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1 Introduction 
Flawed code is costly in multiple ways. First, there is the burden of software maintenance, the cost of which 
can range from 40 to 80 percent of development (Glass 2001). However, a second, arguably more important 
issue is that the resulting software may be vulnerable to attack and thus a candidate for exploitation. This 
can have significant implications beyond the cost to fix the code itself. For example, lack of bounds 
checking can lead to buffer overflows, and an attacker that identifies such a weakness can easily exploit it 
to insert malicious code and take over remote systems or entire networks. While the code may work fine 
for most typical uses, intentional exploitation of the lack of bounds checking can have devastating effects 
beyond that associated with just software maintenance. This is most visibly demonstrated by the number of 
high profile breaches and ransomware scenarios that have played out in recent memory, such as the Equifax 
breach and WannaCry ransomware attack (which affected an estimated number of 300,000 machines), with 
several of these tied to the exploitation of vulnerabilities. In fact, exploit toolkits such as Angler have 
targeted multiple vulnerabilities as part of their ransomware injection process1. 
This SBIR topic called for innovative methods to identify faulty or insecure code, based on the human 
aspects of software development. Traditional approaches, such as static and dynamic analysis, continue to 
be helpful at identifying faulty code, but they do not focus on the behavior by software developers as the 
basis for risk. Thus, the core challenge of this topic is the need to understand what human behavioral 
patterns correlate with the authorship of flawed code. In essence, by understanding the failures of the past, 
we can potentially mitigate future risks and ultimately create a more reliable software engineering process. 
Our definition of behavior is broad: we consider not only how developers do development, but also how 
they interact with others, their communications with others, and so forth. There are two key capabilities 
needed to address this challenge.  One is the ability to gather data about historical software development 
and vulnerabilities from a wide variety of sources related to software development, vulnerabilities, and the 
interactions of software engineers.  The aggregated set of this data represents a rich history of examples to 
mine.  The second capability is to leverage analytical approaches to unearth patterns in the historical data. 
More specifically, one needs measures to detect possible behavioral indicators and tools to build models of 
risk. These resulting models can be used to analyze new code and predict whether that code is likely to be 
flawed and/or insecure. 

In Phase I of this SBIR, we designed the key elements of such a system, named CodeFault, designed to 
address this challenge. In particular, we designed CodeFault to gather and integrate data from multiple 
heterogeneous sources, including those related to social coding, social media, and vulnerability aggregation.  
We also investigated a variety of statistical and machine learning methods that could help identify 
potentially useful signals of risk and learn models that would leverage such historical data to predict risk. 
Finally, we prototyped selected capabilities, and demonstrated the feasibility of our approach. This involved 
acquiring IRB approval and gathering data from multiple sources, forming a range of possible hypotheses, 
running a series of descriptive statistics to look for interesting phenomena, and then demonstrating the 
capability to learn models from the data. Our Phase I work sets the stage for our proposed Phase II 
execution, which is to fully implement the CodeFault system we designed, and evaluate it end-to-end with 
a broad spectrum of data. 

Figure 1 shows a high level summary of the CodeFault. In particular, the figure shows that CodeFault can 
gather data about software engineering practices from sources like GitHub, social communication from 
developers from sites like StackOverflow and Twitter, and data on vulnerabilities from sources like NVD 
and ICS-CERT.  We can then use this historical data as the basis for identifying patterns of human behavior 
that are associated with faults. By identifying such patterns, we can then predict when there are more likely 
to be faults in previously unseen code. 

 
1 https://www.recordedfuture.com/recent-ransomware-vulnerabilities/  
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Figure 1: High-level dataflow of CodeFault 

The types of patterns we can learn span both the human dimensions of engineering as well as social 
behavior. For example, one could envision learning that: 

• Checking in many files at once is highly correlated with flaws 
• Developers who have relatively fewer indicators of testing/QA expertise (e.g., do not have any such 

tags in their StackOverflow profile) tend to be associated with flawed commits 
• Code with filenames that contains certain terms (like "File" or "Network") tends to be more 

frequently associated with CVEs 
• Certain third-party libraries (e.g., such as those that involve network or database integration) are 

inherently riskier than others 

In this final report, we focus what we learned and produced as part of the CodeFault Phase I and Phase II 
efforts. We also cover our findings from the Phase II Option, which extended this work to look beyond 
engineering behavior per se, and to focus on more complex social behavior as an indicator of risk. We 
discuss our work with Margin Research towards that end in later sections. 

2 Phase I results 
The goal of Phase I was to design the major components of the CodeFault system and ensure the general 
feasibility of our approach, so that we are well-positioned to build fully functioning prototype in Phase II. 
Our specific Phase I objectives were: 
Objective 1: Gathering data on the human dimensions of software development, Our first objective 
was to design a strategy for gathering large amounts of software development data, including information 
on faults (bugs and vulnerabilities), as well as the human-oriented process data associated with those faults.  
In particular, we wanted to identify both a broad set of sources and a variety of methods for harvesting data 
so that, in Phase II, we would be able to generate rich collection of information to mine. As part of this 
effort, we wanted to identify a large set of attributes and metadata related to software development processes 
that we can gather (or derive) from the types of software projects we will be aggregating.  These 
attributes/metadata can span from code-related attributes (e.g., time of day of check-in, etc.) to 
project/contributor related attributes (e.g., social profile of the developers involved, chat dialogue 
associated with software faults, etc.). 
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Objective 2: Learning to predict code faults.  Our second objective was to design a process for learning 
to predict code faults. As part of this, we wanted to develop a methodology for understanding how to 
identify and judge faults from data collected. With faults identified and a rich set of associated data and 
metadata to explore, the goal was then to design how we could go from higher level (descriptive-style) 
analysis to deeper predictive models. These models would be built using existing statistical and machine 
learning methods. As part of this process, we wanted to design a methodology that would allow us to 
generate high quality predictions of risk for code that has been or will be added to a project.   

Objective 3: Feasibility evaluation.  The final objective was ensure that our approach would be valid for 
Phase II execution.  In particular, we aimed to demonstrate selected aspects of our data gathering and 
learning approach so that we could be well-positioned for a successful, larger Phase II implementation.  Our 
goal in this objective was thus not to build an entire system, but rather to demonstrate the potential for such 
an end-to-end system, using techniques described in Objectives 1 and 2.  We aimed to identify a set of data 
to use as the basis for ensuring that our gathering and learning processes would be successful.   

We next discuss how we met these objectives through three corresponding tasks we completed in the course 
of the Phase I. 

2.1.1 Key Phase I Accomplishments 
During Phase I, we accomplished the following: 

• Gathering data on human dimensions of software engineering 
o Identified public (online) sources that contain valuable data related to the human 

dimensions of software engineering  
o Identified data gathering methods to automatically retrieve and extract data from these 

sources 
o Designed a methodology for identifying and prioritizing faults 
o Designed a methodology for linking users between social networks, which will allow us to 

leverage more historical software engineering behavioral data 
o Designed an aggregation architecture for gathering, linking, and enriching data 

 
• Learning to predict code faults 

o Identified how advanced feature engineering methods could be integrated into the system  
o Identified statistical and machine learning methods that can be used to help predict risk 
o Designed an approach for combining models in order to reduce false positives 
o Identified a Bayesian style approach that combined local and global models so that 

evaluation of a new codebase took into account historical trends, but was sensitive to the 
differences that a particular repository might have (i.e., took into account local history) 
 

• Feasibility evaluation 
o Applied for and was granted IRB exemption related to data gathering 
o Gathered public data on: 

§ 5000+ projects spanning JavaScript, Ruby, Python, and PHP 
§ 3000+ users on StackOverflow who were developers on these projects 
§ 3000+ users on Twitter who were developers on these projects 
§ 100+ JIRA based projects 

o Demonstrated the ability to identify GitHub and StackOverflow accounts belonging the 
same individual based on similarity metrics 

o Conducted a range of descriptive statistics on the combination of this data, in order to 
explore possible correlations and trends (from which we could potentially learn predictive 
models) 
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o Completed end-to-end example of gathering a sample data for an example project (Apache 
Tomcat), to which we engineered additional features (e.g., "part of day"), built independent 
models of prediction, and then combined models to explore how false positives can be 
reduced. 

o Identified multiple "interesting findings" with the limited data/time available, e.g.,: 
§ Apache Tomcat faults seem to committed less often in the morning than during 

other times of day 
§ StackOverflow users that had Google in their bio somewhere tended to have a 

higher StackOverflow reputation than those who did not have Google listed 
§ Those that contributed to PHP repositories in GitHub tended to have lower 

StackOverflow reputations than others who did not 

2.1.2 Phase I, Task 1: Gathering data on the human dimensions of software 
development 

The key goals of the first task were to focus on the data model, and in particular which sources and their 
attributes we would harvest. These, in turn, would be combined with an additional set of enriched attributes 
to further enhance the data. For example, although we will gather the time of day that code was committed, 
we want to enrich that with another attribute that applies a semantic label (e.g., "Late night" ) to help us 
discretize and categorize the data in human terms. This also allows us to leverage analysis and machine 
learning methods that support categorical labels, not just continuous data. 

Sources and attributes 

In terms of data sources, we defined a set of source types to harvest, many of which contain attributes 
related to the human element of software development. These included: 

• Social coding sites: e.g., GitHub and BitBucket 
• Developer discussion sites: e.g., StackOverflow 
• Bug databases: e.g., JIRA and GitHub issues 
• Social media sources: e.g., Twitter 
• Vulnerability databases: e.g., NVD, ICS-CERT, etc.  

Next, we defined the set of attributes we will gather from each source.  For example, with GitHub, these 
attributes included: 

• Project metadata, including  
o Project name and description 
o Whether the project has a wiki, documentation, etc. 

• Commit data, such as 
o Dates and times 
o Amount of code added/removed 
o Contributor(s) 
o Log messages 

• etc. 

For a source like StackOverflow, which focuses more on developer knowledge, the attributes included: 

• Developer reputation 
• Developer profile information (presence of bio, current position, etc.) 
• Developer questions and answers 
• Developer medals (gold, silver, bronze) 
• Developer tags 
• Generally popular tags 
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• etc. 

Data collection and integration 

Next, we designed multiple methods for accessing data from various sources. These methods included:  

• API access: GitHub and StackOverflow, for example, have extensive APIs that will allow us to 
easily retrieve several aspects of metadata we are intending to collect. A key constraint, however, 
is that we obey API quotas; in short, we must often harvest data incrementally.  

• Web crawling and extraction:  We have significant previous experience using AI techniques to 
automatically build web extractors for sites that have been crawled with off-the-shelf crawling 
software. By doing this, we can store the website as a local database.  For example, we can scrape 
sources like Apache JIRA to gather public information about Apache faults that are made public.  

• Other custom methods: We have other ways of extracting relevant information. One important 
method is to write a series of source control scripts that allow us to interrogate key details about 
the software development process. These include the range of git commands (clone, log, blame, 
etc.) that provide access to different aspects of the source control metadata, such as when files were 
checked in, by whom, what was changed, and so forth. We could use the GitHub API for some of 
this, but the capabilities there are not as expansive as what is available through git-style 
interrogation, plus it would require many API calls. 

As part of our Phase I investigation, we tested the above methods to ensure that they would work as planned 
(see Feasibility Study, below).  
One important issue we encountered as part of Phase I design 
was the need to link data between sources. For example, it is 
very helpful to understand that user G on GitHub is also user 
S on StackOverflow and user T on Twitter, since doing so at 
scale would allow us to look at engineering behavior (e.g., 
activities on GitHub) as a function of social behavior (e.g., 
activities on StackOverflow and Twitter). In short, this type 
of linkage greatly expands the range of behavioral attributes 
to consider as part of our analysis.  

To link users between sources, we can sometimes leverage 
the explicit linkage by users. For example, as shown in 
Figure 2, it is not uncommon for GitHub users to specify 
their Twitter profile in their bio. Unfortunately, users do not 
do this for all venues that they frequent. For example, unlike 
with Twitter, developers do not tend to list their 
StackOverflow profile (a sample of which is shown in Figure 
3) on GitHub. This is unfortunate because StackOverflow 
information could help us glean evidence of not only 
developer knowledge, but also community perception of 
their knowledge (i.e., is the developer an expert and, if so, at 
what?). In phase I we used a simple version (for expediency) 
of the statitsical entity resolution process described in 
Section 2.1  

 

User	provides	link	to	Twitter,	
but	not	to	StackOverflow

Figure 2: GitHub profile page 
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Figure 3: Sample StackOverflow profile page for same user  

The simple approach we used in our feasibility study involved two steps: (a) fetch user(s) on source S1 (e.g., 
StackOverflow) based on GitHub user name, and (b) verify that the user on source S2 is the same by 
evaluating a user similarity function. For (b), our similarity function was simply to compare avatars (profile 
images) on both systems using computer vision-style techniques, such as histogram correlation.  
Both parts (a) and (b) can be made more general and thus expand historical knowledge further, but we felt 
for Phase I it was more important to focus on designing the process and demonstrating basic feasibility. As 
we will discuss further in our Phase II proposal, advanced techniques such as entity resolution can consider 
a variety of additional attributes upon which to help judge similarity. We have previously done extensive 
work towards building out a probabilistic model for resolving entities between sources and will be 
proposing to leverage this in Phase II. 

 
Fault identification 

Fault identification is important because the models we ultimately wish to investigate are about fault 
prediction.  Two key aspects of our approach involve: (a) how we will identify faults and (b) how we will 
identify the artifacts associated with their introduction.   

In terms of the former, we found in Phase I that it was most practical to identify faults as either commits 
that specifically reference a fault (e.g., the log says “Fixes…”) or it was a commit that closes an identified 
bug. An example of the types of log messages we see, some of which include "fixes", is shown in Figure 4 
below. Note that the second example ("fixes encoding bug…") is the type of log message that we wish to 
use as the jumping off point for fault introduction. 

Same	username

Same	avatar
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Figure 4: Sample Git log messages 

There are a number of ways to filter the log messages, and we need to be careful to reduce noise while 
retaining as much useful data as possible. For example, we do not wish to use a log message like "Added 
new feature which fixes the position at 0.0", since the "fixes" in that log is not about repair of a bug. At the 
same time, we do not wish to be over-restrictive in which log messages we key off of, since that will reduce 
the training set and possibly lead to more fragile models.  
To address this challenge during Phase I, we iteratively crafted a text classifier so that we could better 
understand the challenge, for instance to better understand the types of examples to use for training. During 
Phase II, we plan to leverage existing text classification frameworks as a more robust and scalable solution 
to the problem. 
Once a "fix" has been identified, we would then look at the specific lines of code removed by this fix, and 
this clues us into raw features “at the time of the commit.” For instance, we can see who the fixer was, how 
many lines were removed, their content, the log messages associated with removing the lines, etc.  This is 
shown in Figure 5: 

 
Figure 5: Code removed and added 

Finally, we go back through an entire commit history until we find which commit(s) introduced the lines 
of code that were removed and identified as a fault. This gives us information about the “time of commit” 
for the fault. So we can, for instance, identify which programmer added the faulty lines, and other commit-
level features (e.g., was it part of a large commit, LOC, etc.).  Fortunately, Git commands like "blame" are 
helpful in identifying when such code is introduced.  For example, Figure 6 shows the type of "responsible 
party" commit information we are interested in: 

 
Figure 6: Git log entry for party associated with above flaw 

There are a few important takeaways from this process to highlight: 
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• We only look at source code changes as part of fixes or resolutions (e.g., we do not look at 
documentation changes) 

• We only look at lines removed; while we could also look at lines added, we feel that lines removed 
is a better approximator for the "problem". Furthermore, it is not practical to look historically at 
which commit forgot to add code (that was added later). Instead, it makes more sense to look for 
lines removed and then trace back to which commits added them. 

• We include all commits that played a role in the lines being added. Thus, it could have been that 
two different commits, at different times, added code that ultimately was removed.  

Architecture for data aggregation 

The final task was to design an overall architecture for the data aggregation from multiple sources. A 
summary of our architecture is shown in Figure 7 below.  

 
Figure 7: Key data and functions in CodeFault aggregation system 

As the figure shows, there are five key phases of the data aggregation process: the retrieval and extraction 
from originating sources, the user linkage process, the enrichment process, and then fault identification. 
The result of this architecture is a set of behavioral data, both raw and derived, associated with fault 
information. The details about which enrichments to build relate more to model building, and thus we 
covered them as part of our work on Task 2, below. 

2.1.3 Phase I, Task 2: Learning to predict code faults 
Our goal in Task 2 of Phase I was to design key components of a subsystem to predict code faults. This in 
turn was broken into two main tasks: feature engineering and model generation. The former focused on 
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enrichments to the data. Meanwhile, model generation focuses on designs for how to predict code faults 
and, in doing so, to reduce the likelihood of false positives. 
As part of our feature engineering work, we started with the raw features we could extract from different 
sources using various APIs, code-level gathering (e.g., git clone), and Web scraping (for non-API, code-
related data such as bug databases). Thus, we started with a model of the very attributes we identified in 
Task 1 of our work.  
Next, we designed how enrichments on the raw data would be implemented. To do this, we took an example 
project – Apache Tomcat – and applied a few simple enrichments related to the date of the commit. The 
goal was to label commits with semantic classifications related to the time of the commit and to do that on 
a per-row (commit) level.  For example, post-enrichment, some of the data we gathered and applied this 
enrichment to looked as shown below: 

 
The figure shows a list of some of the commits made to the Tomcat project. Each row corresponds to a 
particular commit. For each of these, we enriched the date/time of the commit to include the semantic 
classification related to the "part of the day" and "part of the week", as shown in the figure.  These are 
potentially useful enrichments because such information is semantically meaningful to human routines 
(e.g., we typically do not work on weekends, working close to and after midnight is considered "late"), and 
it would not be surprising if certain routines were more conducive to higher quality development. We should 
note that it is possible to "layer" enrichments, in the sense that new enrichments may depend on earlier 
ones. For example, "weekday" and "afternoon" could be combined to emit "work time" enrichment for many 
types of developers. 
Some of these engineered features are based upon both raw and derived features, and are meant to allow us 
to investigate very specific hypotheses about human behavior and its potential to lead to faulty code.  For 
example, "rushing" may involve checking in code late at night or in rapid succession; quantifying "rushing" 
depends on the lower level raw and derived attributes. Our human-factor features are tied to behavioral 
hypotheses. As part of our Phase I work, we enumerated potential hypotheses of human-factor based 
features that might lead to faults. The purpose of this exercise was to test the methodology of going from 
intuition to hypothesis, to actual feature engineering work. 
For each hypothesis, we identified the high level concept and how we might design programmatically 
derived features that represent them. Some of these hypotheses included: 

• Programmer language, during communication, might indicate fault. For instance, programmers 
that use language indicative of lack of experience might introduce more faults 

• The level of developer communication might imply more or less code fault. For instance, a team 
that displays more robust and timely communication may show more teamwork, peer review, 
concern for the code, and thus have less faults. 

