disorders, including
Alzheimer’s disease, Parkinson’s disease, and traumatic brain injury [17,18]. These studies have
reported promising results for identifying diagnostic biomarkers [19,20]. The ML approach have
strengths on exploiting features from different domains (i.e., neuropsychological, genetic and
neuroimaging) and providing further insights on the potential interactions between different markers
for classifying illness [21]. For the current study, we aimed to expand our previous work (on NDI)
to cross-compare different types of neuroimaging markers (T1W-MRI, DTI and NDI) to determine
whether these measures are useful for single subject-level classification of GWI cases vs. controls.
Specifically, we incorporated the machine learning (ML) framework to search out key imaging features
valuable for defining GWI. Computerized models were then trained based on the selected features and
tested for classifying veterans with GWI.

2. Methods

2.1. Participants

In this study, we included brain imaging data of 119 GW veterans from Boston University Gulf
War Illness Consortium (GWIC) (Table 1). GWIC is a multi-site study designed to identify the etiology
and potential biomarkers of GWI. The inclusion criterion was deployment to the GW between August
1990 and July 1991. The exclusion criteria included having a diagnosis of chronic medical illnesses
that could otherwise account for the symptoms experienced by GW veterans, including autoimmune,
CNS, or major psychiatric disorders that could affect the brain and immune functions (e.g., epilepsy,
stroke, severe head injury, etc.). Each participant completed an assessment protocol of health surveys,
a neuropsychological test battery, brain imaging, and collection of blood and saliva samples [2]. In this
study, we utilized brain imaging outcomes to study GWI. All participants provided written informed
consent to participate in the study. This study was reviewed and approved by the Boston University
institutional review board.



Brain Sci. 2020, 10, 884 3 of 13

Table 1. Subject Characteristics.

BU Subjects GW Control GWI Case

N 21 98
Age (years) 54.06 52.46

Gender (F/M) 3/18 20/78

Gulf War Illness Criteria and Symptom Surveys

GWI case status was defined from the Kansas GWI case definition, which requires multiple or
moderate-to-severe chronic symptoms in at least three of six statistically defined symptom domains:
fatigue/sleep problems, somatic pain, neurological cognitive/mood symptoms, gastrointestinal
symptoms, respiratory symptoms, and skin abnormalities [8]. GWIC participants not meeting
Kansas GWI or exclusionary criteria were considered controls. Veterans were excluded from being
considered GWI cases, for purposes of the research study, if they reported being diagnosed by a
physician with medical or psychiatric conditions that would account for their symptoms or interfere
with their ability to report their symptoms. GWIC subjects were administered a general demographic
information and medical conditions questionnaire and the Kansas Gulf War and health questionnaire
for assessing symptoms [8,10]. Additional validated health symptom surveys were completed by study
participants and included the multidimensional fatigue inventory (MFI-20), McGill pain inventory and
the Pittsburgh sleep quality index (PSQI) where higher scores suggested worse conditions [22–24].

2.2. Image Acquisition

All veterans were scanned on an Achieva 3T whole-body MRI scanner (Philips Healthcare,
Best, The Netherlands) at the Center of Biomedical Imaging, Boston University school of Medicine.
T1W-MRI were obtained using an MPRAGE sequence developed by the Alzheimer’s disease
neuroimaging initiative (ADNI) (Repetition time (TR) = 6.8 ms, Echo time (TE) = 3.1 ms, flip angle = 9◦,
slice thickness = 1.2 mm, 170 slices, Field of view (FOV) = 250 mm, matrix = 256 × 256) (accessible from
http://adni.loni.usc.edu/). Diffusion MRI data were obtained using 124 gradient directions utilizing
parallel imaging on a 16-channel parallel head coil (70 slices, TR = 13,214 ms, TE = 55 ms, with a
matrix size of 128 × 128 yielding a resolution of 2.0 × 2.0 × 2.0 mm3, no slice gap). Multi-shell
diffusion encodings with b-values 1000, 2000 and 3000 s/mm2 were acquired with a single-shot echo
planar imaging (EPI) sequence, and 6 b = 0 s/mm2 field maps were collected in addition to distortion
corrections built into the scanner.

2.3. Image Processing and Anatomical Defining

Structural T1W-MRI scans were analyzed with the Freesurfer package (version 6.0) to generate
anatomical regions of interest (ROI) for assessing GM morphometric measures, and to provide GM
anatomical co-registration references for diffusion images [25]. A total of 78 ROIs defined in the
average template space were co-registered to each subject’s cortical surface by applying nonlinear
co-registration parameters. All results were visually inspected for artifacts or incomplete segmentation.
Fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD)
maps were created using tract-based spatial statistics (TBSS), part of FSL package that projects all
subjects’ diffusion tensor imaging (DTI) data onto a mean tract skeleton [26]. A total of 20 major
WM tracts were defined using the Johns Hopkins University (JHU) white-matter tractography atlas
provided in the FSL package, the same template was also used for special normalization and linear
co-registration of diffusion MRIs [27,28].

2.4. High-Order Diffusion Processing

Microstructural diffusion measures were reconstructed from multi-shell diffusion MRI images
containing 3 b-value encodings using the NDI model [16]. Two parameters, neurite density (ND)

http://adni.loni.usc.edu/
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index and orientation dispersion (OD) index were extracted from the NDI model. In brief, ND is
a fraction of tissue composed of neurites which include axons and dendrites, and OD provides the
spatial configuration of the neurite structures based on the composite pattern of intra- and extracellular
diffusivity [29]. For WM NDI measures, all subjects’ NDI data were registered to a common space
based on nonlinear transformation and projected to the WM tract skeleton. Next the major WM tract
ROIs were then applied to the skeletonized WM NDI maps to extract ROI-wise NDI measures [26].
For the GM diffusivity assessment, diffusion modeling parameters were determined by voxel wise
iterative parameter selection method. We used the maximum likelihood estimation of model fitting
error to define the optimal intrinsic free diffusivity parameters [30]. The optimal parameters were
used to reconstruct the GM NDI maps and then merged into the 78 GM ROIs to extract ROI-wise NDI
measures [30,31].

2.5. T1-Weighted MRI Measures

From the Freesurfer cortical reconstruction process of T1W-MRI, we extracted six measures per
subject, including cortical thickness, cortical surface area, cortical volume (cVolume), subcortical
GM volume (scVolume), WM volume, curvature (curv). Specifically, cortical thickness, surface area,
volume, and curvature are extracted from 62 ROIs based on Desikan–Killiany–Tourville (DKT) atlas,
while subcortical ROIs are defined by Freesurfer built-in atlas [31,32].

2.6. Statistical Analysis

From the data processing steps, we generated in total 14 types of imaging measures: 4 NDI,
4 DTI, and 6 T1-weighted morphometric measures. For each type of imaging measure, we conducted
statistical comparisons of GWI cases vs. controls using linear regression models adjusting for age and
sex, and then corrected for multiple comparison using false discovery rate (FDR) [33]. We reported
t-values and FDR-corrected p-values (FDR-p), significant features are defined as FDR-p < 0.05.

2.7. Machine Learning Classification

Imaging measures described in the previous sections are used as pre-defined features for training
ML classification models. Age- and sex-related confounds were removed from the raw data before
training the model. This step is achieved by estimating the effects of age and sex on imaging measures
using a linear regression model that is similar to a method applied in an early study [19]. For building
the classifier for each imaging measure we adapted a reinforcement learning algorithm with artificial
bee colony algorithm for feature selection (BSO: bee swarm optimization), and the K nearest neighbors
(KNN) algorithm for classification training and performance evaluation [34,35].

2.7.1. Feature Space Selection and Classifier Training

As mentioned previously, some specific neuroimaging markers (i.e., NDI measures) may be more
sensitive for detecting the subtle neurological changes occurring in GWI cases [16]. For training the
classifiers, each type of imaging measures (i.e., measurement domains) serves as prior information
that will allow us to set up specific feature space for potentially better ML outcomes. Within each
feature space, reinforcement learning-based BSO (QBSO) was used to perform iterative search of the
subset of features that provides the best classification performance on the training dataset (more details
described in QBSO Tuning). Through QBSO, a final subset of features (final solution) was selected to
build a final classifier. Final classifiers trained on each feature space were- then tested on the validation
dataset (see more details in Ensemble Approach).

QBSO Tuning

This feature selection concept combines the BSO and reinforcement learning (specifically
Q-learning) to upgrade simple local search to a more adaptive and efficient search for the final
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solution [34,35]. Previous study has shown that this hybrid method outperforms other well-known ML
algorithms for feature selection [35]. More specifically, the BSO method mimics the foraging behavior
of natural bees by performing iterative local search for an optimized solution [36].

From the predefined feature space explained earlier, the initial solution is randomly generated.
Then, BSO randomly modifies the initial solution to multiple different secondary solutions, where each
will be assigned to a bee (an agent) to perform local search to find local optimum (based on k-fold
cross-validation accuracy). In this local search stage, each bee refers to a series of experiments obtained
in previous steps to make a decision to do further search in the current search pace, and this local
search will continue until no further improvement of accuracy occurs. When the bee reaches this point,
each bee’s search history is shared to other bees and used for the diversification of searching process.

In the diversification process, the most distant solution will be selected based on the shared
information. During this process, the role of reinforcement learning is to allow the agent learn through
an interactive environment by trial and error. As the result, the QBSO method will search for a
solution (i.e., resulting feature list) that maximizes the reward through multiple iterations. In each
iteration, KNN runs on the candidate features (one of the secondary solutions) selected from the bee
and tested for 5 iterations of 5-fold cross-validation on the training dataset. We used an average
accuracy measure from the 5-fold cross-validation for estimating the reward. Finally, the search process
will terminate based on the pre-defined parameters. To set up the optimal parameters, we used a
grid-search strategy that is empirically searching the parameters resulting in the highest classification
accuracy for the training dataset. The final parameters used in this experiment are listed as follows:
flip: 20, max. chance: 9, nBees: 30.

Ensemble Approach

Per each feature space (i.e., one type of imaging measure), QBSO produces a subset of final features
that provides the highest average accuracy from the iterative search. QBSO is repeated 5 times in total
to generate 5 final solution candidates for a single training dataset. Per each solution, we built 3 different
classifiers- KNN, support vector machine, and random forest classifiers. The training dataset was
further split into 2 parts (i.e., training and testing) and used to train each classifier. Then the weighted
majority voting was used to ensemble those 15 classifiers (i.e., 3 classifiers from each solution) to make
a final prediction on the validation dataset. The following weight function was used: Wi = Pi/(1 − Pi),
Pi: performance of i-th classifier, i = [1:15].

2.7.2. Comparing Classification with Different Imaging Measures

As mentioned previously, each type of imaging measures was used to set up distinct candidate
feature space for training the classifiers. The resulting 14 different classifiers (4 NDI, 4 DTI, and 6 T1W-MRI
morphometric measures) were evaluated based on their classification performances. For the benchmark
testing, the entire dataset was initially divided into a training dataset and a validation dataset based
on a 5-fold partitioning. We took one fold as a validation dataset and used the remaining 4-fold data
for performing the QBSO training framework (Section 2.7.1). This process was repeated 5 times as
training/validation datasets rotate among the 5 folds (by taking each fold as the validation dataset in each
iteration). For the classification performance comparison, we reported performance measures (averaged
from 5 iterations after validation) of accuracy, sensitivity, specificity, and F-score. We included F-score as a
more representative performance measure for the imbalanced case and control groups [37]. In addition to
the average accuracy, we included the standard deviation (SD) of accuracy, as an estimate of variations
between iterations, and the highest accuracy value for the top three classifiers.
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3. Results

3.1. Group-Level Statistical Comparison and Key Imaging Features

Statistical analysis of NDI measures showed significant differences between GWI cases and
controls in both WM tracts and GM ROIs (FDR-p < 0.05) (Figure 1). The full result can be found
in Table S1. All major WM tracts showed significant decreases in ND and OD for GWI cases
compared to controls (Figure 1A). The greatest significant group differences between GWI cases and
controls were seen in the bilateral corticospinal tract (CST, t = −3.119 FDR-p = 0.017 (left), t = −3.129,
FDR-p = 0.017 (right)) and the bilateral anterior thalamic radiations (ATR, t = −2.891, FDR-p = 0.017
(left), t = −2.808, FDR-p = 0.017 (right)) for WM ND, and in the bilateral cingulum cingulate gyrus
bundle (CCG, t = −4.041 FDR-p = 0.002 (left), t = −3.384, FDR-p = 0.007) for WM OD. Both ND and
OD showed decreased patterns (FDR-p < 0.05) for most GM ROIs as well (Figure 1B). The greatest
significant group differences between GWI cases and controls were seen in the left isthmus of cingulate
gyrus (t = −3.319, FDR-p = 0.036) and the bilateral thalamus proper (t = −3.168, FDR-p = 0.036 (left),
t = −3.015, FDR-p = 0.036) for GM ND, and in the bilateral caudal anterior cingulate gyrus (t = −3.262,
FDR-p = 0.016(left), t = −3.182, FDR-p = 0.016 (right)), the bilateral posterior cingulate gyrus (t =−3.832,
FDR-p = 0.016 (left), t = −2.461, FDR-p = 0.03 (right)), the bilateral amygdala (t = −3.593, FDR-p = 0.016
(left), t = −3.516, FDR-p = 0.016 (right)) and the bilateral putamen (t = −3.228, FDR-p = 0.016 (left),
t = −3.134, FDR-p = 0.016 (right)) for GM OD. The full list of statistically significant imaging features
can be found in Table S1.

Figure 1. Gulf War illness (GWI) cases vs. Gulf War (GW) control group comparisons of gray matter
(GM) and white matter (WM) neurite density imaging (NDI) measures and summary of significant
regions. (A) 3D tract representation of significant WM ND differences between GWI case and control
groups. (B) 3D region of interest (ROI) representation of significant GM ND differences between GWI
case and control groups. Color bar corresponds to the magnitude of t-value, red indicates greater
difference between groups, and vice versa. Fmaj = corpus callosum forceps major, Fmin = corpus
callosum forceps minor, atr = anterior thalamic radiations, cst = corticospinal tract, cing = cingulum
cingulate gyrus bundle, ilf = inferior longitudinal fasciculus, slf = superior longitudinal fasciculus,
unc = uncinate fasciculus.

3.2. Machine Learning Classification Performance

As shown in Figure 2 and Table 2, the best classifier for GWI cases vs. control we had is trained
using the WM OD measures, which achieved F-score of 0.941, an accuracy of 90% (SD: 0.063, highest
accuracy: 91.7%), sensitivity of 95%, and specificity of 65%. The specific features include the left
CST, the corpus callosum forceps minor (fminor), the left inferior fronto-occipital fasciculus (IFOF),
the left inferior longitudinal fasciculus (ILF), the left superior longitudinal fasciculus (SLF), and the
left superior longitudinal fasciculus temporal (SLFT). All features were statistically significant based
on group-level analysis (Figure 1A, Table S1). The second-best classifier is trained using the GM
ND measures, which achieved F-score of 0.922, an accuracy of 86.7% (SD: 0.054, highest accuracy:
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91.7%), sensitivity of 96%, and specificity of 40%. The specific features used by this GM ND classifier
include both cortical and subcortical structures of the limbic system, including the bilateral caudal
anterior cingulate gyri (Table 2). The third best classifier was trained using the WM ND measures,
which achieved F-score of 0.914, an accuracy of 85% (SD: 0.048, highest accuracy: 91.7%), sensitivity
of 96%, and specificity of 30%. For this classifier, the specific features included the bilateral anterior
thalamic radiations (ATR), the bilateral IFOF, the bilateral ILF, the left SLF, the right SLFT and the
Fminor (Table 2). The full list of imaging features used by the top three classifiers can be found in
Table 2 and the full list of classifier performances can be found in Table S2.

Figure 2. Classification performances of all classifiers. Each bar represents the performance
(solid-colored bar: average F-score, shaded area: average accuracy) of each type of classifier
trained on one imaging measure, data is presented as mean ± SEM after cross-validation.
Grey-colored bars: NDI measure-based classifiers. Blue-colored bars: diffusion tension imaging
(DTI) measure-based classifiers. Green-colored bars: T1-weighted structural MRI (T1W-MRI)
measure-based classifiers. WM OD = white matter orientation dispersion, WM ND = white
matter neurite density, GM OD = grey matter orientation dispersion, GM ND = grey matter neurite
density, RD = radial diffusivity, MD = mean diffusivity, FA = fractional anisotropy, AD = axial
diffusivity, thickness = cortical thickness, area = cortical surface area, cVolume = cortical volume,
scVolume = subcortical GM volume, volume WM = white matter volume.

Table 2. Summary of classification performances and feature characteristics.

Measure ACC SEN SPE F-Score Key Features

WM OD 90% 95% 65% 0.941

L CST **
L IFOF **
L ILF **
L SLF **

L SLFT **
Fminor **

GM ND 86.7% 96% 40% 0.922

L caudal anterior cingulate *
L cuneus

L inferior temporal
L paracentral *

L posterior cingulate *
L thalamus proper *

R caudal anterior cingulat
R lingual

R pars orbitalis
R amygdala *
R putamen *

WM ND 85% 96% 30% 0.914

L ATR *
L IFOF *
L ILF *
L SLF *

Fminor *

R ATR *
R IFOF *
R ILF *

R SLFT *

ACC: accuracy, SEN: sensitivity, SPE: specificity, F-score: F1 score, WM OD: white matter orientation dispersion
index, GM ND: gray matter neurite density index, WM ND: white matter neurite density index, L: left hemisphere,
R: right hemisphere, CST: corticospinal tract, IFOF: inferior fronto-occipital fasciculus, ILF: inferior longitudinal
fasciculus, SLF: superior longitudinal fasciculus, SLFT: superior longitudinal fasciculus temporal, Fminor: corpus
callosum forceps minor, ATR: anterior thalamic radiation. *: FDR-p < 0.05 in group-level statistical comparison.
**: FDR-p < 0.01 in group-level statistical comparison.



Brain Sci. 2020, 10, 884 8 of 13

4. Discussion

In this study, we used various neuroimaging techniques (NDI, DTI, structural T1W-MRI) to identify
important features that may help to differentiate between veterans with GWI and control veterans.
These features were selected through two different analytical frameworks: (1) group-level statistical
analysis, and (2) single subject-level ML classification models. From our group-level, univariate
analysis, we identified important imaging features, especially from WM and GM NDI and T1W-MRI
regional volumetric measures, which showed high contrasts between veterans with GWI and control
veterans. From the multivariate classification results, we could additionally identify unique imaging
features that are important for making single-subject level inferences regardless of its relevance to the
group differences.

The results from the group-level statistical analysis showed that NDI measures are the most
sensitive marker for detecting GWI pathology than other types of neuroimaging measures. For WM
NDI measures, all major tracts showed significant decreases for veterans with GWI compared to
control veterans (Figure 1A). The greatest significant group differences were seen in the bilateral CST
for WM ND and bilateral CCG bundle for WM OD (Table S1). The roles of these tracts in many
essential physical and neuropsychological functions have been well described by previous literatures.
For instance, earlier studies showed that disruption of the CST WM integrity was associated with
motor impairment that occurs in the early stages of many neurological conditions such as Huntington’s
Disease and Multiple Sclerosis [38,39]. Similarly, disruption of CCG has been associated with impaired
executive functioning, pain, memory deficits, and has been a main target for conditions including major
depression, schizophrenia, post-traumatic stress disorder (PTSD), and autism spectrum disorder [40].
Changes in these tracts captured by our WM NDI results may also be important to understand specific
symptoms such as muscle pain, fatigue, and depression observed in GWI.

From the ML framework, we confirmed that WM OD, GM ND, and WM ND measures were
the sources of the top three classifiers (based on average accuracy) (Figure 2, Table 2). The classifier
trained using the WM OD measure showed the best performance and consistently reporting six
features: the left CST, IFOF, ILF, SLF, SLFT, and the Fminor (Table 2). Due to the completely imbalanced
distribution of the data used in this study, performance on classifying controls were more challenging
in QBSO and this calls better ideas on handling this issue. For example, synthetic oversampling
method such as the synthetic minority oversampling technique (SMOTE) may help addressing this
issue [41]. Additionally, in this type of imbalanced sample, assessing the F1-score might serve as a more
realistic measure of the classification performance [37]. Although we used average accuracy measure
for comparing classifiers, WM OD showed a high F-score (0.941), showing that our proposed ML
framework is providing reasonable performance at least in this sample. Compared to the NDI classifiers,
the classifiers from DTI measures or T1W-MRI measures all had lower classification performance than
NDI measures (Table S2). These results suggest that (1) NDI measures are important imaging markers
for defining GWI, and (2) the features defined from ML framework provides distinct information from
the group-level statistics on describing GWI. While several features from the group-level statistics may
present with overlapping patterns to ML classifiers, there are also unique features reported by ML
classifiers but not captured in the group-level analysis framework.

