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ABSTRACT 

 Deception methods have been applied to the traditional domains of war (air, land, 

sea, and space). In the newest domain of cyber, deception can be studied to see how it can 

be best used. Cyberspace operations are an essential warfighting domain within the 

Department of Defense (DOD). Many training exercises and courses have been 

developed to aid leadership with planning and to execute cyberspace effects that support 

operations. However, only a few simulations train cyber operators about how to respond 

to cyberspace threats. This work tested a commercial product from Soar Technologies 

(Soar Tech) that simulates conflict in cyberspace. The Cyberspace Course of Action Tool 

(CCAT) is a decision-support tool that evaluates defensive deception in a wargame 

simulating a local-area network being attacked. Results showed that defensive deception 

methods of decoys and bait could be effective in cyberspace. This could help military 

cyber defenses since their digital infrastructure is threatened daily with cyberattacks. 
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I. INTRODUCTION 

Now that cyberspace is a warfare domain like air, land, sea, and space, military 

organizations are thinking about how defense and offense can apply there. Although 

cyberspace is evolving and changing with the influx of new Internet-connected devices 

daily, few Department of Defense or commercial wargame simulations cover cyberspace 

operations planning. A big challenge in defensive cyberspace operations is understanding, 

interpreting, and acting on the large amounts of data used in our networks. Deception has 

historically been an important tool in warfare for both offense and defense. In cyberspace, 

deception can waste an attacker’s time with decoys, or can send malicious software to an 

attacker. The purpose of this research was to test simulated deceptions in cyberspace as 

defensive methods.  

This research experimented with modeling cyberwar tactics in a wargame designed 

to prepare operators for defending cyberspace. We tested a product from Soar Technologies 

that can customize and fight realistic scenarios including deception. Soar Technologies was 

funded by the Defense Advanced Research Projects Agency to support research for 

military decision-making in the cyberspace domain; previous experiments with their 

wargame resulted in an NPS thesis (Green, 2020). The work described here is successor 

work to Green’s thesis.  

Deception within cyberspace can help protect defenders, enhancing the defender’s 

rate of success and limiting the attacker’s ability to disrupt activities. Deception technology 

could prevent a malicious user that found a way to infiltrate a network from doing any 

significant damage (Parks & Duggan, 2011). One tactic could be generating deceptive 

decoys that imitate legitimate technology assets throughout the infrastructure. In general, 

deception within cyberspace could add protection to defenders by enhancing the defender’s 

rate of success while limiting the attacker’s ability to disrupt activities. Deception methods 

can also use artificial intelligence and machine learning to ensure techniques are flexible 

and dynamic. 
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Deception can be tested in wargames. These can serve a broad range of purposes 

and can use military rules and probability theory in simulating conflict (Shang et al., 2019). 

Wargames allow policy makers and operators to test strategies and tactics without 

real-world penalties. Unexpected scenarios can occur in wargames just as in actual warfare; 

seeing and experiencing these surprises in a wargame prepares a player to respond 

efficiently in real life. The U.S. Department of Defense uses wargames extensively. 

The experiments in this research involved runs of a wargame with random choices. 

This randomization was used for both offensive and defensive tactics by allowing players 

to explore possibilities better. For defenders, better tactics could strengthen cybersecurity 

programs. The work produced in this thesis designed a cyber wargame using a commercial 

tool. Chapter II discusses previous work on cyberspace deception including honeypots, 

game theory, artificial intelligence, and attack modeling. Chapter III describes our 

experimental methodology, including tested scenarios in collaboration with Soar 

technologies. Costs, benefits, offensive strategies, and defensive strategies will be 

measured for the attacker and defender for each scenario. Chapter IV summarizes the 

results from the scenarios. Chapter V discusses conclusions and recommendations for 

future work. 
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II. LITERATURE REVIEW 

A. DEFENSE IN CYBERSPACE 

The original Internet protocols were designed to treat all machines the same and to 

accept connection requests from anyone on the network. The tight-knit community of 

people who invented the Internet trusted one another, so they avoided security controls that 

would have increased the complexity of the protocols (Garzke & Lindsay, 2015). That 

same openness later facilitated distributed denial-of-service attacks that would flood 

servers with more connection requests than they could handle. Cyber criminals, and 

autonomous botnets under their control, regularly scan networks in search of vulnerable 

systems to co-opt (Trassare et al., 2013). Military and more sophisticated adversaries also 

scan and map networks as part of reconnaissance and intelligence gathering. 