COMMIT HASH DAY	 PART	OF	WEEK HOUR	OF	DAY PART	OF	DAY COMMIT	LOG	LINES
good ff0129fcd36f391f019ab7e3c3f1233564110138 Thu WEEKDAY 17 EVENING 7
bad f89d5ae7aa33bd8c505d3f9f1ead0012b6aef2c1 Mon WEEKDAY 18 EVENING 0
bad f89d5ae7aa33bd8c505d3f9f1ead0012b6aef2c1 Mon WEEKDAY 18 EVENING 6
bad f3f0d4dd0cb26bc0fdf2f2eb92d93bac26316762 Sat WEEKEND 20 EVENING 5
good f2d19a9f06f4a3f16436dc3d8e034c62f8873970 Fri WEEKDAY 22 LATE 6
good f2930beee175ce20a81bd64f2aa9ca0ac3782982 Fri WEEKDAY 4 LATE 6
bad eae54419c6e196933998f63358367040edaa4a8c Thu WEEKDAY 12 AFTERNOON 43
bad ea6f489a8f66179eac32abb91440ecf37fcbcaed Wed WEEKDAY 0 LATE 5
good e8fff386d2650158c1aa8fdf572c407537e30762 Sat WEEKEND 18 EVENING 7
bad e6d99af12f6ed23d0044d19b66457266dffb97cb Wed WEEKDAY 19 EVENING 6
bad e6c17c7b2df497a3ea3960642a562f0e095b2d91 Mon WEEKDAY 18 EVENING 6
bad e424fabd6c3c771c6ece1d712cb86d9de0e1d7a7 Sat WEEKEND 19 EVENING 6
bad dc55eb0f0456c7914617be27e9fe3e273e216abb Fri WEEKDAY 20 EVENING 6



InferLink Corporation  Contract # 140D6319C0016 

• Programmers knowledge about specific vulnerabilities. For instance, if user is aware of cross-site 
scripting (e.g., has XSS tag in StackOverflow profile), they are less likely to introduce that type 
of security issue 

• Concepts labeled by humans might indirectly suggest areas of fault. For instance, code that 
includes variables with the word “password” or “pwd” might contain more faults (humans 
indirectly indicating authentication will occur). 

The key is that each of these features can be derived from some combination of the derived and raw features. 
As an example, consider an enrichment that focuses on the types of words that a developer uses in 
communication. The focus of this feature is that the actual language of communication could suggest faulty 
code. We can describe this as the following hypothesis: 

Certain n-grams, words or phrases in discussions inherently suggest more 
risk, and by identifying them we can predict future faulty code. 

To test this feature programmatically, we can follow these steps: 
1. Start with raw features of communications (e.g., log messages, comments, etc.), associated with 

faults. 
2. Compute the n-grams, terms, phrases (e.g. more than one term) from these communications (in 

step 1). 
3. Sample communications regardless of type (e.g., enhancements, etc.) 
4. Compute the n-grams, terms, phrases (e.g. more than one term) from these communications (in 

step 3). 
5. Compare the probabilities from #2 and #4 to see if there are highly indicative terms 
6. Measure how well these terms predict faults in a test-set (e.g., using leave-one-out cross 

validation style approaches) 
This is just one example, and there are many other such enrichments we could design. The key observation 
is that much of our work on feature engineering relates to first establishing high-level hypotheses. These, 
in turn, naturally suggest which enrichments to generate. Deriving additional knowledge, through selective 
enrichments, is fundamentally part of the exploration process. Hypothesis iteration, refinement, and 
evaluation is a process that continues to occur throughout the exploration process.   
Model generation 

The second aspect of Task 2 was to design a process for going from historical data to a model for prediction 
about code risk with respect to new/unseen code. Our approach recognizes that there are three important 
steps in this process: 

• Hypothesis generation, suggesting which independent variables might be responsible for a certain 
phenomena (e.g., faulty commits) 

• Computation of descriptive statistics about these variables, to minimally evaluate the hypotheses 
and understand whether there is sufficient precedence for a deeper evaluation  

• Predictive model generation by applying machine learning to a training set of such data, to see if 
unseen data can be forecasted accurately 

These phases (especially the first) each need review from humans, but most of them (especially the latter 
two) can be driven primarily by automation. This is both desirable and feasible. While we may eventually 
wish for the machine to just "figure it out" from the data, our experience is that with new systems in new 
domains, human guidance and review of the automation is fundamentally necessary. That should not 
prevent us from leveraging unexpected findings, but because data from multiple sources can be noisy, 
inconsistent, and semi-structured, review of machine-driven deductions is typically very helpful. 
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As part of our Phase I, we developed several hypotheses (as described above) and will develop more under 
Phase II.  Use of descriptive statistics is straightforward, as such statistics (mean, variance, etc.) are well 
known. However, some filtering may be necessary to look at sub-populations. For example, we may wish 
to cluster all StackOverflow security-related tags together (which StackOverflow does not do) in order to 
evaluate the population of developers who have that tag vs developers who do not. As we discuss in the 
feasibility evaluation below, we found multiple interesting statistics about some of the data we had gathered 
using such filtering techniques. 

In terms of model generation, we looked at learning predictors for various types of data we gathered. Certain 
predictors were more relevant for some types of data than others. For example, Bayesian text classifiers are 
more appropriate for classification of log messages and other types of communication, whereas decision 
trees can be useful for categorical data.  Furthermore, statistical modeling techniques like regression 
analysis (such as logistic regression) can also be applied to fit an equation based on multiple independent 
variables to commit quality (as the dependent variable). Much depends on the type of data (e.g., text, 
categorical, continuous, etc.). As discussed in our feasibility evaluation, we leveraged both Bayesian 
classification and regression to develop predictors for commit risk, for a particular example project.  
The final aspect of our design was to investigate a methodology for combining models to reduce the 
likelihood of false positives. To this end, we looked at constructing an ensemble, such as a simple voting 
scheme as a basis for generating a prediction. As shown in Figure 8, the idea is to take independent models 
(i.e., models based on independent variables) and use their individual predictive capabilities in concert to 
generate a higher quality prediction. As the figure shows, terms used in filenames (which reflect human 
expressions of system development) may be one predictor, while the commit "part of day" (morning, 
evening, afternoon, etc.) might be another predictor. While each of these models may slightly predict quality 
of a commit, their combination may result in greater precision. 

 
Figure 8: Combining models of risk to analyze committed code 

For example, one could imagine a case where commits done in the evening were only somewhat likely (to 
be risky. Meanwhile, filenames that contained the term "Network" were a bit more likely. We could 
construct a more conservative virtual predictor that relied on both independent predictors flagging the 
commit as risky before deciding to predict risk. This approach, better known as ensembling, can often lead 
to a reduction of false positives, although recall is typically impacted. This can be mitigated by using several 
models and choosing a majority / threshold of predictors that agree on risk. 

Code	
commited

Code	and	commit	
language	classifier

Developer	risk	
predictor

Development	
behavior	predictor

Fault	risk
profile

-- Filename	terms
-- Code	terms
-- Commit	log
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-- Time	of	day
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2.1.4 Phase I, Task 3: Feasibility evaluation 
The final task of our Phase I effort was to conduct a feasibility evaluation. The key goals were to ensure 
that we could demonstrate selected aspects of our overall approach, as a testament to end-to-end viability. 
In particular, we had three subtasks to address: 

1) Gaining approval to gather the data we are interested in 
2) Prototyping selected aspects of the aggregation architecture we designed 
3) Using selected samples of the gathered data for analysis and model generation  

Shortly after project kickoff, we began work to have an IRB evaluate our protocol, and decide if it qualified 
as "exempt".  To that end, we wrote and submitted an IRB protocol to Western IRB (WIRB) in Oct 2017 
and they granted an exemption in Nov 2017.  Next, we were informed by our CTR (Mr. Jeffrey Wright) 
that we should have HRPO review this judgment. We completed HRPO paperwork in December and 
submitted our material to HRPO via Mr. Wright.  In Jan 2018, we were informed by HRPO that the 
exemption was upheld and that they did not have any remaining concerns.  In short, we gained the necessary 
approvals in place for data gathering.  
With the IRB exemption granted, the next steps was to gather data across a variety of sources, source types, 
and attributes corresponding to the data model we designed in Task 1. We originally proposed working 
with a small set of projects (25), but later felt that we had enough time and resources to gather data on 
significantly more, with the hope that the increased amount and range of data would better prepare us for 
Phase II. By the end of Phase I, we had gathering data on: 

• 5000+ open source projects, via GitHub API and git-clone/log style methods 
• 3000+ users on StackOverflow (API), using a novel user-linkage mechanism 
• 3000+ users and their posts on Twitter (via Twitter API), using a direct link mechanism  
• Bugs/issues on 100+ Apache projects via web scraping 

In addition, we completed one notable data linking exercise between two of the above data sources. 
Specifically, we took users from GitHub and attempted to link them to StackOverflow profiles. We did this 
based on (a) username and (b) profile picture (avatar) similarity. This exercise was important because it 
allowed us to leverage vast amounts of additional behavioral data. As described in our earlier results, we 
completed (b) using a computer vision matching technique known as histogram correlation (Stricker & 
Orengo, 1995). This similarity metric takes two images and essentially looks at how clusters of RGB values 
align. Histogram correlation is generally regarded as a simple proxy for image similarity in many cases. To 
our surprise, we found that nearly 40% of the GitHub users we tried with the technique had corresponding 
profiles on StackOverflow that used both the same username and profile picture. Histogram correlation 
allowed us to ignore differences in pixelation, size, encoding (PNG vs GIF, etc.). An example of this, for 
the username "bobince" on GitHub and StackOverflow  is shown in Figure 9. These two avatar images have 
a histogram correlation of 0.97, indicating very significant correlation. 
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Figure 9: Using histogram correlation to link users 

We also explored an advanced enrichment technique related to linking users. Specifically, we wanted to 
derive "interests" for users, based on their Twitter posts. More generally, we wanted to summarize their 
posting behavior, so that we could potentially draw conclusions about how interests mapped to development 
behavior/quality. For example, “do developers who post more about technology or security do more reliable 
(fault tolerant) development?”. In exploring the feasibility of looking at such derived variables, we focused 
on those developers that had explicitly listed a Twitter profile. We harvested a recent collection of their 
posts and then ran through a process that we developed in previous work (Macskassy & Michelson, 2010) 
to classify those posts in terms of their subject matter.  
The first step in this process of deriving interests from a set of social media posts is to aggregate a number 
of "posts" (e.g., social messages) for that particular account. We then extract entities from the text, including 
proper nouns and hashtag words. The next step involves entity matching - namely figuring out which entity 
in the real-world is being referenced in the text. As shown in Figure 10 below, Arsenal could be a soccer 
team, a location that contains arms, or something else. To disambiguate the entities, we pass the entity (e.g., 
Arsenal) and the context (all of the words in the post, without that entity) and compare it to the text from a 
knowledge base (Wikipedia in this case). So, the text from the Wikipedia page associated with Arsenal is 
compared to the text ("winger, walcott, becks, England, ..."), as is the text from Arsenal the armory, etc. 
We then choose the entity from Wikipedia that maximizes the overlap according to a language model. Once 
each entity is disambiguated, we have subsets of the ontology centered around those entities, and associated 
weights (e.g, the more one mentions Arsenal, the more weight is given to that part of the ontology). We 
then find the most commonly occurring categories of the ontology (e.g., Arsenal is categorized as "English 
Football") and the most frequently occurring categories become those associated with the social user. 

NOTE: differences in 
pixelation and size 

GitHub

StackOverflow
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Figure 10: Topic classification of user social media posts 

Next, we experimented with applying a variety of descriptive statistics to the data we collected. We were 
able to establish a number of findings about the data, including several related to how certain development 
project metadata correlated with number of faults reported, how self-reported developer bios correlated 
with StackOverflow reputations, and so forth.  

Finally, we tested our ability to generate models from the data. To ensure the feasibility of our capability 
to model different combinations of variables, we looked at the challenge of predicting phenomena involving 
data collected from multiple sources. We chose StackOverflow reputation as the dependent variable, and 
then attempted to learn a predictor for that using a range of GitHub and StackOverflow variables. After a 
descriptive statistics review, we chose a set of variables that we deemed independent of each other, which 
we felt might be candidates at predicting reputation. These included: 

• # of questions asked on StackOverflow 
• # of answers provided on StackOverflow 
• Whether or not user contributed to PHP, JavaScript, Ruby, or Python repositories on GitHub 
• Having published GitHub Gists 
• Having StackOverflow biography defined, and length of that bio 
• Number of followers on GitHub 

We ran an ordinary least squares (OLS) multiple regression against these set of variables to yield the results 
shown in Figure 11. 
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Figure 11: OLS regression of selected variables between StackOverflow and GitHub 

Considering only significant variables (where abs(t) >= 3), we were able to conclude that: 

• the model fits the data well (i.e., R2 = 0.937) 
• providing answers and/or questions are the most positively associated with reputation (this is 

predictable, since one does not get a high reputation without participating) 
• having GitHub followers is not very indicative of reputation 
• contributing to PHP repositories (via GitHub) was negatively correlated with reputation 

We then looked at what the predictive quality of this logistic regression model and, using 5-fold cross 
validation, found that the F-measures averaged about 0.85, which is very encouraging about our predictive 
ability (i.e., tradeoff between recall and precision). We compared this to models generated on the same data 
via Gaussian Naïve Bayes and decision trees, and found that logistic regression outperformed both.  While 
the phenomena we were predicting were not exactly the ultimate goal of this SBIR (i.e., to predict faulty 
commits/code), this exercise nevertheless demonstrates our ability to go from descriptive statistics, to model 
generation, to analysis of model optimization, which is the same process we will follow in Phase II. 

3 Phase II Objectives 
Having designed the key software components in Phase I, our focus tuned to building a fully-functional 
prototype that combines data aggregation from multiple heterogeneous sources of software engineering 
data with an analytical component that will learn and evaluate models of code risk. In particular, our 
objectives are: 

• Objective 1: Multi-source aggregation of software engineering behavioral data.  Our first 
objective was to build an aggregation system, based on our Phase I design, to collect and link 
software engineering data from multiple heterogeneous sources.  

• Objective 2: Analysis and generation of machine learning models to predict code risk. The 
second objective of this Phase II was to build a system, based on our Phase I design, for analyzing 
historical software engineering data so that models of risk can be produced. These models can then 
be used to predict risk on new repositories and commits not seen previously, based on coding and 
social-related trends from the historical data, in conjunction with any local history/metadata from 
the repository being analyzed.  



InferLink Corporation  Contract # 140D6319C0016 

• Objective 3: Testing and evaluation.  The third and final objective we have in this Phase II is to 
evaluate the functioning prototype we built. 

4 Phase II Work 
In this section, we discuss the key findings and advancements as part of Phase II. To achieve the objectives 
outlined above, this work focused on three corresponding activities: 

Multi-source aggregation 

We combined social coding sources like GitHub, with other social/engineering sources, such as Stack 
Overflow, to obtain richer insight into the basis for software engineering faults. In short, allowed the 
analysis component to leverage coding behavioral variables and social variables as the basis for predicting 
code risk. The aggregation system included multiple mechanisms for collecting data, including API-based 
gathering, extraction from HTML, and source control automation.  

Model learning 

We leveraged our Phase I work on a methodology for developing and evaluating hypotheses. This 
corresponded to the development of several models, automatically generated using a variety of machine 
learning techniques. To further broaden the applicability of our models, built a set of automated "experts”, 
where each expert will specialize in determining risk based on particular variable or set of variables that 
are independent from other experts. We then combined evaluations from these experts as a way to increase 
accuracy and reduce false positives. Our resulting evaluator can thus examine a new repository and produce 
a risk determination based on such data.  

Evaluation and testing 

To do the evaluation, aggregated data from open source projects, software vulnerabilities, and developer 
social media (e.g., GitHub, StackOverflow) profiles. With this data gathered, we built models based on 
historical commits to these projects, and then used these as the basis to predict risk in future commits or in 
new open source projects. To evaluate our work, conducted a cross-validation style test in which we trained 
on selected portions of our corpus while testing on unseen portions; we then rotated that sampling across 
different combinations of such samples, so that we could measure the robustness of our models.       

4.1 Summary of accomplishments 
We will describe the detail associated with our work below, but here we highlight some of the key 
accomplishments of this work: 

Objective 1 (Data aggregation): 

• Built tools/software to 
o Gather and instrument GitHub-based software repositories  
o Identify faults based on "fix commits" in Git-based projects 
o Sample data from the GitHub archive (GHArchive) 
o Gather + extracted GitHub commit info from CVEs for training 
o Computed term frequencies in code gathered from GitHub archive tool 
o Match developer profiles between GitHub and Stack Overflow, using computer vision-

based techniques 
• Gathered and instrumented detailed data for 60 well known open source tools/systems (written in 

a variety of languages, including C++, PHP, Python), including: curl, wget, nginx, etc. 
• Gathered social media data from Stack Overflow related to software engineering knowledge 

 

Objective 2 (Model Learning): 
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• Built machine learning “code risk” pipeline which: 
o Uses data generated by Objective 1 tools to model faulty commits 
o Includes several types of ML classifiers 
o Combines outputs from ML classifiers into an ensemble-style meta predictor (using a 

simple voting scheme as well as XGBoost)  
o Leverages multiple risk ranking/scoring schemes to judge risk 
o Includes history-based derived features 
o Combined word embedding (Fasttext) with traditional ML methods (e.g., decision trees) 

in ensembles 
• Learned NLP-style word embeddings for source code, for predicting risk based on code terms 

o Built "memory leak" Fasttext classifiers based on large GitHub samples 
o Built additional Fasttext classifier models based on local repositories 

• We have experimented with alternative, deep learning approach 
o Using Google AutoML  
o Compared our work with AutoML and our own analysis pipeline, based on engineered 

data.  

Objective 3 (Evaluation): 

• Completed a detailed evaluation of our 60+ software repositories 
• Built heatmap and graphical visualizations to demonstrate our results 

 

4.2 Data aggregation and engineering 
The first step in our work was to aggregate data from multiple sources. These included: 
 

• GitHub: where we obtained all of the software repositories we analyzed for this work 
• NVD: source of vulnerability data, many of which point to GitHub commits 
• StackOverflow: developer Q&A forum; we tie GitHub contributors to StackOverflow users 
• GitHub Archive (GHA): Historical GitHub activity aggregation data 

 
For this work, extending Phase I activities, we cloned 50+ well-known open source repositories and 
explored a subset of these in detail for our analysis. In general, our process consisted of the following: 
 

(i) Clone repository 
(ii) Extract activity data (e.g., git log) and store in a relational database so that we can write ad-hoc 

queries against this set of information 
(iii) Identify faults based on 3 different fault classification schemes and store “blame” information 

in the database 
(iv) Gather GitHub metadata (e.g., developer names, bios, etc) 
(v) Gather StackOverflow data for developers, based on the type of user similarity techniques 

discussed in Phase 1 of this work 
(vi) Gather GitHub archive data based on fault classifications defined in (iii); this was known as 

“global” data (vs “local” repo data) 
 
To accomplish (iii) and (vi) above, we used three different fault scenarios: 
 

• Memory leaks (fault class #1) 
• SQL injection (fault class #3) 
• Program crash (fault class #5) 
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We label each of the above with a fault class ID (e.g., 1, 3, or 5) for simplified labeling. In later parts of this 
report, we will refer to these classes as shorthand. 
 
For each of these scenarios in the repositories we examined, we looked for evidence of fixes. To do this, 
we searched commit log messages; for example, to identify fixes to memory leaks, we searched log 
messages that contained the phrases “fixed leaks” or “fixed memleaks”, etc. Once these commits were 
identified, we looked at what lines were deleted as part of the fix; these were assumed to be part of the 
issue. Admittedly, this is not always the case; sometimes, a fix involves polishing code which is already 
correct. Similarly, commits that solely consist of “fix memleaks” might actually do more than that. Both 
critiques are fair to apply to our work. That said, there are flaws like this with the alternative approaches 
we considered and the impact of these flaws, if any, would be minor (because they are not the common 
case). 
 
To help facilitate information extraction and fault finding, we built two tools: Commit Xray and Fault 
Finder. The former converted commit and developer data from each repo into the database. Fault Finder, in 
contrast, automatically identified relevant commits (such as “fix memleaks”) and then identified the 
commits which introduced code that was ultimately deleted by the fix. Armed with this training data, we 
then set out to learn models of risk. 