Both our findings on group-level statistics and single subject-level classification model
demonstrated the importance of NDI measures for defining GWI. Moreover, considering the other
ML methods tested on mild or preclinical stage illness, such as mild cognitive impairment staying
with ~78% accuracy levels, the classification performance obtained from NDI QBSO is impressive and
brings more attention into the complex diffusion imaging measures for studying preclinical stage or
mildly progressive illness [42]. In the current study, we not only identified widespread statistically
significant NDI features through group-level analysis, but also demonstrated that WM OD measures
trained a better classifier compared to other imaging measures. This is consistent with our previous
studies on NDI showing that this technique is sensitive to microstructural and macrostructural brain
alterations and useful for detecting neurological abnormalities in GW veterans [16]. Our result also
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corroborated with our previous findings that showed a higher sensitivity for the novel NDI measures
compared to the common DTI measures (e.g., FA, MD, etc.). As we suggested before, this might be due
to the higher specificity of NDI for detecting changes in different tissue components [16]. We previously
found that there is a strong correlation between alterations in GM ND measure and worse self-reported
fatigue and sleep symptoms, and with upregulated levels of proinflammatory cytokines TNFRI and
TNFRII [16]. However, based on our current findings, GM ND measures provided slightly lower
classification performance than WM OD and ND measures in this study. In addition, while classifier
trained on WM OD resulted in nearly identical final solutions across five iterations of validation,
GM measures resulted in more variabilities in the selected feature solutions. This might be due to the
differences in dimensional size between WM and GM feature space. GM measures have more numbers
of features (more complexity in the feature space) to be searched out during the QBSO process than
WM measures, and thereby requiring more delicate optimization process especially in this not-a-large
dataset problem. Although further investigations based on larger dataset is key to address the issue,
this may also indicate that WM OD measures can be better markers for simply classifying veterans
with GWI from control veterans, while GM ND can be a sensitive marker to specific symptom domains.
Our results also support the diagnostic value of these NDI markers for clinical applications.

Altogether, these results suggest that the microstructural changes measured by NDI may be
attributed to GM and WM deficits following chronic neuroinflammation. In line with this finding,
other studies have shown that chronic neuroinflammation related to GWI symptoms may be a
result of both morphological and functional changes that occurred in glial cells. For instance,
a study using a rat model of GWI showed that exposure to the chemical agent, diisopropyl
fluorophosphate (DFP: a sarin surrogate), was associated with fewer numbers of both mature and
dividing oligodendrocytes in the prefrontal cortex, which in turn interrupted the neuron-glial
interactions [43]. DFP injection also induced neuroinflammation and neurodegeneration in multiple
brain regions, which is associated with impaired contextual fear learning in these rats [44]. Similarly,
mice exposed to DFP demonstrated epigenetic changes to genes related to the immune and neuronal
systems and altered proportions of myelinating oligodendrocytes in the frontal cortex, which led to
disrupted synaptic connectivity and WM alterations in GWI [45]. A recent in-vivo positron emission
tomography study corroborated these findings and reported elevated levels of translocator protein
(TSPO), a protein upregulated in activated microglia and astrocytes, in veterans with GWI compared
to control veterans [46]. This elevation pattern was observed in many areas including the precuneus,
prefrontal, primary motor, and somatosensory cortices [46]. Considering this evidence, our current
findings further support the importance of novel NDI measures for detecting microstructural changes
in the brain following chronic neuroinflammation in GWI.

Besides NDI measures, some T1W-MRI measures also demonstrated good performances for
classifying veterans with GWI vs. control veterans. Among classifiers trained using T1W-MRI
measures, the cortical volume, subcortical volume, WM volume, and mean curvature models achieved
80.8% accuracy, and highlighted key features in the frontal and temporal regions (Table S2). The results
on the group-level statistical analysis also showed reduced volumes of frontal regions among veterans
with GWI (Table S1). GM atrophy has been well studied as a hallmark for various neuropsychological
disorders. Previous studies showed that reduced total cortical and regional frontal lobe volumes are
associated with poor subjective sleep quality and increased self-reported frequency of hearing chemical
alarm among GW veterans [12,47].

For DTI measures, the best performance was demonstrated by the MD classifier with an accuracy
of 80% and F-score of 0.887 (Table S2). There is evidence that DTI measures may correlate with GWI
symptom severity. An early study on GWI veterans showed that fatigue, pain, and hyperalgesia
are associated with increased AD in the right IFOF [15]. Another study showed that changes in
frontal-limbic WM connectivity, as indicated by reduced MD and increased FA in the right cingulate
bundle, was associated with higher PTSD symptom severity score among a sample of 20 GW
veterans [48]. In addition, GW veterans who had been exposed to chemical agents have increased
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AD throughout many regions of the brain including the temporal stem, cingulum bundle, IFOF, etc.,
compared to unexposed veterans [13]. Through our results, we found that while T1W-MRI and DTI
measures are less significant based on group-level statistical analysis, a subset of the regional measures
may still explain key components of GWI symptoms.

In this study, we showed that neuroimaging markers help to identify GWI Nevertheless, we are
expecting that the current approach can be improved in several aspects. One of the limitations of the
current work is the imbalanced sample size, where the number of case subjects greatly exceeded the
control subjects for building the classification model. This issue is reflected by the higher sensitivity
and lower specificity for all the classifiers. To better handle this issue, we are planning to employ an
oversampling method on the minority group to balance the samples. In our follow up work, we will
also expand our analysis to a larger GW cohort including more control veterans recruited from other
sites. Another important future direction is to test if the combination of multiple imaging measures,
or combination of imaging and clinical measures (e.g., cognitive scores, inflammatory profiles, etc.)
can improve the classification performance. This multivariate approach will be useful for identifying
important features from large datasets. In conclusion, our current work provided the first evidence
that novel NDI measures are not only useful for defining GWI based on the conventional group-level
statistical comparisons, but also constitute key features for building single-subject level ML models
for automated diagnostic classification. The features that are highlighted by our analysis suggest
neurological changes underlying GWI pathology and support neuroinflammation as a potential target
for therapeutic interventions.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3425/10/11/884/s1,
Table S1: List of key imaging features based on group-level statistical comparison, Table S2: The classification
performance for all classifiers.
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Abstract: The Boston University-based Gulf War Illness Consortium (GWIC) is a multidisciplinary
initiative developed to provide detailed understanding of brain and immune alterations that underlie
Gulf War illness (GWI), the persistent multisymptom disorder associated with military service in
the 1990–1991 Gulf War. The core GWIC case-control clinical study conducted in-depth brain and
immune evaluation of 269 Gulf War veterans (223 GWI cases, 46 controls) at three U.S. sites that
included clinical assessments, brain imaging, neuropsychological testing, and analyses of a broad
range of immune and immunogenetic parameters. GWI cases were similar to controls on most
demographic, military, and deployment characteristics although on average were two years younger,
with a higher proportion of enlisted personnel vs. officers. Results of physical evaluation and
routine clinical lab tests were largely normal, with few differences between GWI cases and healthy
controls. However, veterans with GWI scored significantly worse than controls on standardized
assessments of general health, pain, fatigue, and sleep quality and had higher rates of diagnosed
conditions that included hypertension, respiratory and sinus conditions, gastrointestinal conditions,
and current or lifetime depression and post-traumatic stress disorder. Among multiple deployment
experiences/exposures reported by veterans, multivariable logistic regression identified just two
significant GWI risk factors: extended use of skin pesticides in theater (adjusted OR = 3.25, p = 0.005)
and experiencing mild traumatic brain injury during deployment (OR = 7.39, p = 0.009). Gulf War
experiences associated with intense stress or trauma (e.g., participation in ground combat) were not
associated with GWI. Data and samples from the GWIC project are now stored in a repository for use
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by GWI researchers. Future reports will present detailed findings on brain structure and function,
immune function, and association of neuroimmune measures with characteristics of GWI and Gulf
War service.

Keywords: Gulf War illness; brain–immune interactions; military exposures; pesticides; traumatic
brain injury; case-control study

1. Introduction

The 1990–1991 Persian Gulf War was among the most impressive military campaigns
of the modern era. In response to Iraq’s military invasion of neighboring Kuwait in August
1990, U.S. and Coalition forces flooded into the region over a period of months. The
active combat offensive, U.S. codenamed Operation Desert Storm, began with air strikes in
January 1991 and ended with a ceasefire in February 1991 after just four days of ground
combat [1]. But after the successful execution of the Gulf War, a substantial number of
military personnel returned home with difficult health problems that were not explained
by familiar medical or psychiatric diagnoses [2–4]. This condition, now known as Gulf War
illness (GWI), remains a serious problem for Gulf War veterans 30 years after the war [5–7].

Relatively little was understood about the nature or causes of GWI in the early years af-
ter Desert Storm. As the years passed, a series of population studies identified a consistent
profile of excess symptoms that affected up to one third of Gulf War veterans [8–11]. Multi-
ple studies, using multivariable assessment methods, were also consistent in characterizing
the most prominent GWI risk factors from among numerous stressors and potentially
hazardous exposures that Gulf War troops encountered in theater [12–17]. In addition, clin-
ical studies conducted in Gulf War veteran populations identified a series of neurological,
immune and other pathobiological alterations that significantly distinguished GWI cases
from healthy controls [18–25]. In parallel, studies using animal models to simulate the
exposure experiences of Gulf War military personnel identified chronic and/or delayed
neurological, inflammatory, and behavioral changes that were consistent with veterans’
chronic symptoms [26–30]. Taken together, preclinical, clinical, and population studies con-
verged to indicate that the complex etiology and pathobiology of GWI involved persistent
brain and inflammatory alterations likely triggered by a limited number of deployment
exposures during the 1990–1991 Gulf War.

While these findings represented important progress for understanding GWI, there
remained an urgent need for improved diagnosis and effective treatments for veterans
who continued to suffer from this condition many years after the war. To address these
objectives, the Office of Congressionally Directed Medical Research Programs (CDMRP)
of the U.S. Department of Defense sponsored research consortia that enlisted scientific
expertise in diverse disciplines to advance understanding, diagnosis and treatment of GWI.
The Brain–Immune Interactions as the Basis of GWI: Gulf War Illness Consortium (GWIC)
was developed as a multisite, interdisciplinary research program capable of integrating
and building on GWI findings in multiple fields.

Headquartered at Boston University, the GWIC included multiple sites and coordi-
nated projects to determine the specific neurological, inflammatory, and neuroimmune
processes that underlie the symptoms of GWI, with the central objective of identifying GWI
biomarkers and treatments. The ten GWIC participating institutions include five sites that
conducted studies of veterans who served in the Gulf War (Boston University, Miami VA,
Nova Southeastern University, Baylor College of Medicine, University of Adelaide) and five
sites that conducted animal and in vitro GWI studies (U.S. Centers for Disease Control and
Prevention (CDC), National Institutes of Health, University of Colorado, Drexel University,
Temple University). A central feature of the GWIC has been coordination of clinical studies
of Gulf War veterans with animal studies that characterize persistent effects of Gulf War
exposures on the brain and on neuroimmune processes. Animal models are also used to
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test therapeutic compounds that counteract these effects and have the potential to provide
beneficial GWI treatments. Data and samples from the GWIC project are now stored in a
repository for use by GWI researchers.

The present report provides an overview of the core GWIC clinical project, a large
three-site GWI case-control study conducted in Boston, Miami, and Houston. This study
provided multifaceted evaluation of brain and immune parameters in Gulf War veter-
ans that included detailed assessments of immune function and immunogenetic factors,
magnetic resonance imaging (MRI) assessment of brain structure and function, neuropsy-
chological testing, and clinical assessment of general health and psychiatric status. Here we
describe study methods and data collected for the three-site project, compare general health
measures between GWI cases and controls, and identify deployment experiences and expo-
sures found to be significantly associated with GWI case status. Future reports will provide
in-depth results from GWIC brain imaging, brain function, and laboratory assessments
to determine the specific neurological, cognitive, immune and genetic parameters that
underlie the symptoms of GWI.

2. Materials and Methods
2.1. Study Recruitment, Screening, and Participation

Data were collected for the GWIC case-control study between 2015 and 2020 at three
clinical study sites: Boston University, the Miami Department of Veterans Affairs Medical
Center (VAMC), and Baylor College of Medicine in Houston. Project recruitment was
conducted through extensive outreach efforts to inform Gulf War veterans about the study
via veterans groups and meetings, media articles, social media, and veteran referrals. After
initial contact with the research team to obtain study information, interested veterans
were invited to participate in a structured telephone interview to determine their study
eligibility. Consenting veterans answered questions about their Gulf War military deploy-
ment, medical history, and current health. Those who met eligibility criteria were provided
additional study information and, if interested, were invited to participate in the full study,
which required a 1-day study visit. At the study site, veterans received detailed study
information and provided informed consent prior to participating in the series of research
evaluations and testing included in the study protocol, as described below. Study protocol
and informed consent documents were approved by institutional review boards at Boston
University, Miami VAMC, and Baylor College of Medicine and reviewed by the U.S. Army
Medical Research and Development Command’s Office of Human Research Protections.

2.2. Eligibility Criteria and GWI Case Definition

Veterans were eligible for the study if they had deployed to the Gulf War Theater of
Operations for any period between August 1990 and July 1991, were able to provide in-
formed consent, and had not previously been diagnosed with any conditions designated as
exclusionary for purposes of the GWIC project, as noted below. Primary GWI case/control
status was determined using the Kansas GWI case definition criteria [10]. Additional data
were collected to determine if veterans also met CDC criteria for chronic multisymptom
illness (CMI), as defined by Fukuda et al. [8].

Briefly, the Kansas GWI case definition inclusionary criteria require that veterans
endorse multiple and/or moderate to severe symptoms as problems that had persisted
or recurred over six months in at least three of six defined symptom domains. Defined
symptom domains include: (1) fatigue/sleep problems, (2) pain symptoms, (3) neurologi-
cal/cognitive/mood symptoms, (4) gastrointestinal symptoms, (5) respiratory symptoms,
and (6) skin symptoms. The Kansas criteria also exclude as GWI cases any veterans di-
agnosed with conditions that could account for their chronic symptoms or interfere with
their ability to accurately report them (e.g., severe psychiatric disorders). Notably, Kansas
GWI criteria do not exclude subjects with other unexplained symptom-defined conditions,
such as fibromyalgia (FM), chronic fatigue syndrome/myalgic encephalomyelitis (CFS), or
irritable bowel syndrome (IBS) [10].



Brain Sci. 2021, 11, 1132 4 of 17

Consistent with the Kansas GWI criteria, lead investigators at the three study sites
(KS, NK, LS) established a list of medical and psychiatric conditions that were pre-specified
as exclusionary for the GWIC study. The GWIC exclusionary criteria also designated
time frame parameters to allow for prior conditions that had resolved or were adequately
managed, and so could not account for veterans’ symptoms at the time of the study.

Exclusionary conditions. The GWIC study eligibility criteria excluded veterans who
had ever been diagnosed by a physician with multiple sclerosis, lupus, rheumatoid arthritis,
stroke, Parkinson’s disease, amyotrophic lateral sclerosis (ALS, or Lou Gehrig’s disease),
Alzheimer’s disease, bipolar disorder, or schizophrenia. Criteria also excluded veterans if
they had previously been diagnosed with any of the following conditions and there was any
indication the condition was still active in the five years before the study: seizure disorder,
heart disease (high blood pressure or high cholesterol not exclusionary), kidney disease,
liver disease, cancer (except non-melanoma skin cancer, which was not exclusionary). For
example, veterans who had a prior cancer diagnosis but had been told by their providers
that they had been cancer–free for at least 5 years were not excluded from the study.
Veterans diagnosed with diabetes were included only if their blood sugar had been well
controlled for at least 2 years but were otherwise excluded. Veterans were also excluded
if they had a chronic infectious disease lasting six months or longer or were recovering
from a serious injury that could account for their symptoms. In addition, veterans were
excluded if they had been hospitalized for post-traumatic stress disorder, depression, or
alcohol or drug dependence in the previous 5 years. GWI exclusionary criteria established
for the GWIC study are summarized in Supplemental Figure S1.

Exclusionary criteria were applied to all screened participants, regardless of their likely
case status, to ensure a comparison group of healthy controls and minimize the potential
for any case-control differences identified by the study to be the result of conditions other
than GWI.

2.3. Data Collection
2.3.1. Screening Interview

Veterans who consented to the screening interview were asked if they had deployed to
the Persian Gulf region for any period between August 1990 and July 1991, then responded
to a series of questions about symptoms associated with Kansas GWI and CMI criteria.
For symptoms identified as persistent problems over the prior 6 months, veterans were
asked to rate the problem as mild, moderate or severe. Veterans were also asked about
their medical history, including hospitalizations and conditions diagnosed by a healthcare
provider that could potentially affect study eligibility. Eligible veterans were provided
additional study information and invited to schedule an in-person study visit.

2.3.2. GWIC Study Visit

Upon arriving at the study site the morning of their appointment, veterans were
given detailed study information, and any questions were discussed prior to obtaining
informed consent. Consenting veterans provided fasting blood samples and initial saliva
samples, followed by a brief physical evaluation to obtain data on height, weight, vital
signs (including supine and standing blood pressure) and fibromyalgia tender points.
Participants were then administered a neuropsychological testing battery that included
tests of executive system functioning, attention, motor function, visuospatial function,
memory, mood, and motivation. Veterans also received a clinical psychiatric interview that
included the Clinician Administered PTSD Scale (CAPS) [31] and the Structured Clinical
Interview for DSM-V (SCID) [32] to identify exclusionary diagnoses (bipolar disorder,
schizophrenia) and/or comorbid psychiatric diagnoses (major depression, anxiety disorder,
dysthymia, post-traumatic stress disorder (PTSD)). In addition, at the Boston and Houston
sites, study participants with no safety contraindications received a magnetic resonance
imaging (MRI) scan of the brain. The neuroimaging battery included a T1-weighted
magnetization-prepared rapid acquisition (MPRAGE) sequence, multi-component T-2 scan,
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diffusion tensor imaging (DTI), fMRI, pCASL sequence, and a High Angular Resolution
Diffusion Imaging (HARDI DTI) scan [33,34].

2.3.3. Standardized Health Assessments and Study Questionnaires

During the course of their study visit, veterans were administered a series of standard-
ized health assessments and completed additional questionnaires online during or after
their study visit. Health assessments included the Veterans SF36 [35], McGill Pain Ques-
tionnaire [36], Pain Visual Analog Scale, Multidimensional Fatigue Inventory [37], Pitts-
burgh Sleep Quality Index [38], and the Structured Neurotoxicant Assessment Checklist
(SNAC) [39]. Veterans also completed the Kansas Gulf War and Health Questionnaire [15],
which queries a broad range of experiences and exposures specifically associated with
Gulf War service and the duration of each exposure. In addition, veterans were asked if
they had experienced one or more mild traumatic brain injuries (mTBI) before, during,
or after Gulf War deployment, and the estimated number of mTBIs during each period.
For purposes of the study, mTBI was defined according to American Academy of Neu-
rology guidelines [40] as an impact to the head that causes symptoms for any amount of
time (i.e., seconds or longer)—symptoms that may have included sensitivity to light or
noise, headache, dizziness, balance problems, nausea, vomiting, trouble sleeping, fatigue,
confusion, difficulty remembering, difficulty concentrating, or loss of consciousness.

2.3.4. Testing of Collected Samples

Blood analyses included a battery of standard clinical diagnostic tests (complete blood
count, basic metabolic panel, thyroid panel, rheumatoid factor, antinuclear antibody). In
addition, participants’ de-identified blood and saliva samples were shipped by overnight
courier to the project’s central research laboratory and repository site, the E.M. Papper
Immunology Laboratory at Nova Southeastern University, where extensive research testing
was conducted. Research analyses included multiplex evaluation of a comprehensive panel
of cytokines and chemokines in the blood and nanostring analyses of mRNA and miRNA
of proteins associated with toll like receptor functioning and glial activation. In addition,
cortisol levels were tested in saliva samples collected at regular intervals throughout the
study visit. Saliva samples were also shipped to the GWIC collaborating genetic laboratory
at the University of Adelaide to test for genetic markers associated with variability in
immune and proinflammatory processes.

2.4. Data Management and Analyses

Data collected at the three clinical study sites, identified only by subjects’ study
identification numbers, were securely submitted to Boston University’s Biostatistics and
Epidemiology Data Analytics Center (BEDAC) for data consolidation, management, and
analyses. Additional analyses were conducted by project investigators at individual study
sites, to address specific research questions.

Data analyses for the current report involve bivariate and multivariable comparisons
between GWI cases and controls using standard analytic methods. This included chi-
square tests to evaluate case/control comparisons associated with categorical variables.
Comparison of categorical outcomes for which any expected cell size was <5 utilized
Fisher’s exact test to determine p-values. Mean values of continuous variables were
compared using T tests, according to observed distributions of individual variables. Sig-
nificance was assessed by p-values determined using pooled variances, when equal for
GWI cases and controls, and the Satterthwaite method [41,42] when variances were not
equal. Prevalence odds ratios and 95% confidence intervals were used to estimate the
magnitude of association of GWI with veteran-reported experiences/exposures during
Gulf War deployment—both unadjusted (bivariate) associations and adjusted (multivari-
able) associations.

