
USING GENERATIVE ADVERSARIAL
NETWORKS TO AUGMENT UNMANNED

AERIAL VEHICLE IMAGE
CLASSIFICATION TRAINING SETS.

THESIS

Benjamin J. McCloskey, Second Lieutenant, USAF

AFIT-ENS-MS-22-M-151

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.

AFIT-ENS-MS-22-M-151

USING GENERATIVE ADVERSARIAL NETWORKS TO AUGMENT

UNMANNED AERIAL VEHICLE IMAGE CLASSIFICATION TRAINING SETS

THESIS

Presented to the Faculty

Department of Operations Research

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Operations Research

Benjamin J. McCloskey, B.S.

Second Lieutenant, USAF

March 24, 2022

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-ENS-MS-22-M-151

USING GENERATIVE ADVERSARIAL NETWORKS TO AUGMENT

UNMANNED AERIAL VEHICLE IMAGE CLASSIFICATION TRAINING SETS

THESIS

Benjamin J. McCloskey, B.S.
Second Lieutenant, USAF

Committee Membership:

Bruce Cox, Ph.D
Chair

Lance Champagne, Ph.D
Member

Trevor Bihl, Ph.D
Member

AFIT-ENS-MS-22-M-151

Abstract

A challenging task in computer vision is finding techniques to improve the object

detection and classification capabilities of machine learning (ML) models used for

processing images acquired by moving aerial platforms. Detection and classification

of objects are usually accomplished through the application of supervised ML tech-

niques, which require labeled training datasets. The collection of images for these

training datasets is costly and inefficient. Due to the general impossibility to collect

imagery from all possible elevation angles, sun angles, distances, and etc., this results

in small training datasets with minimal image diversity. In an effort to increase the

accuracy of supervised ML models trained on these datasets, various data augmenta-

tion techniques can be implemented to increase their size and diversity. Traditional

data augmentation techniques, such as rotation and darkening of images, provide no

new instances nor variety in the modified dataset. A Generative Adversarial Net-

work (GAN) is a ML data augmentation technique which can learn the distribution

of samples from a dataset and produce synthetic replications, known as “deepfakes.”

This research explores if GAN augmented Unmanned Aerial Vehicle (UAV) training

sets can increase the generalizability of a detection model trained on said data. To

answer this question, the You Only Look Once Version 4 - Tiny (YOLOv4-Tiny)

Object Detection Model was trained with aerial image training sets depicting rural

environments. The salient objects within the frames were recreated using various

GAN architectures, placed back into the original frames, and the augmented frames

appended to the original training sets. GAN augmentation on aerial image training

sets led to a 6.75% increase on average in the Mean Average Precision (mAP) of the

YOLOv4-Tiny Object Detection model with a best-case increase of 15.76%. Similarly,

iv

a 4.13% increase on average and a best-case increase of 9.60% was observed for the

Intersection over Union (IoU) rate. Finally, 100.00% True Positive (TP), 4.70% False

Positive (FP), and zero False Negative (FN) detection rates were yielded, providing

further evidence supporting GAN augmentation for object detection model training

sets.

v

AFIT-ENS-MS-22-M-151

To my wife, thank you for all of your love, patience, and the endless amount of

coffee you gave me to get me to the finish line of my thesis. I would not be here

without you.

vi

Acknowledgements

I would like to thank my advisor, Dr. Bruce Cox, for his guidance and mentorship

not only throughout the course of my research but also for my future endeavors.

Additionally, thank you to Dr. Lance Champagne and Dr. Trevor Bihl for their

input and time in helping me complete my thesis. Finally, I would like to thank Dr.

Michael Garee who gave up many hours of his time to help me learn, debug, and

execute my computer coding.

Benjamin J. McCloskey

vii

Table of Contents

Page

Abstract . iv

Acknowledgements . vii

List of Figures . xi

List of Tables . xv

I. Introduction . 1

1.1 Background and Problem Statements . 1
1.1.1 Background . 1
1.1.2 Problem Statement . 4

1.2 Research Questions . 4
1.3 Limitations of Research . 6
1.4 Thesis Organization . 6

II. Background and Literature Review . 8

2.1 Artificial Neural Networks . 8
2.1.1 History . 8
2.1.2 Architecture . 10

2.2 Activation Functions . 15
2.3 Convolutional Neural Networks . 19

2.3.1 History of the Convolutional Neural Network
(CNN) . 20

2.3.2 Architecture . 22
2.4 You Only Look Once Version 4 (YOLOv4) . 25

2.4.1 Architecture . 26
2.4.2 Performance . 33

2.5 YOLOv4-Tiny Configuration . 33
2.6 Generative Adversarial Networks . 34

2.6.1 History . 34
2.6.2 Convergence . 36
2.6.3 Generative Adversarial Network Training

Problems . 37
2.6.4 Architecture . 38
2.6.5 Deep Convolutional Generative Adversarial

Network (DCGAN) . 39
2.6.6 Wasserstein GAN (WGAN) . 41

2.7 Related Research . 44
2.7.1 Model Generalizability . 44

viii

Page

2.7.2 Aerial Image Dataset Augmentation . 46

III. Methodology . 52

3.1 Programming Platform . 52
3.2 Datasets . 52
3.3 Datasets’ Objects . 54

3.3.1 Splitting the Data for Training and Testing 56
3.4 YOLOv4-Tiny Data Wrangling . 59

3.4.1 Image Cropping . 59
3.4.2 Labels . 60

3.5 YOLOv4-Tiny Model Training: No Augmentation 61
3.6 Generative Adversarial Networks . 65

3.6.1 Generative Adversarial Network Training . 66
3.6.2 Deep Convolutional GAN Architecture . 67
3.6.3 Conditional Deep Convolutional GAN

Architecture . 69
3.6.4 Wasserstein GAN Architecture . 71
3.6.5 Conditional Wasserstein GAN Architecture 72

3.7 Dataset Augmentation . 73

IV. Generative Adversarial Networks Training . 75

4.1 Training Times . 75
4.2 Dataset 1 Synthetic Images . 76
4.3 Dataset 2 Synthetic Images . 79
4.4 Combined Dataset Synthetic Images . 83
4.5 Poor Quality Images . 87

4.5.1 Dataset 1 . 89
4.5.2 Dataset 2 . 91
4.5.3 Combined Dataset . 93

4.6 Generative Adversarial Network (GAN) Training
Takeaways . 96

V. Results and Discussion . 97

5.1 Model Training: Dataset 1 . 97
5.1.1 Dataset 1: No Augmentation . 97
5.1.2 Dataset 1: GAN Augmentation . 99

5.2 Model Training: Dataset 2 . 101
5.2.1 Dataset 2: No Augmentation . 102
5.2.2 Dataset 2: GAN Augmentation . 103

5.3 Model Training: Combined Dataset . 105
5.3.1 Original Dataset: No Augmentation . 106
5.3.2 Combined Dataset: GAN Augmentation . 107

ix

Page

5.4 Discussion . 109

VI. Follow-on Experiments . 110

6.1 Experiment I: Alien Test Set . 110
6.2 Experiment II: Alien Test Set- Varying Hyperparameters 112
6.3 Experiment III: Blended Augmented Training Set 114

6.3.1 Blended Augmentation . 116

VII. Follow-on Experiments’ Results . 118

7.1 Experiment I: Alien Test Set . 118
7.1.1 Discussion . 122

7.2 Experiment II: Alien Test Set with Varying
Hyperparameters . 123
7.2.1 Discussion . 126

7.3 Experiment III: Blended Augmented Training Set 127
7.3.1 Discussion . 133

VIII. Conclusions . 134

8.1 Future Research . 137

Appendix A. Appendix . 140

1.1 GAN Python Code Examples . 140
1.1.1 cDCGAN Python Code . 140
1.1.2 cWGAN Python Code . 146

1.2 YOLOv4-Tiny Hyperparameter Values . 152
1.3 Training Results: Dataset 1 . 152
1.4 Training Results: Dataset 2 . 155
1.5 Training Results: Combined Dataset . 159
1.6 Experiment I Results . 163
1.7 Experiment 1I Results . 164
1.8 Experiment III Results . 169

Bibliography . 171
Acronyms . 181
Glossary . 186

x

List of Figures

Figure Page

1 Artificial Neuron . 9

2 Artificial Neuron . 10

3 Example of Dropout . 12

4 Sigmoid Activation Function Saturation . 15

5 Convolutional Neural Network . 20

6 Average Pooling Operation . 24

7 Max Pooling Operation . 24

8 Object Detector Framework . 26

9 Summary of DarkNet-53 . 27

10 Spatial Pyramid Pooling Operation (SPP) . 30

11 Path Aggregation Network Framework . 30

12 YOLOv4 Performance . 33

13 DCGAN Generator (Image from [1]) . 40

14 Earth Mover Distance vs. Jensen-Shannon Divergence:
Gradients . 41

15 Bang et al. UAV Data Augmentation Sample . 48

16 Examples of Dataset 1 Images . 53

17 Examples of Dataset 2 Images . 53

18 Examples of the Van Class . 55

19 Examples of the Truck Class . 55

20 Examples of the Car Class . 55

21 Examples of Test Set Images . 58

22 Example of an Original Image . 59

xi

Figure Page

23 Example of a Cropped Original Image . 60

24 Bounding Box Predictions . 64

25 Example of a Sliced Image . 66

26 PyTorch Summary of the DCGAN Generator . 68

27 PyTorch Summary of the DCGAN Discriminator 69

28 PyTorch Summary of the cDCGAN Generator . 70

29 PyTorch Summary of the cDCGAN Discriminator 71

30 Augmentation Phase Process . 73

31 Examples of Synthetic Vans: Dataset 1 . 76

32 Examples of Synthetic Trucks: Dataset 1 . 77

33 Examples of Synthetic Cars: Dataset 1 . 78

34 Examples of Augmented Parent Images: Dataset 1 79

35 Examples of Synthetic Vans: Dataset 2 . 80

36 Examples of Synthetic Trucks: Dataset 2 . 80

37 Examples of Synthetic Cars: Dataset 2 . 81

38 Examples of Augmented Parent Images: Dataset 2 82

39 Examples of Synthetic Vans: Combined Dataset . 83

40 Examples of Synthetic Vans: Combined Dataset . 84

41 Examples of Synthetic Trucks: Combined Dataset 84

42 Examples of Synthetic Cars: Combined Dataset . 85

43 Examples of Synthetic Cars: Combined Dataset . 86

44 Examples of Augmented Parent Images: Combined
Dataset . 87

45 Examples of Mode Collapse for the DCGAN
Augmentation from the Combined Dataset . 88

xii

Figure Page

46 Examples of Poor Quality DCGAN Images: Dataset 1 89

47 Examples of Poor Quality cDCGAN Images: Dataset 1 89

48 Examples of Poor Quality WGAN Images: Dataset 1 90

49 Examples of Poor Quality cWGAN Images: Dataset 1 90

50 Examples of Poor Quality DCGAN Images: Dataset 2 91

51 Examples of Poor Quality cDCGAN Images: Dataset 2 91

52 Examples of Poor Quality WGAN Images: Dataset 2 92

53 Examples of Poor Quality cWGAN Images: Dataset 2 92

54 Examples of Poor Quality DCGAN Images: Combined
Dataset . 93

55 Examples of Poor Quality cDCGAN Images: Combined
Dataset . 94

56 Examples of Poor Quality WGAN Images: Combined
Dataset . 94

57 Examples of Poor Quality cWGAN Images: Combined
Dataset . 95

58 mAP vs. CIoU Loss: Dataset 1 . 99

59 mAP vs. CIoU Loss: Dataset 1 + cWGAN . 101

60 mAP vs. CIoU Loss: Dataset 2 . 103

61 mAP vs. CIoU Loss: Dataset 2 + DCGAN . 105

62 mAP vs. CIoU Loss: Combined Dataset . 107

63 mAP vs. CIoU Loss: Combined + cWGAN . 109

64 Examples of Alien Test Set Images . 110

65 Examples of Objects in the Alien Test Set . 111

66 Blended Augmentation: Phase 1 Process . 114

67 Blended Augmentation: Phase 2 . 115

xiii

Figure Page

68 Blended Augmentation: Phase 3 . 115

69 Examples of Blended Augmented Parent Images 117

70 Experiment I: mAP vs. CIoU Loss: Combined Dataset
+ Alien Test Set . 121

71 Experiment I: mAP vs. CIoU Loss: Combined Dataset
+ DCGAN + Alien Test Set . 122

72 Experiment II: mAP vs. CIoU Loss: Combined Dataset
+ Alien Test Set . 125

73 Experiment II: mAP vs. CIoU Loss: Combined Dataset
+ cDCGAN + Alien Test Set . 126

74 Experiment III: mAP vs. CIoU Loss: Original Test Set 131

75 Experiment III: mAP vs. CIoU Loss: Alien Test Set 132

xiv

List of Tables

Table Page

1 Object Count by Class for Each Dataset . 54

2 Original Annotation Format for the Datasets . 60

3 YOLOv4-Tiny Annotation Format for the Dataset 61

4 GAN Training Times . 75

5 Percent Change in Vans: Dataset 1 . 77

6 Percent Change in Cars: Dataset 1 . 78

7 Percent Change in Vans: Dataset 2 . 80

8 Percent Change in Trucks: Dataset 2 . 81

9 Percent Change in Cars: Dataset 2 . 82

10 Percent Change in Vans: Combined Dataset . 84

11 Percent Change in Trucks: Combined Dataset . 85

12 Percent Change in Cars: Combined Dataset . 86

13 YOLOv4-Tiny Model Training Results: Dataset 1 Best
Model . 98

14 YOLOv4-Tiny Model Training Results by Class:
Dataset 1 Best Model . 98

15 YOLOv4-Tiny Model Training Results: Dataset 1 +
GAN Images Best Models . 99

16 YOLOv4-Tiny Model Training Results by Class:
Dataset 1 +cWGAN Images . 100

17 YOLOv4-Tiny Model Training Results: Dataset 2 Best
Model . 102

18 YOLOv4-Tiny Model Training Results by Class:
Dataset 2 Best Model . 102

19 YOLOv4-Tiny Model Training Results: Dataset 2 +
GAN Images Best Models . 104

xv

Table Page

20 YOLOv4-Tiny Model Training Results by Class:
Dataset 2 + DCGAN Images . 104

21 YOLOv4-Tiny Model Training Results: Combined
Dataset Best Model . 106

22 YOLOv4-Tiny Model Training Results by Class:
Combined Dataset Best Model . 106

23 YOLOv4-Tiny Model Training Results: Combined
Dataset + GAN Images Best Models . 107

24 YOLOv4-Tiny Model Training Results by Class:
Combined Dataset + cWGAN Images . 108

25 Experiment I Results: Learning Rate = 0.001 . 119

26 Experiment I Results by Class . 119

27 Experiment II Results: Learning Rate = 0.001305 |
Iterations = 4,000 . 123

28 Experiment II Results by Class: Learning Rate =
0.001305 | Iterations = 4,000 . 124

29 Experiment II Results: Performance Enhancements 127

30 Experiment III Results . 128

31 Experiment III Results by Class: Blended
Augmentation | Original Test Set . 129

32 Experiment III Results by Class: Blended
Augmentation | Alien Test Set . 130

33 YOLOv4-Tiny Model Hyperparameter Values . 152

34 YOLOv4-Tiny Model Training Results: Dataset 1 152

36 YOLOv4-Tiny Model Training Results: Dataset 1 +
DCGAN Images . 152

35 YOLOv4-Tiny Model Training Results by Class:
Dataset 1 . 153

xvi

Table Page

37 YOLOv4-Tiny Model Training Results by Class:
Dataset 1 +DCGAN Images . 153

38 YOLOv4-Tiny Model Training Results: Dataset 1 +
cDCGAN Images . 153

39 YOLOv4-Tiny Model Training Results by Class:
Dataset 1 + cDCGAN Images . 154

40 YOLOv4-Tiny Model Training Results: Dataset 1 +
WGAN Images . 154

41 YOLOv4-Tiny Model Training Results by Class:
Dataset 1 +WGAN Images . 154

42 YOLOv4 Model-Tiny Training Results: Dataset 1 +
cWGAN Images . 155

43 YOLOv4-Tiny Model Training Results by Class:
Dataset 1 +cWGAN Images . 155

44 YOLOv4-Tiny Model Training Results: Dataset 2 155

45 YOLOv4-Tiny Model Training Results by Class:
Dataset 2 . 156

46 YOLOv4 Model-Tiny Training Results: Dataset 2 +
DCGAN Images . 156

47 YOLOv4-Tiny Model Training Results by Class:
Dataset 2 + DCGAN Images . 156

48 YOLOv4-Tiny Model Training Results: Dataset 2 +
cDCGAN Images . 157

49 YOLOv4-Tiny Model Training Results by Class:
Dataset 2 + cDCGAN Images . 157

50 YOLOv4-Tiny Model Training Results: Dataset 2 +
WGAN Images . 157

51 YOLOv4-Tiny Model Training Results by Class:
Dataset 2 + WGAN Images . 158

52 YOLOv4-Tiny Model Training Results: Dataset 2 +
cWGAN Images . 158

xvii

Table Page

53 YOLOv4-Tiny Model Training Results by Class:
Dataset 2 + cWGAN Images . 158

54 YOLOv4-Tiny Model Training Results: Combined
Dataset . 159

55 YOLOv4-Tiny Model Training Results by Class:
Combined Dataset . 159

56 YOLOv4-Tiny Model Training Results: Combined
Dataset + DCGAN Images . 159

57 YOLOv4-Tiny Model Training Results by Class:
Combined Dataset + DCGAN Images . 160

58 YOLOv4-Tiny Model Training Results: Combined
Dataset + cDCGAN Images . 160

59 YOLOv4-Tiny Model Training Results by Class:
Combined Dataset + cDCGAN Images . 161

60 YOLOv4-Tiny Model Training Results: Combined
Dataset + WGAN Images . 161

61 YOLOv4-Tiny Model Training Results by Class:
Combined Dataset + WGAN Images . 162

62 YOLOv4-Tiny Model Training Results: Combined
Dataset + cWGAN Images . 162

63 YOLOv4-Tiny Model Training Results by Class:
Combined Dataset + cWGAN Images . 163

64 Experiment I Results: Learning Rate = 0.001 . 163

65 YOLOv4-Tiny Model Training Results by Class:
Experiment I . 164

66 Experiment II Results: Learning Rate = 0.00261 |
Iterations = 6,000 . 164

67 Experiment II Results by Class: Learning Rate =
0.00261 | Iterations = 6,000 . 165

68 Experiment II Results: Learning Rate = 0.00261 |
Iterations = 2,000 . 165

xviii

Table Page

69 Experiment II Results: Learning Rate = 0.00261 |
Iterations = 2,000 . 165

70 Experiment II Results: Learning Rate = 0.00261 |
Iterations = 4,000 . 166

71 Experiment II Results: Learning Rate = 0.00261 |
Iterations = 4,000 . 166

72 Experiment II Results: Learning Rate = 0.00522 |
Iterations = 2,000 . 166

73 Experiment Results by Class: Learning Rate = 0.00522
| Iterations = 2,000 . 167

74 Experiment II Results: Learning Rate = 0.00522 |
Iterations = 4,000 . 167

75 Experiment II Results:Learning Rate = 0.00522 |
Iterations = 4,000 . 167

76 Experiment II Results: Learning Rate = 0.001305 |
Iterations = 2,000 . 168

77 Experiment II Results: Learning Rate = 0.001305 |
Iterations = 2,000 . 168

78 Experiment II Results: Learning Rate = 0.001305 |
Iterations = 4,000 . 168

79 Experiment II Results: Learning Rate = 0.001305 |
Iterations = 4,000 . 169

80 Experiment III Results: Blended Augmentation | Alien
Test Set . 169

81 Experiment III Results by Class: Blended
Augmentation | Original Test Set . 170

82 Experiment III Results: Blended Augmentation | Alien
Test Set . 170

83 Experiment III Results by Class: Blended
Augmentation | Alien Test Set . 170

xix

USING GENERATIVE ADVERSARIAL NETWORKS TO AUGMENT

UNMANNED AERIAL VEHICLE IMAGE CLASSIFICATION TRAINING SETS

I. Introduction

The investigation of image and video classification techniques for data acquired

from moving platforms is currently a growing area of interest in computer vision. Im-

ages collected by aerial vehicles are important for information gathering and gaining

insights about an environment otherwise unattainable at a ground level evaluation.

For training object detection models, one important characteristic of the training

sets used for creating these models is the sets must contain a wide diversity of detail

within their images. Past data augmentation techniques, for example rotating, adding

noise, and flipping an image, were used to increase the diversity of a training set but

were weak approaches due to their inability to add any new images to the dataset.

Researching new image augmentation and classification methods which incorporate

machine learning (ML) techniques can help lead to performance improvements in the

models used for classifying aerial imagery.

1.1 Background and Problem Statements

1.1.1 Background

Recently, there has been an increase in usage of ML algorithms for classification

or predictions on images. While ML has been used for many decades, on images it

is the last 20 years for which we have seen reasonable progress. With the expansion

of technological advancements in information gathering and storage as well as its

1

accessibility, the amount of data available for analysis is growing at an exponential

pace. Increases in Random-access Memory (RAM) and hardware storage of computers

have catered to the necessity for having enormous datasets for training, testing, and

validating ML models to achieve lower bias and variance. Additional advancements

in technology stem from improvements in a computer’s Graphics Processing Unit

(GPU) which allows for the ability to manipulate larger amounts of data at faster

speeds, two important capabilities for real-time image processing [2].

Artifical Neural Networks (ANNs) are a subset of ML which are inspired by the

biological structure of neurons in the brain directed towards solving complex classifi-

cation and regression problems [3]. Deep learning is a subset of ANNs which create

multiple interconnected layers in an effort to provide more computational advantages

[3]. Convolutional Neural Networks (CNNs) are a subset of ANNs which allow for

automated feature extraction and classification in unison. CNNs and ANNs in gen-

eral require representative data to what is to be seen operationally, and thus often

times they require enormous amounts of data due to the variations seen in the real

world. While a plethora of data has been collected in the past decade, the problem

of minuscule and imbalanced training data sets continues to hinder ML model train-

ing leading to poor, biased classification and analysis. Relatively small datasets lead

to overfitting or underfitting in ML model training. Models which are overfit show

promise in performance on the training data, but break down and cannot generalize

to the associated real-world data fed to the model after it is trained. Overfitting a

model can be averted by providing a larger and more diverse training dataset, as

well as by reducing the complexity and introducing regularization into the model [4].

Models which underfit fail to learn the features and patterns of the training set and

make inaccurate predictions on analogous real-world data. Increasing the complexity

of the model can decrease the affects of underfitting. Another option to overcome

2

underfitting a model is to decrease the number of constraints placed upon the model

[4].

There are many reasons why large, diverse image sets are useful for training mod-

els to detect objects captured in video frames. When video is taken from moving

platforms, e.g. UAVs or cars, further issues exist as described by Bang et al. [5].

First, the time of day an image was taken as well as the conditions of the weather

both which impact brightness and shadows. Second, the images gathered by mov-

ing platforms are sometimes blurred and distorted due to the type of camera being

used and how it is affected by the physical vibrations projected from the moving

platform’s propulsion system. The moving platform’s altitude, sun angle, look angle,

cloud cover, and distance, as well as the color/shape/etc. of an object can further

lead to distorted affects in the samples captured by the camera. The proclivity of

researchers to ignore these parameters can lead to models which are susceptible to

breaking down when faced with diverse operational data. These factors necessitate

the need to gather large amounts of video frames containing various features, image

irregularities, and distortions to replicate those found in real-world image collection

so as to train a powerful object detection and classification model.

In order to increase image diversity in the hopes of improving the resulting accu-

racy of classification models trained on the data, the use of data augmentation can

be implemented for distorting images collected by Unmanned Aerial Vehicle (UAV)s.

A few current data augmentation techniques include flipping, rotating, or distorting

the colors of an image. While these augmentation techniques may introduce more

diversity in the dataset, they are unable to provide completely new frame instances

for a model to be trained upon.

A Generative Adversarial Network (GAN) is a ML technique which learns from

the probability distribution and features in a dataset to generate new synthetic in-

3

stances of the dataset, known as “deepfakes.” The implementation of a GAN is a

much more powerful data augmentation technique because it adds new, never before

seen instances to a training set which are still plausible and representative of the

originating population. Providing such new training instances to a ML model can

lead to the model being more robust when used for detection in real-world operational

environments.

1.1.2 Problem Statement

A common problem faced with image collection is not gathering sufficiently large

and diverse training and testing datasets to produce efficiently performing ML mod-

els. The lack of diversity displayed by these minuscule training sets produce models

performing poorly when used for real time detection. Finding ways to increase these

datasets, whether it be through additional data collection or other methods, is im-

portant for creating a robust and generalizable model.

A second problem in computer vision is the insufficient increases in image diversity

produced by traditional data augmentation techniques. Augmenting datasets through

rotating, flipping, or darkening each of the gathered video frames fails to add any

additional instances to the training set which compounds with the first problem noted

above. The need to find a new data augmentation technique which provides new

instances without the need to collect more data is important to quickly train detection

models for deployment in rapidly shifting operational environments.

1.2 Research Questions

This research sought to answer the following questions:

1. Does an augmented image training dataset acquired by a moving platform con-

taining generated synthetic images from a GAN increase the classification ac-

4

curacy and generalizability of a Convolutional Neural Network (CNN) object

detection model?

2. Does an augmented image training dataset acquired by a moving platform con-

taining generated synthetic images from a GAN increase the localization and

generalizability of a CNN object detection model?

3. What inferences can be drawn from the unaugmented and augmented datasets

that show their similarities and dissimilarities?

Providing evidence in support of the first and second questions could change how a

data scientist conducts data collection and redirect their efforts towards using aug-

mentation techniques with GANs to create datasets used for ML research. Not only

should the model be able to classify an object but training a robust object detection

model with the ability to find an object of interest in an image with a high Intersec-

tion over Union (IoU) value validates the model is capable of finding moving targets

varying in their placement within a captured frame. The generalization of a model

is the ability for the model to make accurate predictions and classifications on inputs

never before seen by the network [6]. The augmented dataset must be similar to the

original data set both qualitatively and quantitatively to justify assertions in model

generalizability enhancement.

Answering the final question provides justification for whether the augmented

objects from the GAN are similar in nature to the original samples and are reasonable

replications for what would be found in a real-world environment. High rates of

dissimilarity between objects of the same class could render GAN augmentation weak

and in need of further research for practical usage.

5

1.3 Limitations of Research

One of the biggest limitations in this research was the accessibility to the proper

hardware and software for implementing the different ML algorithms. While ML

models can be executed on a Central Processing Unit (CPU), it would take the models

in this thesis days, if not weeks, to run on a single CPU. A GPU is much more efficient

when running deep learning models, especially those designed for image exploration.

GPU access was very limited throughout the course of this research which added

constraints to the amount of complexity in the CNN and GAN models as well as

increasing the time needed to finish a training iteration for each of the models. Models

could never be simultaneously ran, greatly increasing the timeline of completion for

this thesis.

Another limitation was the amount of RAM and hard-drive memory available

throughout the course of this research. Insufficient RAM further led to decreases

in model complexity as well as the amount of data a model could utilize at a given

moment in the training and testing processes of the research. Decreases in these

two model components can lead to sub-optimal models. Steps were taken in this

research to mitigate those affects including choosing models with less parameters but

performed to the same high levels as more complex models. Additionally, partitioning

the dataset into batches during training and testing helped alleviate RAM and hard-

drive memory issues.

1.4 Thesis Organization

This chapter discussed the general area of ML this thesis will concentrate on, as

well as outlined the benefits and limitations occurring in ML research. Chapter II

provides a literature review which examines the theory of CNNs and GANs. In addi-

tion, it provides relevant research conducted using CNNs, GANs, and image frames

6

gathered from UAVs. Chapter III details the process of training the CNN detection

model pre- and post- dataset augmentation. Chapter IV provides details of the gen-

erated synthetic objects used for augmenting the training sets. Chapter V presents

the results gathered from the evaluation of the best models trained on the original

and augmented training sets. Chapter VI outlines the methodology for three differ-

ent experiments conducted after the conclusion of training with the original test set.

The results of the three different experiments are reviewed in Chapter VII. Finally,

Chapter VIII discuss the conclusions drawn from the results in addition to recom-

mendations for future research in the data augmentation domain using Generative

Adversarial Networks (GANs) for images acquired by moving platforms.

7

II. Background and Literature Review

This chapter provides information pertaining to the background of the different

machine learning (ML) techniques performed in the research. Additionally, relevant

research which provided motivation for the thesis methodology is also examined. The

main topics explored are Artifical Neural Networks (ANNs), Convolutional Neural

Networks (CNNs), Generative Adversarial Networks (GANs), and the object detec-

tion model You Only Look Once Version 4 - Tiny (YOLOv4-Tiny).

2.1 Artificial Neural Networks

2.1.1 History

ANNs are a ML model architecture inspired by the structure of the brain and its

path of neurons which allow for human intellectual thinking. Dating back to 1943,

McCulloch and Pitts developed an early rendition of a mathematical model which

represented a biological neuron [7]. The neuron accepted one or more binary inputs,

leading the formulation of a binary output dependent upon how many inputs were

activated.

8

Figure 1: Artificial Neuron (Image from [8])

The first Artificial Neural Network (ANN), shown in Figure 1, was a single layer

perceptron created by Francis Rosenblatt in 1957 [9]. Rosenblatt’s structure shifted

from only accepting binary inputs and outputs to numerical values with the use of a

Linear Threshold Unit (LTU). A LTU takes the sum of the input values multiplied

by their respective weights

z = w1x1 + w2x2 + ..wnxn = WTX (1)

where the calculated value is then passed through a step function for classifying the

collection of inputs as “0” or “1”. The Heavyside step function

Heavyside(x) =

0 x < 0

1 x ≥ 1

(2)

was popular in early neural network training.

One problem with the singe layer perceptron was how it was incapable of solving

9

nonlinear problems. This issue was resolved with a Multilayer Perceptron (MLP),

also known as a feed forward ANN. A MLP is a stack of multiple perceptrons, or one

or more layers of LTUs. Improvements in the MLP were made when Rumelhart et al.