4.3 Model learning and evaluation 

Here we describe our work towards developing an approach for the automated assessment of the risk of 
faults in a code repository. Specifically, our aim is to predict code fault risk at the level of individual code 
commits. For any individual code commit we want a probabilistic assessment of the risk that it is faulty. 
Our work explores our starting hypothesis that multiple factors such as properties of the code repository 
itself, context of individual code commits, as well as characteristics and also the behavior of developers all 
influence the fault risk. Our approach is based on exploring and uncovering the association between these 
potentially influencing factors and the occurrence of code faults. We have done this based on real data from 
(open source) software code repositories, that includes details about code commits and changes and also 
information about contributing developers. 

The data mining over this data has two closely related objectives. One is to uncover explicit correlations (if 
any) between any of the many potential influencing factors, and code faults. The other is to predict the risk 
of fault, for any given code commit when new code is checked in. The algorithms for such data mining are 
thus based on 1) statistical analysis and 2) machine learning. We have explored a number of different 
statistical analysis and machine learning methodologies for fault risk prediction. And experimentally 
determined the best performing ones. Also identified certain approaches that do not seem to predict well.  

The report is organized as follows. First, we describe the approaches we evaluated for risk assessment, to 
determine the most effective techniques to apply to this problem. Next, we describe statistical risk analysis. 
Finally, we describe the learning curve analysis of classification.  

An Appendix section, at the end of this report, provides more enumerated detail on some of the evaluations.  

4.3.1 Approach 
Fundamentally our approach is based on applying statistical analysis on the data and experimentally 
evaluating a wide variety of machine learning classification algorithms to determine effective predictors 
for fault risk. In this section we first scope the potential features i.e,, code, developer or process based 
factors that may be predictors of fault risk. We then outline the different algorithms, based on statistical 
analysis or machine learning, that we evaluated for fault risk prediction. 
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4.3.2 Classification features 

We considered the various aspects that can potentially influence code faultiness, and determined three 
distinct categories of potentially influencing features. The categories relate to properties of particular, those 
of developers, and those of the code.  

Commit related features Individual commits have interesting aspects and we derive commit related 
features from the following properties: 

(i) Commit  activity. There are quantitative measures of commit activity, specifically the modifications, 
additions, deletions counts associated with each commit. Each of the counts becomes a commit related 
feature.  

(ii) Commit time. We derive features from the (UTC) timestamp of a commit, specifically the hour of day, 
portion of the day (early morning, morning, afternoon etc.), and the day of the week.  

(iii) Descriptive text. Each commit has a commit message associated with it, where the code committer pit’s 
in a (free text) message about that commit. The (entire) commit message text becomes a feature (we 
will discuss shortly the form we represent this text feature in).  

(iv) Commit moving history. Certain features are derived from the moving window history of commits. As 
an example, for any commit, the number of commits in that code repository in the past week/month/year 
etc. becomes a moving history based feature. The intuition behind such features is that a pattern in the 
recent history of a particular commit may bear upon the faultiness of that commit.  

Developer related features These are features related to software developers associated with a code 
repository or associated with particular commits in the code. These include:  

(i) Developer identity. Identifying fields such as the login ID of a developer and their name.  
(ii) Developer reputation Features related to developer reputation metrics, such as their number of “likes”, 

or “star ratings” etc.  
(iii) Developer location.  
(iv) Developer knowledge and skills. Features derived from the set of programming languages.   

Code related features These are aspects of the code itself and include: 

(i) File types. The types of code (or documentation) files associated with the commit (a “.c” file vs a 
“.exe” vs a “.html” file etc)  

(ii) Folder paths. The folder names and path to the files associated with the commit.  

Category Features 

Commit 
features 

Activity based: modifications count commit, additions count commit, deletions 
count commit 

Temporal based: committer date hour, committer date weekday, author date hour, 
author date weekday 

Descriptive text based: commit_message_text, commit_code_text, 
file_path_tokens_text 

Moving history based: number_commits, number_commits, 
number_faulty_commits, days_since_last_faulty_commit 
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Developer 
features 

Identity: committer login, author login, committer email, author email 

Reputation: following count, followers count, public repos count 

Location: location 

Identity: number_of_languages, if_language known 

Code Features File type based: fileext 

File organization based: path1, path2 

4.3.3 Fault Risk Prediction 

The fundamental problem is that of predicting whether a commit will result in a fault or not. Rather than a 
binary Y/N of whether the commit will be faulty, we want a probabilistic likelihood that a commit will be 
faulty. Supervised learning ,employing machine learning based classification lends itself well to such a 
task. The classification problem is formulated at a commit level. For each commit, the problem is to take 
the various different features (above) and provide a classification of fault risk. The classification target is 
simply the probability, a number 0-1 (by definition), that the commit will be faulty. As part of supervised 
learning, any classifier employed is trained on data about commits in a repository where the faulty commits 
are known.  

We evaluated three different kinds of classifier types or frameworks, namely: 

1) Hand-crafted feature driven classifiers These are classifiers that work off hand crafted features. For 
instance classifiers such as Decision Tree, SVM, Random Forest and many others that are built into 
most commonly used machine learning toolkits. 

2) Deep learning classifiers, especially ones within automated machine learning frameworks These 
are classifiers in the unsupervised feature learning category where the system itself learns the features 
to be employed. The deep learning classification is based on a different paradigm of employing multiple 
layers of neural networks in the classifier. Also, rather than developing custom deep learning models 
ourselves we use cloud based automated machine learning frameworks where the (deep learning based) 
models are synthesized automatically. Further, the cloud platform offering the automated machine 
learning service provides the (typically) heavy computational resources deep learning modeling needs.  

3) Ensembles In simple terms a classifier ensemble is akin to a committee of experts, where the opinion 
of multiple experts is taken into account. In this case we assembled and evaluated ensembles of multiple 
different classifiers and under different configurations for (best) combining their inputs.  
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Type Classifiers Features 

Discrete  Decision Tree,  

Random Forest, KNN 

committer login, author login, committer email, author email, 
modifications count commit, additions count commit, deletions 
count commit, committer date hour, committer date weekday, 
author date hour, author date weekday, following count, 
followers count, public repos count, location, path1, path2, 
fileext, number of commits (previous day/week/month), days 
since last commit, number of faulty commits* (previous 
day/week/month), days since last faulty commit* 

Numeric AdaBoost, SVM, Gaussian 
Naïve Bayes (GNB), Quadratic  
Discriminant Analysis (QDA) 

modifications count commit, additions count commit, deletions 
count commit, committer date hour, committer date weekday, 
author date hour, author date weekday, following count, 
followers count, public repos count, number of commits 
(previous day/week/month), days since last commit, number of 
faulty commits* (previous day/week/month), days since last 
faulty commit* 

Text SGDC (Stochastic Gradient  
Descent) TEXT classifier 

Over (i) commit_message_text (ii) commit_code_text (iii) 
file_path_tokens_text 

Note: Three separate classifiers 

 

4.3.4 Hand-crafted feature driven classifiers  
In Table 3 below we provide the results of evaluating different hand crafted classifiers. Some characteristics 
of the evaluation and also the table format are as follows: 

1. We evaluated ten different classifiers, namely Random Forest (RF), Decision Tree (DT), AdaBoost 
(ABV), Support Vector Machine (SVM), Gaussian Naïve Bayes (GNB), Quadratic Discriminant 
Analysis (QDA), K-Nearest Neighbor (KNN), TCM, Gradient Descent (SGDC) classifiers for text 
fields which are commit message text (we call that text classifier TCM), for commit file path tokens 
TCF), and for deleted code snippet treated as text (TCC). 

2. The results are provided by individual repositories, and for each repository for different fault types  
a. For each repository and fault type, we provide the accuracy of commit fault prediction, We 

report the accuracy for each of the 10 classifiers listed above, the accuracy itself is reported 
as <precision>, <recall> (<f-measure>) 

b. For each dataset (repository and fault) we also provide the distribution of faulty and non-
faulty commits. We also provide the “baseline” accuracy, which measures the precision of 
identifying faulty commits if one were identifying such commits purely randomly. Which 
is the fraction of faulty commits in the entire set.   

i. A prefix of “Fault 1;Y:N=129:6426; BL=0.02” thus means that the ratio of faulty 
to non-faulty commits in this dataset is 129:6326. BL (baseline) is 129/(129+6326) 
= 0.02 

3. For brevity, Table 3 contains a subset of results, for 6 out of the 40 evaluated repositories. The 
complete results (all repositories) are in the Appendix. 
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INDIVIDUAL CLASSIFIERS 

Table 3. Faulty commit identification accuracy: comparison of multiple individual classifiers.   
 
             RF                            DT                            ABV                        GNB                         SVM                    QDA                            KNN                          TCM                          TCF                         TCC                   

Repo: nginx 
Fault 1;Y:N=129:6426; BL=0.02|     0.11,0.79(0.19)        0.59,0.74(0.66)        0.09,0.71(0.16)        0.20,0.36(0.26)        0.00,0.0(NA)         0.19,0.37(0.25)        0.10,0.2(0.13)          0.12,0.4(0.18)          0.05,0.84(0.09)        0.08,0.14(0.1)         

Fault 5;Y:N=471:6084; BL=0.07|     0.41,0.94(0.57)        0.75,0.84(0.79)        0.37,0.86(0.52)        0.60,0.32(0.42)        0.07,0.03(0.04)       0.53,0.4(0.46)          0.42,0.55(0.48)        0.63,0.82(0.71)        0.40,0.78(0.53)        0.25,0.72(0.37)         

Repo: apache 
Fault 1;Y:N=190:31074; BL=0.01|   0.05,0.93(0.09)        0.30,0.48(0.37)        0.02,0.57(0.04)        0.06,0.15(0.09)        0.00,0.01(0.0)        0.05,0.12(0.07)        0.01,0.06(0.02)        0.03,0.29(0.05)        0.02,0.82(0.04)        0.02,0.53(0.04)         

Fault 3;Y:N=127:31137; BL=0.0|     0.03,0.74(0.06)        0.34,0.46(0.39)        0.01,0.56(0.02)        0.03,0.07(0.04)        0.00,0.0(NA)          0.03,0.09(0.04)         0.00,0.0(NA)            0.07,0.19(0.1)          0.02,0.74(0.04)        0.02,0.05(0.03)         

Fault 5;Y:N=559:30705; BL=0.02|   0.12,0.91(0.21)        0.33,0.47(0.39)        0.04,0.74(0.08)        0.08,0.07(0.07)        0.01,0.03(0.01)      0.07,0.08(0.07)        0.02,0.09(0.03)        0.06,0.47(0.11)        0.04,0.92(0.08)        0.07,0.56(0.12)         

Repo: wget 
Fault 1;Y:N=64:3955; BL=0.02|      0.22,0.78(0.34)         0.50,0.68(0.58)       0.04,0.54(0.07)         0.00,0.0(NA)            0.01,0.03(0.01)        0.00,0.0(NA)             0.03,0.08(0.04)        0.12,0.11(0.11)        0.03,0.43(0.06)        0.29,0.05(0.09)         

Fault 3;Y:N=20:3999; BL=0.0|        0.00,0.0(NA)              0.00,0.0(NA)           0.00,0.0(NA)             0.00,0.0(NA)            0.00,0.0(NA)             0.00,0.0(NA)             0.00,0.0(NA)             0.00,0.0(NA)           0.01,0.11(0.02)         0.00,0.0(NA)         

Fault 5;Y:N=130:3889; BL=0.03|    0.13,0.7(0.22)           0.43,0.43(0.43)       0.09,0.61(0.16)         0.00,0.0(NA)            0.05,0.02(0.03)        0.00,0.0(NA)             0.08,0.12(0.1)           0.14,0.2(0.16)        0.10,0.82(0.18)         0.06,0.06(0.06)         

 

Repo: videolan/vlc 
Fault 1;Y:N=2527:78906; BL=0.03|   0.09,0.75(0.16)        0.23,0.4(0.29)        0.08,0.69(0.14)        0.03,0.99(0.06)        0.03,0.09(0.04)        0.03,0.99(0.06)        0.04,0.2(0.07)        0.07,0.59(0.13)        0.05,0.82(0.09)        0.06,0.49(0.11)         

Fault 3;Y:N=1126:80307; BL=0.01|   0.07,0.85(0.13)        0.18,0.39(0.25)        0.03,0.75(0.06)        0.01,0.98(0.02)        0.01,0.04(0.02)        0.01,0.99(0.02)        0.01,0.11(0.02)        0.04,0.52(0.07)        0.03,0.7(0.06)        0.03,0.52(0.06)         

Fault 5;Y:N=2653:78780; BL=0.03|   0.10,0.8(0.18)        0.31,0.46(0.37)        0.08,0.77(0.14)        0.03,0.98(0.06)        0.03,0.09(0.04)        0.03,0.98(0.06)        0.05,0.23(0.08)        0.10,0.66(0.17)        0.09,0.71(0.16)        0.07,0.56(0.12)         

 
We have several interesting observations to make from the results and also conclusions that we can draw. Our eventual application goal is to find 
faulty commits more efficiently, compared to randomly considering commits for examination. That makes precision a more important factor for us. 
Which is what we will primarily consider, but under a recall of at least 0.1 (10%). With some classifiers we are able to achieve a high precision 
relative to the baseline (the fault density). For instance for wget Fault 1 we have a fault density defined baseline of 0.02 and are able to achieve 
precision of 0.22 and 0.50 with the Random Forest and Decision Tree classifiers respectively. In the case of the Decision Tree the fault finding 
improvement is by a factor  0.50/0.02 = 25, which is significant. Between Random Forest and Decision Trees the latter seem to be performing better. 
Next best seem to be some of the text classifier (TCN, TCF, TCC) which provide a precision of 0.1 or higher for many of the datasets. The weakest 
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performers here seem to be the quantitative attribute driven classifiers such as SVM, QDA etc. where the classification accuracy has no improvement 
over the baseline in most cases.  

4.3.5 Ensembles  
Next, we constructed ensembles of the (above) ten classifiers. Table 4(a) provides the evaluation for a simple voting based ensemble, for a 
representative subset of datasets (Appendix_Table 4(a) provides the complete results).  
 

Table 4(a): Faulty commit identification accuracy: ensemble. Below provides faulty commit identification accuracy in terms of 
precision and recall for ensemble of 10 classifiers. 
 
  Votes:            2                                   4                                   6                                               8                                           9                                     10 
 
nginx - Fault 1;Y:N=129:6426; BL=0.02|     :  [0.09, 0.81(0.16)]   [0.2, 0.71(0.31)]     [0.31, 0.37(0.34)]     [0.75, 0.09(0.16)]     [1.0, 0.01(0.02)]      [0.0, 0.0(NA)]     

nginx - Fault 5;Y:N=471:6084; BL=0.07|     :  [0.32, 0.97(0.48)]     [0.61, 0.88(0.72)]     [0.82, 0.69(0.75)]   [0.98, 0.33(0.49)]     [0.98, 0.19(0.32)]     [0.0, 0.0(NA)]     

apache - Fault 1;Y:N=190:31074; BL=0.01|    :  [0.03, 0.93(0.06)]     [0.1, 0.63(0.17)]     [0.39, 0.14(0.21)]     [0.5, 0.01(0.02)]     [0.0, 0.0(NA)]      [0.0, 0.0(NA)]     

apache - Fault 3;Y:N=127:31137; BL=0.0|     :  [0.02, 0.8(0.04)]     [0.15, 0.38(0.22)]     [0.29, 0.03(0.05)]     [0.0, 0.0(NA)]      [0.0, 0.0(NA)]      [0.0, 0.0(NA)]     

apache - Fault 5;Y:N=559:30705; BL=0.02|    :  [0.05, 0.94(0.09)]     [0.14, 0.74(0.24)]     [0.39, 0.23(0.29)]     [0.67, 0.02(0.04)]     [1.0, 0.0(0.0)]      [0.0, 0.0(NA)]     

wget - Fault 1;Y:N=64:3955; BL=0.02|      :  [0.09, 0.81(0.16)]     [0.31, 0.27(0.29)]     [0.0, 0.0(NA)]      [0.0, 0.0(NA)]      [0.0, 0.0(NA)]      [0.0, 0.0(NA)]     

wget - Fault 3;Y:N=20:3999; BL=0.0|       :  [0.0, 0.0(NA)]      [0.0, 0.0(NA)]      [0.0, 0.0(NA)]      [0.0, 0.0(NA)]      [0.0, 0.0(NA)]      [0.0, 0.0(NA)]     

wget - Fault 5;Y:N=130:3889; BL=0.03|     :  [0.13, 0.82(0.22)]     [0.29, 0.39(0.33)]     [0.33, 0.02(0.04)]     [0.0, 0.0(NA)]      [0.0, 0.0(NA)]      [0.0, 0.0(NA)]     

videolan - Fault 1;Y:N=2527:78906; BL=0.03|   :  [0.03, 1.0(0.06)]     [0.06, 0.92(0.11)]     [0.13, 0.63(0.22)]     [0.25, 0.19(0.22)]     [0.26, 0.04(0.07)]     [0.3, 0.0(0.0)]     

videolan - Fault 3;Y:N=1126:80307; BL=0.01|   :  [0.01, 1.0(0.02)]     [0.03, 0.92(0.06)]     [0.09, 0.63(0.16)]     [0.19, 0.14(0.16)]     [0.19, 0.02(0.04)]     [0.0, 0.0(NA)]     

videolan - Fault 5;Y:N=2653:78780; BL=0.03|   :  [0.03, 1.0(0.06)]     [0.07, 0.93(0.13)]     [0.17, 0.67(0.27)]     [0.39, 0.27(0.32)]     [0.45, 0.06(0.11)]     [0.5, 0.01(0.02)]     

 

For most datasets the fault classification accuracy precision increase at the cost of recall as we increasing the voting threshold (as expected with a 
voting based ensemble). However, the ensemble is unable to provide accuracy improvement over the better performing individual classifiers.  

