

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[Distribution Statement A] Approved for public release and unlimited distribution.

SOFTWARE ASSURANCE GUIDANCE AND
EVALUATION (SAGE) TOOL
Luiz L. Antunes, Ebonie McNeil, Robert B. Schiela, and Hasan Yasar
May 2021

Overview

Introduction

The Software Assurance (SwA) Evaluation was developed by the Carnegie Mellon University Soft-
ware Engineering Institute (SEI) to assess systems development and operations practices and to iden-
tify potential vulnerabilities and opportunities to improve and secure processes.

The creation of the Software Assurance Guidance and Evaluation (SAGE) tool required a thorough
analysis of the most popular standards and frameworks for software assurance, secure coding, Agile,
and secure DevOps, used both in industry and government settings. As a result of this analysis, both
the questions and the provided guidance draw from modern practices used in software design, devel-
opment, test, and operation. The appendix contains a list of some of the standards and frameworks
used in the elaboration of this tool.

The evaluation questions are distributed across the software production and operation phases. To
achieve the best results, the questionnaire should be applied as a survey to people working in different
stages of the production/operation line. Due to overlaps in responsibilities, participants will find that
many questions apply to their work, even if they initially appear to be outside of their areas. The mul-
tiple evaluation responses, from participants in different roles, will provide different perceptions of the
same processes, contributing to the richness of the answers.

How to Apply the SAGE Tool

This document is composed of two complementary parts: a questionnaire section, which can be dis-
tributed to different teams across the software development and operations areas in your organization,
and a guidance section, containing a compendium of best practices executed today in both industry
and government settings.

In order to use this evaluation, its parts can be printed separately and used at different stages of the as-
sessment. The questionnaire should be distributed to participants along the processes of the Software
Development Lifecycle (SDLC). Team members should try to answer the questions in the most accu-
rate possible way in order to capture as much information from the processes as possible.

The guidance section can be used by technical management or project teams along with the question-
naire section to assess the current state of the practices used and suggest improvements to add to the
current processes performed in the SDLC.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 2
[Distribution Statement A] Approved for public release and unlimited distribution.

Secure Development Phases

The SwA Evaluation is comprised of six Secure Software Development Lifecycle (S-SDLC) phases.
For each phase, a list of recommended security activities has been identified to promote awareness of
modern best practices, some linked to specific guidance within this document. The evaluation has
been categorized to closely relate to the widely used SDLC; this alignment can help organizations that
develop software within a waterfall model transition to a more iterative and Agile approach to soft-
ware development. The guidance and recommendations may also be used when acquiring software.
Each phase, shown in the diagram below, is briefly explained and followed by a list of related security
activities.

1. Governance

The Governance Phase includes activities that are known as setup or inception activities. Although
these activities are usually completed at the beginning of the development lifecycle, this document
proposes that these activities are ongoing and should be revisited throughout development and sustain-
ment as needed. The governance questions highlight important documentation and language that
should be used up front to reduce risks and establish an understanding of security importance within
the project. Some practices that promote security in the project at this phase are
• strategy and metrics
• policy and governance
• education and security guidance
• organizational risk factors assessment
• threat assessment

2. Requirements

Requirements generation is one of the most critical activities during development. Requirements set
stakeholder expectations of define software functionality. Requirements are most often developed
with use cases in mind. The recommendations in the evaluation emphasize the inclusion of abuse
cases or prohibited behaviors when generating requirements. The utilization of both abuse and use
cases provides a more robust software application and better test coverage in later phases of the lifecy-
cle. The following practices, used during the elaboration of the systems requirements, focus on secu-
rity:
• security requirements (security functional requirements [SFR]/security assurance requirements

[SAR]) generation
• risk assessment
• abuse case development
• threat modeling
• security stories

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 3
[Distribution Statement A] Approved for public release and unlimited distribution.

• development tool screening
• securing/hardening environments

3. Architecture and Design

The Architecture and Design Phases integrate requirements into diagrams and implementation con-
cepts. Architects and designers should consider security practices to identify vulnerabilities and poten-
tial attacks from internal and external sources. Initial designs should be approved and continuously
updated and validated against actual development activities. Threat assessments and modeling should
be considered in the Architecture and Design Phases. Security aspects can be considered during these
phases through the following activities:
• security architecture design
• architectural risk analysis
• security design requirements generation
• attack surface analysis
• vulnerability analysis and flow hypothesis
• security design review
• dependency lists and open-source libraries analysis

4. Development

Software assurance is most notably related to the Development Phase. Software should be developed
using proper design principles and security techniques that will not hinder mission assurance. Com-
mon best practices should be used by developers including, but not limited to, secure coding, static
and dynamic analysis, and code reviews. Below are some security activities that can be implemented
during the system development:
• secure coding practices
• security-focused code review
• unsafe function deprecation
• security unit testing
• static code analysis
• traceability analysis

5. Test

Traditionally, organizations focus their security efforts later in the lifecycle, during the Test Phase.
This evaluation moves away from that notion, instead placing security up front and early. The evalua-
tion highlights the importance of software-related security activities in the Test Phase that have signif-
icant impact on the overall security posture of the system. The evaluation aims to emphasize the use of
continuous integration and automated testing methods to foster more efficiency in an iterative environ-
ment. Below are some security activities that provide a significant contribution to testing software:
• security test planning
• security testing

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 4
[Distribution Statement A] Approved for public release and unlimited distribution.

• fuzz testing
• risk-based security testing
• dynamic analysis
• penetration testing
• verification of security implementation
• verification of process and procedures
• dependency monitoring

6. Delivery

The Delivery Phase correlates to the build, deployment, sustainment, and transition phases of other
software development and acquisition paradigms. While stakeholder participation is mentioned
throughout the evaluation, this phase draws attention to the significance of stakeholder inclusion. In
order to create a feedback loop to the other phases in the lifecycle, and to catch dormant or regressive
issues as early as possible, stakeholder participation is indispensable. Here are some security activities
that help us achieve that goal:
• container security practices
• final security review
• certify, release, and archive
• security acceptance testing
• transition incident response planning
• application security monitoring
• secure deployment process
• secure environment practices
• secure operational enablement
• configuration management

Assessment Value and Takeaways

This assessment has two primary goals: The first goal is to provide situational awareness of what se-
curity-focused practices have already been put in place to reduce the risks of software failure through-
out the SDLC. The second goal is to provide useful guidance on what software assurance practices are
currently used both in industry and government settings. This guidance may be used to inform a pro-
gram SwA assessment team on how to proceed in cases mentioned in this document that are not cov-
ered in a given system and to justify any corrective actions that need to take place during the SDLC.

Here is a brief summary of what can be learned or expected at the completion of the questionnaire for
each phase:
1. Governance: At this phase, the questionnaire will assess what policies and governance have

been considered for the execution of the project, what standards have been examined, what secu-
rity strategies have been proposed, and which metrics allow stakeholders to verify the efficacy of

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 5
[Distribution Statement A] Approved for public release and unlimited distribution.

those security strategies. The guidance section provides significant information on current best
practices to cover all these topics.

2. Requirements: Within the Requirements Phase, questions will evaluate how system risks and
abuse cases have been considered/developed and how security stories have been composed based
on those risks. The guidance contains suggestions on how to consistently consider those stories
and the issues represented by them throughout the SDLC, with the objective of arriving at the
end of each iteration with a more secure product.

3. Architecture and Design: Throughout the Architecture and Design Phases, requirements cap-
tured in the initial stages of the project start taking shape as high-level definitions that already
consider technical constraints and risks to the system. The questions and guidance in this section
will ensure that security considerations properly influence the design, leading to a more secure
Development Phase and providing consistency with security requirements in the Test Phase.

4. Development: During development, product features previously designed at a high level will
materialize as code, which must be carefully crafted to avoid introducing any security gaps. The
questions and guidance at this phase ensure that secure coding best practices, DevOps proce-
dures, and unit testing are being properly applied to guarantee a more secure code base.

5. Test: Testing is fundamental to the product lifecycle. Through testing, the team can verify if the
features coming from security requirements function properly and, if not, dispatch reports to re-
quire corrective action. At this phase, testing becomes more thorough and distributed across the
whole product code and environment, as opposed to localized testing that has already been per-
formed during the Development Phase. The questions and guidance presented at this stage focus
on the types of testing that can be applied as well as the frequency to execute them. There is sig-
nificant guidance about continuous integration and how testing automation is responsible for one
of the largest impacts in the whole SDLC, introducing consistency and agility to it.

6. Delivery: The questions about the Delivery Phase will help your team evaluate how the system
will make it to production and establish a strategy for handling any latent issues that may appear
after deployment. The guidance mentions parts of policies that define actions to be taken in deal-
ing with contractors after delivery and also best practices on how to turn new findings into addi-
tional security requirements, as well as how to initiate another iteration to resolve these issues.

Section 1: Software Assurance Assessment Questionnaire

1. Governance

1.1. What is the process to develop a new security policy for the project? How are tailored security
policies reviewed and evaluated for relevancy and accuracy prior to approval? Once approved,
how often are they reviewed?

1.2. How does your risk management plan address security?

1.3. Does a software assurance plan exist? How is it maintained for accuracy and relevancy?

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 6
[Distribution Statement A] Approved for public release and unlimited distribution.

1.4. Has a security data classification scheme, like a security classification guide, been developed?
How is it communicated?

1.5. How is software security and compliance language incorporated into vendor contracts to follow
the organization’s security policies? How is vendor compliance to internal policies enforced?

1.6. What software security training is required for team members? How is participation enforced? Is
there organizational support to encourage job-specific training and certifications for team mem-
bers?

1.7. How is continuance of Authorization to Operate (ATO) ensured in the project?

2. Requirements

2.1. Have security stakeholders been identified for different phases of the lifecycle? What roles are
assigned?

2.2. Will all stakeholders be involved and present throughout the SDLC stages?

2.3. How are potential security concerns documented and maintained? How are potential security
concerns turned into security requirements?

2.4. How are threats and abuse cases defined, modeled, prioritized, and incorporated into require-
ments?

2.5. How are security requirements identified, prioritized, assigned, captured, and evaluated?

2.6. How are security requirements tracked to verify and validate that they are satisfied through the
phases of the lifecycle?

3. Architecture and Design

3.1. How are security principles considered and incorporated into the system’s design and architec-
ture?

3.2. How is your software architecture analyzed against security features and attack models?

3.3. Have software vulnerabilities and risks been identified, prioritized, categorized, and mitigated in
the software design analysis (architecture review)?

3.4. How are trust boundaries clearly identified and documented?

3.5. How do system components and subsystems incorporate isolation and defense-in-depth princi-
ples?

3.6. When subject to failure and/or compromise, what processes ensure that the systems gracefully
degrade and change states from full functionality to minimum essential functionality?