[10] refined the backpropogation method of updating the model’s weights by shifting

the step activation function to a nonlinear activation function. The step function was

replaced with a Logistic Activation Function, also known as the Sigmoid Activation

Function

σ(z) =
1

1 + exp−z
(3)

where this activation functions differs from a step function by adopting a shape con-

taining no flat sections. The curved function has a nonzero derivative which can

always be found using gradient descent during backpropagation to update the net-

work’s weights.

2.1.2 Architecture

Figure 2: Artificial Neural Network

10

2.1.2.1 Input Layer

Portrayed in Figure 2, the input layer directly accepts the samples which are

needed to be processed by the ANN. The number of neurons in this layer depend on

the number of features in the samples of the dataset. The size of the input layer does

not need to be the same size of the output layer.

2.1.2.2 Hidden Layers

In between the input and output layer are a series of hidden layers containing Lin-

ear Threshold Units (LTUs). A neural network is considered a Deep Neural Network

(DNN) if it contains more than one layer of LTUs [4]. Bias neurons, which have a

value of “1,” can also be added to each hidden layer for input into the next layer.

2.1.2.3 Output Layer

The output layer provides the prediction or classification by the neural network.

For a binary classification network, the output will be congruous with one of the two

binary classes. Utilization of a Softmax Activation Function allows for the output to

provide classification probabilities corresponding to more than two classes.

2.1.2.4 Dropout

One problem occurring in neural network training is overfitting of the model.

As stated in Chapter I, an overfit model will show promising performance on the

training dataset but breaks down and has low generalizability on the associated real-

world data fed to the model post training. One way to overcome the presence of

overfitting in a model is dropout. Dropout, presented in Figure 3, will randomly drop

neurons in the layers of a neural network during the course of the model’s training.

Placing dropout in the architecture of a neural network helps overcome two problems

11

in model training: the need to create many differently trained models for different ML

analytical tasks and the requirement of having large amounts of data to efficiently

train a neural network [11]. By dropping neurons during model training, various

“thinned” architectures can be trained for one model. Creating a model capable of

performing well with less neurons leads to better performance on the testing and

validation data when it is given the ability to once again use all of the neurons within

its hidden layers, promoting a more generalized model. It also creates faster and more

reliable model performance [12].

Figure 3: Example of Dropout (Image from [11])

2.1.2.5 Backpropagation

The success of ANNs, in addition to other neural network architectures, can be

attributed to the development of backpropagation in neural network training. First

introduced by Werbos [13] in 1974, backpropagation became well know when Rumel-

hart et al. [10] added a nonlinear activation function to the process and showed the

effectiveness of the gradient descent technique. Backpropagation used in tandem with

an optimizer is implemented in training neural networks for updating their weights.

Werbos later described the goal of backpropogation as updating the weights of the

model in a formulation which produces output predictions, ŷ, close to or the same

12

as the original data samples, y [14]. The initial weights of a neural network can be

randomly selected at the first epoch of training. After completion of the first epoch,

the calculated ŷ is inspected and the error for the model’s weights is calculated. Next,

using the chain rule, the derivative with respect to the weights for the error is calcu-

lated. Weights are either increased or decreased depending on which direction shift

will decrease the output error. A learning rate can be attached to the update in

weights to speed up or slow down the process. The final weight after back propa-

gation is the difference between the original weight and the product of the learning

rate for each specific weight’s ordered derivative. Using the gradients from the loss

function, a model can properly update weights via a gradient based step.

2.1.2.6 Optimizers

Once the gradients of a network are calculated through backpropogation, an opti-

mizer can be used to update the model’s weights to efficiently align with the decision

boundaries of the problem task. The Root Mean Squared Propagation (RMSProp)

Optimizer

1. s← βs+ (1− β)5θ J(θ)⊗5θJ(θ)

2. θ ← θ − η5θ J(θ)�
√
s+ ε

(4)

uses exponential decay and only recently acquired gradients for updating the model

[4]. The first step exploits exponential decay and adds the squares of the gradients to

vector s. β is a momentum term value between zero and one which adds “friction”

to the gradient used to accelerate the updating of weights in model training. The

second step updates the weights θ by taking the difference of the gradient of the cost

function with respect to the weights, 5θJ(θ), multiplied by the learning rate η and

13

the weights.
√
s+ ε scales down the gradient by a factor where ε is a smoothing term

to ensure there is no division by zero.

The Adaptive Moment Estimation (Adam) Optimizer

1. m← β1m+ (1− β1)5θ J(θ)

2. s← β2s+ (1− β2)5θ J(θ)⊗5θJ(θ)

3. m← m

1− β1 T

4. s← s

1− β2 T

5. θ ← θ − ηm�
√
s+ ε

(5)

is predominately used today and combines momentum optimization with features of

the RMSProp Optimizer [4]. The first step of the equation shows how the Adam

Optimizer adopts momentum optimization which tracks the exponentially decaying

average of past gradients [4]. In step one, the local gradient is added to m, the

momentum vector. Step two is equivalent to the exponential decay used in RMSProp.

Steps three and four help “boost” m and s when training begins since both of those

values begin at zero [4]. Step 5 is similar to Gradient Descent and updates the weights

and T is the current iteration.

2.1.2.7 Vanishing/Exploding Gradients

The vanishing/exploding gradient problem can occur during the backpropagation

phase of the network’s training. These terms refer to when a model has become

saturated with tiny or enormous weights. “Vanishing” refers to gradients which con-

tinuously become substantially smaller as the backpropogation algorithm moves to

lower layer calculations [4]. The infinitesimal or zero-value gradients create little to

no change in the updated weights. “Exploding” refers to when the gradients become

14

so large or even reaching a “NaN” computer error the huge changes in the weights

lead the algorithm to diverge.

Figure 4: Example of Saturation in the Sigmoid Activation Function (Image from [4])

While activation functions help with overcoming the vanishing/exploding gradient

problem, saturation still frequently can occur with the use of the Sigmoid Activation

Function.

2.2 Activation Functions

One problem early neural network architectures had was their structure being lin-

ear in nature and failing to solve nonlinear problems. This apparent lack of versatility

led to stagnation in the development of ANNs for many years. While the Sigmoid

Activation Function is useful in some circumstances, its tendency to saturate with

incorrect initialization causes instability in the training of different variations of neu-

ral networks [15]. Activation functions add non-linearity in the feedforward process

of the network as well as backpropogation adjustments leading to more effectively

updated weights which form to the decision boundary of the data. Selecting the right

activation function helps overcome the “vanishing/exploding gradient” problem and

can give rise to a decrease in the time needed for training a robust neural network.

The Rectified Linear Unit (ReLU) Activation Function has become the current

default activation function within the inner layers of a neural network due to its ability

to overcome saturation. Improvements in training stem from the ReLU Activation

15

Function sending any negative input in a hidden neuron to zero and returning any

positive output falling between zero and the maximum, encouraging sparsity in the

hidden neurons. In addition, convergence speed increased since the ReLU has no

exponential or division properties in its operation [16]. In the calculation

f(x) = max(0, x) =

x x ≥ 0

0 x < 0

(6)

any value which is zero or negative for the ReLU Activation Function will go to zero.

By setting the value of negative numbers to zero, the vanishing/exploding gradient

problem can be averted in backpropogation.

Gloret et al. [17] showed the capability of the ReLU Activation Function in intro-

ducing and increasing sparsity from 50% to 80% in a neural network. Sparsity in a

model is important because it gives neurons real values or zero for firing to the next

layer. This benefits a neural network by untangling messy features which explain

the data, inducing the model to generalize more efficiently to small changes in input

instances. Other factors introduced by sparsity to a model are allowing for the vari-

ation of active neurons in each layer. Active neuron variation strengthens a model’s

understanding towards samples of different shapes exhibiting varying amounts of in-

formation and leads to less non-linearity in the information pushed through the hidden

layers since sparse representations of data are generally more linearly separable [17].

While the ReLU Activation Function elicits major improvements in nonlinear

transformations, problems still arise from the function’s weaknesses pertaining to

nonexistent gradients and information loss for values below zero. Maas et al.[18]

reconstructed the ReLU Activation Function by adding a slope value to its negative

side instead of sending negative values to zero. The Leaky Rectified Linear Unit

16

(LReLU) Activation Function

f(x) = max(0, x) =

x x > 0

0 mx ≤ 0,where m is a preselected slope value

(7)

has an additional slope parameter m. In the paper by Maas et al, the authors used

a value of 0.01. The small, nonzero gradient helps overcome the saturation occurring

in the ReLU. To investigate the performance of the LReLU, the researchers per-

formed an experiment on acoustics data used for speech recognition systems. In their

experiment, three different activation functions, Hyperbolic Tangent (tanh), ReLU,

and LReLU, were used in a DNN and their performances compared. While the per-

formance of the LReLU Activation Function closely mimicked the ReLU Activation

Function’s performance, both showed to more effectively increase model sparsity com-

pared to the tanh Activation Function.

Another metric the authors used for assessing the performance of each activa-

tion function was dispersion. Dispersion [19] is the measurement of the differences

in each set of activations when shown a different stimulus [18]. The standard exam-

ple explaining dispersion is four units coded with probabilities of [1, 0, 0, 0]. These

will have the same average sparsity of 25% as four coded units with probabilities

[0.25, 0.25, 0.25, 0.25]. The first set is an example of a compact coding while the sec-

ond set is an example of sparse-dispersed coding. Sparse-dispersed coding is more

beneficial for noisy inputs which are more prominent in imagery data and does not

hinder neural networks constrained by the pinpoint accuracy, a necessity for compact

coding sparsity [19]. By measuring the standard deviation of activation probabilities

for all of the units in a hidden layer, Maas et al. could measure how effective an

activation function was in creating sparse outputs. If the standard deviation is zero,

all of the units will be coded equally. Both rectified activation functions yielded stan-

17

dard deviations of 0.04 while the tanh Activation Function had a standard deviation

of 0.14. The researchers concluded that rectified activation functions produce sparse

codes more uniformly distributed across a hidden layer compared to the previous

standard Sigmoid-style activation functions.

The Swish Activation Function is a non-monotonic activation function capable of

maintaining small negative weights [20], unlike the ReLU. Additionally, the Swish

Activation

f(x) = xsigmoid(βx) (8)

has a smoother shape which helps with backpropagation where β is a constant pa-

rameter chosen by the user. The first derivative of the Swish is the Mish Activation

Function, introduced by Diganta Misra [20]. The Mish Activation Function

f(x) = x tanh (ln(1 + ex)) (9)

is a self regularized non-monotonic activation function and is effective when embedded

in computer vision models.

Mirsa compared the effectiveness of the Mish Activation Function to the ReLU

and Swish Activation Functions. The first experiment conducted used various neural

network architectures for classifying the CIFAR-10 [21] dataset. For the CIFAR-10

dataset, every network utilizing the Mish Activation Function produced levels of ac-

curacy 1.0% to 3.0% higher compared to the same architectures adopting the Swish

and ReLU Activation Functions. Another experiment used the Microsoft Common

Objects in Context (MS-COCO) [22] dataset to investigate how the Mish Activation

Function performed when placed in object detection models. The metric analyzed was

mean average precision at IOU threshold .5 (mAP@.50). The first object detection

18

network used was CSP-DarkNet-53 [23]. The Mish Activation Function increased ac-

curacy by 0.4% compared to the model supported by the ReLU Activation Function.

An additional object detection experiment compared the LReLU and Mish Activation

Functions placed within the You Only Look Once Version 4 (YOLOv4) Object De-

tection Model. Investigating three different YOLOv4 architectures, Mirsa provided

results which showed the Mish Activation Function producing mAP@.50 values which

were 0.9% to 2.1% higher than the networks adopting the LReLU. These findings sug-

gest the Mish Activation Function may lead to better performance when used in an

object detection network’s architecture. The Mish Activation Function consistently

led to enhanced performance for models trained and designed for image classification

and detection.

2.3 Convolutional Neural Networks

CNNs are an extension to the ANN framework which have shown great success

for image recognition and classification. Albawi et al. [24] characterized a few fea-

tures which make the Convolutional Neural Network (CNN) architecture unique and

advantageous for image inspection compared to other neural network architectures.

The CNN architecture is designed to have significantly less parameters than a tradi-

tional ANN. Each convolutional layer in a CNN performs the matrix convolutional

operation on the numerical representation of an image’s pixels which allows for the

network to recognize patterns and find important features in given sample. Other

important features in a CNN include its pooling layers for dimensionality reduction,

its flatten layer for transforming a two-dimensional image array into a one-dimension,

and its fully connected layers which mirror an ANN and result in the classification or

prediction of a given sample.

19

Figure 5: Convolutional Neural Network (Image from [25])

2.3.1 History of the CNN

In 1980, Fukushima et al. proposed an early rendition of a CNN, called the

“Neocognitron”, and showed its capability to achieve high classification accuracy on

a handwritten image dataset [26]. LeCun et al. built upon Fukishima’s work in 1989

with a two-dimensional CNN [27]. The research from LeCun et al. showed how using

backpropogation [28] automates the training for a CNN and leads to its ability to more

effectively classify image datasets. In 1998, LeCun et al. [29] made improvements

to the 1989 architecture by making the network deeper which reaped more efficient

classification capabilities. Their network, called Le-Net5, showed major improvements

in neural network training with its decrease in memory usage and increase in training

speed. Le-Net5 showed the ability of CNN classification models to analyze images of

higher qualities and extract important latent features from the sample.

After Le-Net5, improvements in CNNs went stagnant for over a decade until 2012

with the release of AlexNet [30]. AlexNet has an architecture containing five con-

volutional layers followed by three fully connected layers with sixty million tunable

parameters and 650,000 neurons. The hidden layers use the ReLU Activation Func-

tion while the final activation function is a Softmax Function with 1,000 possible

prediction outputs. Due to its size, AlexNet had to be trained on two Graphics Pro-

cessing Unit (GPU) for five to six days. The deep architecture of AlexNet was able to

20

yield much lower error results on the two ImageNet datasets [31], with 37.5% for the

Top-1 ImageNet dataset and 17.0% for the Top-5 ImageNet dataset, much better than

the second best error rates of 45.7% and 25.7%. AlexNet showed how advancements

in computational technology as well as diversity, complexity, and size of datasets are

factors which have allowed CNN classification models to evolve into high power ML

frameworks in the 21st century.

In 2014, CNNs expanded in the computer vision domain for object detection with

the improvements in architecture and creation of the Regions with Convolutional

Neural Networks (R-CNN) by Girshick et al. [32]. Object detection incorporates two

domains of image inspection, combining classification of the object with localization

for segmenting an image apart and highlighting the salient features of interest. The

act of locating where a salient object is within an image is called localization.

The first step of the R-CNN is to create category dependent region proposals. To

generate various region proposals for locating different objects in an image, selective

search is used which segments various objects in a frame apart from each other. Ui-

jlings et al. [33] proposed a method which many R-CNNs have incorporated into their

architectures. Using bottom-up grouping, small segments can be partitioned across

an image and slowly combined based of the color, texture, size, and fill similarities

between the segmented sections. Once the segmentation of regions is complete, a

fixed length feature vector is created and fed into the CNN. Girshick et al. used

a CNN architecture designed with five convolutional layers and two fully connected

layers. Finally, Support Vector Machines (SVM) trained on particular classes of the

dataset scored the features extracted, which showed the neural networks were able to

find the features of interest. Their work outlined improvements in the segmentation

of images and provided support for the proof of concept asserting classification mod-

els need more labeled data rather than more localization information. This enables

21

transfer learning to be used with pretrained classifiers to acquire high level results for

imbalanced and small datasets. These improvements have pushed CNNs to evolve

from models used strictly in either deep learning or computer vision to models now

spanning the two fields, combining classification and localization in conjunction with

each other for solving complex image analysis problems.

2.3.2 Architecture

2.3.2.1 Convolutional Layers

The power of a CNN derives from the convolutional layers which are able to target

and extract information from the densely correlated points of an image’s features

[34]. The number of neurons in a convolutional layer rely on the computing power,

memory, and complexity of the dataset containing the information being extracted.

A convolutional layer performs the matrix convolution operation [34]

fkl (p, q) =
∑
c

∑
x,y

ic(x, y)ekl (u, v) (10)

on the given tensor. The convolutional operation takes a segment ic(x, y), of the input

image Ic and conducts element wise multiplication between the image segment and

ekl (u, v), where kI is the kth convolutional kernel indexed by the I th layer. The area

of the image where data is being extracted from is given by the coordinates x and y.

c is the index of the channel, and there are typically three channel indices for Red,

Green, Blue (RGB) images and one channel index for grayscale images. The output

at the kth convolution is a feature map

Fk
l = [fkl (1, 1), , , fkl (p, q)...fkl (P,Q)] (11)

22

where P is the total number of rows of a feature matrix and Q is the total number

of columns of a feature matrix.

2.3.2.2 Convolutional Filters (Kernels)

The filters in a convolutional layer, also distinguished in some texts as kernels,

break the input into the layer down by placing different weights on each neuron to

produce various feature maps. Neurons will ignore all information except for the

information gathered in their receptive field. For example, a neuron with a kernel

representing a horizontal line through the middle of its nxn receptive field will multi-

ply all inputs by zero except for the inputs crossing the centered horizontal line. The

movement of the convolutional kernels across an image are dictated by the layer’s

stride. The stride in a convolutional layer is the distance between two receptive fields

and is a hyperparameter which sets how many pixels a kernel must move between

each receptive field.

2.3.2.3 Padding

Since the input size of a sample is reduced as it moves through the layers of a

CNN, padding ensures that the output shape of the network is the same as the input

shape. Zero padding will add zeros to any boundary of the input image which is

dropped when passing down into the layers of a CNN.

2.3.2.4 Pooling Layer

Following a convolutional layer, the pooling layer’s purpose is to perform dimen-

sionality reduction on the image, reducing the number of parameters and the model’s

complexity [35]. In the pooling layer, “outputs of several nearby feature detectors are

combined into a local or global ‘bag of features’, in a way that preserves task-related

23

information while removing irrelevant details,” [36]. The goal of the pooling layer is

to acquire a sub-sample of the image at each step and uncover the invariant features

[37]. Two methods which are popular in image classification are average pooling and

maximum pooling. Average pooling takes the average of all elements inside a kernel

at each stride step.

Figure 6: Average Pooling Operation

Maximum pooling takes the maximum number inside a filter at each stride step.

For object recognition, maximum pooling has been found to decrease error and pro-

vide improvements in image downsampling for feature extraction.

Figure 7: Max Pooling Operation

Scherer et al. [38] experimented with subsampling pooling and maximum pooling

in CNN architecture to see how the different pooling techniques affected an object

recognition model’s performance. Average pooling is a subset of subsampling pooling.

One difference with their subsampling pooling layer and an average pooling layer oc-

cured after taking the average of the inputs, the average was multiplied by a trainable

scalar and then was fed through a tanh Activation Function. Experimenting on two

different image recognition datasets, their results showed the max pooling operation

producing lower error rates for the classification model than the subsampling pooling

operation. For example, on the Caltech-101 image dataset [39], using the subsampling

24

pooling operation in the pooling layers produced a model with an error rate of 65.9%

while using the max pooling operation in the pooling layers lowered the error rate

to 55.6%. Additionally, for the NORB image recognition dataset [40], the utilization

of the subsampling pooling technique produced a model with an error rate of 7.32%

(±1.27%) while the max pooling technique had again yielded a lower error with a

rate of 5.22% (±0.52%).

2.3.2.5 Fully Connected Layers

Once an image is passed through the convolutional layers of a CNN architecture,

it must be flattened into a one-dimensional array to go through a series of fully

connected layers. The fully connected layers of the CNN architecture mirror a typical

ANN. The information is passed through the layers and finally into an activation

function. Back propagation is then used with support from the network’s optimizer

for updating the fully connected layers’ weights to output more accurate results.

2.4 You Only Look Once Version 4 (YOLOv4)

YOLOv4 is a CNN object detection model first introduced by Bockvoskiy et al.[23]

in 2020. It is a variant of the You Only Look Once Version 3 (YOLOv3) Object

Detection Model with additional layers and feature aggregation techniques, increasing

the complexity but also the accuracy of the model compared to YOLOv3.

25

2.4.1 Architecture

Figure 8: Object Detector Framework

As outlined by the authors, object detection models are comprised of various

segments. Shown in Figure 8. these sections include the backbone, neck, and head.

The backbone of the YOLOv4 architecture is CSPDarkNet-53 [23]. The neck of the

architecture utilizes Spatial Pyramid Pooling (SPP) [41] and a Path Aggregation

Network (PANet) [42]. Finally, the architecture ends with the head which adopted

the same head as the predecessor model YOLOv3 [43].

2.4.1.1 Backbone

The backbone in an object detection model extracts the features from an image

for the detection model to analyze [44]. The backbone of YOLOv4 is DarkNet-53, the

image classifier, and a Cross Stage Partial Network (CSPNet), a method which splits

and passes unreduced feature maps to the next transition layer. DarkNet-53, outlined

by Figure 9, was adapted from DarkNet-19 and first implemented by Redmon et al.

[43] in their creation of the YOLOv3 Object Detection Model.

26

Figure 9: Summary of DarkNet-53 from Redmon et al. [43]

The 53 convolutional layers end with the average pooling operation, a 1000 neuron

fully connected layer, and a Softmax Activation Function to output the predicted

class for each object of interest. YOLOv4 is changed from this architecture with the

transplanting of the YOLOv3 head over the final layers.

CSPNet [45] was developed by Wang et al. to reduce the amount of computations

required for a CNN by segmenting feature maps at the base layer and then further

unifying them back together through a cross-stage hierarchy. Their network was

formulated on the idea that the gradient flow could be split and disseminated through

27

different network paths. The authors evaluated their architectural backbone and its

ability to solve three problems which are prominent in CNNs. These problems were

strengthening the learning ability, removing computational bottlenecks, and reducing

the memory costs of a CNN [45]. As stated by the authors, “CSPNet separates feature

map[s] of the base layer into two part[s], one part will go through a dense block and

a transition layer; the other one part is then combined with [the] transmitted feature

map to the next stage,” [45].

For supporting the learning ability of CNNs, the authors applied the CSPNet to

ResNet [46], ResNeXt [47], and DenseNet [48]. The amount of computational power

decreased from 10% to a 20% decrease in conjunction with classification accuracy

increasing for the ImageNet dataset [31]. For the problem of computational bottle-

necks, the use of a CSPNet reduced bottleneck effects by 80% for models based off

of the YOLOv3 architecture. Finally, for mitigating the problems of limited mem-

ory usage, adapting a CSPNet showed significant decreases in the amount of mem-

ory needed. Wang et al. provided their results when executing PeleeNet [49] using

CSPNet showing computational memory usage for the model to produce its feature

pyramids decreased by 75%.

The backbone incorporates different techniques which have no effect on the in-

ference cost but increase the accuracy of the model, defined by the authors as ”Bag

of Freebies (BoF)” [23]. These techniques include CutMix and mosaic data aug-

mentation, DropBlock regularization, and class label smoothing. CutMix [50] crops

a portion of one image and adds the segmented portion to other images. Mosaic

augmentation builds on the CutMix technique by combining four images together.

DropBlock [51] is analogous to the dropout technique used in CNNs except instead

of dropping single neurons at each layer, entire feature maps are dropped. Label

smoothing removes one hot coding for classes, “using soft targets that are a weighted

28

average of the hard targets and the uniform distribution over labels,” [52].

“Bag of Specials (BoS)” is defined by the authors as the methods used post pro-

cessing which create small increases in the inference cost but lead to huge improve-

ments in the performance accuracy of the object detection model. In the backbone,

these include Multi-input weight residual connections (MiWRC) in addition to the

previously defined Mish Activation and CSPNet. MiWRC add feature maps of dif-

ferent scales through a scale-wise level re-weighting.

2.4.1.2 Neck

Once the backbone extracts the features from a sample, the neck collects feature

maps from different phases of the backbone and aggregates them in preparation for

predictions by the head. The neck of the YOLOv4 Object Detection Model is guided

by SPP [41] and PANet [42]. The SPP operation abolishes the fixed input originally

required by a CNN and improves the receptive field. For object detection, a SPP-net

pulls out “window-wise” features by first performing a pooling operation of all of

the feature maps in a given image into spatial bins. Since the sizes of the spatial

bins are proportional to the size of the input image, they will stay fixed even with

varying image sizes. SPP is then used to take sub images of the feature maps which

result in fixed length instances to be passed to the fully connect layers, presented

in Figure 10. As mentioned by the authors, this decreased the time for a CNN to

train and run since the convolutional operations are only exercised once on an image.

Bockvoskiy et al.[23] gained significant increases in the receptive fields and extraction

of important features without a reduction in YOLOv4’s speed when adapting SPP

over CSPDarkNet-53.

29

Figure 10: Example of Spatial Pyramid Pooling Operation from He et al. [41]

A PANet shortens the path of lower level layers to the highest level of a feature

path in a segmented instance by adopting bottom-up path augmentation. As stated

by Liu et al. [42], using a PANet backbone will also smooth the paths where feature

information is passed through an aggregate pooling operation, pooling together the

features from all feature levels.

Figure 11: Path Aggregation Network Framework from [42]: (a) Feature Pyramid
Network Backbone. (b) Bottom-up Path Augmentation. (c)Adaptive Feature

Pooling. (d) Box Branch (e) Fully-connected Fushion.

Figure 11 outlines the PANet framework. Feature Pyramid Network (FPN) will

extract features from the images, but some of the features at the input of the image

will be passed to the Bottom-Up Path Augmentation step. This step shortens the

30

path required for information to be passed and enhances the feature pyramid using

the low-level localization information from the features. Adaptive Feature Pooling is

a feature aggregation step which helps revive the fragmented information path and

combines features at all levels for each proposal. The last step is a combination of an

augmented mask prediction with fully connected layers which make box predictions

and classifications.

2.4.1.3 Head

After the backbone extracts the features of interest and the neck aggregates those

features together, the head of the object detection network executes bounding box

regression and classification predictions on the samples. YOLOv4 transfers over the

YOLOv3 [43] structure for the configuration of its head. Three different outputs em-

anate from the YOLOv3 head. First, a three-dimensional tensor coded bounding box

which is predicted by anchor boxes based off four bounding box coordinates. After

the bounding box is predicted, an objectness measurement is then predicted. Object-

ness makes a prediction of the Intersection over Union (IoU) which is the difference

between the ground truth box and the predicted box (see equation in Chapter III).

Finally, a prediction of the conditional probability of a class is made on the object of

interest encompassed within the predicted bounding box.

2.4.1.4 Additional Bag of Freebies/Bag of Specials

The detector adopts many BoF for regularization. These techniques include Com-

plete Intersection over Union (CIoU) loss, Cross mini-Batch Normalization (CmBN),

DropBlock regularization, mosaic data augmentation, Self-Adversarial Training (SAT),

eliminate grid sensitivity, the use of multiple anchors for a single ground truth, cosine

annealing scheduler, optimal hyperparameters, and random training shapes. CIoU

31

loss is a ground loss for bounding box regression which accounts for overlapping area,

central point distance, and aspect ratio of ground truth and predicted bounding boxes

[44]. CmBN builds upon the batch normalization technique by breaking each batch

into four additional sub-batches. Statistical information is only gathered between the

four sub-batches of each regular batch. SAT is conducted with two forward backward

stages. During stage one, none of the neural network’s weights are affected, but rather

the original images are modified. The goal of this stage is to distort the image in a

manner which makes it difficult for the network to find the objects of interest. In

stage two, the neural network will conduct object detection on the distorted image.

Eliminate grid sensitivity is used to assess the object coordinates. Using multiple

anchors for a ground truth helps with achieving detection at a certain IoU threshold.

The cosine annealing scheduler alters the learning rates for any of the processes using

the Sigmoid Activation Function [53]. The hyperparamters for the model were chosen

by genetic algorithms. Random training shapes increase the size of mini batches dur-

ing the smaller resolution stages in model training. Finally, DropBlock regularization

and mosaic data augmentation were implemented in the same manner as previously

defined.

The BoS within the detector include the Mish Activation Function, SPP-Block,

Spatial Attention Module (SAM)-block, PAN path-aggregation block, and Distance

Intersection over Union (DIoU) non-maximum supression (NMS). The Mish Activa-

tion Function, as previously stated, bolsters the performance of models conducting

computer vision tasks. As originally asserted, SPP increases the receptive field and

segments out the most important features. SAM creates a spatial attention map of

the most revealing features in a sample which are inter-spatially related [54]. Char-

acteristics of a PANet are used for aggregating features from different levels of the

backbone. Finally, DIoU NMS accounts for the center points of two bounding boxes

32

when repressing superfluous bounding boxes.

2.4.2 Performance

One important feature of YOLOv4 is its ability to be trained on a single GPU.

This makes its use desirable for a setting with limited resources, a common constraint

for ML problems. The results in Figure 12 from Bockvoskiy et al.’s research shows the

evaluation for the YOLOv4’s performance compared to other state of the art object

detection models as of 2020. The findings conclude that YOLOv4 could be trained

quicker with higher levels of accuracy versus the other models in the test.

Figure 12: The performance of YOLOv4 compared to other models. [23]

Compared to its predecessor YOLOv3, YOLOv4 had a 10% improvement in Av-

erage Precision (AP) and a 12% improvement in Frames Per Second (FPS).

2.5 YOLOv4-Tiny Configuration

One complication in deploying detection models on moving platforms is limited

available on-board memory. The scaled YOLOv4 Model mitigates this constraint with

33

smaller memory requirements. Designed by Wang et al. [55], the tiny architecture

was able to achieve FPS rates of an upwards 1774 frames, making the configura-

tion a strong candidate for real time detection on smaller devices. The authors also

compared the proposed YOLOv4-Tiny architecture to other known small detection

models and showed their architecture achieving the highest AP on the MS-COCO

dataset after 600 epochs. Their model achieved a score of 28.7% which was approx-

imately 5% higher than the next best model, the ThunderS146 [56], which achieved

an AP of 23.6%. YOLOv4-Tiny is reduced in size from the original 137 trainable

layers to 29 trainable layers. Instead of ending with three YOLO layers at the end of

its network architecture, the YOLOv4-Tiny configuration only contains two.

