
A TRIDENT SCHOLAR 
PROJECT REPORT 

 
 

NO. 520 
 
 

An Analytical and Computational Study of the 
Paraxial Wave Equation with Applications to Laser Beam Propagation 

 
by 
 

Midshipman 1/C Kyle G. Jung, USN 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

UNITED STATES NAVAL ACADEMY 
ANNAPOLIS, MARYLAND 

 
 
 
 
 
 
 
 
 
 

 
USNA-1531-2 

This document has been approved for public 
release and sale; its distribution is unlimited. 



 

 

REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the 
data needed, and completing and reviewing this collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing 
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-
4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently 
valid OMB control number.  PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1. REPORT DATE (DD-MM-YYYY) 
5-16-22 

2. REPORT TYPE 
 

3. DATES COVERED (From - To) 
  

4. TITLE AND SUBTITLE 

An Analytical and Computational Study of the Paraxial Wave Equation with Applications to 
5a. CONTRACT NUMBER 
 

Laser Beam Propagation 5b. GRANT NUMBER 
 

 
 

5c. PROGRAM ELEMENT NUMBER 
 

6. AUTHOR(S) 
Kyle G. Jung 

5d. PROJECT NUMBER 
 

 
 

5e. TASK NUMBER 
 

 
 

5f. WORK UNIT NUMBER 
 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
 

8. PERFORMING ORGANIZATION REPORT   
    NUMBER 

 
 
 
 
 

 
 
 
 
 

 
 
 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 
U.S. Naval Academy   
Annapolis, MD  21402   
  11. SPONSOR/MONITOR’S REPORT  
        NUMBER(S) 
  Trident Scholar Report no. 520 (2022) 
12. DISTRIBUTION / AVAILABILITY STATEMENT 
 
This document has been approved for public release; its distribution is UNLIMITED. 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 
In this project, we approximate solutions to the Paraxial Wave Equation by posing an initial boundary value problem (IBVP). The Paraxial Wave Equation 
is a model of laser beam propagation. A variable refractive index term is introduced within this partial differential equation to account for a 
nonhomogeneous medium. We apply Spectral methods to approximate the transverse Laplacian operator and an adaptive Runge-Kutta method using 
MATLAB’s ordinary differential equation solvers to propagate the beam forward in space. Three Spectral methods are considered: a Fourier Galerkin 
method,  a Fourier collocation method, and a Chebyshev collocation method. These methods are verified in two ways: (1) by comparing the numerical 
IBVP solution to the exact solution in unbounded space for a Gaussian beam propagating in homogeneous media and (2) by applying the method of 
manufactured solutions. We apply a Fourier collocation method to model laser beam propagation through a nonhomogeneous medium. 

15. SUBJECT TERMS 
Paraxial Wave Equation, Laser Beam Propagation 

16. SECURITY CLASSIFICATION OF: 
 

17. LIMITATION  
OF ABSTRACT 

18. NUMBER 
OF PAGES 

19a. NAME OF RESPONSIBLE PERSON 
 

a. REPORT b. ABSTRACT c. THIS PAGE  57 19b. TELEPHONE NUMBER (include area 
code) 

 Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std. Z39.18 

 



U.S.N.A. --- Trident Scholar project report; no. 520 (2022)

AN ANALYTICAL AND COMPUTATIONAL STUDY OF THE PARAXIAL
WAVE EQUATION WITH APPLICATIONS TO LASER BEAM PROPAGATION

by

Midshipman 1/C Kyle G. Jung
United States Naval Academy

Annapolis, Maryland

_________________________________________
(signature)

Certification of Advisers Approval

Professor Reza Malek-Madani
Mathematics Department

_________________________________________
(signature)

___________________________
(date)

Professor Svetlana Avramov-Zamurovic
Weapons, Robotics, and Control Engineering Department

_________________________________________
(signature)

___________________________
(date)

Acceptance for the Trident Scholar Committee

Professor Maria J. Schroeder
Associate Director of Midshipman Research

_________________________________________
(signature)

___________________________
(date)

USNA-1531-2



Contents

1 Abstract 1

2 Introduction 2

3 The Paraxial Wave Equation 3
3.1 Gaussian Beam Solution . . . . . . . . . . . . . . . . . . . . . . . 4
3.2 Non-dimensional PWE System . . . . . . . . . . . . . . . . . . . 6

4 Spectral Methods 7
4.1 Series Expansions . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.2 Orthogonality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.3 Time Dependent PDEs . . . . . . . . . . . . . . . . . . . . . . . . 10

4.3.1 Spectral Galerkin Method . . . . . . . . . . . . . . . . . . 10
4.3.2 Spectral Collocation Method . . . . . . . . . . . . . . . . 13

5 Numerical Method For Laser Beam Propagation 14
5.1 Differentiation Matrix . . . . . . . . . . . . . . . . . . . . . . . . 15
5.2 Chebyshev Collocation Method . . . . . . . . . . . . . . . . . . . 15

5.2.1 Polynomial Interpolation . . . . . . . . . . . . . . . . . . 16
5.2.2 Chebyshev Differentiation Matrix . . . . . . . . . . . . . . 20

5.3 Fourier Collocation Method . . . . . . . . . . . . . . . . . . . . . 21

6 Verification of Method 23
6.1 Propagation in Free Space . . . . . . . . . . . . . . . . . . . . . . 24

6.1.1 Fourier Galerkin Method Solution . . . . . . . . . . . . . 25
6.1.2 Chebyshev Collocation Method Solution . . . . . . . . . . 29
6.1.3 Fourier Collocation Method Solution . . . . . . . . . . . . 31

6.2 Method of Manufactured Solutions . . . . . . . . . . . . . . . . . 33
6.2.1 Chebyshev Method . . . . . . . . . . . . . . . . . . . . . . 34
6.2.2 Fourier Method Verification . . . . . . . . . . . . . . . . . 35

7 Lasers Beams in Nonhomogeneous Conditions 36
7.0.1 Prototype Problem . . . . . . . . . . . . . . . . . . . . . . 36

8 Conclusion 38
8.1 ODE Solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

9 Appendix A: Maxwell’s Equations to Paraxial Wave Equation 40

10 Appendix B: MATLAB Script for 1D Galerkin Method 43

11 Appendix C: MATLAB Script for the Chebyshev Collocation
Method for the PWE 45



12 Appendix D: MATLAB Script for the Fourier Collocation Method
for the PWE 48

13 Appendix E: MATLAB Script for the Fourier Galerkin Method
for the PWE 51

14 Appendix F: MATLAB Script for the Exact Solution plot of
the Gaussian Beam 53



1

1 Abstract

In this project, we approximate solutions to the Paraxial Wave Equation by
posing an initial boundary value problem (IBVP). The Paraxial Wave Equa-
tion is a model of laser beam propagation. A variable refractive index term is
introduced within this partial differential equation to account for a nonhomo-
geneous medium. We apply Spectral methods to approximate the transverse
Laplacian operator and an adaptive Runge-Kutta method using MATLAB’s
ordinary differential equation solvers to propagate the beam forward in space.
Three Spectral methods are considered: a Fourier Galerkin method, a Fourier
collocation method, and a Chebyshev collocation method. These methods are
verified in two ways: (1) by comparing the numerical IBVP solution to the
exact solution in unbounded space for a Gaussian beam propagating in homo-
geneous media and (2) by applying the method of manufactured solutions. We
apply a Fourier collocation method to model laser beam propagation through a
nonhomogeneous medium.
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2 Introduction

Lasers can be found in a broad range of scientific, industrial, and military ap-
plications. Their applications in directed energy weapons and communication
systems are of particular interest to the United States Navy [17], [5]. How-
ever, the Navy’s operational domain within the maritime environment poses
various challenges to laser beam propagation. The maritime environment en-
compasses the atmosphere directly above and the water below the surfaces of
oceans and their littoral regions. Variations in environmental parameters such
as temperature, fluid density, pressure, and scattering particle distributions re-
sult in various nonlinear effects which distort propagating laser beams in the
maritime environment. The dynamical nature of the changes within the mar-
itime domain exacerbates the distortions to the phase and amplitude of laser
beam propagation. The full spectrum of these effects fall beyond the scope of
this paper. Various fields such as oceanography and engineering independently
study these effects based on the fluid dynamics of the region. Extensive study
and experimentation have been done within the field of optics to study the
effects of the maritime environment on laser beam propagation [10].

The interaction of light and the medium could be characterized by the spa-
tial and temporal changes in the refractive index within the medium, which is
called optical turbulence. The refractive index is a single parameter that models
nonhomogeneity in a medium, which accounts for effects such as temperature,
salinity, and pressure variations that are distributed unevenly in a medium. We
note that refractive index changes do not necessarily apply to media with partic-
ulates that causes significant scattering or account for the effects of attenuation.

This paper mainly focuses on constructing a numerical framework to sim-
ulate laser beam propagation by finding approximate solutions to the Parax-
ial Wave Equation(PWE). The PWE is a model of laser beam propagation in
optical turbulence or vacuum [1]. A variable refractive index coefficient is in-
troduced within this complex-valued partial differential equation to account for
a nonhomogeneous medium. In our study, we consider a varying refractive in-
dex converted from temperature fluctuations from a numerical study of natural
convection in a Rayleigh-Benard volume [10].

We apply Spectral methods to find solutions to the PWE. Spectral methods
are a broad class of numerical methods based on approximating functions using
their series expansions. By finding the derivatives of their series expansion, the
derivative of the function can be approximated. Spectral methods are global
methods in that the derivative of a function at a single point is determined
by the values of the function at all of its surrounding points. The resulting
benefits are high spatial resolution relative to computational expenditure and
phase stability over long time integration [9]. High spatial resolution may be
conducive for approximating the behavior of wavelengths of light more accu-
rately. Phase stability over long time integration allows us to study laser beams
propagating over long distances. These benefits are advantageous to simulating
and understanding laser beam propagation.

We pose the laser beam propagation as an initial-boundary value problem
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(IBVP) for the PWE. The numerical scheme in this paper applies a Spectral
method to model the transverse spread of the beam and an adaptive Runge-
Kutta Method through MATLAB’s ODE45 solver [14] to propagate the beam
forward. The accuracy of the Spectral method is verified in two ways: (1) by
comparing the numerical IBVP solutions to analytical solutions in unbounded
space for laser propagation in a homogeneous medium and (2) by applying the
Method of Manufactured Solutions.

3 The Paraxial Wave Equation

The partial differential equation of interest is the Paraxial Wave Equation, a
model of laser beam propagation. Laser beams are a special form of monochro-
matic light whose equation can be traced directly from Maxwell’s equations.
The governing equations of electromagnetic fields reduce to the Paraxial Wave
Equation as shown in Appendix A for the complex-valued function u, where u is
any component of the electric or magnetic field. Time-dependence is separated
leaving a function u(x, y, z) of three spatial variables,

Δ⊥u+ 2ik
∂u

∂z
+ k2(

n2
r

n20
− 1)u = 0, (1)

where Δ⊥u = ∂2u
∂x2 + ∂2u

∂y2 is the transverse Laplacian operator, i =
√−1, and

k = 2π
λ is the wave number with the light’s wavelength λ. The spatially vary-

ing refractive index nr(x, y, z) and the reference refractive index constant n0

characterize the laser beam’s medium of propagation.
Spatially, the laser beam propagates along the z-axis where z=0 is the lo-

cation of the beam leaving the laser aperture. The beam spreads transversely
in the x, y directions, presenting the orientation of the laser beam seen when it
hits a surface like a wall.

