
 

NRL/5540/MR—2022/5 

DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. 
 

Spider for a Traffic Light 

DR. GERARD ALLWEIN 

CHRISTOPHER BELMONTE 
 
Center for High Assurance Computer Systems Branch 
Information Technology Division  
 
 
 
 
 
 
 
 
 
 
 
June 23, 2022 



i

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

3. DATES COVERED (From - To)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and 
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including 
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, 
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of 
information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

2. REPORT TYPE1. REPORT DATE (DD-MM-YYYY)

4. TITLE AND SUBTITLE

6. AUTHOR(S)

8. PERFORMING ORGANIZATION REPORT
NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

10. SPONSOR / MONITOR’S ACRONYM(S)9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

11. SPONSOR / MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area
code)

b. ABSTRACT c. THIS PAGE

18. NUMBER
OF PAGES

17. LIMITATION
OF ABSTRACT

Spider for a Traffic Light

Dr. Gerard Allwein and Christopher Belmonte

Naval Research Laboratory
4555 Overlook Avenue, SW
Washington, DC 20375-5320

NRL/5540/MR--2022/5

ONR

DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited.

U U U
25

Dr. Gerard Allwein

(202) 404-3748

   This is a report on a spider for a traffic light application. A spider is a realtime monitor of field programmable gate array (FPGA) or complex 
programmable logic device (CPLD) code written in VHDL. Each spider is associated with specific logic statements expressing conditions in 
the code being monitored. Each spider also contains mechanisms for mitigating the effects of an exploit, either malicious, due to an error in 
design, or due to a hardware fault. The spider for this example was hand compiled from logic statements into VHDL code that is combined with 
the traffic light code before vendor tools compile everything into an internal representation. Spiders can be written in any language provided 
there is a translator into a language vendor supplied tools support. Eventually, spiders will be automatically compiled from logic statements and 
mitigation code to produce either VHDL code or ReWire code. ReWire has its own compiler that produces either VHDL or Verilog code, which 
would then subsequently be included in the application.

23-06-2022 NRL Memorandum Report

6C59

Office of Naval Research
875 N. Randolph Street
Arlington VA 22217-1995

062235N

1 Oct 2021 – 30 Sept 2022

U



This page intentionally left blank.

ii



CONTENTS

EXECUTIVE SUMMARY................................................................................................... E-1

1. INTRODUCTION ......................................................................................................... 1

2. TRAFFIC LIGHT.......................................................................................................... 2
2.1 Code Structure ...................................................................................................... 4
2.2 Controller............................................................................................................. 4
2.3 Monitoring Conditions ............................................................................................ 7
2.4 Distributed Structure............................................................................................... 10

3. CONCLUSIONS ........................................................................................................... 10

4. APPENDIX ................................................................................................................. 11
4.1 Wrapper Code ....................................................................................................... 11
4.2 Tra�c Light Controller ................................................................................................................. 14
4.3 Spider.................................................................................................................. 17

REFERENCES .............................................................................................................................................. 21

iii



This page intentionally left blank

iv



EXECUTIVE SUMMARY

This is a report on a spider for a tra�c light application. A spider is a realtime monitor of field pro-
grammable gate array (FPGA) or complex programmable device (CPLD) an application. The application
and the spider are both written in VHDL. Generically, a spider is associated with specific logic statements
expressing high assurance conditions in the application being monitored. The spider also contained mecha-
nisms for mitigating the e�ects of an exploit, either malicious, due to an error in design, or due to a hardware
fault. The spider for the tra�c light controller was hand compiled from logic statements into VHDL code
and combined with the tra�c light code. The combination was then compiled by vendor tools into an
internal representation that is downloaded into the FPGA. Eventually, spiders will be automatically compiled
to produce either VHDL code or ReWire code. ReWire has its own compiler that produces either VHDL
or Verilog code, which would then subsequently be included in the application. The NRL Memo Report
“Spiders for FPGA Applications” is a prelude to this current report and covers theoretical ground.

E-1
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Spider for a Tra�c Light

1. INTRODUCTION

This is the second report for the NRL Base Program 6.2 (Work Unit 55 T012) Realtime Monitors
(Spiders) for FPGA Applications. The first report, “Spiders for FPGA Applications”, detailed the logical
prelude necessary to understand this report. That report also covered spider features not used in the spider
for tra�c light controller.

Intuitively, the notion is that spider sits above an application with its legs embedded in the application.
The legs are signal lines and the body is the center for recognition of error conditions and mitigation of
those conditions. The FPGA application will be be called the plant, a term lifted from realtime control of
industrial machines. We also use the term spider as verb, i.e., to spider an application is the have a realtime
monitor for that application.

The intuitive picture is

Component 1

Component 2

Component 3

Component 4

Spider Body

Plant

Signal Lines

Figure 1.1: Intuitive Diagram of Spider and its Plant

The code itself is not structured according to the diagram. The structure of the system as seen from 
the VHDL code is usually di�erent. The signal lines between the spider and the plant are not drawn. The 
hierarchical structure is showing a possible code architecture, not the actual connections (as in the previous 
diagram).

Manuscript approved June 17, 2022.
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FPGA Pins

Top Wrapper

Spider Component 1 Component 2

Component 3 Component 4

Figure 1.2: Code Structure of Spider and its Plant

The reason for this structure is that we wish to hide internal signal connections from the outside world.
This structure also makes it relatively easy to place the spider and the plant into a larger system. There may
be several spiders for any one plant, and spiders can spider other spiders. It is also possible to have a spider
observing two di�erent plants if, say, it is required to watch over interaction between the two plants.