Multivariable logistic regression was used to identify independent associations of
Gulf War experiences and exposures with GWI, adjusted for effects of covariates as well as
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potential confounding effects of concurrent exposures. The multistep modeling approach
first used results of bivariate analyses to test all significant associations of GWI with
deployment experiences/exposures in a single model. Final models retained individual
exposures significant at p < 0.05, as well as prominent variables (age, rank, PTSD) that
differed between GWI cases and controls in initial bivariate analyses. All analyses were
conducted using SAS/STAT statistical analysis software, version 9.4 [43].

3. Results
3.1. Study Sample

Overall, 703 veterans were screened for study eligibility at the three GWIC sites.
Twenty-eight veterans indicated they had not served in theater for any period between
August 1990 and July 1991 and were not further evaluated. Of the 675 remaining, 436 (65%)
were identified as study eligible, and 239 were not eligible due to previous diagnoses of
one or more exclusionary conditions. Four hundred eleven screened veterans were invited
to participate in the full study, and 271 (66%) completed study appointments. Two veterans
who completed study visits were subsequently excluded from the final sample based on
additional health information obtained during study evaluations. The final GWIC study
sample therefore included 269 Gulf War veterans: 223 GWI cases and 46 veteran controls.
This included 147 veterans evaluated at the Boston site, 50 evaluated at the Miami site, and
72 evaluated at the Houston site.

Demographic, military, and deployment characteristics of the study sample are pro-
vided in Table 1. Overall, GWI cases were similar demographically to veteran controls
but included a somewhat higher proportion of women (17% GWI cases vs. 9% controls,
p = 0.16). Age group distributions were similar by decade, although the mean age of GWI
cases was about two years younger than veteran controls (p = 0.04). Veterans’ military
characteristics at the time of the Gulf War were also similar, with one exception. The large
majority of GWI cases (90%) had served in the enlisted ranks during the Gulf War, com-
pared to only 70% of controls (OR =3.84, p = 0.0003). However, there were no case/control
differences by military branch, service component, the time period veterans spent in theater,
or the duration of veterans’ deployment. Overall, 89% of all veterans in the sample had
been in theater during the two months of active combat, January–February 1991. The
remaining 11% either left the region during Operation Desert Shield, before the onset of air
strikes, or arrived in theater after the cease-fire was declared in late February 1991.

Table 1. Demographic, military, and deployment characteristics of GWI cases and controls.

GWI Cases
(n = 223)

GW Veteran Controls
(n = 46) Test Statistic p Value

Sex
Female 17% 9% 2.01 1 p = 0.16
Male 83% 91%

Age
43–49 44% 30% 3.47 1 p = 0.18
50–59 45% 52%
60+ 11% 17%

Mean age (years) 52.2 54.2 2.07 2 p = 0.04

Race
Black/African American 13% 11% 0.18 1 p = 0.92

White/Caucasian 79% 80%
Other/Mixed 8% 9%

Hispanic ethnicity 9% 4% na 3 p = 0.39
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Table 1. Cont.

GWI Cases
(n = 223)

GW Veteran Controls
(n = 46) Test Statistic p Value

Highest Education Level 0.61 1 p = 0.89
High school or GED 6% 9%

Some college or training after high school 49% 46%
4 year degree 20% 20%

Advanced degree 24% 26%

Rank in 1990
Enlisted 90% 70% 13.01 1 p < 0.001
Officer 10% 30%

Branch of Service in 1990
Army 65% 72% 2.47 1 p = 0.48
Navy 12% 15%

Air Force 7% 4%
Marines 16% 9%

Service Component in 1990
Regular (Active Component) 78% 76% 0.67 1 p = 0.72

Reserves 17% 15%
National Guard 6% 9%

Gulf War Deployment: Service Period
in Theater

Present Jan-Feb 1991 and departed by
May 1991 71% 72% 0.91 1 p = 0.63

Present Jan-Feb 1991 and departed after
May 1991 17% 21%

Departed prior to Jan 1991 or arrived after
February 1991 11% 7%

Mean number of months in theater 6.5 6.7 0.45 2 p = 0.65

Abbreviations: GW = Gulf War; GWI = Gulf War illness; na = not applicable. Statistical tests: 1 chi-square; 2 T test; 3 Fisher’s exact test.

3.2. General Health, Medical History, and Standardized Health Assessments

General health characteristics of GWI cases and controls are compared in Table 2.
As shown, similar proportions of cases and controls recalled being in good to excellent
health prior to Gulf War deployment, and were regular smokers both during the Gulf War
and at the time of the study. As expected, however, GWI cases indicated worse overall
health than controls at the time of the study. This disparity was reflected in significant
case/control differences in veterans’ medical history, and by standardized health and
psychiatric assessments conducted at the time of the study.

Table 2. General health characteristics of GWI cases and controls.

GWI Cases
(n = 223)

GW Veteran Controls
(n = 46) Test Statistic p Value

Veteran-reported health status prior to Gulf
War deployment

Excellent 92% 87% 1.24 1 p = 0.26
Good 8% 13%

Veteran-reported health status at time of study
Excellent 2% 20% 71.5 1 p < 0.001

Good 14% 50%
Fair 37% 30%
Poor 47% 0
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Table 2. Cont.

GWI Cases
(n = 223)

GW Veteran Controls
(n = 46) Test Statistic p Value

Regular smoker
During Gulf War deployment 27% 24% 0.24 1 p = 0.62

At time of study 10% 7% na 3 p = 0.59

Medical History: Physician-diagnosed
conditions (not exclusionary for GWI)

Hypertension 45% 28% 4.55 1 p = 0.03
Respiratory allergies/sinus problems 42% 7% 20.46 1 p < 0.001

Irritable bowel syndrome 31% 7% 11.62 1 p < 0.001
Other gastrointestinal diagnosis 31% 9% 9.35 1 p < 0.01

Chronic fatigue syndrome 23% 2% 10.71 1 p < 0.001
Asthma 14% 4% 3.02 1 p = 0.08

Chemical sensitivity 7% 0 na 3 p = 0.14

Psychiatric Diagnoses: Evaluated at time
of study

Major Depression: Current or lifetime 44% 24% 5.54 1 p = 0.02
Dysthymia: Current or lifetime 7% 3% 1.00 1 p = 0.32

Anxiety Disorder: Current 14% 0 na 3 p = 0.01
Post-traumatic Stress Disorder: Current or lifetime 56% 23% 15.43 1 p < 0.001

Standardized Health Assessments: Evaluated at
time of study

General Health
Veterans SF-36 mean Physical Component

Summary Score 35 50 12.86 2 p < 0.001

Veterans SF-36 mean Mental Component
Summary Score 41 51 4.99 2 p < 0.001

Pain
Magill Pain Inventory mean score (0–78) 32.5 16.4 −7.38 2 p < 0.001

Average pain level on best days (visual analog
scale, 0–100) 26.6 10.1 −6.91 2 p < 0.001

Average pain level on worst days (visual analog
scale, 0–100) 72.4 41.9 −7.38 2 p < 0.001

Fibromyalgia tender point exam
Mean number of positive FM tender points (of 18) 6 1 −8.19 2 p < 0.001

Veterans with 11+ tender points 28% 2% 13.97 1 p < 0.001
Fatigue −8.19 2

Multidimensional Fatigue Inventory (MFI) mean
score (0–100) 64.6 38.3 p < 0.001

Sleep
Pittsburgh Sleep Quality Index mean score (0–21) 13.0 7.5 −9.12 2 p < 0.001

Physical evaluation at time of study
Oral temperature (mean oF) 97.8 97.9 0.292 2 p = 0.77

Resting pulse (mean beats/minute) 70 68 −0.982 2 p = 0.33
Height (mean inches) 69 70 1.482 2 p = 0.14

Mean weight (pounds) 217 216 −0.292 2 p = 0.77
Body mass index (mean) 32 31 −1.002 2 p = 0.32

Supine blood pressure (mean
systolic/mean diastolic) 134/82 134/79 - ns

Standing blood pressure (mean
systolic/mean diastolic) 132/88 131/86 - ns

Diastolic drop of 10 or more points after standing 4% 2% na 3 p = 1.00
Systolic drop of 20 or more points after standing 6% 2% na 3 p = 0.48

Abbreviations: GW = Gulf War; GWI = Gulf War illness; FM = fibromyalgia; na = not applicable; ns = not statistically significant. Statistical
tests: 1 chi-square; 2 T test; 3 Fisher’s exact test.
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As described, veterans who were previously diagnosed with any designated exclusion-
ary conditions were not eligible for the study. As shown in Table 2, however, a significantly
greater proportion of GWI cases than controls reported they had been diagnosed by a
physician with a number of nonexclusionary medical conditions including hypertension,
allergies or sinus problems, gastrointestinal conditions and two chronic multisymptom
conditions: irritable bowel syndrome (IBS) and chronic fatigue syndrome (CFS). Structured
psychiatric evaluations conducted for the study also indicated that a significantly greater
proportion of GWI cases than controls met criteria for major depression (current or lifetime),
anxiety disorder, and post-traumatic stress disorder (current or lifetime).

In addition, GWI cases scored significantly more poorly than controls on each of the
standardized health assessments administered for the study. This included evaluations of
general health and quality of life, pain, fatigue, and sleep quality. For example, whereas
mean values for veteran controls on both the physical component (PCS) and mental
component (MCS) summary scores of the Veterans SF36 were near the normal value of 50,
GWI cases scored significantly worse on both the PCS (mean = 35, p < 0.001 vs. controls) and
MCS (mean = 41, p < 0.001 vs. controls). Gulf War illness cases also reported significantly
higher levels of pain on both their best and worst days and tested positive for a significantly
greater number of fibromyalgia (FM) tender points than controls. Twenty-eight percent
of GWI cases had 11 or more positive tender points out of 18 tested, consistent with 1990
diagnostic criteria for fibromyalgia [44], vs. only 2% of controls (p < 0.001).

Despite the significant degree of poor health indicated by both medical history and
health assessments, veterans with GWI, overall, had mostly normal health indicators on
standard physical evaluation and clinical diagnostic tests conducted for the study. As
detailed in Table 2, no case/control differences were observed in relation to veterans’ vital
signs, height, weight, or body mass index. Few veterans exhibited possible evidence of
postural orthostatic hypotension when comparing diastolic and systolic blood pressure
moving from laying down to a standing position, with no significant differences between
GWI cases and controls.

3.3. Blood Testing

Clinical reference lab testing of fasting blood samples taken the morning of the study
identified only a limited number of differences between GWI cases and controls. Among
basic metabolic panel (BMP) tests, GWI cases differed significantly from controls on mean
levels of CO2, glucose, and bilirubin. A greater proportion of GWI cases than controls had
elevated fasting blood glucose levels (13% vs. 2%, p = 0.04), while a greater proportion
of controls had higher-than-normal CO2 and bilirubin levels. No significant case/control
differences were associated with lipid panel tests, thyroid stimulating hormone, antinuclear
antibodies, or rheumatoid factor. Of note, 38–42% of both cases and controls had elevated
total and LDL serum cholesterol levels.

Complete blood count (CBC) testing also identified a limited number of case/control
differences. These included significant differences in mean white blood cell (WBC) counts
(p = 0.007), with more controls than cases having WBC counts below the reference range.
Controls also had significantly greater mean percent monocytes than cases (p = 0.04), while
cases had a larger mean red cell distribution width (RDW) than controls (p = 0.03).

3.4. Symptom Profiles: GWI Cases and Controls

Table 3 identifies the proportion of GWI cases and controls who endorsed each of
the Kansas GWI criteria symptoms as persisting for six months or longer. Kansas GWI
symptom criteria require two mild or one moderate-severe chronic symptom in at least 3
of 6 domains, a minimum of 3–6 symptoms. For the GWIC sample, however, each of the 29
individual GWI symptoms were endorsed by significantly more GWI cases than controls.
Both GWI cases and controls endorsed symptoms at substantially higher frequencies than
was typically observed in early Gulf War veteran studies. For example, over 90% of GWI
cases endorsed fatigue, pain, and cognitive chronic symptoms, while 50% of controls
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endorsed chronic joint pain and 41% had sleeping difficulties. Still, a significantly greater
proportion of GWI cases than controls endorsed multiple or moderate-severe symptoms in
each of the six defined symptom domains.

Table 3. Proportion of GWI cases and controls endorsing chronic symptoms.

Symptoms Identified as Persistent or Recurring Problems
over the Previous 6 Months

GWI Cases 1

(n = 223)
GW Veteran Controls

(n = 46)

Fatigue/Sleep Domain
Not feeling rested after sleep 95% 35%

Fatigue 93% 22%
Problems getting to sleep or staying asleep 90% 41%

Feel unwell after physical exercise or exertion 79% 11%
Multiple or moderate-severe symptoms 99% 30%

Pain Domain
Joint pain 94% 50%

Muscle pain 78% 11%
Body pain—hurt all over 70% 4%

Multiple or moderate-severe symptoms 92% 20%

Neurologic/Cognitive/Mood Domain
Problems remembering recent information 91% 39%

Difficulty concentrating 90% 37%
Trouble finding words when speaking 83% 35%

Feeling irritable or having angry outbursts 80% 28%
Headaches 75% 13%

Feeling down or depressed 75% 33%
Numbness or tingling in extremities 71% 17%

Eyes sensitive to light 70% 20%
Feeling dizzy, lightheaded, or faint 65% 15%

Low tolerance for heat or cold 65% 9%
Night sweats 63% 11%

Symptomatic response to chemicals, odors 58% 9%
Blurred or double vision 55% 11%

Tremors or shaking 47% 4%
Multiple or moderate-severe symptoms 99% 57%

Gastrointestinal Domain
Nausea or upset stomach 66% 4%

Diarrhea 64% 4%
Abdominal pain or cramping 61% 2%

Multiple or moderate-severe symptoms 72% 4%

Respiratory Domain
Difficulty breathing or catching breath 63% 11%

Persistent cough when don’t have a cold 53% 11%
Wheezing in chest 37% 4%

Multiple or moderate-severe symptoms 61% 2%

Skin Domain
Skin rashes 52% 11%

Other skin problems 35% 2%
Multiple or moderate-severe symptoms 41% 2%

Mean number of GWI symptom domains for which multiple or
moderate-severe symptoms were endorsed 4.7 1.1

Note: 1 Frequency of all individual symptoms and GWI symptom domains significantly greater in GWI cases vs. controls, p < 0.001.
Abbreviations: GW = Gulf War; GWI = Gulf War illness.

We also assessed chronic symptoms associated with the CMI case criteria [8]. Nearly
all GWI cases in our study (n = 221, 99%) met criteria for CMI, and half of veteran controls
(n = 23, 50%) also met CMI criteria.
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3.5. Association of Deployment Experiences and Exposures with GWI

Veterans reported a broad range of experiences and exposures during Gulf War
deployment. Table 4 compares the overall proportion of GWI cases and controls who
reported ever having each experience/exposure in theater, as well as the proportion who
experienced each item for seven days or longer. Initial bivariate comparisons between
GWI cases and controls suggested that 14 of the 23 Gulf War experiences/exposures
queried were potentially associated with GWI, with unadjusted OR point estimates ranging
from 1.99–8.33 (p < 0.05). A high degree of correlation was observed among reported
deployment exposures, however, suggesting the potential for confounding error when
evaluating exposure-GWI associations individually.

Table 4. Association of GWI case status with Gulf War deployment experiences and exposures.

Deployment Experiences/Exposures
% Exposed

OR (95% CI)
(Unadjusted)

OR (95% CI)
(Adjusted) 1GWI Cases

(n = 223)
GW Controls

(n = 46)

Regular smoker during deployment 27% 24% 1.20 (0.57–2.52) 1.14 (0.45–2.88)

Saw smoke from oil well fires
Ever 87% 83% 1.41 (0.60–3.32) 0.74 (0.26–2.09)

≥7 days 66% 57% 1.47 (0.77–2.80) 0.92 (0.41–2.06)

Heard chemical alarms sounded
Ever 86% 72% 2.43 (1.15–5.14) * 0.67 (0.25–1.80)

≥7 days 50% 28% 2.56 (1.28–5.14) * 1.36 (0.58–3.16)

Within 1 mile of exploding SCUD missile
Ever 50% 33% 2.05 (1.05–4.01) * 1.24 (0.54–2.86)

≥7 days 15% 7% 2.60 (0.76–8.87) 2.10 (0.40–11.14)

Directly involved in ground combat
Ever 45% 33% 1.70 (0.87–3.33) 0.69 (0.29–1.64)

≥7 days 21% 15% 1.47 (0.62–3.52) 0.44 (0.15–1.32)

Directly involved in air combat
Ever 10% 7% 1.56 (0.44–5.47) 1.38 (0.30–6.38)

Saw U.S. troops badly wounded or killed
Ever 54% 37% 2.00 (1.04–3.85) * 0.79 (0.34–1.81)

≥7 days 22% 13% 1.87 (0.75–4.67) 1.01 (0.33–3.10)

Saw Iraqis badly wounded or killed
Ever 72% 57% 1.99 (1.03–3.82) * 0.73 (0.31–1.70)

≥7 days 33% 26% 1.37 (0.67–2.80) 0.80 (0.33–1.96)

Contact with prisoners of war
Ever 59% 46% 1.69 (0.89–3.20) 0.99 (0.44–2.22)

≥7 days 32% 24% 1.47 (0.71–3.07) 1.29 (0.50–3.32)

Saw dead animals
Ever 72% 59% 1.78 (0.92–3.43) 0.76 (0.31–1.83)

≥7 days 32% 26% 1.34 (0.65–2.74) 0.39 (0.15–1.06)

Saw destroyed enemy vehicles
Ever 85% 72% 2.25 (1.07–4.74) * 0.95 (0.36–2.50)

≥7 days 57% 39% 2.04 (1.06–3.91) * 0.68 (0.29–1.60)

Contact with destroyed enemy vehicles
Ever 71% 46% 2.87 (1.50–5.50) * 1.45 (0.61–3.43)

≥7 days 40% 24% 2.12 (1.02–4.40) * 0.91 (0.36–2.27)

Contact with American vehicles hit by
friendly fire

Ever 37% 28% 1.47 (0.73–2.97) 0.71 (0.28–1.82)
≥7 days 15% 17% 0.86 (0.37–2.01) 0.32 (0.10–1.03)
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Table 4. Cont.

Deployment Experiences/Exposures
% Exposed

OR (95% CI)
(Unadjusted)

OR (95% CI)
(Adjusted) 1GWI Cases

(n = 223)
GW Controls

(n = 46)

Used pesticides cream/spray on skin
Ever 74% 43% 3.69 (1.91–7.13) ** 1.87 (0.87–4.02)

≥7 days 65% 26% 5.18 (2.53–10.59) ** 3.25 (1.44–7.34) *

Wore uniform treated with pesticides
Ever 53% 35% 2.16 (1.11–4.19) * 0.92 (0.36–2.40)

≥7 days 47% 24% 2.82 (1.36–5.84) * 1.19 (0.40–3.54)

Wore flea collars
Ever 15% 4% 3.85 (0.89–16.67) 2.04 (0.38–10.86)

Saw living area sprayed/fogged with pesticides
Ever 40% 24% 2.12 (1.02–4.40) * 0.91 (0.37–2.24)

≥7 days 23% 11% 2.48 (0.93–6.63) 1.17 (0.35–3.89)

Received one or more shots in arm in theater 75% 59% 2.52 (1.29–4.92) * 1.57 (0.70–3.51)

Received one or more shots in buttocks
in theater 53% 37% 2.24 (1.16–4.32) * 1.23 (0.54–2.79)

Used pyridostigmine bromide (NAPP) pills
Ever 82% 67% 2.25 (1.11–4.58) * 0.60 (0.23–1.56)

≥7 days 53% 37% 1.89 (0.98–3.64) 1.08 (0.49–2.38)

Contact with fresh CARC paint
Ever 46% 13% 5.55 (2.25–13.65) ** 2.13 (0.73–6.23)

≥7 days 27% 11% 2.96 (1.11–7.85) * 0.97 (0.30–3.09)

Experienced one or more mTBIs
during deployment 37% 7% 8.33 (2.50–27.72) ** 7.39 (1.64–33.28) *

Note: 1 Adjusted for use of skin pesticides ≥ 7 days, mTBI during deployment, age, rank, PTSD. * = significant association, p < 0.05;
** = significant association, p < 0.001. Abbreviations: GW = Gulf War; GWI = Gulf War illness, OR = odds ratio; CI = confidence interval;
NAPP = nerve agent pyridostigmine pretreatment; CARC = chemical agent resistant coating; mTBI = mild traumatic brain injury;
PTSD = posttraumatic stress disorder.

We therefore utilized logistic regression to identify independent associations of de-
ployment experiences and exposures with GWI. After controlling for veterans’ age, rank,
PTSD status, and significant deployment experiences/exposures, adjusted models identi-
fied only two significant deployment risk factors for GWI. These included: (1) extended
(≥7 days) use of cream or spray pesticides on the skin (adjusted OR = 3.25, p = 0.005) and
(2) experiencing one of more mTBIs during deployment (adjusted OR = 7.39, p = 0.009).

In contrast, veterans who reported having one or more mTBIs prior to Gulf War
deployment (38% cases vs. 35% controls, p = 0.71) or after the war (31% cases vs. 26%
controls, p = 0.50) were not at increased risk for GWI. Further, no interactions were observed
between deployment mTBI and pesticide use or other potential neurotoxicant exposures
(e.g., hearing chemical alarms, use of pyridostigmine bromide) in relation to the risk
for GWI.