The square modulus and argument of the complex-valued solution u give the
intensity I and phase Φ of the laser beam,

I = |u|2, (2)

and

Φ = tan−1

(
Im(u)

Re(u)

)
. (3)

For laser beams propagating in a homogeneous medium, we let nr = n0, result-
ing in the well-studied form of the PWE,

Δ⊥u+ 2ik
∂u

∂z
= 0. (4)
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3.1 Gaussian Beam Solution

Exact solutions for various beam forms have been extensively studied for the
homogeneous PWE in (4). This section follows the work of Andrews and Phillips
[1]. We can model a laser beam by posing an initial-value problem for the
unbounded half-space z > 0. The initial conditions model a beam leaving the
laser’s aperture. The simplest beam is the Gaussian beam. As denoted by its
name, the initial condition for it uses a modified Gaussian function to model a
spherical wave front,

u(r, 0) = a0 exp(−1

2
α0kr

2), (5)

where r2 = x2 + y2, α0 = 2
kw2

0
+ i 1

F0
, and a0 is the initial amplitude. The

beam’s input parameters λ, F0, and w0 are the wavelength, initial radius of
curvature, and initial beam radius in meters. Typical values are λ = 633E − 9
[m], F0 = 500 [m], and w0 = 0.03 [m]. The initial amplitude is set to a0 = 1.

The homogeneous PWE in (4) supplemented with the Gaussian initial con-
ditions in (5) poses an initial-value problem for the Gaussian beam. The exact
solution of the initial value problem can be found by assuming the solution is
of the form,

u(r, z) = A(z) exp(
1

p(z)

α0kr
2

2
), (6)

where p(z) and A(z) are two unknown functions. We solve for these unknown
functions by applying our initial condition in (5), recognizing p(0) = 0 and
A(0) = a0 = 1. Then, we substitute the template in (6) into the homogeneous
PWE, separate terms, and solve the resulting ordinary differential equation for
p(z) and A(z). More details for this direct solution method can be found in
Andrews and Phillips [1]. Gbur [6] derives the higher order Laguerre-Gaussian
beam using the same method.

Alternatively, our initial-value problem can be solved by identifying the
Green’s function for the Paraxial Wave Equation and evaluating the convo-
lution of the Green’s function with the Gaussian beam’s initial condition. This
integral is also referred to as the Huygen-Fresnel integral [1]. This method can
be generalized to more complex beam forms by changing the problem’s initial
conditions.

Both the direct solution method and Green’s function method result in the
exact solution for the Gaussian beam in the unbounded half space z > 0,

u(r, z) =
1

1 + iα0z
exp(

ik

2z
(

iα0z

1 + iα0z
)r2). (7)

The Gaussian beam solution can be rewritten in terms of the beam parameters,

Θ0 = 1− z

F0
, Λ0 =

2z

kw2
0

.

Then, the exact solution becomes

u(x, y, z) =
1√

Θ2
0 + Λ2

0

exp(−x
2 + y2

W (z)2
) exp[i(−ϕ− k(x2 + y2)

2F (z)
)], (8)
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where

ϕ = tan−1(
Λ0

Θ0
), W (z) = w0

√
Θ2

0 + Λ2
0, F (z) =

F0(Θ
2
0 + Λ2

0)(Θ0 − 1)

Θ2
0 + Λ2

0 −Θ0
.

Figures 1, 2, 3 show the intensity cross-section of a Gaussian beam at three
distances down its propagation path z = 0, 500, 1200[m]. The intensity peaks
at the center where (x, y) = (0, 0) and decays in the famous bell-curve shape as
one moves radially away from it. With the initial radius of curvature F0 > 0,
the beam starts off converging until it reaches its collimation distance where the
beam begins to diverge. Figure 2 is a plot of the beam at its collimation point
where the beam is at its smallest radius and highest intensity.

Figure 1: Gaussian Beam at z=0[m] Figure 2: Gaussian Beam at z=500[m]

Figure 3: Gaussian Beam at z=1200[m]

Along the propagation axis, the intensity increases until it peaks at the F0

distance along the propagation path. Figure 4 shows this intensity relation along
the propagation path z at the beam center.
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Figure 4: Gaussian beam intensity at the center of the beam where (x, y) = (0, 0)
and along the propagation axis from 0 < z < 1000 meters where F0 = 500
meters, w0 = 0.03 meters, and λ = 6.33 × 10−7 meters. Intensity can be
measured in milliwatts per meter squared.

We will use the exact solution of the Gaussian beam in unbounded space
to compare with our numerical solution in bounded space and calibrate our
Spectral method scheme.

3.2 Non-dimensional PWE System

In our study, we convert Equation (1) to a real-valued system of equations where
x, y, z are now non-dimensional variables and x̄, ȳ, z̄ denote physical distances
in meters. We let

x =
x̄

w0
, y =

ȳ

w0
, z =

z̄

F0
. (9)

Then, the PWE can be rewritten in terms of non-dimensional variables,

Δ⊥u+
2ikw2

0

F0

∂u

∂z
+ w2

0k
2(
n2
r

n2
0

− 1)u = 0. (10)

We note that u = U + iV is a complex-valued function. Substituting U + iV
into Equation (1), we obtain a real-valued, coupled system of PDEs where U
and V satisfy {

Δ⊥U − α∂V
∂z + βU = 0,

Δ⊥V + α∂U
∂z + βV = 0,

(11)

for α =
2kw2

0

F0
and β(x, y, z) = w2

0k
2(

n2
r

n2
0
− 1).
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We begin our numerical study by first concentrating on propagation in a
homogeneous medium, where n(x, y, z) = n0, where equation (11) reduces to{

Δ⊥U − α∂V
∂z = 0,

Δ⊥V + α∂U
∂z = 0.

(12)

4 Spectral Methods

A differential equation forms a relationship between a function f and its deriva-
tives. We say f satisfies the differential equation if the equality holds true for all
values of the independent variables. For example, let us consider the first order
ordinary differential equation (ODE), f ′ + f = 0. A solution to this differential
equation is f = e−x, because f ′ + f = −e−x + e−x = 0. In this case, we know
the exact function that satisfies the differential equation. A wide range of ana-
lytical techniques can be applied to various differential equations to find exact
solutions. However for many differential equations, few techniques are available
to find exact solutions. The list of analytical techniques decrease as we get into
the class of partial differential equations (PDEs), which describe differential
equations with functions of more than one variable. Numerical methods are the
dominant approach to finding solutions to PDEs and certain classes of ODEs.

4.1 Series Expansions

Spectral methods are one class of numerical methods that approximate the
solution to a differential equation as a series expansion. We can approximate
any function f as linear combinations of simpler basis functions φn weighted
with expansion coefficients an,

f(x) =
∞∑

n=0

anφn(x). (13)

A popular series expansion comes in the form of the Maclaurin series where the

coefficients are explicitly defined by an = f(n)(0)
n! and the basis functions are

the set of polynomials, φ = {xn|n ∈ Z
+}. In contrast, Spectral methods make

use of an orthogonality relation for a set of functions to compute the expansion
coefficients.

Typical basis functions for Spectral methods come in the form of trigono-
metric functions and orthogonal polynomials. This paper presents a Fourier
expansion and a Chebyshev expansion. These basis functions form a set of spe-
cial functions that belong to a Hilbert space, a special form of an inner product
space. An inner product space is a normed vector space with a defined inner
product.

Definition 4.1 (Inner Product). Let H be a vector space on C. An inner
product is a function 〈·, ·〉 from C

2 to C such that for all f, g, h ∈ H and c ∈ C,
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1. 〈f, g〉 =〈f, g〉,
2. 〈f + h, g〉 =〈f, g〉+ 〈h, g〉,
3. 〈cf, g〉=c 〈f, g〉
4. 〈f, f〉 ≥ 0, ∀f ∈ H and 〈f, f〉 = 0 if and only if f = 0.

A Hilbert space is a complete inner product space.

Definition 4.2 (Hilbert space). An inner product space H is said to be a
Hilbert space if it is complete, meaning every Cauchy sequence in H converges
to a function in H. That is, given a sequence {xn}n≥1 ∈ H, if ||xn − xm|| → 0
as n,m→∞, then ∃x ∈ H such that ||x− xn|| → 0 as n→∞.

Definition 4.3 (Norm). A norm || · || is a function from a vector space onto
R

+ that satisfies

1. ||f || = 0 iff f = 0,

2. ||cf || = |c| ||f || for c ∈ R and f ∈ H,

3. ||f + g|| ≤ ||f ||+ ||g||, ∀f, g ∈ H.

Norms are measures of distances within a space. They will be extensively
used later on to study error.

In this paper, we utilize the following inner product and the associated L2

norm,

〈f, g〉 =
∫
Ω

f(x)g(x)dx. (14)

||f || =
√∫

Ω

|f(x)|2dx. (15)

It can be shown that (14) and (15) satisfy the properties of an inner product
and a norm on a Hilbert space.

4.2 Orthogonality

Orthogonality is a critical property for the selection of basis functions in Spectral
methods.

Definition 4.4 (Orthogonality). For some vector space V , two functions f, g ∈
V are said to be orthogonal if 〈f, g〉 = 0. The set S is said to be orthogonal if
〈f, g〉 = 0 holds true ∀f, g ∈ S.
Spectral methods rely on orthogonal sets of functions to define the expansion
coefficients an for a series expansion approximation. To find the expansion
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coefficient, we take the inner product of Equation (13) with a fixed but arbitrary
basis function φm for m ∈ Z

+,

〈f, φm〉 =
∞∑

n=0

〈anφn, φm〉. (16)

Since 〈φm, φn〉 = 0 for n �= m, equation (13) reduces to

〈f, φm〉 = am〈φm, φm〉, (17)

which can be rewritten in terms of am,

am =
1

〈φm, φm〉 〈f, φm〉 =
1∫

Ω
|φm(x)|2dx

∫
Ω

f(x)φm(x)dx. (18)

For example, let us define the complex Fourier series for some function g(x) on
the interval Ω = [0, 2π] and some expansion coefficient bn ∈ C,

g(x) =

∞∑
n=−∞

bne
inx. (19)

From (18), the expansion coefficients are computed through the integral,

bn =
1∫ 2π

0
(einxe−inx)dx

∫ 2π

0

f(x)e−inxdx =
1

2π

∫ 2π

0

f(x)e−inxdx. (20)

Sets of functions are also orthogonal with respect to some weight function
w. For example, the set of Chebyshev polynomials are orthogonal with respect
to w = 1√

1−x2
. Let us consider the Chebyshev series expansion on the interval

[−1, 1],
h(x) =

∞∑
n=−∞

cnTn(x), (21)

where Tn is the nth Chebyshev polynomial. Chebyshev polynomials can be
defined by the recurrence relation,

T0(x) = 1, T1(x) = x, Tn+1 = 2xTn(x)− Tn−1(x). (22)

It can be shown for any n,m ∈ Z
+ such that n �= m,∫ 1

−1

Tn(x)Tm(x)
1√

1− x2 dx = 0. (23)

It follows

cn =
1∫ 1

−1
|Tn(x)|2w(x)dx

∫ 1

−1

Tn(x)h(x)w(x)dx. (24)

The treatment of computing the integrals in (18) is one distinct difference
in the implementation of the Galerkin and collocation methods, two forms of
Spectral methods which we will describe later in this paper.
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4.3 Time Dependent PDEs

We consider time-dependent PDEs formulated as an initial boundary value prob-
lem on the domain Ω ⊆ R with the differential and boundary operator, L and
B,

∂u

∂t
= L[u], x ∈ Ω,

Bu(x, t) = 0, x ∈ ∂Ω,
u(x, 0) = 0, x ∈ Ω.