2. TRAFFIC LIGHT

The tra�c light is a relatively simple application that allowed us to see what is required for building a
spider. The tra�c light controller works on a four-way intersection controlling the usual green-yellow-red
lights for all directions. There is a timer so that the lights do not stay in one configuration over a time limit.

The specification of the tra�c light controller is as follows. Consider the tra�c intersection below:

North

South

West East

Figure 2.1: Tra�c Flow Diagram

Requirements:
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1. Produce source code exhibiting the following behavior:

a. The North/South lights act as a pair and the East/West lights act as a pair, the lights will be in
synchronization at all times. There is no turn signal.

b. The light is a standard tra�c and should follow the typical sequencing of green, yellow, red light,
repeat.

c. By default each pair shall be active (green) for 10 seconds, after which it will begin the transition
through yellow to inactive (red) before the other light pair becomes active.

d. If a car shows up at the red light pair, and there are no cars present at the green light pair, then
the green light shall only be active for a total of 5 seconds before switching; i.e., a car arriving at
the red light before the green light pair was active for 5 seconds would cause the green light pair
to change at 5 seconds, a car arriving at the red light after the green light pair was active for 5
seconds would immediately cause the green light pair to switch.

2. Provide a test bench that verifies the above behavior, and includes at a minimum the following cases:

a. The default behavior of the light.

b. A car arrives at the red light and a car is already present at the green light.

c. A car arrives at the red light before the 5 second mark and no car is present at the green light.

d. A car arrives at the red light after the 5 second mark and no car is present at the green light.

The spider for this controller will only attempt to watch over the sequencing of the lights with minimal
attention paid to time intervals. The reason for this is that not much would have been learned by the spider
being more intrusive. Also, there is a trade o� in how complicated the spider can be with respect to the
number of conditions being spidered in the controller. The code for both the spider and the controller is
compiled together by vendor tools.

The code is recorded in the Appendix to this report. It is divided into the the top wrapper, the tra�c light
controller, and the spider. The code is written in VHDL and would require you understand that language in
order to make sense of the code.

The spider has two general conditions that it watches for:

C1: detecting invalid outputs, e.g., both sets of lights being green at the same time,

C2: monitoring FSM timed transitions, e.g., tracking the max time for each state and flagging deviations,
etc.

Note that in C2, minimum times spent in each tra�c light color are not monitored. A more intrusive
spider would check for this.

Mitigation should include upon recognition of an exploit:

M1: Flashing red lights in all (some) directions.

M2: Forcing the FSM controller into a start state.
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2.1 Code Structure

The intuitive diagram of the spider and the light controller is

Controller

Spider

Component

Signal Lines

Figure 2.2: Tra�c Light Spider + Controller

The VHDL code has three files, top_wrap, top_modded, and light_spider_modded, which, in this instance,
correspond to three components, called entitiies in VHDL. VHDL allows for entities to contain other entities,
i.e., components containing other components but we do not need such extra structure here. From now on,
we will revert to using the term component, and the files will be called wrapper, controller , and spider. We
will also use these names for the components whose names are eponymous with the files containing them.

The component structure is

FPGA Pins

wrapper

spider controller

Figure 2.3: Tra�c Light Component Structure

2.2 Controller

The controller has five states:

S0: North/South lights green, East/West lights red.

S1: North/South lights yellow, East/West lights red.

S2: North/South lights red, East/West lights green.

S3: North/South lights red, East/West lights yellow.
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S4: Fault detected by spider, flash the red lights.

The states of the controller have the above descriptive comments as to what they represent. However,
these are only comments and without formal proof, they may or may not be correct; they are in this instance,
but in general require proof. The reason they are descriptive is that the main process that decides on state
changes is not the process that sets the light colors. The only reason we can with confidence say they are
accurate is that the the process that sets the states does so when the state variable in the main processes
changes state to a state, say, s2, and the lights sets the lights for the state s2. Still, this is not formal proof. For
a real formal proof, we would have to axiomatize VHDL, which we will not be doing in this project. Rather,
we will eventually use ReWire in which case we can use equational logic where the equations can be lifted
directly from the code.

In the conclusions, we note that mitigation would be best kept in the spider. If this is the case, this state
would cease to exist in the plant. However, then more care must be taken to construct the plant so as not to
interfere when mitigation is taking place.

The controller has a wrapper called top and three processes: main, lights, and timer for respectively (1)
deciding on state changes, (2) setting the lights, and (3) timer to flash the lights when necessary. The main
process does not really have that name but is unnamed and residing in the top wrapper. These items have the
following configuration:

top

lightsmain timer

controller wrapper

processes

Figure 2.4: Controller Process Structure

The controller has two variables used for controlling the lights, ns_lights and ew_lights for north-south
and east-west lights. The north and south light always mirror each other as do the east-west lights. Each can
be in green, yellow, or red.

The next-state relations in the main process of controller can be enumerated. The code could be
automatically processed to produce the enumeration. In general, large state machines in applications are
avoided due to code complexity. This entails that the next-state relations are relatively small as well. The
trade-o� comes in concurrence relations (see Spiders for FPGA Applications and Section 2.4 below), as
there are more of them with many small FSMs. Processing the machines to extract the concurrence relations
will be necessary.