Cyber defense is becoming harder in cyberspace because of the increasing number 

of vulnerabilities and increasing sophistication of attacks using Internet connectivity. 

Automated tools can help with many defensive tasks such as testing software for bugs or 

confirming security settings (Gartzke & Lindsay, 2015). Attacks are increasingly 

automated, so defense must be automated as well. One useful form of automated response 

could be implementing cyberspace deception within a network (Anitha et al., 2016). 

Automated deception can allow defenders to conceal true-value targets while encouraging 

attackers to go after low-value targets. It provides the defenders more time to successfully 

identify attacks and figure out how to fight them, providing a strategic advantage for 

defenders over their attackers (Changwook-Park & Kim, 2019).  

Penetration testing or “red teaming” can test defensive strategies. It can show 

network and system weaknesses, and it can identify vulnerable or exploitable systems that 

require remediation (Randhawa et al., 2018). It can be part of a wargame and can be done 

by an organization different from the targeted-network owner to provide an unbiased test. 

Penetration testing can be automated. An example is Trogdor (Randhawa et al., 2018), an 

automated system that uses a model and critical-node analysis. It compiles a visual picture 

of the defenders and vulnerable resources within the network.  
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B. DEFENSIVE CYBER DECEPTION 

Traditional deception practices can apply to cyberspace (Rowe & Rothstein, 2004), 

although methods differ between cyber defense and offense (Rowe & Rrushi, 2016). 

Cyber-deception strategies for the defenders include misinformation and disinformation to 

sabotage the early stages of attack reconnaissance. They can also use camouflage and fakes. 

Camouflage can be hiding or concealing honeypots within the defender’s network. One 

kind of fake is a honeypot, a decoy for cyberattackers designed to detect and study their 

tricks and types of attacks. It acts as a potential target and reports to defenders about 

attempts to access that system. Attackers wish to avoid honeypots, so effectively disguising 

one gives a defender an edge.  

A deception in the form of fake documents can also help the defender throw 

attackers off the trail of useful information. False information can be planted in documents 

to waste the time of attackers, while alerting defenders about potential malicious activity 

(Rowe & Rrushi, 2016); fake network nodes can provide a similar effect. One study 

generated believable fake documents using a genetic algorithm (Karuna et al., 2021); a fake 

document can affect the time and effort for an attack to succeed. For measuring text 

comprehensibility, they used principles of psycholinguistics and reading comprehension: 

connectivity, dispersion, and sequentially. Another project created false code similar to real 

code but having no function (Park & Stolfo, 2012). Fake network nodes or devices can 

provide an effect similar to that of fake files (Rowe & Rrushi, 2016), but could give the 

defender more time to react to an attacker.  

There are several ways to accomplish defensive deception. Second-order deception 

adds another layer of deception behind existing deception (Rowe & Rrushi, 2016). This 

type of deception can increase the overall cost that the attacker incurs because of the time 

spent working through the multiple layers of deception. Resource deception messages 

deceive the attacker into believing that what they need to perform their attack is 

unavailable, ultimately leading them to leave the network (Rowe & Rrushi, 2016).  

Some work has tested deceptive response frameworks such as (Goh, 2007). This 

work categorizes the various types of responses used against the attackers and shows how 
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intrusion deception fits in. A different project used technologies and tools from third-party 

vendors such as VMware, Snort, and honeypots in a sandbox environment open to attacks 

from the Internet (Chong & Koh, 2018). The results showed that attackers had some 

interesting reactions to deceptions such as a SSH brute force attack after several port scans 

in four days. It took the attacker approximately seven hundred attempts to successfully 

brute force a user account. Another project studied a deep-learning method for planning 

automated deceptive cyber defenses (Matthew, 2020).  

