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1. Introduction 

Military vehicles, especially military aircraft, are powered by their unique engine 
design. Gas turbine engines are intended to propel vehicles through a complex 
process. Fuel is sprayed into a pressurized air stream within the combustor. This 
fuel is ignited before entering the turbine to produce a high-temperature pressurized 
gas. As this high-temperature pressurized gas flows through the engine, it powers 
the compressor while propelling the actual machinery.1 This intricate process is a 
revolutionary method for converting thermal energy into mechanical propulsion for 
high-power/high-speed vehicles. Given the high-temperature/high-pressure 
mechanics of this process, the smallest debris can cause catastrophic engine failure. 
In many instances, a small particle such as sand can lead to this failure and present 
a major safety hazard.1 

Small sand particles infiltrating military vehicles and aircraft can lead to 
catastrophic engine failure. The CaO-MgO-Al2O3-SiO2 system, otherwise known 
as CMAS, is used to simulate this sand in a research-based lab environment. 
CMAS, which is typically blasted at high temperatures toward the material of 
interest, in this case the thermal/environmental barrier coating (T/EBC), can melt 
onto and eat away at the surface of the material. High temperatures, up to 2500 °C, 
are used to simulate the high operating temperatures experienced in these engines. 
CMAS is usually the main cause of material degradation for these applications and 
is used to understand specific material degradation due to CMAS attack, especially 
since this attack can diminish the material’s desirable thermal and mechanical 
properties. This can also lead to engine failure, reduce engine lifespan, and hinder 
routine mechanical movement. Therefore, the need for a high-temperature T/EBC 
that can withstand CMAS attack is necessary for proper engine function, extended 
engine lifespan, and the safety of the Soldiers, which is the highest priority. 

While there is a constant search for innovative ideas and technologies, modern 
technology uses yttria stabilized zirconia (YSZ) as the primary coating material for 
the base metal, typically nickel-based superalloys, of gas turbine engines. Some gas 
turbine engines also use a ceramic matrix composite (CMC) material as the base 
material, specifically SiC-SiC CMCs. This is a composite material made up of SiC 
fibers within a SiC matrix.2 YSZ was initially considered the prime coating material 
for metal-based gas turbine engine components in the 1970s. It was first studied as 
a suitable material for engine coatings by Curt Liebert at the NASA John H. Glenn 
Research Center.3 It was more notably studied in 1978 by Dr Stephan Stecura, a 
former NASA employee.3 As noted in Smialek and Miller,3 Stephan Stecura. 
defined the ideal composition for YSZ as a successful T/EBC as 6–8 mol.% yttria; 
thus, YSZ with 7 mol.% yttria became the most dominant YSZ composition for 
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plasma spray T/EBCs. In the 1990s, 7 mol.% YSZ gained popularity and is now 
considered the standard inert tough ceramic material for high-temperature 
applications.  

To ensure the safety of Soldiers and reduce the mechanical malfunctions of their 
vehicles, there is a great need to create advanced T/EBCs for the gas turbine engines 
used in these vehicles—ideally, a high-temperature coating that may withstand 
temperatures up to approximately 2500 °C. A potential materials solution is the use 
of high-entropy ceramics (HECs) as T/EBC. While high-entropy alloys (HEAs), 
which are multicomponent solid solution materials with near equiatomic 
composition (anywhere from 5 to 35 at.%), have been extensively researched 
recently,4–9 HECs, which are similarly defined but with ceramic components rather 
than metals, have grown more slowly.4 The near equiatomic makeup of both HEAs 
and HECs means that there is no primary component. These materials are also 
known for their large entropies of mixing, which help to reduce the overall Gibb’s 
free energy of the system. The lack of published HEC research means there are few 
methods for predicting their phase diagrams, phase changes, and thermodynamic 
and mechanical properties. As a first step toward developing HECs as T/EBCs, we 
evaluated the equivalent HEA using the TCHEA4 database in Thermo-Calc 
CALPHAD, which is a computational software that can predict a material’s 
properties to better understand its behavior in various environments or when used 
for any desired application. CALPHAD is used to build the phase diagrams, predict 
the thermodynamic properties, and determine which phases are stable at high 
operating temperatures for these alloys and, in turn, provide insight into the 
equivalent ceramic coatings. The use of CALPHAD reduces the time and cost that 
it might take to find comparable experimental results and draw similar conclusions. 
Results from these calculations are compared with the CMAS system. 