The state machine of Figure 2.5 below has several event types that are generated from conditionals in the
code. An example of how this occurs is

1 case state is
2 when s0 =>
3 if (( t0 = ’1’) and (t1 = ’1’)) then
4 state <= s1;
5 elsif ( t2 = ’1’) then
6 state <= s0;
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where we let

40
def
= (C0 = 1) ^ (C1 = 1) 41

def
= (C2 = 1) ^ ¬40

Note that the extra conjunction ¬40 = ¬((C0 = 1) ^ (C1 = 1)) is needed in defining 41 since VHDL executes
the elsif only when the if fails.

Event types generate next-state relations. The entire next state relation is the set theoretical union of the
individual next-state relations. However, the union washes out the contribution of the individual event types
and hence only useful for more abstract properties than we deal with here. We list the event types (next-state
relations) here:

Next-State Relation Event Type Prescription
H0 40 rst = ’1’ or fault = ’1’
H1 41 (ew_car = ’0’ and count < clk_limit ) or

(ns_car = ’1’ and count < clk_limit ) or (count < "0100")
H2 42 ¬H1

H3 43 count < "0101"
H4 44 ¬H3

H5 45 (ns_car = ’0’ and count < clk_limit ) or
(ew_car = ’1’ and count < clk_limit ) or (count < "0100")

H6 46 ¬H5

H7 47 rst = ’0’
H8 48 ¬H7

The state machine (see code for tra�c light controller in the Appendix) has only four states. Those
four states now have outbound arrows indicating the event types. The event types represent the if statement
structure in the code.

B0 B1 B2

B4

B3

41

42

40

43

44

40

45

46

40

43

44

40

47

48
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Figure 2.5: Tra�c Light FSM

The process of the controller that sets the lights has a state machine which is isomorphic to the main
controller process. That process uses the same state symbols as the main process and so the isomorphism
is identifying the correct states. Hence we can safely elide this and consider that process as folded into the
main process. There is another process of the controller that handles counting clock cycles for flashing the
light and has no internal states; so this process can safely thought of as being folded into the main controller
process.

The local next state relations for the locality of the controller are �0 through �10 and can be read o� the
diagram:

Next State Relation K

Relation Tuples

H0 {hB0, B4i, hB1, B4i, hB2, B4i, hB3, B4i, hB4, B4i}
H1 {hB0, B0i}
H2 {hB0, B1i}
H3 {hB1, B1i, hB3, B3i},
H4 {hB1B2i, hB3, B0i}
H5 {hB2, B2i}
H6 {hB2, B3i}
H7 {hB4, B0i}
H8 {hB4, B4i}

Table 2.1: Next State Relations for the Tra�c Light Controller

Were we to check state sequencing in the spider of the controller, these relations would be used for
designing the checks. We did not do so in order to get a lightweight spider. We bring them up here to show
the relationship between event types and next state relations. The overall next state relation for the controller
is

H
def
=

ÿ
088

H8 .

The relation H would be of use for abstract properties such as “is state 8 accessible from state 9”.

2.3 Monitoring Conditions

The logic conditions in the spider that were monitored can be be collected into invariants. That is, they
must hold throughout the entire state machine of the tra�c light controller. This feature allowed us to not
track in the spider the state transitions of the controller. In a more expensive spider, say one where we really
want to know precisely what failed in the controller, we would need to track state transitions. The companion
report explains some of the machinery necessary to do this.

The spider has two states:
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Q0: Checking for faults.

Q1: Fault found, waiting for reset.

The logic fault conditions are

F0: ((ns_lights = green) _ (ns_lights = yellow)) ^ (ew_lights < red)

F1: ((ew_lights = green) _ (ew_lights = yellow)) ^ (ns_lights < red)

F2: (ns_lights = red) ^ (ew_lights = red)

where_ stands for disjunction, i.e., or, and^ stands for conjunction, i.e., and. Other logic fault conditions

F3: (ns_lights = green) ^ ((ns_lights = red) _ (ns_lights = yellow))

F4: (ns_lights = red) ^ ((ns_lights = green) _ (ns_lights = yellow))

F5: (ns_lights = yellow) ^ ((ns_lights = red) _ (ns_lights = green))

F6: (ew_lights = green) ^ ((ew_lights = red) _ (ew_lights = yellow))

F7: (ew_lights = red) ^ ((ew_lights = green) _ (ew_lights = yellow))

F8: (ew_lights = yellow) ^ ((ew_lights = red) _ (ew_lights = green))

The check time limit event types are

F9: (ns_count > clk_limit +1) ^ (DBG_TRIG_ENBL _ ¬ (ns_lights_r (2) = ’1’ ^ ns_lights(2) = ’0’ ))
^ (ns_lights(0) = ’1’ _ ns_lights(1) = ’1’ )

F10: (ew_count > clk_limit +1) ^ (DBG_TRIG_ENBL _ ¬ (ew_lights_r(2) = ’1’ ^ ew_lights(2) = ’0’ ))
^ (ew_lights_r(2) < ’1’ ^ (ew_lights(0) < ’1’ _ ew_lights(1) = ’1’ ))

The event types F9 and F10 require some explanation. The clock_limit check is obviously checking for a
timing fault. The DBG_TRIG_ENBL is for debugging the spider. When it is not set, extra checks are made.
We left this in so that it is clear that the spider and its job of checking errors needs to be checked for bugs
just as the plant. A further spider could have been written that would check for the conditions following the
DBG_TRIG_ENBL under the right circumstances. We did not do so in the interest of simplicity.

