
AUTOMATED AIRCRAFT VISUAL
INSPECTION WITH ARTIFICIAL DATA

GENERATION ENABLED DEEP LEARNING

THESIS

Nathan J Gaul, B.S.E.E., Captain, USAF

AFIT-ENG-MS-20-M-028

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.

AFIT-ENG-MS-20-M-028

AUTOMATED AIRCRAFT VISUAL INSPECTION WITH ARTIFICIAL DATA

GENERATION ENABLED DEEP LEARNING

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Electrical Engineering

Nathan J Gaul, B.S.E.E., B.S.E.E.

Captain, USAF

March 24, 2022

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-ENG-MS-20-M-028

AUTOMATED AIRCRAFT VISUAL INSPECTION WITH ARTIFICIAL DATA

GENERATION ENABLED DEEP LEARNING

THESIS

Nathan J Gaul, B.S.E.E., B.S.E.E.
Captain, USAF

Committee Membership:

Robert C Leishman, Ph.D
Chair

Scott L Nykl, Ph.D
Member

Joseph A Curro, Ph.D
Member

AFIT-ENG-MS-20-M-028

Abstract

Aircraft visual inspection, which is essential to daily maintenance of an aircraft,

is expensive and time-consuming to perform. Augmenting trained maintenance tech-

nicians with automated unmanned aerial vehicles (UAVs) to collect and analyze im-

ages for aircraft inspection is an active research topic and a potential application

of convolutional neural networks (CNNs). Training datasets for niche research top-

ics such as aircraft visual inspection are small and challenging to produce, and the

manual process of labeling these datasets often produces subjective annotations. Re-

cently, researchers have produced several successful applications of artificially gener-

ated datasets with domain randomization for training CNNs for real-world computer

vision problems. The research outlined herein builds upon this idea to create an ar-

tificial data generation pipeline inside Blender and generate an artificial dataset to

train an instance-segmentation CNN model for car damage detection. This research

then evaluates the real-world performance of several models, each pre-trained on the

COCO dataset and fine-tuned on custom generated artificial dataset. We found that

fine-tuning a model on the artificial dataset with domain randomization provided

poor segmentation performance on the real-world car damage dataset. Despite the

poor real-world performance of our model previous research suggest refinement of the

artificial data generation process should provide better real-world performance.

iv

Table of Contents

Page

Abstract . iv

List of Figures . vii

List of Tables . x

I. Introduction . 1

1.1 Overview . 1
1.2 Problem Statement . 1

1.2.1 Aircraft Visual Inspection . 2
1.3 Research Objectives . 3
1.4 Methodology. 3
1.5 Research Contributions . 3
1.6 Thesis Organization . 4

II. Background and Literature Review . 5

2.1 Aircraft Surface Defects . 5
2.1.1 Missing or Damaged Material . 5
2.1.2 Dented or Disbonded Material . 6
2.1.3 Defect Progression . 6

2.2 Detecting Objects within Images . 8
2.2.1 Instance Segmentation Evaluation Metrics . 9

2.3 Deep Neural Networks . 16
2.3.1 Deep Learning Image Segmentation Architectures 20

2.4 Previous Works on Artificial Data Generation for Image
Segmentation . 25

2.5 Previous Works on Automated Visual Inspection in
Aircraft Maintenance . 27

III. Scholarly Article: Artificial Dataset Generation for
Automated Aircraft Visual Inspection . 29

3.1 Introduction . 29
3.2 Related Work . 31
3.3 Proposed Research . 32
3.4 Artificial Data Generation Pipeline . 34

3.4.1 Blender . 34
3.4.2 Label Post Processing . 39

3.5 Dataset Examples . 40
3.6 Future Work . 41

v

Page

IV. Scholarly Article: Artificial Dataset Generation and its
Effect on the Performance of Car Damage Instance
Segmentation Models . 42

4.1 Introduction . 43
4.2 Background . 44

4.2.1 Artificial Dataset Generation . 44
4.2.2 Instance Segmentation . 45
4.2.3 Convolutional Neural Networks . 52

4.3 CNN Architecture for Instance Segmentation . 54
4.3.1 Mask R-CNN’s Loss Function . 56
4.3.2 Transfer Learning with Mask R-CNN . 56

4.4 Related Work . 58
4.4.1 Automated Visual Inspection . 59
4.4.2 Synthetic Data for Computer Vision . 59
4.4.3 Domain Randomization . 60

4.5 System Implementation . 60
4.5.1 Data Generation Pipeline . 60

4.6 Experiment . 65
4.6.1 Datasets . 65
4.6.2 Models . 66
4.6.3 Training . 68
4.6.4 Training Data Augmentations . 69
4.6.5 Results . 69
4.6.6 Prediction Examples . 73

4.7 Conclusion . 77
4.8 Future Work . 78

V. Conclusions . 79

5.1 Summary . 79
5.2 Future Work . 80

Bibliography . 81
Acronyms . 94

vi

List of Figures

Figure Page

1. Markings for Missing Material . 6

2. Markings for Dented and Disbonded Material . 7

3. Markings for Progressive Damage. The black dashed
line represents the previously documented defect, while
yellow shows the recently progressed defect area. 7

4. 8

5. Visual representation of true positives, false positives,
true negatives, and false negatives . 12

6. Visual representation of precision and recall . 13

7. Visual representation of Intersection over Union (IoU) 14

8. Visual representation of Intersection over Union A
visual example of threshold IoU and how it factors into
the truthfulness of a prediction . 15

9. An example PR curve which is a piecewise function
connecting precision-recall pairs in order of rank . 15

10. A high level visual representation of a Deep Neural
Network. The nodes of the input, hidden, and output
layers are represented. Sources from [1] . 16

11. High level representation of a CNN cat or dog classifier 18

12. An illustration of a 3x3 convolution of a 5x5 input image 19

13. The Mask R-CNN instance segmentation framework [2] 21

14. System diagram of Detectron2’s GeneralizedRCNN
architecture [3]. Note: the system diagram does not
include the ROI mask head. 21

15. Visual description of transfer learning for fine-tuning a
CNN model. Modified from [4] . 23

16. A realistic render of a 3D aircraft model . 32

vii

Figure Page

17. A render created with the Eevee Rendering Engine. 37

18. A render created with the Cycles Rendering Engine. 38

19. A render created with the Workbench Rendering Engine. 38

20. Examples of data, multiclass labels, and binary labels
generated by the Pipeline that would be used as inputs
to a CNN for training . 41

21. Visual example of the four different object-detection
tasks [5] . 45

22. Visual representation of true positives, false positives,
true negatives, and false negatives. Modified from [6] 47

23. Visual representation of precision and recall . 48

24. Visual representation of Intersection over Union (IoU) 49

25. Visual representation of Intersection over Union A
visual example of threshold IoU and how it factors into
the truthfulness of a prediction . 50

26. An example PR curve which is a piecewise function
connecting precision-recall pairs in order of rank . 51

27. High level representation of a CNN cat or dog classifier 52

28. An illustration of a 3x3 convolution of a 5x5 input image 53

29. A high-level system view of Mask R-CNN instance
segmentation framework [2] . 54

30. System diagram of Detectron2’s GeneralizedRCNN
architecture [3]. Note: the system diagram does not
include the ROI mask head. 55

31. Visual description of transfer learning for fine-tuning a
CNN model. Modified from [4] . 57

32. Blender models and scene initialization steps required
before data generation . 61

33. Example of a ‘Data Object’ (left) and the ‘Annotation
Object’ (right) within Blender . 61

viii

Figure Page

34. Data generation configuration graphical user interface
inside Blender . 63

35. Synthetic data generation with domain randomization:
randomization of HDRI environment, 3D model, model
texture, distractors, lighting, damage generation . 65

36. Several examples from the “Coco Car Damage
Detection Dataset” . 67

37. Several examples from the artificially generated car
damage dataset . 68

38. Mask R-CNN model’s total loss throughout training on
the artificial car damage dataset . 70

39. Mask R-CNN model’s total loss during the last 2000
iterations training on the artificial car damage dataset 71

40. Each model’s AP[0.5:0.05:0.95] segmentation
performance on the artificial validation dataset . 71

41. The maximum of each model’s AP[0.5:0.05:0.95]
segmentation performance on the artificial validation
dataset . 72

42. Each model’s AP[0.5:0.05:0.95] segmentation
performance on the real-world car damage validation
dataset . 72

43. The maximum of each model’s AP[0.5:0.05:0.95]
segmentation performance on the real-world car damage
validation dataset . 73

44. Examples of ground truth references (left column) and
final Stage 1 model predictions (right column) of the
artificial validation data . 74

45. Examples of ground truth references (left column) and
iteration 1500 Stage 3 model predictions (right column)
of the real-world car damage data . 76

ix

List of Tables

Table Page

1. Blender Python Submodules . 35

2. Data Generation Blender Add-on Parameters . 64

x

AUTOMATED AIRCRAFT VISUAL INSPECTION WITH ARTIFICIAL DATA

GENERATION ENABLED DEEP LEARNING

I. Introduction

1.1 Overview

This thesis documents work on generating an artificial machine learning dataset

for training instance-segmentation models for the application of automated aircraft

inspection. The lack of real-world public aircraft defect segmentation datasets and the

large amount of data that convolutional neural networks require to perform instance

segmentation fuels the need for a way to generate artificial data for such a niche

application.

1.2 Problem Statement

The Air Force’s requirements on the continued inspection of aircraft exteriors

constitute a significant and continuous contribution to the maintenance costs of those

aircraft. Automating the visual inspection process could help reduce the cost and time

required to perform these inspections. In addition, incorporating an automated quad-

rotor to help perform visual inspections would allow maintenance personnel to avoid

the difficult and dangerous positions required to inspect some areas of an aircraft. The

research community has shown recent interest in automating visual aircraft inspection

with the development and increasing accuracy of machine learning-based computer

vision algorithms. Although, for niche problems such as visual aircraft inspection,

datasets are difficult to create and are not shared publicly like other machine learning

1

datasets. This research proposes to address this lack of visual aircraft inspection

training data by generating artificial data and annotations through an automated

process.

Although the focus of the overall project associated with this research is on aircraft

inspection, a suitable real-world aircraft damage dataset was not completed in time

for the completion of this research, so we use a publicly available car-damage dataset

as a stand-in.

1.2.1 Aircraft Visual Inspection

According to the Federal Aviation Administration (FAA) [7], the visual inspection

of an aircraft is “the process of using the eye, alone or in conjunction with various aids,

as the sensing mechanism from which judgments may be made about the condition

of a unit...” Visual inspections are an essential aspect of aircraft maintenance and

makeup over 80% of the inspections performed on large transport category aircraft [7].

During a visual inspection, maintenance personnel assess the overall condition of the

aircraft, provide early detection of defects, assess errors in the manufacturing process,

and obtain further information on parts showing evidence of damage. The Air Force

is particularly interested in stealth aircraft due to the integrity of stealth materials

being essential to their function. Inspections of these aircraft require personnel to

examine the top, bottom, and sides of an aircraft quite closely. While the sides and

underside of a stealth aircraft is relatively easy to investigate, inspecting the top

is a different story. Studying the top of an aircraft at a close-enough range, while

not touching or walking on the aircraft, which might cause further damage, is a

challenging maintenance task. Automating the visual inspection with a quad-rotor

would reduce the strain placed on maintenance personnel in such difficult situations.

2

1.3 Research Objectives

This research aims to (1) develop a synthetic aircraft defect dataset generation

pipeline for use in training image segmentation models and (2) evaluate a computer

vision model trained on artificial data for use in real-world aircraft inspection. The

data generation pipeline will employ the open-source 3D creation suite Blender and

leverage the Python scripting interface for automation. To evaluate the artificial

training data generated by the pipeline, state-of-the-art convolutional neural network

(CNN) models will train on different combinations of artificial and real-world data.

Finally, we will compare the performance of each model on a set of real-world test

data.

1.4 Methodology

This project will use the Blender 3D Creation Suite to generate realistic-looking

data. Blender is a mature and capable open-source software tool that can produce

realistic rendered images. Blender comes with an extensive and powerful Python

scripting interface that allows for automating the data generation process. Once

a large dataset of artificial data is generated and the collection of a small set of

real-world data is achieved, evaluating the artificial dataset’s effectiveness will be

performed by comparing several models trained on different combinations of each

dataset. Comparisons of these models will be performed on a subset of the real-world

data, set apart in advance for testing.

1.5 Research Contributions

The following are contributions made in this thesis:

1. A customizable artificial dataset generation pipeline with domain randomiza-

3

tion, packaged as a Blender add-on.

2. An artificial car damage instance segmentation dataset.

3. Evaluation of our artificial car damage dataset for pre-training a sate-of-the-art

instance segmentation model against a real-world dataset.

1.6 Thesis Organization

This document is organized in the scholarly article thesis format. Chapter II pro-

vides detailed explanations of relevant information, including aircraft surface defects,

object detection within images, deep neural networks, previous works on artificial

data generation, and previous works on automated aircraft inspection. This informa-

tion is condensed into abbreviated versions in the two scientific articles included in

this thesis to support independent publication. Chapter III is the first scholarly ar-

ticle detailing the artificial data generation pipeline and preliminary aircraft dataset

created for this research. Chapter IV is the second scholarly article that details the

generation and evaluation of an artificial car damage dataset for pre-training a real-

world instance segmentation model. Finally, chapter V details our conclusions drawn

from the results.