Stressful deployment experiences were not identified as risk factors for GWI, although
several were significantly associated with PTSD (not shown). For example, participation in
ground combat was not a significant risk factor for GWI in our sample but was significantly
associated with PTSD (OR = 3.55, p < 0.001).

4. Discussion

The GWIC case-control study, the core clinical project of the Boston University-based
GWI research consortium, provided in-depth assessment of brain and immune function
of 1990–1991 Gulf War veterans at three U.S. sites. Here we describe the general health of
GWIC participants, results of clinical evaluation and testing of GWIC cases and controls, and
significant GWI risk factors among veteran-reported wartime experiences and exposures.
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In the three-site sample, GWI cases were generally similar to controls in relation to
demographic, military, and deployment characteristics, although GWI cases were 2 years
younger on average, and included a significantly higher proportion of veterans who had
served in the enlisted ranks (vs. officers) during the war. This is similar to previous Gulf
War veteran studies, where one of the most consistent findings has been a higher prevalence
of GWI in enlisted personnel compared to officers [10,11,13,14]. This potentially reflects
differences between officers and enlisted personnel in relation to Gulf War deployment
activities and exposures. Such differences also parallel health differences observed in
nonmilitary populations, for example, patterns of greater morbidity among civil servants
serving in lower vs. higher ranks [45].

In addition to GWI symptoms, GWI cases had multiple indicators of poor health
that distinguished them from controls. Veterans with GWI scored significantly worse
on standardized assessments of general health status, pain, fatigue, and sleep quality
compared to controls. They also reported a higher prevalence of physician-diagnosed
hypertension, allergies and sinus problems, irritable bowel syndrome, other gastrointestinal
disorders, and chronic fatigue syndrome, and were more likely to have current or lifetime
PTSD and major depression.

Despite the degree of ill health associated with GWI, results of standard physical
evaluation and clinical diagnostic tests were mostly normal, with only limited differences
that distinguished GWI cases from healthy controls. This is consistent with earlier Gulf
War veteran reports [8,46,47] and exemplifies a longstanding challenge associated with
GWI for veterans and their healthcare providers. Symptoms, by definition, are patients’
own experiences as opposed to externally “objective” measures of disease and have thus
far been the only consistent marker of GWI in affected veterans. For many years, the lack
of diagnosable abnormalities on physical exam and routine clinical lab tests commonly
led to provider assumptions that nothing was wrong with veterans who reported chronic
GWI symptoms, or that their health problems were the result of deployment stress and/or
psychiatric in nature [48–50].

Such assumptions have not been supported by the large body of Gulf War population
and clinical studies that have routinely indicated that GWI is not the result of serving in
combat or other wartime stressors. Rather, the most consistently identified GWI risk factors
have been neurotoxicant exposures during Gulf War deployment [11–17,51]. For the current
study, GWIC participants reported a broad range of experiences and exposures during their
wartime service. But only two—extended use of skin pesticides and having one or more
mild traumatic brain injuries in theater—were significant risk factors for GWI. Our finding
of extended personal pesticide use as a prominent GWI risk factor was consistent with
previous studies [11–17,24]. The lack of association of GWI with serving in combat and
other deployment stressors was also consistent with previous studies [11–15]. However,
unlike previous studies, use of pyridostigmine bromide (nerve agent pyridostigmine
pretreatment, or NAPP) pills was not identified as a risk factor for GWI in our study. The
wide use of NAPP pills as a protective measure against potential deadly effects of chemical
nerve agents was unique to the 1990–1991 Gulf War and was reported by a high proportion
of both GWI cases (82%) and controls (67%) in our sample.

Having one or more mild TBIs during Gulf War deployment was also identified as a
significant GWI risk factor in the current study, although mTBIs before or after the Gulf
War were not. Brain injuries are commonly recognized as health concerns for veterans
of post 9/11 deployments but have seldom been evaluated in relation to chronic health
outcomes in 1990–1991 Gulf War veterans. A limited number of Gulf War veteran studies
have previously assessed mTBIs in relation to GWI, with varying results. In the Fort
Devens cohort, the prevalence of GWI was elevated among veterans who reported a history
of three or more mTBIs [52]. TBIs during deployment were infrequently reported in a
VA study of 202 Gulf War veterans [53]. There, a history of TBIs overall was associated
with symptomatic illness, broadly defined, but not with more narrowly-defined GWI. In
addition, two prior studies have reported on effects of mTBI in subsets of the full GWIC
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case-control sample evaluated here. The first reported a significant association of mTBIs
sustained in theater with GWI [54]. The second identified focal microstructural differences
on high order diffusion MRI brain scans among veterans with GWI who reported having
mTBIs during deployment, compared to veterans with no mTBI [34].

4.1. Symptom Reporting and GWI Case Definition

Primary GWI case status for the GWIC study was based on the Kansas GWI case
criteria [10], with secondary assessment of CMI criteria [8]. Both case definitions were
developed in the first decade after the Gulf War and based on the types and pattern of
symptoms reported by Gulf War veterans at that time, with Kansas criteria also providing
guidelines for excluding veterans with diagnoses that potentially explain their symptoms.
By design, GWI cases in our study endorsed significantly more symptoms than controls.
However, the frequency of symptoms reported by GWI cases was higher than generally
observed in early GWI studies and substantially greater than the symptom burden required
to meet Kansas GWI case criteria. This is consistent with other more recent studies of
Gulf War veterans that have generally indicated that, over the years, 1990–1991 Gulf War
veterans have reported an increasing burden both of chronic symptoms and of diagnosed
health conditions [5–7,55,56]. In the current study, this increased symptom burden was
also observed in controls, half of whom met CMI criteria.

More than 20 years after the CMI and Kansas GWI case definitions were developed,
time and age-associated changes in both the symptom profile and diagnosed conditions
affecting Gulf War veterans suggest the likelihood of reduced specificity for both case defi-
nitions. This, in turn, would be expected to reduce their utility for accurately characterizing
GWI cases for research and other purposes. Increased levels of morbidity observed in this
and other studies supports the need for evidence-based revisions to existing GWI case
definitions [6,57–59]. A primary consideration is that revised GWI criteria more accurately
reflect present day symptoms and diagnosed health conditions associated with service in
the 1990–1991 Gulf War in order to optimally distinguish GWI cases from noncases.

4.2. Strengths and Limitations

The GWIC case-control study has several strengths and limitations to consider in
assessing research results. Important strengths are the study size and rigorous characteri-
zation of veterans for the project, which included a diverse sample of 1990–1991 Gulf War
veterans from different regions in the country. To our knowledge, the GWIC multisite
project (n = 269) represents the most comprehensive evaluation of clinical, neurological and
immune measures of 1990–1991 Gulf War veterans to date and is one of the largest case-
control studies conducted in this population. However, the sample included fewer controls
than originally targeted for the study, which may prove to be a key limitation in addressing
some study questions. In addition, the GWIC study sample was not randomly selected
from a defined population, so the extent to which cases and controls are representative of
the larger Gulf War veteran population is uncertain.

This initial report from the full GWIC case-control study sample provides an overview
of research assessments and general health comparisons between GWI cases and controls.
Future papers will report on results of neuroimaging, neurocognitive, immune, and genetic
testing from Gulf War veterans evaluated at the three GWIC clinical sites, including the
degree to which identified health outcomes differ in GWI subgroups and are associated
with exposures during the Gulf War.

5. Conclusions

Limited findings on routine clinical assessment of ill Gulf War veterans underscores
the importance of applying multidisciplinary, state of the art research to accelerate progress
in addressing GWI.

Improved understanding of brain and immune GWI pathobiology provided by the
GWIC and related projects is essential for identifying effective treatments and valid diag-
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nostic tests for the complex of serious health problems that continue to affect Gulf War
veterans, 30 years after their service in Operation Desert Storm.
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They will be made available for data mining by the BBRAIN network and the GWI research community. Prospec-
tive questionnaire data include general health and chronic symptoms, demographics, measures of pain, fatigue,
medical conditions, deployment and exposure histories. Available repository biospecimens include blood,
plasma, serum, saliva, stool, urine, human induced pluripotent stem cells and cerebrospinal fluid.
Key findings: To date, multiple datasets have been merged and combined from 15 participating study sites.
These data and samples have been collated and an online request form for repository requests as well as rec-
ommended common data elements have been created. Data and biospecimen sample requests are reviewed by
the BBRAIN steering committee members for approval as they are received.
Significance: The BBRAIN repository network serves as a much needed resource for GWI researchers to utilize for
identification and validation of objective diagnostic and pathobiological markers of the illness.

1. Introduction

Gulf War Illness (GWI) is a debilitating, chronic, multi-symptom dis-
order affecting nearly one-third of veterans in the 1991 Gulf War (GW)
[1,2]. The illness is characterized by debilitating fatigue, chronic pain,
cognitive dysfunction, headaches, respiratory problems, and gastroin-
testinal disturbances [3–5]. Veterans suffering from GWI can experi-
ence significant impairment in their daily activities and quality of life.
Despite promising recent research in correlating biomarkers to GWI
symptoms, GWI primarily remains diagnosed by self-report. The study
of potential diagnostic biomarkers to date has not been supported by
larger sample sizes and has not been validated in other cohorts [6–11].
Basing diagnosis on self-reported symptoms makes treatment develop-
ment and access to care for GW veterans persistently difficult. There is a
critical need for an objective diagnostic test for GWI to alleviate GW
veterans’ difficulties with obtaining service-related benefits and valida-
tion of their symptoms and for use as primary outcome measures for
treatment trials.

“A biorepository is an entity that receives, processes, stores, and/or
disseminates biospecimens, their derivatives, and relevant data, as
needed [12]. It encompasses the physical location and the full range of
activities associated with its operation [12].” A recent review by Garcia
et al., showed that rare disease biobanks have the ability to identify and
validate genetic and omics biomarkers as well as inform treatment de-
velopment strategies for these rare disorders [13]. However, it was also
noted that many of these repositories lacked the corresponding clinical
outcomes data needed to make the biomarker samples most useful for
correlation with the disease symptoms.

Therefore, the need is clear for a biorepository network of freely
sharing biospecimens with corresponding comprehensive clinical out-
comes data in the field of GWI research. There is also a need for retro-
spective data mining from prior studies that are hard to replicate (i.e.,
cerebrospinal fluid, PET, and MRI brain imaging outcomes). These clin-
ical outcomes that are common (common data elements) among the dif-
ferent prior studies provide power to document differences that might
not emerge in the smaller sample cohorts. These common data elements
are also needed to ensure comparability of study results, particularly for
treatment trial efficacy testing [14,15].

The Boston Biorepository, Recruitment and Integrative Network
(BBRAIN) for GWI was designed to serve as a resource for the GWI re-
search community to hasten biomarker discovery and validate prior re-
sults in a well-characterized cohort of GW veterans. The BBRAIN study
was built upon and incorporates the already existing Boston GWI con-
sortium [16]. The GWI consortium brought together leading experts
from different fields into the GWI research community. Since its con-
ception, the GWI consortium has established an extensive multi-site
data set with cognitive measures, brain imaging, health symptom data,
and biorepository blood and saliva specimens for several hundred GW
veterans. GWIC has greatly expanded the field's ability to explore and
identify specific ‘objective’ biomarkers and ‘personalized’ treatment
strategies for veterans with GWI by utilizing a small biorepository
shared with the GWI research community, resulting in 20 additional
federally funded studies. This lead to 34 biomarker publications of
lipidomic, proteomic, epigenetic, genetic susceptibility, mitochondrial,

CNS autoantibodys, and tau markers in clinical and preclinical transla-
tional studies [7,11,17–43]. It also resulted in funding to establish two
additional consortia, including BBRAIN and the Gulf War Illness Clini-
cal Trials Consortium [14]. Since its inception in 2018, BBRAIN has
built upon this existing infrastructure at Boston University and 14 other
participating sample and data resource sites to establish a much-needed
resource for the GWI research community that is available for data and
sample sharing.

2. Methods: BBRAIN structure

2.1. Leadership

The lead site of BBRAIN is at Boston University School of Public
Health and makes up the network coordinating center. The network co-
ordinating center staff members have diverse expertise in neuropsy-
chology, brain imaging, exposure assessment, data management, statis-
tical programming and study operations. These skills are integral for
maintaining a multi-site biorepository and promoting collaboration
within the GWI research field.

2.2. Participating sites

The BBRAIN collaboration brings together leading investigators
from 15 institutions to support participant recruitment, administrative
activities, data management and biostatistics, and biorepository and
biomarker evaluation. The BBRAIN collaboration is composed of the
network coordinating center, steering committee, retrospective re-
source sites and four prospective resource sites (Fig. 1). The four re-
source sites where prospective subject recruitment is taking place in-
clude Boston University School of Public Health, Miami VA Medical
Center and Nova Southeastern University, Bronx VA Medical Center
and the San Francisco VA Medical Center.

2.2.1. Steering committee
Oversight of the BBRAIN is coordinated by a Steering Committee

made up of the BBRAIN PI, the resource site PIs, the network coordinat-
ing directors, and the consumer advocate. The Steering Committee
monitors research site performance and determines individual study
performance. The Steering Committee is also responsible for establish-
ing standard operating procedures, utilizing ISBER Best Practices for
Biorepositories, and utilizing BUSPH criteria templates for Data Use
Agreements across sites and institutions sharing samples and data [12].
Researchers interested in obtaining BBRAIN samples can apply to the
Steering Committee. The group will decide on the appropriateness (i.e.,
for GWI research and not redundant with ongoing research) and prior-
ity of sharing samples on a case-by-case basis.

2.2.2. Network coordinating center
The network coordinating center for the biorepository is responsible

for overseeing IRB protocol and regulatory submissions and approvals,
establishing standard protocols across all sites, and conducting data
management and monitoring while ensuring study participant confi-
dentiality. The center is led by the BBRAIN study PI at BUSPH and sup-
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Fig. 1. BBRAIN organizational structure.

ported by faculty and administrative staff at BUSPH. The network coor-
dinating center provides support and coordination for prospective data
collection of demographic surveys, cognitive test data, serum, plasma,
saliva, stool, and urine samples from 500 GW veteran study partici-
pants. Additionally, the network coordinating center serves as a gate-
keeper for requests for repository site sharing and coordinates ap-
provals with the steering committee members in consultation with the
biorepository contributors. A virtual biorepository is established using
laboratory software LDMS (Frontier and/or FreezerPro for resource
sites). Resource sites send newly obtained biospecimens and data to
laboratory storage facilities at Nova Southeastern University and
Boston University Medical Campus (BUMC) as the prospective reposi-
tory is being created.

2.2.2.1. Subject Confidentiality. As in all human subject research, pro-
tecting subject confidentiality is imperative. For retrospective data, all
samples and data are de-identified. For prospective data collection,
participants’ contact information is kept in a study-specific electronic
capture web-based platform on a secure server, including multiple
password protection layers that are only accessible by approved study
team members. All source documents are kept in a locked cabinet, and
all data is behind password-protected and encrypted devices. Samples
that are shipped are labeled with a unique identifier code for tracking
purposes within the biorepository. Participants are made aware of the
confidentiality measure taken at the time of the phone screener and
again during the consent process and are consented to share their
coded study samples and data for the repository and other future GWI
related studies. All data and samples that are shared from the reposi-
tory are coded with no individual identifiers.

2.2.3. Retrospective resource sites
One of the BBRAIN's primary objectives is to establish a retrospec-

tive biorepository network by data mining from existing BBRAIN col-
laborators’ stored specimens, cognitive data, and brain imaging data
from study participants who have consented to share these data and
samples for future studies in a de-identified manner. Retrospective re-
source sites have already provided some stored specimens from prior
studies with GW veterans cataloged and made available for within Net-
work and outside of Network investigators. Common data element
datasets from these prior studies are also being created to improve
power for new analyses. Currently, available samples include blood

serum (n = 300), plasma (n = 1100), peripheral blood mononuclear
cells (PBMCs n = 600), DNA (n = 600), human-induced pluripotent
stem cells (n = 9), cerebrospinal fluid (n = 150), cognitive data
(n = 400), brain imaging data (see Fig. 3 range n = 50-280) and corre-
sponding demographic/survey data from retrospective resource sites,
including University of Alabama at Birmingham, San Francisco VA,
Harvard / Beth Israel Deaconess Medical Center (BIDMC), Georgetown
University, Boston University and Drexel University (Fig. 2) [38]. Brain
imaging data includes MRI volumetric and diffusion tensor imaging,
MR spectroscopy, functional MRI and positron emission tomography
(PET) imaging with peripheral benzodiazepine receptor [11C]-PBR28
and fluorodeoxyglucose 18F-FDG tracers [7,10,11,44,45]. Although
some of these samples have been stored and processed differently, these
details will be made available to the requesting research investigators
to meet their study needs during a study consultation. In addition, pre-
clinical animal retrospective data and tissue samples are also available
for sharing upon request from the CDC/NIOSH and Roskamp Institute
GWI animal models. As previously mentioned, data collection for the
biorepository is coordinated and quality checked by the network coor-
dinating center.

2.2.4. Prospective resource sites
Subject recruitment for the prospective study is conducted at four

prospective sites comprising of Boston University School of Public

Fig. 2. Retrospective BBRAIN Samples and Data Repository.
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Fig. 3. BBRAIN MRI and PET Imaging Repository.

Health (BUSPH), Miami VA Medical Center / Nova Southeastern Uni-
versity (NSU), Bronx VA Medical Center and San Francisco VA Medical
Center (Fig. 1). These sites were chosen due to their access to estab-
lished GW veteran cohorts and important prior research contributions.
Data from the prospective resource sites is being added to the BBRAIN
biorepository as subject recruitment accrues.

3. Prospective study methods

3.1. Participants

This case-control study is recruiting 500 GW veterans encompassing
300 GWI cases and 200 GW veteran controls. GWI cases are determined
by the Kansas GWI criteria and the four recruitment sites are oversam-
pling women veterans from their prior cohorts [4]. Although not exclu-
sion criteria, smoking history, medication use, and other demographic
and health outcomes are being collected and available to requesting in-
vestigators.

3.2. Inclusion/exclusion criteria

Study eligibility includes deployment to the Persian Gulf in the
1990-1991 Gulf War without any medical exclusions required for par-

ticipation. To meet case criteria, the individual needs to endorse symp-
toms in three of six health symptom domains: pain, fatigue, neurologi-
cal/cognitive/mood, skin, gastrointestinal, and respiratory [4]. If an in-
dividual does not meet the Kansas criteria and has no exclusionary con-
ditions, they are categorized as a control. The criteria for prospective
study participants is determined by using the Kansas GWI case defini-
tion [4]. Veterans are excluded from being considered GWI cases or
controls for the Kansas criteria if they report being diagnosed by a
physician with medical or psychiatric conditions that would otherwise
account for their symptoms or interfere with their ability to report their
symptoms. The Kansas exclusion criteria encompass conditions such as
diabetes, heart disease other than hypertension, stroke, lupus, multiple
sclerosis, cancer, liver disease, chronic infection, or serious brain in-
jury. Veterans are also excluded if they report being diagnosed with
schizophrenia or bipolar disorder or if they have been hospitalized in
the past 5 years for alcohol/drug dependence, depression, or post-
traumatic stress disorder (PTSD). Potential participants are screened by
telephone to determine whether they meet inclusionary or exclusionary
criteria for study participation [4]. Additionally, during the phone
screen eligible participants are categorized as a case or control based on
the Kansas GWI case criteria [4]. Although Kansas criteria are primarily
used for comparing study outcomes, the CDC chronic multi-symptom
illness case criteria are also obtained for all study participants [5].
These criteria include symptoms in two out of three symptom domains
including fatigue, mood-cognition and pain [5].

3.3. Methods

The study protocol for the prospective resource site clinical case-
control study consists of five components:

1) Neuropsychological testing: Measures from a previously validated
assessment of cognitive function and common data elements in GW
veterans are included to assess cognitive outcomes [15,35,46–48].
The neuropsychological test battery assesses the functional
domains of attention and executive abilities, psychomotor
function, visuospatial skills, memory, general intellectual abilities
and mood. The battery includes tests shown to have high specificity
and sensitivity for detecting changes in neuropsychological
functions between veterans with and without GWI and which were

Fig. 4. Blood and saliva aliquot scheme.
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recommended to be used across studies as common data elements
[35,47].

2) Surveys: The set of surveys administered were all included in the
GWI common data elements and collect data on health symptoms,
neurotoxicant exposures, mood and quality of life. Clinical
assessments include the Pittsburgh Sleep Quality Index (PSQI),
Visual Analog Scale (VAS) for pain, Kansas Gulf War and Health
Questionnaire, Multidimensional Fatigue Inventory (MFI-20)
questionnaire, MOS Short Form 36-veteran version (SF-36V), and
Profile of Mood States (POMS), as well as the medical conditions
checklist. Additional surveys that were also included in the
exposure assessment common data elements include the Kansas
Gulf War Experiences and Exposures Questionnaire and the
Structured Neurotoxicant Assessment Checklist (SNAC) [49–54].