We define the event type

C0
def
=

‹
0810

�8 = �0 _ �1 _ · · · _ �10,

That is, C0 is a label for the disjunction on the right. C0’s description is fault_i = ’1’ because whenever one of
these conditions is satisfied in the code, fault is set to 1. The event types for the spider state machine are
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Next-State Relation Event Type Prescription
K0 C0 fault_i = ’1’
K1 C1 ¬K0

K2 C2 spider_rst= ’0’ and fault_i = ’0’
K3 C3 ¬K2

The state machine for the spider is

@0 @1

C0

C2

C3C1

Figure 2.6: Spider State Machine

The local next state relations for the locality of the spider are  0 through  3 and can be read o� the
diagram:

Concurrence Relation F

Relation Tuples

K0 {h@0, @1i}

K1 {h@0, @0i}

K2 {h@1, @0i}

K3 {h@1, @1i}

Table 2.2: Next State Relations for the Spider

The overall next state relation for the controller is

K
def
=

ÿ
083

K8 .

The spider checked for fault conditions F0 through F10. If one of these faults occurred, the spider in
state Q1 caused the lights to blink red by signaling to the controller to enter its state S4.
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2.4 Distributed Structure

The sole distributed relation F ✓ � ⇥  pairs possible states from each state machine that can operate
in parallel. We do not use this relation in defining any distributed logic connectives for the reason that all we
used were invariants that hold regardless of the states in which the spider and the controller find themselves.
The distributed relation F would be of use if the spider checked state changes in the controller.

The distributed relation F showing the states in the spider and controller that can concur is

Concurrence Relation F

Relation Tuples

F {h@0, B0i, h@0, B1i,

h@0, B2i, h@0, B3i,

h@1, B4i}

Table 2.3: Concurrence Relation for the Spider and the Tra�c Light Controller

3. CONCLUSIONS

We learned quite a bit about spiders and plants from the tra�c light system. The notion of invariants
came about by trying to write a simple spider and realizing that to check everything the tra�c light controller
did required essentially a copy of the controller in the spider. Disregarding mitigation code, a similar e�ect
can be had by running two copies of the controller and comparing their outputs. However, this will not check
design errors in the controller and there is no recovery mechanism when some error is detected.

Our spider for the tra�c light controller used a minimal set of states to watch over all the states of the
controller. Put in di�erent terms, we did not wish to trust that the outputs were set correctly. Rather, the
conditions in which the spider is interested are sections of the cross product of the outputs. A section is a
particular element of that cross product, i.e., a tuple of values for all the outputs, or at least the outputs in
which the spider is interested.

Apparently in VHDL, an architecture cannot read its own outputs. To read the values, those outputs must
be stored in bu�ers. Hence the use of similar sounding signals in the architecture which record the values
of those outputs. The use of those kinds of signals is slightly di�erent between the spider and the controller.
This can cause a confusion in anyone reviewing the spider + controller combination. The result is that at the
clock strike, the similar signals get set to the current new values of the outputs as well as the outputs.

Typically, the plant is produced first and then a spider written. Optimally, it would be best for the spider
to be written at the same time as the plant. The main reason for this has to do with the signals a spider
requires in order to adequately monitor a plant. Every signal the spider requires from the plant must be
exported from the plant’s code so that the spider can use it. This feature means that it is a good idea to build
a wrapper module for the spider-plant combination with an eye toward’s integrating this combination with a
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larger system. It might easily be the case that there is more than one spider in a system, each concerned with
a specific module as its plant. It may even be that for increased high assurance, there are spiders monitoring
other spiders or spider-plant combinations.

There appear to be at least two philosophies for writing a spider with a specific plant in mind. One is that
the mitigation code resides mostly in the spider and the other where the mitigation code resides mostly in the
plant. Remember that both are usually compiled together by vendor tools. There must be a minimal amount
of mitigation code in the spider even if most of it resides in the plant. That minimal amount directed the
plant’s mitigation code. There might also be a minimal amount of mitigation code in the plant for the case
were the plant should not operate as normal while mitigation is occurring. However, it might be possible
to put no mitigation code in the plant and have the spider gate the plant’s signals to prevent the plant from
interfering with the mitigation.

One good reason for putting the mitigation entirely (if possible) in the spider is that this avoids touching
the module being spidered, the con is that this would reduce the insight we have into that module. The
primary reason that the separation would be useful is if/when the spider is autogenerated and integrated into
the design at a higher level, the auto-generation of the spider would not involve updating existing modules.

There is a security consideration that it might be good to keep the mitigation logic totally within the
spider itself. Assume the plant consists of “secure” code with its own provenance. The spider acts as a
‘gating’ function for signals being protected and the untrusted module (spider) does not directly touch the
secure code. This begs the question of how secure is the spider itself. This could be secured using the same
mechanisms as the plant. However, the plant might come from a trusted source and access to the source code
may not even be possible. In this latter case, mitigation necessarily must be performed in the spider.