4

II. Background and Literature Review

This chapter presents the fundamental background information and previous liter-

ature used to support the development of the research contributions made within this

thesis. Section 2.1 details the aircraft surface defects and their proper documentation

markings. Section 2.2 summarizes different tasks associated computer vision object

detection and the metrics used to evaluate their performance. Section 2.3 deatails

the basics and background of convolutional neural networks and their use in image

segmentation. Section 2.4 details previous works that use artificial data generation

for training image segmentation models. Section 2.5 details previous works exploring

the automation of aircraft visual inspections.

2.1 Aircraft Surface Defects

Information on low observable aircraft surface defects in the public domain is

limited or nonexistent; therefore, we will focus on defects observed on aircraft in

general.

Properly marking aircraft defects provides a clear indication of the existence of

previously observed damage and the progression of that damage over time. Any

damage not marked can be considered newly formed and should be marked accord-

ingly. The marking guides detailed below provide a standard way to mark different

types of defects and inform the output of the segmentation algorithm developed in

Chapter III.

2.1.1 Missing or Damaged Material

Figure 1 shows two examples of damage where the material is missing in the first

column, proper markings in the second column, and incorrect markings in the third

5

Figure 1: Markings for Missing Material

column. Markings for this sort of damage should be a dashed line at the boundary

of the defect and should not include any other numbering or labels.

2.1.2 Dented or Disbonded Material

Figure 2, in the same manner as Figure 1, shows the correct and incorrect ways

to mark a dent or disbonded area on an aircraft. Markings should be dashed line at

the boundary of the dent or affected area.

2.1.3 Defect Progression

Figure 3 exhibits the correct marking technique to indicate defect progression for

either type of defect. The dashed marking is expanded to the newly affected area

6

Figure 2: Markings for Dented and Disbonded Material

Figure 3: Markings for Progressive Damage. The black dashed line represents the
previously documented defect, while yellow shows the recently progressed defect area.

of a previously existing defect for any advancement. In Figure 3, the black dashed

line represents the previously documented defect, while yellow shows the recently

progressed defect area.

7

2.2 Detecting Objects within Images

There are four different objectives for which an algorithm might detect objects

within an image in the computer vision field. In order of increasing fidelity, these

objectives are image recognition, object detection, semantic segmentation, and in-

stance segmentation. Image recognition is the binary determination of whether an

image contains a class of objects or not. Depending on the problem, image recogni-

tion may also determine if an image contains one or more of a specified set of classes

or not. Object detection is the location and identification, indicated by a bounding

box, of individual objects of interest within an image. Semantic segmentation further

specifies the pixels identified as a particular class within an image. Finally, instance

segmentation distinguishes between instances of an object class when segmenting the

pixels of an image. As the fidelity of each objective increases, so does the difficulty

of performing that task. This research will take on the task of instance segmentation

of aircraft damage.

Figure 4: Visual representation of image recognition, object detection, semantic seg-
mentation, and instance segmentation. From [5]

8

2.2.1 Instance Segmentation Evaluation Metrics

Described below are the metrics commonly used to evaluate the performance of

instance segmentation algorithms.

A true positive (TP) is when a model correctly predicts a pixel or region as

belonging to a class. A false positive (FP) is when a model incorrectly predicts a

pixel or region as belonging to a class and it does not belong. A true negative (TN) is

when a model correctly predicts a pixel or region as not belonging to a class. A false

negative (FN) is when a model incorrectly predicts a pixel or region as not belonging

to a class and it does belong.

Recall, as calculated in

Recall =
TP

TP + FN
, (1)

is the number of correctly predicted positives divided by the number of ground truths.

Precision, as calculated in

Precision =
TP

TP + FP
, (2)

is the number of correctly predicted positives divided by the total number of predic-

tions. Recall can be seen as a measure of the quantity of TPs, while precision can be

seen as a measure of the TPs. Higher recall means the predictions contain most of the

relevant results, while higher precision means the predictions contain more relevant

results than irrelevant ones.

Intersection over union (IoU), as calculated in

IoU =
target ∩ prediction

target ∪ prediction
, (3)

is a metric calculated for each prediction and its associated ground truth and is used

9

to determine whether a prediction is correct or not, i.e. its truthfulness. IoU, equation

(3), is the intersection between the prediction and the ground truth (target) divided

by their union (see Figure 7). For a prediction to be considered a TP, its IoU with

its associated ground truth has to be equal to or above some threshold; otherwise, it

is considered a FP (see Figure 8).

Another factor when determining the truthfulness of a prediction is the confidence

level, a value from 0.0 to 1.0, the model reports for every prediction. By varying what

we consider to be the cutoff confidence level, we can change whether a prediction is

deemed a TP or FP.

The average precision (AP), the metric used to evaluate the models in this work,

is an attempt by researchers to summarize the overall performance of a model and

gives a single value that can be used to compare the performance of various models.

To calculate the AP metric of a set of predictions over a dataset, we must create

a precision-recall (PR) curve. For a single class of predictions, we calculate the recall

and precision values given a threshold IoU score and a chosen confidence level; this

produces a single PR pair. To create the PR curve, PR pairs are calculated across the

range of possible confidence levels, i.e., 0.0 to 1.0, which determine the value pair’s

rank. The PR curve is created by plotting these PR value pairs by descending rank,

with precision on the y-axis and recall on the x-axis, and connecting line segments

between subsequent points to create a piecewise function, p(r), (see Figure 9). The

AP of this PR curve, equation (4), is then calculated by averaging the precision values

at 101 equally spaced recall values along the piecewise curve, as calculated in

AP =
1

101

∑
r∈{0.00,0.01,...,0.99,1.00}

p(r). (4)

For multiclass datasets, an AP is calculated for each class, and the mean is found,

called the mean average precision (mAP). Following the COCO researcher’s example,

10

most research assumes AP to mean mAP. AP and mAP are equivalent for our research

as our evaluation dataset has a single class of objects.

Each AP or mAP is calculated given some threshold IoU which may introduce

some bias in the evaluation metric related to the correctness of a prediction. We take

the average AP across a range of IoU threshold values to address this bias. Following

the COCO [8] evaluation metric, we average the AP at IoU thresholds from 0.5 to

0.95 at an interval of 0.05, represented in this research’s results as AP[0.5:0.05:0.95].

11

Figure 5: Visual representation of true positives, false positives, true negatives, and
false negatives. Modified from [6]

12

Figure 6: Visual representation of precision and recall. Modified from [6]

13

Figure 7: Visual representation of Intersection over Union (IoU)

14

Figure 8: Visual representation of Intersection over Union A visual example of thresh-
old IoU and how it factors into the truthfulness of a prediction

Figure 9: An example PR curve which is a piecewise function connecting precision-
recall pairs in order of rank

15

2.3 Deep Neural Networks

Deep Learning is a subset of machine learning and is based on artificial neural

networks (ANNs), which automatically learn representations for feature extraction

through optimizing numerical weights utilizing large amounts of data. The structure

of ANNs is inspired by the connections between neurons in biological systems [9]. An

ANN is composed of artificial neurons connected in a network, similar to synapses

in a biological brain. The artificial neurons in an ANN, otherwise known as nodes,

are organized into layers where each layer’s nodes are connected to the nodes in the

adjacent layers. Like biological neural networks, different configurations of nodes and

layers are better suited to specific tasks, like understanding vision or language. The

Figure 10: A high level visual representation of a Deep Neural Network. The nodes
of the input, hidden, and output layers are represented. Sources from [1]

16

“deep” in deep learning refers to an ANN with multiple hidden layers connecting the

input and output layers (see Figure 10). The depth of a network allows it to model

complex non-linear relationships such as many computer vision problems including

object detection and segmentation within images [10].

Convolutional neural networks (CNNs) are a class of deep learning neural networks

that excel at specific problems in computer vision, and in this case [10, 11, 12, 13,

14]. Convolution, the critical process of the CNN, is particularly equivariant to the

translation of features within an input datum, meaning a translation of a feature in

the input of a CNN results in the same translation at the CNN’s output. The CNN’s

ability to recognize features independent of location makes it particularly effective at

processing visual data. For example, a CNN cat or dog classifier can identify whether

a cat or dog is within an image independent of the animal’s location within that

image [15].

Within the context of CNNs, convolution is the dot product between two matrices.

The first matrix is a set of learnable parameters called a kernel. The other is a

restricted portion of the input, called the receptive field. The repeated application of

convolution with a single kernel over an entire input creates an activation map that

represents the kernel’s response at every position within the input [15].

This repeated use of a kernel for multiple convolutions across the image takes

advantage of parameter sharing, leading to the CNN’s property of equivariance of

translation.

In general, a CNN is composed of layers that perform one of three operations:

convolution, non-linear function, or pooling. After a convolutional layer, the resulting

activation map is run through a non-linear function, such as rectified linear unit

(ReLU) (used earliest in [16, 17]). The outputs of the non-linear function layer are

then further processed by a pooling layer. A pooling layer replaces the value at

17

Figure 11: High level representation of a CNN cat or dog classifier

18

Figure 12: An illustration of a 3x3 convolution of a 5x5 input image

19

every location with a statistic of the surrounding values. Pooling helps make the

representation invariant to small translations in the data. A network invariant to

small translations in its input means that instead of recognizing a feature when it

is in the exact right location, the network can detect a feature in an approximate

location.

2.3.1 Deep Learning Image Segmentation Architectures

Early approaches to image segmentation included TextonForest [18] and Random

Forest-based classifiers [19] but were quickly outpaced by deep learning approaches,

which allowed more precise and faster segmentation [20]. AlexNet’s development in

2017 [21] enabled the advancement of deep learning classification and paved the way

for more advanced CNN architectures for classification, object detection, and segmen-

tation. Since then, the development of image segmentation architectures has been a

highly active area of research, with Lateef and Ruichek surveying over 100 different

architectures in 2019 [22]. Of these architectures, this research will be evaluating our

dataset with a Mask-RCNN [2] based network for its high performance in the COCO

2016 [8] instance-segmentation challenge and ease of use in the Detectron2 object

detection framework [23].

Mask R-CNN is an extension of Faster R-CNN [24], an architecture for object clas-

sification and localization, that adds pixel-level object instance-segmentation. Mask

R-CNN comprises several sub-networks: a backbone, a detector, and several region of

interest (ROI) heads. As Mask R-CNN is a meta-architecture, an architecture that

can be instantiated with different building blocks [25], the exact composition of Mask

R-CNN depends on the designer’s exact implementation. The implementation of the

Mask R-CNN architecture used for this research is the GeneralizedRCNN architecture

from Facebook AI Research’s Detectron2 [23] object detection platform.

20

Figure 13: The Mask R-CNN instance segmentation framework [2]

Figure 14: System diagram of Detectron2’s GeneralizedRCNN architecture [3]. Note:
the system diagram does not include the ROI mask head.

21

The GeneralizedRCNN architecture (see Figure 14) is configured with a ResNet-

50 [26] based Feature Pyramidal Network (FPN) [27] as the network backbone. This

backbone acts as a feature extractor that feeds feature and spatial information as

feature maps to the Region Proposal Network (RPN) detector and ROI heads. The

RPN applies a sliding window over the FPN feature maps and predicts the ‘object-

ness’, probability of containing a target object, and the boundary box at each window

location [27]. The RPN produces several proposed object locations indicated as boxes

and feeds them for consideration to the individual ROI heads [27]. The ROI heads,

a box head, and a mask head, in the case of GeneralizedRCNN, take these proposed

object locations and the feature maps produced from the FPN and produce the final

outputs from the network. The ROI box head produces object bounding box and

their associated object classification predictions. The ROI mask head produces an

instance segmentation mask associated with each predicted object [24].

2.3.1.1 Mask R-CNN’s Loss Function

The loss function for Mask R-CNN is the sum of the following individual losses:

• Classification loss in the RPN (see [28])

• Localisation loss in the RPN (see [28])

• Classification loss in the ROI Box head (see [24])

• Localisation loss in the ROI Box head (see [24])

• Mask loss in the ROI Mask head (see [2])

2.3.1.2 Transfer Learning with Mask R-CNN

Training the Mask R-CNN network from scratch would require significant compu-

tational resources and an extensive training dataset. Thankfully, a technique termed

22

Figure 15: Visual description of transfer learning for fine-tuning a CNN model. Mod-
ified from [4]

23

transfer learning (TL) can help reduce the resources necessary to train the model on

the artificially generated dataset. TL is the reuse of a pre-trained model for a new

task requiring less computing resources and less training data than training the model

from scratch. First, a model is trained on a large object detection dataset, the COCO

dataset in the case of this research. This initial training is performed in what is called

the source domain. Second, a portion of the same model’s trained parameters are

frozen (prevented from changing) and trained again on the dataset of interest. This

second training is performed in what is called the target domain. See Figure 15 for

a visual description. The freezing of a portion of the model’s pre-trained parameters

between the two training runs transfers some knowledge from the source domain to

the target domain, hence the term transfer learning (TL). Training fewer parame-

ters in the target domain compared to the source domain required fewer computing

resources.