2.6 Generative Adversarial Networks

2.6.1 History

In 2014, Goodfellow et al. [57] proposed the first Generative Adversarial Network

(GAN) which consisted of a generator for producing synthetic data and a discrimi-

nator for detecting if a sample was artificial or real. The generator and discriminator

would “compete” back and forth towards Nash Equilibrium using backpropagation

with an optimizer to update weights during the training process in pursuit of produc-

ing high quality synthetic data.

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (12)

DThe original GAN architecture possessed the value function outlined by Equa-

tion (12). The goal of the discriminator, as described by the original paper, is to detect

whether a sample is “fake” or “real.” Equation (13) shows the goal of the discrimi-

nator which is to maximize the log-likelihood conditional probability P (Y = y|x). If

34

y comes from the real dataset, y equals one. If y comes from the generator, y equals

zero.

D(x : θD)
max

= log(D(x))− log(1−D(G(z))) (13)

θD are the parameters which are updated for the discriminator during the training

of the network. 1 − D(G(z)) is the probability, from the discriminator, a sample is

fake. By maximizing 1 − D(G(z)), the discriminator is incentivized to correctly

identify “fake” samples or else it is penalized.

The generator of a GAN takes in a random input of noise from a latent space and

generates synthetic data samples for analysis by the discriminator.

G(z : θg)
min

= log(1−D(G(z))) (14)

Equation (14) represents the original loss function for the generator. The goal is

to minimize the log-likelihood loss on the fake images. θg is the notation for the

parameters of the generator updated during training. The paper later proposes a

slight change in the generator’s architecture to help overcome saturation occurring

during GAN training. The revised loss function,

G(z : θg)
max

= log(D(G(z))) (15)

as stated by Goodfellow et al., helped provide stronger gradients for the earlier stages

of backpropagation in the network’s training while keeping the relationship of the

discriminator and generator in the overall loss function the same [57].

In 2015, the Deep Convolutional Generative Adversarial Network (DCGAN) was

proposed by Radford et al. [1] which used CNNs in its architecture for generating

35

synthetic image data. The addition of convolutional layers decreased the number of

trainable parameters needed in the network as well as added more stability to the

network’s training.

In 2017, Arjovsky et al. [58] introduced the Wasserstein Generative Adversarial

Network (WGAN) which seeks to approximate the Earth Mover (EM) distance, the

distance between two different probability distributions, instead of a sample being

“real” or “fake.” The WGAN uses the divergence between the real dataset’s prob-

ability distribution and the generated dataset’s probability distribution. Currently,

more efficient ways of training GANs and methods for validating their augmented

samples are being pursued in this relatively new area of research.

2.6.2 Convergence

As a GAN approaches convergence, the synthetic data produced will slowly match

the distribution of the original data. At the final convergence point, the discriminator

and generator will both be optimal, and the distribution of the real data will exactly

equal the distribution of the generated data. GANs exploit measurements in prob-

ability distribution divergence equations for generating more realistic data. GANs

were originally contrived to use the Kullback-Leibler (KL) divergence. KL divergence

KL(Pr||Pg) =

∫
log

(
Pr(x)

Pg(x)

)
Pr(x)dµ(x) (16)

is the distance between two probability distributions. As the probability distribution

of augmented data points becomes similar to the original dataset, this distance goes

to zero.

36

The Jensen-Shannon (JS) divergence

JS(Pr,Pg) = KL

(
pr||

pr + pg
2

)
+KL

(
pg||

pr + pg
2

)
(17)

builds off of the KL divergence by adding a symmetric property to the equation.

Just like KL divergence, the JS divergence will go to zero when the generated data’s

distribution is exactly same as the original data’s probability distribution. At this

point, the discriminator and generator will both be optimal.

2.6.3 Generative Adversarial Network Training Problems

Two problems which occur during the training of a GAN are vanishing/exploding

gradients as well as mode collapse. The vanishing/exploding gradient problem is

comparable to the occurrence of the problem in a CNN and follows the same pattern

of gradients which are either too small to have an effect on efficiently updating the

weights or too big and cause the model to explode and be rendered ineffective. The

mode collapse problem leads to lack of diversity in generated data. The discrimina-

tor’s gradient for similar points will all point in similar directions. Salimans et al. [59]

attributed mode collapse to the discriminator’s independent analysis of real and fake

samples which leads to no coordination for updating the gradients. This further leads

to no guidance being provided to the generator when being updated to ensure variety

of its outputs. With no direction motivating diversity, the generator shifts its output

to a single or handful of synthetic points which the discriminator always labels as

“real.” The researchers proposed minibatch discrimination to combat this problem.

Minibatch discrimination forces the discriminator to look at multiple data samples

rather than just one sample independently. The discriminator’s goal to classify as

“real” or “fake” stays the same but it now uses information from all samples in the

same batch and classifies the batch, giving the discriminator the ability to find data

37

points which are fake but closer to the datasets original distribution. This leads to

higher quality synthetic data over time as the generator is now forced to create more

realistic data samples for all classes of the dataset.

Originally, GANs were unconditioned and produced data which was unrepresen-

tative of the original dataset’s distribution and physical features. When GANs are

unconditioned, they randomly try to estimate the distribution of the original dataset

while mapping its features to a latent space. Mirza et al. [60] produced research

which conditioned a GAN on class labels of the original dataset, providing the ar-

chitecture for a Conditional Generative Adversarial Network (cGAN). They changed

the loss function of the GAN to

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x|y)] + Ez∼pz(z)[log(1−D(G(z|y)))] (18)

where y is the conditional component of the model. The discriminator takes in an

input image and a label which is embedded through an embedding layer. The em-

bedding layer vectorizes the label for input into the convolutional layers. The label

is then concatenated to the image and critiqued on its level of authenticity by the

discriminator. cGANs are still subjected to the problems occurring in GAN training,

however, the condition placed on the GAN greatly diminishes the instability issue.

While Mirza et al. [60] recommended further research to create more efficient Condi-

tional Generative Adversarial Networks (cGANs), one positive takeaway from their

research is the ability to have some choice over the distribution of images produced

using a label and to take control of an otherwise random training process of a GAN.

2.6.4 Architecture

The architecture of a GAN is composed of the discriminator and generator which

are trained through an iterative process. For creating augmented images, while the

38

discriminator and generator mimic the general structure of a CNN, there are some

unique components of their respective architectures which make them distinctly dif-

ferent and lead to synthetically created data. The generator’s architecture is designed

to slowly increase the size of its generated images as the input noise vector goes deeper

into the architecture, a process defined as “upsampling” or the transpose of the matrix

convolutional operation. The generator will produce fake images and these images

will then be given to the discriminator. The discriminator will analyze batches of real

and fake images separately, having a calculated loss which is the average of the loss

from the fake images and the loss from the real images. The weights of the discrim-

inator will update in accordance to its overall loss and the weights of the generator

will update according to the loss on the fake images only.

2.6.5 Deep Convolutional Generative Adversarial Network (DCGAN)

Radford et al. [1] proposed replacing the fully connected layers in a GAN with

convolutional layers to add stability to the GAN training process, especially for image

datasets. The DCGAN they used was an unconditioned GAN utilizing unsupervised

learning. The datasets the researchers used to investigate the DCGAN framework

were the Large-Scale Scene Understanding (LSUN) dataset [61], and a dataset com-

piled of human faces.

The discriminator’s architecture was guided by the LReLU Activation Function

with a slope of 0.2 in all its layers. The final layer of the discriminator was a flatten

layer and concluded with a Sigmoid Activation Function. The discriminator seeks

to maximize the probability that a training sample came from the real dataset and

not the augmented dataset. It will be penalized for misclassifying a sample and uses

the same loss function proposed in the original paper for Goodfellow et al [57]. The

discriminator will receive batches of real and fake images and the loss is then the

39

average of the losses from the real and synthetic batches. The discriminator also

incorporates batch normalization which normalizes the input at each node to have

a zero mean and zero variance [1]. No batch normalization was implemented on the

input layer of the discriminator.

The generator’s architecture, depicted in Figure 13, was composed of five trans-

pose convolutional layers, starting with a 4x4 image and finishing with a generated

64x64 image. The input for the generator was a noise vector emerging from a latent

space expanding 100 dimensions. The hidden layers all utilized the ReLU Activation

Function while the output layer used a tanh Activation Function which meant the

images had to be scaled between -1 and 1 in the preprocessing steps of the training.

No batch normalization was used on the output layer of the generator.

Figure 13: DCGAN Generator (Image from [1])

Their research provided some notable characteristics of GANs. First, GANs have

the ability to learn different features of a dataset and can draw information from

specific objects. Additionally, generators have the ability to combine different features

due to the mapping of features of vectors into a latent space. These conclusions led

to the support of the proposal stating GANs learn to exploit a latent space and map

features to it.

40

2.6.6 Wasserstein GAN (WGAN)

The WGAN increased the stability of GAN training by the orientation of its

loss function around the difference in probability distributions. The original GAN

architecture used KL divergence for reaching convergence whereas the WGAN seeks

to approximate the EM distance, also known as the Wasserstein-1 Distance,

W (Pr,Pg) = inf
γ∈

∏
(Pr,Pg)

E(x,y)∼γ

[
||x− y||

]
(19)

which is the distance between two different probability distributions where the pa-

rameters Pr and Pg are the real and fake data distributions, respectively.
∏

(Pr,Pg)

represents all the joint distributions of γ(x, y). Arjovsky et al. stated “γ(x, y) indi-

cates how much ‘mass’ must be transported from x to y in order to transform the

distributions Pr in the distribution Pg,” [58]. The EM distance is continuous and

differentiable which makes it a more efficient loss metric for training GANs rather

than configuring GANs to exploit KL and JS divergence. As shown by Figure 14, the

EM distance has a gradient at all points in its function.

Figure 14: EM Distance vs. JS Divergence: Gradients (Image from [58])

The architecture and training of the WGAN proposed by Arjovsky et al. is sum-

marized in Algorithm 1. One major deviation from the DCGAN is the use of the

RMSProp Optimizer instead of the Adam Optimizer. The researchers found one of

the main issues causing the instability in the WGAN was using a momentum based

41

optimizer. The use of the RMSProp was chosen since it works better for nonstationary

problems [62] and the discriminator, called the “critic” by the authors, is nonstation-

ary in nature. The for loop in the algorithm shows the training of the critic for n

generations before the generator is trained, a unique feature of the WGAN. Gradient

clipping is used to enforce a Lipschitz constraint which helps control vanishing and

exploding gradients occurring during GAN training.

Algorithm 1 Wasserstein GAN Algorithm proposed by Arjovsky et al. [58]. Default
values α = 0.00005, c = 0.01,m = 64,ncritic= 5

Require: α, the learning rate. c, the clipping parameter. m, the batch size. ncritic,
the number of iterations of the critic per generator iteration.

Require: w0 initial critic parameters. θ0, the initial generator’s parameters.
1: while θ has not converged do
2: for t = 0,..., ncritic do
3: Sample {x(i)}mi=1 ∼ Pr a batch from the real data.
4: Sample {x(i)}mi=1 ∼ p(z) a batch of prior samples.
5: gw ← ∆w[1

m

∑m
i=1 fw(x(i))− 1

m

∑m
i=1 fw(gθ(z

(i)))]
6: w ← w + α · RMSProp(w, gw)
7: w ← clipw(c,−c)
8: end for
9: Sample {x(i)}mi=1 ∼ p(z) a batch of prior samples.

10: gθ ← −∆θ
1
m

∑m
i=1 fw(gθ(z

(i)))
11: θ ← θ − α · RMSProp(θ, gθ)
12: end while

2.6.6.1 Lipschitz Constant

To overcome instability issues in training, a Lipschitz Constant is used. For their

research, Arjovsky et al. [58] used gradient clipping to enforce the constant. The

clipping rate becomes a hyperparameter for the WGAN training process. The Lips-

chitz Constant creates a bound on the rate of change in the weights of the critic. The

authors did state how weight clipping may not be the most optimal way to execute

the use of the constant but it worked for this configuration of the WGAN.

42

2.6.6.2 Performance Experimentation

The architecture of the WGAN is similar to the DCGAN but is changed in a few

unique ways. The discriminator is renamed to “critic” by the authors since it does not

utilize a Sigmoid Activation Function in its output layer, replacing it with a LReLU

Activation Function with a slope of 0.2. This means the critic is now “critiquing”

how realistic a sample is rather than labeling a sample as “fake” or “real.” The loss

function for the critic is changed to

L(D, gθ
max

) = E∼Pr [logD(x)] + E∼Pθ [log(1−D(z))] (20)

For testing the stability of the WGAN, Arjovsky et al. [58] selected the LSUN dataset

used in the original DCGAN implementation. The results of their GAN showed

saturation when using the Adam optimizer, therefore they changed the optimizer to

the RMSProp optimizer with a learning rate of 0.00005. For their clipping parameter,

they used a value of 0.01. Unlike the DCGAN, the critic is updated five times before

the generator is updated. To test the power of the WGAN variant, the researchers

used different GAN architectures to investigate the robustness and stability of the

WGAN framework. One architecture used a convolutional DCGAN generator, a

second used a convolutional DCGAN generator but batch normalization was removed

and the number of filters was kept constant, and the third architecture was a four

layer ReLU-MLP which had 512 hidden units.

The researchers’ experiment showed how as the EM distance became smaller over

generator iterations, the quality of the images improved. Both of the architectures

structured after the DCGAN were stable during training while the ReLU-MLP was

unstable due to the high learning rates. The two main takeaways from their research

were the WGAN was much more stable than prior GAN architectures, and the loss

43

metric of the GAN has more meaning since a smaller EM distance is correlated to

the generator and critic moving towards convergence. Another important finding by

the researchers was at no point in their research did mode collapse occur when using

the WGAN architecture.

2.7 Related Research

2.7.1 Model Generalizability

CNNs have shown evidence of being superior classifiers for image data classifica-

tion, especially in processing aerial image data. Sheppard and Rahnemoonfar [63]

were able to classify Unmanned Aerial Vehicle (UAV) data imagery of agriculture

with an accuracy of 93.6%. Their network architecture consisted of two convolutional

layers each followed by batch normalization and a max pooling layer which reduced

the image features by 50% for each pass. Each layer had a ReLU Activation Function

as well and was followed by a 50% dropout rate. The researchers provided proof

of model detection generalizability by obtaining and presenting insights on a correct

prediction from their CNN for “round” buildings which were never seen in training.

All the buildings in the training of the CNN were square in shape. Their research

provides evidence of attainable increases in generalizability and learning ability for

CNNs to classify images in a class distinctly physically different from their original

class used for training the CNN.

With an imbalanced dataset, having a robust model that is generalizable to huge

amounts of similar data with small deviations is difficult to achieve. Salehinejad et

al. [64] examined medical image datasets and showed how balancing image datasets

will increase the generalizability of the classification models which inspect the image

samples. They used a DCGAN to generate new images of medical x-rays portray-

ing different diseases affecting the lungs. The researchers’ classification model was a

44

CNN similar in architecture to AlexNet, using ReLU Activation Functions with L2

normalization in each of their convolutional layers and following those layers with

max pooling layers. For model validation, k -Folds cross validation was used with

10 folds. The first trial of their experiment trained their neural network with the

real imbalanced dataset. This model had an accuracy of 70.87% with a standard

deviation of 0.47%. The second trial trained the model on the real training set with

majority of the images removed to achieve balance. This significantly decreased the

accuracy to 58.90% with a standard deviation of 0.48%. The last trial used the real

imbalanced dataset augmented with the synthetic data. This produced enormous im-

provements in the model’s accuracy, obtaining an accuracy of 92.10% with a standard

deviation 0.41%. Not only did the model’s accuracy increase, but the standard devia-

tion decreased. The research showed how huge improvements in CNN generalizability

and accuracy can be obtained from image datasets augmented with synthetic images

generated by a GAN.

One weakness in the researchers’ image generation was the technique they utilized

for assessing the quality of generated images and accepting a sample for augmenting

the dataset. The experimenters had a radiologist look at the generated images and

decide whether an image looked acceptable dependant upon the lung condition it

was supposed to portray. One downfall to using this qualitative image assessment

technique is if the images were dissimilar quantitatively to the original dataset but

were approved for use in the training set, this could have skewed the authors’ work

and negatively impacted the performance of their detection model.

Wang et al. [25] conducted a case study to understand how a CNN model’s

accuracy was affected when the use of synthetic data generated from a GAN was

used to increase the size of the training dataset. They compared the effectiveness of

changes in the accuracy of one-dimensional and two-dimensional CNNs to a SVM, a

45

MLP, and a k-nearest neighbor algorithm to understand how ML models can benefit

from GAN augmentation as well to understand if the performances of the CNNs were

more sensitive to changes in the dataset. The motivation for their research was to

increase the size of a small and imbalanced photovoltaic power forecasting weather

dataset.

To augment their dataset, Wang et al. utilized a Wasserstein Generative Ad-

versarial Network with Gradient Penalty (WGAN-GP). The model metrics used to

investigate changes in the models’ performance were Overall Accuracy (OA), which

was the overall accuracy of the model, Product Accuracy (PA). which is the same

measurement as recall rate, and User Accuracy (UA), which is also known as precision

rate. Each of the five different models were trained twice. The first training iteration

for each model used the original dataset with no augmented data. The second training

iteration used the original set augmented with synthetic data from the WGAN-GP.

The two-dimensional CNN achieved the highest accuracy compared to all of the other

models on the original dataset, obtaining an OA of 76.90%. After the two-dimensional

CNN was trained with the augmented datasets, its accuracy increased to 89.00%. In

addition, all of the UA and PA rates either drastically increased or stayed the same

if they were at or close to 100.00%, further showing a GAN’s ability to improve the

performance of a CNN classifier. There was only one decrease in all of the model’s

rates which was the UA rate for one class of data. All of the other models followed a

similar pattern of performance increases when trained with the augmented dataset.

2.7.2 Aerial Image Dataset Augmentation

Bang et al. [5] implemented three different data augmentation techniques for

images acquired from moving platforms depicting construction sites. Their goal was

to increase their model’s object detection performance for different classes of objects

46

found in construction sites such as concrete trucks, dump trucks, workers, and crane

trucks. The object detection model was a R-CNN. The original dataset contained

only 655 images and had imbalances between the different classes of objects. The

number of objects in the dataset were calculated and their probability distributions

were found to determine how many images of each object should be added back into

the sample frames for balancing the dataset.

The three methods Bang et al.[5] used for augmenting their dataset were called

the removing-and-inpainting technique, cut-and-paste technique, and a combination

of image transformation techniques. The removing-and-inpainting technique con-

sisted of two different modules and was used as preprocessing for the cut-and-paste

technique. The first module was named “object-removing” and would randomly select

objects in an image and convert them to white mask. The second module was called

“image inpainting” and used a GAN to create new pixels in the white masked areas of

the cropped out objects to blend in the blank space with the pixels that were similar

in color to the background surrounding the space. Once the background information

was filled, the cut-and-paste technique was used to overcome class imbalances in the

dataset and add under represented objects to the images. Finally, intensity-, blur-,

and scale-variations were used to see how these augmentation techniques on aerial

image datasets affected model performance.

Five different trials were conducted on the model to understand how its per-

formance would be impacted. One trial consisted of no augmentation techniques

(baseline trial), three trials were implemented using solely one of the three data aug-

mentation methods, and one trial consisted of all three of the data augmentations

combined. The results showed how using the three techniques in conjunction with

each other produced the greatest increases in model performance. The model’s recall

rate improved from 35.96% to 60.22% , the precision rate changed from 45.62% to

47

57.13%, and the F-measure rate increased from 40.22% to 58.63%. Bang et al. con-

cluded how the use of different objects in different backgrounds had the biggest affect

on precision rate improvements and the image transformation techniques on the data

had the largest impact on improvements in the recall rate.

The researchers had some flaws in their analysis and outlined some of the problems

which may have negatively impacted the training of their R-CNN. One flaw involved

images procuring dramatic problems in the scaling of the objects.

Figure 15: Object Scale Imbalance (Image from [5])

As shown by Figure 15, the scaling of the dump truck compared to the crane

and worker is distorted. While objects closer in images tend to appear bigger, the

background of the image is not consistent in scale to where the dump truck sits. The

researchers did address a problem of their analysis where some of the objects placed

in the images were put in implausible areas which may have led to degradation of

the model’s performance. An additional flaw, as outlined by Bang et al, was the

weather conditions and the terrain of the images were not taken into account for the

data augmentation. For recreating the objects, the color and shape of the objects

was not changed, therefore, decreasing the diversity of the construction assets used

to train the model on to detect. Diversity of images is important for strengthening a

model’s generalization on variations in datasets. For the use of a GAN, it would have

been beneficial to investigate the recreation of new objects in the construction sites

48

as well, rather than just filling blank sections of the images with pixels mimicking

the background information, for showing the model new samples and understanding

which factors effect the model’s generalizability the most.

Shen et al. [65] used a similar technique as the Bang et al. technique which

segmented the important features of their dataset away from the original frames con-

sisting of aerial images of vehicles to synthesize new features with a GAN. One of

the datasets they concentrated on was the Munich Dataset, a dataset consisting of

twenty aerial images taken over the city of Munich, Germany. The second dataset

used for model evaluation was created by the authors and was a collection of 615

aerial pictures of vehicles. They used a “lightweight” CNN since it used less param-

eters and had a faster convergence speed in training. For the GAN, they created

a new GAN variant, called a Multi-conditioned Constrained Generative Adversarial

Network (MC-GAN), conditioned on various attributes of the dataset. The GAN

combined pix2pix image translation with a cGAN to achieve their defined goal “to

generate realistic vehicles but more importantly to ensure that the generated vehicles

are integrated into the background information.” The first process segmented apart

the object of interest from the inside of a frame. Then, they added noise to where

they made the segmentation cut in the original image. The GAN had two discrimi-

nators: one which decided whether the augmented vehicle was “real” or “fake” and

another designed to assess the background information of the generated sample and

how well it blended to the original images background.

For evaluating the strengths of their dataset augmentation, the authors looked at

the recall, precision, F1-score, and Mean Average Precision (mAP). Their research

showed how high percentage values can be obtained for these metrics with small train-

ing sets consisting of images acquired by an aerial vehicle further augmented with a

GAN. They compared their results to other detection models to assess the efficiency

49

of a model smaller in size. Their model did much better than many of the other

detection models (VGG16, ResNet50, DenseNet-121, 1.0 MobileNet, ShuffleNet-v2),

achieving the highest accuracy of 86.90%. Their methodology also showed the impor-

tance of directing the GAN’s augmentation efforts towards the object of interest in

the image rather then augmentation of the entire frame. Their research also supports

the use of object detection models for aerial images with less parameters thus smaller

computational size since they have the ability to achieve higher rates of accuracy,

precision,and recall rates when trained with datasets augmented with data generated

by a GAN while still being deployable on a smaller aircraft. One problem, as out-

lined by the researchers, was some of the generated images could be seen to have

variable amounts of noise and looked distorted in nature. These issues are due to the

instability in the training of a GAN.

Finally, Neagoe et al. [66] used an unconditional GAN for augmenting hyperspec-

tral UAV image datasets. Their dataset consisted of hyperspectral aerial images size

610x340. The classification network created was a Deep Convolutional Neural Net-

work (DCNN) which consisted of five convolutional layers and five Gated Recurrent

Units (GRU) layers. Through hyperparameter tuning, the researchers discovered

their model performing better when using LReLU Activation Functions in its hid-

den layers instead of ReLU Activation Functions. Neagoe et al. followed a similar

methodology of initially training without augmenting the dataset and then retraining

the model after dataset augmentation. With the original dataset and validation of

the model, the accuracy achieved was 92.94%. After using an unconditional GAN

to generate new samples and augment the existing dataset, the model’s accuracy in-

creased to 95.32%. In addition, the time needed to train the model decreased from

41.5 minutes to 32.4 minutes with the augmented dataset. For aerial image datasets,

GANs show potential for increasing model performance, decreasing time of training,

50

and decreasing the time and cost for collecting the data, designating their use as a

possible premier choice for dataset augmentation.

51

III. Methodology

Preamble

This chapter details the methodology used throughout our investigation. Broadly

outlined, we performed data wrangling on the original dataframes to transform them

into a usable form by our models. We extracted the salient objects from each frame

and compiled them together to train our Generative Adversarial Networks (GANs).

We used the GANs to create synthetic images of the dataset’s classes and then added

these generated images back into the frames. Finally, we trained You Only Look Once

Version 4 - Tiny (YOLOv4-Tiny) on both unaugmented and augmented training sets.

3.1 Programming Platform

We used Python 3 for the Generative Adversarial Network (GAN) and object

detection models’ code. PyTorch was the primary machine learning Python library

we used for GAN implementation. YOLOv4-Tiny was executed using Darknet coded

with Python 3.

3.2 Datasets

There were two image datasets used in our research. Each dataset was framed as

a parent dataset and an image inside a parent dataset was the child image for that

dataset. Dataset 1 contained images of vehicles driving along a road captured at an

overhead angle.

52

(a) Example 1 (b) Example 2

(c) Example 3 (d) Example 4

Figure 16: Examples of Dataset 1 Images

Dataset 2 contained images of vehicles driving along a road captured at a sideways

angle. We also created a third dataset. Dataset 3 contained all of the images from

Dataset 1 and Dataset 2.

(a) Example 1 (b) Example 2

(c) Example 3 (d) Example 4

Figure 17: Examples of Dataset 2 Images

Previous image augmentation attempts were made on the images. First, each

image was positioned at the middle of a black background and sized to 1200x1600.

53

Some effects added to the original image as they were placed on the black backdrop

included image rotation, flipping, darkening, brightening, and shifting.

The image folders contained three different classes of objects : “van”, “truck” , and

“car.” Each image either contained one of the three classes or a random combination of

the three objects. The image files also were labeled with the bounding box coordinates

and object labels.

Table 1: Object Count by Class for Each Dataset

Dataset Car Van Truck
1 90 180 101
2 160 64 167

Total 250 244 268

Objects were extracted from the images and visually inspected as well to see if

their labeling was accurate to the object’s physical features. Due to the quality of the

images as well as the height of the moving platform at the time of the images, there

were instances where it was difficult for us to visually clarify if a labeled object resem-

bled its given class. Some objects were distorted due to the previous augmentation

applications while others were partially cut off if the object was a vehicle entering or

leaving the frame at the moment it was captured on camera.

3.3 Datasets’ Objects

There were two different instances of the van throughout the datasets. Effects of

augmentation and picture purity which led to reduced quality in the child image can

be seen in Figure 18a.

54

(a) Dataset 1 (b) Dataset 2

Figure 18: Examples of the Van Class

The second object class was a truck. There was never any frame containing more

than one truck.

(a) Dataset 1 (b) Dataset 2

Figure 19: Examples of the Truck Class

The third and final object in the dataset was a white car. Similar to the vans,

the car instances differed from each dataset due to the altitude of the aircraft at the

moment the image was taken, the lighting during the time the vehicle was captured

by the camera, and the data augmentation technique placed upon the image.

(a) Overhead (b) Sideways

Figure 20: Examples of the Car Class

55

3.3.1 Splitting the Data for Training and Testing

We used an 80/20 ratio for splitting the dataset. The two datasets were first

combined together into one inclusive collection of images. 20% of the images from

this collection were then taken as the testing dataset for model training. The images

were inspected and we used stratification to create the testing set to ensure it closely

resembled the distribution of objects and types of images in the training set. For

example, Dataset 2 had a collection of images showing a solo white car with a few

instances of a truck apparent in the image. There was a total of 90 frames gathered

of these instances, and using the 80/20 split, we moved 72 frames to the training set

and 18 images to the testing set. The same process of splitting was used for each

distinct collection of similar instances.

Van Truck Car
0

50

100

150

Object Class

N
u
m

b
e
r

o
f

O
b

je
ct

s

The above bar chart outlines the distribution of objects by class for Dataset 1. There

were 142 vans, 61 trucks, and 73 cars. Vans caused the greatest imbalance in the

dataset, accounting for 51.45% of the objects captured by the aerial moving platform.

56

Van Truck Car
0

50

100

150

Object Class

N
u
m

b
e
r

o
f

O
b

je
ct

s

The bar chart above depicts how Dataset 2 was balanced between the number of

cars and trucks it contained, however, vans were drastically underrepresented in this

dataset. Vans only accounted for 16.39% of the total number of objects in Dataset 2.

Van Truck Car
0

50

100

150

200

Object Class

N
u
m

b
e
r

o
f

O
b

je
ct

s

As outlined by the chart above, the initial combined dataset was balanced in

regards to objects by class, but was still imbalanced by its lack of diversity and size.

There were 194 vans, 193 trucks, and 208 cars. Cars had the highest distribution

across the dataset, representing 34.96% of all the object instances.

57

Van Truck Car
0

20

40

60

80

100

Object Class

N
u
m

b
e
r

o
f

O
b

je
ct

s

For the test set’s distribution of objects, shown in the above bar chart, there were 48

van, 75 truck, and 47 car instances. Trucks were distributed the highest in the test

set with occurrences of 44.11% in the test set images. The proportion of vans in the

test set was 28.24% and cars were distributed with a proportion of 27.65%. Examples

of the test set images can be observed in Figure 21.

(a) Example 1 (b) Example 2

(c) Example 3 (d) Example 4

Figure 21: Examples of Test Set Images

58

3.4 YOLOv4-Tiny Data Wrangling

We used the steps outlined in Algorithm 2 to ensure the images could be properly

read by the object detection model.

Algorithm 2 YOLOv4-Tiny Image Preprocessing Steps

Input: 1200 x 1600 image
Output: Cropped image with a text file containing its annotations.

1: Crop image out from the black background. . Save to a new file
2: Level any images that were previously rotated by data augmentation.
3: Label the objects in the image with their bounding box coordinates. . LabelImg
4: Save the cropped image with its annotations.

3.4.1 Image Cropping

Each image in the original dataset had been inserted onto a 1200x1600 black

image. Some of the images were rotated while others were placed undisturbed in the

middle of the black image. This technique was previously utilized on the datasets in

an attempt the increase the diversity of the datasets’ images.

Figure 22: Example of an Original Image

To reduce the size of the images, we hand cropped each image from the black

background. All rotated images were reset back to their original orientation to stan-

dardize the dataset. Due to the hand-cropping we used on the images, they were

59

different from each other in their size. This was not a concern since YOLOv4-Tiny

does not require a fixed image size for its input. We then relabeled the images based

off of the original annotations with the required format for the YOLOv4-Tiny Model.