2. Computational Methods 

The following process was used chronologically to characterize and evaluate the 
HfO2-Al2O3-SiO2 HEC T/EBC system for gas turbine engine applications:  

(1) Apply modified Hume–Rothery rules for HEAs.  

(2) Analyze and compare the HEC descriptor data to the HEA predictors.  

(3) Build binary phase diagrams with the elements that make up the 
multicomponent ceramic material.  

(4) Build ternary phase diagrams of main elemental components (Hf, Al, and 
Si). 
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(5) Predict phase changes and thermodynamic properties of multicomponent 
ceramic T/EBC with Thermo-Calc CALPHAD software.  

(6) Analyze those binary and ternary phase diagrams to down-select and 
identify ranges of potential compositional variations that meet Army-
specific requirements.  

CALPHAD allows us to build these binary and ternary phase diagrams, which are 
used to calculate and predict the thermodynamic properties of the phases and the 
overall system as well as the phase changes that occur at various compositions, 
temperatures, and pressures. 

The following section explains how we use modified Hume–Rothery rules for 
HEAs to predict these material properties and aid in determining the viability of 
using HfO2-Al2O3-SiO2 as an HEC for T/EBCs. For HEAs, the modified Hume–
Rothery rules are based on three parameters: entropic consideration (Ω), atomic 
size consideration (δ), and valence electron consideration (VEC).10,11 To solve for 
the entropic consideration, the following four equations (Eqs. 1–4) are necessary10:  

 𝛺𝛺 =  𝑇𝑇𝑚𝑚∆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚
|∆𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚|

 (1) 

 𝑇𝑇𝑚𝑚 =  ∑ 𝑐𝑐𝑖𝑖(𝑇𝑇𝑚𝑚)𝑖𝑖𝑛𝑛
𝑖𝑖=1  (2) 

 ∆𝑆𝑆𝑚𝑚𝑖𝑖𝑚𝑚 =  −𝑅𝑅∑ 𝑐𝑐𝑖𝑖𝑙𝑙𝑙𝑙𝑐𝑐𝑖𝑖𝑛𝑛
𝑖𝑖=1  (3) 

 ∆𝐻𝐻𝑚𝑚𝑖𝑖𝑚𝑚 =  ∑ 4∆𝐻𝐻𝐴𝐴𝐴𝐴𝑚𝑚𝑖𝑖𝑚𝑚𝑐𝑐𝑖𝑖𝑐𝑐𝑗𝑗𝑛𝑛
𝑖𝑖=1,𝑖𝑖≠𝑗𝑗  (4) 

where Tm represents the melting temperature of the element or species, ΔSmix is the 
change in the entropy of mixing, ΔHmix is the change in enthalpy of mixing, ci is the 
composition of the element or species, R is the universal gas constant, and Δ𝐻𝐻𝐴𝐴𝐴𝐴𝑚𝑚𝑖𝑖𝑚𝑚 
is the mixing enthalpy of element A with element B.  

To solve for the atomic size consideration, Eq. 5 is used10: 

 δ =  �∑ ci(1 − r
∑ cirin
i=1

)2n
i=1  (5) 

where r is the atomic radius of the specific element.  

To solve for the valence electron consideration, Eq. 6 is used11: 

 VEC =  ∑ ciVin
i=1  (6) 

where Vi is the valence of the element. 

These three parameters, commonly referred to as the descriptor approach, apply 
specifically to HEAs.10–12 Very little research exists for using the descriptor 
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approach in designing HECs.12–16 The calculations proposed by Sarker et al.14 for 
the entropic forming ability (EFA) and by Liu et al.13 for atomic size consideration 
are defined in the following equations (Eqs. 7 and 8)12: 

 𝐸𝐸𝐸𝐸𝐸𝐸 = (�∑ 𝑔𝑔𝑚𝑚(∆𝐻𝐻−∆𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚)2𝑛𝑛
𝑚𝑚=1

�∑ 𝑔𝑔𝑚𝑚𝑛𝑛
𝑚𝑚=1 �−1

)−1  (7) 

 𝛿𝛿 =  𝑅𝑅
∗(∆𝑅𝑅∗)2

𝑍𝑍
(𝐺𝐺) (8) 

where gi is the number of degeneracies in the system, R* is the effective lattice 
constant, and Z is the number of formula units per unit cell.12–14  

