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ABSTRACT 

Recent advancements in unmanned aerial vehicle (UAV) capabilities have led to 

increasing research into swarming systems. Tactical employment of UAV swarms, 

however, will require secure communications. Unfortunately, efforts to date have not 

resulted in viable secure communications frameworks. Furthermore, the limited 

processing power and constrained networking environments that characterize these 

systems preclude the use of many existing secure group communications protocols. 

Recent research in secure group communications indicates that the Messaging Layer 

Security (MLS) protocol might provide an attractive option for these types of systems. 

This thesis documents the integration of MLS into the Advanced Robotic Systems 

Engineering Laboratory (ARSENL) UAV swarm system. The ARSENL implementation 

is intended as a proof-of-concept demonstration of the efficacy of MLS for secure swarm 

communications. Implementation test results are presented both for experiments 

conducted in a simulation environment and experiments with physical UAVs. These 

results indicate that MLS is suitable for a swarm, with the caveat that testing did not 

implement a delivery mechanism to ensure reliable packet delivery. For future work, 

mitigation of unreliable communications paths is required if a reliable MLS system is to 

be maintained. 
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CHAPTER 1:
Introduction

Current advancements in unmanned aerial vehicles (UAVs) have led to research in swarming
capabilities. Multi-UAV swarms currently have been suggested or utilized for a wide array
of applications including, but not limited to:

• photography [1]
• film-making [1]
• wildfire monitoring [2]
• agriculture [1], [3]
• remote sensing and mapping [4]
• environmental monitoring [5]
• construction [6]
• drone delivery services [7]
• natural disaster management and recovery [8]
• military operations and defense [9]

Tactical utilization of UAV swarms will depend on secure communications. Unfortunately,
individual swarming platforms have limited processing power, and swarm systems typically
rely on bandwidth-limited and potentially unreliable communications frameworks. These
limitations call the ability of these systems to meet security requirements into question.

Previous methods of securing communication for groups of devices are unlikely to be
applicable to existing or envisioned swarm systems. Recent research in secure group com-
munications, however, indicates that the Message Layer Security (MLS) protocol [10] can
provide an attractive option with characteristics that seem particularly suited to these sorts of
systems. This protocol provides a computationally efficient way to implement asynchronous
secure group key management, but experimentation in realistic systems is required to assess
the protocol’s functionality in these computational- and communications-limited environ-
ments. This work undertakes implementing the MLS protocol on the Naval Postgraduate
School (NPS) Advanced Robotic Systems Engineering Laboratory (ARSENL) UAV swarm
for protection of specific information flows.
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1.1 Problem Statement
The NPSARSENL developed and utilizes an unmanned aerial vehicle (UAV) swarm system
that has been successfully demonstrated with up to fifty UAVs [11]. Despite the significant
potential this capability provides for military operations, the ARSENL system lacks com-
munications security features necessary for eventual real world utilization. This thesis
implements MLS on the ARSENL swarm system to assess its suitability for these sorts of
systems more broadly.

MLS provides a number of capabilities that are particularly relevant to multi-UAV systems.
MLS provides a mechanism for dynamically adding members to and removing members
from the group while continuously providing secure communications among members of
the group. Adding and removing group members are important capabilities since UAV
swarm membership can be highly dynamic. As swarm size increases, the group security
protocolmust scale efficiently. It is also advantageous that theMLSprotocol facilitates forced
removal of UAVs that have been hĳacked, compromised, or are malfunctioning. In these
situations, the protocol provides the group with a means of updating the communication
keys to exclude the compromised or malfunctioning UAV. This thesis aims to address the
following questions:

1. Can the MLS protocol be adapted for use in the ARSENL UAV swarm?
2. How does MLS impact the performance of the ARSENL UAV swarm?
3. Can ARSENL UAVs join the group and communicate with other members of the

swarm securely?
4. Are the group keys able to be updated periodically over the unreliable ARSENL

swarm network?
5. In the event of compromise or other criteria, can aUAVbe removed from theARSENL

group and no longer decrypt messages?

1.2 Scope
For this thesis, the use of MLS as a continuous group key protocol within the NPS ARSENL
UAV swarm is researched. Community maintained C++ code from the MLS GitHub repos-
itory [12] is adapted for incorporation into the ARSENL swarm system code base. In
particular, the MLS group operations for key update, member addition, and member re-
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moval are implemented and tested. The research includes an analysis of the effect of MLS
protocol utilization on ARSENL swarm performance. Metrics include packet transmission
and receipt rates between individual UAVs, scalability, and timing.

1.3 Thesis Organization
The remainder of this paper is organized into four chapters. Chapter 2 provides background
information necessary for understanding MLS and UAV swarms. This includes a discussion
of multi-UAV swarms and common swarm communication architectures, the ARSENL
swarm system, and potential secure communications approaches to include pairwise and
group protocols. The chapter concludes with a discussion of MLS and how it works.

Chapter 3 describes the code development process. It beginswith a summary of theARSENL
on-vehicle software’s Robot Operating System (ROS) framework and the C++ application
programming interface (API) that was utilized to implementMLS functionality. The chapter
then discusses the implementation of the code, including a code overview and discussion
of lessons learned from integrating MLS into the ARSENL swarm.

Chapter 4 discusses experimentation with the MLS implementation and analyzes its impact
on the individual ARSENL swarm platforms as affected by swarm size and key update rate.
This chapter includes a description of the testing process and describes the results.

Finally, Chapter 5 provides a conclusion covering the implications of this research and
suggestions for future work.

3
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CHAPTER 2:
Background

This chapter provides background information relevant to this research and discusses pre-
vious research into UAV swarm communications and the MLS protocol. Information on
multi-UAV systems, the NPS ARSENL UAV swarm, and the software-in-the-loop (SITL)
simulation environment is included. Chapter 2 also discusses the motivation and research
leading up to the introduction of the MLS protocol and provides an overview of the protocol
itself.

2.1 Unmanned Aerial Vehicle Swarms
AUAVswarmcan be defined as a coordinated unit of relatively simpleUAVs that collectively
produce a desired result or behavior [13]. In aUAVswarm, information is exchanged between
vehicles or between vehicles and ground control stations. By its nature, a properly configured
UAV swarm will exhibit a number of particular features:

• Survivability: As opposed to a single-UAV system, a UAV swarm will not experi-
ence mission failure if a single UAV fails, malfunctions, or is shot down [14], [15].
The swarm network must operate under the assumption that arbitrary UAVs can be
removed from the group without impacting the rest of the swarm’s abilities.

• Scalability: With a single UAV, operations have a limited physical area of coverage.
Since UAVs can be added to a swarm arbitrarily, the potential range of operations for
a mission [14], [16] can increase accordingly.

• Speed: UAV swarms can speed up task completion and mission accomplishment by
processing things in parallel [14].

• Autonomy: Single UAV missions typically require a human operator. Direct control
during multi-UAV missions is impractical. This necessitates on-board automation to
ensure controlled flight and reliable execution of received directives [14].

• Cost: Multi-UAV systems can leverage economies of scale to operate more efficiently
and execute missions more cheaply than single-UAV systems [13]–[15].

A swarm’s communication architecture dictates how information is exchanged [14] and helps
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facilitate the intelligent control and autonomous collaboration within UAV swarms. Swarm
systems primarily employ one of two types of communication architectures: centralized or
decentralized [14].

Use of a centralized architecture where one node communicates with the entire swarm is a
natural extension of the typical single-UAV point-to-point communications paradigm [14].
This sort of centralized architecture can be implemented through a ground station, satellite,
airborne platform, or other infrastructure node. Each UAV establishes a one-to-one commu-
nications link with the central node. Swarms of this nature work better on a smaller scale.
The coverage area for a swarm utilizing a centralized architecture will be relatively small
because of the requirement for continuous communications with the central node. Further,
communication delays are a possibility since the infrastructure must support reliable trans-
mission of information. One final issue associated with centralized architectures is that they
are vulnerable to a single point of failure [14]. A successful attack against the central node
or a malfunction within that node will result in failure of the entire swarm, breaking the
survivability feature.

Although centralized communication schemes provided a bridge from single-UAV systems
to multi-UAV and swarm systems, their disadvantages ultimately outweigh their advantages.
Their schemes are not fault tolerant, tend to be inflexible, and are not scalable. As a result,
the centralized architecture has been largely abandoned as a viable swarm communication
architecture.

In a decentralized architecture, swarm members are organized as nodes in an ad-hoc, peer-
to-peer network. The inherent mobility and highly dynamic nature of swarm operations
makes an ad-hoc network the obvious choice for flexible and scalable communications [14].
Swarmsmust be very flexible since they perform tasks in unknown environmentswith threats
and obstacles that requiremembers to dynamically join or leave the group [14]. UAV swarms
also exhibit high mobility among individual members meaning that the communications
architecture must support frequent topology changes [14].

In many cases, multi-UAV systems can be categorized as Flying Ad-Hoc Networks
(FANETs) [16]. Each UAV has its own on-board processing capabilities, maintains its
own situational awareness, and makes its own decisions. The reliance on local processing
eliminates the need for a centralized control system and is considered a defining character-
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istic of swarming behavior [15].

Decentralized systems are more complicated than their centralized counterparts. They tend
to exhibit higher power consumption, and they require more processing capability [15].
On the other hand, decentralized architectures allow for flexible and robust networks that
eliminate single points of failure and leverage the capabilities of individual platforms. As a
result, modern swarm systems rely almost exclusively on these sorts of architectures [16].

2.1.1 Related Work
Swarming is a popular emerging field among robotics researchers. Much of this research
has been focused on reliable swarm communication architectures.

Researchers from the Army Engineering University of the Chinese People’s Liberation
Army and Chengdu University proposed a battlefield UAV swarm that utilizes a Software
Defined Network (SDN) and Message Queue Telemetry Transport (MQTT) hybrid struc-
ture [9]. UAVs have limited battery capacity, and their on-board computational and commu-
nication is also frequently limited. MQTT, a publisher-subscriber middleware, is designed
to function on devices with computation- and communication-constrained networks, low
processing, and low memory [9]. SDN, on the other hand, is well suited to address the
swarming requirement for a robust, self-organizing, and delay tolerant network. The re-
searchers suggest that a combined SDN-MQTT network structure can be utilized by swarm
systems to effectively in operational military environments. As of the publication of [9], the
researchers have proposed the system but have not yet implemented the network structure
in a real environment.

In 2015, Rosati et al. [2] proposed a FANETusing optimized link-state routing and predictive
optimized link-state routing for swarm communications. Optimized link-state routing is
a network routing algorithm and predictive optimized link-state routing is an extension
of optimized link-state routing that uses GPS data to improve routing. Messages within
this system are transmitted over an 802.11n network. When using predictive optimized
link-state routing, each UAV transmits its latitude, longitude, and altitude to each of its
neighbors. The researchers conducted experiments with this network architecture with a
system comprised of two fixed wing UAVs and a single ground station. The researchers
found that predictive optimized link-state routing outperformed optimized link-state routing.

7



Their results indicated that predictive optimized link-state routing is faster to respond to
topology changes and did so without interruptions.

Researchers from the University of North Dakota proposed a UAV swarm architecture
relying on cellular mobile network infrastructure [13]. In this architecture, the UAVs com-
municate among themselves without the need for a ground control station. Telemetry data
for each UAV is sent to other UAVs via cellular mobile infrastructure. This approach differs
from a typical FANET in that the UAVs make the decisions about the network protocol and
flight control, while the infrastructure is responsible for routing decisions. By relying on
cellular networks, the UAVs can be dispersed across a larger area while also achieving more
reliable data transfers.

Other research using cellular networks was proposed by Han et al. [17] in the form of a two-
phase transmission protocol. The protocol leverages existing 4G and 5G cellular networks
and also device-to-device communications capabilities. In the first phase of the protocol, a set
of ground control stations transmits a control message to all vehicles simultaneously. In the
second phase, all vehicles that have received a control message forward it to other vehicles in
the swarm using device-to-device communications. This two-phase transmission protocol
was shown to provide high reliability and low latency for communications within the swarm.
The researchers modeled the reliability of communications as an approximated expression
using Pearson distributions and gathered numerical results to prove the effectiveness of their
protocol.

Of note, none of the approaches discussed here deal with communications security directly.
Rather, they implicitly assume that it is handled by the infrastructure (layer 2mostly–802.11,
cell, etc.) or that it will be implemented on top of the communications architecture at the
application layer. The research in this thesis aims to investigate an application-layer security
architecture that can be adapted into swarming technology.