Figure 23: Example of a Cropped Original Image

3.4.2 Labels

Each image had an associated text file with the object’s labels and bounding box

coordinates but the coordinates were not in the correct format for the YOLOv4-Tiny

Object Detection Model. The original labels were located in a text file with a name

matching its associated .jpg image.

Table 2: Original Annotation Format for the Datasets

Label Padding xmin ymin xmax ymax Padding

van 000 497.75 745.62 552.44 795.66 0000000

truck 000 1098.96 351.42 1168.68 415.53 0000000

We used the Python Application LabelImg [67] for relabeling the images since the

application has the capability to create bounding boxes around objects of interest in

an image as well as add the class label of the object contained within the bounding

box in the required YOLOv4-Tiny format.

60

Table 3: YOLOv4-Tiny Annotation Format for the Dataset

Label xcenter ycenter Width Height

0 0.126202 0.889423 0.98558 0.091346

1 0.955529 0.33654 0.069712 0.062500

Each coordinate represents a specific measurement of the bounding box surround-

ing the feature of interest, as shown by Equation (21). One benefit for using this

labeling arrangement is the annotation file does not have to be changed if the dimen-

sions of an image are scaled after leveling [68].

Bounding Box Format =

(
xcenter

Image Width

,
ycenter

Image Height

,
Box Width

Image Width

,
Box Height

Image Height

)
(21)

3.5 YOLOv4-Tiny Model Training: No Augmentation

We trained YOLOv4-Tiny first on the three different parent datasets with no

augmentation. Due to the small sizes of the datasets, four learning rates were used to

investigate the effects on Mean Average Precision (mAP) and Complete Intersection

over Union (CIoU) loss, as well as on other quality metrics. The learning rates we used

for training the model on the original data and the GAN augmented datasets were

0.00261, 0.001, 0.0001, and 0.00001. The authors of You Only Look Once Version 4

(YOLOv4) stated how their best results had occured with the learning rate of .00261

[23], therefore, we used this learning rate as the baseline for our evaluation.

The configurations of the model depended on the number of classes in the training

and test sets. The filters for each of the convolutional layer connected to a YOLO layer

had to have an output size of 24 when training the model on three different classes.

61

The learning rate was scaled by 0.1 at iterations 4,800 and 5,400. The training lasted

for 6,000 iterations, with the final results gathered at the last epoch. The values for

the preliminary hyperparameters can be found in Appendix A Table 33.

Once the model was trained, several metrics were compiled to assess the model’s

ability to learn from the training set and make accurate and precise predictions. The

True Positive (TP) metric represents the number of times the model was able to

detect the original ground truth box with an Intersection over Union (IoU) ≥ 0.5.

The False Positive (FP) metric is an assessment for the number of times an object is

detected where no object exists or when there the detection for an object occurs at

the wrong location of the frame. The False Negative (FN) metric is a measurement

for when the model fails in detecting any ground truth bound box.

The precision metric for each class of the model, as well as the overall model, was

calculated in the model’s output

Precision =

C∑
n=1

TPn

C∑
n=1

TPn +
N−C∑
n=1

FPn

(22)

where N is the total number deductions, and C is the total number of correct n detec-

tions. Precision provided insight on the percentage of times the YOLOv4-Tiny Model

correctly made positive predictions. Recall is a measurement outlining the percentage

of time the YOLOv4-Tiny Model was able to find the ground-truth bounding boxes

in the dataset

Recall =

C∑
n=1

TPn

C∑
n=1

TPn +
G−C∑
n=1

FNn

(23)

where G is the number of original ground-truth bounding boxes present in the dataset.

62

An additional metric calculated by the YOLOv4-Tiny Model is the F1 − Score

F1Score = 2 ∗ Precision ∗Recall
Precision+Recall

=
TP

TP + 1
2
(FP + FN)

(24)

which takes the harmonic mean between precision and recall.

One of the main determinants of confirming success in training the YOLOv4-

Tiny Object Detection Model is the mean average precision at IOU threshold .5

(mAP@.50) metric. The Average Precision (AP) of the model is calculated with an

N -point interpolation value of 101 [68]

AP =
1

N

N∑
n=1

Printerp(Rr(n)) (25)

where Printerp(Rr(n)) is a metric which provides insight in the trade-offs of precision

and recall for a given model. mAP is the average precision taken over all of the classes

[69, 68, 70]

mAP =
1

X

X∑
i=1

APi (26)

where X is the total number of classes.

Another important metric for the model’s training is average IoU. [71][68]. The

IoU calculation

IoU = J(BBp, BBgt) =
area(BBp ∩BBgt)

area(BBp ∪BBgt)
(27)

is a measurement for the overlapping area of the predicted and ground truth bounding

boxes divide by the area of union between the bounding boxes.

63

Figure 24: Bound Box Predictions from [72]

Figure 24 shows the parameters for calculating IoU. For each bounding box, the

cell is offset by (cx, cy) and the network predicts five bounding box coordinates,

tx, ty, tw, th, and to. pw and ph are the width and height for the preliminary bounding

box. The predictions by YOLOv4-Tiny are bx, by, bw, and bh.

IoU is a helpful measure for understanding if the model is correctly localizing an

object, however, it fails to provide information during training when bounding boxes

do not overlap. This leads to vanishing gradients during the model training process.

CIoU loss [73] is a measure used by YOLOv4-Tiny

LCIoU = 1 = IoU
ρ2(b, bgt)

c2
+ αυ (28)

where b is the center point of the predicted box BBp and bgt is the center point

of the target box BBgt. ρ(b, bgt) is the distance between the two center points of

the bounding boxes. c is the diagonal length of the smallest box contsining the two

bounding boxes. υ is a consistency measurement for the aspect ratio

υ =
4

π2
(arctan

wgt

hgt
− arctan

w

h
)2 (29)

64

where the height and width for the predicted box are h and w, and wgt and hgt are

the height and width for the ground truth box. Another parameter in the CIoU loss

function is the α trade-off parameter

α =
υ

(1− IOU) + υ
(30)

which is formulated to ensure overlapping boxes are prioritized in model training. The

use of CIoU loss in object detection models has led to improvements in the accuracy

of bounding box predictions by leading to faster model convergence and improved

performance [44].

3.6 Generative Adversarial Networks

We trained the four GAN variants, Deep Convolutional Generative Adversarial

Network (DCGAN), Conditional Deep Convolutional Generative Adversarial Network

(cDCGAN), Wasserstein Generative Adversarial Network (WGAN), and Conditional

Wasserstein Generative Adversarial Network (cWGAN), on all three parent datasets.

The number of iterations for training was dependent upon the stability of the GAN

architecture. Each child object of interest had to be extracted from its respective

parent image before being provided to the GAN for learning and generating synthetic

replicas. Basic GAN frameworks cannot augment images greater than size 64x64,

therefore, the background information of the frames was left untouched. For each

parent dataset, objects of the same class were placed into a corresponding folder

with their class name. This allowed for the additional use of labels necessary for

conditioned GANs. Not all objects extracted from the original images were used for

training each GAN.

65

Figure 25: Example of a Sliced Image

Sliced figures, as shown by the example in Figure 25, were not used for GAN

training. We omitted any object not fully visible in an image, or too distorted in na-

ture, from the GAN training set to thwart any possibility of low quality or unrealistic

recreations.

3.6.1 Generative Adversarial Network Training

Once the image extraction phase was complete, we trained each GAN on the

training child images acquired from each parent dataset. For training on the im-

ages, each image was normalized using the PyTorch dataloader and transformations.

The number of object images saved after each training cessation was constrained by

the amount of Graphics Processing Unit (GPU) and Random-access Memory (RAM)

memory available. After a GAN was trained, each synthetic image had to be assessed

for quality and what object class the image represented. We discarded any image ap-

pearing too disfigured or indistinguishable from its class for the ensuing augmentation

process.

For the training process of each DCGAN variation, we initialized the weights of

the discriminator and generator to the recommendation of Radford’s research which

found the best results in a zero-centered normal distribution of weights with a stan-

dard deviation of 0.02 [1]. The discriminator and generator both utilized the Adaptive

66

Moment Estimation (Adam) optimizer with the author’s recommended β1 momen-

tum value of 0.5 and a β2 default value of 0.999. The learning rate during training

was 0.0002 and binary cross-entropy was used for the network’s loss function. The

discriminator and generator were then trained in tandem over i iterations with the

discriminator separately accepting batches of real and fake images. A loss value was

then calculated for the discriminator which was the average of the loss on real images

and the loss on fake images. The generator would create fake examples from a latent

noise vector and based off the loss on fake images from the discriminator. The new

samples were then passed to the discriminator for reevaluation and the training would

cease once the defined number of epochs was complete.

The WGAN variants had subtle differences in the way the GAN was trained

compared to the DCGAN due to how the discriminator, now called the “critic,”

needed to be updated for five iterations before the generator was retrained. The

learning rate for the WGAN was smaller than the DCGAN, decreasing from 0.0002

to 0.00002. The loss for the critic changed to the difference between the expected

value of the critic’s assessment on the real images and the expected value of the critic’s

assessment on the fake images.

3.6.2 Deep Convolutional GAN Architecture

The DCGAN architecture closely aligned with the architecture proposed by Rad-

ford et al. [1] to ensure stability. For the generator, the input was a random latent

noise vector with a fixed value of 100, a batch size of 128, a feature size of 64 to

match the 64x64 images to be generated, and the number of Red, Green, Blue (RGB)

channels, which for color images is three. The summary of the body for the generator

is outlined in Figure 26.

67

Figure 26: PyTorch Summary of the DCGAN Generator

All of the layers besides the last layer were followed by a Rectified Linear Unit

(ReLU) Activation Function and the last layer was concluded with a Hyperbolic

Tangent (tanh) Activation Function which had an output between -1 and 1, matching

the normalization on the images.

The discriminator for the DCGAN had an input of the RGB value of three and a

feature dimensions value of 64. The body of the discriminator is outlined by Figure 27.

68

Figure 27: PyTorch Summary of the DCGAN Discriminator

Each of the three inner layers were accompanied with a Leaky Rectified Linear

Unit (LReLU) Activation Function using a slope of 0.2 as well as batch normalization.

The final layer was followed by a Sigmoid Activation Function for the binary output

of fake or real mapped to zero or one.. The discriminator was trained at the same rate

as the generator to ensure it did not become more efficient at detecting differences

between fake and real images faster than the generator could produce high quality

images.

3.6.3 Conditional Deep Convolutional GAN Architecture

The cDCGAN followed the same architecture as the DCGAN with the addition of

labels used for conditioning the generator’s output. The Appendix shows the example

code of the cDCGAN adapted from the DCGAN variant [74].

69

Figure 28: PyTorch Summary of the cDCGAN Generator

Embedding was used for adding the labels of each class and mapping each classes’

label to a fixed vector. The input of the generator was changed to accept the em-

bedded vector for each label which was a two-dimensional vector containing a class

label and embedding array. The generator was re-coded to now except two additional

inputs, the size of the embedding vector and the number of classes. For training the

cDCGAN, the embedding size was selected as 100 to be congruent with the size of the

noise vector. The class label of each image generated by the generator was reshaped

to four dimensions to match the dimensions of each image required by PyTorch and

concatenated to each synthetic image before being inspected by the discriminator.

The discriminator’s architecture expands from the DCGAN implementation by

now accepting the number of classes. The number of channels for the discriminator

increased by one to account for the label of each image. For the embedding to be

passed through into the discriminator’s layers, it had to be two-dimensional in shape

of the class label and the total size of the image. This was then reshaped to a four-

dimensional vector containing the label, one, image height, and image width before

70

concatenation of the label to the image to be properly read by PyTorch.

Figure 29: PyTorch Summary of the cDCGAN Discriminator

3.6.4 Wasserstein GAN Architecture

The architecture of the WGAN was derived from the DCGAN in Figure 26 and

Figure 27 with a few subtle changes in how the training was implemented. Many

of the hyperparameter values chosen were recommended by Arjovsky et al. [58] in

their original implementation. We chose the size of the noise vector to be the same

at 100 and the batch size for the WGAN was 64, cut in half from the DCGAN. For

placing a constraint on the updates in the gradients of the critic and enforcing the

Lipschitz constant, a clipping constant was enforced. The clipping value we set was

the suggested value of 0.01. Another difference between the DCGAN and WGAN

architectures, outlined by Algorithm 3, is the critic is now trained for a defined

amount of iterations before the generator produces new images and has its weights

updated.

71

Algorithm 3 WGAN: Updating the Critic

1: for i in Critic Update Iterations do
2: Generate synthetic images from random noise with the generator.
3: Get the loss, real loss, on the real images by inspecting a batch of the original

images with the critic.
4: Get the loss, fake loss, on the synthetic images by inspecting a batch of the

newly generated fake images with the critic.
5: Calculate the critic’s loss: -(real loss-fake loss)
6: Update the critic’s weights with the weight clip constraints.
7: end for

Since optimizers seek to maximize and the critic wants to minimize its loss func-

tion, a negative sign is added to the loss function of the critic. As previously defined,

the loss for the critic was changed to the expected value between the critic’s analy-

sis of the real images and analysis of the fake images. Five iterations were used for

training the critic. At the conclusion of the five iterations, the generator was trained

and wanted to minimize the negative mean of the critic’s expected value assessment

on the fake images. The generator was the same as the DCGAN and did not adopt

the use of the LReLU Activation Function.

3.6.5 Conditional Wasserstein GAN Architecture

A similar tactic used for conditioning the generator and discriminator of of the

DCGAN in Figure 28 and Figure 29 was used for conditioning the WGAN. For the

critic’s input layer, two new inputs for the class number and size of the image were

added to allow acceptance of an embedded label vector. The number of channels

accepted in the input of the critic was also increased by one. The same process of

concatenating the label to an image was used for both the critic and the generator. An

identical procedure had to be used for the generator to add the size of the embedding

vector to the generator’s input, allowing for the acceptance of the embedded label

vector by the generator. The generator then produced an image with an associated

72

embedded label vector which was the same dimension of the synthetic image. Ap-

pendix A shows the example code of the cWGAN adapted from the WGAN variant

[74].

3.7 Dataset Augmentation

Figure 30: Augmentation Phase Process

In the augmentation phase, shown in Figure 30, we only used synthetic images

created from a GAN trained on the parent’s child images for augmenting images

appended to the respective parent dataset. For implanting the synthetic child images

into their related parent images, we utilized the GNU Image Manipulation Program

(GIMP) [75]. When adding the child images to their parent frames, we had to resize

some of the images from their 64x64 configuration for two reasons. One reason was

to cover the original child object in which the augmented child object was replacing.

The second reason was to resize the synthetic child images so they matched the size of

their replacements to ensure the most realistic training images. Linear interpolation

73

was used for resizing each of the images. Images were also flipped and rotated to

match a similar orientation of the object they were supposed to depict. For the first

phase of augmentation, we placed each synthetic child image over the original child

image exactly where it originality was located. The dataset was doubled and images

were randomly selected for augmentation. The biggest constraint in this stage was

the number of available synthetic objects collected from the GAN. If all of the objects

in an original image could not be covered with their synthetic counterpart, we did not

add the image back to the parent dataset. While the objects obtained from the GANs

showed the entire object, GIMP allowed for the objects to be cutoff and replace the

objects depicting vehicles driving in and out of the frame.

Once all of the available child images were supplanted in the frames of each parent

dataset, we used LabelImg [67] to create new annotations consisting of a bounding box

and class label for each of the new augmented objects. Due to possible mislabeling,

some of the instances of “car” were changed to “van” from the original dataset due

to the drastic similarities between the “car” and “van” objects. We determined the

labeled “cars” actually did represent vans and these objects were updated when their

augmented replications were placed within the images of the dataset.

Each original parent dataset was used for training the YOLOv4-Tiny Object De-

tection Model. To further understand the effects of small datasets and assess the

effective reinforcement of GAN augmentation, the learning rates of 0.00261, 0.001,

0.0001, and 0.00001 were selected and used to gather evidence and draw comparisons.

After training each Parent Training Set on the 4 different learning rates, each aug-

mented training set was then used for training YOLOv4-Tiny. For every sequence,

the same test set containing images from the two datasets was used.

74

IV. Generative Adversarial Networks Training

We trained each GAN variant individually on each of the three datasets. This

chapter outlines the details of the GAN training process as well as discusses the

quality of the images generated. The biggest constraint occurring during the training

of the GANs was the limitations of GPU accessibility and RAM storage.

4.1 Training Times

Table 4: GAN Training Times

GAN Dataset Time (Hours) Epochs
DCGAN 1 2.405 10,000
DCGAN 2 2.006 8,300
DCGAN Combined 3.089 10,000
cDCGAN 1 0.968 4,200
cDCGAN 2 2.076 8,300
cDCGAN Combined 5.388 15,000
WGAN 1 5.736 10,000
WGAN 2 5.840 10,000
WGAN Combined 10.780 10,000
cWGAN 1 5.715 10,000
cWGAN 2 5.942 10,000
cWGAN Combined 10.874 10,000

We chose 10,000 iterations as the standard number for training all of the GANs

due to software restrictions. The DCGAN training on Dataset 1, cDCGAN training

on Dataset 1, and cDCGAN trained on Dataset 2 were unstable when we attempted

to train them with 10,000 iterations. The output we obtained when these GANs were

trained for 10,000 iterations was either images filled with noise or images display-

ing indistinguishable objects. In addition, the cDCGAN trained with the combined

dataset was producing lower quality results at 10,000 iterations and we found success

75

when training the cDCGAN with 15,000 iterations. The conditional component sta-

bilized the training with the cDCGAN but needed longer training time to generate

quality images for the larger dataset. All of the WGAN variants took much longer

to train than the DCGAN variants which we accredited to the use of the Wasserstein

loss function in the GAN as well as the way the discriminator (critic) was updated

during the training process.

4.2 Dataset 1 Synthetic Images

Overall, we had the most difficulty training a GAN on Dataset 1 due to the smaller

number of images for the objects in addition to the quality of the images. The GANs

were unsuccessful in learning the truck class due to the limited number of instances

available for training from Dataset 1.

(a) DCGAN (b) cDCGAN (c) WGAN (d) cWGAN

Figure 31: Examples of Synthetic Vans: Dataset 1

While each GAN was able to generate a van, many of the synthetic instances were

just black pixels tightly compressed together. Neither of the DCGAN variants could

learn the van well, and the generator from the DCGAN simply generated dark shapes

to try to trick the discriminator.

76

Table 5: Percent Change in Vans: Dataset 1

GAN Generated Instances Percent Change
DCGAN 0 0.00%
cDCGAN 0 0.00%
WGAN 95 66.90%
cWGAN 10 8.45%

As outlined by Table 5, the WGAN was the most successful variant in producing

synthetic vans with a 66.90% change increase in the number of vans in the training

set.

(a) DCGAN (b) cDCGAN (c) WGAN (d) cWGAN

Figure 32: Examples of Synthetic Trucks: Dataset 1

The only GAN able to learn from the original images and generate new trucks was

the WGAN. As shown in Figure 32, the other GANs collapsed during training and

provided indistinguishable depictions of the truck class. While the WGAN produced

instances of the truck which were to some degree the desired output, no instance was

deemed to be of acceptable quality to add to the training set. One factor attributing

to this problem was the few examples of the truck objects for the GANs to use

for learning. The GANs simply created an image of noise which could pass the

discriminator’s (or critic’s) real image analysis.

77

(a) DCGAN (b) cDCGAN (c) WGAN (d) cWGAN

Figure 33: Examples of Synthetic Cars: Dataset 1

All of the GANs were able to produce high quality images of the car. Comparing

the images from the DCGAN variants to the WGAN variants, traces of RGB noise

are visible in the DCGAN variant images. This is due to the DCGAN architecture

and loss function being less stable than the architecture of the WGAN. As outlined

by Table 7, the cDCGAN was the most successful in generating new cars producing

a 97.26% change in the training set.

Table 6: Percent Change in Cars: Dataset 1

GAN Generated Instances Percent Change
DCGAN 55 75.34%
cDCGAN 71 97.26%
WGAN 54 73.97%
cWGAN 55 75.34%

78

The images below show the new parent images augmented with the generated

child images.

(a) DCGAN (b) cDCGAN

(c) WGAN (d) cWGAN

Figure 34: Examples of Augmented Parent Images: Dataset 1

4.3 Dataset 2 Synthetic Images

Dataset 2 supplied a much better training set for the GANs than Dataset 1. This

was attributed to Dataset 2 containing more objects which were viable options for

training each GAN. The training instances of the van class increased substantially due

to the possible mislabeling in Dataset 2. The significant increase in vans successfully

balanced the original dataset, an important prerequisite for training an unbiased and

stabilized detection model.

79

(a) DCGAN (b) cDCGAN (c) WGAN (d) cWGAN

Figure 35: Examples of Synthetic Vans: Dataset 2

All four of the GAN variants produced realistic generations of the van. The only

GAN where traces of RGB noise could be seen was the DCGAN. Additionally, the

GANs were able to learn the reflection of light on that van occurring at the time the

van was captured on film.

Table 7: Percent Change in Vans: Dataset 2

GAN Generated Instances Percent Change
DCGAN 141 271.15%
cDCGAN 135 259.62%
WGAN 138 265.38%
cWGAN 142 273.08%

The cWGAN had the largest increase in number of augmented vans supporting

a 273.08% change in the training set, however, all of the GAN variants were able to

produce enormous percent changes in the van class.

(a) DCGAN (b) cDCGAN (c) WGAN (d) cWGAN

Figure 36: Examples of Synthetic Trucks: Dataset 2

80

The GANs trained on Dataset 2 did a much better job of recreating the truck. Not

only was the vehicle able to be recreated, each GAN was able to learn and generate

the shadow produced by the truck in the original dataset. The creation of synthetic

trucks followed a similar pattern as the generation of the synthetic vans where the

DCGAN showed small signs of instability, creating small markings of RGB noise.

Table 8: Percent Change in Trucks: Dataset 2

GAN Generated Instances Percent Change
DCGAN 132 100.00%
cDCGAN 132 100.00%
WGAN 131 99.24%
cWGAN 132 100.00%

As outlined in Table 8, the DCGAN, cDCGAN, and cWGAN all produced a

100.00% change for the truck class in the training set which was a dramatic improve-

ment from Dataset 1

(a) DCGAN (b) cDCGAN (c) WGAN (d) cWGAN

Figure 37: Examples of Synthetic Cars: Dataset 2

For the car class, all of the GANs were able to successfully generate synthetic

images. The only trace of RGB noise again occured from the DCGAN. For Dataset

2, the car class had the lowest generation of new images for all GANs.

81

Table 9: Percent Change in Cars: Dataset 2

GAN Generated Instances Percent Change
DCGAN 58 43.94%
cDCGAN 3 2.27%
WGAN 61 46.21%
cWGAN 59 44.70%

All of the GAN variants, as shown in Table 9, were capable of producing an ade-

quate amount of new cars except the cDCGAN which performed poorly in supplying

the dataset with synthetic car instances and only produced a 2.27% change in the

training set.

(a) DCGAN (b) cDCGAN

(c) WGAN (d) cWGAN

Figure 38: Examples of Augmented Parent Images: Dataset 2

Figure 38 shows different variations of images augmented from the objects created

82

by GANs. Unlike Dataset 1, trucks could now be added to the original parent images.

4.4 Combined Dataset Synthetic Images

The GANs trained on the combination of the two datasets generated the highest

quality images visually compared to datasets 1 and 2. This factor is related to the

increase in images provided for the GANs to learn from and map the features in the

images to a vector space. Out of all four of the GANs, the cDCGAN produced the

lowest quality images. Even though adding the labels helped stabilize the DCGAN

architecture, the cDCGAN relied more on producing the right class for each label

and did not accurately learn to output an acceptable resolution quality of the images

present in the original objects. While generation for Dataset 1 showed weaknesses in

creating new trucks, Dataset 2 was capable of producing the truck, and using them in

tandem helped overcome the difficulty in generating the complex object and created

the visually best instances of the truck class.

(a) DCGAN (b) cDCGAN (c) WGAN (d) cWGAN

Figure 39: Examples of Synthetic Vans: Combined Dataset

The only GAN having trouble with generating the first van variation was the

cDCGAN. Unlike prior GANs, all three of the other GANs producing recognizable

vans also had the headlight and shading features originally attached to the van.

83

(a) DCGAN (b) cDCGAN (c) WGAN (d) cWGAN

Figure 40: Examples of Synthetic Vans: Combined Dataset

For the second style of van, all of the GANs were successful in its recreation.

The GAN with the weakest regeneration of the van was the cDCGAN and the GAN

producing the strongest recreation of the van was the cWGAN. RGB noise was visible

in both of the DCGAN variants.

Table 10: Percent Change in Vans: Combined Dataset

GAN Generated Instances Percent Change
DCGAN 245 126.29%
cDCGAN 162 83.51%
WGAN 156 80.41%
cWGAN 97 50.00%

Table 10 shows how all of the GAN variants were capable of producing large

amounts of synthetic van instances with the DCGAN creating the most amount of

new images, leading to the highest percent change of 126.29%.

(a) DCGAN (b) cDCGAN (c) WGAN (d) cWGAN

Figure 41: Examples of Synthetic Trucks: Combined Dataset

84

The RGB noise is more noticeable in the instances of the trucks for the GANs

adopting the DCGAN architecture while both of the WGAN architectures were able

to produce extremely clear and well-defined trucks.

Table 11: Percent Change in Trucks: Combined Dataset

GAN Generated Instances Percent Change
DCGAN 115 43.56%
cDCGAN 106 40.15%
WGAN 103 39.02%
cWGAN 37 12.29%

As shown in Table 11, the cWGAN produced the lowest amount of new truck

instances with a 12.29% change in the dataset which can partly be attributed to lack

of memory during the training process.

(a) DCGAN (b) cDCGAN (c) WGAN (d) cWGAN

Figure 42: Examples of Synthetic Cars: Combined Dataset

All of the GANs were able to produce synthetic instances of the car. One inter-

esting observation we made was some of the above cars originally captured by the

moving platform which were thicker in diameter were produced thinner due to the

GAN combining the slim shape of the car captured at the sideways view with the

thick shape of the car captured from an overhead view. Those instances occured more

when the GANs were conditioned on labels. Both of the WGAN variants showed no

signs of random RGB pixels while RGB pixels were present in images generated by

the two DCGAN implementations.

85

Table 12: Percent Change in Cars: Combined Dataset

GAN Generated Instances Percent Change
DCGAN 124 59.62%
cDCGAN 122 58.65%
WGAN 122 58.65%
cWGAN 86 41.35%

Consistent with the generation of the trucks, Table 12 outlines how all of the GAN

variants produced approximately the same amount of new synthetic instances besides

the cWGAN which was constrained by memory issues during its training process.

(a) DCGAN (b) cDCGAN (c) WGAN (d) cWGAN

Figure 43: Examples of Synthetic Cars: Combined Dataset

Figure 44 shows different examples of the generated images placed within the

parent images for the combined dataset.

86

(a) DCGAN (b) cDCGAN

(c) WGAN (d) cWGAN

Figure 44: Examples of Augmented Parent Images: Combined Dataset

4.5 Poor Quality Images

During the process of generating synthetic images, we deemed many samples poor

quality and discarded them for use in augmenting the training sets. One speculation to

why poor images may have been created is the generator was having success in tricking

the discriminator (critic) at different times of the GAN training process with these

poor samples and therefore continued to produce the inferior images. Another reason

for the lower quality output of synthetic objects was the original images themselves.

The frames provided were taken from a high altitude and had a lower resolution. The

generator was learning to produce images from lower quality examples and due to

the variance of the output of a GAN, some images were going to be much poorer in

87

quality than others.

(a) Example 1 (b) Example 2

Figure 45: Examples of Mode Collapse for the DCGAN Augmentation from the
Combined Dataset

One problem occurring during the training of the GANs was their instability in

producing images resembling the original training set. The GAN architecture which

had the most difficulty in providing the desired generated images was the DCGAN.

The DCGAN had to be retrained various times to get the desired output. Figure 45

shows two examples of modal RGB noise produced by the DCGAN. This was a

“collapse” in the GANs training process and possible explosion of the gradients in

the discriminator and generator loss functions. In Figure 45a, the generator is showing

to still make attempts at producing white cars and the black circles are understood

to be possible reproductions of the van. In Figure 45b, the DCGAN was starting to

learn how to generate the white car but could not create the right images to convince

the discriminator into believing they were real, leading to a singular, poor output.

88

4.5.1 Dataset 1

(a) Van (b) Truck (c) Car

Figure 46: Examples of Poor Quality DCGAN Images: Dataset 1

Examination of the poor quality images from the DCGAN trained on Dataset 1

displays its failure in producing the truck and provides context for the difficulty the

GAN had in producing the van and the car. There were no clear features for the truck

and the generator began to use a smearing affect of the colors representing the truck in

an effort to trick the discriminator. The van had many instances of black randomness

and the instances of the car not accepted included cars with indistinguishable features

at first glance.

(a) Van (b) Truck (c) Car

Figure 47: Examples of Poor Quality cDCGAN Images: Dataset 1

The poor images for the cDCGAN closely aligned with the DCGAN output, how-

ever, this GAN was more capable of learning the car. The poor car instances showed a

regularly shaped car but generally had problems of reproducing other “car” features,

as shown by Figure 47c, which deemed those synthetic objects unusable for training.

89

The same randomized technique of creating patches of colors similar to the original

objects was used by the generator for creating the van and truck to try to deceit the

discriminator if possible.

(a) Van (b) Truck (c) Car

Figure 48: Examples of Poor Quality WGAN Images: Dataset 1

The WGAN generated poor instances more visually close to acceptable use for

dataset augmentation compared the DCGAN variants. The lower quality van and

car instances began mimicking the original objects but still were not suitable to

be placed in the frames during the augmentation phase. Figure 48b shows how the

WGAN was beginning to learn to generate the truck with only a few original instances

of the vehicle provided but most of the generated images were either smeared or were

missing an element of the vehicle.