TL has been leveraged with Mask R-CNN by many researchers in recent years

for various applications. Rehman et al. [4] used Mask R-CNN with a ResNet-50 and

ResNet-101 [26] based FPN backbones to create an apple leaf disease detector by pre-

training the ResNets on the ImageNet dataset [29] and fine-tuning on the PlantVillage

dataset [30], an open access dataset of images on plant health. Ullo et al. [31] used

Mask R-CNN with a ResNet-50 and ResNet-101 based backbones to create an aerial

image landslide detector by pre-training on the COCO dataset [8] and fine-tuning on

a small custom dataset of landslide images. Similarly, Mask R-CNN and TL have

been used for solder joint detection [32], lesion detection [33], lung segmentation [34],

among many other applications.

24

2.4 Previous Works on Artificial Data Generation for Image Segmenta-

tion

Broggi et al. [35] present an early example of generating a synthetic dataset for

training a model for pedestrian image classification and detection. The author’s pre-

generated images of a 3D model of a pedestrian for feature matching against real-world

images using a hand-coded algorithm. The authors found their implementation inac-

curate when matching with bounding boxes containing real candidates but believed

further development using a dynamically animated model was worth investigating.

Although not showing complete success, this early work on synthetic datasets showed

the further study of such dataset generation might prove fruitful for similar computer

vision problems.

Maŕın et al. [36] created a synthetic dataset for pedestrian image segmentation

using the Half-Life 2 video game to generate a dataset of images of realistic-looking

city scenes. Using a game mod, the authors generated the labeled ground truth

annotations associated with the pedestrians in each image. The classifier trained on

the virtual dataset showed a similar performance to the classifier trained on real-

world data. This work is an early demonstration of using realistic modern computer

graphics and game engines to generate an image segmentation dataset for computer

vision.

Jaderberg et al. [37] trained a 90k word classifying CNN for real-world scenes

with synthetically generated data only. The synthetic data engine created for the

work allowed for unlimited training data and required no human labeling. This engine

used a five-step process to create realistic images that match the distribution of words

found in real-world scenes. The data generation process described in this work may be

helpful when designing the data generation process developed in our work, particularly

for inserting and blending synthetic features into background images for producing

25

realistic images.

Ritcher et al. [38] generated a synthetic city-scene segmentation dataset consisting

of 25,000 images and semantic ground-truth label maps by using the closed-source

video game Grand Theft Auto V. By creating a software wrapper around the video

game’s rendering engine the authors were able to capture their dataset with relatively

low effort when compared to gathering real-world segmentation datasets.

To address the need for large datasets required for training scene semantic models,

Handa et al. [39] generated a synthetic per-pixel depth dataset from computer-

generated 3D scenes. Using a public repository of 3D models for everyday household

items, the researchers automatically generate 3D scenes based on object occurrence

statistics in real scenes. The researcher applied post-processing to the generated

depth maps to match the real world, so they were consistent with the noise of a

Microsoft Kinect, using a Kinect noise model. This research is an example of using

a post-processing technique to bridge the domain gap between the virtual and real

worlds, often experienced when using synthetically generated data.

As an alternative to real-world and synthetic datasets, Abu Alhaija et al. [40]

augment real-world images with virtual objects to generate an object instance seg-

mentation dataset. By augmenting the KITTI 2015 [41] dataset with 3D modeled

cars from [42], the authors found the model trained on their dataset was able to gener-

alize better than the models trained on either synthetic data or real-world data. This

research provides an alternative to the two methods being evaluated in our research

and maybe a fruitful direction for further research in our niche.

Hinterstoisser et al. [43] evaluated the approach of using the Faster-RCNN ar-

chitecture [24] with frozen feature extractor layers and the remaining layers trained

on synthetic data to perform object detection. The authors placed 3D CAD models

in cluttered images with random noise and lighting to generate their synthetic data.

26

They concluded that freezing the feature extraction network layers always performed

better when compared to an unfrozen network trained on synthetic data alone. Thus,

this research presents a generally applicable technique that may improve the perfor-

mance of a model when paired with synthetic data.

2.5 Previous Works on Automated Visual Inspection in Aircraft Main-

tenance

Many researchers are currently exploring automated vision systems for improving

and streamlining inspections for aircraft maintenance.

Rice et al. [44] developed both a drone and an overhead camera system to perform

automated inspections of commercial aircraft. They produced two vision algorithms

to detect and segment anomalies on painted areas of an aircraft and another for

detecting missing screws. The authors did not include any implementation details of

the vision algorithms in this work.

Miranda et al. [45], as part of the Donecle [46] project, create a combination

of a classical and a CNN-based approach to detect missing and loose screws on the

outside of an aircraft within images taken from a UAV. A CNN, with an unspecified

architecture, performs screw detection. The detected screws are then compared to a

computer-aided design (CAD) model to determine if any are missing. Given there are

markings around the screws indicating the proper alignment of the screw head, the

authors also implemented a classical machine vision algorithm to detect if a screw is

loose.

Miranda et al. [47] analyses several different machine learning approaches for

aircraft defect classification on an extremely class imbalanced dataset. This work

is essential to automated aircraft inspection due to certain classes of damage, like

lightning burns, being both a rare occurrence and critical to the health of an aircraft.

27

The authors explored data-level techniques such as oversampling and undersampling;

algorithm-level methods such as deep neural networks, support vector machines, and

few-shot learning algorithms [48]; and various hybrids of the previously mentioned

methods. From their analysis, the authors found a hybrid approach where the output

of a deep neural network is used to classify the most represented classes in the dataset

while the output of a few-shot prototypical network is used for infrequent classes of

damage. This work was a part of the Donecle project [46], an automated unmanned

aerial vehicle (UAV) for aircraft inspection image collection.

Dogru et al. [49] expanded on the work of Bouarfa et al. [50] of applying the

MASK R-CNN [2] architecture to automated aircraft inspection by balancing, ho-

mogenizing, and augmenting the original dataset. This work also adds a pre-classifier

before the MASK R-CNN network to avoid false positives in images that likely do not

contain any dents. This research is necessary because it shows several methods for

improving the performance of previous methods on such a niche problem as aircraft

inspection.

Bouarfa et al. [50] demonstrate the potential of using a MASK R-CNN architec-

ture [2] deep-learning model to classify and segment aircraft dents within an image.

Although architectures like MASK R-CNN require a higher computation cost when

compared to popular object detection algorithms like You Only Look Once (YOLO)

[51], MASK R-CNN provides pixel-level resolution. In contrast, YOLO only provides

a bounding box around the detected object. Pixel level classification for aircraft dent

detection is helpful because dents often have irregular shapes, and documenting the

change in aircraft dents is essential for traceability.

28

III. Scholarly Article: Artificial Dataset Generation for
Automated Aircraft Visual Inspection

Abstract

Aircraft visual inspection is both essential to the maintenance of an aircraft, and

expensive and time-consuming to perform. Augmenting trained maintenance pro-

fessionals with automated unmanned aerial vehicles (UAVs) to collect and analyze

images for aircraft inspection is an active research topic and a potential application

of convolutional neural networks (CNNs). Training datasets for niche research topics

such as aircraft visual inspection are small and challenging to produce, and the man-

ual labeling process of these datasets produces subjective annotations. Self-driving

car researchers have experimented with generating artificial datasets with modern

computer graphics that can train for real-world driving scenarios. Our research bor-

rows this idea and proposes a work-in-progress artificial data generation pipeline to

create 3D rendered automatically annotated images for training CNNs for automated

visual aircraft inspection.

3.1 Introduction

Aircraft visual inspection is an essential step in the maintenance and safety of

every aircraft. These inspections are expensive, time-consuming, and require highly

trained maintenance personnel in potentially dangerous positions around an aircraft

[52]. During a visual inspection, maintenance personnel are trained to locate, classify,

and document the state of any damaged sites visible on the outside of the aircraft.

These damage sites may include dents, lightning strike damage, aircraft markings,

and deteriorated paint quality [50], to name a few. Objective and accurate detection

and evaluation of each instance of damage are crucial for the aircraft’s safe operation.

29

Although maintenance personnel are highly trained, there can often be discrepancies

between different inspectors, and sometimes the same inspector can disagree with a

previous assessment they have made. The quality and accuracy of these inspections

can be affected by lighting conditions, time pressures and inspector fatigue. With

these many challenges of the inspection process, automated aircraft visual inspection

may be an inexpensive and objective tool for maintenance personnel.

Several companies and research groups are exploring the application of computer

automation to the domain of aircraft pre-flight inspection. ROBAIR [53] is a project

that has developed a climbing robot with a suite of sensors designed to inspect the

wings and fuselage of aircraft for various issues. Air-Cobot [54] is an automated

ground drone that captures images and 3D scans for automated pre-flight inspections

by leveraging several hand selection image-processing approaches. Donecle [55] has

created an automated quadrotor to collect photographs of the outside of an aircraft

and feed those images to software for analysis, reporting, and tracing; they claim to

reduce traditional inspection times by a factor of ten. Donecle does not reveal their

method for automatically detecting damage. Mainblades [56] has developed a similar

UAV and software solution that utilizes machine learning to identify and analyze

damage in complex real-world environments. Machine learning algorithms, such as

CNNs, have shown promise in this field for their accuracy and flexibility of input

data.

CNNs are a type of deep neural network, a subset of machine learning, that

are useful for analyzing images [10]. CNNs have been researched extensively in the

medical field because of their outstanding performance in medical imaging classifica-

tion and reduced handcrafted feature requirements [57, 58, 59, 60, 61]. For CNNs to

perform well at a task, they need to be trained on a sizeable, labeled dataset that cap-

tures the variability and statistics of the real-world problem at hand. Collecting and

30

manually labeling CNN datasets proves to be both expensive and time-consuming

[62, 40, 36, 63], and because humans perform the labeling process, the annotation

can be subjective. Researchers have explored creating labeled artificial images by

rendering scenes from 3D virtual worlds to help solve the problems associated with

adequately producing a labeled dataset for training a CNN [64, 65, 38, 37]. The pur-

pose of this research is to do just that with a virtually damaged 3D aircraft model.

3.2 Related Work

Due to recent advancements in graphical computing, creating realistic-looking

computer-generated synthetic datasets for real-world problems is a popular thread

among artificial intelligence (AI) researchers. Creating datasets in this way allows

researchers to automatically generate a potentially unlimited number of images with

annotations provided for free. Since the annotations are determined from a particular

view by the software itself, they will always be accurate and objective. Broggi et al.

[35] generated a dataset of images for training a pedestrian detecting algorithm by

manipulating the pose of a simplified 3D model of a human being. Marin et al. [36]

generated a pedestrian detection image dataset by ‘driving’ a car inside a virtual city

by leveraging video games. Abu Alhaija et al. [40] places realistic 3D models of cars

into images from the real-world KITTI dataset [66] in realistic positions using Blender

[67], an open-source 3D creation suite, to increase the number of images available.

Gaidon et al. [62] recreated a portion of the KITTI dataset [66] inside of Unity [68], a

popular 3D game engine, for use in evaluating self-driving car algorithms. Our work

proposes a similar synthetic dataset generation pipeline for use in training automated

visual aircraft inspection CNNs.

31

3.3 Proposed Research

This section describes the proposed approach to data generated through the auto-

mated rendering of realistic damage on the virtual aircraft. Our proposed pipeline is

composed of four essential components: (i) a detailed, high-quality 3D model of the

aircraft of interest, (ii) accurate visual representations of aircraft skin damage, (iii)

multiple realistic scenes and environments to position around the aircraft model, and

(iv) a scriptable 3D rendering software to generate the images.

Unlike the 3D car model repository used in [40], we did not find a central repository

of high-quality aircraft models to use for this research. Aircraft inspection only focuses

on a single aircraft, so multiple aircraft models are not required for every scene, as in

the driving scenes in [40]. Creating these models by hand would be time-consuming

and are outside the scope of this research; therefore, we will use a pre-made 3D model

from a marketplace such as [69, 70, 71].

Figure 16: A realistic render of a 3D aircraft model

To properly train a CNN on this synthetic dataset, the 3D modeled aircraft needs

32

to show signs of damage. ‘Inflicting’ realistic damage onto our selected 3D model is

considered to be a challenging part of this research and will require further study,

experimentation, and input from expert aircraft maintainers. However, the general

idea is to draw the damage onto the texture of a 3D model. If a particular class of data

has some volumetric effect, such as a dent, apply that effect to the model’s normal

map. The details of each instance of damage will be randomized but based on the

appearance of actual aircraft damage created through consultations with maintenance

experts.

Creating a realistic scene around the aircraft model matches what a real-world

dataset may show is important. Unfortunately, at the time of writing, the real-world

dataset is still being produced for this research and will not be released in time for

this research. This means that we do not have a real-world scene to directly reproduce

our virtual environment, unlike the Virtual KITTI [66] dataset. Until the real-world

dataset is received, we will rely on expert feedback and the standard practices of

aircraft maintainers to create a realistic virtual scene. We plan to place the virtual

aircraft inside a well-lit hangar and adjust the scene based on the feedback from our

expert contacts.

This research uses Blender, similar to [40], to create the virtual scene and automate

the rendering of the synthetic dataset. Blender is a powerful open-source 3D creation

suite with a built-in Python automation application programming interface (API)

that can provide the functionality and flexibility required for this research project.

Importing UAV paths generated with the coverage path planning algorithm developed

in prior work [72] into Blender will allow for automated realistic camera views outside

the aircraft model. Automating the generation of the image annotations will be

accomplished through changes in the rendering engine’s settings.