3) Blood draw: Approximately 79 mL of blood are drawn from the
participant for local lab clinical testing, immune biomarker lab
testing, and biorepository storage. Fasting blood samples are
collected by venipuncture by a trained phlebotomist in the
morning. A small amount of blood is analyzed at the local labs for
complete blood count, lipid panels, thyroid stimulating hormone,
antinuclear antibodies, and rheumatoid factor. The remaining
blood samples for each participant are shipped to Nova
Southeastern University for sample processing and storage in the
biorepository. Blood samples are analyzed to measure plasma
cytokine levels, complete blood count, and RNA extraction is
performed from PBMCs collected. PBMCs isolated from sodium
heparin and EDTA tubes are stored in liquid nitrogen for
cryopreservation. RNA isolated from PBMCs is aliquoted and stored
at -80 °C. All data from these analyses will be made available as
part of the biorepository. Whole blood and blood derivatives such
as serum, heparin and EDTA plasma are prepared at various
volume aliquots and frozen at -80 °C for storage.

4) Saliva sample: Approximately 6 mL of saliva are collected
throughout the study visit. These samples are collected at four
different time points: after the participant consent form is signed,
after the blood draw and physical exam, after completion of
surveys, and at the end of the visit. Three of the collections are
performed when the participant is in a fasting state. These samples
are used to measure salivary cortisol levels and are stored in a -
80 °C freezer. An OGR-600 tube for saliva sample collection is also
performed upon fasting for DNA analysis and stored at room
temperature before shipping to EM Papper Lab at NOVA
Southeastern University. All saliva samples are batch shipped to
Nova Southeastern University for planned assessment, cortisol
analyses and DNA extraction. The remaining saliva samples are
also aliquoted down and frozen for biorepository sample requests.
Cortisol and DNA will be made available in the biorepository.

3.3.1. Sample processing methods
Blood samples are shipped on the day of collection at room tempera-

ture overnight to the EM Papper laboratory at Nova Southeastern Uni-
versity. As previously mentioned, saliva samples are batch shipped on
dry ice, from storage at each prospective site's local storage location.
Samples received by the biorepository laboratory at Nova Southeastern
University are processed within 2 h of delivery. This includes an imme-
diate quality check of the condition of sample tubes, the outer and inner
packaging, and the associated chain of custody that accompanies the
sample. Acceptable samples are then accessioned by the biorepository
team and entered into the Laboratory Data Management System. This
allows for the tracking of barcoded aliquots from each phase of the
process, including storage conditions and requirements, and will allow
expeditious processing of sample requests. Primary tubes are processed
to isolate the blood derivatives: plasma, serum, PBMCs, buffy coat, and
red blood cell pellets. Aliquots will be created per the aliquot scheme
(see Fig. 4) and tracked for their temperature and location. Each of

these blood derivative type are stored at its optimal temperature per
standard protocol for the EM Papper laboratory at Nova Southeastern
University. Specific blood processing methods are listed below.

3.3.1.1. Separation of plasma from the cellular fraction. Whole blood
samples are processed as described below to obtain a buffy coat frac-
tion and plasma for cryopreservation. In the area designated for pro-
cessing blood, the whole blood (collected in tubes containing an anti-
coagulant such as ethylene-diamineteraaceticacid-EDTA or Heparin)
is fractionated by centrifuging at 2000 x g for 10 min at room tem-
perature. This separates the blood into three visible layers (Fig. 4).
The upper layer, the plasma layer, is generally clear or pale yellow
in color. The second layer is a narrow grayish white interface band
representing the “buffy coat” or leukocyte fraction. The third or bot-
tom layer is dark red and consists of the erythrocytes or red blood
cells. Using an appropriate disposable transfer pipette, the plasma
layer is aspirated off down to approximately 1 mm from the buffy
coat layer taking care not to disturb the leukocyte or buffy coat
layer. All plasma is expelled from the pipette into a plasma collection
tubes. Recovered plasma is aliquoted and placed into labeled cry-
ovials. The barcoded cryovials are placed in appropriate storage units
for long-term storage in -80 °C freezers at the EM Papper laboratory
at Nova Southeastern University.

3.3.1.2. Recovery of white blood cells. After removing the plasma layer,
removal of buffy coat is performed. To isolate PBMCs, sufficient quan-
tity of PBS is added to bring blood back to its original whole blood vol-
ume and mixed gently to continue PBMC processing. A transfer pipette
is used to transfer all of the blood into a 15 mL tube containing 3 mL
Ficoll-Hypaque solution. The tube is centrifuged (without a brake) at
2250 x g for 25 min at 25 °C. Using a sterile serological or transfer
pipet, all cells are collected at the cloudy white interface taking care
not to aspirate any more separation medium solution than necessary.
The collected cells are transferred from one conical centrifuge tube to a
single corresponding, pre-labeled, sterile conical centrifuge tube. After
centrifugation of the wash step, cells are resuspended in 10 mL of PBS
for cell count and viability using the Beckman Coulter ViCell Counter.
For this study, 5 × 106 cells/ml per vial are aliquoted in final freezing
solution of 70% RPMI 1640 with 20% fetal bovine serum and 10% di-
methyl sulfoxide (DMSO) as a cryoprotectant added. The cryovials are
placed in the appropriate storage units at -80 °C for short-term storage.
For long-term storage, cells stored in freezing vials are transferred into
the liquid nitrogen cryopreservation tanks and their location is mapped
and recorded.

3.3.1.3. Separation of serum from blood samples. Blood is drawn into
BD Vacutainer® SST™ Venous blood collection tube with separator
gel. This tube is spun down prior to shipping to the EM Papper labo-
ratory. Serum sample above the gel separator is collected and stored
in barcoded cryovials at various aliquot volumes at -80 °C for long
term storage.

Quality Assurance and Assessment protocols take place before, dur-
ing and after the samples are isolated from primary tubes and placed
into the biorepository. Samples for all four prospective resource sites
are processed with the same protocols.

3.3.2. Common issues of aliquot size
Biorepositories face a lack of predictability in future research direc-

tion, limited resources in space and maintenance manpower, as well as
new technology innovations, which makes planning a biorepository dif-
ficult. It is imperative to create a versatile sample aliquot scheme in or-
der to combat these challenges. However, repositories commonly will
need to be flexible with remaining sample subsets should circumstances
change, while avoiding “freeze thaw cycles” that are potentially damag-
ing to certain proteins in serum or plasma. While large aliquots of 2 mL
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or greater can reduce maintenance costs and space requirements, small
aliquots are the versatile option that allow for greater flexibility when
fulfilling sample requests. This laboratory takes a different approach,
setting up large numbers of small aliquots (0.5 and 0.25 mL) while still
creating a small number of large aliquots (1.0 mL) for longer term stor-
age (Fig. 4; Table 1).

5) Home specimen and data collection

Home collection by study participants includes urine, stool samples,
and Fitbit data collection. Specific methods and details are listed below.

3.3.2.1. Fitbit data. Each participant is asked to wear a study-provided
Fitbit activity monitor for 7 consecutive days. On the eighth day, par-
ticipants are expected to extract their sleep quality and heart rate vari-
ability data and upload the results to the network coordinating center
through a secure link. An instructional manual is provided to the par-
ticipant for proper data extraction. All Fitbit data are made available
for sharing in the repository.

3.3.2.2. Urine samples. Urine sample kits are provided to the partici-
pant with comprehensible instructions during the in-person study visit
to complete at home and mail back in prepared pre-paid packaging.
Participants are expected to collect at least 20 mL urine during their
first morning void. Urine samples from all study sites are overnight
shipped with an ice pack to maintain cold chain transport to the
Boston University Medical Campus for aliquoting and storage. Once re-
ceived, the urine samples are aliquoted, frozen and stored in the repos-
itory for later urinalysis, sharing and sample requests (Table 1).

3.3.2.3. Stool samples. Stool sample kits are provided to the partici-
pant during the in-person visit with clear instructions to complete the
at home stool sample kit and mail it back in a prepared pre-paid
packaging. Participants are expected to collect two tubes of stool.
Stool samples from all study sites are overnight shipped to Boston
University Medical Center for storage. Samples are stable for 15 days
at room temperature and very well preserved over a long period of
time at 4C. Samples will be stored at the Boston University Med-
ical Center Laboratory and available for collaborative research and
for requests through the repository.

4. Data sharing

The BBRAIN biorepository has a responsibility to provide access to
samples for pilot work and other initiatives to further the field. This is
accomplished by a three-stage approval process for any data or samples
that exist as part of this project and/or the biorepository. This process is
streamlined through a web-based data request platform created by the
network coordinating center. The first steps involve a potential investi-
gator contacting the project PI to determine validity of an idea. Once
initial conversations are considered positive, the potential investigator
submits a proposal, along with a sample or data request form, to the

Steering Committee. This committee then assesses the proposal for fea-
sibility (samples must be available, technology/assays must have a rea-
sonable chance of success), duplicative effort (avoids overlap from
funded portion of the grant or previously approved requests), and sam-
ple volume requested (protects the integrity of the aliquot scheme, i.e.
requesting 1 mL when 200uL would suffice). Finally, the request is re-
viewed by the Steering Committee for further consideration and final
approval or denial. There is no cost for the sharing of samples from the
repository except the cost of shipping the samples to the approved re-
questors.

4.1. How to request samples and data

As previously described, the BBRAIN Repository Network provides
samples and data from newly collected whole blood, RNA, DNA,
plasma, serum, saliva, stool, and urine samples for 500 GW veterans
(300 GWI cases, 200 controls) in addition to demographic surveys and
cognitive test data. In addition, a repository of previously collected de-
mographic and health survey, clinical (cognitive testing, MRI data) and
preclinical data (animal tissue) has been compiled from the 15 partici-
pating GWI investigators and made available to the BBRAIN repository
for data mining and sharing. 9 lines of hiPSCs collected from 5 GW-
veterans with GWI and 4 from those who did not develop GWI are avail-
able upon request. As previously outlined, the Network Coordinating
Center organizes approvals with the steering committee members in
consultation with the biorepository contributor sites. The site for re-
questing prospective and retrospectives biospecimens, brain imaging
and other health symptom or cognitive data is available at https://
wwwapp.bumc.bu.edu/BEDAC_BBrainRetro.

5. Discussion

The BBRAIN is the first repository network designed to gather and
store samples, provide new data and to mine data from prior studies of
difficult to obtain samples (CSF, PET, MRI imaging). In doing so,
BBRAIN has grown, and continues to shape and fill the need for an eas-
ily accessible biospecimen repository in the field of GWI research. An
additional primary objective of this biorepository network has been to
determine minimal data elements using a common data platform from
retrospective studies, thus creating centralized resource websites for
BBRAIN researchers and other interested GWI researchers seeking to
obtain repository samples and data for analyses. The task has been com-
pleted, with common data elements for symptom and system domains
now identified. To date, BBRAIN has published recommended common
data elements for neuropsychological and other outcomes [15,47]. Im-
portantly, the BBRAIN prospective sample and data collection is consis-
tent with the same elements of the common data recommendations and
will therefore provide additional validation of nearly all of the common
data elements.

BBRAIN will build upon the initial progress of the Boston GWIC
biorepository. It has been stated that the success of a biorepository is
not in how many samples are collected but in how many samples are

Table 1
BBRAIN blood and saliva aliquot and storage procedures.
Sample
type

Tube type/color #
tubes

Tube
volume (ml)

Total
volume (ml)

Product Expected product
volume - biobank

Aliquot scheme Test

Blood
draw

(3) Green Na
Heparin

3 10 30 Blood, PBMC,
Plasma

60 × 10^6 PBMC; 12 mL
Plasma

PL2: 4 × 1 mL, 4× .5 mL, 24× .25 mL; CEL:
12 × 5 × 10^6/mL

NKCC, NPY,
Nanostring

(2) Red Tiger Top
SST Tube

1 8 16 Serum 3 mL 2 × 0.5 mL; 8 × 0.25 mL Hormone
specific TBD

(2) Purple EDTA 2 10 20 Blood, Serum 6 mL 4× .5 mL; 16× .25 mL CBC, Flow,
Cytokines

Saliva (1) OGR-500 1 2 2 Saliva 2 mL N/A SNP, TBD
(4) Salimetrics’
Cryovials

4 2 8 Saliva 8 mL 2 × 1 mL; 12× .5 mL Salivary
Cortisol, TBD
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shared that lead to important new results [55–58]. To date, BBRAIN has
shared samples with five research investigators including cerebrospinal
fluid, serum and plasma samples, PET brain imaging, diffusion MRI
brain imaging data and cognitive outcomes [59]. Building on this
strong foundation, BBRAIN aims to provide the infrastructure, scientific
expertise, biological specimens and collaborative nature to vastly speed
up objective biomarker discovery and treatments for ailing veterans
with GWI. The robust infrastructure of the BBRAIN repository network
will serve as a key resource for the GWI research field.

6. Conclusion

BBRAIN, built from a strong foundation of collaboration and need
for a biorepository in the community of GWI research, aspires to pro-
vide the scientific resources to identify more definitive biomarkers for
GWI. The team approach of sharing samples will lead to faster identifi-
cation of diagnostic tests for GWI and targeted personalized medicine
treatments for ill veterans. For veterans who have remained ill for over
30 years, the importance of quickly identifying diagnostic tests and ef-
fective treatments for GWI cannot be overstated.
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Abstract 

About a third of all United States veterans who served in the 1991 Gulf War (GW) report 
a range of chronic health symptoms including fatigue, neurocognitive symptoms, and 
musculoskeletal pain. There is growing evidence supporting the detrimental effects of 
maladaptive neuroimmune reactions in this multi-symptom illness. Indeed, recent studies using 
positron emission tomography (PET) using the radioligand [11C]PBR28, which binds the 
neuroinflammation marker 18 kDa translocator protein (TSPO), and diffusion magnetic 
resonance imaging (dMRI) have independently identified the anterior cingulate (ACC) and 
midcingulate cortices (MCC) as key regions for differentiating veterans with GWI from healthy 
controls (HC). Here, we used integrated (i.e., simultaneous) PET/MRI imaging techniques, 
paired with dMRI processing methods (neurite density imaging, NDI, and free-water diffusion 
tensor model to single-shell high-order dMRI), to directly evaluate the relationship between 
ACC and MCC microstructural tissue parameters, TSPO signal and clinical parameters in the 
same cohorts of 10 veterans with GWI and 19 HCs.  

Within the regions evaluated, TSPO signal elevations were associated with restricted 
diffusivity in the extracellular compartment, while clinical measures were best explained by 
neurite density and cellular structure complexity measures. Our study is the first to provide 
evidence of a relationship between PET and dMRI modalities in GWI and suggests that 
microstructural changes in the ACC and MCC are correlated to mood symptoms and cognitive 
performances in GWI veterans.  

1. Introduction

Approximately one third of the 700,000 U.S. veterans who served in the 1991 Gulf War
(GW) experience an array of chronic health symptoms, characterized by fatigue and sleep 
problems, pain, neurological, cognitive, and mood symptoms, respiratory complaints, 
gastrointestinal problems, and skin symptoms, collectively termed Gulf War Illness (GWI) 
(White et al., 2016). Effects of organophosphate (OP) neurotoxicant exposures, such as 
pesticides, and sarin/cyclosarin nerve agents that were present in the GW theater, possibly 
coupled with heightened innate immune responses, may give rise to chronic symptom complaints 
experienced by veterans with GWI (Chao et al., 2011; Steele et al., 2012; Sullivan et al., 2018). 
Findings from animal studies suggest that the exposure to neurotoxicants, stress, and combat-
related injuries to the central nervous system (CNS) may induce long-lasting neuroinflammatory 



responses in GWI, characterized by dysregulated glial cell activation (Lacagnina et al., 2021; 
Macht et al., 2019; O’Callaghan et al., 2015). While evidence for neuroinflammation in GWI has 
until recently been mostly limited to the preclinical literature, in a recent positron emission 
tomography (PET) study with [11C]PBR28, a second-generation radioligand for the 18kDa 
translocator protein (TSPO), our group observed widespread cortical elevations in 
neuroinflammation. Elevated [11C]PBR28 signal was evident in regions including the anterior 
and midcingulate cortices (ACC and MCC, respectively), in veterans with GWI compared to 
healthy controls or healthy GW veterans (Alshelh et al., 2020). These abnormal neuro-immune 
responses appear to trigger downstream macro- and microstructural changes in the brain (Koo et 
al., 2018). Indeed, diffusion magnetic resonance imaging (dMRI) studies found that 
microstructural alterations (including the ACC) were associated with elevated levels of 
peripheral proinflammatory cytokines, and with worse fatigue symptoms, in veterans with GWI 
(Cheng et al., 2020).  

Despite this converging evidence from separate studies, the relationship between PET 
neuroinflammatory signals and dMRI measures of microstructural alterations in GWI has never 
been directly explored in the same individuals.  

In this study, we used integrated (i.e., simultaneous) [11C]PBR28 PET/MRI to address 
this aim. Specifically, we sought to assess if changes in microstructural integrity were related to 
increased neuroinflammatory signaling in the same brain areas and tissue compartments. We 
applied two dMRI processing models, neurite density imaging (NDI) and free-water diffusion 
tensor model (FW-DTI) (Pasternak et al., 2014; Zhang et al., 2012) to single-shell high-order 
dMRI data collected in veterans with GWI (and a healthy control group) from a recent GWI PET 
study (Alshelh et al., 2020). Furthermore, we compared subjective clinical outcomes with multi-
compartment diffusion measures to investigate the relationships between objective brain imaging 
markers and self-reported health symptoms veterans with GWI. 

2. Materials and Methods

2.1. Participants
Brain imaging outcomes from 10 veterans with GWI (2 females, 49.6 ± 3.1 years old 

[mean ± SD]) and 19 healthy controls (HC, 11 females, 44.1 ± 13.04 years old) were obtained 
from an established GWI biorepository and were included for the analysis. GWI case status was 
defined by the Kansas GWI case criteria, which requires multiple or moderate-to-severe chronic 
symptoms reported in at least three out of six symptom domains (fatigue, somatic pain, 
neurological cognitive, gastrointestinal, respiratory, and skin abnormalities) (Steele, 
2000). Clinical outcomes including self-reported scales of pain, mood and cognitive testing of 
sustained attention including the Short-Form McGill Pain Questionnaire (SF-MPQ2), Patient-
Reported Outcomes Measurement Information System (Promis-29), Conner’s Continuous 
Performance Test III (CPT3), and -because GWI shares some of the core symptoms reported by 
patient suffering from fibromyalgia- the 2011 American College of Rheumatology (ACR) 
Fibromyalgia Diagnostic Criteria survey were also obtained from the repository for analysis 
(Cella et al., 2010; Conners et al., 2000; Dworkin et al., 2009; Wolfe et al. 2011). 

2.2. Procedures 
We processed the single-shell, high-order dMRI data (b-value = 3000 s/mm2, 60 gradient 

directions, TR/TE/voxel size: 119 msec/8000 msec/2.5×2.5×3 mm) acquired in the GWI PET 



study by Alshelh et al. (2020) and shared through the Boston Biorepository and Integrative 
Network (BBRAIN) for GWI (Keating et al., submitted). Microstructural diffusion indices 
reporting neurite density (ND), orientation dispersion (OD), and isotropic diffusion (IsoVF) were 
reconstructed using the NDI model in a similar protocol as described previously (Cheng et al., 
2020). FW-DTI derived measures, free-water corrected fractional anisotropy (FW-FA), and free-
water corrected mean diffusivity (FW-MD), were extracted using the single shell free-water 
elimination diffusion tensor model (Pasternak et al., 2014). Reconstructed diffusion maps from 
NDI and FW-DTI models were then linearly registered to the Montreal Neurological Institute 
152 (MNI152) structural template and projected to hemispheric cortical surfaces (Greve et al., 
2014). For the PET analysis, standardized uptake value ratio (SUVR) images were generated 
from data collected over the 60-90 min post-injection [11C]PBR28 PET interval, preprocessed 
and transformed to MNI152 space, as previously described (Alshelh et al. 2020). The two 
regions of interest (ROI), ACC and MCC, were structures that displayed significantly elevated 
[11C]PBR28 PET signal and significant microstructural alterations in GWI veterans compared to 
healthy controls in previous studies (Alshelh et al., 2020, Cheng et al., 2020). Both ROIs were 
projected to the standard space cortical surfaces using the same method as the reconstructed 
dMRI maps. Mean dMRI measures and SUVR values were then extracted from these regions. 
Clinical variables were also obtained as described by Alshelh et al. (2020). 

Partial correlations were performed to assess the relationship between dMRI measures 
and (1) [11C]PBR28 signal (controlling for sex, age, and TSPO genotype polymorphism, which 
predicts binding affinity to the PET radioligand) (Owen et al., 2012) and (2) clinical variables 
(controlling for sex and age). Significant p-values (p <0.05) were reported along with Spearman 
correlation coefficients (rho). 

3. Results

In the whole group (including GWI veterans and HC) analysis, elevated [11C]PBR28 PET
signal was significantly correlated with lowered IsoVF in the MCC (rho = -0.498, p = 0.008) and 
lowered FW-MD in the ACC (rho = -0.382, p = 0.049). The same patterns (MCC IsoVF: rho = -
0.801, p = 0.017; ACC FW-MD: rho = -0.818, p = 0.013) were found in the analysis performed 
within veterans with GWI (Fig. 1). Other multi-compartment diffusion measures did not show 
significant patterns to [11C]PBR28 PET signals in either ROI.  