Due to the limited amount of research on HECs, we use the same descriptor 
approach for HEAs and apply it to HECs with some modifications. It is also 
important to note that solid solution is predicted when Ω > 1.1 and δ < 6.6% and 
single-phase stability within the system is predicted when VEC ≤ 4.4.1.10,11 

After computing preliminary data to aid in the elemental selection of this HEC 
T/EBC, Thermo-Calc CALPHAD, a thermodynamic software with the TCHEA4 
database, is used to build binary phase diagrams for the elements of interest and 
ternary isothermal phase diagrams of the Hf-Al-Si HEA system. These phase 
diagrams are created using the graphical mode in CALPHAD. The temperature for 
each isothermal phase diagram is set (in our case, 1300, 1350, and 1400 °C) along 
with the composition of the HEA system (in the case, 33.33 at.%) for each element 
of the specific three-component HEA. These simulated phase diagrams provide 
information regarding the stable phases and phase changes that occur with 
variations in composition and temperatures. The Property Model calculator is then 
used to measure the Gibb’s free energy, enthalpy, entropy, thermal resistance, and 
thermal conductivity of the stable phases and system as a whole. This calculation 
can be completed by defining the range of temperatures, properties to be calculated, 
their units, and the desired number of data points. The Property Model calculator is 
also used to calculate the temperature at which a phase transition occurs. This 
calculation requires a few input parameters, which include a range of temperatures 
of interest, the composition of the specific HEA, and the stable phases to track. 

3. Results and Discussion 

Table 1 shows the results from calculations from the modified Hume–Rothery rules 
using Eqs. 1, 5, and 6 for the Hf-Al-Si HEA system.
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Table 1 Calculations from the modified Hume–Rothery rules for the Hf-Al-Si system 

Hf 
(at.%) 

Al 
(at.%) 

Si 
(at.%) 

T 
(C)17 

ρavg 

(g/cm3) Ω δ 
(%) VEC 

33.33 33.33 33.33 1617.67 6.10 105.21 1.72 3.66 
 
Tables 2 and 3 show the results from calculations from the modified Hume–Rothery 
rules for the HfO2-Al2O3-SiO2 and CaO-MgO-Al2O3-SiO2 systems, respectively. 
These systems vary considering the introduction of oxygen into the system, 
electroneutrality considerations, and the differences in bonding (i.e., metallic 
bonding in the HEA and ionic and covalent bonding in the HEC). Despite these 
differences, high-entropy materials all depend on modified Hume–Rothery rules, 
although the VEC defined for HEAs may need modifications given the importance 
of electroneutrality in ceramics.  

Table 2 Calculations from the modified Hume–Rothery rules for the HfO2-Al2O3-SiO2 

system 

HfO2 
(at.%) 

Al2O3 
(at.%) 

SiO2 
(at.%) 

Tm 

(C)17 
ρavg 

(g/cm3) Ω δ 
(%) VEC 

33.33 33.33 33.33 2179.98 5.43 70.85 2.05 5.09 
 

Table 3 Calculations from the modified Hume–Rothery rules for the CaO-MgO-Al2O3-
SiO2 system 