(a) Van (b) Truck (c) Car

Figure 49: Examples of Poor Quality cWGAN Images: Dataset 1

For the poor images of the cWGAN trained on Dataset 1, the van instances

were closest to the higher quality images used for training. Due to their complexity,

90

this variant was not able to fully capture how to generate the truck or car. While

conditioning the WGAN added more stability in the training process, there was still

a vast variance in the quality of images generated by the cWGAN.

4.5.2 Dataset 2

(a) Van (b) Truck (c) Car

Figure 50: Examples of Poor Quality DCGAN Images: Dataset 2

For the DCGAN trained on Dataset 2, one interesting type of synthetic image

created was a truck with two fronts. The DCGAN added together two trucks facing

different directions, creating the morphed synthetic instance in Figure 50b. For the

van class, many of the images had the smearing pattern seen before which is attributed

to the shorter learning time and lower quality images provided. The poor quality cars

most closely resembled the original car but still showed too low of a resolution and

indistinct features to be deemed acceptable for augmentation.

(a) Van (b) Truck (c) Car

Figure 51: Examples of Poor Quality cDCGAN Images: Dataset 2

91

With the cDCGAN, the poor quality images all closely aligned with the object

they were supposed to mimic. The van class had the necessary shape but still was

covered with a blended finish of its features. The truck has the desired shape as

well but is missing the vivid features required for acceptable use in the augmentation

phase. The car class was the best generated class by the cDCGAN and the worst

instances of the car were only considered poor due to their low resolutions. The shape

and features of the car were acceptable for use during dataset augmentation.

(a) Van (b) Truck (c) Car

Figure 52: Examples of Poor Quality WGAN Images: Dataset 2

An example of the poor instances of the van showed how it was left unfinished

by the generator of the WGAN. Another interesting morphed image of the truck was

the inverse created by the DCGAN where the WGAN generator combined the two

ends of a truck to generate a new object. Many of the poor car instances lacked the

necessary detail or were unrealistic in architecture compared to the original cars in

the training set.

(a) Van (b) Truck (c) Car

Figure 53: Examples of Poor Quality cWGAN Images: Dataset 2

92

The cWGAN showed to have some problems with the shading of the images,

seen in the van and car instances. The cWGAN produced synthetic trucks but had

problems of generating many unfinished samples. The truck in Figure 53b shows an

example of missing features with the absence of the front cabin seen in the original

trucks of the dataset.

4.5.3 Combined Dataset

While the training sessions for each GAN had more instances for the generator to

learn from, unsatisfactory images for the data augmentation phase were still produced.

We concluded the more images provided to a GAN, the better quality of output of

synthetic images.

(a) Van (1) (b) Van (2) (c) Truck (d) Car (1) (e) Car (2)

Figure 54: Examples of Poor Quality DCGAN Images: Combined Dataset

The first variation of the poor quality van generated by the DCGAN had resem-

bling colors deriving from the truck and lacked continuity of features in its generation.

The second style of van was generated with features originating in the white car which

shows how the generator was attempting to create a combination of the two different

vehicles. The poor quality truck instances generally had the correct shape but either

were too low in resolution to be accepted for augmentation or were missing important

features needed to be classified as a high quality synthetic truck. The main problems

with the synthetic car objects were high levels of discoloration leading to the blending

of the features of the generated cars. Some of the car objects began to adopt a grey

93

complexity as the generator was beginning to combine the colors of the car and van

classes.

(a) Van (1) (b) Van (2) (c) Truck (d) Car (1) (e) Car (2)

Figure 55: Examples of Poor Quality cDCGAN Images: Combined Dataset

The main quality issue for the cDCGAN was blurriness in the generated images.

Many of the instances for the first type of van lacked the detail needed to be considered

acceptable for augmenting the original frames. For the second van style, most of the

problems were faded details and poor resolution quality. When producing new trucks,

if the generator forgot to add a part of the vehicle then the image was considered

unusable for the augmentation phase. For the first type of car depicting an overhead

view, the generator created vehicles too wide and blurry. For the second style of the

car, some of the vehicles turned grey which was acceptable but if the picture itself

was hazy then we did not place that car instance into the parent frames.

(a) Van (1) (b) Van (2) (c) Truck (d) Car (1) (e) Car (2)

Figure 56: Examples of Poor Quality WGAN Images: Combined Dataset

The poor quality images obtained from the WGAN had less issues of poor resolu-

tion quality and more issues of insufficient structural components of each generated

94

vehicle. For the van instance, the problems for the first type of van were its represen-

tation as a generic black circle. For the second style of van, some of the vans possessed

the combination of the two fronts of the van, shown by Figure 56b. The truck objects

had the same outcome where the generator of the WGAN produced trucks with two

fronts. For the cars, most of the issues centered around their production involved the

cars being either too wide or having a bent frame. The bending may be coming from

the way the generator is combining the different angles from which the objects were

captured by the moving platform in the original frames.

(a) Van (1) (b) Van (2) (c) Truck (d) Car (1) (e) Car (2)

Figure 57: Examples of Poor Quality cWGAN Images: Combined Dataset

The poor quality images of the cWGAN had problems commensurate to the

WGAN. Most of the problems were structural and did not stem from issues in the

resolution. One interesting creation the cWGAN began producing was placing two

cars into an image which the GAN was never given examples of to use for training.

This shows the power of the GAN to learn how to incorporate more than one car into

each of the images. While unsuccessful in its attempts, future research can include

investigating if the number of objects in an image which a GAN is producing can be

mapped to a vector in the latent space.

95

4.6 Generative Adversarial Network (GAN) Training Takeaways

Brightness was one of the main reoccurring problems when recreating darker ob-

jects. The shadow of an object occurring from its position to the sun would sometimes

force the generator to create an inaccurate representation of the object since it blended

the shadow into the darker figures, creating unrealistic objects.

Another assertion we made from our observations for GAN training is it is much

harder to train a GAN with a limited number of images. Even with an adequate

amount of images for training a model, the research showed how a GAN will have

difficulty learning a certain class in the dataset if the class is underrepresented. This

can be seen in the training of a GAN using Dataset 1 with the truck instances. The

truck class provided a limited number of training instances and none of the GAN

variants generated the required high quality standards of the original truck images

compared to the car and van instances.

Due to the lower resolution images gathered, the synthetic images from the GANs

also had a lower quality resolution in nature. While some of the images looked to be in

poor condition, comparing them to the real images they were supposed to represent

showed they were very similar in detail. The GANs utilizing WGAN architecture

produced finer quality images than those adapted to the DCGAN architecture. We

inferred the added stability from the Wasserstein Loss Function and changes to the

training of the critic led to the generation of sharper contrasts of features and colors

in the synthetic images. There were multiple instances of the DCGAN producing

images containing random RGB pixel spots which can be attributed to the decrease

in stability of the DCGAN architecture compared to the WGAN architecture. Further

research efforts should be directed towards increasing GAN stability and synthetic

image quality assessment.

96

V. Results and Discussion

Preamble

This chapter provides the results of the You Only Look Once Version 4 - Tiny

(YOLOv4-Tiny) Object Detection Model training. We trained the model five different

ways: first with the original datasets only, and second with the original datasets

augmented by each of the four Generative Adversarial Networks (GANs) individually.

This resulted in sixty training trials, all of which were compared against the original

test set.

5.1 Model Training: Dataset 1

We trained a model on Dataset 1 followed by training models on Dataset 1 aug-

mented with each of the four GANs individually. The Conditional Wasserstein Gen-

erative Adversarial Network (cWGAN) augmented dataset produced the best per-

forming model with a Mean Average Precision (mAP) of 94.78% and an average

Intersection over Union (IoU) value of 67.24%. Compared to the model trained on

Dataset 1 with no augmentation, these values were greater by 6.59% and 2.90%,

respectively.

5.1.1 Dataset 1: No Augmentation

As noted in Chapter III, we trained multiple models using learning rate tuning.

Table 13 shows the highest performing trained YOLOv4-Tiny Model using Dataset 1

with no data augmentation. The most efficient model was trained with a learning rate

of 0.001 with 6,000 iterations, producing a mAP of 88.19%, a Complete Intersection

over Union (CIoU) loss of 0.0400, an average IoU of 64.34%, a precision rate of 0.81, a

97

recall rate of of 0.82, a F1-score of 0.81, and True Positive (TP), False Positive (FP),

and False Negative (FN) detections of 140, 33, and 30, respectively.

Table 13: YOLOv4-Tiny Model Training Results: Dataset 1 Best Model

Learning Rate mAP CIoU Loss Avg.IoU Precision Recall F1-Score TP FP FN
0.001 88.19% 0.0400 64.34% 0.81 0.82 0.82 140 33 30

For each individual class, the model had the most difficulty with localizing and

classifying the truck objects within each frame. It exhibited similar performance for

the car and van instances within the images.

Table 14: YOLOv4-Tiny Model Training Results by Class: Dataset 1 Best Model

Class mAP TP FP
Van 99.67% 48 9

Truck 65.26% 45 22
Car 99.60% 47 2

A chart mapping mAP and CIoU Loss was collected for each training iteration

to visually inspect how the model trained overtime. The model did not show much

improvement over the course of its training, suggesting the need for augmentation

and hyperparameter tuning to achieve performance improvement.

98

Figure 58: mAP vs. CIoU Loss: Dataset 1

5.1.2 Dataset 1: GAN Augmentation

Table 15: YOLOv4-Tiny Model Training Results: Dataset 1 + GAN Images Best
Models

GAN Learning Rate mAP CIoU Loss Avg. IoU Precision Recall F1-Score TP FP FN
DCGAN 0.0001 90.55% 0.1044 65.36% 0.86 0.81 0.83 138 23 32
cDCGAN 0.001 94.25% 0.1219 65.49% 0.86 0.91 0.89 155 25 15
WGAN 0.001 90.95% 0.0518 66.13% 0.81 0.81 0.81 138 32 32

cWGAN 0.0001 94.78% 0.1223 67.24% 0.86 0.84 0.85 145 24 25

The best performing model from each Generative Adversarial Network (GAN)

augmented dataset is outlined in Table 15. The GAN producing the most effective

model was the cWGAN. Using the cWGAN augmented images led to a 6.59% increase

99

in mAP compared to the baseline model and the average IoU accuracy also increased

by 2.90%. Precision, recall, and the F1-Score increased by 4.00%, 2.00%, and 3.00%

respectively. The number of TP detections increased by 5 while the number of FP

detections decreased by 9, and the number of FN detections decreased by 5.

Table 16: YOLOv4-Tiny Model Training Results by Class: Dataset 1 +cWGAN
Images

Class mAP TP FP
Van 95.41% 46 7

Truck 88.93% 55 17
Car 100.00% 44 0

When the cWGAN augmented training set was used, the mAP of the truck in-

creased by 23.67%. TP detections increased by 10 while FP detections decreased

by 5. GAN augmentation produced a 0.40% increase in the mAP for the car class

with a decrease of 3 TP detections. The decline in TP detections was offset by 0

FP detections. For the van class, training with the GAN augmented dataset had an

adverse effect on the model’s performance, dropping mAP by 4.26%.

100

Figure 59: mAP vs. CIoU Loss: Dataset 1 + cWGAN

The mAP and CIoU loss curves show consistent training over time for the model

with a few spikes in mAP. The model begins to plateau in training at approximately

5,400 iterations, suggesting the training of the network had reached convergence.

5.2 Model Training: Dataset 2

We trained a model on Dataset 2 followed by training models on Dataset 2 aug-

mented with each of the four GANs individually. The Deep Convolutional Generative

Adversarial Network (DCGAN) augmented dataset produced the best performing

model with a mAP of 89.13% and an average IoU score of 71.89%. Compared to

the model trained on Dataset 2 with no augmentation, these values were greater by

101

15.76% and 9.60%, respectively.

5.2.1 Dataset 2: No Augmentation

The best performing model used a learning rate of 0.0001. The model yielded a

mAP of 73.37%, a CIoU loss of 0.1960, an average IoU rate of 62.29%, a precision

rate of 0.79, a recall rate of 0.56, a F1-Score of 0.66, and TP, FP, and FN detections

of 96, 25, and 74, respectively.

Table 17: YOLOv4-Tiny Model Training Results: Dataset 2 Best Model

Learning Rate mAP CIoU Loss Avg. IoU Precision Recall F1-Score TP FP FN
0.0001 73.37% 0.1960 62.29% 0.79 0.56 0.66 96 25 74

The best performing model did not do well on the van instances, obtaining a mAP

value 56.70% lower than Dataset 1. The cause of this negative effect may stem from

how Dataset 1 contained more instances of the van which were similar to the vans

in the test set. Compared to Dataset 1, the model did a much better job of learning

and finding the truck instances within the parent images, achieving a mAP 24.95%

higher than Dataset 1.

Table 18: YOLOv4-Tiny Model Training Results by Class: Dataset 2 Best Model

Class mAP TP FP
Van 42.97% 15 0

Truck 90.21% 41 1
Car 86.93% 40 24

The chart of the mAP and CIoU loss shows the model’s mAP beginning to plateau

at approximately 3,000 iterations. CIoU loss continuously decreased with a slight

increase towards the end of training.

102

Figure 60: mAP vs. CIoU Loss: Dataset 2

5.2.2 Dataset 2: GAN Augmentation

The augmented training set leading to the highest increase in overall performance

was the collection of images augmented with the DCGAN and trained with a learning

rate of 0.0001. The only downfall to this model was the higher value of CIoU loss

which we accredited to the use of more diverse and different images compared to the

test set.

103

Table 19: YOLOv4-Tiny Model Training Results: Dataset 2 + GAN Images Best
Models

GAN Learning Rate mAP CIoU Loss Avg. IoU Precision Recall F1-Score TP FP FN
DCGAN 0.0001 89.13% 0.2744 71.89% 0.95 0.72 0.82 122 7 48
cDCGAN 0.0001 74.17% 0.2744 61.92% 0.81 0.58 0.68 100 24 70
WGAN 0.0001 73.40% 0.2675 64.09% 0.82 0.58 0.68 99 21 71
cWGAN 0.0001 73.04% 0.2463 53.50% 0.68 0.54 0.60 92 44 78

The mAP increased by 15.76% and the average IoU rate increased by 9.60%.

Precision, recall, and the F1-Score all increased by 16.00%. The number of TP

detections increased by 26, while FP and FN detections decreased by 18 and 26,

respectively. Although the mAP for the truck decreased by 1.45%, higher mAP values

were achieved for the van and car classes. The mAP for the van class increased by

38.24%, with TP detections increasing by 15. FP detections did increase for the

van class from 0 to 3. For the car class, mAP increased by 10.48%, TP detections

increased by 6, and FP detections decreased by 20.

Table 20: YOLOv4-Tiny Model Training Results by Class: Dataset 2 + DCGAN
Images

Class mAP TP FP
Van 81.21% 30 3

Truck 88.76% 46 0
Car 97.41% 46 4

The graph of the mAP and CIoU loss curves shows an increasing rate over time,

however, there are instances of dramatic drops in mAP. The use of augmented images

added some instability during the midpoint iterations in the training of the model.

While there was more variance in model training, the mAP begins to plateau towards

the end of the cycle showing a stable final model.

104

Figure 61: mAP vs. CIoU Loss: Dataset 2 + DCGAN

5.3 Model Training: Combined Dataset

We trained a model on the combined dataset followed by training models on

the combined dataset augmented with each of the four GANs individually. For the

combined dataset, the cWGAN augmented dataset produced the best performing

model with a mAP of 100.00% and an average IoU score of 80.39%. Compared to

the model trained on the combined dataset with no augmentation, these values were

greater by 1.47% and 3.81%, respectively.

105

5.3.1 Original Dataset: No Augmentation

The best performing model using the training set with no augmentation had a

learning rate of 0.001. The model concluded training with a mAP of 98.53%, an

average IoU of 76.58%, a precision rate of 0.94, a recall rate of 0.98, a F1-Score 0.96,

and TP, FP, and FN detections of 167, 11, and 3, respectively.

Table 21: YOLOv4-Tiny Model Training Results: Combined Dataset Best Model

Learning Rate mAP CIoU Loss Avg. IoU Precision Recall F1-Score TP FP FN
0.001 98.53% 0.0793 76.58% 0.94 0.98 0.96 167 11 3

The mAP values for each of the objects of interest were all in the upper 90% range,

showing the strengths of increasing the size of a dataset for increasing a model’s ef-

fectiveness. Table 22 outlines the efficiency of the model in its localization and classi-

fication of each of the objects. The model was strongest in its ability to detect trucks

with a 99.89% mAP value and 1 FP detection for every 25 TP positive detections.

Table 22: YOLOv4-Tiny Model Training Results by Class: Combined Dataset Best
Model

Class mAP TP FP
Van 97.47% 45 2

Truck 99.89% 75 3
Car 98.24% 47 6

The graph of the mAP and CIoU loss curves shows the model stabilizing at around

2,400 iterations. Steady decreases in CIoU loss also show how the model was properly

training and not overfitting or underfitting.

106

Figure 62: mAP vs. CIoU Loss: Combined Dataset

5.3.2 Combined Dataset: GAN Augmentation

When trained on datasets augmented with images from GANs, most of the models

achieved superior results with high mAP values. The CIoU loss was therefore taken

more into consideration when selecting the best model from each trial.

Table 23: YOLOv4-Tiny Model Training Results: Combined Dataset + GAN
Images Best Models

GAN Learning Rate mAP CIoU Loss Avg. IoU Precision Recall F1-Score TP FP FN
DCGAN 0.00261 100.00% 0.0765 80.08% 0.96 1.00 0.98 170 0 7
cDCGAN 0.00261 99.26% 0.0801 79.76% 0.95 0.99 0.97 169 9 1
WGAN 0.00261 100.00% 0.0678 81.56% 0.97 1.00 0.99 170 5 0

cWGAN 0.00261 100.00% 0.0595 80.39% 0.96 1.00 0.99 170 8 0

107

The selected best model achieved when using training sets augmented with images

from GANs was the training set supported with synthetic images generated by the

cWGAN. Comparing the results to the original model, mAP increased by 1.47%

while CIoU loss decreased by 1.98%. The average IoU also positively benefited from

the augmentation with an increase of 3.81%. Precision increased by 2.00%, recall

increased by 2.00% and the F1-Score increased by a total of 3.00%. In addition, the

number of TP detections increased by 3 and FP detections were 0 with a decrease

of 11 false detections. The only metric negatively impacted from the addition of

images generated by a GAN was the FN metric, which increased by a value of 4 to 7

detections. This negative impact was offset by the increase in TP detections.

All three of the object classes had individual mAP values of 100.00%. For the van

class, mAP increased by 2.53% while TP detections were a perfect 48. FP detections

were reduced by 2 to a value of 0. The truck class had a mAP reduction of 0.11% with

no increase in the TP detections made on trucks and an additional two FP detections.

The mAP for the car class increased by 1.76%. The car class also had no increase in

TP detection but had a 2 unit decline in FP detections.

Table 24: YOLOv4-Tiny Model Training Results by Class: Combined Dataset +
cWGAN Images

Class mAP TP FP
Van 100.00% 48 0

Truck 100.00% 75 5
Car 100.00% 47 3

While the mAP and CIoU loss graph shows a plateau in mAP at 100.00%, GAN

augmentation can be seen to illicit some instability in the training progress. Insta-

bility can be observed at the huge decline in mAP at epoch 1,200. More extensive

hyperparameter tuning may be necessary to stabilize the models trained with GAN

augmented aerial image training sets.

108

Figure 63: mAP vs. CIoU Loss: Combined + cWGAN

5.4 Discussion

The augmentation of the parent images with synthetic child objects resulted with

mAP collectively increasing by 6.75% and average IoU increasing by 4.13%, on aver-

age. The benefits for Dataset 1, on average, were mAP increases of 8.80% and average

IoU increases of 4.67%. The performance of the model trained on Dataset 2 received

the biggest positive impact. mAP increased by 10.69% on average with the introduc-

tion of GAN augmentation and the average IoU across all trained models increased

by 5.17% with augmentation. For the size of datasets, GAN augmentation had a

much bigger impact on smaller datasets. This was due to the imbalance problems

those datasets have relative to not enough samples and diversity for model training.

The combined dataset was least effected by GAN augmentation. mAP collec-

tively increased by 0.75% on average and average IoU increased by 2.55% on average.

The combined dataset received increases in its accuracy metrics, but also saw more

FP detections for the trucks when the addition of augmented images were used for

training.

109

VI. Follow-on Experiments

Preamble

After concluding the sixty training trials of the You Only Look Once Version

4 - Tiny (YOLOv4-Tiny) Object Detection Model with the original dataset, initial

results prompted three more experiments. First, we created a new “Alien Test Set”

(i.e. a test set unrelated to either of the training sets) for use in training to increase

the diversity of the testing set. Second, we applied aggressive hyperparameter tuning

to counter perceived over training witnessed during Experiment I. Finally, we used

a blended multi-Generative Adversarial Network (GAN) approach to augment the

datasets.

6.1 Experiment I: Alien Test Set

(a) Example 1 (b) Example 2

(c) Example 3 (d) Example 4

Figure 64: Examples of Alien Test Set Images

110

We created an Alien Test Set with images of vehicles traveling along a different

road completely unrelated to the original training and test sets. We selected images

containing instances of objects labeled as “van”, “truck”, and “car” to investigate the

robustness of the trained detection model on new and different instances of objects

from those classes. The samples in Figure 64 show the different types of frames

included within the Alien Test Set.

Van Truck Car
0

20

40

60

80

100

Object Class

N
u
m

b
e
r

o
f

O
b

je
ct

s

Object Class Distribution: Alien Test Set

There was a total of 81 vans, 81 trucks, and 91 cars in the new test set. The most

dramatic differences in the features of the objects in the training set and Alien Test

Set were between the truck and car classes.

(a) Van (b) Truck (1) (c) Truck (2) (d) Car

Figure 65: Examples of Objects in the Alien Test Set

The benchmark learning rate used for Experiment I was 0.001. We determined

111

this value after examining the results of the training trials for the YOLOv4-Tiny

Model and its object detection capabilities on the Original Test Set. All of the

training sets containing real and synthetic images from the Combined Parent Dataset

were used for Experiment I. After conclusion of the experiment, the performances

of the models using the augmented datasets were compared to the performance of

the model with the original dataset. Any GAN augmented training set leading to the

model outperforming the model using the original combined training set was deemed a

“success” and further experiments using training sets augmented from the supporting

GAN variant were halted.

6.2 Experiment II: Alien Test Set- Varying Hyperparameters

After the termination of Experiment I, we designed a new experiment for the

inferior performing models using certain Generative Adversarial Networks (GANs)

augmented datasets which varied the hyperparemters of the YOLOv4-Tiny Object

Detection Model to see if there were other factors influencing performance. Experi-

ment II was designed around the hypothesis: if a GAN augmented training set did

not enhance a model’s performance on the Alien Test Set, then the augmented train-

ing set was causing the model to overfit on the original dataset. We determined

the model was overfitting on learning the objects deriving from the original dataset.

This pattern was observed in the datasets augmented with images from the Condi-

tional Deep Convolutional Generative Adversarial Network (cDCGAN), Wasserstein

Generative Adversarial Network (WGAN), and Conditional Wasserstein Generative

Adversarial Network (cWGAN). Only the datasets augmented with instances from

these GANs were used for the remaining experiments. The hyperparameters altered

were the learning rate and number of iterations. The baseline learning rate for Ex-

periment II was 0.00261. The first collection of trials consisted of only changing the

112

learning rate. The learning rate was either increased by 50% or decreased by 50%

when its value was altered.

The second assemblage of trials used a constant learning rate of 0.00261 but had

changes in the number of epochs hyperparameter to measure the effect of varying

iterations for object detection model training. 2,000 and 4,000 epochs were used to

investigate if better performance could be achieved from the original 6,000 iterations.

The hypothesis we constructed revolved around the notion of decreasing the number

of epochs gives the model less time to learn to the features of the original dataset and

forces the model to be more robust to never before seen instances.

The final collection of trials consisted of the combination of differing learning

rates and number of epochs across each training sequence. The third variation of

Experiment II had the goal of finding an optimal mix of the two hyperparameters

which produced the best model trained on an augmented training set. The learning

rate 0.00261 was decreased by 50% to 0.001305 as well as increased by 50% to .005220.

For each of the two learning rates, the number of epochs was set to 2,000 and 4,000

iterations.

113

6.3 Experiment III: Blended Augmented Training Set

Figure 66: Blended Augmentation: Phase 1 Process

The last augmentation attempt for diversifying the original training set used im-

ages from all four of the GANs concomitantly for creating a new augmented training

set. For the first phase of the blended augmentation, we doubled the dataset and the

original process of covering the images was executed. An additional component for

replacing all of the native objects was the addition of one extra entity to each parent

image. For covering the original images, we made efforts to have an object from a

different class cover an original figure. One limitation to this technique was how the

van and car could not always cover the truck, therefore, we had augmented frames

where we placed the truck in the same position in the parent image which the vehicle

originally presided. Due to constraints of the amount of images and to reduce the

risk of greater dataset imbalance, some images received more than one extra object,

as well as synthetic vans and cars covering their real world child images.

114

Figure 67: Blended Augmentation: Phase 2

After the dataset was doubled, phase two of the augmentation process sought to

at least double the number of objects within each parent image. Due to unequal

amounts of saved synthetic images, some of the new frame instances had more than

a 100% increase in the number of the objects contained within their boundaries. We

used the same previous technique to move objects from different parts of the image

where they originally were captured by the Unmanned Aerial Vehicle (UAV), however,

this was not feasible in some instances to ensure the original objects were covered.

Figure 68: Blended Augmentation: Phase 3

115

The van class had the least number of synthetic replications, therefore, phase

three of the blended augmentation process included a minority of batches containing

anywhere from six to twenty cars and six to twenty trucks. These expansive tech-

niques added a wide range of diversity across the new training set. Once the blended

augmentation was complete, we trained the YOLOv4-Tiny Model with the learning

rates of 0.00261, 0.001, 0.0001, and 0.00001 for 6,000 iterations on the original and

Alien Test Sets.

6.3.1 Blended Augmentation

As mentioned, the last augmentation variation was combining the child objects

from all four of the GANs to create one, blended training set. This augmentation

attempt led to the biggest increase in number of images and object instances for

all of the training set transformations. The total number of objects in the blended

augmented dataset was 2,506. The van class had the largest percent change increase

of 398.45% with the addition of 579 new instances to the parent frames. The car

class had the second largest addition of synthetic images with an increase of 578

new objects or a 387.50% change increase. The truck class had the smallest percent

change of 350.00% in the parent images. Even with the lowest percent change in

number of objects in the training set, trucks were now the highest number of objects

spread throughout all of the frames with the addition of 660 synthetic instances and

a total of 924 instances. The blended augmented dataset was comprised of 30.88%

vans, 36.92% trucks, and 32.20% cars.

116

(a) Example 1 (b) Example 2

(c) Example 3 (d) Example 4

Figure 69: Examples of Blended Augmented Parent Images

Examples of the Blended Augmentation Training Set are shown above. Due to the

way each GAN generated the exterior background information, it was very difficult

to blend any of the images into the surrounding environment. As stated previously,

there were more generated synthetic trucks and cars. Displayed in Figure 69d, the

extra synthetic objects from these classes were used to create extremely diverse images

uncaptured by the aerial vehicle in an attempt to enhance the YOLOv4-Tiny Model’s

generalizability.

117

VII. Follow-on Experiments’ Results

Preamble

This chapter provides the results of the three different experiments conducted

after the baseline analysis. The goal of Experiment I was to investigate the You Only

Look Once Version 4 - Tiny (YOLOv4-Tiny) Model’s generalizability on images of

the same class but existing outside of the original population of images and observe if

Generative Adversarial Network (GAN) augmentation bolstered model performance.

In Experiment II, the goal was to implement hyperparameter tuning for the YOLOv4-

Tiny Model in conjunction with GAN augmentation to gather evidence if using the

two techniques together leads to better model performance. Finally, the goal of

Experiment III was to use a multi-GAN ”blended” augmentation technique to increase

the diversity of an aerial image training set and produce the best performing detection

model.

7.1 Experiment I: Alien Test Set

We hypothesized the minimal positive benefit of Generative Adversarial Networks

(GANs) on the combined dataset was attributed to the nature of the test dataset.

The test images were frames taken only moments after the training data images, pro-

viding minimal diversity. To understand the effects of a model’s generalizability and

robustness to new instances, an Alien Test Set was created with completely new and

dissimilar instances. Experiment I was designed to determine if GAN augmentation

could help bridge the gap of increasing an object detection model’s ability to correctly

localize and classify new instances of the same class, a difficult problem to solve in a

computer vision.

118

Table 25: Experiment I Results: Learning Rate = 0.001

Dataset mAP CIoU Loss Avg. IoU Precision Recall F1-Score TP FP FN
Combined 70.65% 0.0843 51.46% 0.70 0.64 0.67 183 78 103

Combined + DCGAN 77.59% 0.1035 58.56% 0.78 0.60 0.60 171 47 115
Combined + cDCAN 61.16% 0.1001 38.39% 0.53 0.52 0.53 150 133 136
Combined + WGAN 62.30% 0.0954 46.09% 0.62 0.51 0.56 145 88 141
Combined + cWGAN 68.40% 0.0930 50.22% 0.68 0.58 0.63 166 79 120

The only GAN augmented dataset supporting a better performing model than

the model trained solely on the original images was the training set augmented with

Deep Convolutional Generative Adversarial Network (DCGAN) images. The aug-

mented training set containing DCGAN images was able to increase the model’s

Mean Average Precision (mAP) by 6.94% and the average Intersection over Union

(IoU) accuracy by 7.10%. Precision also increased by 8.00%. The recall rate and F1-

Score both decreased by 4.00% and 7.00%, respectively. The decline in True Positive

(TP) detections and increase in False Negative (FN) detections led to the declination

of the recall rate. The model failed at detecting 115 instances and falsely identified

47 instances. One inference from these results is the stark differences between the

training set and test set led the model to fail in detecting the new object variants.

For example, the trucks from the training set compared to the Alien Test Set are

mostly similar in their size and shape but differ greatly in their physical attributes.