The results of the partial correlation analyses between clinical variables and multi-
compartment diffusion measures in GWI veterans are listed in Table 1. Positive correlations 
were evident between (1) CPT3 scores and OD in both ACC (detectability p = 0.043, omission 
errors p = 0.018, variability p = 0.048) and MCC (detectability p = 0.032, omission errors p = 
0.043, commission errors p = 0.046), (2) CPT3 HRT block change test and ND in the ACC (p = 
0.044), (3) SFMPQ-2 sensory sum and ND in the MCC (p = 0.027), and (4) ACR total score and 
OD in the ACC (p = 0.016). Negatively correlations were found between (1) Promis-29 anxiety 
domain scores and IsoVF in the ACC (p = 0.042), (2) CPT3 scores and ND in the MCC 
(detectability p = 0.03, omissions p = 0.022), and (3) CPT3 HRT and OD in the MCC (p = 
0.05).  



Fig. 1. Multi-compartment diffusion measures correlated with [11C]PBR28 PET signals in the 
ACC and MCC in GWI veterans. Scatter plots illustrate the negative correlations between the 
neuroinflammation marker TSPO ([11C]PBR28 PET signal) and (A) the isotropic diffusion 
measure (IsoVF) in the MCC, or with (B) the free-water corrected mean diffusivity (FW-MD) in 
the ACC. Results are plotted using TSPO genotype-, sex-, and age-controlled [11C]PBR28 PET 
signal and age- and sex-controlled diffusion measures. Partial correlation coefficients (rho) are 
shown in the plots along with p-values. MCC = midcingulate cortex; ACC = anterior cingulate 
cortex.  

Table 1. GWI multi-compartment diffusion measures correlations with clinical variables 

Partial correlation coefficients are reported, significant (p<0.05) results are bolded. * p < 0.05. 

4. Discussion
Our study revealed significant relationships between the upregulation of the

neuroinflammatory marker TSPO, detected by [11C]PBR28 PET signals, and both decreased 
extracellular isotropic diffusivity, captured by IsoVF, and lowered cellular packing density, 
measured by FW-MD, in the ACC and MCC of GWI veterans. This study is an extension to our 
previous analyses, which showed elevated levels of the neuroinflammatory marker TSPO in a 
widespread set of brain regions in GWI (Alshelh et al., 2020). The neuroinflammatory marker 
TSPO is normally expressed at low levels but becomes dramatically upregulated -predominantly 
in activated glial cells- during neuroinflammatory responses (Rupprecht et al., 2010). TSPO 



signal elevations observed in diseases such as fibromyalgia and GWI (Albrecht et al., 2019; 
Alshelh et al., 2020) suggest that dysregulated glial activation may contribute to the 
pathophysiology of GWI, as suggested by the preclinical literature. The present study is the first 
to report dMRI correlates of GWI neuroinflammation. The negative correlations between IsoVF 
and [11C]PBR28 PET signal in the MCC suggested hindered isotropic diffusivity, which could 
arise from local glial activation or immune cell infiltration (Yi et al., 2019; Zhang et al., 2012). 
In fact, decreased IsoVF was shown to reflect chronic stages of microglia-mediate 
neuroinflammation, which corroborate findings from previous GWI PET studies (Alshelh et al., 
2020; Yi et al., 2019). We also observed a similar pattern between elevated [11C]PBR28 PET 
signal and lowered FW-MD in the ACC, which suggested decreased cellular packing density that 
could be reflecting gliosis or cytoarchitecture disruption (Pasternak et al., 2014). In recent GW 
studies, biomarkers indicating the presence of neuronal injury and gliosis were detected in 
veterans with GWI 30 years after the war, and in GW rat models, the disruption of 
oligodendrocyte development and changes in glial morphology were identified as key 
components in studying the chronic neuroinflammatory responses in GWI (Abou-donia et al., 
2020; Belgrad et al., 2019). Indeed, our findings on the relationship between [11C]PBR28 signal 
and dMRI measures confirmed that neuroinflammatory responses may be accompanied by 
microstructural diffusion alterations in GWI.  

Interestingly, while our prior PET analyses didn’t reveal statistically significant 
association with clinical variables, our multi-compartment dMRI measures extracted from the 
same ACC/MCC regions were correlated with measures of pain, anxiety, and cognitive 
performance, all symptom domains commonly affected in veterans with GWI (Janulewicz et al., 
2017; Jeffrey et al., 2019; Sullivan et al., 2018; White et al., 2016). Our results showed that 
lower IsoVF and OD in the ACC were associated with worse anxiety, while higher ND in the 
MCC was related to higher pain severity.  

Veterans with GWI often report sensorimotor deficits and memory impairments, often 
coupled with heightened innate immune responses that give rise to chronic symptom complaints 
(Chao et al., 2011; Janulewicz et al., 2017; Jeffrey et al., 2019; Sullivan et al., 2018). 
Furthermore, animal models of GWI show that stress combined with exposure to chemicals 
present in the GW theater (pesticides, and sarin/cyclosarin nerve agents) produces GWI 
symptoms greater than exposure to chemicals alone and causes neuronal cell death in the 
cingulate cortex (O’Callaghan and Miller, 2019). These changes in the cingulate cortex cause 
neurobehavioral changes similar to those observed in GWI veterans (Abdullah et al., 2012; 
Macht et al., 2019). In our study, higher rates of CPT3 detectability, omission and commission 
errors, and response variabilities were found to correlate with higher OD and lower ND in 
veterans with GWI, whereas slower and varying response rates were associated with lower OD 
and higher ND. Similar results were reported in other studies, which documenting an association 
between reduced gray and white matter volumes and higher rates of CPT3 omission errors in 
GW veterans exposed to chemical warfare agents (Chao et al., 2011). Lower ND accompanied 
with higher OD could reflect decreases in overall volume on the microscopic level and increases 
in diffusion tortuosity (Colgan et al., 2016), while higher ND has been linked to less efficient 
information processing capacity (Genç et al., 2018). However, our ability to the precisely 
interpret the multi-compartment dMRI measures is limited, particularly as the relationship 
between microstructural alterations and dMRI measures can vary depending on the etiology of 
the disease.  



In the current study, we demonstrated the presence of changes in the microstructural 
environments of the ACC and MCC, associated neuroinflammatory signals and behavioral 
measures, in a small GWI sample. Future studies with a larger GW veteran cohort and post-
mortem human studies will be required to shine more light on the neurobiological correlates of 
neuroinflammation in GWI.  
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A comparison of different brain connectivity markers for classifying Gulf-war illness 
Bang-Bon Koo and Kimberly Sullivan 

Introduction 
Symptoms of Gulf War illness (GWI) typically include persistent headaches, widespread pain, fatigue, 
memory and concentration problems and other difficulties in this complex multi-system disorder. 
Converging evidence suggests that a clear understanding of brain-immune interactions can help us to 
understand the origin of these symptoms. Morphometric neuroimaging analysis on Gulf War (GW) 
veterans exposed to neurotoxic and nerve agents confirmed overall reduction in the grey matter (GM)1 
and white matter (WM)2,3, compared to the non exposed veterans. These regional changes in the 
morphometry of various brain regions have also been tied to changes in brain connectivity using diffusion 
MRI4,5. These findings may indicate that there are focal spots primarily involved in the illness propagation 
in the brain. In this study, we have applied a machine learning framework to diffusion magnetic resonance 
imaging markers from gulf war veterans to assess brain connections specific to Gulf-War illness (GWI).  

Methods 
Training set was based on 20 GW veterans (8 GW controls and 12 GWI, based on Kansas criteria) and 18 
GW veterans’ data was used for test set. We also included non-veteran aged control data (12 controls) in 
this study which have the same diffusion MRI data. Brain structural network was extracted from high 
angular resolution diffusion imaging (HARDI, spin-echo epi, 1.75/1.75/2mm voxel, 65 independent 
diffusion gradient directions, b-value 3000s/mm2) data collected in the Boston Gulf War Illness 
Consortium (GWIC). Local Brain connection was defined based on the existence white matter tracts 
between each of the GM regions of interests (Freesufer ROIs, total 78). Per each local brain connections, 
we applied following quantifications for defining local connectivity measures: 1) total number of tracts, 2) 
tract mean value of microscale diffusivity6 from generalized q-space reconstruction. We applied random 
decision forest classification for machine learning of the brain connectivity. Machine learning classifier 
was trained for different quantifications and compared each other. Performance of the machine learning 
classifier was tested based on a leave one out cross validation (LOOCV) and test set classification 
performance.  
Results 
The highest classification performance was confirmed in microscale diffusivity quantification. 
Classification based on the microscale diffusivity revealed accuracy of 84% in the LOOCV. In the test data 
validation, it showed 77% on classifying GWI. From the microscale diffusivity based classification, veterans 
with GWI had significant connectional alterations in several cortical regions compared to control veterans 
(Figure). Important connection features extracted by the classification model were found in the regions 
including ‘the thalamus (L39) - frontal pole (L31)’, ‘the posterior cingulate (R22) - precuneous (R24)’, ‘the 
hippocampus (L37) - thalamus (L39)’ and ‘the insula (R34) - medial orbitofrontal (R13)’ connections. 
Classification based on the total number of tracts revealed accuracy of 54% in the LOOCV. In the test data 
validation, it showed 46% on classifying GWI. Classifying between GWI and non-veteran aged control 
based on the total number of connections showed 90% in both LOOCV and test dataset classification. 

Discussion 
Brain connectomic techniques have potential power for uncovering the underlying mechanisms of GWI. 
The advantage of the brain connectomics lies in their capacity to map effects of interest in both focal as 
well as a large-scale data points. Brain connectomics allows for processing of a large and distributed 
number of brain connections as well as more local and focal connections. However, our preliminary data 
showed that different quantification strategies in diffusion MRI can have significant impact on describing 



group characteristics. Lower range of diffusion encodings used in diffusion MRI (typically, around 
b=1000s/mm2) is the most common set up in the clinical imaging and draws mostly the fast diffusion 
components and is useful for assessing WM major pathways, edemas or brain tumors. However, it might 
not have enough sensitivity to detect microscopic water diffusivity changes. Better sensitivity for 
detecting micro-diffusivity can be obtained by adding high diffusion strength encoding (typically, 
b>1,800s/mm2) into the low diffusion setup. As shown in our preliminary observations, micro-diffusion
can be a sensitive index to more diffuse changes in the brain.

Conclusion 
Combining machine learning technology to brain connectivity imaging may allow for better understanding 
of the complex pathobiology of GWI. Choosing optimal imaging index should be a first step to maximize 
its classification performance. We are now extending our work by adding blood cytokine and cognitive 
measurements to the existing neuroimaging data to test multimodal data classification on GWI. We hope 
to present our data in the upcoming conference. 
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Brain connectomic as a biomarker of Gulf War 
Illness

Identifying a reliable biomarker of Gulf-War Illness (GWI) has been 
a focus of the Boston Gulf War Illness Consortium (GWIC). 
Symptoms of GWI include fatigue, pain and cognitive problems. The 
GWIC is designed to compare these symptoms with 
proinflammatory cytokine and brain imaging biomarkers. Tools that 
assess the brain as a network have the potential to provide insight 
into how connectivity breaks down in response to chronic disease.

Courtesy:  Bang-Bon Koo, Boston University

The central hypothesis for the pathobiological mechanisms of GWI 
in this consortium includes chronic neuroinflammation as a result 
of initial glial activation and then priming of glial responses that 
cause stronger and longer responses that do not shut off the 
chemical cascade of proinflammatory cytokines and chemokines 
that cross-talk between the immune system and the brain. This 
could result in a lasting multisystem illness affecting many body 
systems, as seen in GWI. 
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Brain connectomic as a biomarker of Gulf War 
Illness

Courtesy:  Bang-Bon Koo, Boston University
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Imaging Items to discuss 

Ultimate goal to devise an Objective Diagnostic Marker of 
GWI

Current Strategies for developing Diagnostic marker:
▪Connectomics, Dr. Koo’s multimodal imaging grant and progress 

to date 
▪ Simple gray and white matter volumetric analyses 
▪ Simple analyses of white matter pathways
▪Complex analyses of white matter pathways
▪Clinical impression of brain imaging outcomes – Dr. Little will 

discuss
▪ Inter-relationships to date of potential objective markers

2

Multimodal Imaging in 
Gulf-war Illness 

Bang-Bon Koo, Ph.D.

3

Multimodal Imaging in GWI

Imaging protocol is designed to investigate both the individual and synergistic 
effects of structure, function, connectivity and blood flow of the brain secondary to 
Gulf war illness.  

+ FDG+PET scans

59 Cases / 13 Controls 4 Cases / 3 Controls

4

Multimodal Image Processing Pipelines

Aim I

Cortical Surface Modeling

Applying current brain mapping technologies to the GWI imaging research

Major WM pathway

Functional Connections

Automated Image Processing Environment

FDG PET

5

Multimodal Image Processing Pipelines

Aim II Developing Novel Image Processing Scheme

Novel diffusion imaging technique (high-dimensional diffusion MRI) tested in GWI animal 
model has transferred to GWIC dataset

6



Multimodal Image Processing Pipelines

Aim II

Novel Shape Deformity 
Assessment Algorithm on 
Subcortical Structures

Defining Features in Different Scales to 
find more sensitive markers

Developing Novel Image Processing Scheme

7

Multimodal Image Processing Pipelines

Aim III

Develop a novel supervised machine learning (ML) framework for the multi-modal 
biological dataset to establish a single subject level diagnostic inferences on GWI. 

Building ML classifier for Imaging, Blood immune and Cognitive Data

Giving Statistical Inference

90%

70%

…

8

Multimodal Image Processing Pipelines

Aim III

Develop a novel supervised machine learning (ML) framework for the multi-modal 
biological dataset to establish a single subject level diagnostic inferences on GWI. 

Building ML classifier for Imaging, Blood immune and Cognitive Data

Cross-Validations (38 GWcase vs 12 GWcon, 20 training set)

Biomarkers

Se
ns
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vit
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Diffusion MRI markers

~8.5 out of 10 GWI subjects were accurately 
classified from Diffusion MRI Biomarkers 

-> In Mild Cognitive 
Impairment vs Controls, 
Imaging markers 
showed 64~75% 
accuracy [Grey et al., 
2013]   

Up to 74% accuracy to classify GWI 
subjects : Cognitive Measures
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Multimodal Image Processing Pipelines

Aim III

Develop a novel supervised machine learning (ML) framework for the multi-modal 
biological dataset to establish a single subject level diagnostic inferences on GWI. 

Building ML classifier for Imaging, Blood immune and Cognitive Data

Cross-Validations (38 GWcase vs 12 GWcon)

Biomarkers

Se
ns

iti
vit

y

Diffusion MRI markers selected by the classification system

10 out of 8 GWI subjects were accurately classified 
from Diffusion MRI Biomarkers

Fronto-Parietal
connections

Medial view Lateral view
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Next Steps

Multimodal Imaging in GWI

More Subject Data (250) will be added to the Classifier

Different Classification Schemes are being added into the system 
and compared each other to improve accuracy over 90%
- Smart Datebase v1.0

Longitudinal data acquisition will be planned along with BBRAIN 
- a great opportunity to add time component to the classification 
system to allow predicting future risks or treatment outcomes

11

Brain Area GWI case
Mean 

Control
Mean

P-value

Total Gray matter volume 595744 645131 0.01
Total cortex volume* 434566 452208 0.05
Precentral gyrus* 24465 27626 0.02
Caudal middle frontal gyrus 11595 13314 0.01
Pars-opercularis 7602 8207 0.05
Rostral middle frontal gyrus 19208 20989 0.03
Superior frontal gyrus 48851 52995 0.03
Pars-triangularis WM* 6766 6084 0.01
Superior Long. fasciculus WM* 
parietal endings -rh

1044 1271 0.005

BRAIN VOLUMES BY CASE STATUS  
N=72 

*Significance in multivariate analyses after controlling for age, gender, ICV

12



Preliminary Evalua.on of Diffusion Imaging Features for Classifying Veterans with Gulf War Illness
C. Cheng¹, D. Little², L. Steele², T. Heeren3, R. Killiany1, K.Sullivan3, B. Koo¹

¹Anatomy and Neurobiology, Boston University School of Medicine; ²Baylor College of Medicine;³Boston University School of Public Health

Methods

Results

Figure 1. Corrected P value 
mapped on a color spectrum, 
red representing p values less 
than 0.01 and light blue as 
0.05.
(A) Reconstruction on white 

matter tracts with 
significant p values from 
both Neurite Density,
orientation dispersion
(OD) and DTI (right part). 
Figure shows group 
comparison results based 
on mean tract values. 

(B) Reconstruction on grey 
matter region of interests 
(ROIs) with significant P
values from Multi-D 
processing (Neurite 
Density).

Graph: Trend of WM and GM 
correlation on neurite
density.

◉ GWI showed decreased microscale (restricted/hindered) diffusivity in most of the major WM tracts.
- Neurite Density: Highest group difference shown in anterior Callosal tract (fmin) & uncinate fasciculus.

- OD: : Highest group difference in anterior/posterior Callosal tract (fmin & fmax) and cingulum bundle.

◉ Axial Diffusivity (lowered in GWI) was most sensitive index among all DTI measures. 
◉ In GM, ND highlighted cortical/subcortical regions related to the limbic system. 
◉ Subjects with lower WM microscale diffusivity have lower regional microscale diffusivity in the highlighted 

GM regions.

◉ More widespread group difference paQern was captured by MulR-D mapping in both WM and GM than 
the convenRonal measures (DTI, volumetry).

◉ ConvenRonal measures overlap with MulR-D mapping (e.g., Bilat_cau_aCing volume). 
◉ ND & r1/3 of GM revealed clear disRncRon between subgroups (also see Fig 2).
<supplementary>
- Based on these measures, machine learning classifier showed the highest classificaTon performance for idenTfying GWI cases in the mulT-compartmental model 
(accuracy:89%) followed by DTI (62%).
- Kansas GWI criteria captured more regional GM and WM structures than CDC criteria (data not shown).

Table 2 Whole group and subgroup staTsTcal analysis across different measures. Each group staTsTcs was performed with age and gender
control and 10,000 permutaTons. Significant p and t (in parentheses) values are listed. White ma]er tracts or grey ma]er ROIs showing 
consistent significant group differences across measures are highlighted in yellow. Only top 5 or consistent significant tracts/ROIs are listed. In DTI 
secTon, we included staTsTcs based on tract density weighted average tract value and mean tract center value in addiTon to mean tract value 
(shown in Fig 1A right). All GWI subjects defined by Kansas GWI case definiTon. CDC GWI definiTon group staTsTcs also performed (data not 
shown). 
Abbrevia6ons: ND = neurite density. OD = orienta6on dispersion, FA: frac6onal anisotropy, M D: m edial diffusivity, AD: axial diffusivity, RD: radial diffusivity, Vol: volum e. Bilat: 
bilateral. Cau: caudal, rost: rostral, lat: lateral, sup: superior, tem p: tem poral, aCing: anterior cingulate, cing: cingulate, inf: inferior, post: posterior, occip: occipital, postcent: 
postcentral, parahipp: parahippocam pal, trans: transverse. 

◉ GM ND measures explains Kansas subdomains beQer than other measures.
- Midbrain limbic and related areas displayed the strongest negaTve correlaTon between GM ND

and subdomain scores. 
- Subjects with lowered ND had more severe illness symptom reports (pain, faTgue or neuro).
- More significant negaTve relaTonship between GM ND and subdomain symptoms shown in mTBI+risks group.

Introduction

◼ Gulf War Illness (GWI), is characterized by a combinaRon of symptoms including widespread pain, faRgue 
and neuropsychological impairments.

- These symptoms have been thought to be developed as a result of an innate immune response to a variety of different types
of factors, such as toxic insults, injury or infecTon.

- PersisTng symptoms of GWI has been shown to coincide with a heightened or chronic inflammatory reacTon 1,2. 

◼ Neuroimaging observaRons on GWI: evidences that the central nervous system is compromised in GWI 
has been found in studies using structural and funcRonal magneRc resonance imaging (MRI). 
- DegeneraTve pa]erns: overall reducTon in the grey ma]er (GM) and white ma]er (WM) in GW veterans exposed to

neurotoxic agents / Reduced Hippocampal volume 3.

- Enhanced pa]erns: axial diffusivity (AD) measures in some WM major fiber pathways in GW veterans exposed to neurotoxic
agents - not clear whether the observed pa]erns indicate WM reorganizaTon 4. 

- These complex findings require the use of a new brain mapping scheme which has be]er sensiTvity to detect changes in the
brain to help us fully understand just how the brain is affected by GWI.

◼ Our recent work on mulR-component diffusion (MulR-D) assessments in a rat model of OP-induced GWI 
suggest an alternaRve in-vivo imaging approach for studying neuroinflammaRon 5. 

- Here, imaging parameters and mapping scheme of the MulT-D assessments were modified for the imaging of GW veterans.