3.7. How does the embedded system design include cryptographic chip design methodologies? If they
are not included, what are the tradeoffs and risks identified, and how are they mitigated in the
event of a failure?

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 7
[Distribution Statement A] Approved for public release and unlimited distribution.

3.8. Have all stakeholders reviewed, modified, and finalized (with signed approval) the design docu-
mentation for the target systems?

4. Development

4.1. Is software developed in compliance with mandated regulations and standards?

4.2. How is software developed and verified against the design documents?

4.3. What policies are used to define third-party software and tool usage? How are third-party compo-
nents considered and evaluated for potential threats?

4.4. Is there a mitigation or monitoring strategy that focuses on third-party software without vendor
support?

4.5. How is instrumentation added during the Development Phase to ensure continuous monitoring
capabilities in the system?

4.6. How is stakeholder feedback tracked and integrated into software development?

4.7. What metrics are collected to provide historical security trends? How are metrics used to im-
prove the overall lifecycle?

4.8. What development practices are being used to assure quality of the code and software?

4.9. Does the project perform informal and formal code reviews/audits? What categories or security
features do code reviews identify? How often are they performed? How are weaknesses catego-
rized and prioritized? How are code reviews enforced? What is the process to approve code re-
view results?

4.10. How are static and dynamic analysis tools used throughout development? How is code coverage
analysis used to increase security?

4.11. How are compiler warnings addressed and tracked? Are security tools and compilers set to use
the highest or strictest security settings available?

4.12. How is input validation handled? How is compliance enforced?

4.13. Are all data exchanges sanitized to prevent disclosure, ensure isolation, and protect against mal-
formed inputs (intentional and unintentional) between systems? If so, how is compliance en-
forced?

4.14. How are secure coding standards used? How are standards enforced throughout development?

4.15. How are unit tests developed to check use and abuse cases (edge, boundary, and fuzz testing)?
How often are they executed?

4.16. How are security trust boundaries and the principle of least privilege enforced in code develop-
ment?

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 8
[Distribution Statement A] Approved for public release and unlimited distribution.

4.17. What is the process for identifying risks introduced by software reuse? How are risks incorpo-
rated into requirements and mitigated throughout the lifecycle?

4.18. Are all components and access authorizations implemented with default deny, requiring explicit
permissions?

4.19. How are Agile practices incorporated into the project?

5. Test

5.1. How are test cases verified and validated against security requirements? How is this process au-
tomated and documented?

5.2. How are software and security-related items protected and re-evaluated for changes in protection
based on configuration?

5.3. How are security techniques like fault tolerance and redundancy enforced in the system?

5.4. How are fuzz and penetration tests used to close security gaps in the project?

5.5. What techniques are used to ensure integrity of the software? What tests are used to verify that
such techniques do not degrade system or mission performance?

5.6. How are third-party software and libraries or tools tested prior to use?

5.7. How are security updates managed for third-party software components?

5.8. How is environment parity ensured throughout the system lifecycle?

5.9. As new integration cycles occur with updated code, are security-related tests repeated?

5.10. What is the process to ensure that tests are repeated and analyzed on future iterations or deploy-
ments?

5.11. If your organization uses an embedded software pipeline, how is the software tested?

5.12. How is code execution being monitored on the target system to identify potential security re-
quirements?

5.13. How are security flaws in the Test Phase documented and tracked through resolution? Is there a
reporting mechanism for end users to identify any concerns, errors, or problems?

5.14. Has a select group of end users been allowed to use the deployed software on the target system?
Are they encouraged to use the system in an incorrect manner to identify flaws? How are new
security concerns integrated into system requirements and addressed?

5.15. Are external or independent test teams utilized in the project for verifying and validating the sys-
tem and its security? How do they report findings and issue resolution to the rest of the team?

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 9
[Distribution Statement A] Approved for public release and unlimited distribution.

6. Delivery

6.1. Were stakeholders briefed on all addressed security requirements?

6.2. Have the customers been made aware of who to contact in the event of discovering a security
concern? If the customer reports a security concern, is there a formal process to review why the
concern was not identified or addressed in earlier phases?

6.3. How are latent defects handled when discovered? What is the process for handling software er-
rors whose cause cannot be determined?

6.4. How are security-related lessons learned captured and reviewed? Has a post-transition meeting
been scheduled to improve future performance?

6.5. Is training provided for users based on operation and instruction manuals? Who is responsible for
delivering the training?

6.6. Is there a formal process for reviewing manuals and system instructions for accuracy? How are
feature updates and changes communicated to end users?

6.7. What is the process for implementing continuous monitoring? How are continuous monitoring
strategies evaluated for effectiveness and usefulness in operations? How are anomalies handled?

6.8. What is the process for incident response? How are stakeholders informed of security-related in-
cidents?

6.9. What is the program strategy for software decommissioning during the disposal phase of the sys-
tem development lifecycle?

Section 2: Questionnaire Guidance

1. Governance

No. Guidance Security Activities

1.1 Security policies define the behaviors necessary to maintain a secure
system, organization, or environment and ensure that procedures are
put in place to deter and stop attackers. They should be tailored to fit a
program’s development and operational environment. Develop new
security policies by identifying existing similar organizational policies
and other program policies that may be available, along with manda-
tory regulations and standards the program is required to follow.
BSIMM 8 CP1.3, “Create Policy,” highlights the importance of estab-
lishing a security policy to ensure a “unified approach for satisfying
the (potentially lengthy) list of security drivers at the governance

Policy and
governance

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 10
[Distribution Statement A] Approved for public release and unlimited distribution.

No. Guidance Security Activities

level.”1 Specific details to create tailored policies can be found in
OpenSAMM PC 2.A, “Build policies and standards for security com-
pliance.”2

Program managers should consider all industry and government regu-
lations and standards related to the program. Sometimes conflicts may
arise between regulations and their implementation procedures. Con-
flicts should be identified, documented, and resolved through an adju-
dication process. BSIMM8 CP1.1, “Unify regulatory pressures,” gives
details on the importance of a formal approach to identifying compli-
ance policies.1 All stakeholders should be briefed on tradeoffs and
risks that will be accepted by conforming to regulations and standards
levied on the program.

A thorough review of the security policies should be conducted to
guarantee policies cover both acceptable and unacceptable behaviors
that are relevant to each program. Once a security policy is reviewed
and approved, a schedule to periodically review and update the policy
as needed should be established. Security policies should also be com-
municated to all personnel, enforced through an agreement, and kept
in a central tracking system that is accessible to all personnel for refer-
ence.

1.2 All programs should have a risk management plan. Department of De-
fense Instruction (DoDI) 5000.02, Operation of the Defense Acquisi-
tion System, requires program managers to address risk management in
a way that is “proactive and should be focused on the actions that will
be taken and resources that will be allocated to reduce both the likeli-
hood and consequences of risks being realized. Effective risk manage-
ment is not just risk identification and tracking.”3 Proactive measures
can be taken to reduce risk and potential harm to a program. A com-
mon mandated approach in acquisition is the Risk Management
Framework (RMF).4 RMF seeks to effectively manage risk with six
steps in a cycle.

As the government begins to shift in development paradigms to a more
iterative approach, programs should consider utilizing the Continuous
Risk Management Guidebook,5 developed by the SEI, which provides
a reference for lessons learned and implementation guidance for con-
tinuous risk management. Items to consider when developing a risk
management plan include the following:
• How are risks prioritized, categorized, tracked, and mitigated?

Organizational risk
factors assessment

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 11
[Distribution Statement A] Approved for public release and unlimited distribution.

No. Guidance Security Activities

• Are risks assessed periodically throughout the SDLC? How are
risks found in later lifecycle phases prioritized, categorized,
tracked, and mitigated?

• What is the process for performing a risk assessment on third-
party software? Does the assessment include consequences and
likelihood associated with common issues such as obsolescence
or unintentional malware?

• Do service-level agreements (SLAs), contract agreements, and
other related documents incorporate requirements for meeting
criteria set in the risk management plan?

1.3 A Software Assurance Plan identifies steps the team will take to en-
sure “the level of confidence that software functions as intended and is
free from vulnerabilities, either intentionally or unintentionally de-
signed or inserted as part of the software, throughout the lifecycle”
[Definition of Software Assurance, P.L. 112-239 § 933, 2013].6 Some-
times, the Software Assurance Plan is a section in the overarching Pro-
gram Protection Plan (PPP) document. Whether it is a section inside of
the PPP or its own document, the Software Assurance Plan should in-
clude countermeasures for preventing vulnerabilities from persisting
within the systems. Security-critical systems and components should
be identified and categorized based on a clear definition that estab-
lishes what makes a system or component security critical. Evaluations
of those components and systems should be conducted against Com-
mon Vulnerability Enumeration (CVE®),7 Common Weakness Enu-
meration (CWE™),8 Common Attack Pattern Enumeration and
Classification (CAPEC™),9 and CERT Rules and Recommendations.10
Resolutions or mitigation strategies for security components and sys-
tems that have weaknesses present should be documented in the Soft-
ware Assurance Plan. Throughout the lifecycle, it is important to
reference the Software Assurance Plan to provide confidence that the
steps documented are being implemented, are accurate and relevant to
appropriately avoid vulnerabilities, and do not negatively affect mis-
sion or system performance.

Policy and
governance

__

® CVE is a registered trademark of The MITRE Corporation. The CVE is a list of entries for publicly known cybersecu-
rity vulnerabilities.

™ CWE is a registered trademark of The MITRE Corporation. The CWE is a community-developed list of common soft-
ware security weaknesses.

™ CAPEC is a registered trademark of The MITRE Corporation. The CAPEC provides a catalog of common attack pat-
terns that helps users understand how adversaries exploit weaknesses in cyber-enabled capabilities.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 12
[Distribution Statement A] Approved for public release and unlimited distribution.

No. Guidance Security Activities

1.4 Security Classification Guides (SCGs) are established to standardize
the protection of information about a program, system, or other entity.
Executive Order 13526 specifies that agencies should have controls in
place to ensure data is secure.11 SCGs should provide guidance on the
aggregation of seemingly harmless data that may result in a higher
classification assignment. SCGs should also establish declassification
timelines. Similar controls should be in place for defining and com-
municating requirements for sensitive but unclassified information
(e.g., Controlled Unclassified Information [CUI], Covered Defense In-
formation). Both DFARS 252.204-7012, “Safeguarding Covered De-
fense Information and Cyber Incident Reporting,”12 and NIST 800-
171 Rev. 2, “Protecting Controlled Unclassified Information in Non-
federal Systems and Organizations,”13 explain rules that could aid in
developing a classification guide. SCGs should be accessible to all
stakeholders, known throughout the program, and communicated with
external partners to prevent security breaches or information leaks.