CaO 
(at.%)18 

MgO 
(at.%)18 

Al2O3 
(at.%)18 

SiO2 
(at.%)18 

Tm 

(C)17 
ρavg 

(g/cm3) Ω δ 
(%) VEC 

40.51 7.48 2.33 49.68 2153.04 3.03 64.54 2.35 4.67 
 
These results all satisfy the prediction parameters for solid solution and single-
phase stability (Ω > 1.1, δ < 6.6%, VEC ≤ 4.4), although the HfO2-Al2O3-SiO2 
system shows values that highly satisfy the entropic and atomic size considerations. 
These values directly correlate to the properties of the material—the solid solution 
improving strength and the melting temperature and entropic consideration 
contributing to improved thermal resistance and stability. The sandphobic 
properties of the HEC can also be predicted. Given the high amount of SiO2 in both 
systems and the greater amount of Al2O3 in the HEC, acceptable sandphobic 
properties can be expected. It is also important to note the differences in density. 
The HEC system is denser than the CMAS. Although the CMAS is transported at 
high velocities after infiltrating the gas turbine engine,19–25 coating the engine or 
engine blades in a slightly denser material may help decrease the material 
degradation caused by CMAS.  
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The binary oxide phase diagrams for these main elemental components, Hf, Al, and 
Si, are shown in Figs. 1–3. Figure 1 shows stable monoclinic and tetragonal phases 
for HfO2, Fig. 2 shows a stable Al2O3 phase with gas, and Fig. 3 shows a stable 
SiO2 and liquid phase from 1000 to 2000 °C. These diagrams are used to predict 
the thermal stability of the overall HEC oxide in comparison to the Hf-Al-Si HEA 
pictured in Figs. 4–6. The melting temperatures of Hf, Al, and Si are 2233, 933, 
and 1687 °C, respectively.17 The melting temperatures of HfO2, Al2O3, and SiO2 
are approximately 2700, 2050, and 1725 °C, respectively. Comparatively, these 
values, which can be derived from their binary phase diagrams in Figs. 1–3, are 
significantly higher with the addition of oxygen. Specifically, Fig. 1 shows 
approximately a 500 °C increase in melting temperature between Hf and HfO2, 
Fig. 2 shows an 1100 °C increase in melting temperature between Al and Al2O3, 
and Fig. 3 shows a 50 °C increase between Si and SiO2. The increase in melting 
temperature shown in Figs. 1–3 for each of the binaries support the basic principle 
of ceramics—thermal stability of the system at higher temperatures. These binary 
phase diagrams can be used to predict properties and behaviors that may occur 
within the high-entropy materials with and without the oxide. This also ensures that 
the HEA ternary phase diagrams built using Thermo-Calc CALPHAD and their use 
as prediction tools for the HEC counterparts are correct. 

 

Fig. 1 Hf-O binary phase diagram26 
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Fig. 2 Al-O binary phase diagram (calculated using CALPHAD) 

 

Fig. 3 Si-O binary phase diagram27 

The phase diagrams for the Hf-Al-Si HEA at 1300, 1350, and 1400 °C are shown 
in Figs. 4–6, respectively. Their corresponding thermodynamic properties at these 
temperatures are listed in Tables 4–6. 
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Fig. 4 Ternary phase diagram of Hf-Al-Si at 1300 °C 

 

Table 4 Thermodynamic properties of the L+HfSi2 phase and Hf-Al-Si system at 1300 °C 

 T 
(K) 

G 
(kJ) 

H 
(kJ/mol) 

S 
(J/K) 

K 
(W/mK) 

R 
(mK/W) 

L+HfSi2 1573.15 –13.87 –40.19 6.19 0.00 1.00E+20 
System 1573.15 –99.17 45.70 92.09 0.00 1.00E+20 
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Fig. 5 Ternary phase diagram of Hf-Al-Si at 1350 °C 

 

Table 5 Thermodynamic properties of the L+HfSi2 phase and Hf-Al-Si system at 1350 °C 

 T 
(K) 

G 
(kJ) 

H 
(kJ/mol) 

S 
(J/K) 

K 
(W/mK) 

R 
(mK/W) 

L+HfSi2 1623.15 –3.91 –38.62 1.74 0.00 1.00E+20 
System 1623.15 –103.88 52.24 96.18 0.00 1.00E+20 
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Fig. 6 Ternary phase diagram of Hf-Al-Si at 1400 °C 

 

Table 6 Thermodynamic properties of the L+HfSi2 phase and Hf-Al-Si system at 1400 °C 

 T 
(K) 

G 
(kJ) 

H 
(kJ/mol) 

S 
(J/K) 

K 
(W/mK) 

R 
(mK/W) 

L+HfSi2 1673.15 –0.00 –37.05 0.00 0.00 1.00E+20 
System 1673.15 –108.76 55.68 98.28 0.00 1.00E+20 

 
The ternary isothermal phase diagrams of the Hf-Al-Si system shown in Figs. 4–6 
show the transition of the material from the L+HfSi2 phase to the liquid phase as 
the temperature increases from 1300 to 1400 °C. Figure 4 clearly shows the 0.33Hf-
0.33Al-0.33Si HEA stable within the L+HfSi2 phase at 1300 °C. Figure 5 shows a 
shift in the L+HfSi2 phase at 1350 °C although the HEA is still stable within this 
phase as long as there are not any compositional variations. The HEA stable in the 
liquid phase is pictured in Fig. 6. This phase transition is also illustrated by the 
change in thermodynamic properties from 1300 to 1400 °C as depicted in  
Tables 4–6. The overall Gibb’s free energy (G) of the system decreases with this 
temperature change from –99.17 kJ to –108.76 kJ while the enthalpy (H) and 
entropy (S) of the system increase from 45.70 kJ/mol to 55.68 kJ/mol and 92.09 J/K 
to 98.28 J/K, respectively. This is explained by the liquid phase consuming the 
material system with increasing temperature—the system is reaching an 
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equilibrium that causes the Gibb’s free energy to decrease while the transition from 
solid to liquid increases the disorder of the system and produces energy (heat), 
increasing both the entropy and enthalpy. The thermodynamic properties of the 
L+HfSi2 phase are opposite in trend compared to the system. Since the L+HfSi2 
phase becomes less prominent with increasing temperature, the Gibb’s free energy 
of the phase increases while the enthalpy and entropy of the phase decrease.  