4. APPENDIX

4.1 Wrapper Code
1 library ieee;
2 use ieee.std_logic_1164.all;
3 use ieee.std_logic_unsigned.all;
4 library xil_defaultlib ;
5

6 entity top_wrap is
7 generic (
8 blank : std_logic_vector(2 downto 0):= "000" ; ≠≠ ? blank ?
9 green : std_logic_vector(2 downto 0):= "001" ;
10 yellow : std_logic_vector(2 downto 0):= "010" ;
11 red : std_logic_vector(2 downto 0):= "100" ;
12 flash_red_period : std_logic_vector(3 downto 0):= "1000";
13 clk_limit : std_logic_vector(3 downto 0):= "1001";
14 error_none : std_logic_vector(2 downto 0):= "000" ;
15 error_reg : std_logic_vector(2 downto 0):= "001" ;
16 error_mit : std_logic_vector(2 downto 0):= "010");
17 port (
18 ≠≠ inputs
19 clk : in std_logic ; ≠≠ clock signal
20 spider_rst : in std_logic ; ≠≠ spider reset signal to put spider
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21 ≠≠ in quiesscent state
22 ns_car : in std_logic ; ≠≠ signal to represent presence of
23 ≠≠ a car at N/S intersection
24 ew_car : in std_logic ; ≠≠ signal to represent presence of
25 ≠≠ a car at E/W intersection
26 ≠≠ outputs
27 error : out std_logic_vector (2 downto 0); ≠≠ "001" = error, "010" = error in
28 ≠≠ mitigation
29 fault : out std_logic ; ≠≠ signal to light controller that a fault
30 ≠≠ has been detected
31 ns_lights : out std_logic_vector (2 downto 0) := "001"; ≠≠ North/South intersection lights;
32 ≠≠ see generic above for values
33 ew_lights : out std_logic_vector (2 downto 0) := "100"); ≠≠ East/West intersection lights;
34 ≠≠ see generic above for values
35 end top_wrap;
36 architecture rtl of top_wrap is
37 component top is
38 generic (
39 blank : std_logic_vector(2 downto 0):= blank ; ≠≠ "000" ; ≠≠ ? blank ?
40 green : std_logic_vector(2 downto 0):= green ; ≠≠ "001" ;
41 yellow : std_logic_vector(2 downto 0):= yellow; ≠≠ "010" ;
42 red : std_logic_vector(2 downto 0):= red ; ≠≠ "100" ;
43 flash_red_period : std_logic_vector(3 downto 0):= flash_red_period; ≠≠"1000";
44 clk_limit : std_logic_vector(3 downto 0):= "1001");
45 port (
46 ≠≠ inputs
47 clk : in std_logic ; ≠≠ clock signal
48 rst : in std_logic ; ≠≠ reset signal to set N/W lights to
49 ≠≠ green & E/W lights to red
50 ns_car : in std_logic ; ≠≠ signal to represent presence of
51 ≠≠ a car at N/S intersection
52 ew_car : in std_logic ; ≠≠ signal to represent presence of
53 ≠≠ a car at E/W intersection
54 fault : in std_logic ; ≠≠ signal from spider that a fault
55 ≠≠ has been detected by the spider
56 ≠≠ outputs
57 ns_lights : out std_logic_vector (2 downto 0) := "001"; ≠≠ North/South intersection
58 ≠≠ lights; see generic above
59 ≠≠ for values
60 ew_lights : out std_logic_vector (2 downto 0) := "100"); ≠≠ East/West intersection
61 ≠≠ lights; see generic above
62 ≠≠ for values
63 end component;
64

65 component spider_top is
66 generic (
67 green : std_logic_vector(2 downto 0):= green ; ≠≠ "001" ;
68 yellow : std_logic_vector(2 downto 0):= yellow; ≠≠ "010" ;
69 red : std_logic_vector(2 downto 0):= red ; ≠≠ "100" ;
70 clk_limit : std_logic_vector(3 downto 0):= clk_limit ; ≠≠ "1001";
71 error_none : std_logic_vector(2 downto 0):= error_none; ≠≠ "000" ;
72 error_reg : std_logic_vector(2 downto 0):= error_reg ; ≠≠ "001" ;
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73 error_mit : std_logic_vector(2 downto 0):= error_mit; ≠≠ "010" );
74 port (
75 ≠≠ inputs
76 clk : in std_logic ; ≠≠ clock signal
77 spider_rst : in std_logic ; ≠≠ spider reset signal to put spider
78 ≠≠ in quiesscent state
79 ns_lights : in std_logic_vector (2 downto 0); ≠≠ North/South intersection
80 ≠≠ lights; "001" = green, "010" = yellow, "100" = red
81 ew_lights : in std_logic_vector (2 downto 0); ≠≠ East/West intersection
82 ≠≠ lights; "001" = green, "010" = yellow, "100" = red
83 ≠≠ outputs
84 error : out std_logic_vector (2 downto 0); ≠≠ "001" = error, "010" = error in mitigation
85 rst : out std_logic ; ≠≠ "001" = error, presumably we will want more
86 fault : out std_logic ); ≠≠ signal to light controller that a fault
87 ≠≠ has been detected
88 end component;
89

90 signal rst_i : std_logic ;
91 signal fault_i : std_logic ;
92 signal ns_lights_i : std_logic_vector (2 downto 0);
93 signal ew_lights_i : std_logic_vector (2 downto 0);
94 signal error_i : std_logic_vector (2 downto 0);
95

96 begin
97

98 fault <= fault_i ;
99 ns_lights <= ns_lights_i ;
100 ew_lights <= ew_lights_i;
101

102

103 top_i : top
104 generic map (
105 blank => blank ,
106 green => green ,
107 yellow => yellow ,
108 red => red ,
109 flash_red_period => flash_red_period,
110 clk_limit => clk_limit )
111 port map (
112 clk => clk ,
113 rst => rst_i ,
114 ns_car => ns_car ,
115 ew_car => ew_car ,
116 fault => fault_i ,
117 ns_lights => ns_lights_i ,
118 ew_lights => ew_lights_i );
119