2.1.2 The NPS Swarm: ARSENL
The NPS Advanced Robotic Systems Engineering Laboratory (ARSENL) is a research
group focusing on the development of swarm capabilities. The lab’s work resulted in the
successful demonstration of a swarm of 50 fixed-wing UAVs at Camp Roberts, California,
in 2015 [11]. Subsequent ARSENL research has led to advancements in human-UAV
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interaction, information exchange within the swarm, swarm behavior development, and
heterogeneous and multi-domain swarming [18]–[21].

The ARSENL swarm system consists of UAVs and two ground stations. Twomain UAVs are
used: the ARSENL-developedMosquito Hawk quadcopter and a modified Ritewing Zephyr
II fixed wing UAV (Figure 2.1). Both UAVs use commercial off-the-shelf and 3D-printed
parts [18]. A Pixhawk autopilot running ArduPlane autopilot firmware maintains safe flight
and controls waypoint navigation [11]. On-board planning and coordination in support of
swarming is conducted on a HardKernel ODroid companion computer [22]. The autonomy
package is implemented on the companion computer as a set of ROS nodes that manage
specific functions such as behavior planning, autopilot interaction, and communication with
other swarm UAVs [11]. The ROS framework is described in more detail in Section 3.2.

ZephryII Fixed-Wing UAV. Source: [11]. Mosquito Hawk Quadrotor UAV. Source: [21].

Figure 2.1. ARSENL Multi-UAV System Platforms.

UAV-to-ground communication is required to parameterize, initiate, and monitor swarm
behaviors and UAV-to-UAV communication is used to facilitate swarm behavior execution.
In particular, UAVs exchange state information to facilitate situational awareness across the
swarm [11]. Communications use an ARSENL-developed application layer protocol and
User Datagram Protocol (UDP) messages broadcast over an 802.11n ad-hoc network [11].
Since secure swarm communications has not previously been an ARSENL research priority,
encryption has not been used, and swarm communications currently utilize an unsecure
network.

On-UAV mission execution is implemented as a finite state machine. Each UAV transitions
through the following states over the course of a mission [11]:

1. Preflight: system health verifications, mission and software loading, installing the

9



battery and camera, etc.,
2. Flight ready: ready for final mission parameter load and automatic launch,
3. Ingress: safe movement of the UAV after takeoff to the flight operating zone,
4. Swarm ready: ready for sub-swarm assignment, waiting for initiation of a swarm

behavior, or actively executing a swarm behavior,
5. Landing: sequential landing of UAVs, and
6. On deck and post-flight: retrieve and power-off UAVs followed by post-flight inspec-

tion, maintenance, and repair.

Swarm behaviors are executed by vehicles in the swarm ready state as directed by the ground
station.

Software-in-the-loop (SITL) Simulation
The ARSENL SITL simulation environment provides a way to evaluate the effectiveness
and performance of the UAV swarm without launching actual aircraft [18]. The SITL envi-
ronment provides a realistic physically based simulation for use by UAVs using ArduPilot
autopilot firmware [23]. Since the same ArduPilot firmware is used in the simulation as
in the actual autopilot, the autonomy implementation, swarm interactions, and behavior
performance can be thoroughly tested in simulation prior to attempting live experiments.

The ARSENL simulation system can be used to spawnmultiple UAV instances and provides
accurate information concerning the flight environment, individual UAV performance, in-
teractions between UAVs, and interactions between ground stations and the swarm. The
SITL simulation can use an internal network to allow multiple instances to be simulated on
a single computer, or it can use an actual network to allow a simulation to be run across mul-
tiple computers [18]. The SITL simulation allows for accurate testing of swarm capabilities
and aids in development of further advancements.

Secure ARSENL Communications
Secure communications within the ARSENL swarm are constrained by limited computa-
tional, network, and energy resources that potentially inhibit the use of complex security
schemes. Thus, the ARSENL swarm system does not currently attempt to provide security
for its communications. Operational swarms in military and many civilian environments,
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however, have the potential to handle classified or sensitive data. Failure to provide viable
communications security options will hamper the adoption of swarm systems for real world
applications.

Since swarm communications often rely on broadcast messages and low bandwidth links,
many common forms of asymmetric cryptography are not well suited. Using some typ-
ical forms of asymmetric cryptography would require restructuring the communication
architecture in ways that may inhibit effective swarm operations.

TheAuthenticated Encryption Standard (AES) and TripleData Encryption Standard (3DES)
symmetric encryption algorithms are authorized for the encryption of classified data and
were explored as options for secure swarm communications in [24]. Four AES modes
were tested in a UAV swarm: Counter with Cipher Block Chaining Message Authenti-
cation Code (CCM), Galois/Counter Mode (GCM), Synthetic Initialization Vector (SIV),
and Encrypt-then-Authenticate-then-Translate (EAX). The researchers also implemented
the scheme ChaCha20-Poly1305, for the transmission of unclassified data. All of these
encryption algorithms were implemented using Python libraries and encryption was done
at the application layer. After testing these algorithms within the SITL simulation system
discussed in Section 2.1.2 and the ODroid architecture discussed in Section 2.1.2, the re-
searchers found that SIV and EAX modes were unable to support a large swarm within
their architecture. GCM and CCM modes were assessed as potentially able to support a
large swarm within their architecture, but it was noted that little processing power would
be left to other processes. ChaCha20-Poly1305 was assessed as suitable for a large swarm,
but only when transmitting unclassified data, as it is not approved by the National Security
Agency (NSA) for classified information communications. Of note, [24] determined that
none of the encryption algorithms they tested provided efficient enough cryptographic oper-
ations for classified information. When they tested the approved-for-classified-information
algorithms on the Odroid computer with a 50 member swarm, they found that the processor
was completely taken over by cryptographic operations. This left little to no processing
for other tasks. The authors note that the encryption schemes could work if more powerful
processors were available or if encryption was only used on a subset of the communications.
Even in these cases, however, there will be a performance impact on the UAV swarm.

The goal of this research is to further investigate viable options for secure communications
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within an unmanned air system (UAS). Towards that end, the rest of this chapter discusses
candidate secure communication protocols in general and the research leading to the decision
to test MLS in the ARSENL swarm in particular.

2.2 Pairwise Communication
This section provides a background on pairwise, or point-to-point communications, and
discusses popular security protocols for these types of communications. Pairwise commu-
nication protocols work by exchanging a message between # members over # − 1 channels
with each channel encrypted separately. Pairwise communications can be synchronous,
where parties must be online at the same time, or asynchronous, where the parties do not
need to be online at the same time. In this section, we compare two common pairwise
communication protocols based on differences in foundational design characteristics (syn-
chronous sessions vs continuous key exchange): Transport Layer Security (TLS) [25] and
Signal [26].

2.2.1 Transport Layer Security
As the Internet became popular, a secure communications protocol was needed. Transport
Layer Security (TLS) [27] is a synchronous, secure-channel protocol used for communica-
tions over the Internet. TLS provides end-to-end encryption for short lived communications
such as interaction with a secure web-page. Other applications of this protocol can include
email, instant messaging, and voice over IP [28]. The first version of TLS was published
in 1999 by an Internet Engineering Task Force (IETF) working group. The latest version is
TLS 1.3 and was published in 2018 [27]. TLS provides for encryption, authentication, and
integrity [25].

TLS works by initiating a handshake to establish communication between two parties.
The handshake is used to specify the protocol version, agree on a cipher suite or set of
cryptographic algorithms, optionally mutually authenticate, and establish session keys for
message encryption [25]. Trust and authentication are established via certificates issued by
a certificate authority. Data is signed with a message authentication code (MAC) to ensure
integrity of data. Improvements to TLS in version 1.3 include improving speed and security
by decreasing handshake round trips and removing insecure ciphersuite options.
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For applications where users may not be online at the same time, TLS is not an option.
Asynchronous protocols like Signal were proposed to mitigate this issue.

2.2.2 Signal
The Signal protocol [26] is used in popular messaging applications such as WhatsApp,
FacebookMessenger, Skype,GoogleAllo, andWire [29], [30]. The Signal protocol provides
end-to-end encryption and has strong security guarantees such as post-compromise security
(PCS) and forward secrecy [29].

The term PCS was introduced in [31] to refer to the notion that security will be recovered
after a compromise occurs if the adversary is momentarily passive. PCS is an important
property since it limits the scope of a compromise. That is, even a successful attacker that
does not act as an active man-in-the-middle attacker will not be able to maintain its access to
group communications. Forward secrecy is the notion that messages sent and received prior
to a compromise remain secure [32]. PCS and forward secrecy are conceptually illustrated in
Figures 2.2 and 2.3 respectively. Most modern secure messaging protocols require that both
forward secrecy and PCS are provided. This guarantees that current data remains secure
despite past or future compromises [32].

At the core of Signal is the double ratchet algorithm [29]. Double ratcheting allows for
parties to heal after compromise and achieve PCS by updating keys through a process
referred to as key ratcheting.

Figure 2.2. After a compromise, post compromise security ensures that
keys going forward remain secure if an adversary is momentarily passive.
Source: [33].
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Figure 2.3. After a compromise, forward secrecy ensures that the keys derived
prior to the compromise remain secure. Source: [33].

Double Ratchet
In the double ratchet protocol, two users exchange messages encrypted using a key derived
from a key agreement protocol [34]. After deriving a shared key, users use the double ratchet
to send and receive messages, ratcheting keys forward to provide PCS and forward secrecy.

The double ratchet algorithm works by deriving new keys following every message using a
one-way function [34]. This ensures that earlier keys cannot be calculated from later keys.
The algorithm also ensures that later keys cannot be calculated from earlier keys by adding
Diffie-Hellman (DH) values to every messages.

An important core component of the double ratchet is aKeyDerivation Function (KDF) [34].
A KDF is a cryptographic function that derives one or more keys from a secret value and
input data [35]. The derived keys can be any specified length. If the first input into the KDF is
random, output data from the KDF is indistinguishable from random (i.e., pseudorandom).
Each user stores keys for three chains: a root chain, a sending chain, and a receiving chain.
Two ratchets are leveraged: a symmetric-key ratchet and a Diffie-Hellman key exchange
ratchet.

A symmetric-key ratchet process is used to derive message keys. A KDF chain takes the
output from a KDF and uses it as part of the input to the next KDF computation. After
decrypting a message, the message key can be deleted from memory. A symmetric-key
ratchet uses these principles and produces a chain key and a message key with every round
of the ratchet, as shown in Figure 2.4.

A DH ratchet is also used in the double ratchet algorithm so that both users provide a key
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Figure 2.4. KDF Chain used in Symmetric-Ratchet step. Source: [34].

share to key derivations for security [34]. In a DH ratchet, the ratchet key is a DH key
consisting of key shares generated by each party. A new public key share is sent with each
message. After the message is received, the local copy of the ratchet key is replaced with
the new key. This ping-pong behavior continues with each iteration of the ratchet. The DH
output produced by each user is used to derive sending and receiving chain keys [34]. Each
output is used as a KDF input in the root chain, which in turn produces outputs used in the
sending and receiving chains.

The double ratchet algorithm is a combination of symmetric-key ratchet andDH ratchet [34].
The DH ratchet is first used when a public key is received to replace the chain keys, then
the symmetric-key ratchet is applied to derive the message key when messages are sent and
received. Figure 2.5 shows the double ratchet algorithm used in Signal.

For group messaging, Signal uses pairwise Signal channels within groups [36]. Pairwise
communications likely have too high of communication and computation overhead for
applications in UAVs or for very large groups in general. The double ratchet must be
computed between all pairs of users, so the number of channels required scales quadratically
with the group size [32], [37]. A description of a variant of the Signal protocol that achieves
more efficient group communications is provided in 2.3.1.
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Figure 2.5. The Double Ratchet algorithm in Signal. Source: [34].

2.3 Group Protocols
In this section, secure group messaging protocols are described. With the popularity of
group messaging applications, a need for a protocol for groups that is asynchronous, scales
well, and is long lived was identified. Desirable security properties include PCS and forward
secrecy as well as the ability to add and remove group members dynamically.

2.3.1 Sender Keys
In pairwise communication protocols, messages are sent over multiple point-to-point chan-
nels. For example, if Alice is member � of a five-member group, G, consisting of members
�, �, �, �, and � and wants to send a message to the group, she needs to send it across
four pairwise channels: between � and �, � and �, � and �, and � and � . If a member
is in multiple groups, the member will send the same message over each of the separate
channels. So in groups G and G’, � will send the message over the single channel it has
with � regardless of the group in which it is communicating [37].