Deceptive responses can be used in network defenses at the application layer by 

adapting to Web traffic. Red-teams consists of security professionals disguised as 

adversaries to prevail over cybersecurity controls. They have been using deception for 

phishing, fake documents, social engineering, and more attacks. One project examined the 

value of human interactions and teamwork in red-team deception using cognitive and 

behavioral testing (Bruggen et al., 2019). This research concluded that deceiving the red 

team might work better on an operational network by providing confusion through 

complexities and anomalies (Bruggen et al., 2019). Another project used “moving decoys” 

(Sun et al., 2019) to constrain attackers and forward the malicious commands to decoy 

servers, providing the attackers with credible results from their attacks. 

A project implemented deception techniques within a Web-based honeypot built 

with Tanner and Snare software, as well as a secure-shell SSH honeypot built with Cowrie 

software (Chong & Koh, 2018). The techniques included fake files, defensive camouflage, 

and false excuses. Most attackers did fingerprinting and vulnerability scanning of the 

honeypots, but did not respond to customized deception and showed minimal interactions. 

A related experiment tested and evaluated a Web honeypot tool Glastopf and an SSH 

honeypot tool Kippo (Rowe & Yahyaoui, 2015). Including deception in the Web honeypot 

encouraged interest by attackers in the additional linked Web pages and interactive 

features. 

C. GAME THEORY 

Game theory studies situations where two parties compete, alternating actions 

between them (Ross, 2019). In a game model for cybersecurity, defenders try to secure the 
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network, and attackers try to circumvent those defenses. Both defender and attacker actions 

have costs. Costs vary between sites because each target has different information assets, 

risk factors, and security strategies. A measure of how well the attacker did in the game is 

the difference between the attacker’s net cost (cost minus benefits achieved) and the 

defender’s net cost. 

Game theory has been used for projects with the defender using decoys to hide 

assets. One project used game theory to plan a cyberattack scenario where a defender used 

lightweight decoys to conceal and defend actual hosts (Major et al., 2019). The defender 

and attacker played a game with information assets consisting of decoy and real systems, 

possible actions for each player, and a method for evaluating and defining individual player 

tactics. This work used multiple game trees and assumed each player’s understanding of 

the game playoffs and structure. This approach appeared to be effective. 

Deception games are “imperfect-information stochastic games” in the literature. 

Network interdiction can be viewed as a game between an attacker and a network defender, 

where the attacker seeks to degrade network operations while the defender counteracts the 

attacker. One project studied network interdiction where the attacker has imperfect 

knowledge of the network topology but can learn about it by monitoring network 

operations (Zheng and Castanon, 2012). The network observed the attack, and chose to 

conceal parts of the network to hide information from the attacker. These game models 

study strategies for both attackers and defenders in a simulated environment, typically 

using minimax game theory. This theory can minimize the worst-case potential loss by 

having the attacker and defender consider their opponent’s response to each of their 

strategies and select the method that should give the best payoff (Stanford, 2021). 

Game modeling for cybersecurity requires attack and defense models. One project 

built attack models using deep learning with numerical simulations to verify accuracy 

(Najada et al., 2018). A different one generated an agent taxonomy using topological data 

analysis and analysis of simulation outputs (Swarup & Resasadegan, 2019). Another option 

is the Malicious Activity Simulation Tool, a scalable, flexible, and interoperable 

architecture for training specialists in cyber security (Swiatocha, 2018). Attack modeling 
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can incorporate movement throughout the network to establish footholds for malicious 

activities (“lateral movement”) (Bai et al., 2019).  

Defenders can make decoys look like legitimate network assets to confuse the 

attacker (Amin et al., 2020). Previous indicators of compromise can help network 

defenders recognize attacks and plan deceptions. One way is by finding the attackers’ 

shortest paths from source to targets and anticipating that they will follow those routes 

(Wilkens et al., 2019). Honeypots are good for detecting lateral movement in networks 

since anyone accessing them is suspicious. Another project used game theory to manage 

lightweight decoys to conceal and defend actual hosts on the same network (Major et al., 

2019).  

Cyber criminals and autonomous botnets under their control regularly scan 

networks in search of vulnerable systems to exploit; military and more sophisticated 

adversaries may also do this. They can collect data from logs, records, and alerts and use 

this information to correlate events on the network (Balbix, 2020). A system can recognize 

network attacks by intrusion detection looking for patterns in the data (Anitha et al., 2016). 

It can also use deception for defense by presenting a false network topology (Trassare et 

al., 2013). 