(25)

We assume the solution u belongs to a Hilbert space and can be written as a
linear combination of basis functions,

u(x, t) =
∞∑

n=1

an(t)φn(x). (26)

The approximation uN (x, t) of u(x, t) can be found by truncating the infinite
series expansion of u to N number of terms.

4.3.1 Spectral Galerkin Method

The Galerkin method requires a residual RN to equal 0, where the residual can
be defined as the difference between the function and the approximation,

RN = u− uN . (27)

Since u is a solution to the time-dependent PDE in (25), then the residual can
be defined by

RN =
∂uN
∂t

− L[uN ]. (28)

To force the residual to be 0, we take the inner product of RN with a test
function ψ. In the Galerkin method, we choose test functions within the set of
basis functions for our series expansion approximation defined in equation (26),
so we choose ψ = φ. We take the inner product of RN with test functions:

〈RN , φn〉 = 0. (29)

The orthogonality property of our set of basis functions reduces the PDE in (29)
to an ODE comprised of the nth coefficient function, an(t). The coefficients for
the series approximation are returned by solving the ODEs for each coefficient
{a0(t), a1(t), a2(t), . . . aN (t)}.

Example:

Let us consider the standard wave equation with an added variable coefficient
term f(x) in the following IBVP,

utt − c2uxx + f(x)u = 0, (30)
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with Dirichlet boundary conditions and initial conditions{
u(0, t) = u(L, t) = 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x),

in a domain of 0 ≤ x ≤ L for some functions f(x), u0(x), and u1(x).
To apply a Galerkin method, we select a truncated sine series to approximate

our solution function u,

uN (x, t) =

N∑
n=0

an(t)
2

L
sin(

nπx

L
). (31)

The set of basis functions is defined by

{φ(x)} =
{
2

L
sin(

nπx

L
) | n = 1, 2, 3, . . . , N

}
. (32)

Each pair of functions in the set is orthogonal since for any n,m ∈ N such that
n �= m,

〈φn, φm〉 =
∫ L

0

[
2

L
sin(

nπx

L
)][

2

L
sin(

mπx

L
)]dx = 0. (33)

Thus, the set of functions creates an orthogonal basis that spans the finite
dimensional space,

SN = span{ 2
L
sin(

nπx

L
) | n = 1, 2, 3, . . . , N}. (34)

Additionally, there exist an eigenfunction relationship for each function in our
set of basis functions,

L[φn] = n2π2

L2
[
2

L
sin(

nπx

L
)] = λnφn,

for L[u] = −∂2u
∂x2 .

Returning to solving our problem in equation (30), we substitute the series
expansion in equation (31) into the PDE in equation (30):

N∑
n=1

[a′′n(t)φn(x) + c2λnan(t)φn(x) + f(x)an(t)φn(x)] = 0. (35)

Next, we take the inner product as defined in equation (14) with fixed test
functions ψm for m = 1, 2, 3, . . . N . As mentioned previously, the test and
basis functions are chosen to be the same in the Galerkin method. Because the
set of basis and test functions {φ} are chosen to be orthonormal, we have the
relationship,

〈φn, φm〉 = δm,n =

{
0 if n �= m,

1 if n = m,
(36)
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where δ is the Kronecker delta function.
Simplifying equation (35) using the orthogonality and eigenfunction rela-

tionship, we get

a′′m〈φm, φm〉+ c2λmam〈φm, φm〉+
N∑

n=1

an〈f(x)φn, φm〉 = 0. (37)

Notice the indices change because all nonzero sums occur only when n = m.
Equation (37) further simplifies to

a′′m + c2λmam +

N∑
n=1

an〈f(x)φn, φm〉 = 0, m = 1, 2, ... (38)

Now the problem becomes solving the N number of ordinary differential equa-
tions (ODEs) supplemented with initial conditions from the PDE,{

am(0) = 〈u0(x), φm(x)〉,
a′m(0) = 〈u1(x), φm(x)〉. (39)

Solving these ODEs produces the am(t) coefficient values. This leaves N
number of second order ODEs to solve. In our example, am(t) coefficients are
solved using MATLAB’s ODE45 solver. Using ODE45 requires converting the
second order ODEs to first order ODEs, doubling the equation count to 2N .
The approximate solution to the IBVP can now be reconstructed using the series
expansion given in equation (31).

Presented in Figure 5 is the solution to the IBVP with the specially defined
function values,

f(x) = sin(x)− 5 sin(30x) + 10 sin(40x),

u0 = e−200(x−0.5)2 , u1 = −400(x− 0.5)e−200(x−0.5)2 .

Small amplitude oscillations can be seen within the plot as the initial Gaus-
sian shape moves and reflects off the left boundary. These oscillations are a
result of the variable coefficient term f(x) in the modified wave equation.
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Figure 5: 1D Wave Equation Problem from 0 < t < 4

The MATLAB script is given in Appendix B.

4.3.2 Spectral Collocation Method

The Spectral collocation method follows similarly to the Galerkin method, but
the test functions are taken to be shifted delta functions. The delta function has
the unique property that for some domain Ω ⊆ R and some function f(x) ∈ Ω,
the convolution with a shifted delta function δ(x− xi) for xi ∈ Ω is∫

Ω

f(x)δ(x− xi)dx = f(xi). (40)

Within the same framework of the method of weighted residuals, we define a
set of test functions,

{ψ} = {ψi = δ(x− xi) | i = 0, 1, 2, 3, . . . N}. (41)

Then, we force the residual RN to be 0 by taking the inner product with our
set of test functions to create a system of N +1 equations, where each equation
is defined by

〈RN , δ(x− xi)〉 = 0. (42)
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This can be rewritten as

∂uN (xi, t)

∂t
− LN [uN (xi, t)] = 0, (43)

where uN (xi, t) is the series expansion evaluated at the collocation points xi
and LN is the discrete approximation of the operator L. Spectral collocation
methods deal with approximating this differential operator. A dense matrix
is commonly obtained to compute the derivative of the approximate solution
at an evaluated point. The developers of Spectral Methods, David Gottlieb
and Steven Orszag [7] [9], approach this problem by continuing the theme of
orthogonal series expansions and applying analytical quadrature methods to de-
fine differentiation matrices. In contrast, Trefethen [16] approaches the problem
with the intuition of interpolation. Both approaches are explored within this
paper and cover the topic of collocation grids in different ways.

This paper considers two series expansions, the Chebyshev and Fourier
expansions. The Chebyshev expansion considers Dirichlet boundary condi-
tions whereas the Fourier expansion considers periodic boundary conditions.
A Chebyshev differentiation matrix is constructed using the perspective of in-
terpolation on the non-uniform Gauss-Lobatto grid and Lagrange polynomials.
Alternatively, the Chebyshev differentiation matrix can be defined by applying
the Gauss-Lobatto quadrature to series expansion. For the case of Fourier se-
ries, this paper constructs a Fourier differentiation matrix using Fourier series
and the trapezoid-rule quadrature on a uniform grid.

After defining the differentiation matrix and evaluating the PDE at col-
location points, the resulting system of ODEs in (43) can be solved using a
numerical ODE solver such as MATLAB’s adaptive fourth order Runge-Kutta
solver, ODE45. We will see later on that the resulting set of ODEs for the PWE
problem is much stiffer for a Chebyshev spectral method.

It should be noted that the Spectral collocation method for solving time
dependent IBVPs is akin to the procedure for the Method of Lines (MOL).

5 Numerical Method For Laser Beam Propaga-
tion

The method of lines is implemented to solve an initial boundary-value problem
(IBVP) formulation of the PWE. The initial condition gives the transverse shape
of the beam leaving the laser’s aperture. The laser is propagating forward using
time integration schemes. In this paper, the boundaries on the x, y domain are
set far from the beam center in an attempt to mitigate their effect on the beam.

The method of lines is implemented by first discretizing the x,y domain Ω
using a finite set of discrete points (xi, yj) ∈ Ω for i, j = 0, 1, 2, 3 . . . N for some
N ∈ N. A Spectral method is used to approximate the derivatives with respect
to x, y of the solution u(xi, yi, z) at each discrete point. The resulting semi-
discrete system of ordinary equations are then solved using time-integration
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methods. This paper implements an adaptive 4th order Runge-Kutta method
through MATLAB’s ODE45 solver for time integration.

5.1 Differentiation Matrix

To approximate the derivative at discrete points, a differentiation matrix is
applied. Unlike finite difference methods, Spectral methods use the data from
every available point in the domain to approximate the derivative at a single
point. This results in a dense differentiation matrix D. Differentiation can be
approximated using matrix operations with D, so for some function f and some
set of discrete points �x,

∂f

∂x

∣∣∣∣
x=�x

≈ Df(�x). (44)

Higher order derivatives can be computed by multiplying the differentiation

matrix D by itself. For example, the second derivative ∂2

∂x2 is approximated by
D2. The discrete two-dimensional Laplacian operator can be approximated for
a multi-variable function g(x, y) with the following matrix operation,

Δg =⇒ D2 �G+ (D2 �GT )T = D2 �G+ �G(D2)T (45)

where Gij = g(xi, yj) is a matrix of data points evaluated at the grid points
xi, yj ,

�G =

⎡
⎢⎢⎢⎢⎣

g(x0, y0) g(x0, y1) . . . g(x0, yN−1)

g(x1, y0) g(x1, y1) . . . g(x0, yN−1)

...
. . .

. . .
...

g(xN−1, y0) g(xN−1, y1) . . . g(xN−1, yN−1)

⎤
⎥⎥⎥⎥⎦ . (46)

Applying our discrete Laplacian operator, we approximate the Paraxial Wave
Equation’s spatial differential operator L[g(x, y)] = 1

α (Δg(x, y) + βg(x, y)) at
our grid points xj , yj ,

LN (G) =
1

α
(D2 �G+ �G(D2)T + �β · �G) (47)

This approximation for L will be used later on to solve the Paraxial Wave
Equation using D and ODE45.

5.2 Chebyshev Collocation Method

The first method we present is a Chebyshev collocation method for approxi-
mating our differential operator L on a non-uniform grid using a differentiation
matrix D. This method is appropriate for Dirichlet boundary conditions. Our
grid points on (−1, 1) are defined by the Chebyshev points,

xj = cos(
jπ

N
), j = 0, 1, 2, · · · , N. (48)
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Chebyshev points can be geometrically interpreted as projections of equidistant
points on a unit circle as shown in Figure 6.

Figure 6: Chebyshev points can be interpreted as projections of equidistant
points on a unit circle.

The grid in (48) for the interval (−1, 1) can be generalized to (a, b) by

xj =
b− a
2

cos(
jπ

N
) +

a+ b

2
, j = 0, 1, 2, . . . , N. (49)

These special grid points are chosen to reduce a numerical instability called the
Runge phenomenon when applying polynomial interpolation on a uniform grid.

5.2.1 Polynomial Interpolation

The idea of interpolation is a vital concept in applying Spectral methods. We
will see in the next section how interpolation can be applied to approximate
differentiation. This section will explore polynomial interpolation on a uniform
grid.

The general form of an nth degree polynomial p(x) is given by

p(x) = b0 + b1x+ b2x
2 + ...+ bn−1x

n−1 + bnx
n, (50)

where bj is the expansion coefficient for the jth term. Given data points in
a vector �v corresponding to grid points in �x, we can define an interpolating
polynomial by solving for the b coefficients for a polynomial that satisfies each
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component vj in �v and xj in �x:

p(x0) = b0 + b1x0 + b2x
2
0 + ...+ bn−1x

n−1
0 + bnx

n
0 = v0,

p(x1) = b0 + b1x1 + b2x
2
1 + ...+ bn−1x

n−1
1 + bnx

n
0 = v1,

...

p(xn) = b0 + b1xn + b2x
2
n + ...+ bn−1x

n−1
n + bnx

n
n = vn.