Education and
security guidance

1.5 Compliance with organizational security policies should be passed
down to contractors and subcontractors. Contracts with vendors and
other service providers should include language that compels the con-
tractors and subcontractors to meet the program’s software assurance
goals and requirements. Such language should include measures taken
to reduce risk, avoid malicious software, ensure valid testing, and plan
to manage oversight of software assurance-related processes. Software
assurance should be considered, at minimum, in Request for Proposal
(RFP) preparation, contract negotiations, software and data rights14
discussions, and acceptance of contract deliverables.

Templates with standard software security language should be devel-
oped to ensure that the basic minimum information necessary to ac-
quire, develop, or maintain a system and its components have been
met. These templates will serve as a baseline in contracts or other re-
lated documents for all programs with similar software security needs
or functions. Security language templates can be tailored to include
more specific security requirements and provide a minimum standard
of software assurance across the entire product baseline and various
similar programs. USAF SSE Acquisition Language Guidebook Sec-
tion 2.5.1 describes security-related sample statements that should be
included in contracts to ensure that contractors meet the SwA goals
and requirements.15

Policy and
governance

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 13
[Distribution Statement A] Approved for public release and unlimited distribution.

No. Guidance Security Activities

1.6 Training is an important part of the SDLC. Team members should be
trained and/or experienced in the techniques that are necessary to im-
plement security protections and controls. Security training should be
encouraged beyond the DoD Annual Cyber requirements and include
role-specific training.16 Team members should develop a grasp of how
to use tools available through training offerings. Process improve-
ments and more secure and resilient systems are a few of the benefits
to the program when members are encouraged to seek training and ap-
ply the information learned to the system or environment. Incentives
should be provided to members to obtain and maintain training and
certifications that are relevant to their position.

Education and
security guidance

1.7 In order to adopt Agile or DevOps in the DoD, one must ensure that
continuance of ATO is granted so teams can go through sprints more
easily. The latest efforts that have been granted continuance of ATO
(e.g., Kessel Run Lab) show some common traits—described below—
that make it easier for an authorizing official (AO) to approve different
iterations of development.

While evaluating the ATO process for any given project, it is funda-
mental to understand the environment under which it is issued. Ensur-
ing that existing dependencies or constraints do not change across
iterations, or at least keeping the variability of that environment to a
minimum, will help speed up the approval of each phase.

A contingency plan should be put in place, in case disruptive but nec-
essary changes need to be implemented. In this case, teams must be
able to work with the AO to describe in detail how the changes affect
the overall system design and interactions with other components. By
isolating the effects of the change and providing a rationale to the AO,
teams can provide the AO with situational awareness and speed up the
ATO process.

Policy and
governance

2. Requirements

No. Guidance Security Activities

2.1 Stakeholders should be identified to take responsibility for specific
roles on the team and in the project. Traditionally, programs don’t con-
sider executive and user stakeholders for all phases of the software

Security stories

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 14
[Distribution Statement A] Approved for public release and unlimited distribution.

No. Guidance Security Activities

development lifecycle. These stakeholders should minimally have re-
sponsibility for verifying that their requirements have been met. For
each lifecycle phase, a team member should take ownership of ensur-
ing that security requirements and controls are implemented and any
changes or issues are resolved and documented.

2.2 Stakeholders should have a vested interest in the program and be in-
formed and available throughout the lifecycle. Information should be
shared up front and early when it is available so that stakeholders can
have a clear understanding of the security posture of the systems, com-
ponents, and environment. Meetings should be scheduled with stake-
holders to address the progress of fulfilling and validating security
requirements.

Security stories

2.3 A process should exist to identify and address security concerns that
may arise throughout the SDLC. The process to identify security con-
cerns should include documenting the concern along with the areas the
security concern affects. Every stakeholder for the program should be
able to highlight potential security concerns to be addressed within the
development of the system. Security concerns should be documented
and maintained to ensure traceability. The architecture of the target
system should be reviewed at each iteration for new potential security
concerns, and those concerns should be turned into requirements. De-
velopers should have a documented formal process to update or intro-
duce new security requirements during development to ensure that any
security concerns identified, even in later stages of the lifecycle, are
properly addressed in the system. Security concerns should be docu-
mented, turned into security requirements, and entered into the cycle
of requirements management.

Security require-
ments (SFR/SAR)
generation

2.4 Identifying potential threats and abuse cases is essential to ensuring
that the systems, components, and operating environment are secure.
The SEI has studied multiple threat modeling methods and encourages
a hybrid approach to identify potential threats.17 An assessment should
be completed that identifies, prioritizes, and models threats and abuse
cases. A standard criterion for prioritizing threats should be established
and documented to give insight into the most important models or
cases. Attack patterns and surfaces should also be incorporated into se-
curity requirements to ensure that protections are in place to prevent
the potential threats from becoming real. Additional mission thread

Threat modeling

Abuse case
development

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 15
[Distribution Statement A] Approved for public release and unlimited distribution.

No. Guidance Security Activities

analysis should be performed, and the results should be used to influ-
ence security requirements after prioritization.

2.5 Requirements gathering is an important step in the acquisition and de-
velopment lifecycles. The requirements are the first step in determin-
ing the needs and functionality of a system or service. Regulations and
standards should be incorporated into requirements. Initial use cases
and any threat assessments should influence security requirements.
Software security requirements and policies should be present in the
requirements documentation and address things including but not lim-
ited to
• encryption
• specific protocols to use
• auditing
• access control
• management and user-separated accessibility
• proper handling of personally identifiable information (PII), CUI,

and other sensitive/classified data

Security requirements should be prioritized and assigned to a team
member to ensure there is accountability and verification that the re-
quirements have been met. A mechanism, such as a Requirements
Management System, should be used to provide requirements tracea-
bility throughout the lifecycle. Any tradeoff decisions or changes in
implementation of the requirement should be easily traced back to the
original requirement. Be sure to incorporate organization security poli-
cies in security requirements. Security requirements that apply to con-
tractors or vendors should also be identified, prioritized, and captured
for tracking and verification.

Once a final draft of requirements is completed, all team members and
customers should have a chance to review and evaluate the require-
ments. Requirements should be approved by stakeholders to ensure
support and show consensus on what needs to be done up front and
early. The results of the evaluation, whether approved or rejected,
should be tracked in the requirements management system. There
should be a formal process for future change requests to the require-
ments after they have been approved.

Security require-
ments (SFR/SAR)
generation

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 16
[Distribution Statement A] Approved for public release and unlimited distribution.

No. Guidance Security Activities

2.6 Each security requirement should have a stakeholder that takes owner-
ship for verification and validation (V&V) throughout the lifecycle.
Requirements should be integrated into test cases, and test cases
should be approved by all stakeholders prior to implementing tests.
Techniques and resources used to satisfy the requirements should be
documented and tested to ensure that the requirements are met. All
successes and failures in V&V should be documented and communi-
cated to the team and stakeholders to promote awareness. All security
requirements should be met by vendors and contractors, and a plan for
V&V should be completed to make sure requirements are satisfied.

Security require-
ments (SFR/SAR)
generation

3. Architecture and Design

No. Guidance Security Activities

3.1 Architecture and design are the bridges between requirements and im-
plementation. The software architecture of a program or computing
system is a depiction of the system that aids in understanding how the
system will behave.18 Security should be incorporated into the design
and architecture of the system and development environment. Consid-
erations for hardware, software, and interface components should in-
clude protections against intentional and unintentional defects that
could possibly be introduced. An analysis of cybersecurity trade-offs
should be completed against the architecture and design concepts to
help identify weaknesses and implement more robust countermeasures.

Security
architecture
design

3.2 Threat assessments are important when developing the software archi-
tecture and design. Attack models should be developed using the re-
quirements. These models should influence the selection of a secure
design environment, the software architecture, and the best practices
used for software development. Mitigations for the threats in the mod-
els should be analyzed for efficiency and effectiveness and incorpo-
rated into the design. Software architects (a contractor or internal team
member) should use threat modeling to ensure that cybersecurity ef-
forts consider threats and attack patterns when making design deci-
sions.

Attack surface
analysis

3.3 Architectural risks are potential vulnerabilities of the system and its
environment that may arise when the system is implemented. Risk

Architectural risk
analysis

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 17
[Distribution Statement A] Approved for public release and unlimited distribution.

No. Guidance Security Activities

analysis should be performed on the architecture and design to identify
vulnerabilities and plan for mitigation or use of alternative solutions.
Risks need to be prioritized and categorized by severity and affected
areas. The categorization should help in identifying root causes or res-
olutions to mitigate such risks. Throughout the lifecycle, the architec-
ture and design should be evaluated and validated for effectiveness and
efficiency.

Software architecture analysis (SAA) is the process of identifying
flaws in the software design and its development environment prior to
actual development. An architectural analysis should be performed to
identify vulnerabilities in the design. Vulnerabilities should be catego-
rized based on criteria such as affected area or severity. Each category
of vulnerability should be prioritized and addressed to reduce the risk
and prevent the vulnerability.

Failure Mode, Effects, and Criticality Analysis (FMECA) is a method
of analysis based on failure analysis and identification of root causes
and threads that lead to failure modes. Programs should strongly en-
courage the use of FMECA as one method for design analysis. Per-
forming FMECA for embedded systems is essential in ensuring
security of components. MIL Handbook 502A provides guidance for
implementing FMECA within the DoD.19 The handbook helps provide
better insight into the cost and performance of software and hardware
products.

3.4 Trust boundaries are the areas within the architecture where some level
of trust has been established. The boundary is often placed between
trusted components (subsystems) and an untrusted source. DoDI
8540.01 (2015) establishes a cross-domain policy, which “assigns re-
sponsibilities, and identifies procedures for the interconnection of in-
formation systems.”20 Software trust is usually centered on data
confidentiality and integrity and includes different levels of classifica-
tion. Trust boundaries should be identified and clearly marked in de-
sign documentation.

Security design
requirements
generation

3.5 Defense in depth is the concept of having multiple layers of security so
that if one security control fails there is already another security meas-
ure in place to prevent an attack. Isolation reduces the attack surface by
limiting access to critical components through untrusted means. Isola-
tion is the practice of separating duties or data control flows to only
use the parts of the system required to complete a particular function.

Security design
requirements
generation

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 18
[Distribution Statement A] Approved for public release and unlimited distribution.

No. Guidance Security Activities

Both techniques, when implemented together and incorporated into the
design of the software and architecture, will provide greater protection
of the system. Programs should use virtualization or containers where
appropriate to provide redundancy and fast recovery, should an attack
occur.

3.6 In case of an attack or system failure, the system will often need to be
operational despite being exploited. A recovery plan should be devel-
oped that includes the process to ensure the system is able to run in a
mode that provides minimum essential functionality. Abuse cases as
well as threat modeling should be integrated into the development of
how to successfully degrade the system to its appropriate level of func-
tionality. If the system has implemented isolation, those measures
should be referenced when developing the recovery plan. Events that
are not related to an attack or exploitation may also occur and will
need to be considered when developing the plan. Events such as a
component failure or powering down, and possible changes in opera-
tional environment affecting the system, should also be considered
when the program identifies the process for graceful degradation of the
system.