D. ARTIFICIAL INTELLIGENCE 

Artificial-intelligence (AI) technologies can enhance security by helping to plan 

defenses. It can support curated collection data from logs, records, and alerts and use this 

information to correlate events on the network (Balbix, 2020). An example of using 

intrusion detection to find patterns in the data is (Anitha et al., 2016). Artificial-intelligence 

technologies can process large amounts of data to identify patterns in data. They can also 

be used in several tasks in cyber defense (Trifonov et al., 2020).  

AI techniques in machine learning are useful for cyber defense because cyber 

threats advance yearly in sophistication and automation. Machine learning could provide 

much faster protection than what is available with manual identification of threats (Rieck, 

2011). In one study, two machine-learning algorithms using reinforcement learning played 



8 

the attacker and defender in a game (Zhu et al., 2014). Each tried to maximize their 

cumulative reward as they learned good actions in an environment over many runs. 

Reinforcement learning can also address other cybersecurity problems (Nguyen & Reddi, 

2020). 
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III. METHODS 

A. OVERVIEW 

We collaborated with Soar Technology Inc. (SoarTech) to use their proprietary tool, 

the Cyberspace Course of Action Tool (CCAT). The CCAT simulates a computer network 

including some deceptions and permits the testing of security measures. In particular, it can 

test the impact of deception within a network. This provides actionable insights and helps 

the design of high-security local-area networks. Our experiments with CCAT used three 

realistic scenarios, variants of those developed in previous experiments (Green, 2020). 

Deception effectiveness was then measured using metrics based on costs and rewards as 

discussed later in this chapter. 

The CCAT was designed as a cyber wargame between attackers and defenders. 

Both the attacker and defender can choose actions depending on the specific situation. The 

scenarios are created with simulated nodes and assets. Empirical game-theoretic analysis 

(EGTA) is used with reinforcement learning to train agent (attacker or defender) behavior 

based on results. During training, the agent becomes less likely to choose an action that 

made it more costly to achieve its objectives, and more likely to choose an action that made 

it less costly to achieve its objectives.  

B. SCENARIO COMPONENTS 

The base network map used for our experiments is in Figure 1 (Green, 2020) and 

represents a local-area network with segmentation and security. It has simulated servers, 

workstations, a firewall, and other network devices commonly found in military networks, 

organized in three virtual local-area subnetworks (VLANs). Front-end servers support 

Web, mail, and applications that access backend servers. Two simulated program-of-record 

servers, two domain controllers, two Web database servers, two file servers, and one router 

for application and mail backend servers are in the server’s virtual local-area network.  
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Figure 1. Network Map: Source: Green (2020). 

Figure 2 shows the possible actions of a defender in the blue boxes. The defender’s 

goals are to identify attack actions and prevent the attacker from accomplishing their goals. 

At the start, the defender can choose file monitoring, process monitoring, auditing logon 

events, auditing intrusion logs, or checking firewall alerts. If an attack has occurred, the 

defender can stop it from progressing by preventing exfiltration of data or preventing the 

server from being destroyed. The defender also can create decoy servers, create decoy 

programs of record, change file names, and change hostnames. 
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Figure 2. Defender Map. Source: Green (2020). 

Figures 3 through 5 show the attacker plan options in the yellow boxes. Attackers 

start the game by selecting “Detect Decoy” or “Maintain IP Address,” a waiting activity. 

The next action is “Map Network” which simulates a network scan on the defender 

network, resulting in open ports on the servers in the DMZ. The attacker can then select a 

specific attack based on the security conditions discovered from the “Map Network” phase. 

These include spear-phishing attacks, exploiting public-facing applications through 

servers, and Web crawling to collect a list of addresses. The attacker can then discover 

local networks, users, and processes, and search local data or determine decoys. This action 

gains them useful information such as usernames, personal information, or network 

connections. Then they can act based on the result of the attack such as “Exfil Data” or 

“Server Destroyed.” 
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Figure 3. Attack Map (Part 1). Source: Green (2020). 