(51)

This linear system can be written in matrix form,

A�b = �v, (52)

where�b is a vector composed of the unknown b values and A is the Vandermonde
matrix corresponding to the grid points,

A =

⎡
⎢⎢⎢⎢⎢⎣

1 x0 x20 x30 . . . xn0
1 x1 x21 x31 . . . xn1
1 x2 x22 x32 . . . xn2
...

...
...

. . .
...

1 xn x2n x3n . . . xnn

⎤
⎥⎥⎥⎥⎥⎦ . (53)

As an example, let us consider the following function,

f(x) =
1

1 + 16x2
, −1 ≤ x ≤ 1. (54)

We first need to discretize the domain, so we divide [−1, 1] into N intervals
with N + 1 points. An intuitive approach to discretizing the domain would be
to define equidistant points where

xj = −1 + 2j

N
, j = 0, 1, 2 . . . N. (55)

Given in Figure 7 is an interpolation of equation (54). We see that using equidis-
tant grid points with polynomial interpolation causes a type of numerical insta-
bility called the Runge phenomenon [16]. The Runge phenomenon creates large
oscillations close to the boundary, which is exacerbated further with a refined
grid.
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Figure 7: Interpolation of equation (54) using equidistant points.

To counteract the Runge phenomena, we apply Chebyshev points defined in
equation (48).

Given in Figure 8 is a polynomial interpolation of equation (54) with Cheby-
shev points. We can see the Runge phenomena has been successfully reduced.
Unlike equidistant points, the polynomial interpolant p(x) will converge to f(x)
as more Chebyshev points are added.
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Figure 8: Interpolation of equation (54) using Chebyshev points.

An analytical proof of selecting Chebyshev points can be shown by minimiz-
ing the L∞ norm for polynomial interpolation [2].

Differentiation can be approximated through interpolation. We can approxi-
mate the derivative of a function by differentiating its interpolating polynomial,

p′(x) = 0 + b1 + b22x+ ...+ bn−1nx
n−1, (56)

which results in the following matrix,

B =

⎡
⎢⎢⎢⎢⎢⎣

0 1 2x0 3x20 . . . nxn−1
0

0 1 2x1 3x21 . . . nxn−1
1

0 1 2x2 3x22 . . . nxn−1
2

...
...

...
. . .

...
0 1 2xn 3x2n . . . nxn−1

n

⎤
⎥⎥⎥⎥⎥⎦ . (57)

For B, we can find the discrete derivative �w of �v with the following relationship:

�w = B�b (58)

From Equation (52), we see that

�b = A−1�v. (59)

Now we have the relationship,

�w = BA−1�v. (60)

Therefore we can define the differentiation matrix D as

D = BA−1. (61)
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5.2.2 Chebyshev Differentiation Matrix

The previous section showed that to derive the differentiation matrix D in (44),
we first find a polynomial interpolant p(x) of f(�x) for some function f(x) and
some grid �x. Then, we analytically differentiate p(x) to approximate f ′(x).

Another way to represent this process is to use Lagrange polynomials where
the interpolant can be constructed by

p(x) =
N∑
j=0

f(xj)pj(x), pj(x) =

N∏
k=0,k �=j

x− xj
xk − xj . (62)

Differentiating the Lagrange polynomial, we get

p′(x) =
N∑
j=0

f(xj)p
′
j(x), p′j(x) = pj(x)

N∑
k=0,k �=j

1

x− xk . (63)

The derivative of xi can be found by evaluating p′(xi). It is worth noting Cheby-
shev points hold the following relationship xj = −xN−j , so p

′
j(xi) = pj

1
xi−xj

for

i �= j and pj(xj) =
∑N

k=0,k �=j
1

xj−xk
. It follows that our differentiation matrix

D can be defined by

p′(�x) =

⎡
⎢⎢⎢⎣
p′(x0)
p′(x1)

...
p′(xN )

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

d00
p1(x0)
x0−x1

. . . pN (x0)
x0−xN

p0(x1)
x1−x0

d11 . . . pN (x1)
x1−xN

...
. . .

. . .
...

p0(xN )
xN−x0

p2(xN )
xN−x1

. . . dNN

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
f(x0)
f(x1)

...
f(xN )

⎤
⎥⎥⎥⎦ = D�f, (64)

where

djj =

N∑
k=0,k �=j

1

xj − xk . (65)

The matrix D can be defined more explicitly with closed form formulas as given
by Trefethen [16]. The main diagonal entries are given by

DNN = −2N2 + 1

6
, D00 =

2N2 + 1

6
, (66)

and the off diagonal entries given by,

Djj =
−xj

2N − 1
, j = 1, ..., N − 1, (67)

and edges of the matrix given by,

Dij =
ci
cj

(−1)i+j

xi − xj , i �= j, ci =

{
2, i = 0, N

1. otherwise
(68)

Trefethen codes this matrix succinctly in his cheb.m function,
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% CHEB compute D = differentiation matrix, x = Chebyshev grid

function [D,x] = cheb(N)

if N==0, D=0; x=1; return, end

x = cos(pi*(0:N)/N)’;

c = [2; ones(N-1,1); 2].*(-1).^(0:N)’;

X = repmat(x,1,N+1);

dX = X-X’;

D = (c*(1./c)’)./(dX+(eye(N+1))); % off-diagonal entries

D = D - diag(sum(D’)); % diagonal entries

5.3 Fourier Collocation Method

A Fourier Spectral method approximates the derivative of a function using
trigonometric polynomials as the basis functions for the series expansion approx-
imation. To derive D, we consider a Fourier series expansion of some function
f(x) on a periodic domain [0, 2π),

f(x) =

∞∑
n=−∞

ane
inx, (69)

where an ∈ C are expansion coefficients and einx for n ∈ Z are a set of basis
functions. These functions are orthogonal on the interval [0, 2π). The expansion
coefficients can be computed by

an =
1

2π

∫ 2π

0

f(x)e−inxdx, (70)

which is a direct result of the orthogonality property of our set of basis functions.
Now, we approximate an on an equidistant grid on [0, 2π] where xj = hj for

j = 0, 1, 2, 3, . . . N and h = 2π
N for an even number N . The odd case follows in

a similar manner. We use the trapezoid quadrature formula given by∫ 2π

0

g(x)dx ≈ h(

N−1∑
j=1

g(xj) +
g(0)

2
+
g(2π)

2
). (71)

Then, it follows from (71), the expansion coefficient an can be approximated by

ân =
1

N

N−1∑
j=0

f(xj)e
−inxj , (72)

resulting from the periodicity of f where f(0) = f(2π).
Now, our problem can essentially be seen as an interpolation problem using

trigonometric polynomials. Given data points evaluated at f(xj), we can find
an interpolant p(x) by truncating the Fourier series expansion of f using N
number of Fourier modes where N is even,

p(x) =

N/2∑
n=−N/2

ân
cn
einx, cn =

{
2 n = ±N

2 ,

1 else,
(73)
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where cn is introduced for numerical stability when truncating the Fourier series
expansion [9]. Expanded out (73) becomes

p(x) =

N/2∑
n=−N/2

1

cnN

N−1∑
j=0

f(xj)e
−inxjeinx. (74)

We first evaluate the external sum,

p(x) =
N−1∑
j=0

f(xj)

N/2∑
n=−N/2

1

cnN
ein(x−xj).

We can sum the following as a geometric series rewritten as

N/2∑
n=−N/2

1

cnN
ein(x−xj) =

1

2N

N
2 −1∑

n=−N
2

f(xj)e
in(x−xj) +

1

2N

N
2∑

n=−N
2 +1

f(xj)e
in(x−xj)

=
e−iN

2 (x−xj) − eiN
2 (x−xj) + ei(−

N
2 +1)(x−xj) − ei(N

2 +1)(x−xj)

1 + ei(x−xj)

=
−ei(x−xj)

1
2 (ei(x−xj)

1
2 + e−i(x−xj)

1
2 )(ei(x−xj)

N
2 − e−i(x−xj)

N
2 )

−Nei(x−xj)
1
2 (ei(x−xj)]

1
2 − e−i(x−xj)

1
2 )

.

Using trigonometric identities, the summation becomes the real-valued periodic
Sinc function,

SN (x− xj) = 1

N
cot(

x− xj
2

) sin(N
x− xj

2
). (75)

Now, we can rewrite p(x) in the form of an interpolation function that approx-
imates f(x) using the uniformly distributed grid points xj ,

p(x) =

N−1∑
j=0

f(xj)SN (x− xj) (76)

We can approximate df
dx by differentiating its truncated Fourier series approxi-

mation p(x),

f ′(x) ≈ p′(x) =
N−1∑
j=0

f(xj)S
′
N (x− xj) (77)

The differentiation matrix D is defined by evaluating at a set of grid points xk
for k = 0, 1, 2, 3, . . . N ,

p′(�x) =

⎡
⎢⎢⎢⎢⎣

S′N (0) S′N (x1 − x0) . . . S′N (xN − x0)
S′N (x0 − x1) S′N (0) . . . S′N (xN − x1)

...
. . .

. . .
...

S′N (x0 − xN ) S′N (x1 − xN ) . . . S′N (0)

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
f(x0)
f(x1)

...
f(xN )

⎤
⎥⎥⎥⎦ . (78)
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For our case, we define our grid points using the same uniform mesh as our
expansion coefficient approximation: xk = 2πk

N . These grid points produce the
following relationship: SN (xk − xj) = SN (xk−j). Coupled with the periodicity
of p(x), SN (x−j) = SN (xN−j), it can be shown that D is a Toeplitz matrix,⎡

⎢⎢⎢⎢⎢⎢⎣

S′′N (0) S′′N (x1) . . . S′′N (xN )

S′′N (xN−1) S′′N (0)
. . . S′′N (x0)

. . .
. . .

. . .
. . .

S′′N (x0) S′′N (xN−1) . . . S′′N (0)

⎤
⎥⎥⎥⎥⎥⎥⎦
. (79)

The D2 matrix can be found by differentiating SN twice and evaluating at our
grid points. The entries of our Fourier D2 matrix is given by Trefethen [16] and
Hesthaven [9],

S′′N (xj) =

{
− π2

3h2 − 1
6 j = 0, N,

(−1)j

2 sin2(jh/2)
else.

(80)

6 Verification of Method

We verify our numerical schemes in two ways. We first study laser beam prop-
agation in free-space. An exact solution to the PWE exists for the Gaussian
beam for an unbounded domain as introduced in section 3.1. The application
of our numerical scheme necessitates the formulation of an IBVP on a bounded
domain with boundary conditions. We compare our numerical solution to the
IBVP to the unbounded Gaussian beam solution. To mitigate boundary con-
dition effects, we select a domain such that the boundaries are sufficiently far
enough from the laser beam center. We will see later from computations that a
boundary that is set twice the distance of the beam radius away from the beam
center is sufficient to mitigate boundary condition effects. The boundary be-
comes a more significant factor as the beam expands. The drawback to selecting
a large domain is beam resolution. A larger domain requires finer discretiza-
tions to resolve a laser beam, which increases the computational demand of the
method. A balance needs to be found between preventing boundary effects and
computational expenditure.