In Table 4(b) we provide results for another ensemble over the same ten classifiers, where we now employ XGBoost as a meta-classifier over the 
output of the individual classifiers.  
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Table 4(b): CLASSIFIER ENSEMBLE: XGBOOST (meta-classifier) BASED 

 

Dataset     Accuracy  

[Precision, Recall (F-Measure) 

 

nginx , Fault 1;Y:N=129:6426; BL=0.02                  [0.57, 0.73(0.64)] 

nginx , Fault 5;Y:N=471:6084; BL=0.07                  [0.76, 0.84(0.8)] 

apache , Fault 1;Y:N=190:31074; BL=0.01                [0.29, 0.45(0.35)] 

apache , Fault 3;Y:N=127:31137; BL=0.0                 [0.3, 0.39(0.34)] 

apache , Fault 5;Y:N=559:30705; BL=0.02                [0.35, 0.48(0.4)] 

 

Dataset     Accuracy  

[Precision, Recall (F-Measure) 

wget , Fault 1;Y:N=64:3955; BL=0.02                    [0.36, 0.11(0.17)] 

wget , Fault 3;Y:N=20:3999; BL=0.0                     [0.0, 0.0(NA)] 

wget , Fault 5;Y:N=130:3889; BL=0.03                   [0.49, 0.24(0.32)] 

videolan/vlc , Fault 1;Y:N=2527:78906; BL=0.03         [0.23, 0.41(0.29)] 

videolan/vlc , Fault 3;Y:N=1126:80307; BL=0.01         [0.19, 0.41(0.26)] 

videolan/vlc , Fault 5;Y:N=2653:78780; BL=0.03         [0.31, 0.45(0.37)] 

 
Table 4(c): CLASSIFIER ENSEMBLE: XGBOOST (meta-classifier) BASED with only Decision Tree and Random Forest components 

 

nginx , Fault 1;Y:N=129:6426; BL=0.02                     [0.53, 0.73(0.61)] 

nginx , Fault 5;Y:N=471:6084; BL=0.07                     [0.77, 0.8(0.78)] 

apache , Fault 1;Y:N=190:31074; BL=0.01                   [0.3, 0.51(0.38)] 

apache , Fault 3;Y:N=127:31137; BL=0.0                    [0.35, 0.42(0.38)] 

apache , Fault 5;Y:N=559:30705; BL=0.02                   [0.37, 0.46(0.41)] 

 

wget , Fault 1;Y:N=64:3955; BL=0.02                       [0.49, 0.49(0.49)] 

wget , Fault 3;Y:N=20:3999; BL=0.0                        [0.0, 0.0(NA)] 

wget , Fault 5;Y:N=130:3889; BL=0.03                      [0.4, 0.42(0.41)] 

videolan/vlc , Fault 1;Y:N=2527:78906; BL=0.03            [0.23, 0.38(0.29)] 

videolan/vlc , Fault 3;Y:N=1126:80307; BL=0.01            [0.19, 0.43(0.26)] 

videolan/vlc , Fault 5;Y:N=2653:78780; BL=0.03            [0.32, 0.47(0.38)] 

 

Even with XGBoost the ensemble accuracy does not outperform the accuracy of the best performing individual classifier (the Decision Tree).  
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4.3.6 Deep Learning Classifiers 
Next we evaluate deep learning classifiers which are of a fundamentally different kind. We used automated machine learning, specifically Google 
Cloud AutoML. In AutoML Tables we can provide the same set of features as a signature associated with each commit. AutoML then constructs an 
“effective” deep learning classifier for this data automatically  

 

Table 5. Automated machine learning 

Dataset Best In-house  

(F-Measure) 

Best In-house 

(Precision) 

AutoML 

nginx, 1 0.59,0.74 (0.66)         0.59,0.74 (0.66)         0.38, 0.25 (0.31) 

apache, 3 0.34,0.46(0.39)         0.35, 0.42(0.38) 0.14, 0.04 (0.06) 

curl, 1 0.21, 0.23(0.22)   0.57, 0.04(0.07) 0.52, 0.08 (0.14) 

wget, 3 0.00,0.0(NA)            0.00,0.0(NA)            0.00, 0.00 (0.00) 

videolan, 5 0.43,0.43(0.43)        0.43,0.43(0.43)        0.53, 0.29 (0.38) 

podofo, 1 0.22, 0.62(0.32)  0.33, 0.15(0.21)   0.33, 0.33 (0.33) 

 
Of the six datasets evaluated auto ml is better in only one.  

4.3.7 fastText Integration 
The final addition to the suite of classifiers was fastText. As described above, the text classifier applied to the various text fields is an SGDC based 
text classifier. The model developed in such classifiers is based on the distribution of tokens (words) in the text documents. fastText is a word 
embeddings based text classifier  that employs a vector based representation of words in the text. The vector based representation helps determine 
semantic similarity between words and a text classification model developed over this representation is more sophisticated (compared to naïve bayes 
or gradient descent based text models).  
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In the fastText addition we consider the entire code in a code file associated with a commit as text. We generated fastText classifications over the 
code as text in three different ways. We trained a global model which was trained on code (text) across multiple commits. We also trained two 
variations of local models where for each commit only the code from files associated with that commit is used.  

● FastText has various classifier models which are encoded as 
○ FLM = File local model, GM = Global model, LM = Local model, LM2 = Local model 2 
○ In each table below, we always take the File local model classifier (FLM), and one of the global model and two local models 

● Results are provided as pairs of (precision, recall) 

Tables 6 (a), (b), (c) provide the fault classification accuracy, as (precision, recall), for the fastText classifiers. We also provide the accuracy achieved 
with the other feature-driven classifiers we have used, for comparison. Note that FLM stand for fastText Local Model and FGM stands for fastText 
Global Model.  

 
Table 6(a): FastText Global 

 

FLM        GM          RF                    DT                  ABV                GNB                  SVM               QDA            KNN             TCM               TCF               TCC      

nginx                       (0.01, 0.43)    (0.0, 0.0)        (0.64, 0.5)      (0.35, 0.64)    (0.05, 0.21)    (0.05, 0.57)    (0.08, 0.21)    (0.08, 0.21)    (0.0, 0.0)       (0.07, 0.29)    (0.03, 0.71)    (0.02, 0.36)      

apache                      (0.01, 0.88)    (0.01, 0.12)    (0.44, 0.55)    (0.05, 0.83)    (0.0, 0.02)    (0.01, 0.55)    (0.04, 0.1)        (0.04, 0.1)      (0.0, 0.0)       (0.02, 0.29)    (0.02, 0.9)      (0.03, 0.74)      

wget                        (0.04, 0.69)    (0.04, 0.04)    (0.4, 0.31)      (0.14, 0.92)    (0.12, 0.08)    (0.05, 0.38)    (0.0, 0.0)        (0.0, 0.0)        (0.25, 0.04)   (0.07, 0.08)    (0.04, 0.5)      (0.0, 0.0)      

 

Table 6(b): FastText Local 

    

FLM    FGM         RF                  DT                  ABV              GNB                 SVM                QDA              KNN              TCM             TCF                 TCC   

nginx                 (0.06, 0.5)    (0.0, 0.0)         (0.64, 0.5)    (0.35, 0.64)    (0.05, 0.21)    (0.05, 0.57)    (0.08, 0.21)    (0.08, 0.21)    (0.0, 0.0)      (0.07, 0.29)    (0.03, 0.71)    (0.02, 0.36)      

apache                         (0.03, 0.64)   (0.01, 0.12)    (0.44, 0.55)  (0.05, 0.83)    (0.0, 0.02)      (0.01, 0.55)    (0.04, 0.1)       (0.04, 0.1)      (0.0, 0.0)      (0.02, 0.29)    (0.02, 0.9)     (0.03, 0.74)      

wget                        (0.05, 0.08)   (0.04, 0.04)    (0.4, 0.31)    (0.14, 0.92)    (0.12, 0.08)    (0.05, 0.38)    (0.0, 0.0)      (0.0, 0.0)        (0.25, 0.04)   (0.07, 0.08)    (0.04, 0.5)     (0.0, 0.0)       

  

Table 6(c): FastText Local 2  

  

FLM FGM        RF              DT                  ABV                 GNB                SVM              QDA                KNN             TCM            TCF                  TCC   
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nginx                       (0.0, 0.0)     (0.0, 0.0)        (0.64, 0.5)    (0.35, 0.64)    (0.05, 0.21)    (0.05, 0.57)    (0.08, 0.21)    (0.08, 0.21)    (0.0, 0.0)       (0.07, 0.29)    (0.03, 0.71)    (0.02, 0.36)        

apache                      (0.0, 0.0)     (0.01, 0.12)    (0.44, 0.55)  (0.05, 0.83)    (0.0, 0.02)      (0.01, 0.55)    (0.04, 0.1)      (0.04, 0.1)      (0.0, 0.0)        (0.02, 0.29)    (0.02, 0.9)     (0.03, 0.74)        

wget                        (0.0, 0.0)     (0.04, 0.04)    (0.4, 0.31)    (0.14, 0.92)    (0.12, 0.08)    (0.05, 0.38)    (0.0, 0.0)        (0.0, 0.0)        (0.25, 0.04)    (0.07, 0.08)    (0.04, 0.5)    (0.0, 0.0)        

 
None of the fastText models are able to demonstrate a viable classification accuracy. The accuracy achieved is comparable with the weakest of the 
feature driven classifiers.  

We also integrated the fastText classifiers into a (voting based) ensemble with the existing ten feature driven classifiers. Tables 7(a), (b), (c) provide 
the results for the three different fastText models integrated into the ensemble.  

 
Table 7(a): FastText Global 

VOTES   2  4  6  8  10  11  

nginx               (0.02, 0.71)               (0.07, 0.43)               (0.29, 0.29)       (1.0, 0.21)               (1.0, 0.14)               (0, 0.0)                

apache            (0.01, 1.0)               (0.04, 0.86)               (0.11, 0.36)               (0.6, 0.07)               (0, 0.0)        (0, 0.0)                 

wget               (0.07, 0.96)               (0.17, 0.35)         (0.33, 0.04)               (0, 0.0)               (0, 0.0)               (0, 0.0)                

 

Table 7(b): FastText Local 

VOTES   2  4  6  8  10  11   

nginx               (0.04, 0.79)               (0.11, 0.5)    (0.4, 0.29)               (1.0, 0.21)               (1.0, 0.14)               (0, 0.0)                

apache               (0.02, 0.98)               (0.05, 0.76)               (0.13, 0.31)               (0.67, 0.1)  (0, 0.0)               (0, 0.0)                

wget               (0.1, 0.85)        (0.15, 0.15)                (0.0, 0.0)               (0, 0.0)               (0, 0.0)               (0, 0.0)                

Table 7(c): FastText Local 2 

VOTES   2  4  6  8  10  11   

nginx                   (0.04, 0.71)               (0.12, 0.43)               (0.38, 0.21)               (1.0, 0.14)               (0, 0.0)               (0, 0.0)                  

apache               (0.02, 0.98)               (0.06, 0.69)                (0.17, 0.17)               (0.0, 0.0)               (0, 0.0)               (0, 0.0)                            

wget               (0.11, 0.81)               (0.2, 0.15)               (0, 0.0)               (0, 0.0)               (0, 0.0)               (0, 0.0)                  
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4.3.8 Explain Yourself: Feature Contribution to Classification 
The above evaluations demonstrated that certain classifiers can provide a high classification accuracy in predicting faulty commits. Specifically 
classifiers such as Decision Tress that can leverage discrete features or (gradient descent based) text classifiers over particular text features. Knowing 
which features are most predictive for fault risk is of direct practical interest for improving code quality. For instance if we determined code faults 
(in a particular project) are highly correlated (even negatively) with certain days of the week that the commits are made then corrective action can 
be taken.  
We conducted a feature importance analysis for various classifiers to determine significant features, for three different types of classifiers that 
demonstrated good fault classification accuracy.  
Feature importance of discrete features We selected the Decision Tree classifier and conducted feature importance analysis using built-in feature 
importance scoring capabilities in the SciKit Learn toolkit. Table 8 provides, for several datasets, the list of features with non-zero feature importance 
scores. The importance scores are also provided along with.  

 

Table 8: Feature importance 

1,1                        

author_name                 0.93816 

additions_count_commit      0.04141 

modifications_count_commit  0.01663 

last_month_commits          0.00324 

deletions_count_commit      0.00041 

last_month_faulty_commits   0.00014 

 

1,5 

committer_name              0.78727 

modifications_count_commit  0.10395 

author_name                 0.08546 

2,5 

author_date_hour            0.91284 

author_name                 0.03254 

additions_count_commit      0.01465 

committer_name              0.01210 

committer_date_hour         0.00885 

last_month_faulty_commits   0.00851 

modifications_count_commit  0.00291 

last_month_commits          0.00264 

deletions_count_commit      0.00198 

committer_date_weekday      0.00155 

committer_email_type        0.00139 

6,3 

author_name                 0.87569 

additions_count_commit      0.06819 

modifications_count_commit  0.02683 

last_month_commits          0.01550 

deletions_count_commit      0.01080 

last_month_faulty_commits   0.00295 

 

6,5 

author_name                 0.91372 

last_month_faulty_commits   0.04784 

additions_count_commit      0.03061 

11,1 

author_name                 0.94124 

additions_count_commit      0.03879 

deletions_count_commit      0.00879 

modifications_count_commit  0.00612 

last_month_commits          0.00456 

last_month_faulty_commits   0.00045 

 

12,1 

committer_date_hour         0.61274 

modifications_count_commit  0.16359 

committer_name              0.07454 
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deletions_count_commit      0.00907 

additions_count_commit      0.00675 

last_month_commits          0.00548 

last_month_faulty_commits   0.00200 

 

2,1 

author_name                 0.96165 

additions_count_commit      0.03637 

modifications_count_commit  0.00128 

last_month_commits          0.00051 

deletions_count_commit      0.00017 

last_month_faulty_commits   0.00017 

 

2,3  

committer_date_weekday      0.75268 

author_name                 0.07270 

additions_count_commit      0.05066 

committer_date_hour         0.05057 

committer_name              0.04726 

deletions_count_commit      0.00996 

last_month_faulty_commits   0.00675 

modifications_count_commit  0.00590 

last_month_commits          0.00325 

committer_email_type        0.00025 

 

4,1 

committer_date_hour         0.90417 

author_name                 0.04672 

modifications_count_commit  0.04024 

committer_name              0.00498 

additions_count_commit      0.00193 

deletions_count_commit      0.00071 

committer_email_type        0.00068 

last_month_commits          0.00053 

last_month_faulty_commits   0.00000 

 

4,5 

author_name                 0.87956 

additions_count_commit      0.05294 

modifications_count_commit  0.03502 

last_month_commits          0.01374 

last_month_faulty_commits   0.01048 

deletions_count_commit      0.00835 

 

6,1 

author_name                 0.98253 

additions_count_commit      0.01477 

modifications_count_commit  0.00120 

last_month_faulty_commits   0.00098 

last_month_commits          0.00044 

deletions_count_commit      0.00011 

deletions_count_commit      0.00578 

modifications_count_commit  0.00198 

last_month_commits          0.00007 

 

7,1 

author_name                 0.80274 

modifications_count_commit  0.14327 

additions_count_commit      0.04876 

deletions_count_commit      0.00261 

last_month_commits          0.00132 

last_month_faulty_commits   0.00132 

 

7,3 

author_name                 0.88351 

modifications_count_commit  0.08301 

deletions_count_commit      0.01331 

additions_count_commit      0.01300 

last_month_commits          0.00586 

last_month_faulty_commits   0.00134 

 

7,5 

author_name                 0.84193 

modifications_count_commit  0.15131 

additions_count_commit      0.00421 

deletions_count_commit      0.00085 

last_month_commits          0.00085 

last_month_faulty_commits   0.00085 

author_name                 0.05906 

additions_count_commit      0.05896 

committer_email_type        0.01382 

last_month_faulty_commits   0.00893 

deletions_count_commit      0.00447 

last_month_commits          0.00390 

 

12,3 

committer_date_hour         0.71650 

deletions_count_commit      0.09869 

modifications_count_commit  0.06664 

author_name                 0.05477 

committer_name              0.03478 

additions_count_commit      0.01737 

committer_email_type        0.00860 

last_month_faulty_commits   0.00222 

last_month_commits          0.00042 

 

12,5 

committer_date_hour         0.55581 

modifications_count_commit  0.15488 

committer_name              0.09069 

deletions_count_commit      0.07367 

author_name                 0.04848 

additions_count_commit      0.03587 

last_month_faulty_commits   0.01884 

committer_email_type        0.01417 
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Conclusions: 

• Developer identifying features, namely author_name and committer_name are the most important features correlated with fault risk. 
• Commit activity indicating features which are {additions_count, deletions_count, modificiations_count} are the most important features. 
• History based features, such as last_month_commits, last_month_faulty_commits etc. are also correlated 
• None of the other features are correlated.  

Text Tokens Features For the text classifiers we determined feature importance in terms of the Tfidf scores of the text tokens. The Appendix 
provides a table with the top 10 most important tokens by Tfidf score, for each dataset 

AutoML Feature Importance AutoML also provides built-in feature importance determination functions. Table 9 provides the AutoML feature 
importance for one dataset. The feature importance for the Decision Tree classifier for the same dataset, is also provided alongside.  
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Table 9: AutoML feature importance 

AutoML 

 

Decision Tree 

   

feature                                   importance score 

   

  author_login                           0.92738 

  additions_count_commit          0.03291 

  modifications_count_commit    0.02726 

  deletions_count_commit          0.01244 

 

 
In Section 2 we described the supervised machine learning classification based formulation of code fault identification. From a practical perspective 
we are interested in estimating the risk of code faults. Which is the likelihood that any commit will be a fault in the future. A binary prediction of 
whether or not (Y/N) a commit will be faulty is unrealistic and not even required in application. More useful would be a quantitative assessment of 
the risk of fault.  

In general, for any machine learning classification based approach, the final classification is a probability distribution over the target class instances. 
In this case the target class “fault” has two instances Y and N. The probability that it belongs to Y (is a fault) is taken as a quantitative measure of 
fault risk. We then also developed two other schemes for quantifying commit risk, based on statistical measures. We use these measure to conduct 
a “real world” analysis of fault risk. By real world we mean we take data from real code repositories (as for the classifier based analysis) but we also 
consider the predicting fault risk for commits in the “future”. We  now define the three different risk assessment scoring schemes as well as specifics 
of this real world evaluation.  
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Quantitative risk scoring Each commit is assigned a Commit Risk Score (CRS). Commit risk scores can 
be of the following types.  

(i) Ratio based  
a. Risk-Ratio based (RR): For each commit, the commit risk score (CRS) is the product of 

the (fault) risk ratios of individual metadata attributes (attributes with some non-zero 
correlation with faults) 

b. Odds-Ratio based (OR): For each commit, the commit risk score (CRS) is the product of 
the (fault) odds ratios of individual metadata attributes (attributes with some non-zero 
correlation with faults) 

(ii) Classifier probability based (PR): For each commit, the commit risk score (CRS) is the 
probabilistic confidence provided by the machine learning classifier or particular ensemble 
meta-classifier employed 

 

Key aspects of the evaluation 

● Commits in any dataset are sorted by time, commits prior to a certain point in time are taken in the 
training set and the remainder (post that time) form the test set 

○ The first (earlier, by time) 75% of this time sorted data forms the training set, the remainder 
25% “future” data forms the test set 

○ It is important to note that we have two different kinds of test / train splits overall: 
■ 1) The “cross validation” split where we cross validate evaluation, as in the case 

of the individual classifier and ensembles evaluations above, splitting in a manner 
agnostic to commit time. 