Attack surface
analysis

3.7 The embedded systems design should include cryptographic function-
ality to ensure that components are secure. For example, single-chip
cryptographic (SCC) design is a methodology used to isolate function-
ality in processor components where security cannot be guaranteed. In
embedded systems, the SCC design ensures security of authentication
keys and related mission-critical information. The design documenta-
tion should include the use of SCC design to provide an additional
layer of security in the event of failure.16 SCC design should be in-
cluded in the architecture analysis. Tradeoffs and risks should be iden-
tified and mitigated prior to implementation.

Security design
requirements
generation

3.8 The program should set up a formal process for approval of design
documentation and its related analysis assessments. The process should
address what is done when items are rejected and accepted. All stake-
holders should review, modify, and finalize all architecture and design
documentation prior to formal reviews, such as the Preliminary De-
sign Review (PDR) and the Critical Design Review (CDR). In a more
iterative approach, stakeholder awareness is important so decisions can
be made early and up front, prior to more critical points in the lifecy-
cle. Exposures, vulnerabilities, and threats (EVTs) should be re-

Security design
review

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 19
[Distribution Statement A] Approved for public release and unlimited distribution.

No. Guidance Security Activities

evaluated when changes to the architecture and design are made. Each
configuration should periodically evaluate EVTs for changes in re-
quirements, architecture and design, and development and operational
environments.16 In addition, the approval process should be docu-
mented to ensure uniform implementation and include how modifica-
tions after initial approval will be addressed.

4. Development

No. Guidance Security Activities

4.1 Mandated regulations and standards are rules that must be followed
and implemented within the program. Identifying all applicable regu-
lations and standards is an important step that must be completed prior
to implementation. The software design should ensure all regulations
are verified so that the software complies with each rule in the stand-
ards and regulations. The rules outlined in the standards and regula-
tions should be included in the requirements documentation and
flowed into the design documents. Software should be developed to
fulfill the requirements and tie closely to the design documentation.
Changes that may arise in the software design should be fed back into
the requirements process to provide traceability and also ensure that
compliance is still met for the changes made.

Traceability
analysis

4.2 Software should be developed to implement specifications listed in the
design documents. Any code written should be verifiable against those
designs. Code reviews and test cases can be used to verify the soft-
ware against the design.

Secure design practices should include security controls and analysis
of threat models and abuse cases.16 Throughout the SDLC, as new
functionality is introduced or fixed, software should be verified to im-
plement secure design principles and controls. System components
and subsystems should be verified and validated in isolation against
the design prior to integration and V&V against the complete software
architecture.

Traceability
analysis

4.3 Any third-party software used as a tool to develop a system, or as a
dependency or library to the application, should be verified and vali-
dated to prevent software vulnerabilities and unnecessary redundancy.

Dependency
monitoring

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 20
[Distribution Statement A] Approved for public release and unlimited distribution.

No. Guidance Security Activities

Third-party software should always be evaluated to ensure infor-
mation security and should be periodically tracked to ensure continual
relevancy to the system and its functionality.

Integrated circuit suppliers should be accredited prior to use. All ven-
dors and suppliers should be trusted foundry/trusted suppliers ap-
proved or accredited by the Defense Microelectronics Agency
(DMEA) or National Security Agency (NSA) for acquisition or devel-
opment of any information and communications technology compo-
nents (e.g., application-specific integrated circuits).

Deliverables should be certified via the National Information Assur-
ance Partnership (NIAP) Common Criteria Evaluation and Validation
Scheme (CCEVS) process. There should be a documented process for
assigning evaluation assurance levels on commercial off-the-shelf
(COTS) deliverables. COTS products should be validated via CCEVS
for version updates or modifications.

Vendors should be required to submit Certificates of Conformance en-
suring that parts are not counterfeit. V&V tests for acceptance should
be approved by the government if software components are vendor- or
contractor-produced and methods for acceptance should be docu-
mented.16

4.4 Third-party software carries an additional risk of obsolescence. There
should be a formal process for ensuring that software will be vendor-
supported when it is considered for use. There should also be a plan
for identifying software components that may not be supported cur-
rently or in the future. If third-party software will be used despite not
being vendor-supported, there should be an additional risk assessment
performed and a formal stakeholder acceptance record to the risks and
mitigations posed. Programs should strive to be proactive toward ob-
solescence, consider data rights where appropriate, and keep track of
software versions or competitive alternatives. Throughout the lifecy-
cle, developers and program managers should maintain a clear tracea-
bility of software versions, licensing, and software release trends for
third-party software components.

Dependency
monitoring

4.5 In order to extract useful runtime information from the code during
debugging, it is necessary to introduce instrumentation in the code at
the same time it is generated and while the ideas about what is im-
portant about that specific piece are still fresh within the team. Once
that instrumentation is in place, enabling the output can be easily done

Traceability
analysis

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 21
[Distribution Statement A] Approved for public release and unlimited distribution.

No. Guidance Security Activities

via configuration by any of the parties executing the testing. This in-
formation—when properly accumulated and displayed in a monitoring
environment—can quickly provide meaningful insights that, in case of
failure, will allow for a faster recovery.

4.6 Throughout the phases of the software development lifecycle, stake-
holder feedback should be collected and integrated into software de-
velopment. Often, security requirements may change as new
technologies and changes in operational environments are introduced.
There should be a formal process for reviewing, prioritizing, and in-
corporating stakeholder feedback for iterations of the software. When-
ever the feedback introduces changes to the overall system design,
these modifications should be properly captured into new versions of
the requirements, so they are properly traced and tested further on in
the SDLC.

Security stories

4.7 In Agile, metrics are used to express the operational performance of
the software and, consequently, how to improve it.

Metrics such as the examples below are measurable aspects of the
SDLC that provide insights about the overall system security:
• Software assurance requirements findings count
• attack vector details (IP, stack trace, time, rate of attack, etc.)
• time to approval
• time to patch vulnerabilities
• mean time to recovery
• mean time to detection

Metrics should be carefully chosen, as numbers that are representative
to what is happening throughout the SDLC. As an example, metrics
related to development can show areas of more activity in the code-
base, which can indicate issues that are tougher to resolve or features
that ended up taking longer to implement. Heightened activity can be
an indicator of where most of the new code is, so testing can focus
more on those areas from an early stage.

Also, lessons learned from previous increments, sprints, or cycles
should be documented and referenced so future iterations can imple-
ment improvements and verify their efficacy based on the metrics be-
ing analyzed.

Traceability
analysis

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 22
[Distribution Statement A] Approved for public release and unlimited distribution.

No. Guidance Security Activities

4.8 During development, some practices can help a team achieve better
code/software quality. Among them are
• documentation: Comments and documentation linking code to

requirements explain the purpose of each section of the software
and must state what is expected as input and output, with details
on how that is achieved and boundary conditions that may affect
it.

• code reviews: Explained in detail in Item 4.4
• continuous integration: A set of practices with the goal of pro-

moting better integration of parts of software written by a devel-
opment team. These practices include
− maintaining a code repository
− automating the build
− making the build self-testing
− building the software at every commit to the baseline
− keeping the build fast
− testing in a clone of the production environment
− making it easy to obtain the latest deliverable

• quality assurance: Executes testing that is tightly connected to
the software requirements. Each requirement should have a cor-
responding test that gets executed at the end of each software
build to make sure that it is correctly satisfied.

Traceability
analysis

4.9 Reviews should be conducted within the Development Phase to iden-
tify flaws in the software code. Formal reviews are a more structured
way to review aspects of the code. Roles and responsibilities are de-
fined clearly and materials are often distributed prior to a formal re-
view to facilitate organization and order during the review. When
defects are discovered in a formal review, they are usually recorded in
great detail, including their location, severity, type, and other relevant
details. All of this information may be used later to guide the quality
assurance (QA) team.

Alternatively, an informal review does not require as much planning
or organization. Informal reviews can be over-the-shoulder feedback,
where the developer explains the code to another team member who
can identify flaws in code logic, semantics, and bad programming
practices, or pair programming, which employs the use of program-
ming and reviewing in parallel.21

Security-focused
code review

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 23
[Distribution Statement A] Approved for public release and unlimited distribution.

No. Guidance Security Activities

Formal reviews should be conducted on every build or iteration, high-
lighting changes that have occurred since the last formal review. In-
formal reviews are more ad hoc and can occur at the convenience of
the developers. Both formal and informal reviews should be used to
provide the maximum manual coverage to the software code. Code re-
views should be a part of the activities practiced throughout the pro-
ject and should be enforced by technical and team leads. This practice
ensures that small bugs are caught early in the lifecycle and are dealt
with at a low cost.

When code reviews are related to or addressing security requirements,
it is essential to involve security stakeholders in developer-led re-
views. Projects should have a process to maintain security stakehold-
ers’ involvement throughout the lifecycle. For security-related
reviews, attention should be paid to the security requirements, and
there should be a record of how these are directly addressed by fea-
tures in the code. When participants are focused on the security as-
pects of the code, they can start by verifying that secure coding best
practices are properly applied and that parts of the code architecture or
implementation do not create any security vulnerabilities for the over-
all system. If security vulnerabilities are identified during code re-
views, they should be prioritized, categorized, and resolved based on
the functional area that is affected by the vulnerability.

4.10 Static analysis and dynamic analysis are often used to find bugs and
flaws in software code. Static analysis is performed on source or bi-
nary code, usually without the need to run the program. Static analysis
tools can work with many different programming languages to iden-
tify flaws and can sometimes allow definitions of custom rules in their
configuration. Implementing static analysis methods is highly encour-
aged for use in early bug and flaw detection and has been known to
reduce development costs. Aside from manual static analysis, such as
code inspection, automated tools should be used as an additional flaw
detection method. Tools in this category may be able to find
• redundant code
• dead code
• logic flaws

Dynamic analysis requires the program to operate in order to monitor
its functionality within the runtime environment. Dynamic analysis is
useful for discovering complex vulnerabilities and performance met-
rics that cannot be easily detected with static analysis. Although they

Static code
analysis

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 24
[Distribution Statement A] Approved for public release and unlimited distribution.

No. Guidance Security Activities

are usually more specific to a particular programming language or op-
erating system, dynamic analysis tools can also rapidly find flaws or
vulnerabilities in both the code and program functionality.22 Tools in
this category may be able to detect
• integer/buffer overflows
• memory leaks and patterns of bad memory use or allocation

Dynamic analysis tools may also simulate attacks by malicious indi-
viduals to find unexpected vulnerabilities that may be missed by other
testing techniques.