We believe combining these components will create an artificial data generation

33

pipeline to produce a training dataset for a CNN able to detect and segment aircraft

damage on a real-world dataset.

3.4 Artificial Data Generation Pipeline

3.4.1 Blender

3.4.1.1 Aircraft Models

Due to the time and expertise required to create realistic aircraft 3D models, this

research utilizes assets available from services such as CG Trader [69], SketchFab

[70], and TurboSquid [71]. These services allow professional designers and artists to

list their 3D models for purchase and use by others. Thanks to these services and

Blender’s ability to import a wide range of 3D file formats, numerous aircraft models,

free and otherwise, were utilized in the generation of the aircraft damage dataset.

3.4.1.2 Python API

Blender comes bundled with a Python interpreter, which is used internally to draw

the user interface and for some built-in tools. Addons and custom scripts can also

use this Python environment to interact with Blender’s data, classes, and functions.

Blender provides API access primarily through the ‘bpy‘ Python module. A brief

description of the submodules available in ‘bpy‘ is in Table 1 below.

This research extensively utilizes the Blender Python API to automate the data

generation process and provide a user interface inside Blender for configuration.

3.4.1.3 Materials

Materials in Blender control the color, texture, and how light interacts with an

object, i.e., the appearance of an object. Using Blender’s flexible shading node system,

34

Table 1: Blender Python Submodules
Name Submodule Description

Context Access bpy.context
Provides read-only access to the
current state of Blender.

Data Access bpy.data
Provides access to Blender’s
internal data.

Message Bus bpy.msgbus

Provides a publisher/subscriber
interface to changes initiated via
the Python API or sliders, fields,
and buttons in Blender’s user
interface.

Operators bpy.ops
Provides access to calling
operators built into Blender.

Types bpy.types
A “directory” of Blender’s built-in
Python classes.

Utilities bpy.utils
A collection of useful utility
functions not associated with
Blender’s internal data.

Path Utilities bpy.path
A collection of useful functions
for dealing with paths in Blender.

Application Data bpy.app
Contains application values that
remain unchanged during runtime.

Property Definitions bpy.props
Defines properties to extend
Blender’s internal data.

35

a large variety of different materials, including plastic, glass, metal, cloth, skin, hair,

smoke, and fire, are open to designers.

Materials are composed of three basic types of shaders; surface, volume, and

displacement. The surface shader controls the visual texture and light interaction

at the surface of an object. For example, a material would employ a surface shader

with near-perfect light reflection to create a mirror. The volume shader controls the

appearance of the interior of an object. Modeling smoke or fire would only require

the use of a volume shader since they are voluminous substances. A displacement

shader adds detail to the shape of an object by altering its geometry through the

displacement of points along its surface.

We use various materials to fulfill three objectives in this project; aircraft real-

ism, randomized artificial aircraft damage generation, and generation of segmentation

label masks. We chose the aircraft models used for this project due to their high re-

alism, including the quality of their included materials. Blender’s node-based shader

system makes mixing materials easy, a feature heavily used in adding randomized

artificial damage over the existing aircraft model materials. To generate the image

segmentation masks, we used a shader that emits a single light color in the annotation

object’s materials.

3.4.1.4 Rendering

A rendering engine turns a 3D scene into a 2D image by processing the scene’s

objects, cameras, lights, and materials. Blender comes pre-installed with three ren-

dering engines; Eevee, Cycles, and Workbench. Eevee and Cycles are both physics

based rendering engines, while Eevee is designed for real-time rendering and Cycles

for light path tracing. Workbench, however, is designed for modeling and animation

preview and is not intended for rendering final images. This research used both Eevee

36

and Cycles for generating data, Eevee for generating most training data, and Cycles

for generating a smaller portion of high detailed data.

Figure 17: A render created with the Eevee Rendering Engine.

3.4.1.5 View Generation

For each data image and label pair generated, the pipeline creates a unique scene

before rendering. This strategy enables a large and generalized dataset appropriate

for training a successful semantic segmentation deep-learning model. The three as-

pects of the scene that are randomized include the artificial damage pattern, lighting

placement, and camera view.

Random Damage The base material created to represent material removed

from the skin of an aircraft (i.e., damage) is composed of a surface shader with color

and metallic properties and a displacement shader for removing or indenting the ma-

terial. The specifics of such a material are airframe dependent and have been informed

by carefully inspecting real-world images and in-hand samples. This material is then

37

Figure 18: A render created with the Cycles Rendering Engine.

Figure 19: A render created with the Workbench Rendering Engine.

38

randomly patterned over the aircraft 3D models with an adjustable parameter to vary

the pattern for each new view.

Lighting Placement Randomly lighting the aircraft scene is essential for

generalizing the artificial model training dataset. If the data was generated with a

constant light source at the same position throughout all views, the resulting model

will likely not perform well on real-world data where lighting is not consistent. For

this research, we chose a simple random lighting scheme where a ‘Sun’ light source is

placed randomly in 3D space a constant distance away and above from the geometric

center of the aircraft. For every new data render, the light source’s position is updated

according to this scheme. This strategy allows for quickly generating a large number

of lighting conditions, allowing for a large and generalized artificial dataset.

Camera Placement The camera’s position in 3D space is randomized in

the same manner as the scene’s lighting. A new camera position is chosen randomly

at a specified distance away from and above the 3D model for each rendered image

while the camera’s focus is anchored to the model.

3.4.2 Label Post Processing

The labels rendered from Blender for each view of the aircraft are composed of

masks of solid color. Each unique color in the mask classifies a pixel in the image.

By default, the labels are multiclass with black representing the background, red the

aircraft, and blue the damaged areas of the aircraft. Multiclass masks are used pri-

marily for flexibility. Although this research is interested in binary pixel classification,

future use may require multiclass image segmentation.

Due to the multiclass nature of the labels and the shading inherent in Blender’s

rendering engines, the labels need to be post-processed with the following procedure

39

to prepare them for processing with a deep-learning model; 1) color quantization, 2)

class isolation, and 3) black and white conversion.The colors produced in the raw

rendered labels are not precisely the distinct colors used when setting up the render

due to shadows and processing the renders. Color quantization reduces the colors

in an image to a select set of color values; this process allows for precise distinction

between the pixel classes by color value. With the color space of the label reduced,

the classes are separated into separate images to transform the single multiclass image

into separate binary images. With the classes separated into several different images,

the labels are then reduced to black and white, allowing easier use as an input to a

CNN. Although these operations could be performed within a Python environment

with a module such as Pillow, ImageMagick, a C-based command-line tool, performs

these operations much faster and can be called from a Python instance.

3.4.2.1 ImageMagick convert and mogrify

ImageMagick is a command-line-based multi-threaded image editing suite. Us-

ing ImageMagick’s ‘convert’ tool one can perform image format conversions, resizing,

blurring, cropping, and dithering, among many other operations. ‘mogrify’ can per-

form these same operations but on an entire directory of images, which is must faster

than calling ‘convert’ on a single image at a time. Using Python’s standard ‘subpro-

cess’ module, ImageMagick can be called from within the data generation pipeline,

given ImageMagick is properly installed on the system. This research uses the ‘mo-

grify’ command to post-process the data labels after rendering.

3.5 Dataset Examples

Figure 20 shows four examples of artificially generated data sets created with the

pipeline detailed in this research. Each series of three images consists of a realistic

40

image of aircraft damage, its associated multiclass (colored) label, and binary (black

and white) label. These examples represent what the images in the final dataset(s)

may look like as we may change parameters to improve the accuracy of the trained

models.

Figure 20: Examples of data, multiclass labels, and binary labels generated by the
Pipeline that would be used as inputs to a CNN for training

3.6 Future Work

This research will progress with the training of a model of the U-Net architecture

[61] on a large set of artificially generated data with the evaluation of the model

performed against a limited set of real-world data. Studies to be considered for

further research include a comparison of data rendered with Eevee and Cycles and

variations on scene lighting, camera placement, and artificial damage parameters.

Artificial datasets generated with variations of these different parameters may prove

to improve model performance on the available set of real-world data.

41

IV. Scholarly Article: Artificial Dataset Generation and its
Effect on the Performance of Car Damage Instance

Segmentation Models

Abstract

Aircraft visual inspection is essential to the maintenance of an aircraft, yet is

expensive and time-consuming to perform. Augmenting trained maintenance pro-

fessionals with automated unmanned aerial vehicles (UAVs) to collect and analyze

images for aircraft inspection is an active research topic and a potential applica-

tion of convolutional neural networks (CNNs). Training datasets for niche research

topics such as aircraft visual inspection are small and challenging to produce, and

the manual labeling process of these datasets produces subjective annotations. Re-

cently, researchers have produced several successful applications of artificially gener-

ated datasets with domain randomization for training CNNs for real-world computer

vision problems. Our research borrows this idea to create an artificial data gener-

ation pipeline and dataset to pre-train an instance segmentation CNN for damage

detection. Although the original intention was to test this process on a real-world

aircraft damage segmentation dataset, such a dataset was not available for this re-

search. Instead, we evaluate the performance of several models, each pre-trained with

various combinations of the newly created artificial dataset and the COCO dataset,

on a small publicly available car damage dataset. We found that pre-training a model

on the artificial dataset with domain randomization showed better performance than

the model trained from scratch on the real-world dataset. However, when comparing

the performance of two models already trained on the COCO dataset, training on

our artificial dataset degraded the model’s performance on the real dataset.

42

4.1 Introduction

The visual inspection of aircraft is essential for their continued operation and

maintenance [73, 74]. Aircraft inspection is vital to the United States Air Force, with

its ever-expanding fleet of military aircraft. Requiring several highly trained mainte-

nance personnel, these lengthy inspections throughout the life of each aircraft are a

costly and time-consuming element of aircraft maintenance [75]. Often requiring an

inspector to explore the airframe manually, visual inspections also pose a considerable

safety risk to these personnel [73].

Because of the importance and challenges associated with aircraft visual inspec-

tion, the Autonomy and Navigation Technology (ANT) Center at Air Force Institute

of Technology (AFIT) is developing an UAV system that is capable of aiding in the

inspection process by autonomously examining the outside of an aircraft. The goals

of this system are to:

1. Determine an efficient flight path around an aircraft.

2. Take photographs of the entire exterior of the aircraft while in flight.

3. Detect any aircraft defects found in the images for review by trained mainte-

nance personnel.

4. Localize the any defects found to the appropriate panel.

This particular research aims to develop a computer vision algorithm to fulfill the

third goal of the overall system: detection of aircraft defects captured in the images

collected by the UAV.

Current state-of-the-art automated object detection systems are predominately

convolutional neural networks (CNNs) because of their high performance and appli-

cability to many object detection tasks [76]. However, developing a CNN requires a

43

large amount of ground-truth labeled images. When done manually, the cost and man-

power required to collect and annotate such a dataset can be too great for such niche

problems, such as aircraft inspection. Researchers have recently explored computer-

generated graphics to generate artificial datasets where there is a lack of real-world

ground truth data [37, 65, 64, 39, 77, 43, 78]. The research described herein takes the

approach of evaluating a synthetic dataset for use in training a CNN for real-world

aircraft inspection. Unfortunately, an adequate real-world test dataset of aircraft

damage was not available in time for this research, so we evaluated the proposed

methods on a small dataset that contains real-world car damage [8].

4.2 Background

4.2.1 Artificial Dataset Generation

When applying a CNN to a machine vision problem, one essential requirement

is to obtain a large dataset with which to train and evaluate a model. The size of

a dataset required for training a CNN depends primarily on the complexity of the

problem. Obtaining a large dataset is trivial for applications such as automated driv-

ing, where public datasets are plentiful (e.g. [66, 40, 79, 80]). For niche applications,

such as aircraft damage segmentation, finding or collecting a dataset of significant

size is difficult as fewer real-world examples exist. Creating a well-designed image

segmentation dataset usually requires manual collection and mapping of hundreds

or thousands of images, a time-consuming and monotonous task for humans to per-

form. Researchers have explored computer graphics to generate artificial datasets for

training models for various real-world applications to address this challenge.

When designing a synthetic dataset for training a machine learning model, the

critical challenge is bridging the performance gap when comparing a model’s per-

formance on the artificial dataset to those on the real-world dataset. This issue is

44

termed ‘domain shift’ and is the model over-fitting to the synthetic dataset and not

generalizing well to real-world data. Researchers have explored several techniques

collectively known as domain randomization to help bridge the gap resulting from

‘domain shift’ [64, 81, 78, 82].

Domain randomization is a data-generation phase solution to domain shift that

adds variations to the image space of the synthetic data to avoid model overfitting.

Adding domain randomization to an artificial dataset consists of randomizing the

aspects of the data superfluous to the problem at hand. This research employs domain

randomization techniques that fall into either content or style variation.

4.2.2 Instance Segmentation

Figure 21: Visual example of the four different object-detection tasks [5]

Instance segmentation of an image is when individual objects in an image are

detected and delineated. For example, processing a photograph of several sheep with

an instance segmentation algorithm would produce a mask labeling the pixels making

up each sheep individually.

45

Instance segmentation is one of several object detection problems in image pro-

cessing, including image classification, object detection, semantic segmentation, and

instance segmentation. A high-level description of each of these tasks is below.