■ 2) The “temporal” split where data (commit instances) is split by commit time - 
past and future 

● For the classifier based scheme we have applied the ensemble classifier using XGBoost as meta-
classifier 

● In ratio based schemes we report (only) results with the odds ratio scheme (OR) as we have 
determined that to be consistently superior to the risk ratio based scheme (RR) 

● The test set commits are ranked by the OR and PR schemes 

 

(Commit) History based features: 

● One day history 
○ Features from commits on the previous day 

■ If commit is dated June 30 , 2020 take features from commits on June 29, 2020 
● One week history 

○ Features from commits on the previous 7 days 
■ If commit is dated June 30, 2020 take features from commits with dates June 23 - 

June 29, 2020 
● Previous month history  

○ Features from commits in (entire) previous month 
■ If commit is dated June 30, or June 5, or June 16 2020 take features from commits 

in (all of) May 2020 

 

We evaluate the effectiveness of the various risk assessment (scoring) schemes from the perspective of a 
code quality team wanting to efficiently identify the commits at risk. Efficiency here is simply finding the 
maximum number of faulty commits, with the lest effort i.e., in examining commits. The assessment is 
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simple where we first sort the future (test) commits in a dataset by their risk score, OR and also PR. We 
take the top N commits from this sorted set (N could be 10, 20, 50 or 100 etc.). We count the number of 
faulty comments in this set of top N. We compare this with random selection of commits with is the baseline 
density. For a dataset where we have a fault density of 1% we would expect to have 1 faulty commit among 
100 commits selected at random. We compare this with a more informed selection of commits of top N, 
sorted by a commit risk score. Table 10 provides the results for the odds ratio based scheme (OR) as well 
as the machine learning based classification approach with different sets (five in all) of features.  
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Table 10: Faults in Top N (10,20,50,100) for OR and PR schemes 
Note: In these results a measure like 6/142 means 142 instances were classified as faulty with confidence =1, of which 6 are true faults 
    

Repo Fault 
basis 

Test set 

#commits 
Fault=Y 

Test set 

#commits 
Fault=N 

Odds ratio 

based  

#faults 

 

 

 

 

Top 10/20/50/100 

Classifier 

based 

#faults 

 

 

 

 

Top 10/20/50 /100 

Classifier (with 
one day history) 

based 

#faults 

 

 

 

Top 10/ 20/ 50/100 

Classifier (with 
one week history) 

based 

#faults 

 

 

 

Top 10/ 20/ 50/100 

Classifier (with 
previous  month  
history) 

based 

#faults 

 

 

Top 10/ 20/ 50 /100 

Classifier (with 
activity  history 
but no fault 
knowledge ) 

based 

#faults 

 

Top 10/20/50 /100 

Test set  

fault 
density 

apache 

 

1 28 3098 0 / 1 / 2 / 3 n/a  182 have risk 
score=1 of which 5 
are faults 

n/a  152 have risk 
score=1 of which 
13 are faults 

n/a  168  have risk 
score=1 of which 
24 are faults 

n/a  145  have risk 
score=1 of which 18 
are faults 

n/a  144  have risk 
score=1 of which 
15 are faults 

1 in 100 

3 62 7754  0 / 1 / 2/  3 n/a  104 have risk 
score=1 of which 5 
are faults 

n/a  220  have risk 
score=1 of which 
45 are faults 

n/a  207  have risk 
score=1 of which 
38 are faults 

n/a  257  have risk 
score=1 of which 47 
are faults 

n/a  246  have risk 
score=1 of which 
43 are faults 

1 in 120 

5 45 3081 0 / 0 / 0 / 1 n/a   262 have risk 
score=1 of which 23 
are faults 

n/a  251  have risk 
score=1 of which 
33 are faults 

n/a  250  have risk 
score=1 of which 
32 are faults 

n/a  243  have risk 
score=1 of which 29 
are faults 

n/a  241  have risk 
score=1 of which 
29 are faults 

1 in 75 

image 
magick 

1 10 1504 0 / 0 / 0 / 1 1 / 1 / 1 / 3 

 

0 / 0 / 3 / 5 0 / 0 / 3 / 5 1 / 2 / 3 / 4  1 /3 / 4/ 7 1 in 150 

curl 1 18 2398 0 / 1 / 3 / 6 n/a   237 have risk 
score=1 of which 5 
are faults 

n/a  145  have risk 
score=1 of which 7 
are faults 

n/a  151  have risk 
score=1 of which 7 
are faults 

n/a  152  have risk 
score=1 of which 6 
are faults 

n/a  155  have risk 
score=1 of which 6 
are faults 

1 in 120 
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3 5 2411 0 / 0 / 1 / 1 n/a   122 have risk 
score=1 of which 1 
are faults 

0 / 0 / 0 / 1 1 / 1 / 1 / 2 0 / 0 / 1 / 2 0 / 0 / 1 / 2  1 in 500 

5 49 2365 0 / 1 / 5 / 5 n/a   325 have risk 
score=1 of which 26 
are faults 

n/a  242  have risk 
score=1 of which 
35 are faults 

n/a  250  have risk 
score=1 of which 
30  are faults 

n/a  243  have risk 
score=1 of which 36 
are faults 

n/a  248  have risk 
score=1 of which 
34 are faults 

1 in 50 

wget 

 

1 5 397 0 / 1 / 3 / 5 0 / 0 / 1  / 1 1 / 1 / 1 / 1  1 / 1 / 1 / 1 1 / 1 / 1 / 1 0 / 0 / 1 / 1  1 in 80 

3 8 2202 0 / 0 / 0 / 0 0 / 0 / 0 / 0                                0 / 0 / 1 / 2 0 / 0 / 2 / 2  0 / 0 / 1 / 2 0 / 0 / 0 / 2 1 in 270 

5 28 976 1 / 1 / 1 / 5 1 / 2 / 3 / 6 1 / 3 / 7 / 11 1 / 2 / 6 / 6  1 / 2 / 7 / 11 3 / 3 / 9 /  10 1 in 30 

openssl 1 31 2368 1 / 1 / 3 / 3 n/a   175 have risk 
score=1 of which 11  
are faults 

n/a  144  have risk 
score=1 of which 
18 are faults 

n/a  134  have risk 
score=1 of which 
20 are faults 

n/a  109  have risk 
score=1 of which 14 
are faults 

n/a  130  have risk 
score=1 of which 
17 are faults 

1 in 80 

3 6 2393 0 / 0 / 1/ 3 0 / 0 / 0 / 0 0 / 0 / 0 / 1 0 / 0 / 1 / 2  0 / 0 / 1 / 2  1 /2 / 3 / 4  1 in 400 

5 15 2384 3 / 3 / 4 / 5 

 

 

n/a   186 have risk 
score=1 of which 3  
are faults 

n/a  120  have risk 
score=1 of which 9 
are faults 

n/a  121  have risk 
score=1 of which 4 
are faults 

n/a  115  have risk 
score=1 of which 5 
are faults 

n/a  120  have risk 
score=1 of which 
10 are faults 

1 in 160 

nginx 1 14 1625 0 / 0 / 5 / 5 3 /4 / 5 / 6  1 / 2 / 6 / 7  1 /3 / 6 / 7  2 / 3 / 8 / 9  2 / 4 / 9 / 9  1 in 100 

libraw 1 30 582 1 / 3 / 10 / 12 4 / 7 / 14 / 18 5 / 12 / 23 / 25  4 / 11 / 22 / 24  7 / 13 / 27 / 27  6 / 13 / 17 / 22  1 in 20 

5 4 608 0 / 1 / 2 / 2  0 / 0 / 3 / 3  1 / 2 / 3 / 4  1 / 2 / 3 / 3   2 / 2 / 3 / 4 1 / 3 / 3 / 3 1 in 150 
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In Table 11 we provide these results in terms of fault density. We also provide the factor improvement over the baseline, which is a direct measure 
of the efficacy of risk scoring. For instance in the first row (apache, fault basis 1) the test set fault density (baseline) is 1 in 100 which means for 
every 100 commits we consider we find 1 fault. With the classifier with monthly history it is 1 in 7 i.e., for every 100 commits we consider we find 
about 15 faults !  

 
Table 11: Fault densities 
    

Repo Fault 

basis 

Odds ratio scheme fault 
density: 

 

 

Top 20 | Top 50 |Top 100 

 

Classifier 
scheme fault 
density:  

 

 

Based on top 
100 or ALL 
predicted 
faults with 
probabilistic 
risk score=1 in 
case that 
number is > 
100 

Classifier with 
monthly history  
scheme fault 
density:  

 

Based on top 100 
or ALL predicted 
faults with 
probabilistic risk 
score=1 in case 
that number is > 
100 

Classifier with 
activity history 
not including 
faults  scheme 
fault density:  

 

Based on top 
100 or ALL 
predicted faults 
with 
probabilistic 
risk score=1 in 
case that 
number is > 100 

Test set  

fault 
density 

Fault density 
factor 
improvement: 

 

Odds ratio 
scheme 

Fault density 
factor 
improvement: 

 

Classifier 
scheme  

Fault density 
factor 
improvement
: 

 

Classifier with 
previous 
month history  
scheme  

Fault density 
factor 
improvement
: 

 

Classifier with 
activity history  
but no fault 
knowledge 
scheme  

apache 

 

1 1 in 20 1 in 25 1 in 30 1 in 50 1 in 7 1 in 10 1 in  100 100/30=3 100/50=2  100/7=15 100/10=10 

3 1 in 20 1 in 25 1 in 30 1 in 14 1 in 5  1 in 6 1 in 120 4 8 25 20 

5 0 0 1 in 
100 

1 in 15 1 in 8  1 in 8 1 in 75 1 5 10 10 

image 
magick 

1 0 0 1 in 
100 

1 in 40 1 in 25 1 in 15 1 in 150 1 2 6 10 

curl 1 1 in 20 1 in 15 1 in 15 1 in 25 1 in 25 1 in 25 1 in 120 5 3 5 5 
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3 0 1 in 50 1 in 
100 

0 1 in 50 1 in 50 1 in 500 4 0 10 10 

5 1 in 20 1 in 20 1 in 20 1 in 12 1 in 7  1 in 7  1 in 50 1 3 7 7 

wget 

 

1 1 in 20 1 in 15 1 in 20 1 in 100 1 in 100 1 in 100 1 in 80 1 1 1 1 

3 0 0 0 1 in 100 1 in 50 1 in 50  1 in 270 0 3 5 5 

5 1 in 20 1 in 50 1 in 20 1 in 20 1 in 10 1 in 10 1 in 30 1 1 3 3 

openssl 1 1 in 20 1 in 15 1 in 30 1 in 16 1 in 8  1 in 7  1 in 80 3 5 10 11 

3 0 1 in 50 1 in 30 0 1 in 50 1 in 25 1 in 400 13 0 8 16 

5 1 in 7 1 in 12 1 in 20 1 in 60 1 in 11 1 in 12 1 in 160 8 3 15 13 

nginx 1 0 1 in 10 1 in 20 1 in 20 1 in 10 1 in 10 1 in 100 5 5 10 10 

libraw 

 

1 1 in 2 1 in 7 1 in 5 1 in 5 1 in 4 1 in 5  1 in 20 4 4 5 5 

5 1 in 20 1 in 25 1 in 50 1 in 30 1 in 25 1 in 30 1 in 150 3 5 6 6 

 

Conclusions summary for above results 
Odds Ratio Based 

Mean improvement factor = 3.8 ; Minimum = 0 ; Maximum = 13 

68-95-99.1: [0.6, 7]  [0,10.2]    [0,13.4] 
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Classifier (Ensemble) 

Mean improvement factor = 3.2 ; Minimum = 0, Maximum = 8 

68-95-99.1: [1.25, 5.25]     [0, 7.25]      [0, 9.25] 

 

Classifier with monthly history including faults(Ensemble) 

Mean improvement factor = 8.9 ; Minimum = 1, Maximum = 25 

68-95-99.1: [3.2, 14.4]       [0, 20.0]           [0, 25.4] 

 

Classifier with activity history NOT including faults(Ensemble) 

Mean improvement factor = 8.9 ; Minimum = 1, Maximum = 20 

68-95-99.1: [4.2, 13.6]       [0, 18.3]           [0, 23.0] 
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4.3.9 Learning Curve Analysis 
The final analysis is to determine the limits of machine learning classification in the fault risk prediction 
problem. We do this with learning curve analysis. In learning curve analysis we split any given dataset into 
disjoint train and test data, the basic idea is to vary (gradually increment) the size of the train and the 
remainder forms the test date. We keep increasing the train data size till a convergence or plateau is reached. 
We could choose a metric that we want to maximize, for instance the classifier accuracy in terms of F-
Measure, precision etc. We then gradually increase the train size till this measure (F-Measure or Precision) 
plateaus. In our case we chosen precision as the metric. The plateau informs us of the highest precision that 
is theoretically possible with classification. We can also use classifier error, specifically the train error along 
with the validation error. We increment the train size till the train error and validation error converge. This 
error indicates the minimum error that will exist with any machine learning classifier for this data and 
classification task. Figures 1 and 2 show the learning curve analysis for some of the datasets.  
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Figure 1. Learning curves using precision 
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Figure 2. Learning curves using classifier error 

 

We observe that for most data sets classifier stability is obtained when the train data size is in the 1000-4000 commits range. 
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4.4 Conclusions 
The conclusions from this investigation, development of the fault risk assessment pipeline, and 
experimental evaluation all center on the key takeaway that a machine learning classification based 
approach and system for predicting faulty commits is effective. At a more specific level we learned 
several aspects, namely: 

• From amongst a spectrum of machine learning classification approaches and frameworks 
evaluated, a “simple” hand-crafted feature based Decision Tree classifier has the best performance. 
Compared to other feature driven classifiers (such as Random Forests, SVMs etc.), enembles of 
such classifiers, and even deep learning frameworks (AutoML).  

• Only a very small set of features seem influential for faulty commit prediction, based on our feature 
importance analysis of a very wide spectrum of features evaluated. 

• Factoring information of very recent development activity on the repository (from the last few days, 
weeks and months) significantly improves fault prediction capabilities. By factoring features based 
on recent history we were able to achieve an average of 10-fold improvement in fault prediction 
(over the baseline), and it was as high as 20-fold for certain repositories evaluated.  

Overall, this effort has resulted in an approach and system that is effective in fault risk prediction and has 
also provided us with a confident understanding of the limits (prediction accuracies possible) in such a task. 
This forms a foundation for a tool that we are building for software developers and software project 
managers that can employ data for improving the quality of their code as well as the efficiency of the 
software development process 

5 Phase II Option Period 
The goal of our Phase II option was to move beyond software engineering behavior per se, and to focus 
more deeply on social behavior of the open source contributors and whether this was a harbinger of risk. 
For example, do new participants in a project represent a risk? Do those who associate with other 
questionable online entities represent a greater than usual risk? Are people who file bugs interested in 
getting them fixed or interested in indirectly engineering a weakness in a product? In doing this work, 
InferLink collaborated with Margin Research for 50% of the effort. 

We began our analysis by focusing on formulating new techniques for profiling potentially significant 
contributors and conversations on Firefox’s bug tracker, Bugzilla. Operating off the tracked User Statistics 
in Bugzilla, we focused on exploring insights derived from analyzing these values at scale. InferLink built 
tools to automatically gather the records in the bug database. Performing analysis of these user statistics 
allowed us to infer facts regarding the nature of the users in bug tracker threads. We were specifically 
highlighting outliers that might indicate abnormal or harmful behavior and insights as to how certain types 
of community members engage with the platform.  

The core of this analysis is intended to support the detection of malicious actors that may be disrupting the 
development processes of the open-source Firefox project. While attempting to profile bug fix threads that 
devolved into “flame wars,” we discovered a false positive where we were flagging threads with many 
contributions from brand new accounts. After investigating, we determined that these threads were indeed 
flame wars but typically oriented around UI/UX changes. In one instance, a bug was submitted after Firefox 
had changed the behavior of the URL bar for installations on Linux. This created a massive thread of brand 
new accounts, in some cases explicitly stating they created the account to complain in the thread, berating 
the developers and derailing any workflow that may have otherwise occurred in that bug report. We 
determined that this highlighted a threat model we had not previously considered; malicious actors may 
coordinate on a different platform, in this case, Reddit, and direct a community to commit disruptive actions. 
Our algorithm was able to find these types of accounts very effectively. We also determined that a leading 
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indicator of these disruptions is the sudden presence of a social media post that links back to that thread. If 
we search for these events in any open source project, we can anticipate disruptions from people external 
to the development community. 

A specific name kept coming up while searching for cross-references between social media and the Firefox 
Bugzilla community. Upon further analysis, we found that this user was not only one of the primary users 
submitting bugs but also a moderator of the firefox subreddit. This person’s job, official or not, was to take 
bugs reported via the subreddit and share them in the Bugzilla tracker so that they could be fixed. Finding 
people like this, who have critical roles in the community but are not explicitly defined as such, and are 
therefore in a precarious position, was a significant objective of this project. There are a couple of reasons 
why we wanted to discover these types of users: 

1. If they were to stop doing their job suddenly one day, the project would immediately lose a critical 
vulnerability reporting pipeline. 
 

2. We wanted to examine the degree to which the criticality of their role was known to the 
community. From our exploration, we determined that while these roles are likely known to people 
active within the community, they are not explicitly defined, making them prone to abuse. Very 
little work is done that supports the transfer of skills between people in these unofficial albeit 
critical roles and people who might support or replace them in time. 
 

3. The risks of account hijacking are magnified.  

If someone like Linus Torvalds, a well-known open source contributor, had their email taken over, it would 
likely be apparent quickly. They are a significant player in the Kernel, and they likely have several other 
mechanisms by which they communicate and engage with other authorities on the project. In other words, 
because he holds both a primary and explicitly defined role in the community, there are mechanisms to 
provide some degree of support if things go wrong. If someone like the aforementioned Redditor were to 
experience an account takeover, they might not have those same pipelines in place. Thus, the risks and 
consequences are magnified.  

This revelation led us to explore the possibility of leveraging grey-market collections of compromised 
accounts to gauge risks experienced by certain members of the Firefox community. Using tools like 
HaveIBeenPwned, we can immediately determine the number of account breaches within which a given 
email has been exposed. Depending on the nature of that person’s role in the community, there may be a 
higher or lower risk. An exciting result of this effort was the realization that accounts being compromised 
is, in fact, a reliable indicator of the authenticity of a given email. More specifically, if an email is purpose-
built to be used on a single platform, its exposure is reduced to such a degree that it likely does not exist in 
breach databases. This allows us to extrapolate facts regarding the nature of specific accounts. For example, 
if a bad actor decided to harass people on the platform or created an account to antagonize developers, we 
likely would not see that account in many breach databases because it was purpose-built. Unfortunately, 
this type of analysis was limited by the nature of the Bugzilla platform. It deliberately does not expose 
emails to users on the platform. 

Margin Research has access to a database of collections from known hacker forums that we decided to use 
instead. While some users do include a screen name or handle in their account name, it was often not 
complex enough to reliably flag any other observed account names in hacker forums. The instances in 
which we did flag names were often simple names based on 2-4 letter words that were ultimately benign or 
false positives. This type of analysis may bear fruit with a larger dataset. However, it will inevitably deal 
with collisions on simple names, which could be exploited by adversaries looking to disrupt communities 
under the moniker “John Smith.”  

Following this effort, we decided to focus our attention on extending analysis capabilities when starting 
with known bad actors. Focusing on what at the time was a current event rapidly unfolding, we examined 
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the process by which the log4j exploit was disclosed. We felt it provided an excellent template for analyzing 
disruptions to open source development cycles on GitHub. We attempted to uncover insights into how 
adversaries disrupt the patch cycle of a critical vulnerability by analyzing this event. In this particular 
instance, a critical vuln was disclosed to Apache, which had patched it and was adding the fix to their next 
release. At which point, several Chinese researchers jumped into the PR complaining about it not receiving 
enough attention (despite being fixed). Shortly after that, PoC code was shared on Twitter, enabling 
widespread exploitation of the vulnerability.  

We performed a deep dive into the individuals involved in this particular pull request. We examined the 
timeline of events that occurred based on direct accounts from the team patching the bug on Apache’s side 
and the Alibaba security researchers that had disclosed the vulnerability. Because the weaponization of the 
vulnerability occurred in a region of the Chinese internet that we have little access to, we explored the 
possibility of generating communities based on seed profiles like the individuals targeting the developers 
at Apache. The generated lists based on “followers of followers” effectively outlined the projects and 
communities that the suspect users were a part of. In the interest of extending that analysis, we comprised 
a list of researchers at Alibaba who allegedly discovered and disclosed the log4j vulnerability, offensive 
researchers from Kunlun Labs and Quihoo360, and Western research groups like Project Zero. After 
analyzing each group, we examined each group’s social sphere and any intersections that exist—doing so 
effectively allowed us an eagle’s eye view of the global malware research and development community. 
Further work might involve applying conventional trending algorithms to extract insights into ongoing 
research focuses of this community and possibly preempt threats.  

To support the types of analysis done above by Margin Research, InferLink built tools for social media 
monitoring and social network extraction. For example, we built a social media “news gathering” solution 
that automatically identified unique interests of any subgroup being monitored; the idea is that if one wants 
to analyze the unique interests of a group (e.g., foreign hackers, vulnerability hunters, etc.), the system we 
developed can aid with automating that analysis. Twitter was the example domain to which we applied this 
tool. 