◼ We applied mulRmodal imaging framework combining MulR-D and other common brain imaging 
measures to invesRgate followings:

• WM imaging features to characterize GWI

• GM microstructural and morphometric paQerns specific to GWI

• RelaRonship between risk factors and brain integrity and connecRvity alteraRons

• RelaRonship between imaging measures and self-report symptom scores

Par6cipants
Table 1. Participants Demographics

GWIC veterans (n=72) Mean age 

Healthy Controls (GW veterans) 15 53.58

Veterans with GWI 57 51.17

GWI Subgroups 

mTBI + Risk Factors 16 52.53

Without mTBI + Risk Factors 22 51.25

Figure 2. 3D brain mapping of significant statistical results from mTBI subgroup ND processing. Corrected P value 
displayed on a color spectrum, red representing p values less than 0.01 and light blue as 0.05. Exposure to either one 
or both risk factors (pesticide or fogged) were both taken into account. GWI_no_mTBI with risks subgroup (left panel) 
showed little group difference in the brain. 

Figure 3. 3D brain visualizaTon of 
significant staTsTcal results from 
correlaTon between neurite 
density and Kansas subdomain 
measures. Pearson’s linear 
correlaTon coefficient displayed 
as a color spectrum, from low 
(yellow) to high (blue).
(A) ReconstrucTon on GM ROIs 

that show significant 
correlaTon between ND and 
subdomain scores. Three
Kansas subdomains were 
assessed: faTgue, pain and 
neuro, from lei to right,
respecTvely. 

(B) RepresentaTon of correlaTon
curve fijng plot from lei
rostral anterior cingulate. 
Lower GM ND subjects 
revealed higher subdomain 
scores.

(C) Sca]er plot representaTons 
from lei hippocampus
(limbic) and lei precuneus. 
Lines show margin of 30% or 
50% quanTle in each axis, in 
lower 30~50% of ND, there is
li]le subject in controls.

Discussion 
• More widespread and consistent alteraRons in the brain were captured by the mulR-component

diffusion measures and explained the level of self-report illness symptoms.

• Combined mulRmodal, microstructural diffusion and other imaging approaches reveal overall 
decreased GM values in GWI and specifically highlighRng limbic and its related brain areas.

• Risk factor subgroup analyses revealed that mulRple brain insults (mTBI + other risks) may cause more
robust microstructural deterioraRons in the brain. 

• MulR-D mapping provided further descripRon of GWI in terms of microstructural alteraRons which
can be a potenRal imaging features for tracking inflammatory response in the brain6.

• Further invesRgaRon is needed to see whether the robust alteraRons from mulRple insults may result
in further damage in later years of the veterans suffering GWI and thereby increase risks on either 
demenRa7 or other neurological illness.

Whole group (Con-GWI) analyses: GM & WM feature mapping 

A

B

A

B
C

Correla.on (GWI – Kansas Subdomains) analyses: GM feature mapping 

Subgroup (Con-GWI_mTBI+risks) analyses: GM feature mapping 

◉ GWI subjects with more risk factors shows more consistent group differences (lowered in cases).
- GM mapping highlights limbic and related areas (thalamus, cingulate cortex) only in mTBI+risks group.
- mTBI+risks group also showed more spread out microstructural alterations in peripheral GM regions.
- In WM, lowered ND in the fmin, bilateral thalamic tract and bilateral CST shown in both subgroups.

Boston GWI ConsorRum Data: 
- HARDI b=3,000s/mm2 64 direcRons
- DTI b=1,000 and 2,000s/mm2

30 direcRons/b-val
- T1-weighted structural  MPRAGE

ConvenRonal Approach:
- DTI reconstrucRon
- Focused on WM tracts
- Results: FA, AD, MD, RD

Multimodal Processing Pipeline: 
- DTI images reconstruction
- Multi-Comp. (ND, OD, Q-space)

Applied to WM and GM
- Freesurfer morphometry

Group Statistical Analysis 
- mTBI and risk factors subgroups
- Age & gender controlled
- 10,000 permutations
- Correlation with self-reported symptom

measures
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• Neuroimaging data based on three different diffusion MRI techniques:
1. HARDI: diffusion encoding of b=3,000s/mm2 with 64 direcRons.
2. DKI: diffusion encoding of b=1,000s/mm2 and 2,000s/mm2 with 30 direcRons per each encoding.

• In addiRon to the diffusion MRIs, all subjects will have a high resoluRon T1-weighted structural images
(MPRAGE) to provide macroscopic anatomical informaRon.

• All scans have been obtained from an Achieva3T whole body MRI scanner (Philips Healthcare, Best, The
Netherlands).

• GWI subjects defined based on Kansas case criteria.
• Kansas GWI criteria: The symptom domains are 

faRgue/sleep problems, somaRc pain, neurological 
cogniRve, mood symptoms, gastrointesRnal symptoms,
respiratory symptoms and skin abnormaliRes.

• Risk Factors: PesRcides and/or Fogged.

Anatomy & Neurobiology

White	Matter	Measures Grey	Matter	Measures
Multi-D	(ND/OD) DTI	(FA/MD/AD/RD) Multi-D	(ND/OD) Multi-D (Q-Space) (r1/r3) Volumetric	 (Vol/Thickness)
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GWI

Fminor

(ND	&	OD)
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(2.1)

R_ilf

(ND	&	OD)

0.04OD
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(ADᵃᵛᵍ/ᵃᵛᵍ_ʷᵉᶦg ʰᵗ)
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(3.5)

Bilat_fusiform

(ND)

0.02

(2.4)

Bilat_fusiform

(r1	&	r3)

0.02r3 
(-2.5) 

Bilat_postcent

(vol)

0.000

3

(3.6)

Bilat_slfp

(OD)

0.02

(2.4)

R_slfp

(ADᵃᵛᵍ/ᵃᵛᵍ_ʷᵉᶦg ʰᵗ/ᵃᵛᵍ_ᶜᵉⁿᵗᵉʳ
MDᵃᵛᵍ_ᶜᵉⁿᵗᵉʳ)

0.02	

(2.4)

R_hipppocampus

(ND	&	OD)

0.03
ND

(2.2)

R_hippocampus

(r1	&	r3)

0.008
r3

(-2.7)

Bilat_middle_temp

(vol)

0.01
(2.6)

R_atr

(ND	&	OD)

0.03
OD

(2.3)

R_atr

(ADᵃᵛᵍ	MDᵃᵛᵍ_ᶜᵉⁿᵗᵉʳ FAᵃᵛᵍ)
0.05	

(2.0)

R_entorhinal

(ND)

0.04

(2.1)

R_entorhinal

(r1	&	r3)

0.009
r3

(-2.6)

R_trans_temp

(vol)

0.01	

(2.5)

Control	-

GWI	with	

mTBI with	

risks

Bilat_unc

(ND)

0.03
(2.3)

L_unc

(ADᵃᵛᵍ_ʷᵉᶦg ʰᵗ/ᵃᵛᵍ_ᶜᵉⁿᵗᵉʳ
RDᵃᵛᵍ/ᵃᵛᵍ_ᶜᵉⁿᵗᵉʳ
MDᵃᵛᵍ/ᵃᵛᵍ_ʷᵉᶦg ʰᵗ)

0.006	

(2.7)

Bilat_rost_aCing

(ND)

0.01

(2.7)	

L_rost_aCing

(r3)

0.04 
(-2.2)

R_fusiform

(vol)

0.05

(2.1)

Bilat_ilf

(ND)

0.03
(2.3)

R_ilf

(ADᵃᵛᵍ/ᵃᵛᵍ_ʷᵉᶦg ʰᵗ	
MDᵃᵛᵍ/ᵃᵛᵍ_ʷᵉᶦg ʰᵗ)

0.008	

(2.9)

Bilat_post_cing

(ND)

0.04

(2.3)

Bilat_post_cing

(r1	&	r3)

0.002r3 
(-3.5)

R_parahipp

(vol)	

0.05

(2.1)

Fminor

(ND)

0.02

(2.5)

Fminor

(ADᵃᵛᵍ_ᶜᵉⁿᵗᵉʳ)
0.04	

(2.2)

R_paracentral

(ND)

0.03

(2.3)

R_paracentral

(r3)

0.04 
(-2.2) No	sig.	

Bilat_atr

(ND)

0.03
(2.4)

Bilat_atr

(MDᵃᵛᵍ_ᶜᵉⁿᵗᵉʳ)
0.02	

(2.4)

R_banks_sts

(ND)

0.03

(2.4)

R_banks_sts

(r3)

0.02 
(-2.5) No	sig.	

Bilat_cst

(ND)

0.04	

(2.2)

R_cst

(MDᵃᵛᵍ_ᶜᵉⁿᵗᵉʳ)
0.02 
(2.5)

R_supra_marginal

(ND)

0.04

(2.2)

R_supra_marginal

(r1	&	r3)

0.03r3 
(-2.3) No	sig.	

Control	-

GWI	

without	

mTBI with	

risk

Bilat_atr

(ND)

0.04

(2.1)

L_atr

(ADᵃᵛᵍ_ᶜᵉⁿᵗᵉʳ)
0.05	

(2.0)

R_lat_occipital

(OD)

0.03
(2.3)

R_lat_occip

(r1	&	r3)

0.02r3 
(-2.5)

Bilat_lat_occip

(vol)

0.03

(2.3)	

Fminor

(ND)

0.04

(2.2)

R_ilf

(ADᵃᵛᵍ/ᵃᵛᵍ_ʷᵉᶦg ʰᵗ/ᵃᵛᵍ_ᶜᵉⁿᵗᵉʳ)
0.003 
(3.1)

L_rost_aCing

(ND)

0.03
(2.3)

R_post_cing

(r1	&	r3)

0.02r3 
(-2.5)

L_transverse_temp

(th)

0.02

(2.4)

Bilat_cst

(ND)

0.04

(2.2)
No	sig.

L_cuneus

(ND)

0.03
(2.4)

R_inf_parietal

(r1	&	r3)

0.03r1/r3 
(-2.3) No	sig.	

No	sig. No	sig.
L_temp_pole

(OD)

0.01
(2.7)

R_fusifom

(r1	&	r3)

0.04r3 
(-2.2) No	sig.	

No	sig. No	sig.	
L_isthmus_cing

(OD)

0.03
(2.3)

R_banks_sts

(r1	&	r3)

0.008
r3

(-2.9)
No	sig.	
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Objective Biomarkers of Gulf War Illness: 
White Matter Microstructural Integrity, Cognition, and Blood Biomarkers in Gulf War Veterans 

Clara G. Zundel1,2, R. Killiany2, B. Koo2, M. Krengel1,2, R. Toomey3, J. Ajama4, P. Janulewicz-Lloyd4, M. Abreu5, T. Heeren4, E. Sisson4, D. Little6, L. Steele6, N. Klimas5 and K. Sullivan4

1VA Boston Healthcare System, 2Boston University School of Medicine, 3Boston University, 4Boston University School of Public Health,   5Nova Southeastern University 6Baylor Medical College  

• Identifying objective biomarkers of Gulf War Illness (GWI) is one key focus area of the Boston 
GWI Consortium. 

• Key symptoms of GWI include fatigue, chronic pain and cognitive problems.
• Our prior magnetic resonance imaging (MRI) and cognitive studies of GW veterans have 

found reduced brain white matter (WM) volumes and cognitive decrements in veterans with 
GWI compared to those without GWI (Sullivan 2003, Heaton 2007, Sullivan 2018). 

• This study correlates cognitive, fatigue, sleep, and pain outcomes with brain volume, WM 
microstructural integrity and blood glutamate and phosphate levels in veterans with GWI.

Introduction Participants & Methods

• Participants included 72 GW veterans (57 GWI cases, 15 healthy controls).
• Cases and controls did not differ by age, sex or education (mean age 50yrs; mean education 15yrs).
• Assessments included a full cognitive battery, McGill pain questionnaire, Pittsburgh sleep quality Index, 

multidimensional fatigue inventory, as well as MRI brain imaging and blood glutamate and phosphate levels.
• Brain images were post-processed for structural volumes with Freesurfer software. For each WM pathway, we 

also obtained measures of average Fractional Anisotropy (FA), Axial Diffusivity (AD), Radial Diffusivity (RD), and 
Mean Diffusivity (MD). 

Results
• ANCOVA volumetric comparisons showed significantly lower Total Cortex, Precentral Gyrus, and Superior Longitudinal Fasciculus (SLF) volumes in GWI cases vs. controls (all p<0.05) as shown in Table 1.
• DTI WM microstructural integrity measures (FA, AD, RD, and MD) were significantly different in cases and controls in the Anterior Thalamic Radiations, Corpus Callosum, and the Inferior and Superior Longitudinal Fasciculus

as shown in Table 2. 
• WM microstructural integrity measures were significantly correlated with cognitive performance (COWAT and DKEFS Color-Word Interference Test) (Table 3), fatigue, sleep, and pain (Table 4), blood glutamate and 

phosphate levels (Table 5).

Discussion

• Results indicate that veterans with GWI perform more poorly on 
neuropsychological tests of psychomotor speed, inhibition, and 
verbal fluency compared to veterans without GWI. 

• These neuropsychological differences are also correlated with WM 
microstructural integrity measures, as well as increased levels of 
glutamate and phosphate in the blood.

• These WM changes are an integral part of GWI pathobiology and the 
associated behavioral phenotype and should be investigated further 
in larger samples.

WM Pathway Cognitive Task Volume AD FA
Left Cingulum - Angular Bundle COWAT Total 0.281
Right Cingulum - Angular Bundle COWAT Total 0.299

Left Cingulate Gyrus Endings
DKEFS Condition 3 

Total Time (seconds) -0.319 -0.27

Corticospinal Tract LH
DKEFS Condition 3 

Total Time (seconds) -0.301

Left SLF - Temporal 
DKEFS Condition 3 

Total Time (seconds) -0.309

Table 3. WM Microstructural Integrity and Cognitive Correlates in GWI CasesWM Tract
DTI 

Measure 
GWI (n=57) Control (n=15) p-value

Right ATR FA 0.35937362 0.37088162 0.038
Right ATR AD 0.00071428 0.00073031 0.0401
CC Forceps Major MD 0.00051646 0.00053759 0.0132
CC Forceps Major AD 0.0008684 0.00088951 0.0246
Left ILF AD 0.00080914 0.00082825 0.0330
Right ILF AD 0.00078995 0.00082085 0.0003
Right ILF MD 0.00053538 0.00055274 0.0074
Right SLF - Parietal AD 0.00069715 0.00071474 0.0174
Left SLF - Termporal AD 0.00073479 0.00075100 0.0184
Right SLF - Temporal AD 0.00070776 0.00072608 0.0138

Table 2. DTI Measure Significant Differences 

ATR - Anterior Thalamic Radiation, CC - Corpus Callosum,        
ILF - Inferior Longitudinal Fasciculus, SLF- Superior Longitudinal Fasciculus

WM Pathway Blood Measure Volume RD MD FA
Right SLF - Parietal Phosphate 0.296 0.272 -0.289
Left SLF - Temporal Glutamate -0.328

Table 5. WM Microstructural Integrity and Blood Correlates in GWI Cases

Brain Area
GWI Case 

Mean
Control 
Mean P-value

Total Gray Matter 595744 645131 0.01
Total Cortex* 434566 452208 0.05
Precentral Gyrus* 24465 27626 0.02
Caudal Middle Frontal Gyrus 11595 13314 0.01
Pars-opercularis 7602 8207 0.05
Rostral Middle Frontal Gyrus 19208 20989 0.03
Superior Frontal Gyrus 48851 52995 0.03
Pars-triangularis White Matter* 6766 6084 0.01
Superior Long. Fasiculus White 
Matter Parietal Endings - RH*

1044 1271 0.005

*remains significant after controlling for Age, Gender, and Intracranial Volume 

Table 1. Brain Volume Differences 

References
Heaton, K. J., Palumbo, C. L., Proctor, S. P., Killiany, R. J., Yurgelun-Todd, D. A., & White, R. F. (2007). Quantitative magnetic resonance brain imaging in US army veterans of the 1991 Gulf War potentially exposed to sarin and cyclosarin. NeuroToxicology, 28(4), 
761-769. doi:10.1016/j.neuro.2007.03.006
Sullivan, K., Krengel, M., Proctor, S., Devine, S., Heeren, T., & White, R. (2003). Cognitive Functioning in Treatment-Seeking Gulf War Veterans: Pyridostigmine Bromide Use and PTSD. Journal of Psychopathology and Behavioral Assessment, 25(2), 95-103.
Sullivan, K., Krengel, M., Bradford, W., Stone, C., Thompson, T. A., Heeren, T., & White, R. F. (2018). Neuropsychological functioning in military pesticide applicators from the Gulf War: Effects on information processing speed, attention and visual 
memory. Neurotoxicology and Teratology, 65, 1-13. doi:10.1016/j.ntt.2017.11.002 

Funding: This study was funded by CDMRP award # GW120037

0
10
20
30
40
50
60
70

Trail Making
Test Trail A

Time (seconds)

COWAT: Total D-KEFs Stoop
Trial 3 Total

time (seconds)

Finger Tapping
Dominant Hand

Mean

Finger Tapping
Non Dominant

Hand Mean

M
ea

n

Significant Case vs. Control Neuropsych Outcomes
Adjusted for Age, Gender, and Years of Education

GWI Cases Controls

E-mail address: cgzundel@bu.edu

WM Pathway Pain & Sleep Measurement Volume RD MD FA
Left SLF - Parietal MFI-20 Fatigue Score -0.306 -0.28
Left SLF - Parietal Pittsburg Sleep Quality Index Total -0.308 -0.28
Right SLF - Pareital Pittsburg Sleep Quality Index Total -0.306 0.298
Left SLF - Temporal Endings McGill Pain Score 0.276
Left ATR McGill Pain Score -0.649

Table 4. WM Microstructural Integrity and Fatigue, Sleep, & Pain Correlates in GWI Cases
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Mild TBI During the War is Associated with Further Microstructural Alterations in the 
Cortical Gray and White Matter in 1991 Gulf War Veterans with Gulf War Illness
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Learning Outcomes

• Discuss potential impacts of mild Traumatic Brain Injury 
(mTBI) in the brain of Gulf War Veterans. 

• Discuss neuroimaging methods available for studying mTBI 
in veterans.
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Overview

§ Neuroimaging observations in 1991 Gulf War (GW) Veterans with a
history of mild Traumatic Brain Injury (mTBI).

§ Relationships to Illness Symptoms

§ Relationships to Blood immune markers

Mild TBI & GM/WM Microstructural Alterations in 1991 Gulf War Veterans
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Introduc)on
◼ Gulf War Illness (GWI), is characterized by a combina:on of symptoms including widespread 
pain, fa:gue and neuropsychological impairments.

• These symptoms have been thought to be developed as a result of an innate immune response to a variety of 
different types of risk factors, such as toxic insults (e.g., organophosphates) or infec>on.

• Persis>ng symptoms of GWI has been shown to coincide with a heightened or chronic inflammatory reac>on

◼ mTBI is common in veterans and has linked to increase risks of long-term neurodegenera:ons. 
• Self-report of past mTBI during war was associated with GWI symptom severity.

◼ In this study, we applied diffusion tensor imaging (DTI), Neurite density imaging (NDI) and 
Morphometry analysis on GW veterans to study whether mTBI during war resulted in more
detrimental impacts to the brain.

Mild TBI & GM/WM Microstructural Alterations in 1991 Gulf War Veterans

Boston University Slideshow Title Goes Here

Boston University School of Medicine

Introduc)on
◼ Diffusion Tensor Imaging is typically performed using b-values ~1000s/mm2 and the quanAficaAon of
diffusivity is performed using linear modeling.

-DTI has been a standard measure for studying 
white matter anatomy and connections in-vivo.

Mild TBI & GM/WM Microstructural Alterations in 1991 Gulf War Veterans
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Introduc)on

◼ Neurite Density Imaging adds high b-value components and provides mul9-compartmental
modeling.

◼ Diffusion Tensor Imaging is typically performed using b-values ~1000s/mm2 and the quan9fica9on of
diffusivity is performed using linear modeling.

DTI has been a standard measure for studying 
white matter anatomy and connections.

Mild TBI & GM/WM Microstructural Alterations in 1991 Gulf War Veterans
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Introduc)on

Neurite Density Imaging: 
-Higher sensitivity on describing subtle 
changes in mTBI (Wu et al., 2018)

◼ Neurite Density Imaging adds high b-values and provides mul8-compartmental modeling.

◼ Diffusion Tensor Imaging is typically performed using b-values ~1000s/mm2 and the quan8fica8on of
diffusivity is performed using linear modeling.

-DTI has been a standard measure for studying 
white matter anatomy and connections.

Mild TBI & GM/WM Microstructural Alterations in 1991 Gulf War Veterans
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Introduc)on

◼ Neurite Density Imaging adds high b-values and provides mul8-compartmental modeling.

◼ Diffusion Tensor Imaging is typically performed using b-values ~1000s/mm2 and the quan8fica8on of
diffusivity is performed using linear modeling.

-DTI has been a standard measure for studying 
white matter anatomy and connections.

◼ In this study, we planned to combine these 2 different diffusion MRI techniques to study mTBI in GW
veterans. 