We consider a Fourier Galerkin Method, a Chebyshev collocation method,
and a Fourier collocation method in our free-space study to resolve the trans-
verse spread of the beam. An adaptive Runge-Kutta Method is applied using
MATLAB’s ODE45 solver to propagate the beam forward along the z-axis. Out
of the three approximations for the transverse spread of the beam, the Fourier
collocation method is the most efficient when coupled with MATLAB’s ODE45
solver. MATLAB’s ODE solvers struggle for refined Chebyshev approximation
grids for this laser problem. The incompatibility between the Spectral approxi-
mation and time integration method falls beyond the scope of this study. The
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inefficiencies from the Galerkin method are a direct result of the integral com-
putation to find the initial coefficient function values for the series expansion.

We then proceed with a refractive index coefficient by applying the method
of manufactured solutions.

6.1 Propagation in Free Space

To numerically simulate laser beam propagation in a homogeneous medium, we
present an Initial-Boundary Value Problem (IBVP) for a Gaussian beam. Our
numerical scheme applies the method of lines by discretizing the x, y domain on
Ω = [a, b]× [a, b] and applying a time stepping scheme for the z-axis. Then, our
IBVP can be presented as

∂V

∂z
= L[U ],

∂U

∂z
= −L[V ], (81)

where L[f ] = 1
α (Δf +βf) is the spatial differential operator for the x, y domain

of the PWE.
Our initial conditions model a Gaussian beam leaving the laser’s aperture

using the unbounded exact solution of the Gaussian Beam,

U(x, y, 0) = e−r2 cos(
α

4
r2), V (x, y, 0) = −e−r2 sin(

α

4
r2), (82)

where r2 = x2+ y2. We can find the exact unbounded solution in terms of U, V
by separating the real and imaginary parts of the exact solution in equation (8):⎧⎪⎨

⎪⎩
U(x̄, ȳ, z̄) = 1√

Θ2
0+Λ2

0

e
− r̄2

W (z̄)2 cos(ϕ+ kr̄2

2F (z̄) ),

V (x̄, ȳ, z̄) = − 1√
Θ2

0+Λ2
0

e
− r̄2

W (z̄)2 sin(ϕ+ kr̄2

2F (z̄) ),
(83)

for the physical variables r̄2 = x̄2 + ȳ2 and z̄ in units of meters.
Boundary conditions are either homogeneous Dirichlet or periodic boundary

conditions. We attempt to mitigate boundary effects by setting the boundary
far from the beam center.

Now, we can apply the method of lines to our IBVP to simulate a propagating
Gaussian beam. We first approximate U, V by evaluating at our grid points
U(xi, yi, z), V (xi, yi, z), creating a semi-discrete set of (N + 1)2 equations to
solve:

∂�V

∂z
= LN [�U ],

∂ �U

∂z
= −LN [�V ]. (84)

where �Uij = U(xi, yi, z) and �Vij = V (xi, yi, z) are matrices,

�U =

⎡
⎢⎢⎢⎢⎣

U(x0, y0, t) U(x0, y1, t) . . . U(x0, yN−1, t)

U(x1, y0, t) U(x1, y1, t) . . . U(x0, yN−1, t)

...
. . .

. . .
...

U(xN−1, y0, t) U(xN−1, y1, t) . . . U(xN−1, yN−1, t)

⎤
⎥⎥⎥⎥⎦ , (85)
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�V =

⎡
⎢⎢⎢⎢⎣

V (x0, y0, t) V (x0, y1, t) . . . V (x0, yN−1, t)

V (x1, y0, t) V (x1, y1, t) . . . V (x0, yN−1, t)

...
. . .

. . .
...

V (xN−1, y0, t) V (xN−1, y1, t) . . . V (xN−1, yN−1, t)

⎤
⎥⎥⎥⎥⎦ . (86)

Similarly, we construct our initial condition matrix by evaluating at our grid
points,

�U0ij = U(xi, yj , 0), �V0ij = V (xi, yj , 0).

For time stepping, we apply MATLAB’s ODE45 to solve our system of N2

ODEs. MATLAB’s ODE45 solver uses an adaptive Runge-Kutta method. The
solver uses its own internal steps to compute solutions. If manual times steps are
inputted, the manual time steps are approximated from the internal adaptive
steps [14]. The following results in this paper manually sets time steps from
z = 0 to z = 2 with 1000 uniformly distributed points.

6.1.1 Fourier Galerkin Method Solution

We implement a Fourier Galerkin Method, a special form of the Method of
Weighted Residuals (MWR), to solve our IBVP. We first construct two approx-
imations of U , V in the form of truncated sine series expansion, Ũ Ṽ where

Ũ =
N∑

m=1

N∑
n=1

amn(z)φmn(x, y), (87)

Ṽ =
N∑

m=1

N∑
n=1

bmn(z)φmn(x, y), (88)

with expansion coefficients amn and bmn. For our basis functions in our function
approximation also known as trial functions in the MWR, we use a Fourier sine
series,

φmn(x, y) = sin(
nπx

L
) sin(

mπy

L
) m,n ∈ N. (89)

This set of basis functions contain two important properties. The first property
is the set of functions’ orthogonality property. We define an inner product for
functions g(x, y) and h(x, y) defined on [0, L] as

〈h(x, y), g(x, y)〉 =
∫ L

0

∫ L

0

h(x, y)g(x, y)dxdy. (90)

For our particular choice of basis functions, it can be shown for everym′, n′,m, n ∈
N, the following orthogonality relationship holds in equation (91). Other sets
of functions sometimes requires a weight function w(x) to be orthogonal.

〈φmn(x, y), φm′n′(x, y)〉 =
{
0 if n �= n′ or m �= m′,
L2

4 if n = n′ and m = m′.
(91)
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The second important property is the set of functions contains an eigenvalue-
eigenfunction relationship in respect to the linear operator L = −Δ :

L[φmn] = −Δ[φmn] = λmnφmn (92)

where the eigenvalues are defined by λmn = n2π2

L2 + m2π2

L2 . In addition, it can be
shown the basis functions satisfy our IBVP’s Dirichlet boundary conditions, so
we do not have to worry about imposing them later.

φmn(0, y) = φmn(L, y) = φm.n(x, 0) = φm.n(x, L) = 0

Now, we need to define the residuals R1, R2. In the context of differential
equations, the residuals are the difference between the exact solutions U , V and
the approximate solutions Ũ , Ṽ :{

R1 = (ΔU − α∂V
∂z )− (ΔŨ − α∂Ṽ

∂z )

R2 = (ΔV + α∂U
∂z )− (ΔṼ + α∂Ũ

∂z )
(93)

The idea of the MWR is to average out the residual R1, R2 over the interval
[0 L] by taking the inner product with test functions ψ and setting them equal
to 0. In the Galerkin method, the test functions ψ are the same as the basis
functions, ψ = φ. {

〈R1, φmn〉 = 0,

〈R2, φmn〉 = 0.
(94)

wherem,n = {1, 2, 3, ..., N}. Separating using the linearity of the inner product,
we get {

(ΔŨ − α∂Ṽ
∂z ), φmn〉 = 〈(ΔU − α∂V

∂z ), φmn〉,
(ΔṼ − α∂Ũ

∂z ), φmn〉 = 〈(ΔV − α∂U
∂z ), φmn〉.

From the original PDE, we see the right side of the equation is equal to 0 and
we get 2N2 Galerkin equations,{

(ΔŨ − α∂Ṽ
∂z ), φmn〉 = 0,

(ΔṼ − α∂Ũ
∂z ), φmn〉 = 0.

(95)

Now, we substitute our series expansion for Ũ Ṽ and simplify using the orthog-
onality of φ and its eigenvalue-eigenfunction relationship. Now, we have to find
the expansion coefficients amn and bmn by solving the following 2N2 coupled
first-order ODEs: {

amn(z)λmn − αb′mn(z) = 0,

bmn(z)λmn + αa′mn(z) = 0,
(96)

with initial conditions,{
a(0) = 4

L2 〈U(x, y, 0), φmn(x, y)〉,
b(0) = 4

L2 〈V (x, y, 0), φmn(x, y)〉.
(97)
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The numerical results of the Galerkin method using a sine series expansion
for our Gaussian beam problem solved on a square domian [0, L] × [0, L] were
promising. To resolve the initial beam, we needed at least N=64 Fourier modes
as shown in the Figures below. Note the figures were all plotted with the same
resolution (100 by 100 points).

Figure 9: Gaussian beam intensity
at z=0 for the Galerkin Method with
N=16 modes.

Figure 10: Gaussian beam intensity
at z=0 for the Galerkin Method with
N=32 modes.

Figure 11: Gaussian beam intensity
at z=0 for the Galerkin Method with
N=64 modes.

The square shape of the first two approximations N = 16 and N = 32 are
a result of low convergence of the sine series approximation for our Gaussian
beam problem. The following plots shows the convergence of the Fourier series
for U(r, 0) and V (r, 0).
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Figure 12: Convergence of the Fourier series approximation of U(r, 0) (left)
and V (r, 0) (right). The bottom plots shows the max error between the exact
function and the truncated expansion using N modes.

The series expansion requires a relatively high truncation number to resolve
the beam. The following table gives approximate run times for sampled N values:

N = 16 N = 32 N = 64
9 seconds 400 seconds 3500 seconds

The majority of the run time was spent on resolving the 2N2 number of
initial condition integrals in (97). These integrals were computed using MAT-
LAB’s built-in integral2 numerical integration function with default settings
and tolerances. For N = 64, MATLAB had trouble resolving these integrals
accurately. When approximating the integrals in MATLAB, the max number
of function evaluations were reached before reaching the default error tolerance.

Future studies can look at the more efficient computation of these integrals.
The integrals in (97) can be computed independently, so high performance com-
puting methods can be implemented to compute the integrals in parallel. Within
this avenue, advanced numerical quadrature techniques can be explored for more
efficient and accurate evaluations of the initial condition coefficients. Alterna-
tively, a different basis can be implemented for the series expansion, which may
positively affect the convergence of the numerical quadrature and the accuracy
of the solution approximation.

Since the refractive index term U and V are linear variable coefficient terms,
the Galerkin method scheme can be applied to the nonhomogeneous problem
as well. However, the integral computation will become even more strenuous.
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We will see in the next sections that the collocation methods are much less
computationally intense. The computational times are fractions of the time
of our implementation of the Galerkin method. This is a direct result of how
the integrals for the expansion coefficients were treated. In previous sections,
we saw that these integrals were simplified analytically for the differentiation
matrix in our implementation of the Fourier collocation method. The analyt-
ically simplified quadrature resulted in the special Sinc function in (75). The
same analytical simplification can be shown using the Chebyshev polynomial
basis using a Gauss-Lobatto quadrature [9]. In comparison to the Collocation
methods, the Galerkin method is more computationally intense.

6.1.2 Chebyshev Collocation Method Solution

We apply our numerical scheme using a Chebyshev differentiation matrix to
solve the Gaussian beam IBVP. Homogeneous Dirichlet boundary conditions are
enforced by setting the exterior of �U, �V to 0, which the Gaussian initial condition
nearly satisfies automatically. To more strictly enforce the boundary condition
and decrease computational expenditure, we take the interior of D and perform
operations only on the interior grid points [x1, x2, ...xN−1]× [y1, y2, ...yN−1].

Two plots are presented. Both plots give the intensity I = U2 + V 2 at the
center of our Gaussian beam. The first plot shows a solution to the IBVP solved
on the domain [−1, 1]× [−1, 1] while the second plot shows the solution solved
on [−2, 2] × [−2, 2] for sampled N values. The first plot reveals some sort of
boundary effect, which worsens as N increases. When we push the boundary
further away, we can see the solution converges for increasing N values.
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Figure 13: Intensity at the beam center (x,y)=(0,0) varying along the z-axis.
PWE solved on the grid [-1, 1] × [-1,1].