The system works as follows. In general, to identify “unique interests” of a group, it compares the 
aggregation of tweets by that group with a random sample of conversation at the same source. In our main 
working example, we were monitoring 200 well known security researchers, comparing the aggregation of 
their tweets with a sample of random tweets. By doing this, we can automatically eliminate common topics 
(e.g., items in the news that are of general interest to anyone) and focus on those unique to the security 
group. For example, “cve” is unlikely to be a common term for the population at large, but it would be 
expected to be common for the security researcher tweet corpus. Our solution ran over any time period 
(e.g., once per week or once per day). It compares data from the last time period (e.g., the last day or past 
week) with the time period of same length that precedes it (e.g., the day before last, the week before last). 
Its analysis is focused on identifying language trends including terms, phrases, hashtags. For each period, 
the system generates: 

• Most popular terms/phrases/hashtags 
• New terms/phrases/hashtags 
• Trending terms/phrases/hashtags 

Sample results from a recent run are shown below. Specifically, we can see the interest in log4j and related 
topics (e.g., Minecraft and iCloud, which were affected). Our software surfaced these interests 
automatically. We are exploring deployment of this system to other groups (e.g., industrial control system 
security experts, etc.) and other sources (e.g., GitHub). 
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A second software effort has been to develop a strategy for identifying “social peers” using a 
straightforward network analysis approach. In particular, we are interested in the case where some person 
P1 has a set of followers F1. We then look at the set of people besides P1 that each member of F1 follows. 
We then compile the most popular figures and add them to our “peers” list and continue the process (as 
applicable). For example, if Mark Hamill (star of Star Wars) was the subject of focus, then we would expect 
Harrison Ford and Carrie Fisher (co-stars) to also be identified as popular peers, because it is very likely 
that Mark Hamill’s followers would have such an interest. We would like to extend this network analysis 
to social media identities of interest (e.g., hacker groups, etc). 

More generally, we developed a “followings of followers” solution that allowed us to identify a community 
based on a seed of subjects. For example, given identities X, Y, and Z on a social network, identify the 
sorted, ranked set of Xff U Yff U Zff where Xff is the set of followings for the followers of X. Thus, we 
wish to identify popular peers of X, Y, and Z, as indirectly communicated by their followers. The hope is 
that if we have hacker X, Y, and Z, we use the follower-of-followings approach to identify J, K, L, and M 
peers – also hackers, but previously not known to us -- yet deemed to be part of the same community 
because of their popularity among followers of X, Y, and Z. There are numerous similar community-finding 
algorithms such as these that exist, and many have been documented in the literature. 

In starting with something relatively simple, we analyzed the data found from a set of log4j related 
personalities on GitHub. Our results suggest that this type of examination can act as an analog for centrality 
analysis that a graph database would typically perform without requiring prior knowledge of the cluster of 
users in question. After examining a group that was intended to represent “cyber security focused” 
individuals, we confirmed the findings based on our knowledge of the industry. As an opportunity to extend 
this analysis, we offered a number of suspect users that had demonstrated knowledge of the log4j 
vulnerability before most of the western world learned via Twitter. This is because the exploit was 
weaponized in Chinese social media, a famously hard target for OSINT analysis. By performing this 
“followings of followers” analysis, we hope to uncover the social sphere of individuals associated with the 
weaponization of this vulnerability without requiring access to the social media accounts in question. The 
log4j use case helps validate the utility of our community-finding system. 

Through this option period, we were able to make significant progress on multiple objectives and were able 
to conclude: 
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• There is often good reason to use social media behavior as an indicator of risk/threat for a given 
open source software repository 

• It is possible to build tools to semi-automatically monitor activities such that one can potentially be 
warned of possible risk to such repos 

• There seems to be promise in mining social network graphs to identify potential risky actors 

These and other indicators suggest future work in this area would be useful. A key challenge is, of course, 
finding enough real examples to build tools that automatically identify these risks. In the case of our Phase 
II work before the option, we settled on an approach that allowed us to do that – i.e., we mined commit log 
messages. We could have mined JIRA database as well. In the Option period, there is a tougher challenge 
of what to monitor, but perhaps the solution is to simply build tools that enable quicker and richer human 
analysis without passing judgment. 
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6 Appendix  

6.1 Full results of all repositories tested 
              RF                       DT                         ABV                 GNB                   SVM                    QDA                      KNN                     TCM                     TCF                         TCC                   

Repo: nginx 

Fault 1;Y:N=129:6426; BL=0.02|     0.11,0.79(0.19)        0.59,0.74(0.66)        0.09,0.71(0.16)        0.20,0.36(0.26)        0.00,0.0(NA)           0.19,0.37(0.25)        0.10,0.2(0.13)        0.12,0.4(0.18)            0.05,0.84(0.09)        0.08,0.14(0.1)         

Fault 5;Y:N=471:6084; BL=0.07|     0.41,0.94(0.57)        0.75,0.84(0.79)        0.37,0.86(0.52)        0.60,0.32(0.42)        0.07,0.03(0.04)        0.53,0.4(0.46)        0.42,0.55(0.48)        0.63,0.82(0.71)        0.40,0.78(0.53)        0.25,0.72(0.37)         

 

Repo: apache 

Fault 1;Y:N=190:31074; BL=0.01|    0.05,0.93(0.09)        0.30,0.48(0.37)        0.02,0.57(0.04)        0.06,0.15(0.09)        0.00,0.01(0.0)        0.05,0.12(0.07)        0.01,0.06(0.02)        0.03,0.29(0.05)        0.02,0.82(0.04)        0.02,0.53(0.04)         

Fault 3;Y:N=127:31137; BL=0.0|     0.03,0.74(0.06)        0.34,0.46(0.39)        0.01,0.56(0.02)        0.03,0.07(0.04)        0.00,0.0(NA)        0.03,0.09(0.04)        0.00,0.0(NA)        0.07,0.19(0.1)        0.02,0.74(0.04)        0.02,0.05(0.03)         

Fault 5;Y:N=559:30705; BL=0.02|    0.12,0.91(0.21)        0.33,0.47(0.39)        0.04,0.74(0.08)        0.08,0.07(0.07)        0.01,0.03(0.01)        0.07,0.08(0.07)        0.02,0.09(0.03)        0.06,0.47(0.11)        0.04,0.92(0.08)        0.07,0.56(0.12)         

 

Repo: image magick 

Fault 1;Y:N=158:14972; BL=0.01|    0.07,0.77(0.13)        0.22,0.42(0.29)        0.03,0.56(0.06)        0.00,0.0(NA)        0.00,0.03(0.0)        0.09,0.01(0.02)        0.01,0.07(0.02)        0.01,0.11(0.02)        0.03,0.53(0.06)        0.02,0.05(0.03)         

Fault 5;Y:N=83:15047; BL=0.01|     0.09,0.65(0.16)        0.16,0.26(0.2)        0.01,0.24(0.02)        0.00,0.0(NA)        0.00,0.02(0.0)        0.00,0.0(NA)        0.00,0.02(0.0)        0.01,0.04(0.02)        0.02,0.5(0.04)        0.00,0.0(NA)         

Fault 7;Y:N=88:15042; BL=0.01|     0.13,0.76(0.22)        0.18,0.26(0.21)        0.01,0.57(0.02)        0.00,0.0(NA)        0.01,0.11(0.02)        0.00,0.0(NA)        0.01,0.04(0.02)        0.00,0.37(0.0)        0.03,0.52(0.06)        0.02,0.04(0.03)         

 

Repo: curl 

Fault 1;Y:N=542:23623; BL=0.02|    0.10,0.77(0.18)        0.34,0.41(0.37)        0.06,0.62(0.11)        0.15,0.13(0.14)        0.02,0.04(0.03)        0.17,0.12(0.14)        0.03,0.14(0.05)        0.06,0.45(0.11)        0.06,0.82(0.11)        0.07,0.38(0.12)         

Fault 3;Y:N=76:24089; BL=0.0|      0.02,0.6(0.04)        0.23,0.23(0.23)        0.01,0.42(0.02)        0.04,0.19(0.07)        0.00,0.0(NA)        0.04,0.15(0.06)        0.00,0.0(NA)        0.00,0.0(NA)        0.02,0.69(0.04)        0.01,0.02(0.01)         

Fault 5;Y:N=934:23231; BL=0.04|    0.17,0.86(0.28)        0.39,0.46(0.42)        0.10,0.62(0.17)        0.25,0.14(0.18)        0.04,0.09(0.06)        0.26,0.12(0.16)        0.07,0.24(0.11)        0.09,0.57(0.16)        0.10,0.87(0.18)        0.12,0.4(0.18)         

 

Repo: wget 

Fault 1;Y:N=64:3955; BL=0.02|      0.22,0.78(0.34)        0.50,0.68(0.58)        0.04,0.54(0.07)        0.00,0.0(NA)        0.01,0.03(0.01)        0.00,0.0(NA)        0.03,0.08(0.04)        0.12,0.11(0.11)        0.03,0.43(0.06)        0.29,0.05(0.09)         
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Fault 3;Y:N=20:3999; BL=0.0|       0.00,0.0(NA)        0.00,0.0(NA)        0.00,0.0(NA)        0.00,0.0(NA)        0.00,0.0(NA)        0.00,0.0(NA)        0.00,0.0(NA)        0.00,0.0(NA)        0.01,0.11(0.02)        0.00,0.0(NA)         

Fault 5;Y:N=130:3889; BL=0.03|     0.13,0.7(0.22)        0.43,0.43(0.43)        0.09,0.61(0.16)        0.00,0.0(NA)        0.05,0.02(0.03)        0.00,0.0(NA)        0.08,0.12(0.1)        0.14,0.2(0.16)        0.10,0.82(0.18)        0.06,0.06(0.06)         

 

Repo: videolan/vlc 

Fault 1;Y:N=2527:78906; BL=0.03|   0.09,0.75(0.16)        0.23,0.4(0.29)        0.08,0.69(0.14)        0.03,0.99(0.06)        0.03,0.09(0.04)        0.03,0.99(0.06)        0.04,0.2(0.07)        0.07,0.59(0.13)        0.05,0.82(0.09)        0.06,0.49(0.11)         

Fault 3;Y:N=1126:80307; BL=0.01|   0.07,0.85(0.13)        0.18,0.39(0.25)        0.03,0.75(0.06)        0.01,0.98(0.02)        0.01,0.04(0.02)        0.01,0.99(0.02)        0.01,0.11(0.02)        0.04,0.52(0.07)        0.03,0.7(0.06)        0.03,0.52(0.06)         

Fault 5;Y:N=2653:78780; BL=0.03|   0.10,0.8(0.18)        0.31,0.46(0.37)        0.08,0.77(0.14)        0.03,0.98(0.06)        0.03,0.09(0.04)        0.03,0.98(0.06)        0.05,0.23(0.08)        0.10,0.66(0.17)        0.09,0.71(0.16)        0.07,0.56(0.12)         

 

Repo: nghttp2 

Fault 1;Y:N=16:6267; BL=0.0|       0.04,1.0(0.08)        0.80,0.5(0.62)        0.00,0.0(NA)        0.07,0.38(0.12)        0.00,0.0(NA)        0.00,0.0(NA)        0.00,0.0(NA)        0.00,0.0(NA)        0.01,0.75(0.02)        0.00,0.0(NA)         

Fault 5;Y:N=92:6191; BL=0.01|      0.15,0.96(0.26)        0.31,0.38(0.34)        0.04,0.46(0.07)        0.11,0.11(0.11)        0.00,0.0(NA)        0.11,0.12(0.11)        0.04,0.09(0.06)        0.06,0.09(0.07)        0.06,0.95(0.11)        0.07,0.23(0.11)         

 

Repo: mekentosi/podofo 

Fault 1;Y:N=92:1171; BL=0.07|      0.38,0.79(0.51)        0.58,0.52(0.55)        0.20,0.49(0.28)        0.08,0.95(0.15)        0.17,0.02(0.04)        0.08,0.93(0.15)        0.23,0.25(0.24)        0.41,0.15(0.22)        0.23,0.69(0.35)        0.18,0.2(0.19)         

Fault 3;Y:N=92:1171; BL=0.07|      0.35,0.8(0.49)        0.50,0.47(0.48)        0.17,0.53(0.26)        0.07,0.91(0.13)        0.00,0.0(NA)        0.07,0.89(0.13)        0.16,0.27(0.2)        0.14,0.09(0.11)        0.16,0.67(0.26)        0.26,0.35(0.3)         

Fault 5;Y:N=97:1166; BL=0.08|      0.37,0.88(0.52)        0.50,0.64(0.56)        0.15,0.33(0.21)        0.08,0.92(0.15)        0.06,0.02(0.03)        0.08,0.94(0.15)        0.14,0.17(0.15)        0.26,0.09(0.13)        0.23,0.56(0.33)        0.36,0.08(0.13)         

 

Repo: openssl 

Fault 1;Y:N=336:23655; BL=0.01|    0.06,0.81(0.11)        0.26,0.45(0.33)        0.04,0.7(0.08)        0.11,0.12(0.11)        0.01,0.03(0.01)        0.10,0.1(0.1)        0.02,0.1(0.03)        0.04,0.32(0.07)        0.04,0.78(0.08)        0.04,0.44(0.07)         

Fault 3;Y:N=75:23916; BL=0.0|      0.01,0.56(0.02)        0.14,0.41(0.21)        0.01,0.32(0.02)        0.04,0.22(0.07)        0.00,0.0(NA)        0.04,0.2(0.07)        0.01,0.1(0.02)        0.00,0.02(0.0)        0.01,0.8(0.02)        0.01,0.32(0.02)         

Fault 5;Y:N=428:23563; BL=0.02|    0.08,0.83(0.15)        0.28,0.49(0.36)        0.05,0.7(0.09)        0.12,0.12(0.12)        0.01,0.05(0.02)        0.12,0.15(0.13)        0.05,0.16(0.08)        0.05,0.31(0.09)        0.05,0.76(0.09)        0.05,0.44(0.09)         

 

Repo: libuv 

Fault 1;Y:N=101:4276; BL=0.02|     0.13,0.43(0.2)        0.12,0.22(0.16)        0.04,0.39(0.07)        0.02,0.91(0.04)        0.02,0.07(0.03)        0.02,0.91(0.04)        0.02,0.17(0.04)        0.10,0.24(0.14)        0.05,0.61(0.09)        0.09,0.04(0.06)         

Fault 3;Y:N=18:4359; BL=0.0|       0.03,0.67(0.06)        0.14,0.44(0.21)        0.02,0.11(0.03)        0.00,1.0(0.0)        0.00,0.0(NA)        0.00,0.89(0.0)        0.00,0.0(NA)        0.00,0.0(NA)        0.04,0.67(0.08)        0.00,0.0(NA)         
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Fault 5;Y:N=157:4220; BL=0.04|     0.19,0.73(0.3)        0.32,0.39(0.35)        0.10,0.49(0.17)        0.03,0.98(0.06)        0.02,0.03(0.02)        0.03,0.97(0.06)        0.09,0.18(0.12)        0.09,0.2(0.12)        0.08,0.73(0.14)        0.08,0.04(0.05)         

 

Repo: EQEmu 

Fault 1;Y:N=32:7299; BL=0.0|       0.02,0.53(0.04)        0.15,0.35(0.21)        0.02,0.18(0.04)        0.04,0.06(0.05)        0.00,0.0(NA)        0.00,0.0(NA)        0.00,0.0(NA)        0.00,0.0(NA)        0.01,0.41(0.02)        0.04,0.12(0.06)         

Fault 3;Y:N=119:7212; BL=0.02|     0.07,0.67(0.13)        0.22,0.3(0.25)        0.04,0.59(0.07)        0.08,0.01(0.02)        0.00,0.0(NA)        0.08,0.01(0.02)        0.05,0.09(0.06)        0.04,0.04(0.04)        0.04,0.6(0.07)        0.02,0.07(0.03)         

Fault 5;Y:N=202:7129; BL=0.03|     0.11,0.81(0.19)        0.29,0.42(0.34)        0.06,0.62(0.11)        0.14,0.02(0.04)        0.01,0.02(0.01)        0.10,0.03(0.05)        0.04,0.09(0.06)        0.09,0.17(0.12)        0.07,0.56(0.12)        0.00,0.0(NA)         

 

Repo: mangosthree 

Fault 1;Y:N=87:8151; BL=0.01|      0.06,0.81(0.11)        0.22,0.37(0.28)        0.03,0.46(0.06)        0.01,0.9(0.02)        0.00,0.0(NA)        0.01,0.9(0.02)        0.03,0.08(0.04)        0.13,0.17(0.15)        0.03,0.77(0.06)        0.08,0.02(0.03)         

Fault 3;Y:N=382:7856; BL=0.05|     0.20,0.77(0.32)        0.27,0.28(0.27)        0.12,0.7(0.2)        0.05,0.95(0.1)        0.05,0.06(0.05)        0.05,0.95(0.1)        0.09,0.2(0.12)        0.12,0.44(0.19)        0.12,0.81(0.21)        0.08,0.02(0.03)         

Fault 5;Y:N=334:7904; BL=0.04|     0.15,0.79(0.25)        0.26,0.34(0.29)        0.10,0.67(0.17)        0.11,0.01(0.02)        0.01,0.01(0.01)        0.04,0.96(0.08)        0.05,0.17(0.08)        0.09,0.29(0.14)        0.10,0.78(0.18)        0.11,0.04(0.06)         

 

Repo: libexif 

Fault 1;Y:N=34:1109; BL=0.03|      0.14,0.79(0.24)        0.53,0.47(0.5)        0.02,0.11(0.03)        0.02,0.79(0.04)        0.04,0.05(0.04)        0.02,0.79(0.04)        0.05,0.16(0.08)        0.13,0.16(0.14)        0.13,1.0(0.23)        0.05,0.11(0.07)         

Fault 3;Y:N=11:1132; BL=0.01|      0.02,0.6(0.04)        0.75,0.6(0.67)        0.00,0.0(NA)        0.01,1.0(0.02)        0.00,0.0(NA)        0.01,1.0(0.02)        0.00,0.0(NA)        0.05,0.2(0.08)        0.03,0.8(0.06)        0.00,0.0(NA)         

Fault 5;Y:N=44:1099; BL=0.04|      0.24,0.73(0.36)        0.48,0.5(0.49)        0.09,0.27(0.14)        0.04,0.92(0.08)        0.00,0.0(NA)        0.04,0.92(0.08)        0.04,0.08(0.05)        0.00,0.0(NA)        0.07,0.77(0.13)        0.19,0.27(0.22)         

 

Repo: libpcap 

Fault 1;Y:N=18:4416; BL=0.0|       0.05,0.5(0.09)        0.13,0.25(0.17)        0.00,0.0(NA)        0.00,0.75(0.0)        0.00,0.0(NA)        0.00,0.0(NA)        0.00,0.0(NA)        0.00,0.0(NA)        0.01,0.38(0.02)        0.00,0.0(NA)         

Fault 5;Y:N=58:4376; BL=0.01|      0.04,0.83(0.08)        0.49,0.69(0.57)        0.04,0.4(0.07)        0.15,0.23(0.18)        0.00,0.0(NA)        0.17,0.11(0.13)        0.06,0.11(0.08)        0.18,0.09(0.12)        0.04,0.74(0.08)        0.08,0.03(0.04)         

 

Repo: trafficserver 

Fault 1;Y:N=14:12097; BL=0.0|      0.00,0.0(NA)        0.50,0.18(0.26)        0.00,0.0(NA)        0.04,0.18(0.07)        0.00,0.0(NA)        0.00,0.0(NA)        0.00,0.0(NA)        0.00,0.0(NA)        0.07,0.45(0.12)        0.00,0.0(NA)         

Fault 5;Y:N=15:12096; BL=0.0|      0.25,0.18(0.21)        0.14,0.09(0.11)        0.00,0.0(NA)        0.05,0.18(0.08)        0.00,0.0(NA)        0.05,0.18(0.08)        0.00,0.0(NA)        0.00,0.0(NA)        0.05,0.55(0.09)        0.00,0.91(0.0)         
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Repo: zaphoyd 

Fault 5;Y:N=13:1685; BL=0.01|      0.15,0.25(0.19)        0.50,0.75(0.6)        0.25,0.12(0.16)        0.11,0.25(0.15)        0.00,0.0(NA)        0.00,0.0(NA)        0.13,0.25(0.17)        0.00,0.0(NA)        0.01,0.12(0.02)        0.00,0.0(NA)         