Code coverage is the percentage of how in depth the analyses test the
developed code. For full code coverage, test cases should execute
every line of executable code and follow every path or branch within a
functional control flow. Full code coverage is an ideal scenario for
testing the development code. Many tools are used to provide metrics
on code coverage by running automated tests and injecting tracing
calls to identify control flows.23 From a security perspective, at every
development iteration, it makes sense to focus on uncovered code that
recently had one or more security problems to take advantage of any
coverage inequity.

While code coverage may be a good metric of how much testing is be-
ing completed, it is not necessarily a good metric of how well the test-
ing is working. Other metrics should be used along with code
coverage to ensure quality (See Item 4.1).

4.11 During the process of building software, compiler errors are usually
blockers, which show up before the software can be tested or released.
These errors can be caused by simple issues like mistyped statements,
missing files, or more complex issues, like logical problems in the
code structure. Since the errors are blockers, they are always dealt
with almost immediately.

Compiler warnings, on the other hand, are sometimes ignored and
considered a very low threat. Most compilers can be set to use the
highest warning level available, in order to provide more meaningful
information. This information can be used to verify if the warnings are
connected to some kind of security flaw. The development team can
also make use of static and dynamic analysis tools to detect and elimi-
nate additional security flaws. It is always good practice to eliminate

Traceability
analysis

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 25
[Distribution Statement A] Approved for public release and unlimited distribution.

No. Guidance Security Activities

all warnings in the most efficient and secure way to reduce any possi-
bility of introducing security gaps in the software.

4.12 Input from all untrusted data sources must be validated. Proper input
validation can eliminate the vast majority of software vulnerabilities.
Be suspicious of most external data sources, including command line
arguments, network interfaces, environmental variables, and user-con-
trolled files.

In user interfaces, or anywhere human interaction is allowed, there
should be checks for wrong data types, default null selections, or spe-
cial characters. All of these can come from accidental input or mali-
cious activity to test how the UI responds or breaks and provides
access to the system in case of errors.

Validation should always include
• data type verification, so only the accepted values are able to get

through
• proper character validation, with filtering applied in user inter-

faces
• boundary condition checks in APIs and user interfaces (numeric

ranges, zeros, large integers, null values)

In order to enforce compliance, teams must ensure testing includes a
wide variety of conditions that are applied against the system’s inter-
faces. This would expose issues with validation as soon as the code is
committed into the repository.

Secure coding
practices

4.13 Data sanitization involves removing or encrypting data that—if ex-
posed—could cause danger for the system or to the overall mission.
All data should be sanitized prior to transmission, storage, or use by
any component of the system. Data should also be validated and veri-
fied for integrity. The methods for using validated data as well as how
to handle data deemed malicious or malformed should be thoroughly
documented. Libraries that perform such verifications should be im-
ported or implemented in development. Risks for malformed data
should be controlled through proper error handling, integrity checks,
and data validation. Use of encryption techniques should be evaluated
against NSA requirements for certification and approved prior to use.

Before a system uses data from external sources, the data should be
verified to be valid and checked for integrity. NIST Risk Management

Secure coding
practices

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 26
[Distribution Statement A] Approved for public release and unlimited distribution.

No. Guidance Security Activities

Framework Control SI-7 highlights the importance of including secu-
rity and integrity checks for information systems.4 Checks should be
applied to both external and internal data to the system. There should
be a documented process for verifying and validating data from other
system components as well as external sources.

4.14 Secure coding standards should be used in software projects, either to
train developers on the secure coding standards chosen by the organi-
zation or to use automated checks or code reviews that ensure the uti-
lization of those standards. Performing an automated check later is
always cost-effective but may not effectively catch all types of prob-
lems. In order to enforce the use of secure coding standards, team,
technical, and integrated product team (IPT) leads should be aware of
their utilization and also ensure that their teams have received training
and know in which scenarios to use them. Using a team exclusively to
review the produced code turns out to be extremely expensive and
may add delays to the development. In any case, both automated
checks and code reviews are important to ensure the security of the
developed system.

An organization should develop its own tailored secure coding stand-
ards, based on widely accepted ones (e.g., CERT’s Secure Coding
Standards10), which should contain prohibited practices as well as re-
quired ones.

Secure coding
practices

4.15 Unit tests are tests that involve the smallest unit of code, module, or
procedure necessary to verify that the code has specific functionality
and to validate the functionality against the design. MIL-STD-498
Sections 5.7 and 5.8 describe requirements for developing and imple-
menting unit tests and unit integrations tests.24 Use and abuse cases
should be integrated into unit tests.

Security unit
testing

4.16 The principle of least privilege (PoLP) is the methodology of provid-
ing the minimum amount of authority for an entity to perform a spe-
cific function. Implementing the PoLP helps to protect the system
against unauthorized actions being performed. When paired with audit
logging, employing PoLP can help identify potential attacks that try to
circumvent authorization security policies.

Trust boundaries are logical separations of data classification as well
as levels of trust. Systems usually trust internally created data, and
therefore their designers may choose whether to apply more strict

Secure coding
practices

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 27
[Distribution Statement A] Approved for public release and unlimited distribution.

No. Guidance Security Activities

security measures on such data. Alternatively, systems usually distrust
externally created data, which requires extra validation to be per-
formed on such data sets.

The PoLP and trust boundaries should be properly considered in the
design and later implemented in code development. Access control
lists, integrity checks using encryption or hashing, and group policies
are some of the artifacts that can be used to enforce PoLP and trust
boundaries in the architecture.

4.17 Software reuse can reduce time and costs associated with developing
new software. Software should be developed using techniques that en-
courage reuse, such as object-oriented programming.

Whenever possible, software should be considered for reuse. The con-
sidered piece of software should be deemed relevant for the evaluated
scenarios and fit within the new system’s architecture. A risk analysis
for reusing software should be completed, and risks should be identi-
fied and mitigated prior to integrating reused software components
into the architecture. Common risks associated with software reuse are
programming language compatibility, version control management,
and additional security vulnerabilities that may be introduced.

Secure coding
practices

4.18 Any piece of code that depends on authentication to execute its func-
tion should operate based on the default-deny principle.

The default-deny principle bases access decisions on permission ra-
ther than exclusion. This means that, by default, access is denied and
the protection scheme identifies conditions under which access is per-
mitted.

Under these principles, any access that cannot be verified as author-
ized will make the code fail. All the possible exception cases should
be handled gracefully, directing users to a point where they can either
return to the previous screen without any substantial data loss (e.g., di-
rected back to form, but form data after submission attempt is lost) or
to a point where they are able to provide the required credentials and
complete the operation.

Secure coding
practices

4.19 Even though Agile has been around for a while, its application to DoD
projects is very recent, having started with the Agile mandate from
2012.25 Plain Agile has been developed with industry practices in
mind and does not account for all the barriers that the DoD

Traceability
analysis

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 28
[Distribution Statement A] Approved for public release and unlimited distribution.

No. Guidance Security Activities

environment has, such as different access or clearance levels, air-
gapped systems and difficulties in obtaining ATO. However, Agile
can provide the same industry benefits to DoD projects, and some ad-
aptations have been developed to make it feasible for the DoD use.
Back in 2010, MITRE produced a technical report, Handbook for Im-
plementing Agile in Department of Defense Information Technology
Acquisition,26 which provides useful information on how Agile can be
used in DoD projects. More recently, the SEI has produced the “Ac-
quisition & Management Concerns for Agile Use in Government Se-
ries,” a series of six brochures about Agile in the government, which
has a more modern take on the same subject. The brochures are listed
below:
• Agile Development and DoD Acquisitions
• Agile Culture in the DoD
• Management and Contracting Practices for Agile Programs
• Agile Acquisition and Milestone Reviews
• Estimating in Agile Acquisition
• Adopting Agile in DoD IT Acquisitions

5. Test

No. Guidance Security Activities

5.1 Early in the SDLC, when requirements are captured and approved by
stakeholders, test cases are defined based on the requirements. Test
cases should verify and validate that the security requirements are im-
plemented.

While the code is being written, unit tests should be written in paral-
lel, matching the security requirements related to that functional piece
of the software. The execution of the unit tests should be automated
and run every time the software is built, along with other security tests
related to the application environment (e.g., web application, client-
server application, stand-alone). This process aims to speed up the
fixes and have them done at the lowest possible cost. There should
also be documentation about the security test cases, explaining the ra-
tionale behind the test and any additional technical details that make it
easier for anybody to understand why and how it works, should any
issues appear.

Security test
planning

https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=506354
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=506350
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=506364
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=506342
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=506358
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=506346

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 29
[Distribution Statement A] Approved for public release and unlimited distribution.

No. Guidance Security Activities

One important aspect of running tests is the automation of this pro-
cess. Over the years, it has been proven that automating tests elimi-
nates the variability introduced by humans—the differences range
from environment configuration settings to language versions, plugins
loaded, and more—and makes sure that the parity across environ-
ments works in the team’s favor.27 In order to have this automation
implemented, teams can use artifacts as simple as scripts connected to
version control system servers or build requests, or a more sophisti-
cated continuous integration product running to coordinate commits,
builds, and releases for the team. Many options are available, from
free open-source software to commercially supported products.

5.2 NIST RMF Control CM-2, Baseline Configuration, states that pro-
grams should create baseline configurations to “serve as a basis for fu-
ture builds, releases, and/or changes to information systems.”28 In an
environment where systems of systems include reused software and
hardware components, programs should be vigilant in testing different
system configurations. Each component interface provides its own set
of security concerns and incompatibilities. Additional security tests
should be created against the requirements that led to the configura-
tion. As different components are used together to create new configu-
rations or baselines, security tests should be repeated to identify new
flaws that may be introduced. NIST RMF Control SA-10, Developer
Configuration Management, highlights the importance of maintaining
traceability of component changes in each baseline configuration and
safeguarding against security vulnerabilities that may be present.

Verification of
process and
procedures

5.3 Fault tolerance allows a system to continue to operate despite some of
its components failing. Fault tolerance is critical to high-availability
systems to ensure that minimum functionality is provided at all times
in security- and life-critical events. Systems should be designed to
gracefully degrade in the event of a failure instead of completely shut-
ting down and losing all functionality. Security requirements and test
cases should include fault tolerance principles. Test cases should test
for fault tolerance; stress tests paired with penetration tests provide
details on the effectiveness of the system’s tolerance.

Additionally, redundancy solutions should be researched to provide a
more fault-tolerant system environment. Redundancy usually includes
some sort of backup to the system or its components. Due to various
cost and performance drawbacks associated with a fully redundant
system, it is often more feasible to provide redundancy for only the

Verification of
security
implementation

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 30
[Distribution Statement A] Approved for public release and unlimited distribution.

No. Guidance Security Activities

most critical components of the system.29 Each test case should vali-
date the effectiveness of the redundancy solution chosen in the sys-
tem.

Fault tolerant and redundant solutions should also provide notifica-
tions and/or audit logs to ensure that operators understand there is a
failure and can act when appropriate. Tests simulating system failure
and checking for notifications should be included in the test plan. Dur-
ing the Requirements and Design Phases, the program manager should
be sure the solutions that provide fault tolerance and redundancy are
documented and justified.