To mitigate the high overhead of this action in Signal, a variant called Sender Keys was
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created. With Sender Keys, each member of the group sends an encrypted “broadcast” key
to each group member over the pairwise channels [36]. Future messages are then encrypted
using the broadcast keys. In the above example, � would encrypt a single broadcast key :
and send it over her pairwise channels with �, �, �, and � . Messages from � would then
be encrypted using her broadcast key : and broadcast to the entire group. Each member of
the group must repeat this process. Overhead is thus reduced for future communications;
however, some of the security properties of the double ratchet are lost. Sender Keys, for
instance, do not provide efficient ways to update keys or remove group members [38].
Adding a ratchet to this algorithm can provide forward secrecy, but Sender Keys still do
not efficiently provide for PCS for the group [10]. Achieving both guarantees essentially
regresses the protocol back to the regular pairwise Signal protocol.

2.3.2 Tree-based Group Protocols
A Continuous Group Key Agreement (CGKA) protocol allows a group to continuously
agree on a stream of fresh secret group keys [32]. This type of protocol provides the ability
to add and remove members efficiently, as well as to conduct updates. Updates are used
to introduce random values, otherwise known as update secrets [32], which allow users to
refresh group key material and provide for stronger security properties such as PCS (much
like the Signal DH ratchet values). Updates occur at regular intervals throughout the lifetime
of the group, but the exact frequency is based on implementation choices [10].

CGKA protocols typically rely on a tree data structure where leaf nodes represent group
members and the root node represents the group secret. The group protocols described here
use binary trees. In these protocols, the path from a leaf node to the root node is referred to
as a direct path, and the immediate sibling of the leaf node and other siblings of nodes on
the direct path are referred to as the co-path. Figure 2.6 shows a diagram of a binary tree
that includes the direct path and co-paths associated with member �.

Tree-based protocols fix many of the shortcomings associated with pairwise group com-
munications. Asynchronous Ratcheting Tree (ART) and TreeKEM are examples of such
CGKA protocols that have been considered for use in MLS [39].
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Figure 2.6. This tree represents a group with members � through �. The
direct path for member � is highlighted in blue, and the co-path for member
� is highlighted in orange. The root node with a double circle represents the
group secret.

Asynchronous Ratcheting Tree
As noted previously, Sender Keys do not achieve PCS and scale inefficiently for large groups.
PCS and scalability were the driving motivations behind the creation of Asynchronous
Ratcheting Tree (ART) [36]. ART is an asynchronous group messaging protocol that uses
tree-based Diffie-Hellman key exchange to derive a group shared secret. By using a tree
structure, secure groupmessaging ismore efficiently achieved. InART, the group ismodeled
as a binary tree structure with each leaf representing a member or user in the group. Leaf
nodes are labeled with an ElGamal secret key, G8, and a public value, �G [39]. An internal
node with children 8 and 9 will contain a shared secret value equal to �G8 ,G 9 and a public
value of �C (�

G8 ,G 9 ) where C is mapping from group elements to integers [36], [39]. An example
of an ART group is illustrated in Figure 2.7.

In an ART tree, leaf node keys are derived using the session keys of any one-round authen-
ticated key exchange protocol [36]. ART also uses prekeys and setup keys [36]. A prekey is
a DH ephemeral public key that is stored by an untrusted server and fetched by users when
needed. A setup key is generated locally by the initiator of the group and is used to perform
the initial key exchange with the prekeys. This approach allows for an initial key exchange
while some group members may be offline.
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Figure 2.7. An ART group with four members. Each node contains a secret
key, public key pair. The root node contains the group secret, and the leaf
nodes represent group members. Adapted from [36].

Upon group creation, an initiator first creates the group. It then broadcasts the public prekeys
and identities, the public setup keys, and the tree of public keys to every member of the
group. The initiator also generates and broadcasts a signature over the broadcasted keys and
identities to the group using its own identity key. As eachmember of the group receives these
keys, they validate the signature, compute their leaf keys, extract the co-path of the public
keys from the tree, and generate the shared symmetric key for the group at the root node. To
generate the shared key, all public keys on the co-path are repeatedly exponentiated [36].

Updates are essential to providing PCS [36]. An update occurs when a user updates their
secret leaf key from G to G′ and from there establishes a new shared group key. The user will
compute a new direct path to the root using their new key and will send the public values
on their direct path to the group so the group members can update their views of the tree.

The TreeKEM Protocol
The TreeKEM protocol was inspired by ART [40] and is at the core of the current draft of
MLS. The initial idea is described in [41] and utilizes a left-balanced binary ratchet tree
structure to maintain the group state and keys [32]. Similar to ART, members or users of the
group are represented by leaves, and the root contains the group shared secret. TreeKEM
differs fromART in that each internal node contains aKeyEncapsulationMechanism (KEM)
public and secret key pair. TreeKEM key pairs can be any pair of keys that support KEM,
whereas ART specifically requires a DH key pair.

An internal TreeKEM node’s secret key is known to every member below it in the sub-tree,
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and its public key is known to every member of the group. Thus, each member of the group
knows the root node secret key, the secret keys for all nodes in the path from the root node
to its leaf node, and public keys for all nodes in the tree. After the initial group creation,
there are three major operations associated with the TreeKEM protocol: adding members,
updating leaf secrets, and removing members. These operations can occur asynchronously.

On creation of the group, a fresh KEM key pair is generated for each user at each leaf node.
The secret key of any internal node is computed by application of the KDF to the secret
key of the updating child node. In the case of creation, the updating node is the member
initiating the group. The root node key is likewise calculated by applying the KDF to the
secret key of the child of the root node that is on the direct path of the updating member. A
TreeKEM group is illustrated in Figure 2.8.

B:0123 =  �� (B:01) or  �� (B:23)
depending on member issuing the updateB:0123 , ?:0123 ,

�G8 ,G 9 , �C (�
G8 ,G 9 )

G8, �
G8 G 9 , �

G 9

�G: ,G; , �C (�
G: ,G; )

G: , �
G: G; , �

G;

Figure 2.8. A TreeKEM group with four members. Each node represents a
secret key and public key pair in the depicted order. The root node contains
the group secret, and the leaf nodes represent group members. Subscripts
indicate secret key access by identities. Adapted from: [33].

When members are added to the group, they use a public key corresponding to the secret
key known only to the new group member. The public key is broadcast to the group and
stored in a leaf node. A new group secret is then computed, encrypted, and sent to all other
members of the group. All members decrypt the message and use the new secret to update
their locally maintained views of the tree. As a result, each member knows the public keys
of all other nodes in the tree and the secret keys of all nodes in its direct path.

To initiate an update, a member generates a new key pair and derives a new group secret. It
then encrypts the secret key of the path node and sends it to the nodes on the co-path. An
update operation initiated by member � of a hypothetical group is shown in Figure 2.9.
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Figure 2.9. A TreeKEM group with four members. Subscripts indicate secret
key access by identities. After member � initiates an update, it must send
keys to other members of the group so that they can update their tree copy.
Member � sends a message to each node on its co-path that is encrypted
with the public key of that node. Adapted from: [33].

Removal of a member from the group necessitates an update of all secret information to
which the removed member had access. When a member, �, is removed, for instance,
another member of the group computes a new group key. The key is then encrypted for all
members of the group except � using public keys for which � does not know the private
keys. Upon receipt, members will decrypt the new group key and use it to update their
locally maintained views of the tree.

One potential issue in TreeKEM arises when a member, �, adds or removes a member, �.
Since � performed the add or remove operation, � has knowledge of the secret keys on �’s
direct path, which can be a problem if � is compromised. Even if the direct path for � is
updated and healed, � had knowledge of the secret keys on �’s direct path and can still
compute the group secret [39]. TreeKEM with blanking, or TreeKEM�, was proposed to
mitigate this issue.

With TreeKEM, if a member adds or removes another member in the group, they will know
a secret key for a node not in their direct path. With TreeKEM�, any node for which a
secret key would be known by a member of the group not in that node’s direct path will be
“blanked,” or not assigned a key-pair value. This ensures that a group member only knows
the secrets on their own direct path to the root [39]. When something needs to be encrypted
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to a blanked node, it will instead be encrypted to the children of the blanked node, with this
operation occurring recursively until a non-blanked node is reached.

2.3.3 Tainted TreeKEM
A variant of TreeKEM called Tainted TreeKEM has been proposed for MLS [39]. This
protocol differs from TreeKEM mainly in the way members are added or removed. Instead
of blanking nodes in the tree, Tainted TreeKEM proposes keeping track of the nodes that
would be blanked under TreeKEM� and which secret keys have been created by which
members of the group. Rather than blanking these nodes, they are marked as tainted. A
tainted node is used as a regular node, meaning that all other members of the group treat
this node normally for group operations. The tainted node will heal in a manner similar to
a TreeKEM� blanked node when an update is performed. The efficiency of tainting versus
blanking nodes depends on the sequence of operations that are performed in the group [39].
The security of this protocol is very similar to that of TreeKEM�.

2.4 MLS
In 2017 the IETF established a working group devoted to designing a protocol for secure
group messaging called Message Layer Security (MLS) [10] that would not be subject to
the computational limitations of pairwise communications. The MLS IETF working group
has members from Cisco, Google, Cloudflare, Facebook, Wickr, Wire, Twitter, and other
stakeholders [32]who aim to establish a groupmessaging protocol that guarantees important
security claims without compromising performance. Working MLS implementations of
Draft 11 [42] are currently provided in C++ [12] and Rust [43].

Secure group messaging protocols like MLS use group keys maintained by tree structures to
provide securemessaging.MLS aims to provide secure asynchronous group communication
where members can send and receive confidential and authenticated messages [10]. In the
early iterations of the protocol’s development, MLS relied on ART [41], however the IETF
removed ART in MLS Draft 2 [10]. As of Draft 7, the TreeKEM� protocol is at the core of
MLS [10], [37].
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Key Schedule
TreeKEM is not secure on its own since group keys become corrupt whenever one group
member is corrupted. In order for the group to be secure, a mechanism is needed to chain
keys across epochs. An epoch is defined as a period of time when a specific group key is in
use [10], so each TreeKEM state is effectively confined to a specific epoch.MLS implements
this through a key schedule that is updated with every update operation performed (i.e., the
group transitions to a new epoch with each update). The MLS key schedule uses KDFs to
chain the keys across epochs by combining new keying material with old keys [40]. The
combination of TreeKEM and a key derivation schedule provides the security guarantees
of PCS and forward secrecy [40].

Proposal and Commit
MLS has three major operations that can be performed on a group: update a member’s secret
keys, add a member, and remove a member [10]. When performing one of these actions,
a member first proposes the action by sending a proposal message with the operation type
(e.g. Add, Update, and Remove). Following this message, the member sends a Commit
message to finalize the operation. The state of the tree is not affected until the Commit
message is sent and processed. New shared secrets are contained within a Commit message
and a member can process multiple proposals in one Commit [10].

Update
Updates occur to change a member’s leaf secret and update the direct path of that member.
Each update performed by a user results in an update secret, or high-entropy random
variables that is used to refresh group keying material [32]. The MLS protocol ensures that
each user receives the same update secret, that the update secret remains secure to anyone
outside the group, and that past update secrets remain confidential. In combination, these
characteristics assure PCS [32].

The period between updates is determined by the application and not the MLS protocol
itself [10]. Any member can initiate an update at any time by creating an Update proposal
message and a Commit message and broadcasting them to the group. An example update
is illustrated in Figure 2.10.
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Figure 2.10. The state of a hypothetical group prior to an update is shown in
(a). The state of the tree during an update is shown in (b). When member
� wants to initiate an update, the member samples new public and secret
key values for each node in the direct path, highlighted in blue. It then sends
the secret keys to all nodes in the co-path, highlighted in orange, so that
each member knows the secret values of the nodes in their path. Adapted
from [40].

Initializing a Group and Adding Members
Each prospective member generates a key package prior to entering the group. The first
member to establish a group initializes the group to contain only themselves. Subsequent
additions are then performed by existing group members.

If a member, �, is adding a new member, �, to the group, � generates Add and Commit
messages and broadcasts them to the group. � then generates a Welcome message con-
taining the group state and sends it to � along with a Commit message. When � receives
the Welcome and Commit messages, it establishes its view of the group so that it can
communicate securely within the group. This process is illustrated in Figure 2.11.