Figure 14: Intensity at the beam center (x,y)=(0,0) varying along the z-axis.
PWE solved on the grid [-2, 2] × [-2,2].

The implementation of our Chebyshev collocation method strains MAT-
LAB’s ODE solvers as we refine the spatial discretization by increasing N .
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MATLAB ODE45 fails to produce a solution for N = 128 on the domain
[−2, 2]× [−2, 2]. Time integration issues are left for future studies.

The table below gives approximate run times for sampled N values. We
can see the Collocation method runs much faster with higher accuracy than the
Galerkin method in the previous section.

N = 16 N = 32 N = 64
< 1 seconds < 1 seconds 12 seconds

In contrast with the Galerkin method, the Collocation method’s run time results
from solving the resulting ODEs. A large coupled system of ODEs are formed as
a result of the implementation of the method of lines on the PWE. A numerical
instability occurs when the Chebyshev differentiation matrix is applied to the
PWE for high N ’s. This instability does not occur for the Fourier Collocation
method.

6.1.3 Fourier Collocation Method Solution

Out of the three numerical schemes, the Fourier Collocation method combined
with Matlab’s ODE45 runs the most smoothly and efficiently. Applying the
Fourier differentiation matrix, we simulate a Gaussian beam in the domain [0,
2π] with periodic boundary conditions.

Figure 15: Intensity at the beam center varying along the z-axis. PWE solved
on the grid [0, 2π]× [0, 2π].

The Fourier method solution converged to the exact unbounded solution at
the beam center as shown in Figure 15. The error in the beam intensity at the
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beam center continues to decrease at the beam center with high N as shown in
Figure 16.

Figure 16: Max error for the Intensities of the Fourier Method Solution and
Exact Solution at the Beam Center for N between 16 and 200.

The Gaussian beam is completely resolved for N = 128 with an absolute
error in the magnitude of 10−4 and an efficient run time of about 10 seconds.
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Figure 17: Max error of the Fourier Collocation method solution and exact
solution for U, V per point along the propagation axis, z for N=128.

Given in the table below are approximate run times for the Fourier Colloca-
tion method for sampled N values. The table shows that the Fourier Collocation
method is the most efficient out of the three numerical schemes introduced.

N = 16 N = 32 N = 64 N = 128 N = 256
< 1 seconds < 1 seconds 3 seconds 10 seconds 90 seconds

As a result of the efficiency and accuracy, the Fourier Collocation method will
be implemented for the nonhomogeneous propagation problem with β �= 0.

6.2 Method of Manufactured Solutions

To further verify our code, we apply the method of manufactured solution. We
consider a prototype Initial Boundary Value problem for some constant α and
some functions β(x, y, z), f(x, y, z) and g(x, y, z) for code verification,{

ΔU − α∂V
∂z + βU = f,

ΔV + α∂U
∂z + βV = g,

(98)

with homogeneous Dirichlet boundary conditions on a square domain,

Ω = (−1, 1)× (−1, 1), U |∂Ω = V |∂Ω = 0. (99)

We let α = 1 and β = cos(10xyz). To verify our code, we set f and g such
that these functions satisfy our PDE given a set of manufactured solutions,

Ue = x(1−x2)y(1−y2) cos(z), Ve = sin(4πx(1−x2)y(1−y2)) cos(z). (100)
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MATLAB’s symbolic math toolbox allows symbolic variable manipulation and
analytical differentiation. The lines below compute f and g.

syms x y z

Alpha =1; %Alpha not equal to 0

Beta (x,y,z)= cos(10*x*y*z); %/(x*y*z)*1;

uexact(x,y,z)=x*(1-x^2)*y*(1-y^2)*cos(z);

vexact(x,y,z)=sin(4*pi*x*(1-x^2)*y*(1-y^2))*cos(z);

g=(diff(diff(uexact,x),x)+diff(diff(uexact,y),y))-Alpha*diff(vexact,z)+Beta*uexact;

f=(diff(diff(vexact,x),x)+diff(diff(vexact,y),y))+Alpha*diff(uexact,z)+Beta*vexact;

f=matlabFunction(f); g=matlabFunction(g);

uexact=matlabFunction(uexact); vexact=matlabFunction(vexact);

Beta=matlabFunction(Beta);

clear x y z

Floating point calculations are used after determining f and g. Hence, we
convert the symbolic expression into MATLAB function handles using the mat-
labFunction command.

6.2.1 Chebyshev Method

Presented is an error plot for sampled N values for our Chebyshev collocation
method.

Figure 18: Max error per step z between computed solutions and manufactured
solutions.
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The Chebyshev collocation method resolves the manufactured solutions well
enough. However, our free space results show that it may not be conducive for
our laser problems. Therefore, we proceed with the Gaussian beam problem
using the Fourier collocation method.

6.2.2 Fourier Method Verification

We verify our code for the Fourier Collocation method using the Gaussian beam
functions in equation (82) as manufactured solutions for sampled α parameters.
The following figures shows the numerical method is accurate for a constructed
variable coefficient term β = 1000 cos(10xyz) when the parameter α is small.

Figure 19: α = 0.3 Figure 20: α = 3

Figure 21: α = 30 Figure 22: α = 300

Figure 23: The figures gives the max error plots per time step for α = 0.3 (top
left), α = 3 (top right), α = 30 (bottom left), and α = 300 (bottom right).

For the fixed N = 32, we see that the Fourier Collocation method is accurate
to the order of 10−5 for α = 0.3 and α = 3. However, as the parameter α
increases, the beam error increases as well for fixed N . A more refined grid is
needed as the magnitude of the parameter α increases.



36

Figure (24) shows that we need N = 128 to resolve the beam at the accuracy
of 10−5 when α = 30.

Figure 24: Method of Manufactured Solutions error plot for U and V where
α = 30 and β = 100 cos(10xyz).

We showed with the Method of Manufactured solutions that N = 128 is
accurate for our Gaussian beam problem with w0 = 0.03, F0 = 500, and λ =
633× 10−9, where α = 35.7388.

7 Lasers Beams in Nonhomogeneous Conditions

We proceed with the Fourier Collocation method to simulate laser beam prop-
agation in nonhomogeneous medium. We solve a prototype problem for an
arbitrary function to simulate as a precursor for future works on laser beams in
nonhomogeneous media.

7.0.1 Prototype Problem

A prototype problem is considered to solve the nonhomogeneous PWE in equa-
tion (12) using the Fourier collocation method with an arbitrarily constructed
refractive index term β = 1000 cos(10xyz). The Figures below show the distor-
tions of the beam as it propagates through space.
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Figure 25: Intensity at the beam center varying along the z-axis. PWE with a
varying refractive index β = 1000 cos(10xyz) solved on the grid [0, 2π]× [0, 2π].

Figure 26: Intensity at z=0.6. PWE with a varying index β = 1000 cos(10xyz)
solved on the grid [0, 2π]× [0, 2π].
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8 Conclusion

The goal of this study is to apply Spectral Methods to obtain approximate
solutions to the Paraxial Wave Equation. We have successfully implemented
a Galerkin method with a sine series expansion and two Collocation methods
with a complex Fourier series expansion and a Chebyshev polynomial expansion.
These methods were applied to find approximate solutions to an initial boundary
value problem motivated by our desire to model how laser beams propagate in a
turbulent medium. We first approached the homogeneous propagation problem
where exact solutions in half-space are available. To test our numerical method,
we designed our IBVP with initial conditions and boundary conditions on a
large enough domain to sufficiently mimic the half space geometry for which we
have exact solutions.

We worked with a non-dimensional version of the PWE where we rescaled
the parameters intended to model laser beam propagation.The parameter w0

is used to rescale the variables x and y in the cross section of the beam, while
the radius of curvature of the initial phase F0 is used to rescale z, which is the
direction of beam propagation.The non-dimensional parameter α plays a key role
in all of the numerical simulations and error analysis in our work, as described
in the previous sections. The parameter α affects the shape of the functions
that model the laser beams. Therefore, the series expansion approximations are
affected.

To compare numerical methods, we standardized the Gaussian beam prob-
lem for propagation in a homogeneous medium (β = 0). We let the initial radius
of curvature F0 = 500 meters, the initial beam radius w0 = 0.03 meters, and
the laser’s wavelength λ = 633× 10−9 meters. These parameters results in the
following non-dimensional constant: α = 35.7338. Our numerical study found
that to approximate the solution functions U and V to the accuracy of 10−4,
we need N = 128 modes for the series expansion in all three methods.

Our implementation of the Galerkin method is more computationally in-
tensive than the Collocation methods. The extra computation expenditure
results from resolving the initial expansion coefficients using numerical inte-
gration. MATLAB’s built in numerical integration function integral2 struggled
with resolving these integrals for our specific Gaussian beam problem. The in-
troduction of the linear refractive index term βu where β �= 0 requires even
more integrals to be resolved, which adds to the computational expenditure. In
contrast, the collocation methods resolve these quadrature schemes analytically
in the derivation of differentiation matrices. The resulting scheme runs more
efficiently and quickly in MATLAB.

We first explored a Chebyshev polynomial expansion in our implementation
of the Collocation method. The initial attempt used a square domain on [−1, 1]×
[−1, 1]. The beam on this domain resulted in significant boundary effects. The
expansion of the domain to [−2, 2] × [−2, 2] resulted in more accurate results.
However, MATLAB’s ODE45 solvers struggled to solve the resulting ODEs for
high N values.

Unlike the Chebyshev Collocation method, MATLAB’s ODE solvers com-
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puted the resulting ODEs for the Fourier Collocation method without a problem.
The Fourier Collocation proved to be the most computationally robust out of
the three Spectral methods. We proceeded with the Fourier collocation method
to approximate solutions to the nonhomogeneous problem.

Because of the nature of the collocation methods, these methods easily apply
to PDEs with non-constant coefficients as well to nonlinear PDEs. One of
the areas of future work will be the task of implementing the two spectral
methods to the PWE that governs thermal blooming, where a term proportional
to |u|2u will replace the refractive index term we have encountered in our work.
A second, and equally important, future work is to go beyond the range of
Gaussian initial conditions and consider initial profiles that result in hybrid
beams such as Gaussian-Hermite and Gaussian-Laguerre, and in general, beams
that exhibit orbital angular momentum (OAM). One of the important challenges
is to understand the impact of numerical discretization on the phase profiles of
an OAM beam as a function of the non-dimensional parameter α described
above.

8.1 ODE Solvers

More analysis and computation needs to be done to assess Spectral Methods
for solving the PWE compared to conventional beam propagation methods.
Within this study, we looked at spatial discretization and approximations to
the Laplacian operators. The two parts of our numerical scheme are 1) the
Spectral approximation in the x, y domain and 2) the time-integration method
for propagating the beam along the z-axis, both of which induces their own
approximation errors. This study looked at Spectral Method approximations
using a Fourier Galerkin, Fourier Collocation, and Chebyshev Collocation ap-
proximation. MATLAB’s ODE solvers were relied upon to propagate the beam
forward.

Future research can focus on time integration methods and search for more
optimal schemes to solve laser beam problems using Spectral methods. With
more in depth study of time integration methods, more extensive error analysis
can be performed, especially pertaining to the relationship between the spatial
and temporal approximations. Additionally, boundary effects such as the one
found in Figure (13) can be more accurately studied with a deeper understanding
of the spatial-temporal errors.
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9 Appendix A: Maxwell’s Equations to Paraxial
Wave Equation

The derivation of the Paraxial Wave Equation begins with Maxwell’s equations,
the fundamental model for classical electromagnetic theory. Then, Maxwell’s
equations are reduced to a form of the wave equation, which characterizes one
component of the electromagnetic field. The wave equation reduces to the
Helmholtz equation and from there, the Paraxial Wave Equation is derived.