• Image Recognition: assigning a categorical label or labels to an image de-

pending on its contents

• Object Detection: locating individual instances of a particular object class

within an image, where locations are indicated by bounding box

• Semantic segmentation: locating groups or instances of a particular object

class within an image pixel by pixel

• Instance Segmentation: locating individual instances of a particular object

class within an image pixel by pixel

The product of an instance segmentation method is a mask indicating the location,

class, and instance of the objects of interest in a particular image. Compared to

the ground truth, the correctness of a mask is measured in several ways, including

precision, recall, and a more complicated metric called average precision.

To understand these performance metrics, we must first understand true positives,

false positives, true negatives, and false negatives. A true positive (TP) is when a

model correctly predicts a pixel or region as belonging to a class. A false positive

(FP) is when a model incorrectly predicts a pixel or region as belonging to a class

and it does not belong. A true negative (TN) is when a model correctly predicts a

pixel or region as not belonging to a class. A false negative (FN) is when a model

incorrectly predicts a pixel or region as not belonging to a class and it does belong.

Recall, as calculated in

Recall =
TP

TP + FN
, (5)

46

Figure 22: Visual representation of true positives, false positives, true negatives, and
false negatives. Modified from [6]

47

Figure 23: Visual representation of precision and recall. Modified from [6]

is the number of correctly predicted positives divided by the number of ground truths.

Precision, as calculated in

Precision =
TP

TP + FP
, (6)

is the number of correctly predicted positives divided by the total number of predic-

tions. Recall can be seen as a measure of the quantity of TPs, while precision can be

seen as a measure of the TPs. Higher recall means the predictions contain most of the

relevant results, while higher precision means the predictions contain more relevant

results than irrelevant ones.

Intersection over union (IoU), as calculated in

IoU =
target ∩ prediction

target ∪ prediction
, (7)

48

Figure 24: Visual representation of Intersection over Union (IoU)

is a metric calculated for each prediction and its associated ground truth and is used

to determine whether a prediction is correct or not, i.e. its truthfulness. IoU, equation

(7), is the intersection between the prediction and the ground truth (target) divided

by their union (see Figure 24). For a prediction to be considered a TP, its IoU with

its associated ground truth has to be equal to or above some threshold; otherwise, it

is considered a FP (see Figure 25).

Another factor when determining the truthfulness of a prediction is the confidence

level, a value from 0.0 to 1.0, the model reports for every prediction. By varying what

we consider to be the cutoff confidence level, we can change whether a prediction is

deemed a TP or FP.

The average precision (AP), the metric used to evaluate the models in this work,

49

Figure 25: Visual representation of Intersection over Union A visual example of
threshold IoU and how it factors into the truthfulness of a prediction

is an attempt by researchers to summarize the overall performance of a model and

gives a single value that can be used to compare the performance of various models.

To calculate the AP metric of a set of predictions over a dataset, we must create

a precision-recall (PR) curve. For a single class of predictions, we calculate the recall

and precision values given a threshold IoU score and a threshold confidence level; this

produces a single PR pair. To create the PR curve, PR pairs are calculated across the

range of possible confidence levels, i.e., 0.0 to 1.0, which determine the value pair’s

rank. The PR curve is created by plotting these PR value pairs by descending rank,

with precision on the y-axis and recall on the x-axis, and connecting line segments

between subsequent points to create a piecewise function, p(r), (see Figure 26). The

AP of this PR curve, equation (8), is then calculated by averaging the precision values

50

Figure 26: An example PR curve which is a piecewise function connecting precision-
recall pairs in order of rank

at 101 equally spaced recall values along the piecewise curve, as calculated in

AP =
1

101

∑
r∈{0.00,0.01,...,0.99,1.00}

p(r). (8)

For multiclass datasets, an AP is calculated for each class, and the mean is found,

called the mean average precision (mAP). Following the COCO researcher’s example,

most research assumes AP to mean mAP. AP and mAP are equivalent for our research

as our evaluation dataset has a single class of objects.

Each AP or mAP is calculated given some threshold IoU which may introduce

some bias in the evaluation metric related to the correctness of a prediction. We take

the average AP across a range of IoU threshold values to address this bias. Following

the COCO [8] evaluation metric, we average the AP at IoU thresholds from 0.5 to

0.95 at an interval of 0.05, represented in this research’s results as AP[0.5:0.05:0.95].

51

4.2.3 Convolutional Neural Networks

CNNs are a class of deep learning neural networks that excel at specific problems

in computer vision, and in this case [10, 11, 12, 13, 14]. Convolution, the critical

process of the CNN, is particularly equivariant to the translation of features within

an input datum, meaning a translation of a feature in the input of a CNN results in

the same translation at the CNN’s output. The CNN’s ability to recognize features

independent of location makes it particularly effective at processing visual data. For

example, a CNN cat or dog classifier can identify whether a cat or dog is within an

image independent of the animal’s location within that image [15].

Figure 27: High level representation of a CNN cat or dog classifier

52

Within the context of CNNs, convolution is the dot product between two matrices.

The first matrix is a set of learnable parameters called a kernel. The other is a

restricted portion of the input, called the receptive field. The repeated application of

convolution with a single kernel over an entire input creates an activation map that

represents the kernel’s response at every position within the input [15].

Figure 28: An illustration of a 3x3 convolution of a 5x5 input image

This repeated use of a kernel for multiple convolutions across the image takes

advantage of parameter sharing, leading to the CNN’s property of equivariance of

translation.

53

In general, a CNN is composed of layers that perform one of three operations:

convolution, non-linear function, or pooling. After a convolutional layer, the resulting

activation map is run through a non-linear function, such as rectified linear unit

(ReLU) (used earliest in [16, 17]). The outputs of the non-linear function layer are

then further processed by a pooling layer. A pooling layer replaces the value at

every location with a statistic of the surrounding values. Pooling helps make the

representation invariant to small translations in the data. A network invariant to

small translations in its input means that instead of recognizing a feature when it

is in the exact right location, the network can detect a feature in an approximate

location.

4.3 CNN Architecture for Instance Segmentation

Figure 29: A high-level system view of Mask R-CNN instance segmentation frame-
work [2]

Created by He et al. [2] at Facebook AI Research (FAIR) in 2018, Mask R-CNN

is a state-of-the-art architecture for instance segmentation. With minimal additions

54

onto Faster R-CNN [24], Mask R-CNN surpasses all other previous single-model com-

petitors on the COCO instance segmentation task [8] while maintaining most of the

performance increases achieved by Faster R-CNN. FAIR has open-sourced a Mask

R-CNN implementation in their Detectron2 [23] object detection platform built with

paszkePyTorch2021 [83]. Mask R-CNN comprises several sub-networks: a backbone,

a detector, and several region of interest (ROI) heads. As Mask R-CNN is a meta-

architecture, an architecture that can be instantiated with different building blocks

[25], the exact composition of Mask R-CNN depends on the designer’s exact im-

plementation. The implementation of the Mask R-CNN architecture used for this

research is the GeneralizedRCNN architecture from Facebook AI Research’s Detec-

tron2 [23] object detection platform.

Figure 30: System diagram of Detectron2’s GeneralizedRCNN architecture [3]. Note:
the system diagram does not include the ROI mask head.

The GeneralizedRCNN architecture (see Figure 30) is configured with a ResNet-

50 [26] based Feature Pyramidal Network (FPN) [27] as the network backbone. The

ResNet-50 backbone sub-network comprises five stages, where each subsequent stage

55

extracts further feature information from the previous stages [26]. This backbone

acts as a feature extractor that feeds feature and spatial information as feature maps

to the Region Proposal Network (RPN) detector and ROI heads. The RPN applies a

sliding window over the FPN feature maps and predicts the ‘objectness’, probability

of containing a target object, and the boundary box at each window location [27]. The

RPN produces several proposed object locations indicated as boxes and feeds them

for consideration to the individual ROI heads [27]. The ROI heads, a box head, and

a mask head, in the case of GeneralizedRCNN, take these proposed object locations

and the feature maps produced from the FPN and produce the final outputs from the

network. The ROI box head produces object bounding box and their associated object

classification predictions. The ROI mask head produces an instance segmentation

mask associated with each predicted object [24].

4.3.1 Mask R-CNN’s Loss Function

The loss function for Mask R-CNN is the sum of the following individual losses:

• Classification loss in the RPN (see [28])

• Localisation loss in the RPN (see [28])

• Classification loss in the ROI Box head (see [24])

• Localisation loss in the ROI Box head (see [24])

• Mask loss in the ROI Mask head (see [2])

4.3.2 Transfer Learning with Mask R-CNN

Training the Mask R-CNN network from scratch would require significant compu-

tational resources and an extensive training dataset. Thankfully, a technique termed

transfer learning (TL) can help reduce the resources necessary to train the model on

56

Figure 31: Visual description of transfer learning for fine-tuning a CNN model. Mod-
ified from [4]

57

the artificially generated dataset. TL is the reuse of a pre-trained model for a new

task requiring less computing resources and less training data than training the model

from scratch. First, a model is trained on a large object detection dataset, the COCO

dataset in the case of this research. This initial training is performed in what is called

the source domain. Second, a portion of the same model’s trained parameters are

frozen (prevented from changing) and trained again on the dataset of interest. This

second training is performed in what is called the target domain. See Figure 31 for

a visual description. The freezing of a portion of the model’s pre-trained parameters

between the two training runs transfers some knowledge from the source domain to

the target domain, hence the term transfer learning (TL). Training fewer parame-

ters in the target domain compared to the source domain required fewer computing

resources.

TL has been leveraged with Mask R-CNN by many researchers in recent years

for various applications. Rehman et al. [4] used Mask R-CNN with a ResNet-50 and

ResNet-101 [26] based FPN backbones to create an apple leaf disease detector by pre-

training the ResNets on the ImageNet dataset [29] and fine-tuning on the PlantVillage

dataset [30], an open access dataset of images on plant health. Ullo et al. [31] used

Mask R-CNN with a ResNet-50 and ResNet-101 based backbones to create an aerial

image landslide detector by pre-training on the COCO dataset [8] and fine-tuning on

a small custom dataset of landslide images. Similarly, Mask R-CNN and TL have

been used for solder joint detection [32], lesion detection [33], lung segmentation [34],

among many other applications.

4.4 Related Work

This work build upon previous work in automated visual inspection, synthetic data

for computer vision, and domain randomization. The related work will be outlined

58

in the subsections below.

4.4.1 Automated Visual Inspection

Many researchers are exploring automated vision systems for aircraft inspection

purposes. Aust et al. [84] used image processing techniques to detect defects on the

edges of aircraft engine blades. As for the exterior inspection of aircraft, Ramalingam

et al. [73], Miranda et al. [47], Almadhoun et al. [85], Rice et al. [44], Bouarfa et al.

[50], Dogru et al. [86], Tzitzilonis et al. [87], and Jovancevic et al. [54] all present

automated visual defect image collection and detection systems. Bouafa et al. [50]

offer a defect detection method most similar to this work. They used a network based

on the Mask R-CNN architecture pre-trained on the COCO dataset and fine-tuned

on a small, but private dataset of aircraft dents.

4.4.2 Synthetic Data for Computer Vision

Synthetic datasets provide detailed ground-truth annotation and are a less-expensive

and scalable alternative to manually annotating images. Barth et al. [64] developed

a data synthesis method for training a DeepLab [88] VGG-16 [89] based model for

semantic segmentation of agricultural scenes. Georgakis et al. [90] created a synthetic

images dataset to train a CNN for object detection by placing 3D modeled household

objects into real-world images of everyday household scenes. Similar to Georgakis

et al., Gupta et al. [77] combined computer-generated text with real-world images

to generate an artificial dataset to train a Fully-Convolutional Regression Network

(FCRN) for robust real-world text detection and end-to-end spotting. Handa et al.

[39] synthesized a dataset called SceneNet for training a CNN for household scene

semantic segmentation using 3D computer-aided design (CAD) models to generate

completely synthetic household scenes.

59

4.4.3 Domain Randomization

Tobin et al. [81] proposed domain randomization (DR) as an alternative to high-

fidelity synthetic imaging. They introduced DR to bridge the reality gap experienced

when using a synthetic dataset on real-world problems by creating synthetic data

with enough variations to allow the network to treat the differences between artificial

data and real-world data as another variant to be ignored. Khirodkar et al. [82] and

Tremblay et al. [78] used DR to generate synthetic datasets for training a CNN for

car detection and pose estimation.

4.5 System Implementation

4.5.1 Data Generation Pipeline

The goal of this research is to detect and locate damage on cars in real-world im-

ages with a CNN. To compensate for the lack of a sufficiently sized real-world dataset,

we use 3D CAD models and a procedural damage shader to generate annotated syn-

thetic data. We leveraged Blender [67], an open-source 3D graphics creation suite,

and its Python [91] scripting interface [92] to automate the data generation process.

The main challenge for this research is generating synthetic data for training a model

that generalizes well to real-world data. As mentioned earlier, the application to car

damage is a substitute for aircraft damage, since we were not able to receive real

imagery. This section describes the synthetic data generation process and specifics

about the domain randomization strategies used during data generation.