Mild TBI & GM/WM Microstructural Alterations in 1991 Gulf War Veterans

Neurite Density Imaging: 
-Higher sensitivity on describing subtle 
changes in mTBI (Wu et al., 2018)
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Par$cipants
Table 1. Participants Demographics

GWIC veterans (n=68) Mean age 

Healthy Controls (GW veterans) 15 53.58

Veterans with GWI 53 51.17

GWI Subgroups 

mTBI during war (labeled: mTBI) 20 52.53

Without mTBI (labeled: noTBI) 33 51.25

• GWI subjects defined based on Kansas case criteria.

• Kansas GWI criteria: The symptom domains are fatigue/sleep problems, somatic

pain, neurological cognitive, mood symptoms, gastrointestinal symptoms,

respiratory symptoms and skin abnormalities.

Mild TBI & GM/WM Microstructural Alterations in 1991 Gulf War Veterans
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Methods

• All scans have been 
obtained from
an Achieva3T whole body
MRI scanner (Philips 
Healthcare, Best, The 
Netherlands).

Mild TBI & GM/WM Microstructural Alterations in 1991 Gulf War Veterans
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Results:

Multi-component diffusion imaging in WM

Mild TBI & GM/WM Microstructural Alterations in 1991 Gulf War Veterans
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Results: Multi-component diffusion model (White Matter Connections) 

Lowered Neurite Density in 
GWI +mTBI group only.

Highest group difference 
pattern was shown in the 
anterior Callosal tract (f_min) 
& the uncinate fasciculus 

-> connections between Ant. 
Frontal and temporal

Mild TBI & GM/WM Microstructural Alterations in 1991 Gulf War Veterans
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Results: Mul$-component diffusion model (White Ma6er Connec$ons) 

Lowered Orientation 
Dispersion in both GWI +mTBI 
and -noTBI groups. 

GWI +mTBI had more 
widespread group difference 
pattern covering most of the 
major WM connections 
compared to the controls. 

Highest in the posterior 
Callosal tract (f_maj) and 
SLF_temporal.

Mild TBI & GM/WM Microstructural Alterations in 1991 Gulf War Veterans
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Results: Multi-component diffusion model (White Matter Connections) 

Global WM OD showed clear 
distinction between groups.

Mild TBI & GM/WM Microstructural Alterations in 1991 Gulf War Veterans
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Results: Diffusion Tensor Model

Three major WM pathways 
highlighted from the Axial Diffusivity 
mapping.

Lowered Axial Diffusivity pattern was 
confirmed in the
right inferior longitudinal fasciculus, 
left superior longitudinal 
(GWI +mTBI),

Lowered Axial Diffusivity pattern was 
also confirmed in 
The Right inferior longitudinal 
fasciculus and 
The right anterior thalamic tract 
(GWI -noTBI).

Interestingly, the difference pattern 
was more significant in GWI +noTBI 
group than the +mTBI.

Mild TBI & GM/WM Microstructural Alterations in 1991 Gulf War Veterans
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Results:

Multi-component diffusion imaging in GM

Mild TBI & GM/WM Microstructural Alterations in 1991 Gulf War Veterans
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Results: Mul$-component diffusion model in the Gray Ma7er

Clear group differences were 
confirmed in the Grey Matter 
Neurite Density measures in GWI 
+mTBI group :

-lowered Neurite Density in the 
limbic system in GWI +mTBI group.

- Cingulate
- Hippocampus

And low Neurite Density regions 
connected to the limbic structures

- Med. orbito-frontal
- Fusiform / Inf-temporal cortex
- Medial Parietal cortex
- Lateral Occipital cortex

Mild TBI & GM/WM Microstructural Alterations in 1991 Gulf War Veterans
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Results: Mul$-component diffusion model in the Gray Ma7er

In GWI -noTBI group, lowered GM 
Neurite Density pattern was shown 
in the  left ant. cingulate cortex 
compared to control veterans.

Mild TBI & GM/WM Microstructural Alterations in 1991 Gulf War Veterans
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Results: Multi-component diffusion model in the Gray Matter Taken together with the 
WM Neurite Density 
results, 

GM ND patterns may 
indicate spread-out of 
microstructural damage 
in addition to the WM 
damage

Mild TBI & GM/WM Microstructural Alterations in 1991 Gulf War Veterans
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Results: Morphometry in the Gray Ma/er

Additional regions were 
highlighted from local cortical 
volumetry:

Smaller volume in the 
structures related to the limbic 
system in +mTBI group 
compared to the controls:

- Left ant. Cingulate cortex
- Right post. Cingulate cortex 
- Right Med. Prefrontal / 

Parietal regions.

Mild TBI & GM/WM Microstructural Alterations in 1991 Gulf War Veterans
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Results:

Imaging, Illness Symptoms and Blood Immune Markers

Mild TBI & GM/WM Microstructural Alterations in 1991 Gulf War Veterans
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Results: Imaging and Symptoms

-GM Neurite Density measures had 
mild-to-moderate negative 
corelations to some of the Kansas 
sub-domain scores:

- Higher score ~ more symptoms

-> lowered Neurite Density related to 
severe symptoms

-> Highest correlations were 
confirmed in  the Cingulate, 
medial prefrontal and inferior 
temporal regions had highest 
correlation.

WM measures did not correlated to the 
symptom scores.

Mild TBI & GM/WM Microstructural Alterations in 1991 Gulf War Veterans
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Results: Imaging and Peripheral Immune measures

GM Neurite Density mapping 
revealed negative relationships 
to some of blood cytokine 
groups:

-> lowered Neurite Density 
was related to the elevated 
TH2 and Anti- inflammatory 
cytokine markers

-> Regions covering the 
Thalamus, the Posterior 
Cingulate and the inferior 
temporal regions.

Mild TBI & GM/WM Microstructural Alterations in 1991 Gulf War Veterans
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Discussions:

• Self report of past mTBI during war in the veterans with GWI was associated with 
more widespread and consistent White Matter alterations than the veterans
without mTBI history.

• mTBI was associated with more consistent alterations in the limbic and its 
connected regions.

• GM neurite density mapping explained the level of self-report illness 
symptoms and related to the elevation of the peripheral immune markers.

Mild TBI & GM/WM Microstructural Alterations in 1991 Gulf War Veterans
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Discussions
• In our previous imaging study on GWI rat models, enhanced micro-diffusivity mapping 

was correlated with active glial cell quantifications in the hippocampus.

• In GW veterans, lowered Neurite Density was also correlate with enhanced micro-
diffusivity.

• Change in GM diffusion (i.e., lowered Neurite Density) may fingerprint the chronic impact of
neuroinflammation and highlighting the regions vulnerable to further tissue damage in
later life. 

Mild TBI & GM/WM Microstructural Alterations in 1991 Gulf War Veterans

Koo & Calderazzo (2018)
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Discussions
• Further investigation is needed to see whether the robust microstructural alterations 

from mTBI may result in further damage in later years of the veterans suffering GWI 
and thereby increase risks on either dementia or other neurological illness.

Mild TBI & GM/WM Microstructural Alterations in 1991 Gulf War Veterans
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Bio-imaging Informatics Lab.
(https://www.bumc.bu.edu/anatneuro/resear
ch/bio-imaging-informatics-lab/)
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Thank you.

Mild TBI & GM/WM Microstructural Alterations in 1991 Gulf War Veterans
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In-vivo imaging of GWI
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Imaging GWI

Neurotoxicants,

Stressors, 

Different types of 
risk factors heightened or 

chronic 
inflammatory 

reaction:
Neuroinflammation

Variety of 
symptoms

Fatigue, Pain
Memory, 
Gastrointestinal,
and so on…Injury…

In-vivo imaging of immune response in the brain can 
be a key to study Neuroimmune model of GWI

“Our goal was to develop an objective imaging biomarker"

The 2nd Generation Diffusion MRI
The key concept on the GWIC imaging design was to 

utilize the 2nd generation diffusion MRI.
DTI 2nd Gen Multi-B dMRI

White matter modeling
Cortico-cortical connections
WM degeneration

The 2nd Generation Diffusion MRI

The key concept on the GWIC imaging design was to 
utilize the 2nd generation diffusion MRI.

GM 
columnar 
structure

DTI

White matter modeling

Cortico-cortical connections

WM degeneration

GM (densely pack region) 

Active glial cell 

Subneuronal components
e.g.) synaptic loss

Finer scale (micro)

2nd Gen Multi-B dMRI
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The 2nd Generation Diffusion MRI
2nd Gen diffusion MRI in Animal model

DFP+CORT exposure to Rat Brain (O’Callaghan, 2015)

Persistent patterns

Diffusion MRI in GW veterans
White matter assessments 

DTI

Multi-B dMRI

Diffusion MRI in GW veterans
Grey matter assessment 

MorphometryMulti-B dMRI

Not sig. under FDRLimbic/Paralimbic regions
:Which communicates with autonomic nervous 
system, endocrine system and the viscera.

Diffusion MRI in GW veterans
Diffusion vs Kansas Domains

Morphometry vs Neuro/Cognitive
: indicating different neurological basis for different symptoms?

GM diffusion measures ~ Kansas Fatigue, Pain, Gastro domains
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Diffusion MRI in GW veterans
Diffusion vs Sleep deprivation

Diffusion MRI in GW veterans
ND vs Other multi-B diffusion reconstruction methods

Multi-B dMRI Different reconstruction methods

Also, consistent with DKI, FW

Diffusion MRI in GW veterans
The 2nd Gen DMRI and TSPO PET

Multi-B dMRI dlPFC

vlPFC

preSMA

vmPFC

precuneus

pCC

Overlap between DMRI and glial PET scans

MRI markers for single subject level diagnosis

“Can MRI markers from GWIC predict Kansas criteria?”
Machine learning framework based 

on novel imaging features

More control veteran subject data 
is needed for complete validation!!

Classifying GWI cases and controls from MRI

Kansas Criteria
Neurological/

Neuroimmune

WM features: 94.24% / 96.4%

GM features:  91.8%   / 94.9%

Morpho:    80.1%  / 87.5%

Accuracy    /    f1-score (x100)

CST, 

ILF

Inf front- Occ

SLF

Fusiform, 

aCing

precuneus

Putamen/amyg

Insula/Thala …

MCM-QFS



9/2/21

4

Conclusion

Change in microstructural diffusivity measure may fingerprint the chronic impact 
of neuroinflammation and highlighting the regions vulnerable to further tissue 
damage in later life. 

Lowered microstructural diffusivity : widespread WM and Limbic/paralimbic GM

Better distinction between GWI cases and controls than morphological markers.

Explaining Kansas Fatigue, pain and Gastro domain scores. 
However, Neuro/cognitive measures were better explained in Morphometrical  

measures

Difference pattern overlaps to the GWI animal model study and TSPO pet data.

Diffusion markers provided promising results in a single subject level classification trial.
More control subject data is required for further investigation.
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Bio-imaging Informatics Lab.
Research Network in BU

In-vivo Imaging Methods
& 

defining imaging biomarkers

Aging / Alzheimer’s Disease & Dementia

Informatics

Computational methods on  
effective use of biomedical imaging data  

for addressing scientific problems  
and decision making on human health issues. 

Virtual Dissection of the brain in different scales. 

Tools for measuring the Brain:  
tracking changes in Structure and Function 

Mapping and Modeling 
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Bio-imaging Informatics Lab.
Research Network in BU

In-vivo Imaging & imaging biomarkers: Imaging Neuroinflammation

Neuroinflammation: “an inflammatory response in CNS”


“뇌의 노화 과정”을 이해하는 데의 중요한 요소
Abeta

beta

NFTs

FTLD-Tau TDP

TDP

Glial activation
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In-vivo Imaging & imaging biomarkers: Imaging Neuroinflammation

Neuroinflammation: “an inflammatory response in CNS”


“뇌의 노화 과정”을 이해하는 데의 중요한 요소
Abeta

beta

NFTs

FTLD-Tau TDP

TDP

Glial activation
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Bio-imaging Informatics Lab.
Research Network in BU

In-vivo Imaging & imaging biomarkers: Imaging Neuroinflammation

Neuroinflammation: “an inflammatory response in CNS”


Abeta NFTs

FTLD-Tau TDP

TDP

Glial activation

Neuron Centric Hypothesis

  Proteostasis malfunction -> neuronal injury 

 vs. 


Immune Cell centric Hypothesis

  Maladaptive innate immune cells -> the driver of the disease 

  Next generation therapeutic strategy
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Bio-imaging Informatics Lab.
Research Network in BU

In-vivo Imaging & imaging biomarkers: Imaging Neuroinflammation

Madore et al., 2019
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Neuroinflammation: In-vivo Imaging


TSPO PET imaging

The Translator protein (18 kDa)

A five transmembrane domain protein in the outer 
mitochondrial membrane

Upregulated by activated glial cells (HIV, AD, pain)

Rupprecht et al., 2010

Wei et al., 2013
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Bio-imaging Informatics Lab.
Research Network in BU

In-vivo Imaging & imaging biomarkers: Imaging Neuroinflammation

Neuroinflammation: In-vivo Imaging


TSPO PET imaging

[11C]PK11195 PET
in PNS/spinal injuries

Banati et al., NeuroReport 2001Turkheimer et al., Biochm Soc Trans 2015

1st gen.

[11C]PBR28 
80x higher specific binding 
(Kreisl et al., 2020)
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Neuroinflammation: In-vivo Imaging


Diffusion MRI

Cellular water diffusivity 
(Motion of water through tissue)
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In-vivo Imaging & imaging biomarkers: Imaging Neuroinflammation

Neuroinflammation: In-vivo Imaging


Diffusion MRI

Diffusion speed 혹은 scale,

# of encoding direction,
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Neuroinflammation: In-vivo Imaging


Cellular water diffusivity 
(Motion of water through tissue)

Mortazavi et al., 2018

Diffusion MRI
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Research Network in BU

In-vivo Imaging & imaging biomarkers: Imaging Neuroinflammation
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In-vivo Imaging & imaging biomarkers: Imaging Neuroinflammation

Mori al., 2002
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In-vivo Imaging & imaging biomarkers: Imaging Neuroinflammation
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Neuroinflammation: In-vivo Imaging


Complex Diffusion MRI
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Neuroinflammation: In-vivo Imaging


Complex Diffusion MRI
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Neuroinflammation: In-vivo Imaging


Complex Diffusion MRI

17

Bio-imaging Informatics Lab.
Research Network in BU

In-vivo Imaging & imaging biomarkers: Imaging Neuroinflammation

Neuroinflammation: In-vivo Imaging


Complex Diffusion MRI
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Neuroinflammation: In-vivo Imaging


Complex Diffusion MRI
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In-vivo Imaging & imaging biomarkers: Imaging Neuroinflammation

Neuroinflammation: In-vivo Imaging


Complex Diffusion MRI
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Bio-imaging Informatics Lab.
Research Network in BU

In-vivo Imaging & imaging biomarkers: Imaging Neuroinflammation

Neuroinflammation: In-vivo Imaging


Complex Diffusion MRI

Girard
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Neuroinflammation: In-vivo Imaging


Complex Diffusion MRI
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Bio-imaging Informatics Lab.
Research Network in BU

In-vivo Imaging & imaging biomarkers: Imaging Neuroinflammation

Neuroinflammation: In-vivo Imaging (Gulf War Illness Model)

•Medically unexplained chronic symptoms (fatigue, 
pain/headaches, memory issues, gastrointestinal 
and sleep disorders, etc).

•Exposure to neurotoxicants (Pyridostigmine 
bromide, DEET, sarin) may have role (White et al., 
Cortex 2016). 

•Neurotoxicants induce a neuroinflammatory 
response, that can be enhanced by physiological 
stressors

•Neuroinflammation can produce sickness 
behaviors
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Bio-imaging Informatics Lab.
Research Network in BU

In-vivo Imaging & imaging biomarkers: Imaging Neuroinflammation

Neuroinflammation: In-vivo Imaging (Gulf War Illness Model)

Samantha Calderazzo

Koo et al., 2018
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Neuroinflammation: In-vivo Imaging (Veterans)

Complex Diffusion MRI 2nd Gen TSPO PET
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Bio-imaging Informatics Lab.
Research Network in BU

In-vivo Imaging & imaging biomarkers: Imaging Neuroinflammation

Madore et al., 2019

BPRHS

Exosome

GWIC

26

Bio-imaging Informatics Lab.
Research Network in BU

In-vivo Imaging Methods
& 

defining imaging biomarkers

Aging / Alzheimer’s Disease & Dementia

Informatics

Computational methods on  
effective use of biomedical imaging data  

for addressing scientific problems  
and decision making on human health issues. 

Virtual Dissection of the brain in different scales. 

Tools for measuring the Brain:  
tracking changes in Structure and Function 

Mapping and Modeling 
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Informatics: Neuroimaging markers for Dementia

Phenotyping neurodegeneration using Machine Learning
Value of Neuroimaging data

Machine learning

Personalized Medicine:


Prognosis

&


Cure
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Informatics: Neuroimaging markers for Dementia

Phenotyping neurodegeneration using Machine Learning

Classifying Alzheimer’s Disease using ML: 어디까지 왔나?

MRI PET 
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Informatics: Neuroimaging markers for Dementia

Phenotyping neurodegeneration using Machine Learning

Classifying Alzheimer’s Disease using ML: 어디까지 왔나?

MRI PET Remaining Issues

Not so big data problem
Simple handwriting digit recognition 
MNIST database 
60,000 samples for 10 classes 

PET: practicality 

Imaging data: 3 class problem / 
less than 2,000

Multi-class???
AD vs. FTD vs. other types

치매 예측?
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Phenotyping neurodegeneration using Machine Learning

Predicting Alzheimer’s Disease
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Informatics: Neuroimaging markers for Dementia

Phenotyping neurodegeneration using Machine Learning

Predicting Alzheimer’s Disease

Leclerc & Abulrob, 2013
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Informatics: Neuroimaging markers for Dementia

Phenotyping neurodegeneration using Machine Learning

Predicting Alzheimer’s Disease: MCI
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Informatics: Neuroimaging markers for Dementia

Phenotyping neurodegeneration using Machine Learning

Predicting Alzheimer’s Disease: including MCI converter concepts

34

Bio-imaging Informatics Lab.
Research Network in BU

Informatics: Neuroimaging markers for Dementia

Phenotyping neurodegeneration using Machine Learning

Predicting Alzheimer’s Disease: including MCI converter concepts

Deep Learning

Not working well on AD prognosis

Small data: yes 

Inappropriate CNN framework: maybe 

Missing link between 
neuroimaging and ML methods: 
only a few conventional 
imaging features are being 
tested
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Informatics: Neuroimaging markers for Dementia

Phenotyping neurodegeneration using Machine Learning

Predicting Alzheimer’s Disease: including MCI converter concepts

different ways to do quantitative 
measurements on this old image 

publications on the 
imaging markers

#1

#2 Deep learning for MRI 
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Phenotyping neurodegeneration using Machine Learning

Predicting Alzheimer’s Disease: including MCI converter concepts

publications on the 
imaging markers
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Phenotyping neurodegeneration using Machine Learning

Predicting Alzheimer’s Disease: including MCI converter concepts
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Phenotyping neurodegeneration using Machine Learning

Predicting Alzheimer’s Disease: including MCI converter concepts
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Informatics: Neuroimaging markers for Dementia

Phenotyping neurodegeneration using Machine Learning

Predicting Alzheimer’s Disease: including MCI converter concepts
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Informatics: Neuroimaging markers for Dementia

Phenotyping neurodegeneration using Deep Learning

Predicting Alzheimer’s Disease: including MCI converter concepts
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Informatics: Neuroimaging markers for Dementia

Phenotyping neurodegeneration using Machine Learning

Predicting Alzheimer’s Disease: including MCI converter concepts

1. Automation: 

2. AD vs FTD 

3. Merging Databases
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Informatics: Neuroimaging markers for Dementia

Phenotyping neurodegeneration using Machine Learning

Predicting Alzheimer’s Disease: including MCI converter concepts

different ways to do quantitative 
measurements on this old image 

publications on the 
imaging markers

#1

#2 Deep learning for MRI 

44

Bio-imaging Informatics Lab.
Research Network in BU

Informatics: Neuroimaging markers for Dementia

Phenotyping neurodegeneration using Machine Learning

Predicting Alzheimer’s Disease: including MCI converter concepts

many different ways to do quantitative 
measurements on this old image 

publications on the 
imaging markers

#1

#2 Deep learning for MRI 
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Phenotyping neurodegeneration using Machine Learning

Predicting Alzheimer’s Disease: including MCI converter concepts

many different ways to do quantitative 
measurements on this old image 

publications on the 
imaging markers

#1

#2 Deep learning for MRI 
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Informatics: Neuroimaging markers for Dementia

Phenotyping neurodegeneration using Machine Learning

Predicting Alzheimer’s Disease: including MCI converter concepts

• For ADNI: 0.76 to 0.89 for the AD vs CN, 0.69 to 0.74 for sMCI vs pMCI. Similar to studies without 
data leakage: 0.76 to 0.91 for AD vs CN and 0.62 to 0.83 for sMCI vs pMCI. 

• three approaches (3D subject-level, 3D ROI- based, 3D patch-level) provided similar performances, 
2D slice was less sufficient 

• With the sample size in ADNI, CNNs did not provide better performance compared to SVM

Hosseini et al., 2020
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