Table 26: Experiment I Results by Class

Dataset Class mAP TP FP
Combined Van 74.22% 37 11

Combined + DCGAN Van 83.65% 65 22
Combined Truck 75.35% 68 10

Combined + DCGAN Truck 74.87% 55 7
Combined Car 62.39% 78 57

Combined + DCGAN Car 74.23% 51 18

Even with the large amount of FN detections, performance was still improved on

the detections of each of the classes when GAN augmented images were introduced

119

in training. For the van class, augmentation improved the mAP by 9.43% and added

28 TP detections. One negative impact was the 100.00% increase in False Positive

(FP) detections which changed the ratio of the number of FP to TP detections from

29.73% to 33.85%. The truck class was the only class where we recorded a decline in

mAP with a decrease of 0.48%. While TP detections also declined, the rate of FP to

TP detections benefited from the GAN augmentation with a decrease of 1.98%. The

car class had the highest net benefit from the augmented training dataset. The mAP

increased by 11.84%. While TP detections fell, there was a dramatic decrease in FP

detections which implies the model had less of a tendency to surmise a car was in a

certain part of the frame in which it was not. The rate of FP to TP detections fell

from 73.08 % to 35.29%, showing improvements in detection stability.

120

Figure 70: Experiment I: mAP vs. CIoU Loss: Combined Dataset + Alien Test Set

Both learning curves show a large variance in mAP during the training cycle, an

effect occurring from the Alien Test Set. The augmented dataset achieved a higher

mAP and shows to be more stable at the end of its training cycle compared to the

unaltered dataset. GAN augmentation added more stability to training with test sets

not deriving from the training set, an important feature for object detection models

deployed in unknown environments to possess.

121

Figure 71: Experiment I: mAP vs. CIoU Loss: Combined Dataset + DCGAN +
Alien Test Set

7.1.1 Discussion

An unexpected observation occurring in Experiment I was the least stable of

the GANs, the DCGAN, supporting the only augmented dataset training a better

performing model on the Alien Test Set compared to the original training set with no

augmentation. One hypothesis for this observation is the DCGAN images were more

diverse in their overall quality so the model was not bias towards the original test

set and could perform better on the Alien Test Set. The other GANs trained with

higher stability, generating images much more similar to the objects in the datasets.

Further research should be conducted on augmented images with lower quality or

122

more dissimilar to their original counterparts to understand if their use will produce

models more robust to detection on unique and diverse image datasets.

7.2 Experiment II: Alien Test Set with Varying Hyperparameters

After review of the results from Experiment I, we assert the DCGAN performed

better than the other GANs for creating a robust model to the Alien Test Set due

its lower quality and dissimilar images. This perhaps prevented the model from

learning the original test set as well as the other augmented datasets, reducing its

bias. Attempts to overcome the overfitting problem of the three other GAN variants

involved changing the values of two different hyperparameters: the learning rate and

number of iterations. Tuning these values forced the model to learn the objects

derived from the original test set slower and generalize better to unrelated object

instances.

The best model for both the original combined dataset and the GAN augmented

dataset was attained from trials adopting a learning rate of 0.001305 and 4,000 epochs.

The training set augmented with the Conditional Deep Convolutional Generative

Adversarial Network (cDCGAN) images produced the most effective results. This

model had the second highest accuracy but it had a much lower Complete Intersection

over Union (CIoU) loss value than the model with the highest accuracy which was the

model using a learning rate of 0.00261 and the training set augmented with images

from the Conditional Wasserstein Generative Adversarial Network (cWGAN). The

cWGAN augmented model had an accuracy of 78.49% but a CIoU loss value of

0.1820.

Table 27: Experiment II Results: Learning Rate = 0.001305 | Iterations = 4,000

Dataset mAP CIoU Loss Avg. IoU Precision Recall F1-Score TP FP FN
Combined 74.94% 0.0847 52.38% 0.73 0.69 0.71 197 73 89

Combined + cDCGAN 76.52% 0.1312 53.92% 0.73 0.64 0.68 183 68 103

123

Using the Alien Test Set, the results show GANs were able to increase a model’s

generalizability on foreign images but future research is still needed to stabilize the

localization of objects within a frame of an augmented dataset. The mAP was in-

creased by 1.58% and the average IoU increased by 1.54%. A common pattern with

the use of augmented objects was an increase in the CIoU loss, which increased by

4.65%. While there was no change in precision, the recall and F1-Scores fell by 5.00%

and 3.00%, respectively. Performance degradation occurred with an increase of 14

FN detections from the combined dataset to the augmented combined dataset. FN

detections recurrence may be connected to wider diversity of images provided by the

GAN augmentation, leading to the model’s confusion of where and what an object

was in the frame. The TP detection value fell by 14 units also due to the model not

completely learning where to look and accurately classify the objects in the Alien Test

Set. The FP detection rate was positively affected in Experiment II with a decrease

of 5 detections. The small decrease helped preserve the precision between the two

models.

Table 28: Experiment II Results by Class: Learning Rate = 0.001305 | Iterations =
4,000

Dataset Class mAP TP FP
Combined Van 76.18% 46 12

Combined + cDCGAN Van 82.27% 37 0
Combined Truck 78.42% 80 11

Combined + cDCGAN Truck 74.47% 69 11
Combined Car 60.81% 71 50

Combined + cDCGAN Car 72.82% 77 57

While detection of the objects in Alien Test Set reaped huge benefits from GAN

augmentation, better results were obtained for the classifications of the objects. The

van object class had the best results for detection with a decrease of 12 to 0 FP

detections. The mAP for the van class also increased by 6.09%. The truck was

124

the only object class to not gain any positive impacts from the augmented training

set. A small decrease of 3.95% occurred in the mAP for the truck class. While TP

detections fell by 11, the FP detection statistic did not change. The car object class

received the most benefit from augmentation in the training set, gaining a 12.01%

increase in mAP. The TP detections also increased for cars by 7, however, there

was also an increase in the number of FP detections. More hyperparameter tuning

should be researched to see how different hyperparameters in detection models benefit

performance on datasets containing deepfake objects.

Figure 72: Experiment II: mAP vs. CIoU Loss: Combined Dataset + Alien Test Set

The mAP and CIoU graph for the model trained on the two different training sets

showed similarities in the wide variance of the mAP over the training lifespan. Visual

125

inspection shows less volatility when training with the augmented dataset, providing

evidence which shows GAN augmentation adds stability to the training process of

the YOLOv4-Tiny Object Detection Model.

Figure 73: Experiment II: mAP vs. CIoU Loss: Combined Dataset + cDCGAN +
Alien Test Set

7.2.1 Discussion

Experiment II showed the ability of aerial image training sets augmented with

GANs to stabilize a model and provide higher levels of mAP on a test set which

is completely foreign and different from the training set. These findings show great

promise for solving the problem of CNNs classifying objects of the same class which

126

look completely different in physical nature. The use of a GAN helps add diversity

and new features to a training set, promoting the performance of classification and

detection models which can generalize to dramatically different, unknown instances.

Table 29: Experiment II Results: Performance Enhancements

Learning Rate Iterations %∆ in mAP %∆ in IoU
0.00261 2000 13.08 13.34
0.00522 2000 2.12 -8.75
0.001305 2000 5.02 13.66

In Table 29, 2,000 iterations resulted in overall better performance in training the

YOLOv4-Tiny Model compared to 4,000 iterations. This supports the hypothesis

we made stating the model was overfitting when training for more iterations on the

original dataset. All of the models gaining an increase in mAP also benefited from

increases in average IoU besides the model with the learning rate 0.00522.

7.3 Experiment III: Blended Augmented Training Set

In Experiment III, we used a multi-GAN blended augmentation technique in an

attempt to increase the diversity of the training set and performance of the model on

both test sets. Three of the four models for the original training set produced mAP

scores of 100.00%, showing the powerful effect the use of multiple GANs can have

for increasing the range of diversity in a training set. Of the three best performing

models, we selected the model with a learning rate of 0.00261 as the best model since

it had the lowest CIoU loss value of 0.1060.

For the Alien Test Set, the model trained with a blended augmented dataset and

learning rate of 0.001 achieved an accuracy of 85.67%. In comparison, this model

achieved a mAP 7.18% higher than the highest accuracy achieved Experiment II.

127

That mAP was 78.49% with a cWGAN augmented training set using a learning rate

of 0.00261.

Table 30: Experiment III Results

Test Set Learning Rate mAP CIoU Loss Avg. IoU Precision Recall F1-Score TP FP FN
Original 0.00261 100.00 0.1060 80.57% 0.96 1.00 0.98 170 8 0

Alien 0.001 85.67% 0.1464 60.24% 0.84 0.71 0.77 203 40 83

For the original test set, the blended augmentation technique engendered a pow-

erful model with superior performance. Comparing the model to the training of the

model using the combined training set with a learning rate of 0.00261, mAP increased

by 2.25% to 100.00%. One negative impact occured in the loss metric increasing by

6.11%. A higher loss could be due to the increase in the amount of images. Training

the model for more iterations could possibly have led to a reduction in the average

loss value. Improvements were made in the average IoU value with an increase of

1.44%. Precision increase by 2.00%, and with zero FN detections, recall increased by

3.00% to 1.00. The value of the F1-Score also grew by 3.00% to 0.98. TP detections

grew by a value of 65 to 170 and FP detections decreased by 3 to a value of 8. Further

support for the model’s robustness and detection ability is the improvement from 5

FN detections to zero FN detections, providing proof the model is more capable of

finding the correct foreign objects in the frame.

Using the blended augmentation technique for the original training set provided a

similar pattern of improvements in the model’s performance when compared against

the Alien Test Set. Comparing the Blended Augmentation Training Set model to the

model using the original combined training set and the Alien Test Set, mAP improved

by 15.02%. The average IoU rate increased from 51.46% to 60.24%. Consistent with

the other training trial in Experiment II, CIoU loss increased by 6.21%. For all model

comparisons, the Blended Augmentation Training Set led to the biggest collective

improvements on models using the Alien Test Set for the precision, recall, and F1-

128

Score rates. Precision was increased by 14.00%, recall had improvements of 7.00%,

and the F1-Score was improved by 10.00%. The TP detections increased by 20 and FN

detections decreased by 20. FP detections had the biggest decrease of 48 detections

changing from the original value of 78 to 40. The shifts in positive directions for all

the performance metrics provides evidence supporting GAN augmentation in training

sets for creating and enhancing viable models for object detection in unknown and

different environments.

Table 31: Experiment III Results by Class: Blended Augmentation | Original Test
Set

Class mAP TP FP
Van 100.00% 48 0

Truck 100.00% 75 6
Car 100.00% 47 2

Investigating each detection class also provides support for the assertion stating

the blended augmentation technique is beneficial for augmenting datasets used for

training the YOLOv4-Tiny Model. First, comparing the two models trained with the

original test set, the mAP for the van detections increased by 4.86%. The number of

TP detections increased by 5 and the value of FP detections stayed the same at 0.

For the truck class, mAP increased by 0.08% to 100.00%. TP detections stayed the

same while FP detections increased by 1. There was little impact on the truck class,

however, it was already at the upper threshold of feasible rates before augmentation.

One reason there was no reduction in the FP detection rate of trucks was the class

displayed the highest amount of complexity in its features for the GAN to recreate

and model to learn. Finally, the car class had a 1.83% increase in its mAP value. TP

car detections increased by 3 to 47 and the biggest drop in the FP rate occured for

the car with a total decrease of 9 units.

129

Table 32: Experiment III Results by Class: Blended Augmentation | Alien Test Set

Class mAP TP FP
Van 90.09% 53 2

Truck 75.53% 77 21
Car 91.41% 73 17

All three objects of interest had improvements from the Blended Augmentation

Training Set and Alien Test Set implementation. mAP for the van class improved by

15.87% with 16 more TP detections and 9 less FP detections. The truck class gained

very small improvements, receiving an improvement in its mAP score of 0.18%. The

number of TP detections positively increased by 9 but was offset by an increase of 11

detections for the FP detection metric. One of the reasons it was hard to train the

YOLOv4-Tiny Model to correctly find and classify the truck class was the three types

of trucks captured by Unmanned Aerial Vehicles (UAVs) between the two sets were

dramatically different in their physical appearance. Finally, the car class benefited

from a mAP increase of 29.02% which was the biggest improvement for any classes’

mAP through all trials and experiments. While the mAP increased, TP detections

fell by 5, but this declination was offset by a huge improvement in the FP detections

which decreased by 40 units.

130

Figure 74: Experiment III: mAP vs. CIoU Loss Curve: Original Test Set

For the original test set, the Blended Augmentation Training Set supported the

model in reaching a 100.00% mAP in approximately 1,400 iterations. mAP was stable

afterwords with a constant decreasing CIoU loss, leading to the conclusion asserting

the Blended Augmentation Training Set helped bolster a strong, balanced object

detection model.

131

Figure 75: Experiment III: mAP vs. CIoU Loss Curve: Alien Test Set

The mAP for the Blended Augmentation Training Set with the Alien Test Set

had a wide variance over the 6,000 iterations due to the huge differences between the

objects in two sets. The model’s mAP plateaued at 4,000 iterations and began dis-

playing signs of a balanced object detection model. Further research is recommended

to analyze the use of GANs for augmenting objects in a training set which differ from

the objects of the same class in a test set on what hyperparameters need to be tuned

to allow for more stability in the model training.

132

7.3.1 Discussion

Our main takeaway from Experiment III is augmenting a training set with an

enormous amount of different GAN instances will lead to strong performing detec-

tion models. The use of the blended augmentation on the training set confirmed the

assertion using GANs for augmenting aerial image training sets will lead to more

effective localization and classification capabilities for object detection models. The

average of the mAP value for the models using the Blended Augmentation Training

Set and Original Test Set was 98.99%. For the models using the Blended Augmen-

tation Training Set and Alien Test Set, mAP averaged at a rate of 73.71%. An

important finding from Experiment III is the ability to use GANs to teach models

to find objects which are of the same class but differ in qualitative features with

acceptable accuracy and detection rates. The implementations of UAVs in unknown

environments will benefit from the use of GAN augmentation in their models’ training

sets to increase their detection performance.

133

VIII. Conclusions

Generative Adversarial Network (GAN) augmentation for enlarging the size of

image training sets acquired by aerial moving platforms showed effectiveness in in-

creasing the accuracy of object detection models. With a 6.75% increase in Mean

Average Precision (mAP) and a best-case increase of 15.76%, GAN augmentation

proved to provide quality, brand new training instances not captured by a moving

platform for the model, expanding the model’s generalizability and robustness to new

images. Similarly, we saw a 4.13% increase on average and a best-case increase of

9.60% for the Intersection over Union (IoU), providing further evidence for the asser-

tion stating GAN augmentation will better support object detection models. The use

of synthetic images from GANs in aerial image training sets decreases the amount

of time and manpower data scientists must spend on data collection and can create

real-time deployable detection models in a shorter time frame. The only weakness of

GAN augmentation for training aerial image object detection models was the increase

in the Complete Intersection over Union (CIoU) loss metric, however, pragmatically

the substantial increases in both mAP and IoU offset this problem and yielded much

better preforming models. Further analysis is recommended to discover what parame-

ters were having an effect on the increase in CIoU loss and if any CIoU loss mitigation

can be obtained from hyperparameter tuning.

A current problem faced in training machine learning (ML) models, especially

Convolutional Neural Networks (CNNs), is training the model to be able to recognize

objects of the same class but with different physical features. Using the Alien Test

Set, Generative Adversarial Networks (GANs) showed great potential in bridging

the gap of vacuity surrounding new instances of objects with the addition of unique,

diverse characteristics in the synthetic images produced from a GAN. When using the

blended augmentation technique for creating new training sets, the highest mAP value

134

of 85.67% was achieved on the Alien Test Set. This was a 15.02% increase compared

to the You Only Look Once Version 4 - Tiny (YOLOv4-Tiny) Model trained on the

original combined training set with no augmentation using a learning rate of 0.001 and

6,000 epochs. Moreover, using the Blended Augmentation Training Set in training

led to an 8.78% improvement in the average IoU rate for the YOLOv4-Tiny Object

Detection Model, increasing average IoU from 51.46% to 60.24%.

Previously outlined in section 1.1.1, the research sought to answer three questions:

1. Does an augmented image training dataset acquired by a moving platform con-

taining generated synthetic images from a GAN increase the classification ac-

curacy and generalizability of a Convolutional Neural Network (CNN) object

detection model?

2. Does an augmented image training dataset acquired by a moving platform con-

taining generated synthetic images from a GAN increase the localization and

generalizability of a CNN object detection model?

3. What inferences can be drawn from the unaugmented and augmented datasets

that show their similarities and dissimilarities?

The first research question proposed was seeking to illicit proof of whether data

augmentation from GANs can increase the accuracy of a CNN model used for object

detection. Improvements were discovered in mAP of 6.75% on average when using

GAN augmentation. Additional research may want to compare GAN augmentation

to other augmentation techniques on aerial image training sets to discover which

type of technique produces the best model mAP. The second research question to be

answered was whether the localization of an object detection model could be increased

with a GAN data augmentation technique. The 4.13% average improvement of the

average IoU rate showed the model was able to properly locate the object of interest

135

within a frame. Further research is recommended to understand how a model could

detect objects of the same class but dramatically different in their sizes.

Questions one and two both sought to investigate generalizability enhancement

of an object detection model for an aerial vehicle. Experiments I, II, and III were

designed using an Alien Test Set to provide evidence in support of GAN augmentation

for generalizability enhancement. GAN augmentation showed to be most effective in

Experiments II and III. In Experiment I, the use of too many samples similar to

the original dataset hindered the generalizability of the model and overfit the model

to the wrong test set. This is one consideration to be taken into account when

augmenting training datasets with GANs which are training models used for real

world applications. Diversity in the training set images is a prerequisite for creating

a suitable model for deployment in a real-world scenario.

Finally, the last research question posed wanted to provide justification for the

assertion stating the quality of the generated images aligned with the original im-

ages found in the provided datasets. This was done through human inspection and

verification of each synthetic image. One future research area for GANs is finding a

quick process for verifying the quality of generated images. Analysis of the results

also helped clarify the quality of the images. Increases in CIoU loss may allude to

lower quality synthetic images, but this can also be offset with increases in the accu-

racy, precision, and recall for a ML model. The YOLOv4-Tiny Model followed the

pattern of small increases in CIoU loss but large increases in the accuracy metrics of

the model, suggesting the synthetic images produced were of higher quality. Qual-

ity assessment of data generated by GANs is still in the infancy stage of this ML

technique and should be pursued to benefit not only augmented images from moving

aerial platforms but other types of data as well.

136

8.1 Future Research

The research presented in this thesis showed the feasibility and effectiveness of

augmenting moving platform aerial image training sets with GANs but there is fur-

ther investigations which should be pursued to increase the understanding of GANs

implementation and strengthening the generalizability of object detection models.

Future research endeavors include:

• Implementation of a Progressive Growing Generative Adversarial Network (PG-

GAN) or a StyleGAN to augment the entire frame.

• Replacement of Rectified Linear Unit (ReLU) and Leaky Rectified Linear Unit

(LReLU) activation functions in GAN architectures to investigate the impacts

on stability.

• Investigation of whether specific angles of salient objects in a frame can be

mapped to in a vector space by a GAN, as well as other native features of aerial

videos such as variations in altitude.

• Research on finding quick ways of verifying the quality of synthetic images

produced by GANs as well as a concrete way of confirming the training cycle

has reached its limit of creating new images.

The next adaptation of the presented research would be to use a PGGAN or

StyleGAN to create augmented images of the entire original frames captured by the

Unmanned Aerial Vehicle (UAV). A PGGAN will provide the capabilities of recreating

the originally collected images which were greater than size 64x64. PGGANs have

shown the ability to create high quality images of synthetic faces [76] and could allow

for the development of producing images which are similar in quality to the type of

camera used to capture images on various different moving platforms today. This

137

could lead to development of new types of images which include not only new diverse

objects of interest but new diverse external backgrounds with a larger image size and

level of image quality, producing a more generalized object detection model. The use

of a StyleGAN allows for control over the different details of the generated images

using different style vectors and noise. The three major changes to the StyleGAN

occur in the generator [76]. The first change is mapping the points in the latent space

to an intermediate latent space through a mapping network. The second change stems

off of the first change since now the intermediate latent space can be used to manage

the generated output. The third change utilizes noise as the origin for variation at

each point in the generator. Mapping different characteristics of aerial images to

style vectors can allow for new training images to be created which help balance not

only the number of objects in the dataset, but the types of images located within

in the dataset. For example, mapping altitudes to style vectors could allow for the

controlled generation of synthetic aerial images at various altitudes, from 10,000 feet

to 20,000 feet.

While the ReLU and LReLU are standard activation functions currently used to-

day, the problem of vanishing and exploding gradients is still prevalent, especially in

training GANs. Network stability is one of the main problems faced when implement-

ing GANs and finding further methods or architectural changes which can lead to a

higher amount of stability in a GAN can generate higher quality and more realistic

images, producing a more robust model capable of real-time detections. Two rec-

ommended activation functions to investigate in GAN architecture which have been

shown in computer vision research to produce more stability in CNN model training

are the Mish and Elliott Activation Functions.

Understanding how a GAN interacts with aerial data can be beneficial for creat-

ing new, diverse images varying in their main characteristics occurring from imagery

138

captured by continuously moving objects. Two characteristics of interest are the dif-

ferent angles of an object which the moving platform detects and captures the object

at as well as the altitude the aircraft is at the time of detection. Developing a way

to map the different instance angles to a vector in the latent space could allow for

a GAN to be conditioned with the captured angles and produce different vehicles at

various angle degrees. Angle conditioning of a GAN will provide new ways of gener-

ating an object seen from a different spot relative to platform originally uncaptured.

This could help bolster the detection capabilities of an object detection model as it

moves through an area of interest and captures objects at various different times and

locations. Another characteristic of film acquired from aerial moving platforms is the

altitude of the aircraft at the time the frame was obtained. The ability to produce

new instances at different altitude levels will decrease the amount of data collection

needed by different air crafts at those altitudes and allow for deployable detection

models in a shorter time frame.

139

Appendix A. Appendix

1.1 GAN Python Code Examples

1.1.1 cDCGAN Python Code

#Packages

import torch

import torch.nn as nn

import torch.optim as optim

import torchvision

import torchvision.datasets as datasets

import torchvision.transforms as transforms

from torch.utils.data import DataLoader

from torch.utils.tensorboard import SummaryWriter

#Set -up

class Discriminator(nn.Module):

def __init__(self , img_channels , features_disc , num_classes ,

image_size):

super(Discriminator , self).__init__ ()

self.image_size = image_size

self.disc = nn.Sequential(

nn.Conv2d(

img_channels + 1, features_disc , kernel_size=4, stride=2

, padding=1

),

nn.LeakyReLU(0.2),

self._block(features_d , features_disc * 2, 4, 2, 1),

self._block(features_disc * 2, features_disc * 4, 4, 2,

1),

self._block(features_disc * 4, features_disc * 8, 4, 2,

1),

140

nn.Conv2d(features_disc * 8, 1, kernel_size=4, stride=2,

padding=0),

nn.Sigmoid (),

)

self.embed = nn.Embedding(num_classes ,image_size*image_size)

def _block(self , in_channels , out_channels , kernel_size , stride ,

padding):

return nn.Sequential(

nn.Conv2d(

in_channels ,

out_channels ,

kernel_size ,

stride ,

padding ,

bias=False ,

),

nn.BatchNorm2d(out_channels),

nn.LeakyReLU(0.2),

)

def forward(self , x, labels):

embedding = self.embed(labels).view(labels.shape[0],1,self.

image_size , self.image_size)

x = torch.cat([x,embedding],dim=1)

return self.disc(x)

class Generator(nn.Module):

def __init__(self , channels_noise , img_channels , features_gen ,

num_classes , image_size ,

embed_size):

141

super(Generator , self).__init__ ()

self.image_size = image_size

self.net = nn.Sequential(

self._block(channels_noise + embed_size , features_gen * 16 ,

4, 1, 0), # img: 4x4

self._block(features_gen * 16 , features_gen * 8, 4, 2, 1),

img: 8x8

self._block(features_gen * 8, features_gen * 4, 4, 2, 1), #

img: 16x16

self._block(features_gen * 4, features_gen * 2, 4, 2, 1), #

img: 32x32

nn.ConvTranspose2d(

features_gen * 2, img_channels , kernel_size=4, stride=2,

padding=1

),

nn.Tanh(),

)

self.embed = nn.Embedding(num_classes , embed_size)

def _block(self , in_channels , out_channels , kernel_size , stride ,

padding):

return nn.Sequential(

nn.ConvTranspose2d(

in_channels ,

out_channels ,

kernel_size ,

stride ,

padding ,

bias=False ,

),

nn.ReLU(),

)

142

def forward(self , x, labels):

embedding = self.embed(labels).unsqueeze(2).unsqueeze(3)

x = torch.cat([x, embedding], dim=1)

return self.net(x)

def initialize_weights(model):

for m in model.modules ():

if isinstance(m, (nn.Conv2d , nn.ConvTranspose2d , nn.BatchNorm2d)

):

nn.init.normal_(m.weight.data , 0.0, 0.02)

#Training

#For this implementation , the directory should have a class labeled

#folder for each object

dataset = datasets.ImageFolder(root="FILENAME", transform=transforms

)

dataloader = DataLoader(dataset , batch_size=BATCH_SIZE , shuffle=True

)

device = torch.device("cuda" if torch.cuda.is_available () else "cpu"

)

LEARNING_RATE = #DEFINE

BATCH_SIZE = #DEFINE

IMG_SIZE = #DEFINE

IMG_CHANNELS = #DEFINE

NOISE_DIMENSIONS = #DEFINE

EPOCHS = #DEFINE

FEATURES_DISC = #DEFINE

FEATURES_GEN = #DEFINE

CLASSES = 4

143

GEN_EMBEDDING = 100

transforms = transforms.Compose(

[

transforms.Resize ((IMG_SIZE , IMG_SIZE)),

transforms.ToTensor (),

transforms.Normalize(

[0.5 for _ in range(IMG_CHANNELS)], [0.5 for _ in range(

IMG_CHANNELS)]

),

]

)

gen = Generator(NOISE_DIMENSIONS ,

IMG_CHANNELS ,

FEATURES_GEN ,

CLASSES ,

IMG_SIZE ,

GEN_EMBEDDING).to(device)

disc = Discriminator(IMG_CHANNELS , FEATURES_DISC , CLASSES , IMG_SIZE)

.to(device)

initialize_weights(gen)

initialize_weights(disc)

opt_gen = optim.Adam(gen.parameters (), lr=LEARNING_RATE , betas=(0.5,

0.999))

opt_disc = optim.Adam(disc.parameters (), lr=LEARNING_RATE , betas=(0.