Removing a group member
Removal of a member simply requires sending notification to the rest of the group and
blanking all nodes in the removed member’s direct path. For instance, for a member, �, to
remove a member, �, from the group, � sends a Remove proposal and a Commit message
to all members of the group except for node�. The remove process will blank the leaf node,
�, and all nodes in �’s direct path.
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Figure 2.11. The state of a hypothetical group prior to the addition of a
new member is shown in (a). When member � wants to add new member
�, � first creates a blanked node and adds that to the tree in the place of
�. � then shifts the position of � as a child of the new blanked node and
adds � to the tree as a leaf node as well, as shown in (b) (blanked nodes
are shown in gray). � retains the keys it had before. In (c), � performs an
update and sends information to � regarding the tree status and also sends
encrypted keys of the parent to �’s direct parent (i.e., next unblanked node
in its direct path) to �. Adapted from [40].

MLS Security Analysis
The security of MLS has been analyzed in several papers, and a summary of those findings
is provided here.

In [32], the authors analyzed the security of the TreeKEM protocol, the core of MLS. They
formally defined a CGKA protocol and outlined the security notions for this protocol. They
showed that TreeKEM provided PCS, but only weak forward secrecy. Forward secrecy is
violated because update secrets are kept since they are needed to process future updates. If
an adversary corrupts a user other than the update initiator, they can gain access to older
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Figure 2.12. The state of a hypothetical group prior to removal of a member
is shown in (a). When member � wants to remove member �, it first blanks
�’s leaf node and all nodes in �’s direct path. The tree at this stage is shown
in (b) with blanked nodes shown in gray. In (c), � finalizes the update by
sending the required messages and updates all keys in its direct path as
shown in blue. � then sends all nodes in its co-path (shown in orange), the
secret keys of their direct parents. Adapted from [40].

update secrets. A solution to mitigate this attack is to use updatable public-key encryption.
The authors assert that, by using this mitigation, TreeKEM can achieve optimal forward
secrecy.

The authors of [38] analyzed the security of Draft 7 of MLS. They found several attacks
against the protocol and proposed mitigations for the associated vulnerabilities. Since MLS
uses TreeKEM with blanking, MLS is susceptible to the double join attack, but this vul-
nerability can be avoided by adding authentication via signatures for the nodes in the tree.
They proposed an approach that extends the TreeKEM� protocol described in Section 2.3.2,
called signed trees for TreeKEM�, or TreeKEM�+(. A second attack that was identified was
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a cross-group forwarding attack. If users � and � are in two groups G and G’ together and
� sends a message to group G, � must know that it was intended for group G and not G’.
If there is no indication of which group the message is intended for, � can take the message
with the signature of � and forward it to group G’. Every member of G’ will believe
the message came from �. The authors suggest mitigating this vulnerability by adding a
transcript hash to all signatures.

The first work to look at the healing behavior when a member belongs to multiple groups
was [37]. Pairwise groups are able to fully achieve PCS and heal when members are part
of multiple groups since groups do not exist independently (i.e., overlapping groups share
associated pairwise channels). If amember is compromised in one group, an update will heal
the pairwise channels between individual group members, regardless of which groups those
members are in and including those that are shared with the other group. In ART, TreeKEM
and MLS, however, groups are independent so if a member heals in one group, they can
remain compromised in another group due to the limited scope of the update operation. The
authors outlined a solution to heal MLS in cross group scenarios. This type of integration
decision has been left to the Authentication Service (AS) in the MLS specification, and is
therefore not enforced in the core protocol.

2.5 Protocol Comparison
Table 2.1 compares the efficiencies of group messaging protocols for sending and receiving
messages. Not surprisingly, many tree-based group protocol operations have logarithmic
complexity while their pairwise counterparts have linear or quadratic complexity. Sender
keys requires linear complexity group creation and has no mechanism to remove members
or update keys. An appealing feature of TreeKEM is the reduction of processing time for
message receivers to $ (1) public key operations for updates, adds, and removes [38].

Since the UAV swarm is such a computational- and communications-limited entity, a
proposal for a group key messaging scheme must take these limitations into consideration.
UAV swarms must be able to dynamically add and remove members from the swarm, and
MLS provides a lightweight way to scale secure group communications with logarithmic
add, remove, and update operations.
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Table 2.1. Secure Group Communication Protocol Efficiencies. Adapted
from [38].

Protocol Create Add Remove Update
Send Receive Send Receive New Send Receive Send Receive

Sender Keys #2 # 1 1 # − − − −
ART # ;>�(#) ;>�(#) ;>�(#) ;>�(#) − − ;>�(#) ;>�(#)

TreeKEM # ;>�(#) ;>�(#) 1 1 ;>�(#) 1 ;>�(#) 1
*MLS # 1 1 1 1 ∗∗;>�(#)...# 1 ∗∗;>�(#)...# 1

∗MLS as of Draft 7 uses the TreeKEM� protocol
∗∗;>�(#)...# indicates that the computational cost ranges from ;>�(#) to # , depending
on the number of blanked nodes. In the worst case (i.e., all nodes in the group are
blanked), this cost is # . In the best case (i.e., no nodes are blanked), this cost is ;>�(#).

Having secure properties like PCS and forward secrecy is also very important in UAV
swarm applications. UAVs can be easily lost or compromised. The protocol needs to ensure
that data that was previously sent to or from a compromised UAVs remains secure and that
the rest of the swarm can heal communications even if a swarm member is lost and must
be evicted from the group. The MLS protocol is well suited for this application because
the protocol provides relatively efficient ways to remove a member and update the keys
such that the ejected member can no longer communicate with the group [10]. These key
updates will help to keep the data secure going forward. The goal of this thesis was to
successfully implement MLS in the swarm and evaluate the effect utilizing MLS has on
the UAV swarm. MLS has not been implemented in UAV swarm before, and assessing the
application of the MLS protocol to UAV swarms is an important advancement in secure
group communications for UASs.

2.6 Chapter Summary
This chapter provided background information on UAV swarms and secure group commu-
nications. An overview of the ARSENL swarm was given and other UAV swarm commu-
nication schemes were discussed. Secure group communication protocols such as Sender
Keys, ART, and TreeKEM were covered. This chapter also discussed the motivation of
MLS and provided an overview of the protocol itself. Chapter 3 will describe the process
of integrating MLS C++ code into the ARSENL swarm.
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CHAPTER 3:
Integrating MLS into the ARSENL System

This chapter outlines the process of integrating MLS into the ARSENL codebase using the
C++ API developed by Cisco. An overview of ROS, its utilization in the ARSENL system,
and its use in the MLS integration is also provided.

3.1 MLS C++ Code
The development of the MLS protocol is an ongoing effort by the IETF working group.
All research conducted in this thesis uses Draft 11 of the MLS protocol. Documentation
can be download from the IETF tracker website [10]. The IETF provides information
about available MLS Draft 11 implementations at the their Github repository [42]. For this
research the Cisco-developed C++ API was used. It can be downloaded from the Cisco
Github repository [12]. The Cisco C++ API implementation will be referred to as MLS++
for the remainder of this thesis.

The MLS++ API was installed alongside the ARSENL codebase. The MLS++ header files
were imported to the relevant ARSENL code, and the static libraries were automatically
linked at compile time by the ROS catkin_make build tool. The MLS++ libraries required
some reconfiguration to facilitate their use on the Linux platforms used by the ARSENL
system. For the time being, this process will need to be repeated for any newer MLS++
versions. In particular, the MLS++ dependencies on Ubuntu 20.04 and CMake version 3.12
were downgraded to Ubuntu 18.04 and CMake version 3.10, and links to theMLS++ library
files and include directories were manually added to the ARSENL ROS directory hierarchy.
No modifications to the original MLS++ source code, functionality, or dependencies were
required to facilitate utilization with the ARSENL system. A detailed description of the
process used to incorporate the MLS++ library into the ARSENL on-vehicle software is
provided in [44].

Three important MLS++ classes were needed for this implementation: Client, Session,
and PendingJoin. Every MLS group member needs to be initialized with a Client class
instance which is then used to create or join an MLS group. It contains information about
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the ciphersuite and public and private keys for the group member.

After joining a group, a member’s state in the group is stored in an instance of the Session
class. The Session class contains all of the code that manages amember’s participation in the
group as updates, adds, removes, and Commits are executed. State information maintained
by the Session instance includes various keys and information about other group members.

When amember wants to be added to the group, they initialize aPendingJoin class instance.
This object generates key packages and executes required operations like processing the
Welcome message.

3.2 Robot Operating System (ROS)
This section introduces the ROS middleware framework and discusses its use in the inte-
gration of the MLS protocol into the ARSENL UAS.

3.2.1 ROS Overview
ROS [45] is an open source framework supporting the development and implementation
of robust robotic applications. It consists of a set of software libraries and tools that can
easily be integrated into other frameworks [46]. ROS is designed primarily for Unix-based
platforms and provides Python, C++, and Lisp APIs. The ARSENL UAS is implemented
primarily in Python; however, the C++ API [47] was used for this research to facilitate
integration of the MLS++ functionality.

ROS Processes
A ROS Master process manages all ROS functionality at runtime [48]. The ROS Master
maintains system-wide state information. Every ROS process registers with the ROSMaster
process and provides required information at startup. The ROS Master process then man-
ages all system-wide state maintenance, event and process scheduling, and inter-process
communication and interaction.

ROS functionality for a specific application is achieved through the development of one or
more ROS nodes. A node is a single process running within the framework that typically
performs a single function [49]. One node might, for instance, implement a driver for a
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particular sensor while another node might use the provided sensor data for path planning.
Nodes register with the ROS Master at startup, and each node assigns itself a unique name
that is provided to the ROS Master upon registration.

While the ROS Master provides runtime management of the ROS system, the internal
functionality of each node is isolated from the ROS Master and from other nodes. This ar-
rangement facilitates rapid development by allowing compartmentalization. Specific func-
tionality for each node can be developed in isolation without affecting any functionality
of other nodes. Similarly, new sensors or capabilities can be easily incorporated by adding
new nodes to the system. This arrangement also facilitates the use of different programming
languages. For this research, the MLS node was written in C++, but the rest of the ARSENL
system is written in Python [11].

ROS Communications
ROS implements a publisher-subscriber model that is used by nodes to communicate with
one another. Nodes send information to other nodes by publishing messages to topics to
which other nodes can subscribe. A sensor managing node, for instance, will publish the
sensor data to a topic to which nodes requiring the data subscribe. ROS Messages are typed
data structures that can be used to encode atomic data elements (e.g., integers, floating point
numbers, or strings) or composite data elements (i.e., structs) [50].

ROS topics are specified using text strings and act as named buses to which nodes publish
and subscribe [51]. Nodes inform the ROS Master of their intent to publish to a topic or
their desire to subscribe to a topic. The ROSMaster then receives messages from publishers
and forwards them to the topic’s subscribers. Arbitrary nodes can publish or subscribe to
a topic, and other nodes do not know the origin or destination of the topic’s messages. In
this sense, communications are anonymous. Any node can send messages by publishing to
a particular topic or receive messages by subscribing to a topic. Thus, this model provides
for many-to-many messaging in that multiple nodes can publish to a topic, and multiple
nodes can subscribe to a topic. An example of ROS nodes and topics in use is depicted in
Figure 3.1.

Each topic is assigned a message type when it is initialized. When publishing or subscribing
to the topic, messages must match the designated message type for that topic. ROS utilizes
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Figure 3.1. This figure shows ROS nodes represented as blue ovals, and
topics represented as orange squares. A line pointing to a node indicates
that node is subscribed to a topic. A line pointing from a node indicates the
node publishes to a topic. In this figure, Laser_1 and Laser_2 nodes control
separate physical LIDAR sensors. They publish messages containing sensor
readings to the topic Scan in the form of B4=B>A_<B�B/;0B4A(20=. Two
nodes, path_planner and target_classifier, are subscribed to this topic. They
use the data for two different purposes. Subscribing nodes are unaware of
which nodes initially published the data and which other nodes are subscribed
to the topic.

the underlying network implementation to send messages using either Transmission Control
Protocol (TCP) or User Datagram Protocol (UDP). Only UDP is supported by the roscpp
library with which MLS functionality was implemented [47].