Tables 4–6 also list values for the thermal conductivity (K) and thermal resistivity 
(R) of the L+HfSi2 phase and system at these varying temperatures. These values 
are consistent between the phase and system for all temperatures, with the thermal 
conductivity measuring 0.00 W/mK and the thermal resistivity measuring 
1.00E+20 mK/W. These values are the inverse of each other; however, since the 
measurement for thermal conductivity is so small, it is noted as 0.00 W/mK. These 
values are promising given the high-temperature resistance needed for T/EBCs. 
Thermo-Calc CALPHAD was also used to identify the temperature at which the 
L+HfSi2/liquid phase change occurs. This calculation determined a phase transition 
at 1363.69 °C, which agrees with the changes observed in the ternary isothermal 
phase diagrams for 1300, 1350, and 1400 °C. Ceramics, unlike metals, care about 
what positions their atoms sit in. Each atom has a fixed position in its crystal 
structure and resists changing these positions with increased temperatures. This 
resistance is a result of higher bond strengths. This means that ceramic bonds only 
break when an even higher stress or temperature, compared to metals, is applied. 
This results in higher melting temperatures and increased stability at high 
temperatures.28–33 Given this nature of ceramics, the phase change of this HEA at 
1363.69 °C will occur at even higher temperatures for the HfO2-Al2O3-SiO2 HEC 
system. 

4. Conclusions  

High-entropy ceramics offer great potential as new materials solutions for 
thermal/environmental barrier coatings for gas turbine engines. After applying the 
modified Hume–Rothery rules for HEAs to the HfO2-Al2O3-SiO2 HEC and CaO-
MgO-Al2O3-SiO2 CMAS systems, it was determined that both satisfy the solid 
solution parameters 𝛀𝛀 > 𝟏𝟏.𝟏𝟏 and 𝜹𝜹 < 𝟔𝟔.𝟔𝟔% and single-phase stability parameter 
VEC ≤ 4.4 with values of Ω = 70.85, δ = 2.05%, VEC = 5.09 and Ω = 64.54, δ = 
2.35%, VEC = 4.67, respectively. These values predict high-temperature stability 
of the HfO2-Al2O3-SiO2 HEC as compared to CMAS. The ternary isothermal phase 
diagrams of the Hf-Al-Si HEA also show L+HfSi2 phase stability until the phase 
transition to liquid at 1363.69 °C. At 1300, 1350, and 1400 °C, this HEA also 
showed a consistent thermal resistivity of 1.00E+20 mK/W in both the L+HfSi2 
phase and the material system. The thermal resistance, high Tm, and phase stability 
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of this HEA promise increased thermal resistance, Tm, and phase stability for the 
HfO2-Al2O3-SiO2 HEC, making it a promising candidate as an advanced T/EBC 
material.  
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List of Symbols, Abbreviations, and Acronyms 

Ω entropic consideration 

δ atomic size consideration 

ci composition 

CMAS  CaO-MgO-Al2O3-SiO2 system 

CMC  ceramic matrix composite  

EFA entropy forming ability 

G Gibb’s free energy 

gi number of degeneracies 

H enthalpy 
HAB
mix enthalpy of mixing for A-B solution 

Hmix enthalpy of mixing 

HEA  high-entropy alloy 

HEC  high-entropy ceramic 

NASA National Aeronautics and Space Administration 

R universal gas constant 

R* effective lattice constant 

r atomic radius 

S entropy 

Smix entropy of mixing 

T/EBC thermal/environmental barrier coating 

Tm melting temperature 

VEC  valence electron consideration 

Vi valence 

YSZ  yttria stabilized zirconia 

Z number of formula units per cell 
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