 

Repo: libarchive 

Fault 1;Y:N=91:5501; BL=0.02|      0.15,0.85(0.26)        0.29,0.49(0.36)        0.05,0.53(0.09)        0.16,0.15(0.15)        0.00,0.0(NA)        0.16,0.15(0.15)        0.04,0.21(0.07)        0.06,0.13(0.08)        0.03,0.79(0.06)        0.06,0.02(0.03)         

Fault 3;Y:N=13:5579; BL=0.0|       0.01,0.5(0.02)        0.29,0.5(0.37)        0.00,0.0(NA)        0.04,0.25(0.07)        0.00,0.0(NA)        0.04,0.25(0.07)        0.00,0.0(NA)        0.00,0.0(NA)        0.00,0.0(NA)        0.00,0.0(NA)         

Fault 5;Y:N=129:5463; BL=0.02|     0.11,0.67(0.19)        0.30,0.36(0.33)        0.06,0.47(0.11)        0.14,0.07(0.09)        0.00,0.0(NA)        0.15,0.07(0.1)        0.07,0.13(0.09)        0.18,0.15(0.16)        0.04,0.59(0.07)        0.00,0.0(NA)         

 

Repo: libav 

Fault 1;Y:N=375:43573; BL=0.01|    0.05,0.82(0.09)        0.23,0.41(0.29)        0.03,0.7(0.06)        0.12,0.18(0.14)        0.01,0.04(0.02)        0.09,0.19(0.12)        0.02,0.14(0.04)        0.03,0.29(0.05)        0.02,0.64(0.04)        0.02,0.03(0.02)         

Fault 3;Y:N=223:43973; BL=0.01|    0.03,0.57(0.06)        0.25,0.34(0.29)        0.02,0.6(0.04)        0.09,0.22(0.13)        0.00,0.01(0.0)        0.13,0.2(0.16)        0.02,0.1(0.03)        0.02,0.19(0.04)        0.02,0.56(0.04)        0.03,0.01(0.01)         

Fault 5;Y:N=759:43148; BL=0.02|    0.08,0.7(0.14)        0.27,0.38(0.32)        0.05,0.79(0.09)        0.29,0.18(0.22)        0.02,0.04(0.03)        0.29,0.15(0.2)        0.04,0.16(0.06)        0.05,0.55(0.09)        0.05,0.66(0.09)        0.04,0.02(0.03)         

 

Repo: sqlite 

Fault 1;Y:N=624:20249; BL=0.03|    0.13,0.78(0.22)        0.31,0.32(0.31)        0.07,0.7(0.13)        0.10,0.04(0.06)        0.02,0.04(0.03)        0.07,0.02(0.03)        0.05,0.17(0.08)        0.08,0.65(0.14)        0.05,0.76(0.09)        0.06,0.06(0.06)         

Fault 3;Y:N=237:20636; BL=0.01|    0.03,0.64(0.06)        0.31,0.49(0.38)        0.02,0.7(0.04)        0.03,0.04(0.03)        0.01,0.01(0.01)        0.07,0.03(0.04)        0.02,0.06(0.03)        0.05,0.29(0.09)        0.03,0.78(0.06)        0.03,0.03(0.03)         

Fault 5;Y:N=1061:19812; BL=0.05|   0.16,0.78(0.27)        0.34,0.46(0.39)        0.11,0.68(0.19)        0.19,0.06(0.09)        0.03,0.04(0.03)        0.05,0.96(0.1)        0.09,0.22(0.13)        0.11,0.61(0.19)        0.08,0.75(0.14)        0.08,0.12(0.1)         

 

Repo: libpnq 

Fault 1;Y:N=38:4031; BL=0.01|      0.07,0.45(0.12)        0.24,0.41(0.3)        0.03,0.14(0.05)        0.02,0.05(0.03)        0.00,0.0(NA)        0.00,0.0(NA)        0.03,0.05(0.04)        0.00,0.0(NA)        0.06,0.55(0.11)        0.02,0.14(0.04)         

Fault 5;Y:N=134:3935; BL=0.03|     0.22,0.74(0.34)        0.29,0.48(0.36)        0.09,0.33(0.14)        0.14,0.14(0.14)        0.02,0.01(0.01)        0.20,0.08(0.11)        0.07,0.14(0.09)        0.09,0.04(0.06)        0.11,0.55(0.18)        0.13,0.19(0.15)         

 

Repo: libming 

Fault 5;Y:N=93:24; BL=0.79|        1.00,0.86(0.92)        1.00,0.95(0.97)        0.82,0.55(0.66)        0.82,0.86(0.84)        0.86,0.1(0.18)        0.81,0.83(0.82)        0.86,0.72(0.78)        0.91,0.86(0.88)        1.00,0.88(0.94)        0.81,0.98(0.89)         
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Repo: libraw 

Fault 1;Y:N=44:2399; BL=0.02|      0.24,0.83(0.37)        0.47,0.67(0.55)        0.04,0.29(0.07)        0.01,0.88(0.02)        0.00,0.0(NA)        0.01,0.83(0.02)        0.08,0.17(0.11)        0.17,0.21(0.19)        0.02,0.46(0.04)        0.08,0.04(0.05)         

Fault 5;Y:N=39:2404; BL=0.02|      0.14,0.59(0.23)        0.38,0.22(0.28)        0.20,0.3(0.24)        0.05,0.04(0.04)        0.25,0.07(0.11)        0.06,0.04(0.05)        0.09,0.07(0.08)        0.23,0.11(0.15)        0.04,0.81(0.08)        0.03,0.07(0.04)         

 

Repo: libtiff 

Fault 1;Y:N=27:2979; BL=0.01|      0.07,0.79(0.13)        0.33,0.21(0.26)        0.00,0.0(NA)        0.01,0.86(0.02)        0.00,0.0(NA)        0.01,0.64(0.02)        0.00,0.0(NA)        0.06,0.07(0.06)        0.01,0.14(0.02)        0.00,0.0(NA)         

Fault 3;Y:N=14:2992; BL=0.0|       0.02,0.12(0.03)        0.29,0.25(0.27)        0.08,0.12(0.1)        0.00,0.88(0.0)        0.00,0.0(NA)        0.00,0.88(0.0)        0.07,0.12(0.09)        0.00,0.0(NA)        0.01,0.38(0.02)        0.00,0.0(NA)         

Fault 5;Y:N=245:2761; BL=0.08|     0.31,0.74(0.44)        0.45,0.59(0.51)        0.14,0.61(0.23)        0.07,0.93(0.13)        0.06,0.04(0.05)        0.07,0.91(0.13)        0.11,0.32(0.16)        0.18,0.36(0.24)        0.16,0.89(0.27)        0.15,0.06(0.09)         

 

Repo: libzmq 

Fault 1;Y:N=226:7285; BL=0.03|     0.18,0.83(0.3)        0.49,0.49(0.49)        0.05,0.5(0.09)        0.07,0.02(0.03)        0.03,0.06(0.04)        0.10,0.1(0.1)        0.04,0.14(0.06)        0.19,0.44(0.27)        0.10,0.87(0.18)        0.10,0.18(0.13)         

Fault 5;Y:N=108:7403; BL=0.01|     0.06,0.75(0.11)        0.23,0.32(0.27)        0.02,0.25(0.04)        0.01,0.85(0.02)        0.02,0.02(0.02)        0.01,0.85(0.02)        0.03,0.07(0.04)        0.09,0.35(0.14)        0.04,0.77(0.08)        0.01,0.07(0.02)    

 

Repo: tesserat 

Fault 5;Y:N=140:1500; BL=0.09|     0.43,0.87(0.58)        0.60,0.76(0.67)        0.24,0.52(0.33)        0.65,0.12(0.2)        0.05,0.01(0.02)        0.46,0.07(0.12)        0.22,0.28(0.25)        0.27,0.46(0.34)        0.29,0.71(0.41)        0.00,0.0(NA)         

 

Repo: protobuf 

Fault 5;Y:N=127:1500; BL=0.08|     0.59,0.89(0.71)        0.73,0.81(0.77)        0.18,0.57(0.27)        0.58,0.17(0.26)        0.00,0.0(NA)        0.62,0.16(0.25)        0.19,0.31(0.24)        0.36,0.35(0.35)        0.30,0.93(0.45)        0.70,0.09(0.16)         

 

Repo: october 

Fault 5;Y:N=42:1500; BL=0.03|      0.25,0.7(0.37)        0.58,0.61(0.59)        0.16,0.43(0.23)        0.02,0.83(0.04)        0.00,0.0(NA)        0.02,0.78(0.04)        0.04,0.04(0.04)        0.18,0.13(0.15)        0.09,0.57(0.16)        0.02,1.0(0.04)         

 

Repo: WordPress 

Fault 5;Y:N=113:1500; BL=0.07|     0.49,0.88(0.63)        0.76,0.78(0.77)        0.18,0.43(0.25)        0.52,0.23(0.32)        0.04,0.01(0.02)        0.52,0.23(0.32)        0.11,0.36(0.17)        0.64,0.31(0.42)        0.35,0.91(0.51)        0.08,1.0(0.15)         
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Repo: phpredis 

Fault 5;Y:N=80:1500; BL=0.05|      0.22,0.76(0.34)        0.33,0.29(0.31)        0.13,0.37(0.19)        0.16,0.2(0.18)        0.00,0.0(NA)        0.16,0.1(0.12)        0.11,0.18(0.14)        0.26,0.12(0.16)        0.11,0.84(0.19)        0.05,0.92(0.09)         

 

Repo: symfony 

Fault 5;Y:N=31:1500; BL=0.02|      0.14,0.55(0.22)        0.67,0.5(0.57)        0.05,0.2(0.08)        0.02,0.95(0.04)        0.00,0.0(NA)        0.02,0.95(0.04)        0.01,0.05(0.02)        0.50,0.1(0.17)        0.30,0.7(0.42)        0.02,1.0(0.04)         

 

 

Repo: woocommerce 

Fault 5;Y:N=40:1500; BL=0.03|      0.29,0.71(0.41)        0.73,0.67(0.7)        0.04,0.12(0.06)        0.03,0.96(0.06)        0.09,0.08(0.08)        0.02,0.92(0.04)        0.04,0.12(0.06)        0.20,0.04(0.07)        0.23,0.79(0.36)        0.00,0.0(NA)         

 

Repo: yii2 

Fault 5;Y:N=48:1500; BL=0.03|      0.42,0.73(0.53)        0.69,0.67(0.68)        0.07,0.3(0.11)        0.03,0.83(0.06)        0.00,0.0(NA)        0.03,0.83(0.06)        0.03,0.17(0.05)        0.44,0.23(0.3)        0.59,0.87(0.7)        0.03,1.0(0.06)         

 

Repo: django 

Fault 5;Y:N=1047:1500; BL=0.41|    0.71,0.92(0.8)        0.80,0.79(0.79)        0.56,0.69(0.62)        0.82,0.05(0.09)        0.43,0.22(0.29)        0.78,0.05(0.09)        0.46,0.57(0.51)        0.65,0.75(0.7)        0.58,0.85(0.69)        0.88,0.03(0.06)         

 

Repo: ansible 

Fault 5;Y:N=2051:1500; BL=0.58|    0.77,0.87(0.82)        0.82,0.79(0.8)        0.74,0.67(0.7)        0.57,0.96(0.72)        0.72,0.77(0.74)        0.83,0.01(0.02)        0.65,0.62(0.63)        0.71,0.73(0.72)        0.71,0.91(0.8)        0.58,1.0(0.73)         

 

Repo: scrapy 

Fault 5;Y:N=430:1500; BL=0.22|     0.48,0.92(0.63)        0.72,0.79(0.75)        0.34,0.77(0.47)        0.22,0.95(0.36)        0.21,0.14(0.17)        0.22,0.95(0.36)        0.26,0.52(0.35)        0.47,0.58(0.52)        0.45,0.88(0.6)        0.67,0.02(0.04)  
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6.2 Voting ensembles, using additional user meta-data attributes that are history based 
 
  Votes:            2          4                     6                     8                     9              10 

nginx - Fault 1;Y:N=129:6426; BL=0.02|     : [0.09, 0.81(0.16)]   [0.2, 0.71(0.31)]    [0.31, 0.37(0.34)]    [0.75, 0.09(0.16)]    [1.0, 0.01(0.02)]    [0.0, 0.0(NA)]     
nginx - Fault 5;Y:N=471:6084; BL=0.07|     : [0.32, 0.97(0.48)]    [0.61, 0.88(0.72)]    [0.82, 0.69(0.75)]    [0.98, 0.33(0.49)]    [0.98, 0.19(0.32)]    [0.0, 0.0(NA)]     
apache - Fault 1;Y:N=190:31074; BL=0.01|    : [0.03, 0.93(0.06)]    [0.1, 0.63(0.17)]    [0.39, 0.14(0.21)]    [0.5, 0.01(0.02)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]     
apache - Fault 3;Y:N=127:31137; BL=0.0|     : [0.02, 0.8(0.04)]    [0.15, 0.38(0.22)]    [0.29, 0.03(0.05)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]     
apache - Fault 5;Y:N=559:30705; BL=0.02|    : [0.05, 0.94(0.09)]    [0.14, 0.74(0.24)]    [0.39, 0.23(0.29)]    [0.67, 0.02(0.04)]    [1.0, 0.0(0.0)]    [0.0, 0.0(NA)]     
image magick - Fault 1;Y:N=158:14972; BL=0.01|    : [0.03, 0.75(0.06)]    [0.14, 0.26(0.18)]    [0.29, 0.02(0.04)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]     
image magick - Fault 5;Y:N=83:15047; BL=0.01|     : [0.03, 0.56(0.06)]    [0.09, 0.09(0.09)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]     
image magick - Fault 7;Y:N=88:15042; BL=0.01|     : [0.02, 0.74(0.04)]    [0.08, 0.31(0.13)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]     
curl - Fault 1;Y:N=542:23623; BL=0.02|    : [0.06, 0.9(0.11)]    [0.14, 0.58(0.23)]    [0.31, 0.17(0.22)]    [0.68, 0.04(0.08)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]     
curl - Fault 3;Y:N=76:24089; BL=0.0|      : [0.02, 0.65(0.04)]    [0.11, 0.25(0.15)]    [0.33, 0.02(0.04)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]     
curl - Fault 5;Y:N=934:23231; BL=0.04|    : [0.09, 0.93(0.16)]    [0.22, 0.66(0.33)]    [0.49, 0.29(0.36)]    [0.82, 0.05(0.09)]    [1.0, 0.01(0.02)]    [0.0, 0.0(NA)]     
wget - Fault 1;Y:N=64:3955; BL=0.02|      : [0.09, 0.81(0.16)]    [0.31, 0.27(0.29)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]     
wget - Fault 3;Y:N=20:3999; BL=0.0|       : [0.0, 0.0(NA)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]     
wget - Fault 5;Y:N=130:3889; BL=0.03|     : [0.13, 0.82(0.22)]    [0.29, 0.39(0.33)]    [0.33, 0.02(0.04)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]     
videolan/vlc - Fault 1;Y:N=2527:78906; BL=0.03|   : [0.03, 1.0(0.06)]    [0.06, 0.92(0.11)]    [0.13, 0.63(0.22)]    [0.25, 0.19(0.22)]    [0.26, 0.04(0.07)]    [0.3, 0.0(0.0)]     
videolan/vlc - Fault 3;Y:N=1126:80307; BL=0.01|   : [0.01, 1.0(0.02)]    [0.03, 0.92(0.06)]    [0.09, 0.63(0.16)]    [0.19, 0.14(0.16)]    [0.19, 0.02(0.04)]    [0.0, 0.0(NA)]     
videolan/vlc - Fault 5;Y:N=2653:78780; BL=0.03|   : [0.03, 1.0(0.06)]    [0.07, 0.93(0.13)]    [0.17, 0.67(0.27)]    [0.39, 0.27(0.32)]    [0.45, 0.06(0.11)]    [0.5, 0.01(0.02)]     
nghttp2 - Fault 1;Y:N=16:6267; BL=0.0|       : [0.04, 0.88(0.08)]    [0.25, 0.25(0.25)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]     
nghttp2 - Fault 5;Y:N=92:6191; BL=0.01|      : [0.09, 0.98(0.16)]    [0.24, 0.41(0.3)]    [0.45, 0.09(0.15)]    [1.0, 0.04(0.08)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]     
mekentosi/podofo - Fault 1;Y:N=92:1171; BL=0.07|      : [0.08, 1.0(0.15)]    [0.29, 0.72(0.41)]    [0.52, 0.44(0.48)]    [0.8, 0.07(0.13)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]     
mekentosi/podofo - Fault 3;Y:N=92:1171; BL=0.07|      : [0.07, 0.98(0.13)]    [0.22, 0.8(0.35)]    [0.45, 0.42(0.43)]    [0.43, 0.05(0.09)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]     
mekentosi/podofo - Fault 5;Y:N=97:1166; BL=0.08|      : [0.09, 1.0(0.17)]    [0.29, 0.77(0.42)]    [0.56, 0.3(0.39)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]     
openssl - Fault 1;Y:N=336:23655; BL=0.01|    : [0.04, 0.88(0.08)]    [0.12, 0.62(0.2)]    [0.33, 0.14(0.2)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]     
openssl - Fault 3;Y:N=75:23916; BL=0.0|      : [0.01, 0.88(0.02)]    [0.06, 0.34(0.1)]    [0.3, 0.07(0.11)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]     
openssl - Fault 5;Y:N=428:23563; BL=0.02|    : [0.05, 0.9(0.09)]    [0.13, 0.64(0.22)]    [0.33, 0.19(0.24)]    [0.8, 0.02(0.04)]    [1.0, 0.0(0.0)]    [0.0, 0.0(NA)]     
libuv - Fault 1;Y:N=101:4276; BL=0.02|     : [0.02, 0.96(0.04)]    [0.06, 0.61(0.11)]    [0.1, 0.13(0.11)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]     
libuv - Fault 3;Y:N=18:4359; BL=0.0|       : [0.0, 1.0(0.0)]    [0.08, 0.67(0.14)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]     
libuv - Fault 5;Y:N=157:4220; BL=0.04|     : [0.03, 1.0(0.06)]    [0.12, 0.76(0.21)]    [0.32, 0.33(0.32)]    [0.5, 0.03(0.06)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]     
EQEmu - Fault 1;Y:N=32:7299; BL=0.0|       : [0.03, 0.41(0.06)]    [0.19, 0.18(0.18)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]     
EQEmu - Fault 3;Y:N=119:7212; BL=0.02|     : [0.05, 0.7(0.09)]    [0.13, 0.24(0.17)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]     
EQEmu - Fault 5;Y:N=202:7129; BL=0.03|     : [0.09, 0.8(0.16)]    [0.2, 0.29(0.24)]    [0.38, 0.03(0.06)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]     
mangosthree - Fault 1;Y:N=87:8151; BL=0.01|      : [0.01, 0.96(0.02)]    [0.05, 0.71(0.09)]    [0.2, 0.29(0.24)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]     
mangosthree - Fault 3;Y:N=382:7856; BL=0.05|     : [0.05, 0.99(0.1)]    [0.11, 0.8(0.19)]    [0.27, 0.47(0.34)]    [0.43, 0.05(0.09)]    [1.0, 0.0(0.0)]    [0.0, 0.0(NA)]     
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mangosthree - Fault 5;Y:N=334:7904; BL=0.04|     : [0.07, 0.92(0.13)]    [0.14, 0.67(0.23)]    [0.29, 0.19(0.23)]    [0.33, 0.0(0.0)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]     
libexif - Fault 1;Y:N=34:1109; BL=0.03|      : [0.03, 1.0(0.06)]    [0.11, 0.74(0.19)]    [0.14, 0.16(0.15)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]     
libexif - Fault 3;Y:N=11:1132; BL=0.01|      : [0.01, 1.0(0.02)]    [0.04, 0.6(0.07)]    [0.5, 0.2(0.29)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]     
libexif - Fault 5;Y:N=44:1099; BL=0.04|      : [0.04, 1.0(0.08)]    [0.15, 0.77(0.25)]    [0.24, 0.23(0.23)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]     
libpcap - Fault 1;Y:N=18:4416; BL=0.0|       : [0.01, 0.5(0.02)]    [0.04, 0.12(0.06)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]     
libpcap - Fault 5;Y:N=58:4376; BL=0.01|      : [0.07, 0.94(0.13)]    [0.29, 0.46(0.36)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]     
trafficserver - Fault 1;Y:N=14:12097; BL=0.0|      : [0.17, 0.27(0.21)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]     
trafficserver - Fault 5;Y:N=15:12096; BL=0.0|      : [0.04, 0.64(0.08)]    [0.04, 0.09(0.06)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]     
zaphoyd - Fault 5;Y:N=13:1685; BL=0.01|      : [0.2, 0.5(0.29)]    [1.0, 0.12(0.21)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]     
libarchive - Fault 1;Y:N=91:5501; BL=0.02|      : [0.08, 0.85(0.15)]    [0.22, 0.4(0.28)]    [0.3, 0.13(0.18)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]     
libarchive - Fault 3;Y:N=13:5579; BL=0.0|       : [0.02, 0.5(0.04)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]     
libarchive - Fault 5;Y:N=129:5463; BL=0.02|     : [0.09, 0.72(0.16)]    [0.2, 0.23(0.21)]    [0.17, 0.01(0.02)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]     
libav - Fault 1;Y:N=375:43573; BL=0.01|    : [0.03, 0.83(0.06)]    [0.13, 0.48(0.2)]    [0.34, 0.15(0.21)]    [1.0, 0.01(0.02)]    [1.0, 0.0(0.0)]    [0.0, 0.0(NA)]     
libav - Fault 3;Y:N=223:43973; BL=0.01|    : [0.02, 0.68(0.04)]    [0.12, 0.36(0.18)]    [0.49, 0.13(0.21)]    [1.0, 0.03(0.06)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]     
libav - Fault 5;Y:N=759:43148; BL=0.02|    : [0.06, 0.87(0.11)]    [0.2, 0.53(0.29)]    [0.49, 0.15(0.23)]    [0.88, 0.01(0.02)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]     
sqlite - Fault 1;Y:N=624:20249; BL=0.03|    : [0.07, 0.89(0.13)]    [0.19, 0.57(0.28)]    [0.4, 0.07(0.12)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]     
sqlite - Fault 3;Y:N=237:20636; BL=0.01|    : [0.03, 0.85(0.06)]    [0.16, 0.43(0.23)]    [0.31, 0.03(0.05)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]     
sqlite - Fault 5;Y:N=1061:19812; BL=0.05|   : [0.07, 0.97(0.13)]    [0.15, 0.77(0.25)]    [0.29, 0.33(0.31)]    [0.39, 0.02(0.04)]    [0.5, 0.0(0.0)]    [0.0, 0.0(NA)]     
libpnq - Fault 1;Y:N=38:4031; BL=0.01|      : [0.08, 0.5(0.14)]    [0.11, 0.09(0.1)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]     
libpnq - Fault 5;Y:N=134:3935; BL=0.03|     : [0.16, 0.76(0.26)]    [0.27, 0.31(0.29)]    [0.53, 0.11(0.18)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]     
libming - Fault 5;Y:N=93:24; BL=0.79|        : [0.82, 1.0(0.9)]    [0.85, 0.91(0.88)]    [0.94, 0.84(0.89)]    [1.0, 0.67(0.8)]    [1.0, 0.45(0.62)]    [1.0, 0.09(0.17)]     
libraw - Fault 1;Y:N=44:2399; BL=0.02|      : [0.02, 0.96(0.04)]    [0.12, 0.79(0.21)]    [0.24, 0.21(0.22)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]     
libraw - Fault 5;Y:N=39:2404; BL=0.02|      : [0.11, 0.67(0.19)]    [0.4, 0.15(0.22)]    [1.0, 0.07(0.13)]    [1.0, 0.04(0.08)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]     
libtiff - Fault 1;Y:N=27:2979; BL=0.01|      : [0.01, 0.86(0.02)]    [0.06, 0.36(0.1)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]     
libtiff - Fault 3;Y:N=14:2992; BL=0.0|       : [0.0, 0.88(0.0)]    [0.05, 0.25(0.08)]    [1.0, 0.12(0.21)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]     
libtiff - Fault 5;Y:N=245:2761; BL=0.08|     : [0.08, 0.98(0.15)]    [0.17, 0.87(0.28)]    [0.32, 0.52(0.4)]    [0.45, 0.1(0.16)]    [0.4, 0.01(0.02)]    [0.0, 0.0(NA)]     
libzmq - Fault 1;Y:N=226:7285; BL=0.03|     : [0.1, 0.94(0.18)]    [0.37, 0.56(0.45)]    [0.62, 0.1(0.17)]    [1.0, 0.01(0.02)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)]     
libzmq - Fault 5;Y:N=108:7403; BL=0.01|     : [0.01, 0.97(0.02)]    [0.05, 0.67(0.09)]    [0.12, 0.2(0.15)]    [0.38, 0.05(0.09)]    [0.0, 0.0(NA)]    [0.0, 0.0(NA)] 
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6.3 XGBOOST Classifier ensembles 
 