ROS also provides a service-oriented communications capability that functions like a remote
procedure call [52]. ROS service messages contain both request and reply sections. The
request is sent by the calling node to the node providing the service, and the providing node
responds with the reply. Although ROS services are used within the ARSENL system, they
were not required for the MLS implementation.
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3.2.2 MLS as a Node
ARSENLon-vehicle functionality is implemented as a set ofROSnodes: the network_bridge
is responsible for air-to-air and air-to-ground communications, the autopilot_bridge interacts
with the PixHawk autopilot to achieve swarm behaviors, the safety node provides for safety
of flight, the task_scheduler initiates preplanned actions as mission milestones are achieved,
and the swarm_manager controls execution of swarm behaviors [11]. Interactions between
nodes rely primarily on publishing to and subscribing from ROS topics. MLS functionality
is provided by an mls node that was added to the arsenl_communications ROS package
within the ARSENL on-vehicle codebase [53]. There are four ROS topics associated with
MLS (Figure 3.2) to which the node publishes or from which the node subscribes:

1. Subscribe to mls/init_mls: The task_scheduler publishes to this topic when the UAV
transitions to the flight ready state to initiate a join operation. The callback will either
create the MLS group if it does not yet exist (message contents of 0) or request to join
an established group (message contents indicate the UAV to contact).

2. Subscribe to mls/recv_join_msg: The network_bridge node publishes to this topic
when it receives an ARSENL message from another UAVs indicating that the UAV
wants to join the group. The callback for this subscription executes the join operation
for the requesting UAV.

3. Subscribe to mls/send_mls_msg: This topic is used by the network_bridge node to
send an encryptedARSENLmessage. The callback for this topic encrypts themessage
and sends it over the MLS socket to the other group members.

4. Publish tomls/recv_mls_msg: This topic is used to sendARSENLmessages decrypted
with the MLS group key to the ARSENL code. The network_bridge node subscribes
to this topic and processes the decrypted messages as required.

UAVs must successfully join the MLS group before they can actively participate in swarm
behaviors. These topics and their uses throughout the MLS code are described in the rest
of this chapter.

3.3 Integration of the MLS Protocol
This section will discuss how the MLS protocol was integrated into the ARSENL swarm.
All code development was done in the C++ language and utilized MLS++ and ROS.
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Figure 3.2. Four topics are associated with the mls node (nodes are repre-
sented in blue and the topics in orange). The mls node subscribes to the
mls/init_mls, mls/mls_recv_join, and mls/send_mls_msg topics and pub-
lishes to the mls/recv_mls_msg topic (message types are indicated in the
second line of the topics). The ARSENL task_scheduler node publishes to
the mls/init_mls topic to initiate group creation or joining. The network
node publishes to the mls/mls_recv_join topic when another UAV wants to
join the group and to the mls/send_mls_msg when an ARSENL message is
to be encrypted and sent. The network node subscribes to the mls/init_mls
topic to initiate a join request to another UAV and to themls/recv_mls_msg
topic to receive decrypted ARSENL messages.

3.3.1 Code Development
The code was developed over the course of several months in iterative stages. Testing
of swarm performance was not possible until the full implementation of sending and
receiving encrypted messages was completed. The SITL simulation environment described
in Section 2.1.2 was used extensively in the development and testing the mls node prior to
experimentation with ARSENL UAVs.

One class was created for this implementation to handle all MLS group operations. The
functionality contained in this class is described over the remainder of this section. Node
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functionality was developed in stages to sequentially account for all major aspects of the
MLS protocol:

1. Network Connection: Code developed in this stage creates a broadcast socket to send
MLS related messages to other UAVs on the network and receive messages sent by
other UAVs.

2. Group Creation: In this stage, code was developed to create or join a MLS group. The
group is created if no group is currently established (i.e., no UAV has transitioned to
the flight ready state). A join is initiated if theMLSgroup has already been established.

3. Sending and Receiving messages: Coding during this development stage provided
encrypt-and-send and receive-and-decrypt functionality. ARSENL messages pub-
lished to the mls/send_mls_msg topic by the network_bridge node are encrypted then
broadcast over the MLS socket. Upon receipt, a message is decrypted by the receiving
UAV and published to the mls/recv_mls_msg topic for handling by the ARSENL
nodes.

4. Update: Coding in this stage provided the MLS update capability. Upon initiation
of the update, each UAV updates the keys in its direct path. All other UAVs in the
group are also made aware of these changes so that messages can be encrypted and
decrypted with the new keys.

5. UAV Removal: In this final development stage, the member removal operation was
implemented. Once removed, a UAV is no longer able to decrypt encrypted messages
sent to them.

For much of the development, debugging could not be done with a debugger because of
the highly parallelized nature of the ARSENL system. Successful development, therefore,
was heavily reliant on analysis of ROS log files and messages printed to the vehicle-specific
terminal windows while the simulation system was running. All debugging was done by
hand, and log files were analyzed for potential errors. Wireshark was used to analyze and
debug data sent across the network.

3.3.2 Code Overview
The MLS class manages all group operations related to MLS and is the primary class with
which the mls node is implemented. Important information about each UAV is provided in
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the form of ROS parameters set by the ARSENL code: UAV ID, network device name, and
port. The UAV ID is a unique integral value associated with the vehicle that serves as its
identification in the MLS group. The network device name is used to obtain the IP address
for the broadcast socket. The port is used to calculate the UDP port to be used by the MLS
socket for inter-UAV communications. A brief overview of the code is provided here.

The first UAV to reach the flight ready state initializes the MLS group. Subsequent UAVs
reaching this state request to join the already established group. Both establish and join
events are triggered by the task scheduler node by publication of a ROS message to the
mls/init_mls topic. An integer 0 in the message data field indicates that the UAV is the first
reach the flight ready state. Any other value indicates that the UAV is not the first. In this
case the message data field value indicates the UAV that will execute the join operation.
The new UAV will wait to be added in this case.

When a UAV needs to be added to an existing MLS group, the network_bridge node on the
new UAV (UAVnew) sends an unencrypted ARSENL message to an established member of
the group (UAVestablished) that is to perform the join operation. The network_bridge node on
UAVestablished publishes a ROS message to the mls/recv_join_mls_msg topic indicating that
UAVnew wishes to join the group. The MLS class instance of the mls node on UAVestablished

then initiates the process to add UAVnew to the group. Authentication of UAVnew prior to
executing the join is beyond the scope of the MLS specifications and of this integration
as it is part of the AS. This failure to ensure that only authenticated UAVs induces a gap
in security, but resolution is left to future research. More discussion on authentication is
provided in Section 5.2.5.

Addition of a member requires a KeyPackage for the new member. In the example, when
UAVestablished receives this KeyPackage from UAVnew, it adds the member and broadcasts
the Add proposal and Commit messages to all other UAVs. Every group UAV processes
the messages and adds the new member to their view of the group. UAVestablished then sends
the Welcome message to UAVnew, and UAVnew processes the Welcome message to finalize
its addition to the group.

All members of the group can encrypt and send messages at any time to other group
members and can decrypt received messages. When the network_bridge node needs to
send an ARSENL message, it publishes an unencyrpted copy to the mls/send_mls_msg
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topic. The message-handling callback in the MLS class encrypts the message and uses the
network socket to broadcast it to the group. Received encrypted messages are processed by
the mls node’s socket object. The MLS object to which it belongs decrypts the message
and publishes the plaintext to the ROS mls/recv_mls_msg topic. The network_bridge node
processes the plaintext message for use by the ARSENL nodes.

To initiate an update, the mls node on the initiating UAV uses the socket to send an
Update proposal and a Commit messages to all other UAVs. Receiving UAVs process
those messages so that each UAV has the same view of the group tree.

The process for removal of an UAV from the is the same as for an update: the UAV initiating
the removal sends proposal and commitment messages that are processed by other group
members. After removal, the removed UAV can no longer decrypt messages received over
the socket.

Network Creation
The first stage of development focused on code for creating the MLS network. Creating the
network socket itself was the biggest hurdle in this code development stage. Wireshark was
used heavily in error checking as well as was manual checking of log files.

A UDP broadcast socket is used for this implementation, and messages are sent to the
broadcast address. Since all UAVs are listening on the network, they all potentially receive
every message that is sent. Since much of the ARSENL code was written to rely on
UDP communications, it made sense to continue with this pattern. There was no checking
that messages were received, however, and UDP provides no such guarantees. A future
enhancement to the code is warranted to monitor the distributed MLS service to ensure
rebroadcast of dropped packets. This service is left to futurework as discussed in Section 5.2.

A dedicated thread is implemented to read from the MLS socket using a blocking read
to account for the asynchronous communications. This allows both MLS maintenance
and ARSENL messages to be read and processed as they arrive. The alternative would
be an inefficient polling loop. Writing to the socket occurs primarily within ROS topic
callback functions. The callback formls/send_mls_msg, for instance,willwrite the encrypted
message to the socket. Callback functions are invoked from within a specific ROS message-

37



handling thread in response to messages received from subscribed topics.

MLS-specific data, such as encrypted messages, KeyPackages, Commit messages, and
Welcome messages are stored in a data type called Bytes. This data type is defined and
managed in the MLS++ API, and its contents are represented as a vector of unsigned chars
(i.e., bytes). Because data is written to and read from a socket as an array of unsigned chars,
serialization of the Bytes data is required to send data and deserialization is required to
convert read data back to a Bytes object. Many different ideas were tested, such as type
casting the objects to various types to achieve serialization and deserialization functionality.
The final functional serialization version loops through the Bytes data object and adds each
char to an array. The reverse of this process is used to deserialize the data.

Special attention was paid to making sure the data flowed across the socket in a manner that
enabled it to be reassembled in a meaningful way. When the data is serialized, information
relating to the message type is lost. The MLS++ API differentiates between message types
through subtyping (i.e., different message types inherit from theBytes class). The subtype is
lost, however, when the object is converted to a char array. To account for this, the first char
of the serialized array is used as a packet type indicator. Each message type is represented
as a unique integer that is checked during deserialization to determine what type of Byte
object to use and how to process it.

After integrating the MLS++ code, Wireshark and the SITL simulation were not showing
the expected results. Specifically, it was noted that the socket was implemented in a way
that allowed a UAV to join a group, but not to send and receive messages after that. The first
issue that was investigated was an “address already in use” binding error. This was resolved
by setting the socket option SO_REUSEPORT, but this did not fix the larger problem.
Further testing indicated that the reads and writes were relying on the same sockaddr_in
structure (a sockaddr_in is used by C++ to represent an IP-port pair). When using the same
sockaddr_in instance for reads and writes, the socket appeared to only read messages that
were sent from its own IP address. To fix the issue the socket needed to be configured to
read from any source address. A second sockaddr_in for which the INADDR_ANY option
was set allowed the read socket to bind to the same port as the write socket and enabled it to
read from any IP address. The socket used for reading messages is not bound to a specific
IP address, and all messages are sent and received correctly as a result.
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One socket option that was considered but ultimately not implemented, was to use multiple
sockets for sending different types of information. One socket would be reserved for MLS
maintenance messages like the KeyPackage, Welcome message, proposal messages (Add,
Update andRemove), andCommits.A second socketwould be used for encryptedmessages
between UAV. Since the packet type is easily determined from the first char in the serialized
message, this option was deemed unnecessary, and a single socket was used for all types of
mls node communication.

Group Creation and Member Addition
The initial approach to creating and adding members to the MLS group relied on UAV ID
numbering starting with “1” for the first vehicle to start and increasing sequentially from
there. When this is true, it is fairly straightforward for the first UAV to initialize the group on
startup and for each subsequent UAV to prompt the UAV with the ID number immediately
below theirs to add them to the group. For example, UAV 1 would initialize the group,
UAV 2 would request that UAV 1 add them to the group, UAV 3 would request that UAV 2
add them to the group, and so on. This made code development easier for testing purposes,
and this solution works in the simulation environment. However, this will not work in live
flight since UAVs IDs are permanently assigned to specific platforms as opposed to being
determined dynamically at startup. Thus, ID assignments for live-fly events are effectively
arbitrary, and hard-coding the vehicle ID for the add request is unrealistic.

To solve this issue, the first UAV to transition to the flight ready state, regardless of ID,
initiates the group. As subsequent UAVs transition to the flight ready state, they identify
another flight readyUAV and request a join from that UAV. Extra ROS topics were added to
the ARSENL system to support this approach, and the mls node uses these to dynamically
add members. This approach is suitable for the SITL simulation system and also for live
flight testing. Algorithm 1 shows the process for creating a group and joining a group.