5, 0.999))

criterion = nn.BCELoss ()

144

#Putting them into training mode

gen.train()

disc.train()

for EPOCH in range(EPOCHS):

for batch_idx , (real , labels) in enumerate(dataloader):

real = real.to(device)

labels = labels.to(device)

current_batch_size = real.shape[0]

noise = torch.randn(current_batch_size , NOISE_DIMENSIONS , 1, 1).

to(device)

fake = gen(noise , labels)

#Discriminator Training

disc_real = disc(real , labels).reshape(-1)

loss_disc_real = criterion(disc_real , torch.ones_like(disc_real)

) #loss discriminator real

images

disc_fake = disc(fake.detach (), labels.detach ()).reshape(-1) #

loss discriminator fake images

loss_disc_fake = criterion(disc_fake , torch.zeros_like(disc_fake

)) #Loss on the fake images

loss_disc = (loss_disc_real + loss_disc_fake) / 2

disc.zero_grad ()

#loss_disc.backward ()

loss_disc.backward(retain_graph=True)

opt_disc.step()

#Generator Training

output = disc(fake , labels).reshape(-1)

loss_gen = criterion(output , torch.ones_like(output))

gen.zero_grad ()

145

loss_gen.backward ()

opt_gen.step()

1.1.2 cWGAN Python Code

class Discriminator(nn.Module):

def __init__(self , img_channels , features_disc , num_classes ,

image_size):

super(Discriminator , self).__init__ ()

self.image_size = image_size

self.disc = nn.Sequential(

nn.Conv2d(

img_channels + 1,

features_disc ,

kernel_size=4,

stride=2,

padding=1

),

nn.LeakyReLU(0.2),

self._block(features_disc , features_disc * 2, 4, 2, 1),

self._block(features_disc * 2, features_disc * 4, 4, 2,

1),

self._block(features_disc * 4, features_disc * 8, 4, 2,

1),

nn.Conv2d(features_disc * 8, 1, kernel_size=4, stride=2,

padding=0),

)

self.embed = nn.Embedding(num_classes , image_size * image_size)

def _block(self , in_channels , out_channels , kernel_size , stride ,

padding):

return nn.Sequential(

146

nn.Conv2d(

in_channels ,

out_channels ,

kernel_size ,

stride ,

padding ,

bias=False ,

),

nn.BatchNorm2d(out_channels),

nn.LeakyReLU(0.2),

)

def forward(self , x, labels):

embedding = self.embed(labels).view(labels.shape[0], 1, self.

image_size , self.image_size)

x = torch.cat([x, embedding], dim=1)

return self.disc(x)

class Generator(nn.Module):

def __init__(self , channels_noise , img_channels , features_g ,

num_classes ,

image_size ,

embed_size):

super(Generator , self).__init__ ()

self.image_size = image_size

self.net = nn.Sequential(

self._block(channels_noise + embed_size , features_gen * 16 ,

4, 1, 0), # img: 4x4

self._block(features_gen * 16 , features_gen * 8, 4, 2, 1),

img: 8x8

147

self._block(features_gen * 8, features_gen * 4, 4, 2, 1), #

img: 16x16

self._block(features_gen * 4, features_gen * 2, 4, 2, 1), #

img: 32x32

nn.ConvTranspose2d(

features_gen * 2, img_channels , kernel_size=4, stride=2,

padding=1

),

nn.Tanh(),

)

self.embed = nn.Embedding(num_classes , embed_size)

def _block(self , in_channels , out_channels , kernel_size , stride ,

padding):

return nn.Sequential(

nn.ConvTranspose2d(

in_channels ,

out_channels ,

kernel_size ,

stride ,

padding ,

bias=False ,

),

nn.ReLU(),

)

def forward(self , x, labels):

embedding = self.embed(labels).unsqueeze(2).unsqueeze(3)

x = torch.cat([x,embedding], dim=1)

return self.net(x)

148

def initialize_weights(model):

for m in model.modules ():

if isinstance(m, (nn.Conv2d , nn.ConvTranspose2d , nn.BatchNorm2d)

):

nn.init.normal_(m.weight.data , 0.0, 0.02)

import torch

import torch.nn as nn

import torch.optim as optim

import torchvision

import torchvision.datasets as datasets

import torchvision.transforms as transforms

from torch.utils.data import DataLoader

Hyperparameters

device = torch.device("cuda" if torch.cuda.is_available () else "cpu"

)

LEARNING_RATE = #DEFINE

BATCH_SIZE = #DEFINE

IMG_SIZE = #DEFINE

IMG_CHANNELS = #DEFINE

NOISE_DIMENSIONS = #DEFINE

EPOCHS = #DEFINE

FEATURES_DISC = #DEFINE

FEATURES_GEN = #DEFINE

CRITIC_ITERATIONS = #DEFINE

CLIPPING_WEIGHT = #DEFINE

CLASSES = #DEFINE

GEN_EMBEDDING = #DEFINE

transforms = transforms.Compose(

[

149

transforms.Resize ((IMG_SIZE , IMG_SIZE)),

transforms.ToTensor (),

transforms.Normalize(

[0.5 for _ in range(IMG_CHANNELS)], [0.5 for _ in range(

IMG_CHANNELS)]

),

]

)

dataset = datasets.ImageFolder(root=FILENAME , transform=transforms)

dataloader = DataLoader(dataset , batch_size=BATCH_SIZE , shuffle=True

)

gen = Generator(NOISE_DIMENSIONS , IMG_CHANNELS , FEATURES_GEN ,

CLASSES , IMG_SIZE , GEN_EMBEDDING).

to(device)

critic = Discriminator(IMG_CHANNELS , FEATURES_DISC , CLASSES ,

IMG_SIZE).to(device)

initialize_weights(gen)

initialize_weights(critic)

opt_gen = optim.RMSprop(gen.parameters (), lr=LEARNING_RATE)

opt_critic = optim.RMSprop(critic.parameters (), lr=LEARNING_RATE)

#Training Mode

gen.train()

critic.train ()

for EPOCH in range(EPOCHS):

for batch_idx , (real , labels) in enumerate(dataloader):

real = real.to(device)

150

labels = labels.to(device)

current_batch_size = real.shape[0]

for i in range(CRITIC_ITERATIONS):

noise = torch.randn(current_batch_size , NOISE_DIMENSIONS , 1, 1

).to(device)

fake = gen(noise , labels)

critic_real = critic(real , labels).reshape(-1)

critic_fake = critic(fake , labels).reshape(-1)

loss_critic = -(torch.mean(critic_real) - torch.mean(

critic_fake)) #Expected

Value of Critic on Real -

Expected Value of Critic on

Fake

critic.zero_grad ()

loss_critic.backward(retain_graph=True)

opt_critic.step()

for p in critic.parameters ():

p.data.clamp_(-CLIPPING_WEIGHT , CLIPPING_WEIGHT)

output = critic(fake , labels).reshape(-1)

loss_gen = -torch.mean(output)

gen.zero_grad ()

loss_gen.backward ()

opt_gen.step()

151

1.2 YOLOv4-Tiny Hyperparameter Values

Table 33: YOLOv4-Tiny Model Hyperparameter Values

Hyperparameter Value
Batch Size 64

Subdivisions 16
Image Width 416
Image Height 416

Color Channels 3
Momentum 0.90

Decay 0.0005
Saturation 1.5
Exposure 1.5

Hue 0.1
Learning Rate 0.00261-0.00001

Policy Steps
Steps 4800,5400

1.3 Training Results: Dataset 1

Table 34: YOLOv4-Tiny Model Training Results: Dataset 1

Learning Rate mAP CIoU Loss Avg. IoU Precision Recall F1-Score TP FP FN
0.00261 84.18% 0.0321 57.72% 0.72 0.81 0.76 137 52 33
0.001 88.19% 0.040 64.34% 0.81 0.82 0.82 140 33 30
0.0001 82.47% 0.0994 57.90% 0.76 0.78 0.77 133 43 37
0.00001 66.51% 0.2943 56.59% 0.83 0.48 0.61 82 17 88

Table 36: YOLOv4-Tiny Model Training Results: Dataset 1 + DCGAN Images

Learning Rate mAP CIoU Loss Avg. IoU Precision Recall F1-Score TP FP FN
0.00261 86.45% 0.0371 65.26% 0.82 0.79 0.80 134 29 36
0.001 84.73% 0.0477 65.88% 0.82 0.76 0.79 130 28 40
0.0001 90.55% 0.1044 65.36% 0.86 0.81 0.83 138 23 32
0.00001 75.20% 0.3106 58.86% 0.83 0.70 0.61 103 21 67

152

Table 35: YOLOv4-Tiny Model Training Results by Class: Dataset 1

Class Learning Rate mAP TP FP
Van 0.001 99.67% 48 9
Van 0.00261 99.17% 48 23
Van 0.0001 96.39% 46 6
Van 0.00001 38.45% 4 2

Truck 0.001 65.26% 45 22
Truck 0.00261 60.64% 45 18
Truck 0.0001 73.41% 52 23
Truck 0.00001 69.82% 35 3
Car 0.001 99.60% 47 2
Car 0.00261 92.73% 44 11
Car 0.0001 77.62% 35 14
Car 0.00001 91.25% 43 12

Table 37: YOLOv4-Tiny Model Training Results by Class: Dataset 1 +DCGAN
Images

Class Learning Rate mAP TP FP
Van 0.001 99.30% 47 5
Van 0.00261 99.20% 47 12
Van 0.0001 96.53% 46 6
Van 0.00001 88.57% 41 15

Truck 0.001 68.18% 44 15
Truck 0.00261 69.22% 48 11
Truck 0.0001 78.24% 53 16
Truck 0.00001 46.86% 19 0
Car 0.001 86.72% 39 8
Car 0.00261 90.93% 39 6
Car 0.0001 96.89% 39 1
Car 0.00001 90.17% 43 6

Table 38: YOLOv4-Tiny Model Training Results: Dataset 1 + cDCGAN Images

Learning Rate mAP CIoU Loss Avg. IoU Precision Recall F1-Score TP FP FN
0.00261 90.63% 0.0489 61.60% 0.74 0.79 0.77 134 46 36
0.001 91.83% 0.0632 69.25% 0.86 0.83 0.84 141 23 29
0.0001 94.25% 0.1219 65.49% 0.86 0.91 0.89 155 25 15
0.00001 78.47% 0.3098 54.18% 0.76 0.62 0.68 1 105 34 65

153

Table 39: YOLOv4-Tiny Model Training Results by Class: Dataset 1 + cDCGAN
Images

Class Learning Rate mAP TP FP
Van 0.001 98.51% 47 5
Van 0.00261 99.53% 47 13
Van 0.0001 98.11% 47 4
Van 0.00001 82.53% 42 29

Truck 0.001 76.96% 47 8
Truck 0.00261 74.43% 41 4
Truck 0.0001 85.55% 63 16
Truck 0.00001 61.40% 20 1
Car 0.001 100.00% 47 10
Car 0.00261 97.93% 46 29
Car 0.0001 99.10% 45 5
Car 0.00001 91.47% 43 4

Table 40: YOLOv4-Tiny Model Training Results: Dataset 1 + WGAN Images

Learning Rate mAP CIoU Loss Avg. IoU Precision Recall F1-Score TP FP FN
0.00261 88.44% 0.0374 65.12% 0.79 0.79 0.79 135 36 35
0.001 90.95% 0.0518 66.13% 0.81 0.81 0.81 138 32 32
0.0001 90.00% 0.1156 59.66% 0.79 0.84 0.81 142 38 28
0.00001 76.31% 0.3111 46.38% 0.67 0.49 0.57 84 42 86

Table 41: YOLOv4-Tiny Model Training Results by Class: Dataset 1 +WGAN
Images

Class Learning Rate mAP TP FP
Van 0.001 99.64% 48 19
Van 0.00261 98.98% 47 28
Van 0.0001 95.04% 46 19
Van 0.00001 86.82% 44 38

Truck 0.001 73.24% 43 11
Truck 0.00261 66.56% 41 3
Truck 0.0001 75.00% 52 19
Truck 0.00001 54.24% 0 0
Car 0.001 99.96% 47 2
Car 0.00261 99.78% 47 5
Car 0.0001 99.96% 44 0
Car 0.00001 87.86% 40 4

154

Table 42: YOLOv4 Model-Tiny Training Results: Dataset 1 + cWGAN Images

Learning Rate mAP CIoU Loss Avg. IoU Precision Recall F1-Score TP FP FN
0.00261 90.24% 0.0349 62.51% 0.76 0.79 0.83 141 44 29
0.001 88.61% 0.0525 62.79% 0.77 0.81 0.80 136 41 34
0.0001 94.78% 0.1223 67.24% 0.86 0.84 0.85 145 24 25
0.00001 80.14% 0.3232 55.58% 0.82 0.49 0.61 103 22 67

Table 43: YOLOv4-Tiny Model Training Results by Class: Dataset 1 +cWGAN
Images

Class Learning Rate mAP TP FP
Van 0.001 96.41% 46 19
Van 0.00261 99.88% 48 13
Van 0.0001 95.41% 46 7
Van 0.00001 97.65% 45 14

Truck 0.001 69.84% 44 18
Truck 0.00261 71.13% 46 9
Truck 0.0001 88.93% 55 17
Truck 0.00001 51.87% 16 2
Car 0.001 99.57% 46 4
Car 0.00261 99.71% 47 22
Car 0.0001 100.00% 44 0
Car 0.00001 90.90% 42 6

1.4 Training Results: Dataset 2

Table 44: YOLOv4-Tiny Model Training Results: Dataset 2

Learning Rate mAP CIoU Loss Avg. IoU Precision Recall F1-Score TP FP FN
0.00261 54.46% 0.0536 68.14% 0.83 0.52 0.64 88 18 82
0.001 58.32% 0.0748 65.47% 0.80 0.51 0.62 86 22 84

0.0001 73.37% 0.1960 62.29% 0.79 0.56 0.66 96 25 74
0.00001 66.51% 0.6737 56.59% 0.83 0.48 0.61 82 17 88

155

Table 45: YOLOv4-Tiny Model Training Results by Class: Dataset 2

Class Learning Rate mAP TP FP
Van 0.001 37.31% 7 0
Van 0.00261 22.40% 8 0
Van 0.0001 42.97% 15 0
Van 0.00001 38.45% 4 2

Truck 0.001 47.75% 34 1
Truck 0.00261 48.10% 34 0
Truck 0.0001 90.21% 41 1
Truck 0.00001 69.82% 35 3
Car 0.001 89.90% 45 21
Car 0.00261 92.89% 46 18
Car 0.0001 86.93% 40 24
Car 0.00001 91.25% 43 12

Table 46: YOLOv4 Model-Tiny Training Results: Dataset 2 + DCGAN Images

Learning Rate mAP CIoU Loss Avg. IoU Precision Recall F1-Score TP FP FN
0.00261 73.39% 0.0645 66.49% 0.82 0.59 0.69 101 22 69
0.001 80.22% 0.0907 68.62% 0.86 63 0.73 107 18 63
0.0001 89.13% 0.2744 71.89% 0.95 0.72 0.82 122 7 48
0.00001 63.61% 0.7522 57.82% 0.81 0.49 0.61 83 19 87

Table 47: YOLOv4-Tiny Model Training Results by Class: Dataset 2 + DCGAN
Images

Class Learning Rate mAP TP FP
Van 0.001 63.02% 23 12
Van 0.00261 52.45% 20 19
Van 0.0001 81.21% 30 3
Van 0.00001 31.22% 11 14

Truck 0.001 77.73% 37 0
Truck 0.00261 68.17% 34 1
Truck 0.0001 88.76% 46 0
Truck 0.00001 68.94% 33 1
Car 0.001 99.91% 47 6
Car 0.00261 99.56% 47 2
Car 0.0001 97.41% 46 4
Car 0.00001 90.67% 39 4

156

Table 48: YOLOv4-Tiny Model Training Results: Dataset 2 + cDCGAN Images

Learning Rate mAP CIoU Loss Avg. IoU Precision Recall F1-Score TP FP FN
0.00261 62.71% 0.0713 63.55% 0.77 0.54 0.64 92 27 78
0.001 64.99% 0.0907 68.19% 0.84 0.54 0.66 92 17 78
0.0001 74.17% 0.2744 61.92% 0.81 0.58 0.68 100 24 70
0.00001 66.67% 0.6895 63.12% 0.91 0.62 0.52 86 9 84

Table 49: YOLOv4-Tiny Model Training Results by Class: Dataset 2 + cDCGAN
Images

Class Learning Rate mAP TP FP
Van 0.001 35.96% 12 6
Van 0.00261 26.90% 11 17
Van 0.0001 45.22% 14 5
Van 0.00001 46.30% 10 2

Truck 0.001 65.29% 36 1
Truck 0.00261 62.79% 34 1
Truck 0.0001 81.90% 40 0
Truck 0.00001 61.66% 33 0
Car 0.001 93.70% 44 10
Car 0.00261 98.44% 37 9
Car 0.0001 95.39% 46 19
Car 0.00001 92.06% 43 7

Table 50: YOLOv4-Tiny Model Training Results: Dataset 2 + WGAN Images

Learning Rate mAP CIoU Loss Avg. IoU Precision Recall F1-Score TP FP FN
0.00261 68.09% 0.0959 68.34% 0.83 0.55 0.66 94 19 76
0.001 68.51% 0.0636 74.81% 0.90 0.54 0.68 92 10 78
0.0001 73.40% 0.2675 64.09% 0.82 0.58 0.68 99 21 71
0.00001 63.85% 0.7461 63.60% 0.88 0.48 0.62 82 11 88

157

Table 51: YOLOv4-Tiny Model Training Results by Class: Dataset 2 + WGAN
Images

Class Learning Rate mAP TP FP
Van 0.001 32.68% 13 12
Van 0.00261 38.40% 11 0
Van 0.0001 45.20% 12 3
Van 0.00001 36.63% 9 6

Truck 0.001 73.26% 34 0
Truck 0.00261 68.38% 34 0
Truck 0.0001 84.32% 44 0
Truck 0.00001 66.64% 32 0
Car 0.001 98.33% 47 7
Car 0.00261 98.77% 47 10
Car 0.0001 90.96% 43 18
Car 0.00001 88.47% 41 5

Table 52: YOLOv4-Tiny Model Training Results: Dataset 2 + cWGAN Images

Learning Rate mAP CIoU Loss Avg. IoU Precision Recall F1-Score TP FP FN
0.00261 59.42% 0.0705 77.55% 0.95 0.54 0.69 92 5 78
0.001 63.53% 0.1033 74.22% 0.91 0.54 0.68 92 9 78
0.0001 73.04% 0.2463 53.50% 0.68 0.54 0.60 92 44 78
0.00001 64.87% 0.6813 63.28% 0.90 0.49 0.64 84 9 86

Table 53: YOLOv4-Tiny Model Training Results by Class: Dataset 2 + cWGAN
Images

Class Learning Rate mAP TP FP
Van 0.001 29.45% 11 2
Van 0.00261 23.35% 11 1
Van 0.0001 45.00% 12 0
Van 0.00001 31.02% 8 3

Truck 0.001 62.54% 34 0
Truck 0.00261 55.46% 34 0
Truck 0.0001 82.93% 34 1
Truck 0.00001 66.86% 32 2
Car 0.001 98.61% 47 7
Car 0.00261 99.46% 47 4
Car 0.0001 91.19% 46 43
Car 0.00001 96.72% 44 4

158

1.5 Training Results: Combined Dataset

Table 54: YOLOv4-Tiny Model Training Results: Combined Dataset

Learning Rate mAP CIoU Loss Avg. IoU Precision Recall F1-Score TP FP FN
0.00261 97.75% 0.0449 79.13% 0.94 0.97 0.95 165 11 5
0.001 98.53% 0.0793 76.58% 0.94 0.98 0.96 167 11 3
0.0001 98.51% 0.2032 74.07% 0.91 0.98 0.94 167 17 3
0.00001 93.37% 0.5752 64.85% 0.90 0.84 0.87 143 16 27

Table 55: YOLOv4-Tiny Model Training Results by Class: Combined Dataset

Class Learning Rate mAP TP FP
Van 0.001 97.47% 45 2
Van 0.00261 95.15% 43 0
Van 0.0001 97.31% 45 1
Van 0.00001 94.63% 44 5

Truck 0.001 99.89% 75 3
Truck 0.00261 99.92% 75 5
Truck 0.0001 99.93% 75 4
Truck 0.00001 91.00% 56 9
Car 0.001 98.24% 47 6
Car 0.00261 98.17% 47 6
Car 0.0001 98.29% 47 12
Car 0.00001 94.49% 43 2

Table 56: YOLOv4-Tiny Model Training Results: Combined Dataset + DCGAN
Images

Learning Rate mAP CIoU Loss Avg. IoU Precision Recall F1-Score TP FP FN
0.00261 100.00% 0.0765 80.08% 0.96 1.00 0.98 170 0 7
0.001 100.00% 0.0963 79.82% 0.96 1.00 0.98 170 0 8
0.0001 98.68% 0.2314 77.09% 0.96 0.99 0.98 169 1 7
0.00001 91.89% 0.6048 63.80% 0.89 0.71 0.79 121 15 49

159

Table 57: YOLOv4-Tiny Model Training Results by Class: Combined Dataset +
DCGAN Images

Class Learning Rate mAP TP FP
Van 0.001 100.00% 48 0
Van 0.00261 100.00% 48 6
Van 0.0001 95.88% 47 1
Van 0.00001 89.25% 47 10

Truck 0.001 100.00% 75 4
Truck 0.00261 100.00% 75 5
Truck 0.0001 100.00% 37 4
Truck 0.00001 92.18% 43 1
Car 0.001 100.00% 47 4
Car 0.00261 100.00% 47 2
Car 0.0001 91.91% 47 2
Car 0.00001 94.25% 41 4

Table 58: YOLOv4-Tiny Model Training Results: Combined Dataset + cDCGAN
Images

Learning Rate mAP CIoU Loss Avg. IoU Precision Recall F1-Score TP FP FN
0.00261 99.26% 0.0801 79.76% 0.95 0.99 0.97 169 9 1
0.001 99.26% 0.1006 81.27% 0.97 0.99 0.98 169 6 1
0.0001 98.98% 0.2587 78.25% 0.97 0.99 0.98 169 5 1
0.00001 93.32% 0.6844 67.76% 0.95 0.72 0.82 123 7 47

160

Table 59: YOLOv4-Tiny Model Training Results by Class: Combined Dataset +
cDCGAN Images

Class Learning Rate mAP TP FP
Van 0.001 97.79% 47 1
Van 0.00261 97.92% 47 0
Van 0.0001 100.00% 48 0
Van 0.00001 90.26% 39 3

Truck 0.001 99.98% 75 4
Truck 0.00261 100.00% 75 5
Truck 0.0001 99.95% 74 3
Truck 0.00001 93.16% 41 2
Car 0.001 100.00% 47 1
Car 0.00261 99.87% 47 4
Car 0.0001 100.00% 47 2
Car 0.00001 96.55% 43 2

Table 60: YOLOv4-Tiny Model Training Results: Combined Dataset + WGAN
Images

Learning Rate mAP CIoU Loss Avg. IoU Precision Recall F1-Score TP FP FN
0.00261 100.00% 0.0678 81.56% 0.97 1.00 0.99 170 5 0
0.001 99.99% 0.0678 81.49% 0.97 1.00 0.99 170 5 0
0.0001 98.79% 0.2626 78.19% 0.99 0.99 0.98 168 6 2
0.00001 93.32% 0.6224 66.00% 0.92 0.79 0.85 135 12 35

161

Table 61: YOLOv4-Tiny Model Training Results by Class: Combined Dataset +
WGAN Images

Class Learning Rate mAP TP FP
Van 0.001 100.00% 48 0
Van 0.00261 100.00% 48 0
Van 0.0001 96.41% 46 2
Van 0.00001 95.80% 41 7

Truck 0.001 99.98% 75 4
Truck 0.00261 100.00% 75 4
Truck 0.0001 99.97% 75 3
Truck 0.00001 87.84% 50 4
Car 0.001 100.00% 47 1
Car 0.00261 100.00% 47 1
Car 0.0001 100.00% 47 1
Car 0.00001 99.24% 44 1

Table 62: YOLOv4-Tiny Model Training Results: Combined Dataset + cWGAN
Images

Learning Rate mAP CIoU Loss Avg. IoU Precision Recall F1-Score TP FP FN
0.00261 100.00% 0.0595 80.39% 0.96 1.00 0.99 170 8 0
0.001 99.99% 0.0791 80.95% 0.97 1.00 0.99 170 5 0
0.0001 97.73% 0.2544 76.29% 0.94 0.98 0.96 167 10 3
0.00001 91.45% 0.6499 64.56% 0.89 0.75 0.82 128 16 42

162

Table 63: YOLOv4-Tiny Model Training Results by Class: Combined Dataset +
cWGAN Images

Class Learning Rate mAP TP FP
Van 0.001 100.00% 48 0
Van 0.00261 100.00% 48 0
Van 0.0001 96.24% 46 2
Van 0.00001 94.50% 41 6

Truck 0.001 99.97% 75 4
Truck 0.00261 100.00% 75 5
Truck 0.0001 99.91% 75 5
Truck 0.00001 81.10% 43 8
Car 0.001 100.00% 47 1
Car 0.00261 100.00% 47 3
Car 0.0001 97.04% 46 3
Car 0.00001 97.95% 44 2

1.6 Experiment I Results

Table 64: Experiment I Results: Learning Rate = 0.001

Dataset mAP CIoU Loss Avg. IoU Precision Recall F1-Score TP FP FN
Combined 70.65% 0.0843 51.46% 0.70 0.64 0.67 183 78 103

Combined + DCGAN 77.59% 0.1035 58.56% 0.78 0.60 0.60 171 47 115
Combined + cDCAN 61.16% 0.1001 38.39% 0.53 0.52 0.53 150 133 136
Combined + WGAN 62.30% 0.0954 46.09% 0.62 0.51 0.56 145 88 141
Combined + cWGAN 68.40% 0.0930 50.22% 0.68 0.58 0.63 166 79 120

163

Table 65: YOLOv4-Tiny Model Training Results by Class: Experiment I

Dataset Class mAP TP FP
Combined Van 74.22% 37 11

Combined + DCGAN Van 83.65% 65 22
Combined + cDCGAN Van 69.82% 25 1
Combined + WGAN Van 68.87% 25 3
Combined + cWGAN Van 87.65% 52 3

Combined Truck 75.35% 68 10
Combined + DCGAN Truck 74.87% 55 7
Combined + cDCGAN Truck 73.55% 58 21
Combined + WGAN Truck 74.47% 61 10
Combined + cWGAN Truck 67.84% 60 19

Combined Car 62.39% 78 57
Combined + DCGAN Car 74.23% 51 18
Combined + cDCGAN Car 40.12% 67 111
Combined + WGAN Car 43.57% 59 75
Combined + cWGAN Car 49.72% 54 57

1.7 Experiment 1I Results

Table 66: Experiment II Results: Learning Rate = 0.00261 | Iterations = 6,000

Dataset mAP CIoU Loss Avg. IoU Precision Recall F1-Score TP FP FN
Combined 61.59% 0.0587 43.31% 0.59 0.64 0.54 154 107 132

Combined + cDCAN 57.73% 0.0876 34.08% 0.45 0.36 0.53 125 182 182
Combined + WGAN 56.68% 0.0798 40.11% 0.54 0.49 0.56 140 120 146
Combined + cWGAN 53.60% 0.0798 37.24% 0.49 0.40 0.63 113 118 173

164

Table 67: Experiment II Results by Class: Learning Rate = 0.00261 | Iterations =
6,000

Dataset Class mAP TP FP
Combined Van 57.74% 23 12

Combined + cDCGAN Van 75.28% 34 0
Combined + WGAN Van 60.71% 18 1
Combined + cWGAN Van 58.46% 17 1

Combined Truck 86.30% 77 8
Combined + cDCGAN Truck 67.08% 26 6
Combined + WGAN Truck 74.86% 67 15
Combined + cWGAN Truck 66.14% 38 10

Combined Car 40.17% 54 87
Combined + cDCGAN Car 30.82% 44 119
Combined + WGAN Car 34.46% 55 104
Combined + cWGAN Car 36.19% 58 107

Table 68: Experiment II Results: Learning Rate = 0.00261 | Iterations = 2,000

Dataset mAP CIoU Loss Avg. IoU Precision Recall F1-Score TP FP FN
Combined 60.72% 0.1218 42.04% 0.70 0.58 0.54 142 101 144

Combined + cDCAN 74.97% 0.2200 47.54% 0.66 0.50 0.57 142 74 144
Combined + WGAN 63.64% 0.1903 38.03% 0.53 0.36 0.43 103 92 183
Combined + cWGAN 78.49% 0.1820 57.37% 0.79 0.59 0.67 168 44 118

Table 69: Experiment II Results: Learning Rate = 0.00261 | Iterations = 2,000

Dataset Class mAP TP FP
Combined Van 53.42% 6 10

Combined + cDCGAN Van 85.97% 26 0
Combined + WGAN Van 80.12% 14 0
Combined + cWGAN Van 89.45% 50 0

Combined Truck 77.70% 68 20
Combined + cDCGAN Truck 64.18% 39 20
Combined + WGAN Truck 69.40% 38 17
Combined + cWGAN Truck 66.47% 58 20

Combined Car 51.04% 68 71
Combined + cDCGAN Car 74.75% 77 54
Combined + WGAN Car 41.39% 51 75
Combined + cWGAN Car 79.56% 60 24

165

Table 70: Experiment II Results: Learning Rate = 0.00261 | Iterations = 4,000

Dataset mAP CIoU Loss Avg. IoU Precision Recall F1-Score TP FP FN
Combined 70.10% 0.07108 47.65% 0.66 0.68 0.67 195 101 91

Combined + cDCAN 53.57% 01079 35.06% 0.48 0.41 0.45 118 126 168
Combined + WGAN 67.58% 00520 45.67% 0.57 0.62 0.57 150 92 136
Combined + cWGAN 58.29% 00874 38.87% 0.52 0.46 0.49 131 120 155

Table 71: Experiment II Results: Learning Rate = 0.00261 | Iterations = 4,000

Dataset Class mAP TP FP
Combined Van 64.82% 43 21

Combined + cDCGAN Van 46.08% 5 0
Combined + WGAN Van 69.52% 22 4
Combined + cWGAN Van 61.42% 27 3

Combined Truck 76.13% 76 28
Combined + cDCGAN Truck 66.89% 36 18
Combined + WGAN Truck 75.84% 56 11
Combined + cWGAN Truck 73.60% 33 13

Combined Car 69.36% 76 52
Combined + cDCGAN Car 47.73% 77 108
Combined + WGAN Car 57.39% 72 77
Combined + cWGAN Car 39.83% 71 104

Table 72: Experiment II Results: Learning Rate = 0.00522 | Iterations = 2,000

Dataset mAP CIoU Loss Avg. IoU Precision Recall F1-Score TP FP FN
Combined 67.19% 0.1138 47.95% 0.67 0.54 0.60 155 78 131

Combined + cDCAN 70.06% 0.1915 43.78% 0.51 0.51 0.56 147 96 139
Combined + WGAN 68.06% 0.1659 45.08% 0.49 0.55 0.57 139 81 147
Combined + cWGAN 67.72% 0.1544 42.41% 0.52 0.55 0.49 148 106 138

166

Table 73: Experiment Results by Class: Learning Rate = 0.00522 | Iterations =
2,000

Dataset Class mAP TP FP
Combined Van 64.07% 23 6

Combined + cDCGAN Van 79.87% 15 1
Combined + WGAN Van 79.57% 23 4
Combined + cWGAN Van 83.98% 37 4

Combined Truck 81.86% 73 14
Combined + cDCGAN Truck 68.72% 70 26
Combined + WGAN Truck 75.28% 65 17
Combined + cWGAN Truck 75.83% 58 27

Combined Car 55.80% 59 58
Combined + cDCGAN Car 61.59% 62 69
Combined + WGAN Car 49.34% 51 60
Combined + cWGAN Car 43.36% 53 75

Table 74: Experiment II Results: Learning Rate = 0.00522 | Iterations = 4,000

Dataset mAP CIoU Loss Avg. IoU Precision Recall F1-Score TP FP FN
Combined 74.71% 0.0618 56.69% 0.74 0.69 0.71 196 68 90

Combined + cDCAN 60.32% 0.1116 39.66% 0.54 0.50 0.52 142 119 144
Combined + WGAN 57.35% 0.0763 38.52% 0.52 0.47 0.49 133 121 153
Combined + cWGAN 62.52% 0.0782 41.15% 0.56 0.47 0.51 135 108 151

Table 75: Experiment II Results:Learning Rate = 0.00522 | Iterations = 4,000

Dataset Class mAP TP FP
Combined Van 82.53% 55 17

Combined + cDCGAN Van 67.31% 16 0
Combined + WGAN Van 50.03% 19 16
Combined + cWGAN Van 69.59% 22 1

Combined Truck 84.35% 87 8
Combined + cDCGAN Truck 74.15% 71 26
Combined + WGAN Truck 84.88% 56 15
Combined + cWGAN Truck 73.56% 45 28

Combined Car 57.25% 54 43
Combined + cDCGAN Car 39.50% 55 93
Combined + WGAN Car 37.13% 58 90
Combined + cWGAN Car 44.41% 68 87

167

Table 76: Experiment II Results: Learning Rate = 0.001305 | Iterations = 2,000

Dataset mAP CIoU Loss Avg. IoU Precision Recall F1-Score TP FP FN
Combined 70.12% 0.1116 46.28% 0.66 0.52 0.59 150 76 136

Combined + cDCAN 74.79% 0.2342 53.91% 0.76 0.46 0.57 131 41 155
Combined + WGAN 70.45% 0.2333 52.54% 0.73 0.50 0.59 143 52 143
Combined + cWGAN 75.68% 0.1990 51.36% 0.73 0.57 0.64 162 60 124

Table 77: Experiment II Results: Learning Rate = 0.001305 | Iterations = 2,000

Dataset Class mAP TP FP
Combined Van 65.24% 8 2

Combined + cDCGAN Van 81.06% 18 0
Combined + WGAN Van 71.38% 30 2
Combined + cWGAN Van 82.41% 27 0

Combined Truck 78.42% 76 21
Combined + cDCGAN Truck 65.07% 43 10
Combined + WGAN Truck 56.64% 43 26
Combined + cWGAN Truck 71.14% 63 16

Combined Car 66.70% 66 53
Combined + cDCGAN Car 78.25% 70 31
Combined + WGAN Car 83.33% 70 24
Combined + cWGAN Car 73.49% 72 44

Table 78: Experiment II Results: Learning Rate = 0.001305 | Iterations = 4,000

Dataset mAP CIoU Loss Avg. IoU Precision Recall F1-Score TP FP FN
Combined 74.94% 0.0847 52.38% 0.73 0.69 0.71 197 73 89

Combined + cDCAN 76.52% 0.1312 53.92% 0.73 0.64 0.68 183 68 103
Combined + WGAN 59.42% 0.1324 37.37% 0.50 0.45 0.47 128 126 158
Combined + cWGAN 65.62% 0.1114 42.52% 0.57 0.54 0.55 154 117 132

168

Table 79: Experiment II Results: Learning Rate = 0.001305 | Iterations = 4,000

Dataset Class mAP TP FP
Combined Van 76.18% 46 12

Combined + cDCGAN Van 82.27% 37 0
Combined + WGAN Van 69.53% 22 4
Combined + cWGAN Van 74.62% 24 0

Combined Truck 78.42% 80 11
Combined + cDCGAN Truck 74.47% 69 11
Combined + WGAN Truck 70.09% 50 16
Combined + cWGAN Truck 80.67% 58 16

Combined Car 60.81% 71 50
Combined + cDCGAN Car 72.82% 77 57
Combined + WGAN Car 38.64% 56 106
Combined + cWGAN Car 41.56% 72 101

1.8 Experiment III Results

Table 80: Experiment III Results: Blended Augmentation | Alien Test Set

Learning Rate mAP CIoU Loss Avg. IoU Precision Recall F1-Score TP FP FN
0.00261 100.00 0.1060 80.57% 0.96 1.00 0.98 170 8 0
0.001 100.00% 0.1342 82.36% 0.97 1.00 0.99 170 5 0
0.0001 100.00% 0.3618 79.59% 0.98 1.00 0.99 170 4 0
0.00001 95.94% 0.8846 69.38% 0.95 0.69 0.80 118 6 52

169

Table 81: Experiment III Results by Class: Blended Augmentation | Original Test
Set

Class Learning Rate mAP TP FP
Van 0.00261 100% 48 0
Van 0.001 100.00% 48 0
Van 0.0001 100.00% 48 0
Van 0.00001 96.63% 39 2

Truck 0.00261 100.00% 75 6
Truck 0.001 100.00% 75 4
Truck 0.0001 100.00% 75 2
Truck 0.00001 92.47% 39 1
Car 0.00261 100.00% 47 2
Car 0.001 100.00% 47 1
Car 0.0001 100.00% 47 2
Car 0.00001 98.70% 40 3

Table 82: Experiment III Results: Blended Augmentation | Alien Test Set

Learning Rate mAP CIoU Loss Avg. IoU Precision Recall F1-Score TP FP FN
0.00261 71.28 0.1057 53.64% 0.76 0.61 0.68 175 55 111
0.001 85.67% 0.1464 60.24% 0.84 0.71 0.77 203 40 83
0.0001 80.37% 0.3671 58.82% 0.81 0.69 0.74 197 47 89
0.00001 57.53% 0.8848 52.08% 0.79 0.39 0.52 111 30 175

Table 83: Experiment III Results by Class: Blended Augmentation | Alien Test Set

Class Learning Rate mAP TP FP
Van 0.00261 80.46% 38 1
Van 0.001 90.09% 53 2
Van 0.0001 91.72% 45 1
Van 0.00001 66.87% 27 3

Truck 0.00261 76.80% 80 11
Truck 0.001 75.53% 77 21
Truck 0.0001 67.49% 74 21
Truck 0.00001 33.51% 16 9
Car 0.00261 56.59% 57 43
Car 0.001 91.41% 73 17
Car 0.0001 81.90% 78 25
Car 0.00001 72.20% 68 18

170

Bibliography

1. Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representa-

tion learning with deep convolutional generative adversarial networks. CoRR,

abs/1511.06434, 2016.