13 

 

Figure 4. Attack Map (Part 2). Source: Green (2020). 
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Figure 5. Attack Map (Part 3). Source: Green (2020). 
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C. SCENARIOS TESTED 

The first scenario added ten machines to the baseline experimental topology to 

observe their impact. Some machines represented hosts without anything of interest on 

them for the attacker, while others had information that the attacker may consider 

interesting. To add complications for the defender, the first scenario sent a phishing email 

to the defender, and the defender had to disable the links and attachments in the email. The 

second scenario added 100 more generic machines as attack targets to the experimental 

topology. For the first two experiments these machines added density to the network, 

slowing the attacker in accomplishing their objectives. The third scenario used a distributed 

denial-of-service (DDoS) attack on an isolated part of the network to distract the defenders 

from an exploit-based attack against their email, application, or Web server. The defender 

can blacklist the IP address, do denial-of-service mitigations, or install tools to prevent 

additional common attacks. To make the scenario more challenging, the attacker spoofed 

a trusted IP address that did not require the usual degree of authentication; the defender 

must then choose the correct address to block. 

D. ASSIGNING COSTS AND BENEFITS TO THE SCENARIO OPTIONS 

Costs and benefits are associated with each action that the attacker and defender 

select. We used the already established values from (Green, 2020) shown in Tables 1–5. 

The game scoring metric for the attacker was the total cost spent minus the rewards 

received for all agents over the entire game. The game score for the defender was the total 

cost spent by defender agents. The total game score was the score for the defender minus 

the score for the attacker. Thus, positive values of the metric indicated success of the 

attacker, and negative values indicated success of the defender. Attacker and defender 

actions were logged for further analysis. 

The score for an attacker is the sum of the rewards it received for achieving its goals 

minus the cost of all the actions it has taken. The defender score is the sum of the rewards 

the attacker received and the costs the defender incurred. The attacker tries to maximize 
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their score, and the defender tries to minimize their score, but the defender can never do 

better than a zero score. 

The values we used for the costs and rewards and how the simulation environment 

was set up were based on estimates and heuristics, so similar results in the real world are 

not guaranteed. However, if the defender score is low using deceptive techniques, it 

suggests that the deceptive techniques work. 

Table 1. Cost Attacker. Adapted from Green (2020). 
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Table 2. Cost Defender. Adapted from Green (2020). 

 
 

Table 3. Attacker Decoy Scenario Actions. Adapted from Green (2020). 

 
 

Table 4. Defender Decoy Scenario Actions. Adapted from Green (2020). 
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Table 5. Defender Decoy Scenario Actions. Adapted from Green (2020). 

 
 
Specifically, for the denial-of-service scenario, the defender’s reward for detecting 

and addressing the first attack is minimal since it is a diversion. It is more important that 

the defender prevent the attacker from gaining critical-system access. The longer a denial 

of service occurs, the easier it is to determine how to block it, so there will be a small 

reward if the defender does block it. A fairer cost-benefit accounting is that the attacker 

gains points for each period of denial of service, following Table 6 and Table 7. The costs 

and benefits for the military-adversary attacker could be different since their goals could 

be sabotage and espionage.  

 



19 

Table 6. Proposed Defender DDoS Scenario Cost Table 

 
 

Table 7. Proposed Actions for Attacker and Defender 

 
 

E. TRAINING AND TESTING 

SoarTech ran the scenarios we configured at their site in Michigan. We mostly 

followed the parameter recommendations of our SoarTech contacts. To determine the best 

strategies for attack and defense, SoarTech engineers trained the attacker and defender 

agents used in their CCAT tool for us before testing it.  
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After that agent has been trained, that agent is played against previous agents of its 

opponent. For example, in round 10 of the “outer loop,” we will have trained 10 different 

defender agents, 1 in each previous round. Each round of the outer loop consists of the 1 

million games (so, 10 million total). The attacker and defender are trained separately, so 

each round has 2 million games, 1 million for the newest defender training against one of 

the previous attackers, and 1 million for the newest attacker training against one of the 

previous defenders. Across the million games, only the newest defender and newest 

attacker are trained, and the previous attacker and previous defender are unchanged. At the 

end of each round after 1 million games have been played, we run a few games with each 

pair of currently developed attacker and defender agents against all of the previous 

defender or attacker agents, respectively. At that point we compute the Nash equilibrium 

across all of the games, and get a score for each agent. Running a few games against 

previous agents is beneficial to demonstrate how quickly it takes the attacker and defender 

to choose an action. It also demonstrates which action is chosen the most. This information 

is compared to the most recent agents that incorporate the experience of all previous agents. 