The join process is depicted in Figure 3.3. When a UAV requests to join a group, it sends
its KeyPackage to a UAV already in the group (i.e., the selected flight ready UAV). That
member adds the new UAV to the group and generates a Welcome message. The Welcome
message contains information regarding the current state of the group and any public and
private keys the newUAV needs. Since themls node utilizes a broadcast socket, all messages
are sent to all other aircraft on the network. A separate topic is therefore required to specify
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Algorithm 1 Group Creation and Member Addition
*�+ ← 2;84=C

2A40C4_B>2:4C
upon event 5 ;8�ℎC A403~ do

if *�+ is first to 5 ;8�ℎC A403~ then
BC0AC_�A>D?(2;84=C)

else
*�+ 9>8= ← any 5 ;8�ℎC A403~ UAV
9>8=_�A>D?(*�+ 9>8=)

end if
while AD==8=� do

send/receive messages
end while

the intended recipient of the join operation messages.

The task_scheduler node publishes the ID of the UAV to which the request will be sent to the
mls/send_join_msg ROS topic which is subscribed to by both the mls and network_bridge
nodes. The mls node callback uses the message contents to prepare the KeyPackage.
The network_bridge node sends an unencrypted ARSENL message to notify the intended
recipient. The network_bridge node on the receiving UAV publishes the contents to the
mls/recv_join_msg triggering the mls node callback function. In this function, a handshake
is sent indicating that the UAV is ready to receive a KeyPackage and add the UAV. Upon
receipt of handshake message, the joining UAV sends the KeyPackage and waits for a
Welcome message. Without the handshake, timing between aircraft sending and receiving
messages was not ensured, and it was possible for the UAV adding the new UAV to miss the
KeyPackage. The UAV adding the new UAV adds the KeyPackage, Commits the change,
and sends the resulting Welcome package to the added UAV.

Since communication buffers at the socket, there was a potential issue with a UAV using a
Welcome message that was not intended for their UAV. To mitigate this, an ID was added to
the handshake to indicate the aircraft for which the handshake was intended. This indicator
lets the UAV know when it can proceed with joining the group by processing the next
Welcome packet they receive. Another potential option to solve this problem would be to
maintain a queue of KeyPackages and wait until themls/recv_join_msg callback is invoked
before processing one. The difficulty with this solution would be making sure the correct
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Figure 3.3. When a UAV wants to join a group, the ARSENL system sends
a request to another UAV in the group. After the established UAV receives
the request, it sends a handshake message indicating that it is ready to
receive the joining UAV’s KeyPackage. When the joining UAV receives the
handshake, it verifies the handshake by checking the ID. If it matches its
own ID, the joining UAV sends its KeyPackage. When the established UAV
receives the KeyPackage, it adds the new UAV to the group, and sends
the Welcome message to the joining UAV. The joining UAV processes the
Welcome and can subsequently participate in group communications. The
steps completed with functions from the MLS++ API are outlined in black,
while others that are developed as part of this thesis work are not outlined.

key package was used from the queue. This would require that the UAV adding the new
member conduct an exhaustive search of identity keys to verify the KeyPackage. There
would also be a potential problem with space based on the number of KeyPackages that
would need to be stored given that there is no limit to the number of other aircraft a UAV
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might be asked to add to the group.

The join and add processes are described in Algorithms 2 and 3.

Algorithm 2 Joining UAV Process
upon event <;B/8=8C_<;B do

9>8=43 ← 5 0;B4

do
upon event ℎ0=3Bℎ0:4 do

if ℎ0=3Bℎ0:4.83 == >|=_83 then
send :4~_?02:0�4
upon event |4;2><4 do

process |4;2><4
3>=4 ← CAD4

end if
until 9>8=43

Algorithm 3 Adding UAV Process
upon event <;B/A42{_ 9>8=_<B� do

send ℎ0=3Bℎ0:4, 83
upon event A4248{4 :4~_?02:0�4 do

update tree and commit
send |4;2><4

Testing for correct join functionality in the SITL environment was difficult because of how
the SITL simulation and ROS implementation interact with the MLS++ API. Processes
outside themls node continue running even if themls node fails and there is little information
provided regarding why and where in the code the failure occurred. Failure diagnosis
required manual code inspection and extensive analysis of runtime print statements. One
such error was a segmentation fault resulting from accessing invalid pointers. This error
went unreported and led to downstream errors. Through manual inspection of the code,
it was determined that the cause was accessing a temporary PendingJoin object that was
returned from one of the functions in the MLS++ API.

The MLS class ongoing access to the Client, Session and PendingJoin objects in the form
of member variables. Storing these objects properly in the MLS class was tricky since
API developers made the design decision to not provide copy constructors or no-parameter
constructors forMLS++ classes. To get around this, C++ vectors are used to store the objects.
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When an object is returned from a function in the MLS++ API, it is added to the vector and
accessed using the zero index. For example,*�+_ 9>8=[0] .:4~_?02:0�4() would be used
to access the KeyPackage for the UAV requesting to be added to the group. Only one object
is ever added to the vector during the lifetime of the UAV, so the index never changes. This
solution worked well and did not appear to affect access times to class functions. It proved
to be a long-term fix, and no further issues during the integration appeared because of it.

Commits
Commits are periodically initiated by individual UAVs using a 2-step proposal-commit
process. After sending an Add, Remove, or Update proposal to other UAVs, the UAV
initiating the action Commits the proposal. The MLS++ code returns a Commit message
that is then forwarded to the rest of the group. Group members process the received proposal
and Commit to bring their local views up to date. Ensuring that every UAV has the same
view of the group requiresCommits to be processed in the same order by all groupmembers.

For the Commit operation, occasional errors were noted as UAVs process Commits at
different rates. For instance, if a Commit is processed and a message is received from
another UAV that has not yet processed the Commit, an error will occur. This is not an
issue with MLS implementations that assume that packet ordering is deconflicted (e.g., by
the distribution service per the MLS protocol specification [10]). The distributed, peer-to-
peer nature of the UAV swarm, however, makes deconfliction difficult. Resolution of this
issue has been identified as an area for future work as described in Section 5.2

Another known issue is that UAV messages are broadcast, and there is currently no filtering
in themls node for self-sentmessages. This will cause an error aswell sinceCommits cannot
be processed twice. This issue is difficult to address in the SITL environment because UAVs
share a single IP address. Future work can mitigate this problem on physical vehicles by
filtering and ignoring self-sent messages based on the source IP address.

Message Sending and Receipt
As implemented, the mls node only encrypts some ARSENL network traffic. Information
exchanged between UAVs and the ground station that is required to ensure safety of flight
andmaintain operator oversight is still sent as plaintext. The information that is sent between
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UAVs, however, is encrypted using mls. In particular, state/telemetry messages transmitted
by each UAV at a rate of eight hertz and autopilot status messages transmitted at one hertz
are encrypted. Since these messages comprise the bulk of the ARSENL network traffic,
performance observations are considered representative of the overall system.

The mls node subscribes to the mls/send_mls_msg topic. When the ARSENL net-
work_bridge node has a message that needs to be sent to other UAVs, the mls node callback
function for this topic is invoked. The mls node encrypts the message and broadcasts the
encrypted data over the socket. When a UAV receives an encrypted message, the mls node
decrypts the message and publishes the plaintext message to the mls/recv_mls_msg topic.
From there, the network_bridge node forwards the plaintext message contents for use by
other ARSENL nodes as required. Analysis of log output verified that this process was
working correctly (i.e., received and decrypted messages matched the original messages
that were encrypted and sent).

Messages are sent frequently and this group operation consumes the most network band-
width. Message sending and receiving functionality and performance, therefore, were of
particular interest during the testing.

Update
The update operation is conducted periodically to ensure that security of the group is
maintained. When a UAV wants to initiate an update, it sends an Update proposal message
to the group, and follows with a Commit message. Each UAV that receives the messages
processes them to update their view of the keys in the tree.

Update functionality was tested in the SITL environment with various time periods between
updates to determine how swarm operations were impacted as update frequency changed.
When updates were initiated after every message was encrypted, the induced overhead ef-
fectively stifled inter-UAV communications. Since SITL environment performance typically
exceeds on-vehicle performance, it is assumed that this degradation would carry over to the
actual UAVs. Communication did not return to normal until updates were only initiated once
for every 150 messages sent, which is approximately once every fifteen seconds per UAV.
Additional testing was conducted determine the best interval between update operations.
This testing is discussed in Chapter 4.
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Member Removal
The last MLS operation implemented was removal of a member. This operation is required
when a member voluntarily leaves the group or when other group members determine that
the member has failed, is compromised, or is malfunctioning. The removal process is similar
to the update operation in that it is effected by Remove proposal and Commit messages
from one member to the rest of the group. Testing of this function was only conducted
with the same UAV (i.e., UAV 2) to verify that the function worked correctly. Multiple test
runs in the SITL simulation environment verified that UAV 1 could reliably remove UAV
2 and that once removed, UAV 2 could no longer decrypt messages sent within the group.
An obvious potential area of future work is to develop and test approaches to group-wide
consensus for determining when to remove a UAV from the group.

3.4 Chapter Summary
This chapter outlined the process that was utilized to integrate MLS++ functionality into
the ARSENL swarm to include discussion of difficulties and problems encountered during
the implementation process. An overview of ROS was also provided to facilitate better
understanding of the relationship between the existing ARSENL swarm system and the
MLS implementation. Chapter 4 provides the testing results and discusses observed MLS
impact on swarm communications.
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CHAPTER 4:
Results

This chapter discusses testing results of the mls node implementation. Testing was con-
ducted in two stages. The first tests were conducted in the SITL simulation environment
and provided baseline metrics and assurances of correct functionality. The second phase
consisted of ground tests with various numbers of ARSENL UAVs and was used to assess
performance in the actual communications environment. Live vehicle testing was also used
to evaluate various update intervals in the lossy communication environment and absence
of delivery service implementation.

4.1 Simulation System Testing
There were six variables of interest that were evaluated during this testing phase:

1. time required to join the swarm once in flight ready state,
2. update frequency,
3. bytes of plaintext encrypted and bytes of ciphertext sent per UAV,
4. bytes of ciphertext received and decrypted per UAV,
5. number of messages encrypted and sent, and
6. number of messages received and decrypted.

Statistics were captured and logged every three seconds.

Testingwas conductedwith various update intervals associatedwith the number ofmessages
sent by each UAV, meaning an update message was issued by UAV for every G number of
messages that the UAV sent. Data was collected for update intervals of G equals 50messages,
150 messages, and 250 messages. Data was also collected with no updates being processed
by the UAVs.

The UAV responsible for starting the group was able to create a group comprised of only
itself using the MLS++ API in under five milliseconds. After the group was created other
UAVs could be successfully added to the group. The longest a UAV took to join the group
after reaching the flight ready state was 58 milliseconds. It was of interest to test the time it
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takes a UAV to join the group since a non-MLS handshake for sharing theMLSKeyPackage
which incurred wait time to the join process was introduced. (It should be noted that this
method of sharing the KeyPackage is one architectural design choice and does not rule out
other methods that could be used). The low times recorded indicate very efficient create and
join operations for the swarm.

4.1.1 Update Frequency Testing
For the update messages, four different update intervals were tested with swarms of size
five and 10 UAVs. Intervals were calculated per device. For example, if the interval between
updates is set to 50, then after a single UAV sends 50 messages, that UAV will issue an
update. To verify that MLS was implemented correctly and that the ARSENL swarm was
properly handling the group protocol, log files were analyzed to ensure the correct number
of messages were encrypted and that the correct amount of data was received and decrypted.

No Updates
To get a baseline for how themls node was performing, the SITL simulation was run with no
UAVs issuing updates. Each UAV sends nine ARSENL messages to the group per second
(eight state messages and one autopilot status message). In a swarm of five UAVs, therefore,
45 messages should be received and decrypted per second per UAV. The SITL test verified
these statistics, with each UAV decrypting an average of 44 messages per second per UAV.
In a swarm of 10 UAVs, 90 messages should be received and decrypted per UAV per second.
The tests showed that a swarm of 10 UAVs decrypted an average of 88 messages per second
per UAV. These results were considered reasonable for the SITL environment in which
communications are subject to packet loss associated with UDP. These tests indicated that
the mls node was working properly and that UAVs were able to successfully send encrypted
messages to other UAVs and that those messages could be properly decrypted by receiving
UAVs using the group key.