In securing mission-critical systems, the principles of fault tolerance
and redundancy should be used in ways that allow graceful degrada-
tion, provide warnings to users and administrators about unauthorized
access attempts, and even disable a service in case of failure to protect
the network and the data that flows in it.

5.4 In his document Automated Penetration Testing with White-Box Fuzz-
ing, John Neystadt states that fuzzing, or fuzz testing, is an automated
software testing technique that involves providing invalid, unex-
pected, or random data as inputs to a computer program.30

The program is then monitored for exceptions such as crashes or fail-
ing built-in code assertions and examined for potential memory leaks.
Typically, fuzzers are used to test programs that take structured in-
puts. This structure is specified, such as in a file format or protocol,
and distinguishes valid from invalid input. An effective fuzzer gener-
ates semi-valid inputs that are “valid enough” in that they are not di-
rectly rejected by the parser but do create unexpected behaviors
deeper in the program and are “invalid enough” to expose corner cases
that have not been properly dealt with.30

Typically, a fuzzer is considered more effective if it achieves a higher
degree of code coverage. The rationale is that if a fuzzer does not ex-
ercise certain structural elements in the program, then it is also not
able to reveal bugs that are hiding in these elements. Some program
elements are considered more critical than others. For instance, a divi-
sion operator might cause a division by zero error, or a system call
may crash the program. A black-box fuzzer treats the program as a
black box and is unaware of internal program structure. A white-box
fuzzer leverages program analysis to systematically increase code
coverage or to reach certain critical program locations.

Security testing

Fuzz testing

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 31
[Distribution Statement A] Approved for public release and unlimited distribution.

No. Guidance Security Activities

Fuzzing is used mostly as an automated technique to expose vulnera-
bilities in security-critical programs that might be exploited with mali-
cious intent. More generally, fuzzing is used to demonstrate the
presence of bugs rather than their absence. For a software develop-
ment team, having access to the code allows COTS fuzzing tools to
learn about the code structure and then generate meaningful tests to
determine what can introduce security gaps. Following the tests, the
development team should be diligent in looking at the test reports and
closing these gaps.

According to the SANS Institute, a penetration test, also known as a
pen test, “is the authorized, scheduled and systematic process of using
known vulnerabilities in an attempt to perform an intrusion into host,
network or application resources. The penetration test can be con-
ducted on internal (a building access or host security system) or exter-
nal (the company connection to the Internet) resources. It normally
consists of using an automated or manual toolset to test company re-
sources.”31

When “a vulnerability is utilized by an unauthorized individual to ac-
cess company resources, company resources can be compromised.
The objective [of] this kind of test is to address vulnerabilities before
they can be utilized.”

During a penetration test, the core services offered by the company
should be tested. These may include server resources, such as mail,
DNS, firewall systems, password syntax, File Transfer Protocol (FTP)
systems and Web servers, as well as other part of the network infra-
structure. Recent information shows that wireless systems and Public
Branch Exchange (PBX) systems should also be tested.

Throughout the execution of these tests, logging routines and all kinds
of intrusion detection systems should be enabled, in order to test their
effectiveness against eventual attacks. In some occasions, firewalls
and the most external protection layers can be temporarily turned off,
so testers can find other security gaps which live in inner layers and
that can also be exploited if the attacker is able to break through the
first line of defense. Once everything is tested and corrections are ap-
plied, all the defense mechanisms must be re-enabled and the system
can be made available to uses once again.

5.5 When obtaining a software release, it is fundamental to make sure it is
coming from a trustworthy source. Integrity checks ensure that

Verification of
security

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 32
[Distribution Statement A] Approved for public release and unlimited distribution.

No. Guidance Security Activities

software has not been tampered with or corrupted while in transit.
Even if the program is not concerned with external tampering, integ-
rity checks should still be implemented to prevent insider threats.

Ensuring good software precedence depends on a few activities:
• Software producers need to generate a report that guarantees that

the dependencies are authentic.
• The final product must provide ways to verify its integrity and

authenticity, such as coming from a trusted source and having a
checksum or certificate in the compression algorithm that shows
it is the right version, created by the expected team.

If followed, these practices help the operations team ensure that the
expected dependencies are all trusted and no tampering occurred dur-
ing the fabrication and distribution of the software.

Additionally, after the software is obtained and deployed, it is still
possible to corrupt the software. Programs should guarantee that while
software is operational or in physical media used to transport
data/software, only the allowed parties have access to it, and it is not
modified on the way to its destination or while operating. Performance
requirements should be considered and validated to ensure that the in-
tegrity checks do not create an unacceptable risk to mission success.

Implementation

5.6 All the code produced in a software project—especially one that runs
on Agile methodologies—should be thoroughly tested at each devel-
opment iteration. If the development team is also building project de-
pendencies, their tests should be executed in reports and inspected at
every build or release.

When project dependencies come precompiled, testing becomes a lit-
tle more complex. If the dependency source code is available, the de-
velopment team may want to create tests for that code. Otherwise,
there are utilities that can inspect the compiled code and check for
rogue routines, phone home functionality, or any undesired activity
that is not explicit in the dependency documentation.

Dependency
monitoring

5.7 Updates to third-party software components should be centrally man-
aged, tracked, and tested to ensure that new security issues are not in-
troduced.

At every development iteration where dependency upgrades happen,
all the security testing—based on security requirements—should be

Dependency
monitoring

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 33
[Distribution Statement A] Approved for public release and unlimited distribution.

No. Guidance Security Activities

repeated and results should be thoroughly reviewed. All the guidance
described in Item 5.1 also applies here, as it is important to make sure
that no security gaps are being introduced with the new code. The ad-
dition of new code—especially code over which there is no source
visibility—can introduce new issues that may affect unrelated parts of
the application. Always make sure that your test scripts are executed
and have good coverage across dependencies.

The program should invest in keeping track of software dependency
updates,32 especially security-related fixes, to ensure that software is
patched against known vulnerabilities and free from common security
flaws.

5.8 Ensuring environment parity is of utmost importance in a DevSecOps
pipeline. OpenSAMM2 EH 1.A, “Maintain operational environment
specification,” demonstrated the importance of defining the opera-
tional environment and reviewing the specification for accuracy.33 By
making sure every process—from development to security testing—
runs in the same environment, one can reduce variability across pro-
cesses and trust that the results obtained in a development or staging
setting will show the same behavior that should be expected in pro-
duction.

Infrastructure as Code (IaC) is a practice used in DevOps to turn the
environment configuration into code so it can be automated and pro-
vide parity across all the servers used for producing software.34 The
creation and provisioning of a server’s environment should always be
done by IaC scripts or frameworks, in order to effectively reduce the
number of issues throughout the SDLC.

Verification of
process and
procedures

5.9 Security tests should be executed at every new iteration or cycle in the
software development. The creation of software may introduce new
issues, or even make changes that include issues that have already
been fixed previously.

The frequency of the test execution is up to the technical, team, or IPT
leads, but it is recommended that they are run at every single build of
the software. This practice, as already mentioned in Item 5.4, aims to
get the issues fixed as soon as they are discovered and at the minimum
possible cost, before the software hits QA, staging, or production en-
vironments.

Verification of
security
implementation

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 34
[Distribution Statement A] Approved for public release and unlimited distribution.

No. Guidance Security Activities

5.10 Under Agile and/or DevOps methodologies, most, if not all, of the
testing should be executed via scripts. This automation guarantees that
• every single team that has to build the product will be able to run

the tests, which represent knowledge from other parts of the
whole team that may not be present at build time

• if IaC is used to generate the development environment, then
tests are always executed under the same conditions, whether the
team is still in the Development Phase or already in production

Tests scripts should be integrated into the DevOps pipeline, possibly
in the configurations of the continuous integration module, which will
make sure they are executed every time the product is built, be it at
every commit or during a daily build. If that is not possible, scripts
that build the product should make calls to those scripts as a means to
ensure they are executed at every build.

It is important, though, to make a distinction about the different kinds
of testing that happen throughout the SDLC. There are tests generated
by developers, to ensure that the different functional pieces of the
code they wrote perform as expected. These tests are usually gener-
ated as unit tests, as code in the same language in which they devel-
oped the product, and are almost always automated.

Further on in the SDLC, the QA team will analyze the results of the
automated tests generated by developers and will run an additional
battery of tests. The QA tests may include automated tests to verify if
the UI is working properly, tests to evaluate the communication across
different parts of the system, and very frequently, simulations of users
interacting with the system run by a human (i.e., not automated). At
this point, any variability introduced by a QA engineer should not di-
minish the quality of the testing, as the automated tests are already en-
suring a certain level of quality. However, any findings resulting from
manual testing should contain a thorough explanation of what was
done to produce a reported issue.

Security testing

5.11 Establishing a DevSecOps pipeline for embedded software develop-
ment introduces challenges not seen in non-embedded (general-pur-
pose) systems.35 While the software is usually developed in personal
computers, it can only be partially tested in this environment and, at
some point, needs to be transferred to the hardware so it is fully tested
in a more realistic environment.

Security test
planning

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 35
[Distribution Statement A] Approved for public release and unlimited distribution.

No. Guidance Security Activities

This is when the challenges appear. In a DevOps pipeline, there is an
assumption that systems can be tested, with the test results being
available and easy to collect, because both the software being pro-
duced and the test suite all live in the same environment. These as-
sumptions fall through as soon as the software moves into a pipeline
that involves hardware, and two of the main questions that arise are
(1) how do you test your hardware and (2) how do you collect the test
results to make any decisions about moving forward?

Pushing the code into the hardware does not seem to be a problem, but
there are three different ways of testing it:
1. performing a manual hardware test, and collecting and entering

results manually in a tracking system
2. using a hardware “harness” that enables a computer system to

communicate, test, and collect results from the embedded system
3. performing testing via simulation

Option 1 offers the least amount of complications but introduces hu-
man tasks, which add variability and also the possibility of human er-
ror. Option 2 requires a harness as the interface between the main
computer and the embedded system hardware, but as the tested hard-
ware evolves, it may also be necessary to produce newer versions of
the harness to support the new capabilities of the main product. Fi-
nally, Option 3 provides possibly the most flexibility, allowing the
team to simulate the hardware in a simulation platform and test it as
much as possible virtually before it goes into a more advanced stage
of prototyping. The third option allows the team to fix all the simpler
and easier issues at a lower cost, leaving a more polished product with
a much smaller number of issues for a real hardware testing phase,
and thus minimizing the expenditure at this phase.

The decision on what approach to use must be defined up front, and a
cost comparison must be performed to clearly show benefits and pos-
sibilities to the team. Each case for embedded systems is different, but
some questions may guide the team through this process:
• Can you use hardware simulation to test your embedded soft-

ware? If not, why?
• Do you need to test your embedded software on real hardware?