We have a stopping criterion for the outer loop that is either a certain level of regret, 

or a certain number of rounds. We pick whichever agent had the lowest regret (for each of 

the attacker and defender agents) and play the 100 games with that agent. For all of the 

games, we used the same parameter values. The maximum number of steps allowed per 

game was 45; at that point, games were ended, and scores computed even if more options 

were available to the players. 

The game is not a zero-sum game because some choices are costly for both sides 

(Zhang, 2009). The defender gets penalized while the attacker is rewarded when the 

attacker achieves a goal. So, to perform its best, the defender should take as few actions as 

possible while also preventing the attacker from achieving as few goals as possible. 

The “base scenario” was the simplest game tested. SoarTech used the costs and 

actions from the previous experiment (Green, 2020) with the additions described such as a 

delayed spear-phishing capability. Results on the base scenario became a baseline for the 

other three scenarios. 
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For the scenarios we tested, we added the following attacker and defender actions 

beyond those of (Green, 2020):  

1. Attacker options of “spear-phish link” and “spear-phish attachment” were added 

for the first scenario. 

2. Attacker action “decoy DDOS” and defender action “terminate excess network 

connection” were added for the second scenario. Also, the second scenario setup 

ensured the DDOS was always selected. 

3. The third scenario allowed the attacker to use a spoofed IP address.  

4. The first and third scenarios permitted a variety of attacker actions, but in the 

second scenario, the attacker always selected distributed denial of service. 

5. The attacker and defender alternated turns and their actions did not overlap. Each 

agent chose its action with a neural network with an initial random initialization of 

weights; its inputs were the state of the simulation.  

F. SCENARIOS NOT TESTED 

Due to the limits of time, several good deception ideas for deceivers and attackers 

in (Rowe & Rrushi, 2016) were not tested but should be. 

Deceiver deception ideas: 

• Defensive deception methods can be as simple as providing messages when 

the attackers connect or have advanced as embedding malware within the 

files that an attacker takes. Decoys can be used for active defense by 

providing fake content. Discovery of the content stored on a system is a 

typical first stage of cyberattacks, and misleading content may trick an 

attacker into wasting time or following the wrong path in the next stage of 

their attack. Providing random false error messages on tries to connect to 

the decoys is effective because this showed inconsistency and test the 

attacker’s overall flexibility.  
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• Deception can inject malicious software into a system. Messages can have 

attachments which conceal malicious software. Almost any type of file can 

be attached to an email message, so attackers have considerable freedom.  

• Another way that a defender can deceive is by creating large file directories 

generated automatically from grammar rules. A grammar could be inferred 

from examples. This will confuse attackers and make it harder for them to 

find key files. A grammar could use regular expressions like “/[a-z]+/” that 

can match many things, and could account for contextual parameters such 

as a user’s name.  

• Address redirection enables defenders to make network reconnaissance 

harder for attackers. Connecting the attacker to an unexpected and unrelated 

website will impede attackers from mapping to the network. 

• Decoy content can be used to detect malicious behavior since any access 

attempts to it are suspicious by default.  

• A defender can send the attacker taunting messages saying how much they 

know about the attacker. This does require quickly recognizing the 

attacker’s tactics, techniques, and procedures. Every attack has an objective, 

such as computing resources or data theft, and the attack typically requires 

multiple steps to reach that objective, so these could be identified by 

defenders in a message to the attacker. 

• Embedding malicious code within files requested by the attacker, or having 

website requests redirected to malicious websites, could impede an attack. 

The simulation could calculate an expected cost to the attacker to recognize 

and delete the malware. Not only will this slow the attacker by failing to 

provide what they are looking for, but it could also give the defenders a way 

into the attackers’ device, helping identify future attacks.  

• Throttling limits, the number of sequential or concurrent user actions to 

prevent the overuse of resources. If a user gets throttled frequently, 

defenders can use a code to end the users access to the network or devices 
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while claiming that an attacker has accessed too many sites or has made too 

many downloads. Malicious traffic can be deliberately throttled with false 

messages.  

• Batch files (“.bat” files) help automate the execution of recurring command 

sequences. They can be used as bait for the attacker with misinformation in 

them to waste the attackers’ time and resources. 