Laser beams are a special form of monochromatic light. Like all light,
laser beams fall into the broad spectrum of electromagnetic waves, which con-
sists of an electric field component E(x, y, z, t) and a magnetic flux compo-
nent B(x, y, z, t). These two time-dependent vector components form sinusoidal
waves and travel transversely to each other while remaining spatially and tem-
porally in phase. Electromagnetic waves propagate in the direction of the cross
product E × B, meaning they always travels perpendicular to each field com-
ponent. The term Transverse Electronic Mode (TEM) within optics is often
used to describe the phase front patterns of laser beams at points along the
propagation axis [1].

Maxwell’s equations provide a model for the movement of electromagnetic
waves in terms of each individual component: E and B. Maxwell’s equations
consist of Gauss’s law for electricity, Gauss’s law for magnetism, Faraday’s law
of induction, and Ampere’s law. These equations are the starting point for
deriving the model for laser beam propagation, the Paraxial Wave Equation.
The differential form of simplified Maxwell’s equations for a medium free of
charge and absent of external current is given by

∇ ·D = 0 (101)

∇ ·B = 0, (102)

∇×E = −∂B
∂t
, (103)

∇×H =
∂D

∂t
, (104)

where H = 1
μB is the strength of the magnetic field and D = εE is the electric

displacement. The parameter μ is the permeability and ε is the permittivity of
the given medium. These parameters relate to the electric and magnetic fields
respectively. These two parameters provide information on the speed v for
electromagnetic waves in a given medium as given in the following relationship,

v2 =
1

με
. (105)

The refractive index n gives the ratio between the speed of a propagating elec-
tromagnetic wave v in a given medium and the speed of light c in a vacuum,

n =
c

v
. (106)



41

The speed of light in a vacuum c = 1√
μ0ε0

includes the vacuum constants

for permittivity μ0 and permeability ε0. For electromagnetic waves in a non-
vacuum environment, it is customary to let μ be constant and assume ε varies
spatially and temporally through the propagating medium [cite Strohbehn].

To collapse Maxwell’s coupled equation to a singular wave equation charac-
terizing only the electric field component, the curl of Faraday’s law of induction
in (103) is taken,

∇×∇×E = −∇× (
∂B

∂t
), (107)

The vector identity is applied,

∇×∇×E = ∇(∇ ·E)−∇2E. (108)

Ampere’s law in (104) is differentiated with respect to time and the assumption
that μ is constant is applied to find the relation,

∇× (
∂B

∂t
) = μ

∂2

∂t2
(εE). (109)

Applying (108) and (109) to (107), we get an equation in terms of only the
electric field,

∇(∇ ·E)−∇2E = −μ ∂
2

∂t2
(εE). (110)

From Gauss’s law for electricity in (101) in a media free of charge, we find the
relationship,

E · (∇ε) + ε(∇ ·E) = 0 =⇒ (∇ ·E) = −E · (∇ε)
ε

= −E · ∇ ln(ε). (111)

Using the chain rule, we have ∇ ln(ε) = 1
ε∇ε. Substituting ∇ ·E from equation

(111) into equation (110) gives

∇2E− μ ∂
2

∂t2
(εE) = −∇[E · ∇(ln ε)]. (112)

If ε is a constant, (112) reduces to the standard wave equation,

∇2E− 1

v2
∂2

∂t2
(E) = 0 (113)

However, the permittivity varies for an inhomogeneous medium, so a varying
refractive index can be rewritten in terms of permittivity and permeability,

n2(x, y, z, t) =
με(x, y, z, t)

μ0ε0
. (114)

We assume μ = μ0, which leaves the relationship,

ε(x, y, z, t) = ε0n
2(x, y, z, t). (115)
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Substituting (115) converts equation (112) in terms of the speed of light and a
varying refractive index,

∇2E− 1

c2
∂2

∂t2
(n2E) = −2∇(E · ∇(lnn)). (116)

It is customary in the field of optics [19] to rewrite (116) as,

∇2E− n2

c2
∂2

∂t2
(E) = 0. (117)

The simplification of moving n2 outside of the partial time derivative results
from differences in the order of magnitude of the temporal variations in the
refractive index and the period of the electric field. Significant variations in the
refractive index occur within the order of 10−5 seconds, which is large compared
to the magnitude of the oscillation period of light: 10−14 seconds or faster [19].

The second approximation by dropping the right hand side of (116) takes
into account the scales of refractive index changes within a medium [15]. The
following approximation can be made:

−2∇(E · ∇(lnn)) = ∇(
1

n2
∇n2) ≈ 0. (118)

If we assume the electric field is polarized in the x-direction, we can isolate
the Ex component of the field. The vector equation reduces to a scalar wave
equation. For the case of laser beams, we assume the light is monochromatic,
which is characterized by a single wavelength λw, resulting in a constant an-
gular frequency ω = kc

n0
where k = 2πn0

λw
is the wave number. Therefore, time

dependence can be separated in form,

Ex(x, y, z, t) = ψ(x, y, z)e−iωt. (119)

From (117), we get

Δψ +
n2ω2

c2
ψ = 0 (120)

The rapid oscillations of the wave in the z direction is separated to produce a
slowly varying wave u,

ψ(x, y, z) = u(x, y, z)eikz. (121)

The resulting equation from (120) becomes

Δu+ 2ik
∂u

∂z
− k2u+

n2ω2

c2
u = 0. (122)

Finally, we get the PWE by converting parameters and applying the Paraxial

Approximation, |∂2u
∂z2 | << |k ∂u

∂z |,

Δ⊥u+ 2ik
∂u

∂z
+ k2(

n2
r

n20
− 1)u = 0. (123)

The typical magnitude of k for visible light is 107. The paraxial approximation
is discussed more depth in [11].
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10 Appendix B: MATLAB Script for 1D Galerkin
Method

ODESys function for ODE45.

function dadt=ODESys(t,a,B,c,L,N,lambda)

%Equation compiling: *note that a_m=a(2m-1), a’(2m-1)=a(2m), and a_m’’=a’(2m) dadt=z

for i=1:N

dadt(2*i-1)=a(2*i);

dadt(2*i)=-(c^2*lambda(i)*a(2*i-1)+sum(B(i,1:1:N)*a(1:2:2*N)));

end

end

MATLAB Script

clear all;

tic

c=1;L=1;N=10;

%Inner Product Coefficient B_{m,n}=<f(x)*phi_n,phi_m>

syms x

f(x)=sin(x) - 5*sin(30*x) + 10*sin(40*x); % defines f(x)

lambda=(1:N).^2*pi^2/L^2; % eigenvalue lambda_m

%Eigenfunction phi_m(x,m)=2/L*m^2*pi^2/L^2

B=zeros(N);

for i=1:N

for j=1:N

B(i,j)=4/L^2*int(f(x)*sin(i*pi*x/L)*sin(j*pi*x/L),x,0,L);

end

end

%%

%initial conditions

u0(x)=exp(-200*(x-0.5)^2); %u(x,0)=u0

u1(x)=diff(u0(x)); %u_t(x,0)=u1

aic=2/L*int(u0(x)*sin(pi*(1:N)*x/L),x,0,L); %a(0)

aicp=2/L*int(u1(x)*sin(pi*(1:N)*x/L),x,0,L); %a’(0)

for i=1:1:N

a0(2*i-1)=aic(i);

a0(2*i)=aicp(i);

end

a0=double(a0);

tspan=[0 4]; %time interval

[t,a]=ode45(@(t,a) ODESys(t,a,B,c,L,N,lambda), tspan,a0);%ODE solver

%%

%Solution u=phi_m(x)*a_m(t)

x=linspace(0,L,100);

for m=1:N;
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phi(m,:)=sin(m*pi*x/L);

end

tbegin=1; tend=length(t); dt=10;

u=zeros(N,length(x));

tp=tbegin:dt:tend;i=1;

for ti=tbegin:dt:tend

for k=1:N

u(k,:)=phi(k,:)*a(ti,2*k-1);

end

u=sum(u);

up(i,:)=u;

i=i+1;

%hold on

%plot(x,u);

end

waterfall(x,t(tp),up)

view([10,80]); title(’1D Wave Equation Problem’)

ylabel(’0<t<’+string(t(end))), zlabel(’u’),xlabel(’0<x<’+string(L));
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11 Appendix C: MATLAB Script for the Cheby-
shev Collocation Method for the PWE

clear all

tic

%PDE Parameters

w0=0.03; F0=500; wavelength=633E-9; k=2.*pi/wavelength;

Alpha=2*k*w0^2/F0; %Constant

Beta= @(x,y,z) 0; %Refractive index function

a1=-2; b1=2; %Set domain of chebyshev grid [a1 b1] x [a1 b1]

shiftx=0; shifty=0; %Set Coordinates of Beam Center

%Initial Conditions

Uinitial=@(x,y) exp(-((x-shiftx).^2+(y-shifty).^2))...

.*cos(Alpha/4*((x-shiftx).^2+(y-shifty).^2));

Vinitial=@(x,y) -exp(-((x-shiftx).^2+(y-shifty).^2))...

.*sin(Alpha/4*((x-shiftx).^2+(y-shifty).^2));

%%

%Differentiation Matrix

N=64;

zsteps=linspace(0,2,1E4+1); %Timestep Evaluations

zi=1:length(zsteps); %Timestepping index

[D,x] = cheb2(N,a1,b1); y=x;

D2=D^2;D2interior=D2(2:end-1,2:end-1);

[X,Y]=meshgrid(x(2:end-1),y(2:end-1));

Xi=X(:); Yi=Y(:); NN=N-1;

u0=Uinitial(X,Y); v0=Vinitial(X,Y);

a0=[u0(:); v0(:)];

%Solve System of ODEs

[z,a]=ode45(@(z,a) Spectral2DODESysGRI(a,N,D2interior,X,Y,z,Alpha,Beta),zsteps,a0);

U=a(:,1:NN^2); V=a(:,NN^2+1:end); %Reshape Solution

TIME=toc

%%

%Exact Solution in Free Space

w0s=w0; F0s=500; alpha0=2/(k*w0s^2)+i/F0s;

ue=@(x,y,z) 1./(1+i*alpha0*(z*F0s))...

.*exp(-1/2*(alpha0*k./(1+i*alpha0.*(z*F0s))).*((x*w0s).^2+(y*w0s).^2));
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%Plot 2D Intensity Figures

p=1;

for ti=[1 3E3+1 5E3+1 7E3+1] %Propagation Path Indices

ur=reshape(U(ti,:),NN,NN);

vr=reshape(V(ti,:),NN,NN);

I=ur.^2+vr.^2;

Ie=abs(ue(X,Y,z(ti))).^2;

% ErrorI(p)= max(max(abs(I-Ie))); %Max I error Along Propagation Axis

% ErrorU(p)= max(max(abs(ur-real(ue(X,Y,z(ti)))))); %Max U Error

% ErrorV(p)= max(max(abs(vr-imag(ue(X,Y,z(ti)))))); %Max V Error

%Plot

figure; surf(X,Y,I)

view(0,90); shading interp

xlim([a1 b1]); ylim([a1 b1])

xlabel(’x’); ylabel(’y’); zlabel(’Intensity’);

title(’Beam Intensity at z=’ +string(z(ti))+...