On average an ARSENL UAV encrypts approximately 495 bytes of plaintext data and sends
approximately 1,749 bytes of ciphertext per second. Based on these numbers a swarm of
sizes 5 and 10 should receive 8,745 and 17,490 bytes of ciphertext per second respectively
and decrypt it to 2,475 and 4,950 bytes of plaintext. The ciphertext is larger than the plaintext
since the chosen ciphersuite included both authentication and additional authenticated data,
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and the MLS++ API included information about the group id, epoch, and sender within the
ciphertext. These numbers closely alignedwith the observation in both tests with no updates.
Each UAV in a swarm of size five received between 8,651 and 8,752 bytes of ciphertext
that decrypted to between 2,454 and 2,472 bytes of plaintext per second. For a swarm of
size 10 between 16,835 and 17,513 bytes of ciphertext per second were received equating
to between 4,756 and 4,948 bytes of plaintext. These numbers do indicate a small amount
of packet loss associated with UDP even with the largely reliable SITL communications.

50 Message Update Interval
To test the update functionality, a 50 message interval was first used. After sending 50
messages, each UAV issued an update and went through the update process described in
Section 3.3.2. Updates occurred approximately every five seconds.

When testing this update interval, a number of errors were frequently observed. In the worst
case, one UAV failed after communicating with the swarm for a period of time, and all of
the log data was lost as a result. Another common error was associated with a UAV using
a key that from an incorrect epoch because of a missed update. When this occurred the
UAV would attempt to encrypt and decrypt messages using an old group key. On UAVs
receiving messages from the affected UAV, an error message presented indicating that the
received message was encrypted using the wrong key. When the affected UAV attempts to
decrypt messages received from UAVs that successfully performed the update, the MLS++
code presents a similar error indicating that it has no state for the epoch associated with the
encrypted data, since it did not receive the update(s).

For a UAV group with five members, an average of 42 messages were received per second
per UAV. The test was stopped after observing that two UAVs had stopped communicating
with the swarm. If the testing period had continued, this average would have approached 27,
since only three UAVs out of the five were communicating in the group. This average was
expected to be close to 45 if all five UAVs were processing updates correctly. The size 10
UAV swarm performed much worse, as expected, with an average of 41 messages received
per second. The average number of messages sent per second per UAV was much lower
than the expected value of 90 for a 10-UAV swarm. This indicates that more UAVs were
effectively removing themselves from the communications group due to missed Commit
messages associated with the update function.

49



Due to lost log data for one member of the size five swarm, all results are based on the
remaining four members of the group. The five UAV swarm received between 8,289 and
8,376 bytes of ciphertext per second per UAV on average which decrypted to between
2,342 and 2,366 bytes of plaintext. A UAV in the 10-member swarm received at most an
average of 10,140 bytes of ciphertext per second and as little as 6,882 bytes per second. The
resulting data from the MLS++ API functions showed that each UAVs was decrypting, on
average, between 1,972 and 2,864 bytes of plaintext. This data indicates that ciphertext for
approximately six UAVs was received on the high side, and approximately four UAVs on
the low side. These numbers are significantly lower than what should have been received
for a swarm of size 10, and are approximately the amount of data that was expected for a
swarm that was decrypting data for five UAVs.

The ROS log entries output to the terminal as the simulation system ran, also showed that
the issues were associated with the update functions.

All of this data indicates an update interval of 50 messages is much too low for the swarm
to handle and function properly. Since the average messages decrypted for a size 10 swarm
was drastically worse than expected, this interval between updates was demonstrated to be
unsuitable even for this relatively small group and would certainly not scale well for larger
ARSENL swarms.

Missed Commit messages are a big problem since there is no easy recovery. If reliable
deliveryMLSmaintenance packets can be guaranteed, this update interval should be retested
to see if it can be successfully utilized in the ARSENL swarm.

150 Message Update Interval
An interval of 150 messages sent between updates was tested with five- and 10-member
swarms. For this interval, each update occurs approximately every 15 seconds. The five-
UAV swarm decrypted an average of 42 messages per second per UAV. This is relatively
close to the ideal average of 45 messages per UAV per second. For the 10-UAV swarm, an
average of 75 messages were decrypted per second per UAV that did not fail. During this
test, eight UAVs communicated properly for the entire duration of the test, but two UAVs
did drop out from communications. One process failed halfway through the five minute
test. When a UAV failed, a zero was appended to the remainder of the data for decrypted
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messages to account for the failure. It is difficult to diagnose why the UAV process failed, but
output from ROS messages to the terminal indicated that the issue was related to processing
a Commit message. The other UAV failed to process an update so it was using a key from
a past epoch.

Each UAV in the swarm of size five received between 6,446 and 8,267 bytes per second
per UAV. This data decrypted to between 1,825 and 2,336 bytes of plaintext per second per
UAV. For a swarm of size 10, between 5,892 and 15,134 bytes of ciphertext per second were
received, equating to between 1,645 and 4,276 bytes of plaintext. The very large range for
this test is accounted for by the two UAVs that dropped out of the communications. Since
they did not realize that their key was out of date, these two UAVs were still able to decrypt
their self-sent messages for much of the testing period but were unable to decrypt messages
sent by other UAVs.

250 Message Update Interval
The last interval that was tested was a 250 message update interval, where each update
occurs approximately every 25 seconds. For this test one UAV failed and two stopped
communicating with the swarm after close to 10 minutes of running the simulation. The
size five UAV swarm decrypted an average of 44 messages per second per UAV. Since each
UAV decrypts its own self-sent messages and each UAV encrypts nine messages per second,
a size five swarm is expected to decrypt 45 messages per second. This observed data is only
onemessage shy of the expected number of decryptedmessages and is also the same number
of decrypted packets seen in the test with no updates. These results indicate that for small
swarms, this update interval performs similarly to not updating. For the 10-UAV swarm, an
average of 87 messages per second per UAV were decrypted. This is only three messages
less than the expected number. Overall, this update interval performed reasonably well, but
not as well as the no-update test. Regardless, most UAVs were able to communicate with
the swarm for a majority of the testing duration.

With a five-UAV swarm, each UAV received between 8,676 and 8,754 bytes of ciphertext
per second per UAV. This decrypted to a plaintext range of 2,451 to 2,473 bytes per second
per UAV. These are relatively small ranges that are close to the expected values. As each
UAV joined the swarm, the number of bytes of ciphertext decrypted per UAV increased
proportionately. This test received almost perfect communications for all of the UAVs in the
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swarm. With a 10-UAV swarm, between 16,108 and 16,615 bytes of ciphertext per second
were received, decrypting to between 4,551 and 4,694 bytes of plaintext. This range was
relatively small and accounted for a majority of the data that was expected to be received.
As UAVs were added to the swarm, the bytes of data received and decrypted by each UAV
scaled proportionally.

This update interval performed well for the most part, and was the best interval that was
tested. There was still some packet loss, which is expected with UDP, and the UAVs that
dropped from the group communication failed due to unprocessed Commits.

Update Interval Testing Summary
Every update interval test experienced at least one UAV that failed or dropped out of
group communications. Empirical evidence (i.e., log entries and ROS messages to the
terminal) implies that these failures were caused by unprocessed update packets and other
errors associated with missed Commit messages. Testing for the update frequency was not
exhaustive and should be more thoroughly investigated in future research. A distribution
service, as discussed in Section 5.2.2 that guarantees reliable MLS maintenance messages
will likely be required before sufficient testing can occur to determine the best update
interval.

Results from the SITL environment update interval tests are depicted in Figure 4.1. Most
intervals for a swarm of size five were close to the expected value of 45 decrypted messages
per second per UAV. Missed updates were evidently not an issue. Not surprisingly, the
swarms that had no updates and the swarms with the 250-message update interval outper-
formed the other intervals tested. For the 10-UAV swarm, the update interval significantly
impacted the average number of messages decrypted per second. With an update interval
of 50 messages, the 10 UAVs received and decrypted fewer than half of the messages that
were sent. The average number of messages decrypted per second got closer to the expected
value as the update interval increased, indicating that the swarm performs better with a
longer period between updates. The improvement as the interval increased from 50 to 150
messages and from 150 messages to 250 messages implies that even longer intervals might
yield results equivalent to those of the no update test. Even so, the occasional unprocessed
updates would be problematic in an operational system as those UAVs would not be able
to communicate with the group beyond the point of failure. In addition, the decrease in
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performance between the five-UAV and 10-UAV tests implies that an interval sufficient for a
10-UAV system is unlikely to scale as size increases. Security concerns with longer update
intervals will also need to be addressed. Since the 250 message interval worked reasonably
well, only this interval and no update processing was tested on physical aircraft in ground
tests.

Figure 4.1. This graph depicts the average number of decrypted messages
per second per UAV with groups of five and 10 UAVs. The y-axis depicts the
average number of decrypted messages per second, and the x-axis depicts
the update intervals. The solid blue line depicts results for swarms with five
UAVs, and the orange line depicts results for swarms with 10 UAVs. The
dashed black lines indicate the expected number of messages for a five- and
10-UAV swarm.

4.2 Ground Testing
Following testing in the SITL environment, ground tests were conductedwith physical UAVs
to test the functionality of the mls node in the actual ARSENL vehicles. All testing was
conducting on the Mosquito Hawk quadcoptor described in Section 2.1.2. The Mosquito
Hawk utilizes a HardKernel Odroid-C0 companion computer [22]. The C0 is a single-board
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computer with an Advanced Reduced Instruction Set Computer Machine (ARM) version 7
quadcore chipset that operates at 1.5 gigahertz. It has one gigabyte of randomaccessmemory,
and a 32 gigabyte embedded MultiMediaCard (eMMC). Inter-UAV communications takes
place over an 802.11n network in the 2.4 gigahertz band.

Update issues identified in the simulation environment were taken into account when testing
with the physical UAVs. A main focus with the ground testing was to determine if the mls
node worked properly on physical aircraft (i.e., that the UAVs could join a group, encrypt
messages to and decrypt messages from other members). Data was collected from a log file
to which summary data was written every three seconds. Collected data included bytes of
data encrypted and decrypted, number of messages encrypted and decrypted, and the time
in milliseconds required to join the swarm.

Three errors were noticed during the ground tests:

1. failure to join the MLS group,
2. failure to process Commit messages (join or update operation), and
3. failure to write to the log file.

These failures are all related in some way to UDP unreliability, which in turn affects how
MLS functions within the swarm. Reliable receipt of MLS maintenance messages is an
important requirement that future research will need to address. It is important to note that
with the data that was collected, it is impossible to differentiate between failures 1 and 3.
Since no bytes were logged to a file for either of these failures, either the UAV did not join
the MLS group, or the UAV did join the group but the file was corrupted when the mls node
failed. Without a terminal on which to monitor the on-aircraft ROS logging in realtime, it
is difficult to determine the cause of a file to which no data was written.

No Updates
Ground tests were first conducted with UAV swarms that were not issuing MLS updates.
Four different size swarms were tested: three members, five members, seven members,
and 10 members. All failure types described above were observed during the ground tests
with no updates. When no updates are being processed, UAVs still need to process Commit
messages associated with joins. Sometimes a UAVmisses one of theseCommits and cannot
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communicate with the rest of the group using the group key as a result.

For a UAV swarm of size three, all UAVs joined the group, and decrypted messages were
received from every other UAV in the swarm. Each UAV decrypted an average of 24
messages per second, which is three messages less than the expected number of 27. This
test demonstrated that MLS can be used in the swarm communications and that the MLS
protocol functioned well in a very small group despite the lossy communications as long as
no updates were being issued.

In the swarm with five members, two of the members did drop out of communications with
the rest of the group, one process failed, and the other did not process the Commit messages
associated with UAVs that joined the group after them. They did decrypt messages for a
period after initially joining the swarm but were unable to decrypt group messages sent
using the new keys after the missed Commit. The UAV that failed decrypted messages
for a majority of the testing period, and it was close to the end of the test that it stopped
encrypting and decrypting messages. The rest of the swarm decrypted an average of 36
messages per second per UAV. This is nine messages less than expected for this size swarm,
but was in line with the number of UAVs that remained in the group for a majority of the
testing period.

During the test with a seven-UAV swarm, one UAV dropped out of communications, and
two UAVs did not have data written to their log files. It is unknown why the UAVs did not
write to the log file. It is possible that the UAVs did not successfully join the group, or it is
possible that the UAVs failed and the log file was not saved properly. The expected number
of messages a swarm of size seven should decrypt per second per UAV is 63 messages. For
this test, the UAVs decrypted an average of 43 messages per second per UAV, indicating
one of the two UAVs that failed did participate in the group communications to some extent.