2. Alberto Cano. A survey on graphic processing unit computing for large-scale data

mining. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery,

8(1):e1232, 2018.

3. Young W. Frimel S. Bihl, T. J. Artificial neural networks and data science.

Encyclopedia of Data Science and Machine Learning, IGI Global, To Appear.

4. Aurelien Geron. Hands-on machine learning with Scikit-Learn and TensorFlow

: concepts, tools, and techniques to build intelligent systems. O’Reilly Media,

Sebastopol, CA, 2017.

5. Seongdeok Bang, Francis Baek, Somin Park, Wontae Kim, and Hyoungkwan Kim.

Image augmentation to improve construction resource detection using generative

adversarial networks, cut-and-paste, and image transformation techniques. Au-

tomation in Construction, 115:103198, 2020.

6. Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,

2016. http://www.deeplearningbook.org.

7. Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent

in nervous activity. The bulletin of mathematical biophysics, 5(4):115–133, 1943.

8. Francesco Tacchino, Chiara Macchiavello, Dario Gerace, and Daniele Bajoni. An

artificial neuron implemented on an actual quantum processor. npj Quantum

Information, 5(1):1–8, 2019.

171

http://www.deeplearningbook.org

9. Frank Rosenblatt. The perceptron: a probabilistic model for information storage

and organization in the brain. Psychological review, 65(6):386, 1958.

10. David E. Rumelhart and James L. McClelland. Learning Internal Representations

by Error Propagation, pages 318–362. 1987.

11. Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. Dropout: A simple way to prevent neural networks from overfit-

ting. Journal of Machine Learning Research, 15(56):1929–1958, 2014.

12. Anthony Baietto, Jayson Boubin, Patrick Farr, Trevor J. Bihl, Aaron M. Jones,

and Christopher Stewart. Lean neural networks for autonomous radar waveform

design. Sensors, 22(4), 2022.

13. Werbos. Backpropagation: past and future. In IEEE 1988 International Confer-

ence on Neural Networks, pages 343–353 vol.1, 1988.

14. P.J. Werbos. Backpropagation through time: what it does and how to do it.

Proceedings of the IEEE, 78(10):1550–1560, 1990.

15. Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep

feedforward neural networks. In Yee Whye Teh and Mike Titterington, editors,

Proceedings of the Thirteenth International Conference on Artificial Intelligence

and Statistics, volume 9 of Proceedings of Machine Learning Research, pages 249–

256, Chia Laguna Resort, Sardinia, Italy, 13–15 May 2010. PMLR.

16. Chigozie Enyinna Nwankpa, Winifred Ijomah, Anthony Gachagan, and Stephen

Marshall. Activation functions: comparison of trends in practice and research for

deep learning. In 2nd International Conference on Computational Sciences and

Technology, pages 124–133, 2021.

172

17. Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural

networks. In Proceedings of the fourteenth international conference on artificial

intelligence and statistics, pages 315–323. JMLR Workshop and Conference Pro-

ceedings, 2011.

18. Andrew L Maas, Awni Y Hannun, Andrew Y Ng, et al. Rectifier nonlineari-

ties improve neural network acoustic models. In Proc. icml, volume 30, page 3.

Citeseer, 2013.

19. B Willmore and DJ Tolhurst. Characterizing the sparseness of neural codes.

Network (Bristol, England), 12(3):255—270, August 2001.

20. Diganta Misra. Mish: A self regularized non-monotonic activation function. In

BMVC, 2020.

21. Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute

for advanced research).

22. Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva

Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common ob-

jects in context. In European conference on computer vision, pages 740–755.

Springer, 2014.

23. Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. Yolov4: Op-

timal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934,

2020.

24. Saad Albawi, Tareq Abed Mohammed, and Saad Al-Zawi. Understanding of a

convolutional neural network. In 2017 International Conference on Engineering

and Technology (ICET), pages 1–6, 2017.

173

25. Fei Wang, Zhanyao Zhang, Chun Liu, Yili Yu, Songling Pang, Neven Duić, Mi-

adreza Shafie-Khah, and João PS Catalão. Generative adversarial networks and

convolutional neural networks based weather classification model for day ahead

short-term photovoltaic power forecasting. Energy conversion and management,

181:443–462, 2019.

26. Kunihiko Fukushima, Sei Miyake, and Takayuki Ito. Neocognitron: A neural

network model for a mechanism of visual pattern recognition. IEEE Transactions

on Systems, Man, and Cybernetics, SMC-13(5):826–834, 1983.

27. Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard,

and L. D. Jackel. Backpropagation applied to handwritten zip code recognition.

Neural Computation, 1(4):541–551, 1989.

28. David E Rumelhart, Richard Durbin, Richard Golden, and Yves Chauvin. Back-

propagation: The basic theory. Backpropagation: Theory, architectures and ap-

plications, pages 1–34, 1995.

29. Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied

to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

30. Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classifica-

tion with deep convolutional neural networks. Advances in neural information

processing systems, 25:1097–1105, 2012.

31. Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet:

A large-scale hierarchical image database. In 2009 IEEE Conference on Computer

Vision and Pattern Recognition, pages 248–255, 2009.

32. Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature

hierarchies for accurate object detection and semantic segmentation. In Proceed-

174

ings of the IEEE conference on computer vision and pattern recognition, pages

580–587, 2014.

33. Jasper RR Uijlings, Koen EA Van De Sande, Theo Gevers, and Arnold WM

Smeulders. Selective search for object recognition. International journal of com-

puter vision, 104(2):154–171, 2013.

34. Asifullah Khan, Anabia Sohail, Umme Zahoora, and A. Qureshi. A survey of the

recent architectures of deep convolutional neural networks. Artificial Intelligence

Review, pages 1 – 62, 2020.

35. Keiron O’Shea and Ryan Nash. An introduction to convolutional neural networks.

CoRR, abs/1511.08458, 2015.

36. Y-Lan Boureau, Jean Ponce, and Yann LeCun. A theoretical analysis of feature

pooling in visual recognition. In Proceedings of the 27th International Confer-

ence on International Conference on Machine Learning, ICML’10, page 111–118,

Madison, WI, USA, 2010. Omnipress.

37. Aurelien Geron. Hands On Machine Learning With Scikit Learn & TensorFlow.

O Reilly Media Inc., Sebastopol, 2017.

38. Dominik Scherer, Andreas Müller, and Sven Behnke. Evaluation of pooling op-

erations in convolutional architectures for object recognition. In International

conference on artificial neural networks, pages 92–101. Springer, 2010.

39. Li Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from

few training examples: An incremental bayesian approach tested on 101 object

categories. In 2004 Conference on Computer Vision and Pattern Recognition

Workshop, pages 178–178, 2004.

175

40. Yann LeCun, Fu Jie Huang, and Léon Bottou. Learning methods for generic ob-

ject recognition with invariance to pose and lighting. In Proceedings of the 2004

IEEE Computer Society Conference on Computer Vision and Pattern Recogni-

tion, CVPR’04, page 97–104, USA, 2004. IEEE Computer Society.

41. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Spatial pyramid

pooling in deep convolutional networks for visual recognition. IEEE transactions

on pattern analysis and machine intelligence, 37(9):1904–1916, 2015.

42. Shu Liu, Lu Qi, Haifang Qin, Jianping Shi, and Jiaya Jia. Path aggregation

network for instance segmentation. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 8759–8768, 2018.

43. Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv

preprint arXiv:1804.02767, 2018.

44. Yukang Chen, Tong Yang, Xiangyu Zhang, Gaofeng Meng, Xinyu Xiao, and

Jian Sun. Detnas: Backbone search for object detection. Advances in Neural

Information Processing Systems, 32:6642–6652, 2019.

45. Chien-Yao Wang, Hong-Yuan Mark Liao, Yueh-Hua Wu, Ping-Yang Chen, Jun-

Wei Hsieh, and I-Hau Yeh. Cspnet: A new backbone that can enhance learning

capability of cnn. In Proceedings of the IEEE/CVF conference on computer vision

and pattern recognition workshops, pages 390–391, 2020.

46. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. In 2016 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 770–778, 2016.

47. Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggre-

gated residual transformations for deep neural networks. In 2017 IEEE Confer-

176

ence on Computer Vision and Pattern Recognition (CVPR), pages 5987–5995,

2017.

48. Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q. Weinberger.

Densely connected convolutional networks. In 2017 IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), pages 2261–2269, 2017.

49. Robert J. Wang, Xiang Li, Shuang Ao, and Charles X. Ling. Pelee: A real-time

object detection system on mobile devices. In NeurIPS, 2018.

50. Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe,

and Youngjoon Yoo. Cutmix: Regularization strategy to train strong classifiers

with localizable features. In Proceedings of the IEEE/CVF International Confer-

ence on Computer Vision, pages 6023–6032, 2019.

51. Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V Le. Dropblock: A regularization

method for convolutional networks. Advances in Neural Information Processing

Systems, 31:10727–10737, 2018.

52. Rafael Müller, Simon Kornblith, and Geoffrey E Hinton. When does label smooth-

ing help? Advances in Neural Information Processing Systems, 32:4694–4703,

2019.

53. Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm

restarts. Learning, 10:3.

54. Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In So Kweon. Cbam:

Convolutional block attention module. In Proceedings of the European conference

on computer vision (ECCV), pages 3–19, 2018.

177

55. Chien-Yao Wang, Alexey Bochkovskiy, and Hong-Yuan Mark Liao. Scaled-yolov4:

Scaling cross stage partial network. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 13029–13038, 2021.

56. Han Qiu, Yuchen Ma, Zeming Li, Songtao Liu, and Jian Sun. Borderdet: Border

feature for dense object detection. In European Conference on Computer Vision,

pages 549–564. Springer, 2020.

57. Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-

Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial

nets. Advances in neural information processing systems, 27, 2014.

58. Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative

adversarial networks. In International conference on machine learning, pages

214–223. PMLR, 2017.

59. Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Rad-

ford, Xi Chen, and Xi Chen. Improved techniques for training gans. In D. Lee,

M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural

Information Processing Systems, volume 29. Curran Associates, Inc., 2016.

60. Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets.

CoRR, abs/1411.1784, 2014.

61. Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song, Thomas Funkhouser, and Jianx-

iong Xiao. Lsun: Construction of a large-scale image dataset using deep learning

with humans in the loop. arXiv preprint arXiv:1506.03365, 2015.

62. Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timo-

thy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous

178

methods for deep reinforcement learning. In International conference on machine

learning, pages 1928–1937. PMLR, 2016.

63. Clay Sheppard and Maryam Rahnemoonfar. Real-time scene understanding for

uav imagery based on deep convolutional neural networks. In 2017 IEEE Interna-

tional Geoscience and Remote Sensing Symposium (IGARSS), pages 2243–2246,

2017.

64. Hojjat Salehinejad, Shahrokh Valaee, Tim Dowdell, Errol Colak, and Joseph Bar-

fett. Generalization of deep neural networks for chest pathology classification in

x-rays using generative adversarial networks. In 2018 IEEE international confer-

ence on acoustics, speech and signal processing (ICASSP), pages 990–994. IEEE,

2018.

65. Jiaquan Shen, Ningzhong Liu, Han Sun, and Huiyu Zhou. Vehicle detection in

aerial images based on lightweight deep convolutional network and generative

adversarial network. IEEE Access, 7:148119–148130, 2019.

66. Victor-Emil Neagoe and Paul Diaconescu. Cnn hyperspectral image classification

using training sample augmentation with generative adversarial networks. In

2020 13th International Conference on Communications (COMM), pages 515–

519, 2020.

67. Tzutalin. Labelimg. Free Software: MIT License, 2015.

68. Rafael Padilla, Wesley L Passos, Thadeu LB Dias, Sergio L Netto, and Ed-

uardo AB da Silva. A comparative analysis of object detection metrics with

a companion open-source toolkit. Electronics, 10(3):279, 2021.

179

69. Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards

real-time object detection with region proposal networks. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 39(6):1137–1149, 2017.

70. Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,

Cheng-Yang Fu, and Alexander C Berg. Ssd: Single shot multibox detector. In

European conference on computer vision, pages 21–37. Springer, 2016.

71. Jake Cowton, Ilias Kyriazakis, and Jaume Bacardit. Automated individual pig

localisation, tracking and behaviour metric extraction using deep learning. IEEE

Access, PP, 08 2019.

72. Joseph Redmon and Ali Farhadi. Yolo9000: better, faster, stronger. In Proceed-

ings of the IEEE conference on computer vision and pattern recognition, pages

7263–7271, 2017.

73. Zhaohui Zheng, Ping Wang, Wei Liu, Jinze Li, Rongguang Ye, and Dongwei Ren.

Distance-iou loss: Faster and better learning for bounding box regression. In

Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages

12993–13000, 2020.

74. Aladdin Persson. Machine-learning-collection/ml/pytorch/gans/2. dc-

gan at master· aladdinpersson/machine-learning-collection · github.

https://github.com/aladdinpersson/Machine-Learning-Collection/

tree/master/ML/Pytorch/GANs/2.%20DCGAN.

75. The GIMP Development Team. Gimp.

76. Jason Brownlee. Generative adversarial networks with python: deep learning

generative models for image synthesis and image translation. Machine Learning

Mastery, 2019.

180

https://github.com/aladdinpersson/Machine-Learning-Collection/tree/master/ML/Pytorch/GANs/2.%20DCGAN
https://github.com/aladdinpersson/Machine-Learning-Collection/tree/master/ML/Pytorch/GANs/2.%20DCGAN

Acronyms

Adam Adaptive Moment Estimation. 14, 41, 43, 66

ANN Artificial Neural Network. 9, 10, 11, 19, 25

ANNs Artifical Neural Networks. 2, 8, 12, 15

AP Average Precision. 33, 34, 63

BoF Bag of Freebies. 28, 31

BoS Bag of Specials. 29, 32

cDCGAN Conditional Deep Convolutional Generative Adversarial Network. 65, 69,

70, 75, 76, 78, 81, 82, 83, 84, 89, 92, 94, 112, 123

cGAN Conditional Generative Adversarial Network. 38, 49

cGANs Conditional Generative Adversarial Networks. 38

CIoU Complete Intersection over Union. xiii, xiv, 31, 61, 64, 65, 97, 98, 99, 101,

102, 103, 104, 105, 106, 107, 108, 109, 123, 124, 125, 126, 127, 128, 131, 132,

134, 136

CmBN Cross mini-Batch Normalization. 31, 32

CNN Convolutional Neural Network. viii, 5, 6, 7, 19, 20, 21, 22, 23, 24, 25, 27, 28,

29, 37, 39, 44, 45, 46, 49, 135, 138

CNNs Convolutional Neural Networks. 2, 6, 8, 19, 20, 21, 22, 28, 35, 44, 45, 46, 134

CPU Central Processing Unit. 6

CSPNet Cross Stage Partial Network. 26, 27, 28, 29

181

cWGAN Conditional Wasserstein Generative Adversarial Network. 65, 73, 80, 81,

84, 85, 86, 90, 91, 93, 95, 97, 99, 100, 105, 108, 112, 123, 128

DCGAN Deep Convolutional Generative Adversarial Network. 35, 39, 41, 43, 44,

65, 66, 67, 68, 69, 70, 71, 72, 75, 76, 78, 80, 81, 83, 84, 85, 88, 89, 90, 91, 92,

93, 96, 101, 103, 119, 122, 123

DCNN Deep Convolutional Neural Network. 50

DIoU Distance Intersection over Union. 32

DNN Deep Neural Network. 11, 17

EM Earth Mover. 36, 41, 43, 44

FN False Negative. v, 62, 98, 100, 102, 104, 106, 108, 119, 124, 128, 129, 1

FP False Positive. v, 62, 98, 100, 102, 104, 106, 108, 109, 120, 124, 125, 128, 129,

130, 1

FPN Feature Pyramid Network. 30

FPS Frames Per Second. 33, 34

GAN Generative Adversarial Network. iv, v, 3, 4, 5, 6, 34, 35, 36, 37, 38, 39, 41,

42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 61, 65, 66, 67, 73, 74, 75, 76, 77, 79, 80,

81, 82, 83, 84, 85, 86, 87, 88, 89, 93, 95, 96, 99, 100, 108, 109, 110, 112, 117,

118, 119, 120, 121, 123, 124, 126, 127, 129, 133, 134, 135, 136, 137, 138, 139, 1

GANs Generative Adversarial Networks. 7, 8, 36, 38, 40, 41, 52, 65, 74, 75, 76, 77,

78, 79, 80, 81, 83, 84, 85, 88, 96, 97, 101, 105, 107, 108, 112, 114, 116, 118, 122,

123, 124, 126, 127, 132, 133, 134, 135, 136, 137, 138

182

GIMP GNU Image Manipulation Program. 73, 74

GPU Graphics Processing Unit. 2, 6, 20, 33, 66, 75

GRU Gated Recurrent Units. 50

IoU Intersection over Union. v, 5, 31, 32, 62, 63, 64, 97, 100, 101, 102, 104, 105,

106, 108, 109, 119, 124, 127, 128, 134, 135, 1

JS Jensen-Shannon. 37, 41

KL Kullback-Leibler. 36, 37, 41

LReLU Leaky Rectified Linear Unit. 16, 17, 19, 39, 43, 50, 69, 72, 137, 138

LSUN Large-Scale Scene Understanding. 39, 43

LTU Linear Threshold Unit. 9, 10

LTUs Linear Threshold Units. 11

mAP Mean Average Precision. iv, xiii, xiv, 49, 61, 63, 97, 98, 99, 100, 101, 102, 103,

104, 105, 106, 107, 108, 109, 119, 120, 121, 122, 124, 125, 126, 127, 128, 129,

130, 131, 132, 133, 134, 135, 1

mAP@.50 mean average precision at IOU threshold .5. 18, 19, 63

MC-GAN Multi-conditioned Constrained Generative Adversarial Network. 49

MiWRC Multi-input weight residual connections. 29

ML machine learning. iv, 1, 2, 3, 4, 5, 6, 8, 12, 21, 33, 46, 134, 136, 1

MLP Multilayer Perceptron. 10, 43, 46

183

MS-COCO Microsoft Common Objects in Context. 18, 34

NMS non-maximum supression. 32

OA Overall Accuracy. 46

PA Product Accuracy. 46

PANet Path Aggregation Network. 26, 29, 30, 32

PGGAN Progressive Growing Generative Adversarial Network. 137

R-CNN Regions with Convolutional Neural Networks. 21, 47, 48

RAM Random-access Memory. 2, 6, 66, 75

ReLU Rectified Linear Unit. 15, 16, 17, 18, 19, 20, 40, 43, 44, 45, 50, 68, 137, 138

RGB Red, Green, Blue. 22, 67, 68, 78, 80, 81, 84, 85, 88, 96

RMSProp Root Mean Squared Propagation. 13, 14, 41, 42, 43

SAM Spatial Attention Module. 32

SAT Self-Adversarial Training. 31, 32

SPP Spatial Pyramid Pooling. 26, 29, 32

SVM Support Vector Machines. 21, 45

tanh Hyperbolic Tangent. 17, 18, 24, 40, 68

TP True Positive. v, 62, 98, 100, 102, 104, 106, 108, 119, 120, 124, 125, 128, 129,

130, 1

184

UA User Accuracy. 46

UAV Unmanned Aerial Vehicle. iv, 3, 7, 44, 50, 115, 137, 1

UAVs Unmanned Aerial Vehicles. 130, 133

WGAN Wasserstein Generative Adversarial Network. 36, 41, 42, 43, 44, 65, 67, 71,

72, 73, 76, 77, 78, 85, 90, 91, 92, 94, 95, 96, 112

WGAN-GP Wasserstein Generative Adversarial Network with Gradient Penalty.

46

YOLOv3 You Only Look Once Version 3. 25, 26, 27, 28, 31, 33

YOLOv4 You Only Look Once Version 4. 19, 25, 26, 27, 29, 31, 33, 61

YOLOv4-Tiny You Only Look Once Version 4 - Tiny. iv, 8, 34, 52, 60, 61, 62, 63,

64, 74, 97, 110, 112, 116, 117, 118, 126, 127, 129, 135, 136, 1

185

Glossary

Alien Test Set The test set containing the images not relating to the original train-

ing sets. This test set contains no images used for training the Generative Ad-

versarial Networks. 111, 112, 116, 118, 119, 121, 122, 123, 124, 127, 128, 130,

132, 133, 134, 135, 136

Blended Augmentation Training Set The training set composed of of the origi-

nal training set images and images augmented with images generated from every

type of GAN. 117, 128, 130, 131, 132, 133, 135

child object An object located within a child image. 65, 73

child image An image contained inside of a parent dataset. 52, 54, 73, 74, 79

Combined Parent Dataset The dataset comprised of datasets 1 and 2. 112

combined dataset The combination of Dataset 1 and Dataset 2. 75, 105, 109, 118

Dataset 2 The dataset containing images of vehicles driving along a road captured

at a sideways angle. 53, 56, 57, 75, 79, 81, 83, 91, 101, 109

Dataset 1 The dataset containing images of vehicles driving along a road captured

at an overhead angle. 52, 53, 56, 75, 76, 79, 81, 83, 89, 90, 96, 97, 102, 109

Original Test Set The original test set containing the images related to the training

set. This test set contains images used for training the Generative Adversarial

Networks as well as images related to the training set. 112, 133

Parent Training Set The original training set. 74

186

parent image An image in a dataset containing a collection of the object’s of inter-

est. 65, 79, 114, 115

parent dataset An original dataset containing a collection of frames captured by

the UAV . 52, 65, 66, 73, 74

187

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

24–03–2022 Master’s Thesis Sept 2020 — Mar 2022

Using Generative Adversarial Networks to Augment
Unmanned Aerial Vehicle Image Classification Training Sets

McCloskey, Benjamin, 2nd Lt, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENS-MS-22-M-151

Trevor Bihl, DAF, DR-III, PhD
Sensors Directorate
Air Force Research Laboratory
2242 Avionics Circle
Wright-Patterson AFB, OH 45431
Email: trevor.bihl.2@us.af.mil

AFRL/RYAR

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

A challenging task in computer vision is finding techniques to improve the object detection and classification capabilities
of ML models used for processing images acquired by moving aerial platforms. This research explores if GAN augmented
UAV training sets can increase the generalizability of a detection model trained on said data. To answer this question,
the YOLOv4-Tiny Object Detection Model was trained with aerial image training sets depicting rural environments. The
salient objects within the frames were recreated using various GAN architectures, placed back into the original frames,
and the augmented frames appended to the original training sets. GAN augmentation on aerial image training sets led to
a 6.75% increase on average in the mAP of the YOLOv4-Tiny Object Detection model with a best-case increase of
15.76%. Similarly, a 4.13% increase on average and a best-case increase of 9.60% was observed for the IoU rate. Finally,
100.00% TP, 4.70% FP, and zero FN detection rates were yielded, providing further evidence supporting GAN
augmentation for object detection model training sets. .

artificial neural network (ANN), convolutional neural network (CNN), deep learning, computer vision

U U U UU 208

Dr. Bruce Cox, AFIT/ENS

(937) 785-3636 x4676; bruce.cox@afit.edu

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Background and Problem Statements
	Background
	Problem Statement

	Research Questions
	Limitations of Research
	Thesis Organization

	Background and Literature Review
	Artificial Neural Networks
	History
	Architecture

	Activation Functions
	Convolutional Neural Networks
	History of the CNN
	Architecture

	You Only Look Once Version 4 (YOLOv4)
	Architecture
	Performance

	YOLOv4-Tiny Configuration
	Generative Adversarial Networks
	History
	Convergence
	Generative Adversarial Network Training Problems
	Architecture
	Deep Convolutional Generative Adversarial Network (DCGAN)
	Wasserstein GAN (WGAN)

	Related Research
	Model Generalizability
	Aerial Image Dataset Augmentation

	Methodology
	Programming Platform
	Datasets
	Datasets' Objects
	Splitting the Data for Training and Testing

	YOLOv4-Tiny Data Wrangling
	Image Cropping
	Labels

	YOLOv4-Tiny Model Training: No Augmentation
	Generative Adversarial Networks
	Generative Adversarial Network Training
	Deep Convolutional GAN Architecture
	Conditional Deep Convolutional GAN Architecture
	Wasserstein GAN Architecture
	Conditional Wasserstein GAN Architecture

	Dataset Augmentation

	Generative Adversarial Networks Training
	Training Times
	Dataset 1 Synthetic Images
	Dataset 2 Synthetic Images
	Combined Dataset Synthetic Images
	Poor Quality Images
	Dataset 1
	Dataset 2
	Combined Dataset

	Generative Adversarial Network (GAN) Training Takeaways

	Results and Discussion
	Model Training: Dataset 1
	Dataset 1: No Augmentation
	Dataset 1: GAN Augmentation

	Model Training: Dataset 2
	Dataset 2: No Augmentation
	Dataset 2: GAN Augmentation

	Model Training: Combined Dataset
	Original Dataset: No Augmentation
	Combined Dataset: GAN Augmentation

	Discussion

	Follow-on Experiments
	Experiment I: Alien Test Set
	Experiment II: Alien Test Set- Varying Hyperparameters
	Experiment III: Blended Augmented Training Set
	Blended Augmentation

	Follow-on Experiments' Results
	Experiment I: Alien Test Set
	Discussion

	Experiment II: Alien Test Set with Varying Hyperparameters
	Discussion

	Experiment III: Blended Augmented Training Set
	Discussion

	Conclusions
	Future Research

	Appendix
	GAN Python Code Examples
	cDCGAN Python Code
	cWGAN Python Code

	YOLOv4-Tiny Hyperparameter Values
	Training Results: Dataset 1
	Training Results: Dataset 2
	Training Results: Combined Dataset
	Experiment I Results
	Experiment 1I Results
	Experiment III Results

	Bibliography
	Acronyms
	Glossary