4.5.1.1 Data Generation

Although Blender’s Python interface allows one to automate the majority of the

data generation, some initial manual setup is required due to the complexity of

60

Blender and virtual 3D environments in general. Setup requires the manual initial-

ization of two Blender objects (see Figure 32), one that is rendered while generating

the image, labeled the ‘Data Object,’ and the other is rendered while generating the

segmentation mask, labeled the ‘Annotation Object.’ These are depicted in Figure 33.

Figure 32: Blender models and scene initialization steps required before data gener-
ation

Figure 33: Example of a ‘Data Object’ (left) and the ‘Annotation Object’ (right)
within Blender

The ‘Data Object’ is a 3D CAD model of a car with a procedural texture that

mimics the appearance of damage on small sections of the model’s geometry. The

author created this texture by hand with real-world images of car damage for refer-

61

ence. Although the texture created may not reproduce all types of car damage, the

author believes it is sufficient for this research. The ‘Annotation Object’ is created

by duplicating the geometry of the ‘Data Object’ and applying a multi-color emission

texture that labels the areas where the damage does and does not occur on the ‘Data

Object.’ The procedural data of these two objects’ textures are linked via Blender

drivers so that they always match each other perfectly. After the creation of these

objects, the initial setup is complete.

The data generation script is configurable through a custom-made Blender add-on

and user interface, made specifically for this research. Figure 34 shows the add-on

interface and Table 2 gives a description of each parameter.

4.5.1.2 Domain Randomization

Several methods of domain randomization are used in an attempt to add enough

variation to avoid model overfitting to the synthetic data. These methods fall into

two categories: content and style variation. Examples of these randomizations are

found in Figure 35.

• Content Variation: For every new synthetic datum generated, the script

randomizes several forms of content in the scene, including scene background,

distractors, and 3D CAD model. The scene’s background is randomly selected

from various 360-degree spherical panoramic images, called HDRIs. A random

assortment of 3D shapes, called distractors, is added to the scene to add unin-

teresting information. Finally, the resulting dataset uses several freely available

3D CAD car models to add variation to the object of interest.

• Style Variation: The stylistic variations used include randomizing the color

of each distractor and car. In addition, the position of the scene camera and

light source are changed to add variation in the scene’s lighting conditions.

62

Figure 34: Data generation configuration graphical user interface inside Blender

63

Table 2: Data Generation Blender Add-on Parameters
Name Description
Data Object Select the Blender object to render during the data

generation step
Enable Object Color
Randomization

If checked, it enables randomization of the Data Ob-
ject’s color between views

Object Color Value Path Blender data path to Data Object shader color
Annotation Object Select the Blender object to render during the annota-

tion generation step
Camera Offset The distance from the Data Object to the rendering

camera
Sun Offset The distance from the Data Object to the rendering

scene light source
View Count The number of different views to render into data
Enable Damage Random-
ization

If checked, it enables randomization of the damage gen-
eration between views

Damage Value Path Blender data path to the value controlling the object’s
damage randomization

Enable Distractors If checked, it enables the addition of various random
distractor objects into the scene

Distractors Count The number of distractors to add to each scene during
view randomization

Enable Random HDRI If checked, it enables the randomization of the scene’s
3D background between views

HDRI Directory File path to a directory containing HDRI’s on the user’s
computer

Render Path File path to a directory for which the renders will be
saved to

Enable Mask Quantiza-
tion

If checked, it enables the quantization of each multi-
class annotation mask into several single-class masks

Mask Color Palatte An array of integer values between 0 and 255 (inclusive)
where every three integers represent a red-green-blue
color foreground color value for each of the quantized
masks

Mask Background Color An array of three integer values between 0 and 255
(inclusive) that represents a red-green-blue color of the
background of all masks generated by the add-on

64

Figure 35: Synthetic data generation with domain randomization: randomization of
HDRI environment, 3D model, model texture, distractors, lighting, damage genera-
tion

4.6 Experiment

In this research we propose that given a Mask R-CNN (Detectron2 Generalize-

dRCNN) model pre-trained on the COCO dataset, there is an optimal amount of

unfrozen backbone stages, from Stage 1 through Stage 5, we can then train on our

artificial dataset for fine-tuning and testing on the real-world damage dataset. We

hypothesize that the minimal unfreezing of the backbone stages before training on

our artificially generated dataset will provide the best segmentation performance on

the real-world car damage dataset. Essentially, the weights from pre-training on the

COCO dataset contain the vast majority of what our model needs to know to perform

well.

4.6.1 Datasets

We benchmark our methodology on a single small dataset composed of real-world

images of car damage and their instance masks. This real-world dataset was sourced

from Kaggle [93] as “Coco Car Damage Detection Dataset”. This real-world car

damage dataset is not created by the COCO [8] dataset team, but formatted into

65

the same format as the COCO dataset. This real-world car dataset contains only 70

labeled images. Each image in the real-world dataset contains a car with one or more

areas of damage recorded at 1024 x 1024 pixels and the images vary in car model,

background scene, camera angle and lighting. Several examples of the real-world

dataset can be seen in Figure 36.

The “Coco Car Damage Detection Dataset” will only be used for evaluating our

final models, as it is far too small to train Mask R-CNN with.

The artificial dataset comprises 8,000 images, each with a ground truth label,

randomly split 80:20 into training and validation sets; 6400 training and 1,600 vali-

dation images. Each image is rendered at 1920 x 1080 pixels to make up the artificial

dataset has randomized lighting, 3D car model, model coloring, model damage tex-

turing, camera location, distractors (location and coloring), and background scene.

4.6.2 Models

For our experiment, we compare the performance of five Detectron2 Generalize-

dRCNN models, all pre-trained on COCO, fine-tuned on the artificially generated car

damage dataset, and evaluated on the real-world car damage dataset:

• Stage 1: FPN+ResNet-50 Backbone with stage 1 frozen before fine-tuning

• Stage 2: FPN+ResNet-50 Backbone with stages 1 and 2 frozen before fine-

tuning

• Stage 3: FPN+ResNet-50 Backbone with stages 1 through 3 frozen before

fine-tuning

• Stage 4: FPN+ResNet-50 Backbone with stages 1 through 4 frozen before

fine-tuning

66

Figure 36: Several examples from the “Coco Car Damage Detection Dataset”

67

Figure 37: Several examples from the artificially generated car damage dataset

• Stage 5: FPN+ResNet-50 Backbone with stage 1 through 5 frozen before fine-

tuning

4.6.3 Training

When training GeneralizedRCNN with Detectron2, the training is configured to

run for a number of iterations instead of specifying the number of epochs. An iteration

is a training pass over a batch of training images, while an epoch is a training pass

over all training images. The relationship between epochs and iterations is

nepochs =
niterations ∗ nbatch

ntraining

. (9)

According to the Detectron2 Model Zoo code repository [23], the models with

COCO pre-trained weights were trained on approximately 37 epochs of 118 thousand

images from the COCO 2017 dataset [8], which equates to approximately 270,000

iterations with a batch size of 16 images. Thankfully, the weights after this training

68

on the COCO dataset are available on the Detectron2 Model Zoo [23] and were used

for the pre-training in this research.

Fine-tuning the models on the artificially generated dataset was performed over

10,000 iterations at two images per batch or approximately 4.7 epochs.

4.6.4 Training Data Augmentations

During training, the following data augmentation operations, available from the

Detectron2 [23] code base, were used:

• ResizeShortestEdge: Resize the image by shortest edge while keeping the

aspect ratio unchanged

• RandomFlip: Flip the image horizontally or vertically with the given proba-

bility

• RandomSaturation: Randomly transforms saturation of an RGB image

• RandomContrast: Randomly transforms image contrast

• RandomBrightness: Randomly transforms image brightness

• RandomRotation: Rotate the image given number of degrees counter clock-

wise around the given center

4.6.5 Results

4.6.5.1 Fine-tuning on Artificial Data

Figure 38 shows the total training loss on the 6400 image artificial training dataset

while fine-tuning each of the five models. Zooming into the final 2000 iterations (See

Figure 39) shows a rough order of the models in terms of minimum training loss:

Stage 1 and 2 models have the lowest losses, Stage 3 has middle performing loss,

69

and Stage 4 and 5 have the highest losses. This order is also reflected in each of

the models’ segmentation performance shown in Figure 40 and Figure 41. This order

implies that freezing the earlier Stages of the ResNet-50 backbone before fine-tuning

on the artificial car damage dataset results in the best performance on the artificially

generated car damage dataset.

Figure 38: Mask R-CNN model’s total loss throughout training on the artificial car
damage dataset

4.6.5.2 Segmentation Performance on Real-World Data

Figure 42 each model’s segmentation performance on the real-world car damage

dataset at a period of 500 iterations. Interestingly, Stage 2 and Stage 3, the highest

performing models, show peek performance at iteration 1500 while their performance

drastically decrease in later iterations. Compared to the continued growth of each

model’s performance on the artificial validation data (Figure 40) the models seem to

be overfitting to the artificial data and not fitting will to the real-world car damage

data.

Comparing the maximum AP[0.5:0.05:0.95] segmentation performance achieved

70

Figure 39: Mask R-CNN model’s total loss during the last 2000 iterations training
on the artificial car damage dataset

Figure 40: Each model’s AP[0.5:0.05:0.95] segmentation performance on the artificial
validation dataset

71

Figure 41: The maximum of each model’s AP[0.5:0.05:0.95] segmentation performance
on the artificial validation dataset

Figure 42: Each model’s AP[0.5:0.05:0.95] segmentation performance on the real-
world car damage validation dataset

72

by each of the five models (see Figure 43) shows us that freezing stages 1 through

3 of the ResNet-50 based backbone performed the best out of all the models. This

observation implies

Figure 43: The maximum of each model’s AP[0.5:0.05:0.95] segmentation performance
on the real-world car damage validation dataset

Comparing the segmentation performance of all models on the real-world car dam-

age dataset to their performance on the artificial validation dataset shows a disparity

between the two. Even comparing the Stage 3 model’s segmentation performance

against the worst performing model on the artificial validation data, Stage 5, there

seems to be no significant transfer of performance from the artificial domain to the

real-world domain.

4.6.6 Prediction Examples

Figure 44 shows several examples of the final (iteration 10,000) Stage 1 model

predictions of the artificial validation data compared to their associated ground truth

labels.

73

Figure 44: Examples of ground truth references (left column) and final Stage 1 model
predictions (right column) of the artificial validation data

74

Figure 45 shows several examples of the iteration 1500 Stage 3 model predictions

of the real-world car damage data compared to their associated ground truth labels.

75

Figure 45: Examples of ground truth references (left column) and iteration 1500 Stage
3 model predictions (right column) of the real-world car damage data

76

4.7 Conclusion

Our hypothesis that the minimal unfreezing of the backbone stages before fine-

tuning on our artificially generated dataset providing the best segmentation perfor-

mance on the real-world car damage dataset turned out to be false. Instead, freezing

the first three stages of Mask R-CNN’s backbone provided the greatest real-world

performance, when fine-tuning the model on the artificial dataset.

Although fine-tuning the Mask R-CNN models, which were pre-trained on COCO

did not translate to good performance on the “Coco Car Damage Detection Dataset,”

other research [78, 82, 94, 81] has shown successful implementations of artificial

datasets with domain randomization for real-world computer vision problems. We

believe the degradation in real-world performance experienced when pre-training a

model on both the COCO and artificial datasets is due to not being able to train

on the minimal real-world car damage dataset, due to it’s small size. Further perfor-

mance gains should be possible with a larger real-world car damage dataset of several

thousand images to allow for further fine-tuning of the model.

Comparing the examples of each dataset given in Figure 36 and Figure 37, there

are many obvious differences between the images in each dataset. For one, the arti-

ficially generated dataset contains much more damage instances per image than the

real-world car damages dataset. Second, the instances of damage in the artificial

dataset are typically much smaller than those in the real-world car damage dataset.

Also, the distance of the camera from the vehicles are significantly greater in the

artificial data than the real-world car damage dataset. These significant differences

between the two datasets, among others, could have contributed to the notable per-

formance gap in their evaluation. Further refinement of the artificial data generation

process could close this gap and give better performance transfer from artificial to

the real-world domain.

77

4.8 Future Work

Pre-training on COCO and artificial data may provide faster training times; how-

ever, the performance boost will be limited given such a small real-world dataset to

train and verify on. We simply need more real-world data for training a CNN to aid

in damage detection for subjects like cars and aircraft. As an avenue for future re-

search, we suggest collecting an aircraft damage segmentation dataset and analyzing

the effects of transfer learning and real-world dataset size on model performance.

Furthermore, to reflect how such a model might be used by maintenance personnel

in the Air Force, future research could create a graphical user interface with an

integrated damage detection model to notify the user of areas of potential damage

areas in aircraft images. A trained user can then verify the segmentation mask and

make edits as necessary, where corrections further refine the model through human-

in-the-loop [95] online learning [96], increasing future model performance.

78

V. Conclusions

This chapter recounts the purpose of this thesis as well as summary of the research

that was performed. Key results and conclusions from the experiment are reviewed.

The chapter ends by suggesting possible avenues for follow on research and final

remarks.

5.1 Summary

Our hypothesis that the minimal unfreezing of the backbone stages before fine-

tuning on our artificially generated dataset providing the best segmentation perfor-

mance on the real-world car damage dataset turned out to be false. Instead, freezing

the first three stages of Mask R-CNN’s backbone provided the greatest real-world

performance, when fine-tuning the model on the artificial dataset.