What particularities create that need?
• How do you integrate your automated test results on embedded

software back into the development pipeline?

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 36
[Distribution Statement A] Approved for public release and unlimited distribution.

No. Guidance Security Activities

• If monitoring for reverse-engineering and tampering, what proce-
dures are followed when an anomaly is detected?

5.12 Before deploying software officially to a production environment, it is
usually a good idea to place it in a staging environment, or even in the
real production environment, and allow it to run while that environ-
ment is heavily monitored.

Everything that may detect security gaps should be enabled, from de-
bug messages in the code, generated by the instrumentation mentioned
in Item 4.2, to security tools looking at which network resources are
accessible. A control group should then perform regular tasks in the
newly deployed system, in order to generate messages in log files.
These messages will later be examined by a team of developers and
testing and security experts to make sure that no security gaps are left
open.

As soon as the test is deemed successful and the system is considered
secure, the team may want to reset the monitoring back to an informa-
tional state. This state should still be able to capture any abnormal
states or operations when those happen.

Application
security monitoring

5.13 Any security issues found during the Test Phase should be docu-
mented—as well as possible—in a defect tracking system. This sys-
tem should provide enough transparency so every project participant
(user, tester, stakeholder, etc.) is able to add more details to any rec-
orded issue.

Every part of the system being developed supports one requirement
captured at the beginning of the development. Defects found in each
part of the system should be linked to the requirements related to that
part, and the correction should be considered a fundamental part of the
completion of its development. This is why any defect tracking system
must work in parallel with the requirements system and the system
that controls iterations along the development, so that any defect can
be properly correlated to requirements and sprints.

Security test
planning

5.14 Whenever the development team creates a system release candidate,
the application is placed in a staging environment—with parity to the
production environment—for QA testing.

After receiving approval from the QA team, the application should be
placed in the production environment. At this point, a select group of

Secure
environment
practices

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 37
[Distribution Statement A] Approved for public release and unlimited distribution.

No. Guidance Security Activities

end users must be allowed to use the deployed software temporarily in
production, to see if any production-related behaviors or defects are
caught before the release to regular users.

Users should be encouraged to use the system as they would in an or-
dinary situation. They can eventually be guided to make anomalous
use of the system, to allow more variability, to see if it breaks with
any additional cases. If any issues are found, they should be entered in
a defect tracking system, as indicated in Item 5.11.

5.15 Independent software testing or auditing is an important aspect of
software development, especially in the corporate or government envi-
ronment. The independence of the teams performing the audit should
represent their impartiality toward the results. In this way, they can
ensure that the testing will be executed without special protections to
any of the parties involved in the development and testing, and the
probability of covering or not reporting issues will be greatly reduced.

The challenge that comes with an external, independent team is that it
may not have the same access level to the software development infra-
structure as the rest of the team does. It becomes necessary to enable
these privileges, so the auditing team can access the code base and re-
port its findings through the issue tracking system.

At the end of the auditing/testing process, a meeting should be called
so the teams can share findings and propose fixes to them. This live
interaction tends to be more productive than just a simple report, but
in the impossibility of a meeting or a teleconference, a good report
could also work.

Verification of
security
implementation

6. Delivery

No. Guidance Security Activities

6.1 Software requirements indicate the needs of stakeholders; requirements
will be implemented as features of the final product and therefore
should have strong agreement from all stakeholders before the soft-
ware is produced.

In the initial requirements meetings, one important activity is to record
how much stakeholders agree on requirements. If there are any disa-
greements, feasible solutions that cover most of those requirements

Final security
review

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 38
[Distribution Statement A] Approved for public release and unlimited distribution.

No. Guidance Security Activities

should also be captured to provide more context to developers as they
create functionality that covers such items.

6.2 At delivery, the customer should be made aware of who to contact in
case of security concerns.

There should always be two layers of contacts: an internal contact and
a contact at the developer group. An internal contact belongs to the
customer organization and can take quick action at the organization in-
frastructure level because they are knowledgeable at that level. The
second contact belongs to the group that developed the product, and
they are able to provide more precise action when the issue originated
in the system design or development.

In an ideal scenario, these two layers should be connected in a way that
allows collaboration in the effort to find who owns the issue. If the is-
sue is distributed across organizations, these contacts should be able to
work together to resolve problems. In any case, and as described in
Item 5.11, security issues found after deployment to production should
be entered in an issue tracking system and updated accordingly at
every change in state or contact with any groups who try to solve the
issue.

Transition incident
response planning

6.3 Once a software release is delivered, it may still contain latent issues
that will appear after the development has ended. At this point, an SLA
may be the instrument through which this issue will be resolved. It
should stipulate how long any investigation should last depending on
the severity of the problem, and how long—on average—it should take
for an estimate to be delivered on addressing the issue. This agreement
should have information on how to initiate this process and also who
the point of contact is.

If everything else fails, the FAR 52.233-1 regulates contract disputes
and how they could be resolved.36

Transition incident
response planning

6.4 Rowe and Sikes’ paper “Lessons Learned: Taking It to the Next Level”
best portrays the importance of recording lessons learned throughout
the project as well as using those captured from similar projects:

Capturing lessons learned should be an on-going effort through-
out the life of the project. This mindset should be strongly en-
couraged by the project manager from day one. Whether we are
using lessons learned to prepare for current projects or for

Certify, release,
and archive

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 39
[Distribution Statement A] Approved for public release and unlimited distribution.

No. Guidance Security Activities

identifying project management process improvements, we learn
from project failures as well as project successes. By not learning
from project failures we are doomed to repeat similar situations.

Lessons learned are the documented information that reflects
both the positive and negative experiences of a project. They rep-
resent the organization’s commitment to project management ex-
cellence and the project manager’s opportunity to learn from the
actual experiences of others. However, we are all at different lev-
els of lessons learned utilization. Some of us do not routinely cap-
ture lessons learned because there are no defined lessons learned
process in place. Or we capture lessons learned at the end of a
project and never do anything with them.

The person who will be facilitating the lessons learned session
should prepare in advance. In preparation for the lessons learned
session the facilitator should have the participants complete a
project survey. The project survey will help the participants to be
better prepared to respond during the lessons learned session
and will also give them the opportunity to provide input if they
are unable to attend.

The project survey should be organized by category. The use of
categories will ensure key information is not missed and will
later help to focus the discussion. Standard categories for each
project should be defined and additional categories specific to a
project can be added. Suggested categories include project man-
agement, resources, technical, communication, business pro-
cesses, requirements, design and build, testing, implementation
and external areas.

A lessons-learned session focuses on identifying project success
and project failures, and includes recommendations to improve
future performance on projects. To obtain optimum results, the
lessons learned sessions should be facilitated by someone other
than the project manager. If the project manager chooses to fa-
cilitate the session, the project survey results should be summa-
rized by someone other than the project manager and shared with
the participants during the session. The facilitator should always
ask the three key questions.

• What went right?
• What went wrong?
• What needs to be improved?

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 40
[Distribution Statement A] Approved for public release and unlimited distribution.

No. Guidance Security Activities

Step two of the lessons learned process is to document and share
findings. After lessons learned are captured, they should be re-
ported to project stakeholders. Step three of the lessons learned
process is to analyze and organize the lessons learned for appli-
cation of results. Step four of the lessons learned process is to
store in a repository. Finally, step five of the lessons learned pro-
cess is to retrieve for use on current projects.

The final important step to ensure a successful lessons learned
program is a commitment from senior level management. That
commitment is made visible through regular repository metrics
reviews, actions taken to implement best practices, and support
to improve negative or re-occurring project trends.37

6.5 One very important aspect of the delivery is training. Anybody who
might interact with the system should receive proper training and un-
derstand his or her role in using it. Training should be prepared by a
team who can translate the features of the system into a language that
laypeople can understand, without hiding any details that exist only in
the minds of the people who designed and developed the system. This
is a hard but feasible task that is underestimated most of the time by
software development teams.

Ideally, the training materials should be developed with the require-
ments in mind. Materials should also contain details obtained from de-
velopers and testing in the final phases, in order to add information
about how visual components and parts of the user interface work.
These training materials can be used in the creation of operation manu-
als, which is described in Item 6.6.

Training delivery should occur before users have a chance to actually
use the system, and it should always start from the most basic interac-
tions and then move into more sophisticated features that may not be
used every day.

Transition incident
response planning

6.6 In parallel to developing the training, as described in Item 6.5, opera-
tion and instruction manuals should be produced and faithfully de-
scribe the system functionality for future reference.

All the material delivered as manuals must be strongly synchronized
with the delivered training. Any discrepancies might become sources
of problems in the system operation and promote bad habits that result
in incorrect practices or bad data. Before delivery, manuals should be

Transition incident
response planning

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 41
[Distribution Statement A] Approved for public release and unlimited distribution.

No. Guidance Security Activities

reviewed by all teams involved in the system development, and any is-
sues should be resolved. At every iteration, this process should be re-
peated for better accuracy of the materials delivered.

The team must consider that manuals should cover most of the ques-
tions that operators may have, to reduce calls for support. The remain-
ing questions should be covered by an SLA or any other form of
support agreement established to help users overcome difficulties in
using the system.

6.7 As indicated in Item 4.1, it is essential to establish desired metrics
about the operation of the system before and during its development.
During those phases, the knowledge about how to obtain them is fresh
in the developers minds, and adding instrumentation is a simple and
cheap task.

Metrics will be a fundamental part of the continuous monitoring,
which starts with the deployment of the system to production. The data
generated can be either placed in log files or be part of a larger moni-
toring solution, where the output is sent to a database that provides
data to visualizations in a dashboard. It all depends on how much the
organization wants to develop in that area, but at a minimum, metrics
can be captured at a low cost for further analysis.

Through continuous monitoring, organizations may be able to analyze
the number of system users at any given time and evaluate the load
they generate. They may also use the metrics to predict hardware up-
dates to the infrastructure, and even discover signs of attacks and/or
misuse of the system (e.g., for data exfiltration).

Application
security
monitoring

6.8 While the system is deployed and fielded, an issue tracking system
should be maintained to capture incidents that arise. Assigned respon-
sibility for maintaining such a system should be agreed upon by both
the developing organization and the users/operators.

If this is the responsibility of the development team, they may be able
to use their original issue tracking system, as long as there is enough
transparency for the operations team to access it to either report or
query about existing issues. Otherwise, the operations team will be re-
sponsible for standing that system up and having a team that coordi-
nates fixes with whoever is responsible (e.g., IT, for generic network

Application
security
monitoring

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 42
[Distribution Statement A] Approved for public release and unlimited distribution.

No. Guidance Security Activities

fixes, a development team for any changes that get down to the code
level).

An SLA helps define the responsibilities assigned to each team and
may be the right tool to clarify any incidents that appear post-delivery,
along with establishing response time and providing an idea of average
cost per incident.