120 spider_i : spider_top
121 generic map (
122 green => green ,
123 yellow => yellow ,
124 red => red ,
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125 clk_limit => clk_limit ,
126 error_none => error_none ,
127 error_reg => error_reg ,
128 error_mit => error_mit )
129 port map (
130 clk => clk ,
131 spider_rst => spider_rst ,
132 ns_lights => ns_lights_i ,
133 ew_lights => ew_lights_i,
134 error => error ,
135 rst => rst_i ,
136 fault => fault_i );
137

138 end rtl ;

4.2 Tra�c Light Controller

1

2 ≠≠ Module to control tra�c lights at a four≠way intersection
3

4 library ieee;
5 use ieee.std_logic_1164.all;
6 use ieee.std_logic_unsigned.all;
7 use ieee.numeric_std.all;
8 entity top is
9 generic (
10 blank : std_logic_vector(2 downto 0):= "000" ; ≠≠ ? blank ?
11 green : std_logic_vector(2 downto 0):= "001" ;
12 yellow : std_logic_vector(2 downto 0):= "010" ;
13 red : std_logic_vector(2 downto 0):= "100" ;
14 flash_red_period : std_logic_vector(3 downto 0):= "1000";
15 clk_limit : std_logic_vector(3 downto 0):= "1001");
16 port (
17 ≠≠ inputs
18 clk : in std_logic ; ≠≠ clock signal
19 rst : in std_logic ; ≠≠ reset signal to set N/W lights to
20 ≠≠ green & E/W lights to red
21 ns_car : in std_logic ; ≠≠ signal to represent presence of
22 ≠≠ a car at N/S intersection
23 ew_car : in std_logic ; ≠≠ signal to represent presence of
24 ≠≠ a car at E/W intersection
25 fault : in std_logic ; ≠≠ signal from spider that a fault has
26 ≠≠ been detected by the spider
27 ≠≠ outputs
28 ns_lights : out std_logic_vector (2 downto 0) := "001"; ≠≠ North/South intersection lights;
29 ≠≠ see generic above for values
30 ew_lights : out std_logic_vector (2 downto 0) := "100"); ≠≠ East/West intersection lights;
31 ≠≠ see generic above for values
32 end top;
33

34 architecture rtl of top is
35 type state_type is (s0, s1, s2, s3, s4);
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36 signal state : state_type;
37 signal count : std_logic_vector(3 downto 0);
38 signal flash_count : std_logic_vector(3 downto 0):= (others => ’0’);
39

40 signal ns_lights_i : std_logic_vector (2 downto 0); ≠≠ North/South intersection lights; see generic above
41 ≠≠ for values
42 signal ew_lights_i : std_logic_vector (2 downto 0); ≠≠ East/West intersection lights; see generic above
43 ≠≠ for values
44 signal blank_r : std_logic:= ’0’;
45

46

47 begin
48

49 ≠≠reset(rst) issue @rising edge make a transition to red light blanking state
50 ≠≠ @falling edge make a transition to NS≠GR EW≠RD (s0)
51 ≠≠if fault exist make a transition to red light blanking state
52

53 ns_lights <= ns_lights_i ;
54 ew_lights <= ew_lights_i;
55

56

57 process (clk)
58 begin
59 ≠≠ case s0: North/South lights green, East/West lights red
60 ≠≠ case s1: North/South lights yellow, East/West lights red
61 ≠≠ case s2: North/South lights red, East/West lights green
62 ≠≠ case s3: North/South lights red, East/West lights yellow
63 ≠≠ case s4: fault detected by spider, flash the red lights
64 if (clk ’event and clk = ’1’) then
65

66 if ( rst = ’1’ or fault = ’1’ ) then
67 state <= s4; ≠≠ (e9) flash red until the reset is taken away
68 count <= "0000";
69 else
70

71 case state is
72 when s0 =>
73 if ((ew_car = ’0’ and count < clk_limit ) or ≠≠≠ (e1): no car present on EW and count less than 9
74 (ns_car = ’1’ and count < clk_limit ) or ≠≠≠ car present on NS and count less than 9
75 (count < "0100")) then ≠≠≠ count less than 4 (car exist does not matter)
76 state <= s0; ≠≠ stay in the same state until condition are false (0≠5 sec don’t check car
77 ≠≠ is there)
78 count <= count + 1;
79 else ≠≠≠ (e2):
80 state <= s1;
81 count <= "0000";
82 end if ;
83 when s1 =>
84 if (count < "0101") then ≠≠ (e3) count less than 5? (error)
85 state <= s1;
86 count <= count + 1;
87 else ≠≠ (e4)
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88 state <= s2;
89 count <= "0000";
90 end if ;
91 when s2 =>
92 if ((ns_car = ’0’ and count < clk_limit ) or ≠≠≠ (e5) no car present on NS and count less than 9
93 (ew_car = ’1’ and count < clk_limit ) or ≠≠≠ car present on EW and count less than 9
94 (count < "0100")) then ≠≠≠ count less than 4? (error)
95 state <= s2;
96 count <= count + 1;
97 else ≠≠≠ (e6)
98 state <= s3;
99 count <= "0000";
100 end if ;
101 when s3 =>
102 if (count < "0101") then ≠≠≠ (e3) count is less than 5? (error)
103 state <= s3;
104 count <= count + 1;
105 else ≠≠≠ (e4)
106 state <= s0;
107 count <= "0000";
108 end if ;
109 when s4 => ≠≠≠ (e7) note: a reset is required to get out of s4
110 if ( rst = ’0’) then
111 state <= s0;
112 end if ; ≠≠≠ (e8) no change in state
113 when others =>
114 state <= s0;
115 end case;
116 end if ;
117 end if ;
118 end process;
119