For the 10 member swarm, two of the UAVs did not record a log file (failure 1 or 3), and two
others dropped out of group communications because of a missed Commit (failure 2). For
the rest of the swarm, each UAV decrypted approximately 60 messages per second, when
the expected number was 90. It is possible, and likely given the 60 average messages per
UAV, that one or both of the UAVs that did not record a log file were communicating with
the rest of the group prior to their failure.
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An interesting behavior observed with this test was that it appeared as if the UAVs were
communicating with two different group keys. In this test one UAV was decrypting an
average of 13 messages per second while the majority of the UAVs were decrypting an
average of 62 messages per second per UAV. This indicates that for a portion of the test,
two UAV were communicating using one group key while the rest of the swarm was using
a different group key. This is an interesting point of failure in the swarm that is also due
to missed Commit messages. For this failure to occur, multiple UAVs would have needed
to miss the same Commit message. When this occurred, the affected UAVs were able to
communicate with one another but not with the rest of the swarm.

No Update Summary
Figure 4.2 shows the results of the ground tests conducted with no updates. The blue line in
the graph shows that as the swarm size grows, the average number of messages decrypted
per second per UAV grows approximately linearly. This is expected behavior from the
swarm and is provides for a promising outlook for the future use of MLS for secure swarm
communications.

250 Message Update Interval
After testing swarms with no updates, a 250-message interval between updates was intro-
duced, which equates to approximately 25 seconds between updates. This interval performed
the best in the simulation tests so it was also tested on physical UAVs. Swarm sizes of three,
four, five, seven, and 12 were tested for this interval, but unreliable MLS maintenance
message receipt made testing with updates difficult. Communications issues among the
UAVs led to multiple ground tests that yielded no data for any UAVs in the group. For
the tests of swarm size four and seven, for instance, not a single UAV produced a log file.
An empty log file can occur when a process simply fails before any data is written. It can
also happen when a UAV fails to successfully join the group. Not joining the group can
happen for a couple reasons. First, a UAV can get stuck during the handshake if a packet to
or from the adding UAV is lost. In the ARSENL implementation, it is also possible for a
UAV to ask a UAV that was never added to the swarm to add them. This cascading effect of
UAVs failing to join the group was not accounted for in this implementation but should be
addressed through the follow-on research proposed in Section 5.2.2. As with a number of
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Figure 4.2. This graph shows the average number of messages decrypted
per second per UAV during a ground test with no key updates. The y-axis
depicts the average number of decrypted messages per second, and the x-
axis depicts the different UAV swarm sizes tested. The blue line shows that
as the swarm size increased, the average number of messages decrypted per
second per UAV also increased. The dashed black line depicts the expected
values for the different swarm sizes.

failure modes encountered on the actual UAVs, debugging the was difficult since there was
no terminal with which to view the ROS logs as they were generated.

During the ground test with a three member UAV swarm, one of the UAVs dropped out of
the group communications. The rest of the group decrypted an average of 19 messages per
second per UAV. This indicates that the other two aircraft had synchronized on the same
group key to use for the communications.

For the testing with a five-UAV swarm, the UAVs decrypted an average of 11 messages per
second per UAV. During this test one of the UAVs did not produce a log file. Every other
UAV dropped out of the group communications because of a missed Commit message early
in the test.

For the test with a size 12 UAV swarm, only two of the 12 UAVs wrote to a log file. Each
of these UAVs decrypted an average of 10 messages per second indicating that none of the
UAVs were able to communicate successfully with the rest of the group.
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On-UAV Update Testing Summary
Figure 4.3 summarizes the results of the 250-message update interval tests. The tests
where no UAVs produced log files are omitted. This graph demonstrates the necessity for
a distribution service as described in Section 5.2.2. As swarm sizes increased and more
update operations were processed, UAVs were more likely to miss processing a Commit
message, and lose communication with the rest of the group. This graph shows that as the
swarm size increased, fewer messages were decrypted on average, indicating that there were
few UAVs that were synchronized with a common group key. These results clearly indicate
that a reliable delivery service is required for MLS to work with a lossy-communications
swarm system such as ARSENL’s.

Figure 4.3. The blue line in this graph shows the average number of decrypted
messages per second per UAV with a 250 message update interval. The y-
axis depicts the average number of decrypted messages per second, and the
x-axis depicts the different swarm sizes tested. The dashed black line depicts
the expected values for the different swarm sizes. The average number of
message per second trend decreases quickly as swarm size increases. This
result demonstrates that MLS needs other support before it will function as
intended swarms relying on lossy-communications networks.

4.3 MLS Implementation Limitations
Testing indicated that MLS has good potential for secure group communications in a UAV
swarm; however, the mls node implementation described here is not ready for in-flight

58



use in its current state. Test results do, however, provide evidence that with further testing
and support for reliable packet transmission, MLS can be successfully utilized for swarm
communications.

4.3.1 Key Updates
Virtually all shortcomings identified with the ARSENLMLS implementation are associated
with updates. Since packet loss is inevitable in UDP-based communications architectures,
UAVs can easily get out of synchronization with the rest of the swarm. This loss of key
synchronization contributed to some limitations in the testing and verification of the mls
node in the ARSENL swarm. More information is provided and potential mitigations for
this problem are proposed in Section 5.2.2.

The testing conducted here did indicate that a longer periods between updates work better
with the swarm architecture. Longer intervals between updates do leave the swarm open to
some period of vulnerability if a UAV is compromised. Utilization of a distribution service
may make it possible to conduct updates more frequently. Regardless, update interval deci-
sions will often come down to a tradeoff between what limited communications bandwidth
will allow (particularly as swarm size increases) and what security the mission requires.

4.3.2 Requirement for Further Testing
Use of the MLS++ API for Draft 11 is limited to environments that can guarantee little
to no packet loss, in that it is an implementation of the MLS protocol, and the protocol
architecture requires that the local system provides for retransmission in case of packet loss.
The simulation environment provided a good testing venue for this implementation, but
showed that MLS is very sensitive to lost maintenance packets.

Extensive development and testing needs to be conducted to demonstrate a fully functional
MLS implementation for UAV swarms. We did not test UAV swarms larger than 12 mem-
bers; nor did we conduct tests on other UAVs besides the Mosquito Hawk quadcopter.
Testing on additional platforms and with larger swarms is required fully characterize the re-
quirements and performance in various configurations. In particular, more thorough testing
should be conducted after mitigations for UDP shortcomings are provided as described in
Section 5.2.2.

59



4.4 Chapter Summary
This chapter covered the testing results for MLS protocol integration into the ARSENL
swarm. Testing in the SITL environment provide evidence that the use of MLS for secure
UAV swarm communications is possible, but shortcomings were identified in this particular
implementation that make it unsuitable for real swarm systems at present. Ground tests
indicate that the swarm platforms can support encryption and decryption requirements,
but unreliable delivery of MLS maintenance messages made ongoing maintenance of even
small MLS groups impossible.
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CHAPTER 5:
Conclusion and Future Research

5.1 Conclusion
This work was intended as a proof of concept for using MLS to provide secure communi-
cations within a UAV swarm. Achieving this capability is seen as a significant step towards
the application of UAV swarm technology to Department of Defense problems. The results
of this thesis indicate that MLS can perform well in a swarm, but mitigation for the unreli-
able communication schemes on which these systems rely is needed for MLS maintenance
messages.

5.2 Future Research
This thesis only covered the implementation of MLS in the ARSENL UAV swarm using the
Cisco-developed MLS++ API. There are many viable additional areas for future research,
both in building on the implementation covered here and in the utilization of MLS with
other swarm systems. This section discusses some of these future work options.

5.2.1 Additional Testing
More thorough and comprehensive testing is needed to fully characterize MLS’ effect on
swarm performance. Testing in support of this research consisted of SITL environment and
ground tests on a relatively small number of UAVs over a short period of time with a subset
of the ARSENL messages. A more thorough test protocol should include tests over a full
flight duration with various numbers of UAVs (up to the maximum that can be expected
in a typical swarm mission) and the full ARSENL message set. Longer test periods with
larger numbers of vehicles will foster better documentation of the tendency for UAVs to
get out of synchronization due to unprocessed or missed commits so that solutions can be
proposed and appropriate update intervals can be identified. More robust testing will also
further validate MLS’ suitability for aerial swarms and asses its scalability as swarm size
increases.
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5.2.2 Recovery from Dropped MLS Packets
UDP communications architectures on which swarm systems commonly rely are implicitly
susceptible to dropped packets. Swarm systems such as ARSENL’s are designed with
this in mind, so when encrypted ARSENL operational messages are dropped, it does not
affect the functionality of the swarm. MLS, on the other hand, was not developed to be
lossy-communications tolerant, so missed MLS maintenance messages are not permitted.
Delivery failure for MLS messages associated with add, update, or remove operations will
lead to UAVs not being able to participate in group communications. That is, if a UAV has
not processed all of the commit messages, it will not have the correct view of the group
and will not be able to communicate with other group members. There is currently no
mechanism in place for easily recovering from missed commits within the code developed
for the ARSENL swarm. Some further architecture development (i.e., beyond MLS and
the current ARSENL architecture) is needed to provide resiliency in the face of dropped
MLS packets. Such a distribution service is required if successful MLS approaches are
to be found for these systems. Potential solutions include timeout mechanisms, message
receipt verification systems, and protocols to detect and retransmit messages that were not
processed.

5.2.3 Error Handling
In the event an error occurs within the MLS++ code, an error message is passed to the
invoking code. At present, these error messages are ignored by the MLS code developed
for this research. While this was considered acceptable for a “proof of concept” example,
a more robust implementation would include a protocol for handling these messages and
recovering from the associated errors. In the event the errors indicate that a UAV cannot
continue communicating with the rest of the swarm, for example, one possibility would be
to have the UAV remove itself from the swarm and land. Alternatively, notification might be
provided to the swarm operators so that they can initiate a recovery process that will allow
the UAV to rejoin the group.

This sort of error handling is highly dependent on specific use cases. In this thesis, code
was developed to use the MLS++ API, but there are other repositories with MLS code
in other languages. The development approach discussed in this thesis can be adapted for
use with other MLS libraries which may rely on different error protocols and messages.
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Error handling protocols that are not a part of the MLS protocol itself, therefore, should be
adaptable to approaches beyond those of the MLS++ library.

5.2.4 Reliable Update Operations
As discussed previously, adequate testing to identify the best update interval was not
conducted. Future work can look at better evaluating the performance using various intervals
with different swarm configurations. In addition, research might include a study of global
rather than local interval calculations. For instance, the interval might be based on a time-
since-last-update or a system-wide message count rather than the per-vehicle message count
discussed in Section 3.3.2.

A potential issue with how updates are implemented in this thesis is that there is a potential
race condition if two UAVs issue an update at the same time. This can lead to one update
(or possibly both) not being processed correctly and can prevent one or more UAVs from
continuing to communicate in the group. One possible mitigation for competing updates is
to impose an ordering mechanism so that UAVs are forced to issue updates sequentially.
This would require the UAVs to synchronize their updates.

Update operations are also susceptible to failures caused by missed MLS messages. Solu-
tions and research proposed in Section 5.2.2 would, therefore, be relevant here as well.

5.2.5 Authentication Service
The research of this thesis focused on the technical implementation ofMLS communications
within a swarm system, but no effort was made to authenticate group members. For any real-
world implementation, however, the swarm must have a mechanism in place to authenticate
UAVs before allowing them into theMLS group. Authentication will mitigate the possibility
of an adversary launching a malicious UAV into the swarm or otherwise infiltrating the
group. Authentication can be implemented a number of ways, with one possibility being
the presentation of a certificate by the joining UAVs that can be validated by the adding
UAV before initiating the add process. For added security, an additional factor such as the
presentation of an operator-provided token might be incorporated into the authentication
process. The authentication method will need to be evaluated based on the requirements
and threat models associated with different types of missions.
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5.2.6 Protocol to Remove a Compromised UAV
Finally, further research might look into identifying compromised or malfunctioning UAVs
so that they can be removed from the swarm. While MLS provides a means of removing a
UAV, the question of how to determine when a UAV should be removed is outside of the
scope of the protocol itself. A robust removal protocol might be developed to apply criteria
for identifying a UAV that has been compromised or should be ejected from the group for
other reasons. The ejection process would need to incorporate some form of “consensus”
to prevent a single (possibly malicious) UAV from ejecting correctly performing group
members. In the event that the swarm collectively recognizes that one of the UAVs is to be
ejected, any member of the swarm can initiate a removal operation.
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