Although fine-tuning the Mask R-CNN models, which were pre-trained on COCO

did not translate to good performance on the “Coco Car Damage Detection Dataset,”

other research [78, 82, 94, 81] has shown successful implementations of artificial

datasets with domain randomization for real-world computer vision problems. We

believe the degradation in real-world performance experienced when pre-training a

model on both the COCO and artificial datasets is due to not being able to train

on the minimal real-world car damage dataset, due to it’s small size. Further perfor-

mance gains should be possible with a larger real-world car damage dataset of several

thousand images to allow for further fine-tuning of the model.

Comparing the examples of each dataset given in Figure 36 and Figure 37, there

are many obvious differences between the images in each dataset. For one, the arti-

ficially generated dataset contains much more damage instances per image than the

real-world car damages dataset. Second, the instances of damage in the artificial

79

dataset are typically much smaller than those in the real-world car damage dataset.

Also, the distance of the camera from the vehicles are significantly greater in the

artificial data than the real-world car damage dataset. These significant differences

between the two datasets, among others, could have contributed to the notable per-

formance gap in their evaluation. Further refinement of the artificial data generation

process could close this gap and give better performance transfer from artificial to

the real-world domain.

5.2 Future Work

• Collect aircraft damage dataset: Pre-training on COCO and artificial data

may provide faster training times; however, the performance boost will be lim-

ited given such a small real-world dataset to train and verify on. We simply

need more real-world data for convolutional neural networks (CNNs) to aid in

damage detection for subjects like cars and aircraft. As an avenue for future

research, we suggest collecting an aircraft damage segmentation dataset and

analyzing the effects of transfer learning and real-world dataset size on model

performance.

• Create prototype graphical user interface (GUI) with human-in-the-

loop learning: To reflect how such a model might be used by maintenance

personnel in the Air Force, future research could create a GUI with an integrated

damage detection model to notify the user of areas of potential damage areas in

aircraft images. A trained user can then verify the segmentation mask and make

edits as necessary, where corrections further refine the model through human-

in-the-loop [95] online learning [96], increasing future model performance.

80

Bibliography

1. IBM. What are Neural Networks? https://www.ibm.com/cloud/learn/

neural-networks, August 2021.

2. Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask R-CNN.

arXiv:1703.06870 [cs], January 2018.

3. Hiroto Honda. Digging into Detectron 2. https://medium.com/

@hirotoschwert/digging-into-detectron-2-47b2e794fabd, January 2020.

4. Zia Rehman, Muhammad Khan, Fawad Ahmed, Robertas Damasevicius, Syed

Naqvi, Muhammad Nisar, and Kashif Javed. Recognizing apple leaf diseases

using a novel parallel real-time processing framework based on MASK RCNN and

transfer learning: An application for smart agriculture. IET Image Processing,

15, March 2021.

5. Qing Guo, Xueguang Ma, James Ni, and Yuanxin Wang. Mask RCNN - statwiki,

December 2020.

6. Precision and recall. https://en.wikipedia.org/w/index.php?title=

Precision_and_recall&oldid=1050491609, October 2021.

7. Richard Gordon. Visual Inspection for Aircraft. Advisory Circular 43-204, Federal

Aviation Administration, August 1997.

8. Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick,

James Hays, Pietro Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr

Dollár. Microsoft COCO: Common Objects in Context. arXiv:1405.0312 [cs],

February 2015.

81

https://www.ibm.com/cloud/learn/neural-networks
https://www.ibm.com/cloud/learn/neural-networks
https://medium.com/@hirotoschwert/digging-into-detectron-2-47b2e794fabd
https://medium.com/@hirotoschwert/digging-into-detectron-2-47b2e794fabd
https://en.wikipedia.org/w/index.php?title=Precision_and_recall&oldid=1050491609
https://en.wikipedia.org/w/index.php?title=Precision_and_recall&oldid=1050491609

9. Jeremy Norman. The Inspiration for Artificial Neural Networks, Building Blocks

of Deep Learning : History of Information, January 2022.

10. Athanasios Voulodimos, Nikolaos Doulamis, Anastasios Doulamis, and Eftychios

Protopapadakis. Deep Learning for Computer Vision: A Brief Review. Compu-

tational Intelligence and Neuroscience, 2018:e7068349, February 2018.

11. Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich

feature hierarchies for accurate object detection and semantic segmentation.

arXiv:1311.2524 [cs], October 2014.

12. S. Lawrence, C.L. Giles, Ah Chung Tsoi, and A.D. Back. Face recognition: A

convolutional neural-network approach. IEEE Transactions on Neural Networks,

8(1):98–113, January 1997.

13. Thomas Kautz, Benjamin H. Groh, Julius Hannink, Ulf Jensen, Holger Strub-

berg, and Bjoern M. Eskofier. Activity recognition in beach volleyball using a

Deep Convolutional Neural Network. Data Mining and Knowledge Discovery,

31(6):1678–1705, November 2017.

14. Alexander Toshev and Christian Szegedy. DeepPose: Human Pose Estimation via

Deep Neural Networks. 2014 IEEE Conference on Computer Vision and Pattern

Recognition, pages 1653–1660, June 2014.

15. Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. Adaptive

Computation and Machine Learning Series. MIT Press, Cambridge, MA, USA,

November 2016.

16. Kunihiko Fukushima and Sei Miyake. Neocognitron: A Self-Organizing Neural

Network Model for a Mechanism of Visual Pattern Recognition. In Shun-ichi

Amari and Michael A. Arbib, editors, Competition and Cooperation in Neural

82

Nets, Lecture Notes in Biomathematics, pages 267–285, Berlin, Heidelberg, 1982.

Springer.

17. Kunihiko Fukushima. Visual Feature Extraction by a Multilayered Network of

Analog Threshold Elements. IEEE Transactions on Systems Science and Cyber-

netics, 5(4):322–333, October 1969.

18. Jamie Shotton, Matthew Johnson, and Roberto Cipolla. Semantic texton forests

for image categorization and segmentation. In 2008 IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 1–8, June 2008.

19. Jamie Shotton, Andrew Fitzgibbon, Mat Cook, Toby Sharp, Mark Finocchio,

Richard Moore, Alex Kipman, and Andrew Blake. Real-Time Human Pose Recog-

nition in Parts from Single Depth Images. page 8.

20. Sasank Chilamkurthy. A 2017 Guide to Semantic Segmentation with Deep Learn-

ing, July 2017.

21. Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet classification

with deep convolutional neural networks. Communications of the ACM, 60(6):84–

90, May 2017.

22. Fahad Lateef and Yassine Ruichek. Survey on semantic segmentation using deep

learning techniques. Neurocomputing, 338:321–348, April 2019.

23. Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross Girshick.

Detectron2. Facebook’s AI Research Lab, November 2021.

24. Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN: Towards

Real-Time Object Detection with Region Proposal Networks. arXiv:1506.01497

[cs], January 2016.

83

25. Gabriel de Souza Pereira Moreira. CHAMELEON: A Deep Learning Meta-

Architecture for News Recommender Systems [Phd. Thesis]. arXiv:2001.04831

[cs, stat], December 2019.

26. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learn-

ing for Image Recognition. arXiv:1512.03385 [cs], December 2015.

27. Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariha-

ran, and Serge Belongie. Feature Pyramid Networks for Object Detection.

arXiv:1612.03144 [cs], April 2017.

28. Ross B. Girshick. Fast R-CNN. CoRR, abs/1504.08083, 2015.

29. Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet:

A large-scale hierarchical image database. In 2009 IEEE Conference on Computer

Vision and Pattern Recognition, pages 248–255, June 2009.

30. David P. Hughes and Marcel Salathe. An open access repository of im-

ages on plant health to enable the development of mobile disease diagnostics.

arXiv:1511.08060 [cs], April 2016.

31. Silvia Liberata Ullo, Amrita Mohan, Alessandro Sebastianelli, Shaik Ejaz

Ahamed, Basant Kumar, Ramji Dwivedi, and Ganesh R. Sinha. A New Mask

R-CNN-Based Method for Improved Landslide Detection. IEEE Journal of Se-

lected Topics in Applied Earth Observations and Remote Sensing, 14:3799–3810,

2021.

32. Hao Wu, Wenbin Gao, and Xiangrong Xu. Solder Joint Recognition Using Mask

R-CNN Method. IEEE Transactions on Components, Packaging and Manufac-

turing Technology, 10(3):525–530, March 2020.

84

33. Farzan Shenavarmasouleh, Farid Ghareh Mohammadi, M. Hadi Amini, Thiab

Taha, Khaled Rasheed, and Hamid R. Arabnia. DRDrV3: Complete Lesion

Detection in Fundus Images Using Mask R-CNN, Transfer Learning, and LSTM.

arXiv:2108.08095 [cs, eess], August 2021.

34. Automatic lung segmentation in CT images using mask R-CNN for mapping

the feature extraction in supervised methods of machine learning using transfer

learning - IOS Press.

35. A. Broggi, A. Fascioli, P. Grisleri, T. Graf, and M. Meinecke. Model-based valida-

tion approaches and matching techniques for automotive vision based pedestrian

detection. In 2005 IEEE Computer Society Conference on Computer Vision and

Pattern Recognition (CVPR’05) - Workshops, pages 1–1, September 2005.

36. J. Maŕın, D. Vázquez, D. Gerónimo, and A. M. López. Learning appearance

in virtual scenarios for pedestrian detection. In 2010 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, pages 137–144, June

2010.

37. Max Jaderberg, Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Syn-

thetic Data and Artificial Neural Networks for Natural Scene Text Recognition.

arXiv:1406.2227 [cs], December 2014.

38. Stephan R. Richter, Vibhav Vineet, Stefan Roth, and Vladlen Koltun. Playing

for Data: Ground Truth from Computer Games. arXiv:1608.02192 [cs], August

2016.

39. Ankur Handa, Viorica Patraucean, Vijay Badrinarayanan, Simon Stent, and

Roberto Cipolla. Understanding Real World Indoor Scenes With Synthetic Data.

85

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-

nition, pages 4077–4085, 2016.

40. Hassan Abu Alhaija, Siva Karthik Mustikovela, Lars Mescheder, Andreas Geiger,

and Carsten Rother. Augmented Reality Meets Computer Vision: Efficient Data

Generation for Urban Driving Scenes. International Journal of Computer Vision,

126(9):961–972, September 2018.

41. Moritz Menze and Andreas Geiger. Object scene flow for autonomous vehicles. In

2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

pages 3061–3070, Boston, MA, USA, June 2015. IEEE.

42. DMI Car 3D Models. https://www.dmi-3d.net/#, 2022.

43. Stefan Hinterstoisser, Vincent Lepetit, Paul Wohlhart, and Kurt Konolige. On

Pre-Trained Image Features and Synthetic Images for Deep Learning. In Pro-

ceedings of the European Conference on Computer Vision (ECCV) Workshops,

pages 0–0, 2018.

44. Mark Rice, Liyuan Li, Ying Gu, Marcus Wan, Eng Lim, Gao Feng, Jamie Ng,

Melissa Jin-Li, and Shana Babu. Automating the Visual Inspection of Aircraft.

February 2018.

45. Julien Miranda, Stanislas Larnier, Ariane Herbulot, and Michel Devy. UAV-based

Inspection of Airplane Exterior Screws with Computer Vision:. In Proceedings of

the 14th International Joint Conference on Computer Vision, Imaging and Com-

puter Graphics Theory and Applications, pages 421–427, Prague, Czech Republic,

2019. SCITEPRESS - Science and Technology Publications.

46. Donecle. https://en.wikipedia.org/w/index.php?title=Donecle&oldid=

984869363, October 2020.

86

https://www.dmi-3d.net/#
https://en.wikipedia.org/w/index.php?title=Donecle&oldid=984869363
https://en.wikipedia.org/w/index.php?title=Donecle&oldid=984869363

47. Julien Miranda, Jannic Veith, Stanislas Larnier, Ariane Herbulot, and Michel

Devy. Machine learning approaches for defect classification on aircraft fuselage

images aquired by an UAV. page 10, July 2019.

48. Yaqing Wang, Quanming Yao, James Kwok, and Lionel M. Ni. Generalizing from

a Few Examples: A Survey on Few-Shot Learning. arXiv:1904.05046 [cs], March

2020.

49. Anıl Doğru, Soufiane Bouarfa, Ridwan Arizar, and Reyhan Aydogan. Using Con-

volutional Neural Networks to Automate Aircraft Maintenance Visual Inspection.

Aerospace, 7, December 2020.

50. Soufiane Bouarfa, Anil Doğru, Ridwan Arizar, Reyhan Aydoğan, and Joselito

Serafico. Towards Automated Aircraft Maintenance Inspection. A use case of de-

tecting aircraft dents using Mask R-CNN. In AIAA Scitech 2020 Forum, Orlando,

FL, January 2020. American Institute of Aeronautics and Astronautics.

51. Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You Only

Look Once: Unified, Real-Time Object Detection. arXiv:1506.02640 [cs], May

2016.

52. Uniting Aviation. The future of MRO: Emerging technologies in aircraft mainte-

nance, August 2019.

53. T. Sattar, S. Chen, B. Bridge, and J. Shang. ROBAIR: Mobile Robotic System

to Inspect Aircraft Wings and Fuselage. undefined, 2003.