6.9 At the end of its life, the process to decommission a system should im-
plement the measures prescribed by the RMF, in order to ensure that
1. no classified, sensitive, or privacy information is exposed
2. artifacts and supporting documentation are disposed of according

to their sensitivity or classification, in accordance with current
DoD guidance on disposal of material and documents

3. data or objects in the decommissioned system are reviewed and
appropriate actions taken to minimize any impact to the enterprise

The USAF CIO Office has created the “Information Systems & Plat-
form IT (PIT) Systems Decommissioning Guide,” which provides rele-
vant guidance on how to properly decommission systems according to
the DoD rules.38

Secure operational
enablement

APPENDIX: Relevant Frameworks and Policies

Relevant Industry Frameworks

• SEI CERT Top 10 Secure Coding Practices
• SEI CERT Secure DevOps Practices
• Building Security In Maturity Model (BSIMM)
• OWASP Software Assurance Maturity Model (OpenSAMM)
• NIST Publication 800-160 (Jan 3rd 2018), Systems Security Engineering
• NIST 800-37, Applying RMF to Federal IS
• NIST 800-53, Security & Privacy Controls for IS & Organizations
• ISO/IEC/IEEE 15288-2015, Systems and software engineering – System life cycle processes

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 43
[Distribution Statement A] Approved for public release and unlimited distribution.

Relevant DoD Guidance and Policies

• USAF Systems Security Engineering (SSE) Acquisition Language Guidebook (24 March 2017)
• DoDI 5000.02, Operations of the Defense Acquisition System (23 January 2020)
• DoDI 5002. 02, Enclosure 14, Cybersecurity in the Defense Acquisition System (10 August

2017)
• Mil-STD 498, Software Development and Documentation (5 December 1994)
• DoDI 8510.01, Risk Management Framework (RMF) for DoD Information Technology (28 July

2017)
• DoD Defense Innovation Board, Ten Commandments of Software (Draft 0.14, 15 April 2018)
• DISA, Application Security and Development STIG (V4R6, 27 April 2018)
• Kessel Run Memo, “Implementation of Ongoing Authorization for Agile Software Develop-

ment” (18 April 2018)

References

1 McGraw, Gary; Migues, Sammy; & West, Jacob. “BSIMM 8.” Creative Commons. October 2017.
2 Chandra, Pravir. “Open Software Assurance Maturity Model.” Creative Commons. April 2017.
3 Department of Defense (DoD). Operation of the Defense Acquisition System. DoD Instruction
5000.02. DoD. January 2020.
4 National Institute of Standards and Technology. Risk Management Framework for Information Sys-
tems and Organizations: A System Life Cycle Approach for Security and Privacy. SP 800-37 Rev. 2.
December 2018.
5 Alberts, Christopher; Dorofee, Audrey; Higuera, Ron; Murphy, Richard; Walker, Julie; & Williams,
Ray. Continuous Risk Management Guidebook. Software Engineering Institute. January 1996.
6 National Defense Authorization Act for Fiscal Year 2013. Improvements in assurance of computer
software procured by the Department of Defense. P.L. 112-239 § 933. January 2013.
7 The MITRE Corporation. Common Vulnerability Enumeration (CVE). 1999-2021. https://cve.mi-
tre.org
8 The MITRE Corporation. Common Weakness Enumeration (CWE). 2006-2021. https://cwe.mi-
tre.org

9 The MITRE Corporation. Common Attack Pattern Enumeration and Classification. 2007-2021.
https://capec.mitre.org
10 Software Engineering Institute, CERT Division. “SEI CERT Secure Coding Standards.” 2016.
https://wiki.sei.cmu.edu/confluence/display/seccode/SEI+CERT+Coding+Standards
11 Executive Order 13526. Classified National Security Information. December 2009.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 44
[Distribution Statement A] Approved for public release and unlimited distribution.

12 Office of the Under Secretary of Defense. Safeguarding Covered Defense Information and Cyber
Incident Reporting. Defense Federal Acquisition Regulation Supplement 252.204-7012. December
2019.
13 National Institute of Standards and Technology. Protecting Controlled Unclassified Information in
Nonfederal Systems and Organizations. NIST SP 800-171, Rev. 2. February 2020.
14 Rights in Data and Copyrights. 48 C.F.R Subpart 27.4.
15 US Air Force Systems Security Engineering (SSE) Acquisition Language Guidebook, Version 1.1.
March 2017.
16 DISA. Application Security and Development Security Technical Implementation Guide (STIG),
Version 4, Release 7. STIG ID: APSC-DV-003230. July 2018.
17 Mead, Nancy; Shull, Forrest; Vemuru, Krishnamurthy; & Villadsen, Ole. “A Hybrid Threat Model-
ing Method.” CMU/SEI-2018-TN-002. Software Engineering Institute, Carnegie Mellon University.
2018. http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=516617
18 Software Engineering Institute. “Software Architecture.” September 2018.
https://www.sei.cmu.edu/research-capabilities/all-work/display.cfm?cus-
tomel_datapageid_4050=21328
19 Department of Defense. Department of Defense Handbook: Product Support Analysis. MIL-HDBK-
502A. DoD. March 2013.
20 Department of Defense. Cross Domain (CD) Policy. DoDI 8540.01. DoD. August 2017.
21 Cohen, Jason et al. “Five Types of Review.” Best Kept Secrets of Peer Code Review. Somerville:
Smart Bear, 2006. 21-36.
22 DuPaul, Neil. “Static Testing vs. Dynamic Testing.” CA Technologies, Veracode. July 2017.
https://www.veracode.com/blog/2013/12/static-testing-vs-dynamic-testing
23 Penov, Franci & Mortensen, Peter. “What Is Code Coverage and How Do YOU Measure It?”
StackOverflow. October 2008. https://stackoverflow.com/a/195027
24 Military Specification MIL-STD-498. Software Development and Documentation. December 1994.
25 Office of the Secretary of Defense. A New Approach for Delivering Information Technology Capa-
bilities in the Department of Defense, Report to Congress, November 2010, Pursuant to Section 804 of
the National Defense Authorization Act for Fiscal Year 2010. United States Department of Defense,
2010. http://dcmo.defense.gov/documents/OSD%2013744-10%20 -%20804%20Re-
port%20to%20Congress%20.pdf
26 Northern, Carlton et al. Handbook for Implementing Agile in Department of Defense Information
Technology Acquisition. No. MTR-100489. MITRE. 2010.
27 Yasar, Hasan. “Deploy Secure Application with DevOps: DevSecOps.” Sonatype. April 2018.
https://blog.sonatype.com/deploysecureapplication
28 National Institute of Standards and Technology. Security and Privacy Controls for Federal Infor-
mation Systems and Organizations. SP 800-53 Rev. 4. April 2013.
29 Dubrova, Elena. Fault-Tolerant Design. Springer. 2013.

https://blog.sonatype.com/deploysecureapplication

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 45
[Distribution Statement A] Approved for public release and unlimited distribution.

30 Neystadt, John. “Automated Penetration Testing with White-Box Fuzzing”. Microsoft. February
2008.
31 SANS Institute. “Penetration Testing: Is It Right for You?” 2002.
32 Chandra, Pravir. “Open Software Assurance Maturity Model.” Environment Hardening (EH) 1.B.
Creative Commons. April 2017.
33 OWASP. Software Assurance Maturity Model: A Guide to Building Security into Software Develop-
ment. Version 1.0. March 2009. https://opensamm.org/downloads/SAMM-1.0.pdf
34 Morris, Kief. “Infrastructure as Code: Managing Servers in the Cloud.” O’Reilly. 2016.
35 Vai, Mankuan M. et al. Secure Embedded Systems. MIT Lincoln Laboratory Lexington United
States. 2016.
36 Federal Acquisition Regulation 52.233-1: Disputes. May 2014.
37 Rowe, S. F. & Sikes, S. “Lessons Learned: Taking It to the Next Level.” Presented at PMI® Global
Congress 2006. North America, Seattle, WA. Newtown Square, PA: Project Management Institute.
2006.
38 US Air Force SAF/CIO A6. “Information Systems and PIT Systems Decommissioning Guide.” No-
vember 2018.
https://www.dau.mil/cop/bes/DAU%20Sponsored%20Documents/Information%20Systems%20and%
20PIT%20Systems%20Decommissioning%20Guide.docx

https://www.dau.mil/cop/bes/DAU%20Sponsored%20Documents/Information%20Systems%20and%20PIT%20Systems%20Decommissioning%20Guide.docx
https://www.dau.mil/cop/bes/DAU%20Sponsored%20Documents/Information%20Systems%20and%20PIT%20Systems%20Decommissioning%20Guide.docx
https://www.dau.mil/cop/bes/DAU%20Sponsored%20Documents/Information%20Systems%20and%20PIT%20Systems%20Decommissioning%20Guide.docx

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[Distribution Statement A] Approved for public release and unlimited distribution.

Contact Us
Software Engineering Institute
4500 Fifth Avenue, Pittsburgh, PA 15213-2612

Phone: 412/268.5800 | 888.201.4479
Web: www.sei.cmu.edu
Email: info@sei.cmu.edu

Copyright 2021 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No.
FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a feder-
ally fund-ed research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be con-
strued as an official Government position, policy, or decision, unless designated by other documentation.

References herein to any specific commercial product, process, or service by trade name, trade mark, manufac-
turer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by Car-
negie Mellon University or its Software Engineering Institute.

This report was prepared for the SEI Administrative Agent AFLCMC/AZS 5 Eglin Street Hanscom AFB, MA 01731-
2100

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE
MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT
NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE
ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR
COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and distribution.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material for internal
use is granted, provided the copyright and “No Warranty” statements are included with all reproductions and deriv-
ative works.

External use:* This material may be reproduced in its entirety, without modification, and freely distributed in written
or electronic form without requesting formal permission. Permission is required for any other external and/or com-
mercial use. Requests for permission should be directed to the Software Engineering Institute at permis-
sion@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

Carnegie Mellon® and CERT® are registered in the U.S. Patent and Trademark Office by Carnegie Mellon Univer-
sity.

DM21-0420

http://www.sei.cmu.edu/

	Software Assurance Guidance and Evaluation (SAGE) Tool
	Overview
	Introduction
	How to Apply the SAGE Tool
	Secure Development Phases
	Assessment Value and Takeaways

	Section 1: Software Assurance Assessment Questionnaire
	1. Governance
	2. Requirements
	3. Architecture and Design
	4. Development
	5. Test
	6. Delivery

	Section 2: Questionnaire Guidance
	1. Governance
	2. Requirements
	3. Architecture and Design
	4. Development
	5. Test
	6. Delivery

	APPENDIX: Relevant Frameworks and Policies
	Relevant Industry Frameworks
	Relevant DoD Guidance and Policies

	References