Attacker deception ideas: 

• Attacker deceptive methods aim at tricking the defender into providing 

access and deceive the defender by having them focus their attention on the 

wrong aspects of an incident. Attackers can use schemes and scams to try 

to deceive the defender to harvest user and password information, lock a 

computer with ransomware, or launch malicious code. 

• Attackers can change traffic destinations by modifying the network settings. 

For example, once the default gateway on a device is modified, an attacker 

can redirect traffic leaving the network to a device the defender controls.  
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IV. RESULTS 

The average defender and attacker scores for the 100 test iterations of the base 

scenario were -3943.54 and -1551.27, respectively, for a net defender benefit (defender 

minus attacker) of -2392.27 (Figure 6). Table 8 in the Appendix shows the overall defender 

scores for each test run, and Table 9 shows the overall attacker scores. The scores are 

compared to the baseline iteration.  

The “base scenario” was the simplest game tested. SoarTech used the costs and 

actions from the previous experiment (Green, 2020) with the additions described such as a 

delayed spear-phishing capability. Results on the base scenario became a baseline for the 

other three scenarios. It is based on 100 runs as shown in Table 8 and Table 9. Table 10 

shows the counts of attacker actions taken and Table 11 shows the counts of defender 

actions taken. Table 12 shows how many game steps it took the attacker to achieve their 

goals per game during the 100 test iterations when they did eventually achieve them. The 

blanks, denoted by DNF, are cases where the attacker did not achieve their goals in 45 

steps. The average number of attacker game steps required to complete the base scenario’s 

goals was 25.66, and it was reached 88 out of 100 times.  

The average defender score on the first scenario was -3636.12 and the average 

attacker score was -1682.05 over the 100 test iterations, for a net defender benefit of -

1954.07, an improvement on the baseline. Adding ten more machines to the network made 

it easier for the attacker to find what they wanted since we did not increase the number of 

data goal items that would reward the attacker. This scenario had an 84% completion rate 

(Figure 7), and the attacker took an average of 26.01 game steps over the 100 test iterations 

(Figure 8).  

The second scenario added 100 more machines to the network, and it resulted in an 

average defender score of -3309.61 and the average attacker score of -1739.53, for a net 

defender benefit of -1570.08, a larger improvement on the baseline. This was the lowest 

(best) score for the defender compared to the other scenarios and the baseline, indicating 

that the additional machines did impose additional costs on the attacker. It was also the 
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highest (worst) score for the attacker. The average number of attacker steps for this game 

were also up to 29.27, with a 73% completion rate. 

The third scenario was distributed denial of service and had an average defender 

score of -3908.91 and an average attacker score of -1668.26, for a net defender benefit of 

-2240.65, a small improvement on the baseline. This indicates that the attacker can be more 

successful with this kind of decoy attack. The average completion rate was 90% and an 

average of 25.23 steps were taken by the attacker, both exceeding baseline numbers.  

The way to assess the performance of the defender is to subtract the attacker score 

from the defender score. The differences can then be compared to those of the baseline 

game. For example, in the Baseline game, the defender average was -3843.54 and the 

attacker average was -1551.27, a difference of 2292.27. In the second scenario, the 

defender average was -3309.61 and the attacker average was -1739.53, a difference of 

1570.09. So, the defender did better in the second scenario, which shows that the deception 

added in that scenario was effective. 

For all of the scenarios, the most frequent attacker action was “discover local 

network” which was used on average 21.25 times in the four games (baseline and three 

scenarios). The least selected attacker option was “critical service corruption” which the 

attacker never chose in the 400 total games. The most common defender action was “audit 

logon events” which was selected 70 times. The least frequent defender action was 

“reimage machine” which was chosen only twice.  
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Figure 6. Defender and Attacker Scores in the Scenario 
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Figure 7. Average Steps Taken by Attacker 

 

Figure 8. Completion Rate by Attacker 

23

24

25

26

27

28

29

30

Base Game First Scenario Second Scenario Third Scenario

Av
g 

St
ep

s

Scenario

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Base Game First Scenario Second Scenario Third Scenario

Co
m

pl
et

io
n 

Ra
te

Scenario



29 

V. CONCLUSIONS AND FUTURE WORK 

Defense through cyber deception can level the cyber battlefield by altering an 

enemy’s perception of reality through delays and disinformation, forcing them to reveal 

attack methods, and providing defenders with the attributions needed to discover the 

adversary’s strategy. Discouraging and delaying actions can enhance deceptions by 

providing time for forensics teams to analyze, identify, and handle attack vectors that could 

harm operational and support systems. Deception and game theory tools can help in 

decision making and support military operations in the cyber domain.  