54. Igor Jovancevic, Stanislas Larnier, Jean-José Orteu, and Thierry Sentenac. Au-

tomated exterior inspection of an aircraft with a pan-tilt-zoom camera mounted

on a mobile robot. Journal of Electronic Imaging, 24(6):061110, November 2015.

87

55. Donecle. Evaluate your aircraft paint quality automatically with Donecle’s drone,

December 2019.

56. Aircraft Drone Inspections — Mainblades B.V. https://mainblades.com/,

February 2022.

57. Pandia Rajan Jeyaraj and Edward Rajan Samuel Nadar. Computer-assisted med-

ical image classification for early diagnosis of oral cancer employing deep learning

algorithm. Journal of Cancer Research and Clinical Oncology, 145(4):829–837,

April 2019.

58. Ashnil Kumar, Jinman Kim, David Lyndon, Michael Fulham, and Dagan Feng.

An Ensemble of Fine-Tuned Convolutional Neural Networks for Medical Image

Classification. IEEE Journal of Biomedical and Health Informatics, 21(1):31–40,

January 2017.

59. Samir S. Yadav and Shivajirao M. Jadhav. Deep convolutional neural network

based medical image classification for disease diagnosis. Journal of Big Data,

6(1):113, December 2019.

60. Qing Li, Weidong Cai, Xiaogang Wang, Yun Zhou, David Dagan Feng, and

Mei Chen. Medical image classification with convolutional neural network.

In 2014 13th International Conference on Control Automation Robotics Vision

(ICARCV), pages 844–848, December 2014.

61. Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional

Networks for Biomedical Image Segmentation. arXiv:1505.04597 [cs], May 2015.

62. Adrien Gaidon, Qiao Wang, Yohann Cabon, and Eleonora Vig. Virtual Worlds as

Proxy for Multi-Object Tracking Analysis. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 4340–4349, 2016.

88

https://mainblades.com/

63. D. Vazquez, A. M. Lopez, and D. Ponsa. Unsupervised domain adaptation of

virtual and real worlds for pedestrian detection. In Proceedings of the 21st In-

ternational Conference on Pattern Recognition (ICPR2012), pages 3492–3495,

November 2012.

64. R. Barth, J. IJsselmuiden, J. Hemming, and E. J. Van Henten. Data synthesis

methods for semantic segmentation in agriculture: A Capsicum annuum dataset.

Computers and Electronics in Agriculture, 144:284–296, 2018.

65. German Ros, Laura Sellart, Joanna Materzynska, David Vazquez, and Antonio M.

Lopez. The SYNTHIA Dataset: A Large Collection of Synthetic Images for

Semantic Segmentation of Urban Scenes. In 2016 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 3234–3243, Las Vegas, NV, USA,

June 2016. IEEE.

66. A Geiger, P Lenz, C Stiller, and R Urtasun. Vision meets robotics: The

KITTI dataset. The International Journal of Robotics Research, 32(11):1231–

1237, September 2013.

67. Ton Roosendaal. Blender. Blender Foundation.

68. David Helgason, Nicholas Francis, and Joachim Ante. Unity. Unity Technologies,

January 2022.

69. CGTrader - 3D Model Store. https://www.cgtrader.com/, 2022.

70. Sketchfab. https://sketchfab.com/, February 2022.

71. 3D Models for Professionals :: TurboSquid. https://www.turbosquid.com/,

February 2022.

89

https://www.cgtrader.com/
https://sketchfab.com/
https://www.turbosquid.com/

72. Patrick Silberberg. Aircraft Inspection by Multirotor UAV Using Coverage Path

Planning. Master’s thesis, Air Force Institution of Technology, Wright-Patternson

Air Force Base, Ohio, March 2021.

73. Balakrishnan Ramalingam, Vega-Heredia Manuel, Mohan Rajesh Elara,

Ayyalusami Vengadesh, Anirudh Krishna Lakshmanan, Muhammad Ilyas, and

Tan Jun Yuan James. Visual Inspection of the Aircraft Surface Using a Teleop-

erated Reconfigurable Climbing Robot and Enhanced Deep Learning Technique.

International Journal of Aerospace Engineering, 2019:1–14, September 2019.

74. C. J. Alberts, C. W. Carroll, W. M. Kaufman, C. J. Perlee, and M. W. Siegel.

Automated Aircraft inspection, April 1998.

75. U. S. Government Accountability Office. Weapon System Sustainment: Aircraft

Mission Capable Rates Generally Did Not Meet Goals and Cost of Sustaining

Selected Weapon Systems Varied Widely. Report to Congressional Requesters

GAO-21-101SP, U. S. Government Accountability Office, November 2020.

76. Gaudenz Boesch. Object Detection in 2022: The Definitive Guide, July 2021.

77. Ankush Gupta, Andrea Vedaldi, and Andrew Zisserman. Synthetic Data for

Text Localisation in Natural Images. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 2315–2324, 2016.

78. Jonathan Tremblay, Aayush Prakash, David Acuna, Mark Brophy, Varun Jam-

pani, Cem Anil, Thang To, Eric Cameracci, Shaad Boochoon, and Stan Birch-

field. Training Deep Networks with Synthetic Data: Bridging the Reality Gap by

Domain Randomization. arXiv:1804.06516 [cs], April 2018.

79. Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus En-

zweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The

90

Cityscapes Dataset for Semantic Urban Scene Understanding. arXiv:1604.01685

[cs], April 2016.

80. Xinyu Huang, Peng Wang, Xinjing Cheng, Dingfu Zhou, Qichuan Geng, and

Ruigang Yang. The ApolloScape Open Dataset for Autonomous Driving and its

Application. IEEE Transactions on Pattern Analysis and Machine Intelligence,

42(10):2702–2719, October 2020.

81. J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel. Domain

randomization for transferring deep neural networks from simulation to the real

world. In 2017 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), pages 23–30, September 2017.

82. Rawal Khirodkar, Donghyun Yoo, and Kris M. Kitani. Domain Randomization

for Scene-Specific Car Detection and Pose Estimation. arXiv:1811.05939 [cs],

November 2018.

83. Adam Paszke, Sam Gross, Soumith Chintala, and Gregory Chanan. PyTorch.

Facebook’s AI Research Lab, October 2021.

84. Jonas Aust, Sam Shankland, Dirk Pons, Ramakrishnan Mukundan, and Antonija

Mitrovic. Automated Defect Detection and Decision-Support in Gas Turbine

Blade Inspection. Aerospace, 8(2):30, February 2021.

85. Randa Almadhoun, Tarek Taha, Lakmal Seneviratne, Jorge Dias, and Guowei

Cai. Aircraft Inspection Using Unmanned Aerial Vehicles. In Proceedings of the

International Micro Air Vehicle Conference and Competition, page 7, October

2016.

91

86. Anil Doğru, Soufiane Bouarfa, Ridwan Arizar, and Reyhan Aydoğan. Using Con-

volutional Neural Networks to Automate Aircraft Maintenance Visual Inspection.

Aerospace, 7(12):171, December 2020.

87. Vasileios Tzitzilonis, Konstantinos Malandrakis, Luca Zanotti Fragonara,

Jose Angel Gonzalez Domingo, Nicolas P. Avdelidis, Antonios Tsourdos, and

Kevin Forster. Inspection of Aircraft Wing Panels Using Unmanned Aerial Ve-

hicles. Sensors, 19(8):1824, April 2019.

88. Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and

Alan L. Yuille. DeepLab: Semantic Image Segmentation with Deep Convolutional

Nets, Atrous Convolution, and Fully Connected CRFs. arXiv:1606.00915 [cs],

May 2017.

89. Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks for

Large-Scale Image Recognition. arXiv:1409.1556 [cs], April 2015.

90. Georgios Georgakis, Arsalan Mousavian, Alexander C. Berg, and Jana

Kosecka. Synthesizing Training Data for Object Detection in Indoor Scenes.

arXiv:1702.07836 [cs], September 2017.

91. Guido van Rossum. Python. Python Software Foundation, January 2022.

92. Blender Foundation. Blender 3.0.1 Python API Documentation. https://docs.

blender.org/api/current/index.html, January 2022.

93. Lalu Prasad Lenka. Coco Car Damage Detection Dataset, October 2020.

94. Lixin Duan, Dong Xu, and Ivor Tsang. Learning with Augmented Features for

Heterogeneous Domain Adaptation. arXiv:1206.4660 [cs], June 2012.

92

https://docs.blender.org/api/current/index.html
https://docs.blender.org/api/current/index.html

95. Samuel Budd, Emma C. Robinson, and Bernhard Kainz. A Survey on Active

Learning and Human-in-the-Loop Deep Learning for Medical Image Analysis.

Medical Image Analysis, 71:102062, July 2021.

96. Steven C. H. Hoi, Doyen Sahoo, Jing Lu, and Peilin Zhao. Online Learning: A

Comprehensive Survey. arXiv:1802.02871 [cs], October 2018.

93

Acronyms

AFIT Air Force Institute of Technology. 43

AI artificial intelligence. 31

ANN artificial neural network. 16, 17

ANT Autonomy and Navigation Technology. 43

AP average precision. 10, 11, 49, 50, 51

API application programming interface. 33, 34, 35

CAD computer-aided design. 27, 59, 60, 61, 62

CNN convolutional neural network. iv, 3, 17, 20, 25, 27, 29, 30, 31, 32, 34, 40, 42,

43, 44, 52, 53, 54, 59, 60, 78, 80, 1

DR domain randomization. 60

FAA Federal Aviation Administration. 2

FAIR Facebook AI Research. 54, 55

FCRN Fully-Convolutional Regression Network. 59

FN false negative. 9, 46

FP false positive. 9, 10, 46, 49

FPN Feature Pyramidal Network. 22, 24, 55, 56, 58, 66, 68

GUI graphical user interface. 80

94

HDRI high dynamic range image. ix, 62, 64, 65

IoU intersection over union. 9, 10, 11, 48, 49, 50, 51

mAP mean average precision. 10, 11, 51

PR precision-recall. 10, 50

ReLU rectified linear unit. 17, 54

ROI region of interest. 20, 22, 55, 56

RPN Region Proposal Network. 22, 56

TL transfer learning. 24, 56, 58

TN true negative. 9, 46

TP true positive. 9, 10, 46, 48, 49

UAV unmanned aerial vehicle. iv, 28, 29, 30, 33, 42, 43, 1

YOLO You Only Look Once. 28

95

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

07–03–2022 Master’s Thesis Sept 2020 — Mar 2022

Automated Aircraft Visual Inspection with Artificial Data Generation
Enabled Deep Learning

Nathan J. Gaul

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENG-MS-20-M-028

AFRL/RXCA
Building 653
WPAFB OH 45433-7765
DSN 937-255-9798
Email: john.welter.2@us.af.mil

AFRL/RXCA

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

Aircraft visual inspection, which is essential to daily maintenance of an aircraft, is expensive and time-consuming to
perform. Augmenting trained maintenance technicians with automated UAVs to collect and analyze images for aircraft
inspection is an active research topic and a potential application of CNNs. Training datasets for niche research topics
such as aircraft visual inspection are small and challenging to produce, and the manual process of labeling these datasets
often produces subjective annotations. Recently, researchers have produced several successful applications of artificially
generated datasets with domain randomization for training CNNs for real-world computer vision problems. The research
outlined herein builds upon this idea to create an artificial data generation pipeline inside Blender and generate an
artificial dataset to train an instance-segmentation CNN model for car damage detection. This research then evaluates
the real-world performance of several models, each pre-trained on the COCO dataset and fine-tuned on custom generated
artificial dataset...

machine learning, deep learning, automated aircraft inspection

U U U UU 95

Captain Nathan J. Gaul, AFIT/ENG

(208) 805-0468; nathan.gaul@afit.edu

	Abstract
	List of Figures
	List of Tables
	Introduction
	Overview
	Problem Statement
	Aircraft Visual Inspection

	Research Objectives
	Methodology
	Research Contributions
	Thesis Organization

	Background and Literature Review
	Aircraft Surface Defects
	Missing or Damaged Material
	Dented or Disbonded Material
	Defect Progression

	Detecting Objects within Images
	Instance Segmentation Evaluation Metrics

	Deep Neural Networks
	Deep Learning Image Segmentation Architectures

	Previous Works on Artificial Data Generation for Image Segmentation
	Previous Works on Automated Visual Inspection in Aircraft Maintenance

	Scholarly Article: Artificial Dataset Generation for Automated Aircraft Visual Inspection
	Introduction
	Related Work
	Proposed Research
	Artificial Data Generation Pipeline
	Blender
	Label Post Processing

	Dataset Examples
	Future Work

	Scholarly Article: Artificial Dataset Generation and its Effect on the Performance of Car Damage Instance Segmentation Models
	Introduction
	Background
	Artificial Dataset Generation
	Instance Segmentation
	Convolutional Neural Networks

	CNN Architecture for Instance Segmentation
	Mask R-CNN's Loss Function
	Transfer Learning with Mask R-CNN

	Related Work
	Automated Visual Inspection
	Synthetic Data for Computer Vision
	Domain Randomization

	System Implementation
	Data Generation Pipeline

	Experiment
	Datasets
	Models
	Training
	Training Data Augmentations
	Results
	Prediction Examples

	Conclusion
	Future Work

	Conclusions
	Summary
	Future Work

	Bibliography
	Acronyms