’, Chebyshev Collocation: N=’+string(N))

p=p+1;

end

%%

%Plot intensity at the beam center along propagation axis

Iaxis=U(1:end,(end+1)/2).^2+V(1:end,(end+1)/2).^2;

Ieaxis=abs(ue(0,0,z(1:length(Iaxis)))).^2;

figure

plot(z,Iaxis)

hold on

plot(z,Ieaxis)

legend(’Approximation N=’ +string(N), ’Free Space Solution’)

title(’Chebyshev Collocation Method on [’+string(a1)+’ ’+string(b1)+ ’]’)

ylabel(’Intensity’); xlabel(’z’)

%%

%FUNCTIONS

%Laplacian Approximation and ODEs

function dadt=Spectral2DODESysGRI(a,N,D2interior,X,Y,z,Alpha,Beta);
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NN=N-1;

u=a(1:NN^2);v=a(NN^2+1:end);

umatrix=reshape(u,NN,NN);vmatrix=reshape(v,NN,NN);

Lu=D2interior*umatrix+umatrix*D2interior’;

Lv=D2interior*vmatrix+vmatrix*D2interior’;

dudz=(-Lv-Beta(X,Y,z).*vmatrix)./Alpha;

dvdz=(Lu+Beta(X,Y,z).*umatrix)./Alpha;

dadt=[dudz(:); dvdz(:)];

end

%Cheb Function from Trefethen, modified for arbitrary square [a,b]x[a,b]

function [D,x] = cheb2(N,a,b)

if N==0, D=0; x=1; return, end

index=(0:N)’;

x=((b-a)/2)*cos((2*index+1)*pi/(2*(N+1)))+(a+b)/2;

c = [2; ones(N-1,1); 2].*(-1).^(0:N)’;

X = repmat(x,1,N+1);

dX = X-X’;

D = (c*(1./c)’)./(dX+(eye(N+1))); % off-diagonal entries

D = D - diag(sum(D’)); % diagonal entries

end
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12 Appendix D: MATLAB Script for the Fourier
Collocation Method for the PWE

clear all

tic

%PDE Parameters

w0=0.03; F0=500; wavelength=633E-9; k=2.*pi/wavelength;

Alpha=2*k*w0^2/F0; %Constant

Beta= @(x,y,z) 0; %Refractive index function

shiftx=pi; shifty=pi; %Set Coordinates of Beam Center

%Initial Conditions

Uinitial=@(x,y) exp(-((x-shiftx).^2+(y-shifty).^2))...

.*cos(Alpha/4*((x-shiftx).^2+(y-shifty).^2));

Vinitial=@(x,y) -exp(-((x-shiftx).^2+(y-shifty).^2))...

.*sin(Alpha/4*((x-shiftx).^2+(y-shifty).^2));

%%

%Differentiation Matrix

N=64;

zsteps=linspace(0,2,1E4+1); %Timestep Evaluations

zi=1:length(zsteps); %Timestepping index

x=linspace(0,2*pi,N+1); y=x;

j=1:length(x)-1; h=2*pi/(N);

r1=-pi^2/(3*h^2)-1/6;

r2=-(-1).^(j)./(2*sin(j*h/2).^2);

D2=toeplitz([r1 r2]);

D2interior=D2(2:end-1,2:end-1);

[X,Y]=meshgrid(x(2:end-1),y(2:end-1));

Xi=X(:); Yi=Y(:); NN=N-1;

u0=Uinitial(X,Y); v0=Vinitial(X,Y);

a0=[u0(:); v0(:)];

%Solve System of ODEs

[z,a]=ode45(@(z,a) Spectral2DODESysGRI(a,N,D2interior,X,Y,z,Alpha,Beta),zsteps,a0);

U=a(:,1:NN^2); V=a(:,NN^2+1:end); %Reshape Solution

TIME=toc

%%

%Exact Solution in Free Space
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w0s=w0; F0s=500; alpha0=2/(k*w0s^2)+i/F0s;

ue=@(x,y,z) 1./(1+i*alpha0*(z*F0s))...

.*exp(-1/2*(alpha0*k./(1+i*alpha0.*(z*F0s))).*((x*w0s).^2+(y*w0s).^2));

%Plot 2D Intensity Figures

p=1; Xs=X-shiftx; Ys=Y-shifty;

for ti=[1 3E3+1 5E3+1 7E3+1] %Propagation Path Indices

ur=reshape(U(ti,:),NN,NN);

vr=reshape(V(ti,:),NN,NN);

I=ur.^2+vr.^2;

Ie=abs(ue(Xs,Ys,z(ti))).^2;

% ErrorI(p)= max(max(abs(I-Ie))); %Max I error Along Propagation Axis

% ErrorU(p)= max(max(abs(ur-real(ue(X,Y,z(ti)))))); %Max U Error

% ErrorV(p)= max(max(abs(vr-imag(ue(X,Y,z(ti)))))); %Max V Error

%Plot

figure; surf(Xs,Ys,I)

view(0,90); shading interp

xlim([a1 b1]); ylim([a1 b1])

xlabel(’x’); ylabel(’y’); zlabel(’Intensity’);

title(’Beam Intensity at z=’ +string(z(ti))+...

’, Chebyshev Collocation: N=’+string(N))

p=p+1;

end

%%

%Plot intensity at the beam center along propagation axis

Iaxis=U(1:end,(end+1)/2).^2+V(1:end,(end+1)/2).^2;

Ieaxis=abs(ue(0,0,z(1:length(Iaxis)))).^2;

figure

plot(z,Iaxis)

hold on

plot(z,Ieaxis)

legend(’Approximation N=’ +string(N), ’Free Space Solution’)

title(’Fourier Collocation Method on [0 2\pi]’)

ylabel(’Intensity’); xlabel(’z’)

%%

%FUNCTION

%Laplacian Approximation and ODEs
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function dadt=Spectral2DODESysGRI(a,N,D2interior,X,Y,z,Alpha,Beta);

NN=N-1;

u=a(1:NN^2);v=a(NN^2+1:end);

umatrix=reshape(u,NN,NN);vmatrix=reshape(v,NN,NN);

Lu=D2interior*umatrix+umatrix*D2interior’;

Lv=D2interior*vmatrix+vmatrix*D2interior’;

dudz=(-Lv-Beta(X,Y,z).*vmatrix)./Alpha;

dvdz=(Lu+Beta(X,Y,z).*umatrix)./Alpha;

dadt=[dudz(:); dvdz(:)];

end
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13 Appendix E: MATLAB Script for the Fourier
Galerkin Method for the PWE

clear all;

tic

%parameters

L=4; N=32;

w0=0.03; F0=500; wavelength=633E-9; k=2.*pi/wavelength;

alpha=2*k*w0^2/F0; %Constant

%%

%eigenvalue lambda_{m,n} indexed as lambda(m,n)

lambda=((1:N).^2)*pi^2/L^2.*ones(N)+((1:N).^2)’*pi^2/L^2.*ones(N);

%%

%Initial Conditions

shiftx=L/2; shifty=L/2; %Set Coordinates of Beam Center

Uinitial=@(x,y) exp(-((x-shiftx).^2+(y-shifty).^2))...

.*cos(alpha/4*((x-shiftx).^2+(y-shifty).^2));

Vinitial=@(x,y) -exp(-((x-shiftx).^2+(y-shifty).^2))...

.*sin(alpha/4*((x-shiftx).^2+(y-shifty).^2));

%Array Value is not available for integral2 function.

%for loop is used instead

%2*N^2 number of integrals computed (can be computed in parallel)

%Integrals are the most computationally intensive

IC=zeros(2*N^2,1);

phi=@(x,y,m,n) sin(n.*x.*pi/L).*sin(m.*pi.*y/L); %Basis Functions

for m=1:N

for n=1:N

IC(2*N*(m-1)+2*n-1)=integral2(@(x,y) Uinitial(x,y)...

.*phi(x,y,m,n),0,L,0,L)*4/L^2;

IC(2*N*(m-1)+2*n)= integral2(@(x,y) Vinitial(x,y)...

.*phi(x,y,m,n),0,L,0,L)*4/L^2;

end

end

TIME(1)=toc;

%%

%Time stepper

tspan=linspace(0,2,1E4+1); %timestep

[t,a]=ode45(@(t,a) ODEPWESys(t,a,alpha,L,N,lambda), tspan,IC); %ODE solver

TIME(2)=toc

ac=reshape(a(1:2:end),N,N,length(tspan));

bc=reshape(a(2:2:end),N,N,length(tspan));
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%%

%Plot Solution

[X,Y]=meshgrid(linspace(0,L,100));

tbegin=1; tend= length(t); dt=100;

ki=1;

for ti=[1 3E3+1 5E3+1 7E3+1]%tbegin:dt:tend

V1=0; V2=0; %initialize

for m=1:N

for n=1:N

V1old=V1;

V1=a(ti,2.*N.*(m-1)+2.*n-1).*sin(n.*pi.*X/L).*sin(m.*pi.*Y/L);

V1=V1old+V1;

V2old=V2;

V2=a(ti,2.*N.*(m-1)+2.*n).*sin(n.*pi.*X/L).*sin(m.*pi.*Y/L);

V2=V2old+V2;

end

end

I=V1.^2+V2.^2;

V1center(ki)=V1(50,50);

V2center(ki)=V2(50,50);

Icenter(ki)=I(50,50); ki=ki+1;

while ki<10

figure; surf(X,Y,I);

title(’Beam Intensity at z=’ +string(t(ti))+...

’, Fourier Galerkin: N=’+string(N))

xlabel(’x’); ylabel(’y’); axis square; shading interp; view(2)

pause(0.01)

end

end

%%

% %Compare how integrals resolved the IC

% V1IC=max(max((V1-Uinitial(X,Y))))

% V2IC=max(max((V2-Vinitial(X,Y))))

%%

%Exact Solution Gaussian beam in Free Space

w0s=w0; F0s=500; alpha0=2/(k*w0s^2)+i/F0s;

ue=@(x,y,z) 1./(1+i*alpha0*(z*F0s))...

.*exp(-1/2*(alpha0*k./(1+i*alpha0.*(z*F0s))).*((x*w0s).^2+(y*w0s).^2));
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%%

function dadt=ODEPWESys(t,a,alpha,L,N,lambda)

%Equation compiling: *note that a_{m,n}=(2*N*(m-1)+2n-1) and b_{m,n}=(2*N*(m-1)+2n)

dadt=zeros(2*N^2,1);

%Fourier Coefficients

ac=reshape(a(1:2:end),N,N); %a coefficient

bc=reshape(a(2:2:end),N,N); %b coefficient

%ODEs

dacdt=lambda.*bc/alpha;

dbcdt=-lambda.*ac/alpha;

dadt(1:2:2*N^2)=dacdt(:);

dadt(2:2:2*N^2)=dbcdt(:);

end

14 Appendix F: MATLAB Script for the Exact
Solution plot of the Gaussian Beam

The Matlab script for plotting the exact solution of the Gaussian beam is pre-
sented below:

clear all;

%Beam Parameters

w0=0.03; F0=500; lambda=633E-9; k=2*pi/lambda;

alpha0=2/(k*w0^2)+i/F0;

L1=-2*w0; L2=-L1; N=500;

%Coordinates and Frame

z=1000;

x=linspace(L1,L2,N); y=x;

[X,Y]=meshgrid(x,y);

r=sqrt(X.^2+Y.^2);

%Solution

u=1/(1+i*alpha0*z).*exp(-1/2*(alpha0*k/(1+i*alpha0*z)).*r.^2);

I=abs(u).^2;

%Plot

mesh(X,Y,I);

title(’Guassian Beam Intensity: F_0=’+string(F0)+’, \lambda=’...

+string(lambda)+ ’, w_0=’+string(w0)+ ’, z=’ +string(z))

xlabel(’x’); ylabel(’y’); zlabel(’I’)
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axis square; view(2); colorbar;
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