120 ≠≠ this special flsh counter is work only when reset is asserted.
121 process (clk)
122 begin
123 if (clk ’event and clk = ’1’) then
124 ≠≠≠ flash_red_period is less than 8? (error) flash_count <= "0000";
125 if rst = ’0’ then
126 flash_count <= (others => ’0’);
127 blank_r <= ’0’;
128 elsif (unsigned (flash_count) > unsigned(flash_red_period)) then
129 flash_count <= (others => ’0’);
130 blank_r <= not blank_r;
131 ≠≠wf (blank_r = ’0’) then
132 ≠≠ blank_r <= ’1’;
133 ≠≠else
134 ≠≠ blank_r <= ’0’;
135 ≠≠end if;
136 else
137 flash_count <= flash_count + 1;
138 end if ;
139 end if ;
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140 end process;
141

142 lights : process(state, blank_r)
143 begin
144

145 case state is
146 when s0 =>
147 ns_lights_i <= green;
148 ew_lights_i <= red;
149

150 when s1 =>
151 ns_lights_i <= yellow;
152 ew_lights_i <= red;
153

154 when s2 =>
155 ns_lights_i <= red;
156 ew_lights_i <= green;
157

158 when s3 =>
159 ns_lights_i <= red;
160 ew_lights_i <= yellow;
161

162 when s4 =>
163

164 if (blank_r = ’0’) then
165 ns_lights_i <= blank;
166 ew_lights_i <= blank;
167

168 else
169 ew_lights_i <= red;
170 ns_lights_i <= red;
171

172 end if ;
173

174 when others =>
175 ns_lights_i <= green;
176 ew_lights_i <= red;
177 end case;
178

179 end process;
180

181 end rtl ;

4.3 Spider

1 ≠≠ Spider Module (prenatal) for checking tra�c light controller at a four≠way intersection
2

3 ≠≠ In this version, only simple conditions are checked, namely invalid outputs.
4 ≠≠ The idea was to construct the minimal spider; hence there is only a single state , q0
5 ≠≠ Under the understanding of a minimal spider, the controller has not been changed.
6 ≠≠ interested what we can see from the outside. Sooner or later, the internal states of the
7 ≠≠ controller should be exported.



18 Dr. Gerard Allwein

8

9 library ieee;
10 use ieee.std_logic_1164.all;
11 use ieee.std_logic_unsigned.all;
12

13 entity spider_top is
14 generic (
15 DBG_TRIG_ENBL : boolean :=false;
16 green : std_logic_vector(2 downto 0):= "001" ;
17 yellow : std_logic_vector(2 downto 0):= "010" ;
18 red : std_logic_vector(2 downto 0):= "100" ;
19 clk_limit : std_logic_vector(3 downto 0):= "1001";
20 error_none : std_logic_vector(2 downto 0):= "000" ;
21 error_reg : std_logic_vector(2 downto 0):= "001" ;
22 error_mit : std_logic_vector(2 downto 0):= "010");
23 port (
24 ≠≠ inputs
25 clk : in std_logic ; ≠≠ clock signal
26 spider_rst : in std_logic ; ≠≠ spider reset signal to put spider in
27 ≠≠ quiescent state
28 ns_lights : in std_logic_vector (2 downto 0); ≠≠ North/South intersection
29 ≠≠ lights; "001" = green, "010" = yellow, "100" = red
30 ew_lights : in std_logic_vector (2 downto 0); ≠≠ East/West intersection
31 ≠≠ lights; "001" = green, "010" = yellow, "100" = red
32 ≠≠ outputs
33 error : out std_logic_vector (2 downto 0); ≠≠ "001" = error, "010" = error
34 ≠≠ in mitigation
35 rst : out std_logic ; ≠≠ "001" = error, presumably we will
36 ≠≠ want more
37 fault : out std_logic ); ≠≠ signal to light controller that a
38 ≠≠ fault has been detected
39 end spider_top;
40

41 architecture rtl of spider_top is
42 type state_type is (q0, q1);
43 signal state : state_type := q0;
44 signal ns_count : std_logic_vector(3 downto 0);
45 signal ew_count : std_logic_vector(3 downto 0);
46 signal error_count : std_logic_vector(3 downto 0);
47 signal fault_i : std_logic ;
48 signal error_code : natural ;
49 signal ns_lights_r : std_logic_vector (2 downto 0); ≠≠ North/South intersection lights;
50 ≠≠ "001" = green, "010" = yellow, "100" = red
51 signal ew_lights_r : std_logic_vector (2 downto 0); ≠≠ East/West intersection lights;
52 ≠≠ "001" = green, "010" = yellow, "100" = red
53 begin
54 fault <= fault_i ;
55

56 process (clk, spider_rst )
57 begin
58 ≠≠ states for the spider
59 ≠≠ case q0: fault conditions being checked normally
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60 ≠≠ case q1: fault detected, awaiting reset
61

62 ≠≠ Reset is a bit tricky to code without causing a race condition. We check for both rising and falling edges
63 ≠≠ with the idea that the rst to the controller should not be bouncing around, hence we waited until the
64 ≠≠ spider’s reset has fallen and then reset the controller . It is a bit unclear about how this is wired up
65 ≠≠ external to the spider and the controller . Right now, it is assumed the rst the controller is only set
66 ≠≠ in the spider. However, it could be both could be set at the same time external to the spider.
67