The results of this thesis suggested that deception in cyberspace can be 

systematically planned to be cost-effective for defenders. A lower defender score means 

the defender spent more time defending. The defender deceptive techniques increased the 

average amount of time the attacker used to meet their objectives. Since defenders used 

deception to increase the overall attack time, they were allotted more time in return to 

detect and respond to the attack. The success rate for the attacker meeting objectives 

decreased when the defender used deception. The attacker and defender scores are all based 

on the baseline game. Thus, since the defender score was closer to 0 in the scenarios and 

the attacker score was farther away from the baseline it means that deception was effective. 

Deception can help defenders at a low cost, while increasing costs for the attacker, 

significantly limiting the attacker’s ability to complete their objectives. Further research 

into game theory and deception could identify more ways to improve cyber defense. For 

instance, we could consider a limited budget an attacker might have for defensive actions. 

Deception techniques can be introduced in network services and protocols, to 

severely degrade an attacker’s methods of exploitation and attack. Forcing changes in the 

attacker’s actions or behavior can also highlight and expose their activities, enabling their 

detection, inference of their intent, and remediation for actions already taken. These effects 

can provide good deterrence from attack. 

The CCAT tool can be extended with topologies created for air, land, sea, and space 

terrains. The topologies could represent actual terrains, making it realistic for actual 
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operators. Understanding how the attacker and defender agents react in these environments 

will enhance defensive operations. Scenario topology can include mobile devices and 

Supervisory Control and Data Acquisition (SCADA) systems for future experiments. 

Scenarios can also include more spoofed IP addresses and delayed attacks; spoofed IP 

addresses can be challenging to recognize.  

Encrypted data could be included in the games to test how far attackers are willing 

to go to steal secrets. Also, surveys can be sent to operators to evaluate deception, and 

game theory tools such as ours will enhance operations. Their feedback could be helpful 

because they execute real-world operations and could judge how these tools will enhance 

learning and decision-making. 

Other second-order deceptions are possible that the CCAT could include at low 

cost. Having a defender sending many messages to the attacker would require no change 

to the current environment. Increasing the number of files within machines to confuse 

attackers would be easy to do without changing the current environment, as it would just 

require a random generator to name the files in a realistic way. 

If the CCAT tool could successfully simulate multiple layers of deception, it would 

enable analyzing how an attacker would react when met with a set of challenges. Other 

attacker options can be explored if information resources are withheld deceptively within 

the CCAT. Implementation of these methods would help analyze the potential costs of the 

attacker versus the cost of the defender. 
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APPENDIX.  EXPERIMENTAL DATA 

The tables in the Appendix show the results of the 100-game evaluation period for 

each experiment. 

A. OVERALL SCORES 

Tables 8 and 9 show overall scores for the experiments as the sum of all costs and 

rewards for both attacker and defender agents. Red indicates runs in which the player did 

worse than the baseline, and green indicates runs in which they did better than the baseline. 

Run numbers are given in the white columns. 
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Table 8. Overall Defender Scores 
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Table 9. Overall Attacker Scores 

 
 

B. COUNTS OF ATTACKER AND DEFENDER ACTIONS TAKEN 

Tables 10 and 11 show the counts of the actions taken over all games for both the 

attacker and defender agents while showing all available actions. Here red means a 

decrease compared to the baseline runs, green mean an increase, and orange means no 
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change. This data shows significant changes in strategy in the three experiments compared 

to the baseline. 

Table 10. Counts of Attacker Actions Taken in All Test Runs 

 
 

Table 11. Counts of Defender Actions Taken in All Test Runs 
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C. ATTACKER GAME STEPS 

Table 12 shows the number of game steps taken to complete each round of the 

game. Again, red means a decrease compared to the baseline runs, green mean an increase, 

orange means no change, and “DNF” means the run did not finish in the 45 steps allowed. 

Table 12. Number of Attacker Steps Taken per Game to Complete Each Run. 
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