68 ≠≠ There is also an assumption that the controller’s clock is su�ciently fast to catch the rising edge of
69 ≠≠ its spider’s reset and the falling edge will have of the spider’s reset will have su�cient time elapsed
70 ≠≠ for the controller to recognize its reset before the spider sets that signal back to ’0’;
71

72

73 if (spider_rst = ’1’) then
74

75 ns_count <= "0000"; ≠≠ counter for ns_light duration since changed from last change
76 ew_count <= "0000"; ≠≠ counter for ew_light duration since changed from last change
77 error_count <= "0000";
78 error <= error_none;
79 rst <= ’1’;
80 fault_i <= ’0’;
81 state <= q1;
82 error_code <= 0; ≠≠error_code to distinguish the fault why it is generated.
83 ns_lights_r <= "000"; ≠≠register ns_lights and ew_lights to detect the light has been changed.
84 ew_lights_r <= "000";
85

86 elsif (clk ’event and clk = ’1’) then
87 rst <= ’0’;
88 ≠≠register ns_lights and ew_lights to detect the light has been changed.
89 ns_lights_r <= ns_lights;
90 ew_lights_r <= ew_lights;
91

92 if (ns_lights_r /= ns_lights) then ≠≠register ns_lights and ew_lights to detect the light
93 ≠≠ has been changed.
94 ns_count <= (others => ’0’);
95 else
96 ns_count <= ns_count + 1;
97 end if ;
98 if (ew_lights_r /= ew_lights) then ≠≠register ns_lights and ew_lights to detect the light
99 ≠≠ has been changed.
100 ew_count <= (others => ’0’);
101 else
102 ew_count <= ew_count + 1;
103 end if ;
104 case state is
105 when q0 =>
106

107 if ((( ns_lights = green) or (ns_lights = yellow)) and (ew_lights /= red)) then
108 error <= error_reg;
109 fault_i <= ’1’;
110 error_count <= error_count + 1;
111 error_code <= 1;
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112 elsif ((( ew_lights = green) or (ew_lights = yellow)) and (ns_lights /= red)) then
113 error <= error_reg;
114 fault_i <= ’1’;
115 error_count <= error_count + 1;
116 error_code <= 2;
117 elsif (( ns_lights = red) and (ew_lights = red)) then
118 error <= error_reg;
119 fault_i <= ’1’;
120 error_count <= error_count + 1;
121 error_code <= 3;
122 end if ;
123

124 if ((( ns_lights and red) = red) and (((ns_lights and green) = green) or
125 (( ns_lights and yellow) = yellow ))) then
126 error <= error_reg;
127 fault_i <= ’1’;
128 error_count <= error_count + 1;
129 error_code <= 4;
130 elsif ((( ns_lights and green) = green) and (((ns_lights and red) = red) or
131 (( ns_lights and yellow) = yellow ))) then
132 error <= error_reg;
133 fault_i <= ’1’;
134 error_count <= error_count + 1;
135 error_code <= 5;
136 elsif ((( ns_lights and yellow) = yellow) and (((ns_lights and red) = red) or
137 (( ns_lights and green) = green))) then
138 error <= error_reg;
139 fault_i <= ’1’;
140 error_count <= error_count + 1;
141 error_code <= 6;
142 end if ;
143

144 if ((( ew_lights and red) = red) and (((ew_lights and green) = green) or
145 ((ew_lights and yellow) = yellow ))) then
146 error <= error_reg;
147 fault_i <= ’1’;
148 error_count <= error_count + 1;
149 error_code <= 7;
150 elsif ((( ew_lights and green) = green) and (((ew_lights and red) = red) or
151 ((ew_lights and yellow) = yellow ))) then
152 error <= error_reg;
153 fault_i <= ’1’;
154 error_count <= error_count + 1;
155 error_code <= 8;
156 elsif ((( ew_lights and yellow) = yellow) and (((ew_lights and red) = red) or
157 ((ew_lights and green) = green))) then
158 error <= error_reg;
159 fault_i <= ’1’;
160 error_count <= error_count + 1;
161 error_code <= 9;
162 end if ;
163
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164 ≠≠ We choose a minimal condition here in lieu of recreating the entire controller’s time checks
165 if (ns_count > clk_limit+1 and (DBG_TRIG_ENBL or not (ns_lights_r(2) = ’1’ and ns_lights(2) = ’0’))
166 and (ns_lights(0) = ’1’ or ns_lights (1)=’1’))
167 or (ew_count > clk_limit+1 and (DBG_TRIG_ENBL or not (ew_lights_r(2) = ’1’ and ew_lights(2) = ’0’))
168 and (ew_lights_r(2) /= ’1’) and ( ew_lights(0) /= ’1’ or ew_lights (1)=’1’))
169 then
170 fault_i <= ’1’;
171 error_code <= 10;
172 end if ;
173

174 if ( fault_i = ’1’) then
175 ≠≠ flip to the main fault_i state
176 state <= q1;
177 end if ;
178

179 when q1 =>
180 if (spider_rst= ’0’ and fault_i = ’0’) then
181 state <= q0;
182 end if ;
183 ≠≠ awaiting reset, we minimally spider the flashing red lights
184 if (( ns_lights /= red) and (ew_lights = red)) then
185 error <= error_mit;
186 elsif (( ns_lights = red) and (ew_lights /= red)) then
187 error <= error_mit;
188 end if ;
189

190 when others =>
191 state <= q0;
192 end case;
193

194 end if ;
195 end process;
196

197 end rtl ;
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