Dataset     Accuracy  
[Precision, Recall (F-Measure) 

 

nginx , Fault 1;Y:N=129:6426; BL=0.02                  [0.57, 0.73(0.64)] 

nginx , Fault 5;Y:N=471:6084; BL=0.07                  [0.76, 0.84(0.8)] 

apache , Fault 1;Y:N=190:31074; BL=0.01                [0.29, 0.45(0.35)] 

apache , Fault 3;Y:N=127:31137; BL=0.0                 [0.3, 0.39(0.34)] 

apache , Fault 5;Y:N=559:30705; BL=0.02                [0.35, 0.48(0.4)] 

image magick , Fault 1;Y:N=158:14972; BL=0.01          [0.24, 0.45(0.31)] 

image magick , Fault 5;Y:N=83:15047; BL=0.01           [0.21, 0.3(0.25)] 

image magick , Fault 7;Y:N=88:15042; BL=0.01           [0.16, 0.28(0.2)] 

curl , Fault 1;Y:N=542:23623; BL=0.02                  [0.29, 0.37(0.33)] 

curl , Fault 3;Y:N=76:24089; BL=0.0                    [0.0, 0.0(NA)] 

curl , Fault 5;Y:N=934:23231; BL=0.04                  [0.38, 0.45(0.41)] 

wget , Fault 1;Y:N=64:3955; BL=0.02                    [0.36, 0.11(0.17)] 

wget , Fault 3;Y:N=20:3999; BL=0.0                     [0.0, 0.0(NA)] 

wget , Fault 5;Y:N=130:3889; BL=0.03                   [0.49, 0.24(0.32)] 

videolan/vlc , Fault 1;Y:N=2527:78906; BL=0.03         [0.23, 0.41(0.29)] 

videolan/vlc , Fault 3;Y:N=1126:80307; BL=0.01         [0.19, 0.41(0.26)] 

videolan/vlc , Fault 5;Y:N=2653:78780; BL=0.03         [0.31, 0.45(0.37)] 

nghttp2 , Fault 1;Y:N=16:6267; BL=0.0                  [0.0, 0.0(NA)] 

nghttp2 , Fault 5;Y:N=92:6191; BL=0.01                 [0.36, 0.09(0.14)] 

Dataset     Accuracy  
[Precision, Recall (F-Measure) 

mangosthree , Fault 1;Y:N=87:8151; BL=0.01             [0.56, 0.17(0.26)] 

mangosthree , Fault 3;Y:N=382:7856; BL=0.05            [0.28, 0.32(0.3)] 

mangosthree , Fault 5;Y:N=334:7904; BL=0.04                    [0.26, 0.32(0.29)] 

libexif , Fault 1;Y:N=34:1109; BL=0.03                 [0.62, 0.26(0.37)] 

libexif , Fault 3;Y:N=11:1132; BL=0.01                 [0.5, 0.2(0.29)] 

libexif , Fault 5;Y:N=44:1099; BL=0.04                 [0.38, 0.12(0.18)] 

libpcap , Fault 1;Y:N=18:4416; BL=0.0                  [0.0, 0.0(NA)] 

libpcap , Fault 5;Y:N=58:4376; BL=0.01                 [0.5, 0.09(0.15)] 

trafficserver , Fault 1;Y:N=14:12097; BL=0.0           [0.0, 0.0(NA)] 

trafficserver , Fault 5;Y:N=15:12096; BL=0.0           [0.0, 0.0(NA)] 

zaphoyd , Fault 5;Y:N=13:1685; BL=0.01                 [0.5, 0.12(0.19)] 

libarchive , Fault 1;Y:N=91:5501; BL=0.02              [0.31, 0.47(0.37)] 

libarchive , Fault 3;Y:N=13:5579; BL=0.0               [0.0, 0.0(NA)] 

libarchive , Fault 5;Y:N=129:5463; BL=0.02             [0.48, 0.14(0.22)] 

libav , Fault 1;Y:N=375:43573; BL=0.01                 [0.23, 0.4(0.29)] 

libav , Fault 3;Y:N=223:43973; BL=0.01                          [0.24, 0.28(0.26)] 

libav , Fault 5;Y:N=759:43148; BL=0.02                 [0.27, 0.43(0.33)] 

sqlite , Fault 1;Y:N=624:20249; BL=0.03                [0.36, 0.4(0.38)] 

sqlite , Fault 3;Y:N=237:20636; BL=0.01                [0.36, 0.54(0.43)] 
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mekentosi/podofo , Fault 1;Y:N=92:1171; BL=0.07        [0.63, 0.2(0.3)] 

mekentosi/podofo , Fault 3;Y:N=92:1171; BL=0.07        [0.5, 0.24(0.32)] 

mekentosi/podofo , Fault 5;Y:N=97:1166; BL=0.08        [0.53, 0.15(0.23)] 

openssl , Fault 1;Y:N=336:23655; BL=0.01               [0.25, 0.47(0.33)] 

openssl , Fault 3;Y:N=75:23916; BL=0.0                 [0.08, 0.27(0.12)] 

openssl , Fault 5;Y:N=428:23563; BL=0.02               [0.25, 0.46(0.32)] 

libuv , Fault 1;Y:N=101:4276; BL=0.02                  [0.18, 0.31(0.23)] 

libuv , Fault 3;Y:N=18:4359; BL=0.0                    [0.5, 0.11(0.18)] 

libuv , Fault 5;Y:N=157:4220; BL=0.04                  [0.33, 0.45(0.38)] 

EQEmu , Fault 1;Y:N=32:7299; BL=0.0                    [0.0, 0.0(NA)] 

EQEmu , Fault 3;Y:N=119:7212; BL=0.02                  [0.42, 0.07(0.12)] 

EQEmu , Fault 5;Y:N=202:7129; BL=0.03                  [0.29, 0.44(0.35)] 

sqlite , Fault 5;Y:N=1061:19812; BL=0.05               [0.34, 0.46(0.39)] 

libpnq , Fault 1;Y:N=38:4031; BL=0.01                  [0.0, 0.0(NA)] 

libpnq , Fault 5;Y:N=134:3935; BL=0.03                 [0.36, 0.35(0.35)] 

libming , Fault 5;Y:N=93:24; BL=0.79                 [1.0, 0.91(0.95)] 

libraw , Fault 1;Y:N=44:2399; BL=0.02                [0.41, 0.38(0.39)] 

libraw , Fault 5;Y:N=39:2404; BL=0.02                [0.5, 0.07(0.12)]   

libtiff , Fault 1;Y:N=27:2979; BL=0.01                  [0.0, 0.0(NA)] 

libtiff , Fault 3;Y:N=14:2992; BL=0.0                    [0.5, 0.12(0.19)] 

libtiff , Fault 5;Y:N=245:2761; BL=0.08              [0.45, 0.58(0.51)] 

libzmq , Fault 1;Y:N=226:7285; BL=0.03               [0.41, 0.5(0.45)] 

libzmq , Fault 5;Y:N=108:7403; BL=0.01               [0.24, 0.27(0.25)] 
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6.4 XGBOOST (meta-classifier) BASED with ONLY Decision Tree and Random Forest 

nginx , Fault 1;Y:N=129:6426; BL=0.02                     [0.53, 0.73(0.61)] 

nginx , Fault 5;Y:N=471:6084; BL=0.07                     [0.77, 0.8(0.78)] 

apache , Fault 1;Y:N=190:31074; BL=0.01                   [0.3, 0.51(0.38)] 

apache , Fault 3;Y:N=127:31137; BL=0.0                    [0.35, 0.42(0.38)] 

apache , Fault 5;Y:N=559:30705; BL=0.02                   [0.37, 0.46(0.41)] 

image magick , Fault 1;Y:N=158:14972; BL=0.01             [0.28, 0.37(0.32)] 

image magick , Fault 5;Y:N=83:15047; BL=0.01              [0.13, 0.15(0.14)] 

image magick , Fault 7;Y:N=88:15042; BL=0.01              [0.15, 0.24(0.18)] 

curl , Fault 1;Y:N=542:23623; BL=0.02                     [0.33, 0.39(0.36)] 

curl , Fault 3;Y:N=76:24089; BL=0.0                       [0.27, 0.27(0.27)] 

curl , Fault 5;Y:N=934:23231; BL=0.04                     [0.38, 0.46(0.42)] 

wget , Fault 1;Y:N=64:3955; BL=0.02                       [0.49, 0.49(0.49)] 

wget , Fault 3;Y:N=20:3999; BL=0.0                        [0.0, 0.0(NA)] 

wget , Fault 5;Y:N=130:3889; BL=0.03                      [0.4, 0.42(0.41)] 

videolan/vlc , Fault 1;Y:N=2527:78906; BL=0.03            [0.23, 0.38(0.29)] 

videolan/vlc , Fault 3;Y:N=1126:80307; BL=0.01            [0.19, 0.43(0.26)] 

videolan/vlc , Fault 5;Y:N=2653:78780; BL=0.03            [0.32, 0.47(0.38)] 

nghttp2 , Fault 1;Y:N=16:6267; BL=0.0                     [1.0, 0.38(0.55)] 

nghttp2 , Fault 5;Y:N=92:6191; BL=0.01                    [0.27, 0.36(0.31)] 

mekentosi/podofo , Fault 1;Y:N=92:1171; BL=0.07           [0.54, 0.51(0.52)] 

mekentosi/podofo , Fault 3;Y:N=92:1171; BL=0.07           [0.37, 0.51(0.43)] 

mekentosi/podofo , Fault 5;Y:N=97:1166; BL=0.08           [0.44, 0.55(0.49)] 

openssl , Fault 1;Y:N=336:23655; BL=0.01                  [0.24, 0.44(0.31)] 

openssl , Fault 3;Y:N=75:23916; BL=0.0                    [0.1, 0.32(0.15)] 

mangosthree , Fault 1;Y:N=87:8151; BL=0.01                [0.18, 0.35(0.24)] 

mangosthree , Fault 3;Y:N=382:7856; BL=0.05               [0.31, 0.39(0.35)] 

mangosthree , Fault 5;Y:N=334:7904; BL=0.04               [0.32, 0.42(0.36)] 

libexif , Fault 1;Y:N=34:1109; BL=0.03                    [0.53, 0.47(0.5)] 

libexif , Fault 3;Y:N=11:1132; BL=0.01                    [0.8, 0.8(0.8)] 

libexif , Fault 5;Y:N=44:1099; BL=0.04                    [0.48, 0.58(0.53)] 

libpcap , Fault 1;Y:N=18:4416; BL=0.0                     [0.15, 0.25(0.19)] 

libpcap , Fault 5;Y:N=58:4376; BL=0.01                    [0.42, 0.66(0.51)] 

trafficserver , Fault 1;Y:N=14:12097; BL=0.0              [0.5, 0.18(0.26)] 

trafficserver , Fault 5;Y:N=15:12096; BL=0.0              [0.14, 0.09(0.11)] 
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openssl , Fault 5;Y:N=428:23563; BL=0.02                  [0.25, 0.47(0.33)] 

libuv , Fault 1;Y:N=101:4276; BL=0.02                     [0.17, 0.3(0.22)] 

libuv , Fault 3;Y:N=18:4359; BL=0.0                       [0.07, 0.11(0.09)] 

libuv , Fault 5;Y:N=157:4220; BL=0.04                     [0.36, 0.44(0.4)] 

EQEmu , Fault 1;Y:N=32:7299; BL=0.0                       [0.19, 0.47(0.27)] 

EQEmu , Fault 3;Y:N=119:7212; BL=0.02                     [0.28, 0.37(0.32)] 

EQEmu , Fault 5;Y:N=202:7129; BL=0.03                     [0.28, 0.38(0.32)] 
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6.5 Important Grams in Code 
Repo  1 , Fault  1 
 For Fault commits:  

Top 10 correlated unigrams: index ,  line ,  emerg ,  handler ,  type ,  connection ,  kqueue ,  void ,  cache ,  errno 
Top 10 correlated bigrams: socklen sizeof , error ngx , errno err , sockaddr struct , sizeof ngx , emerg cf , log alert , log emerg , pool sizeof , char 
ngx 

 For NO fault commits:  

Top 10 correlated unigrams: head ,  warn ,  table ,  domain ,  addr ,  wev ,  goto ,  atoi ,  nan ,  dst 
Top 10 correlated bigrams: data return , return endif , af inet , inet ngx , char buf , mutex unlock , addr addr , continue ngx , data value , ngx atoi 

 

Repo  1 , Fault  5 
 For Fault commits:  

Top 10 correlated unigrams: ctx ,  hunk ,  wev ,  fd ,  return ,  event ,  ev ,  ngx ,  endif ,  nan 

Top 10 correlated bigrams: palloc pool , err ngx , log ngx , ngx fd , ngx pid , event ngx , log info , ngx http , ngx log , include ngx 
 For NO fault commits:  

Top 10 correlated unigrams: ranges ,  fastcgi ,  stderr ,  crlf ,  body ,  status ,  current ,  code ,  handle ,  valid 

Top 10 correlated bigrams: ch ch , ngx invalid , data char , start ngx , shm zone , value data , http header , request body , debug http , ctx len 

 
Repo  2 , Fault  1 

 For Fault commits:  

Top 10 correlated unigrams: errfile ,  response ,  nan ,  dobj ,  reap ,  queue ,  compare ,  actual ,  rp ,  io 
Top 10 correlated bigrams: sc server , conn connection , headers headers , stream pool , tmp bb , brigade split , static ap , filter return , proxy function 
, pool conn 

 For NO fault commits:  
Top 10 correlated unigrams: level ,  doesn ,  check ,  aborted ,  real ,  note ,  work ,  rerror ,  ifndef ,  path 



InferLink Corporation  Contract # 140D6319C0016 

Top 10 correlated bigrams: byteranges instead , ifdef sigwinch , bucket transient , transient create , egeneral return , ap filter , ap hook , return http , 
log rerror , rerror aplog 
 

Repo  2 , Fault  3 

 For Fault commits:  

Top 10 correlated unigrams: struct ,  accessed ,  transferred ,  read ,  start ,  ifndef ,  eos ,  config ,  endif ,  et 
Top 10 correlated bigrams: ap select , egeneral return , value kip , break ap , int type , rec request , return ap , brigade bb , string len , bucket brigade 

 For NO fault commits:  

Top 10 correlated unigrams: assert ,  allocation ,  auto ,  item ,  desc ,  counter ,  shm ,  slotmem ,  task ,  beam 
Top 10 correlated bigrams: include util , io io , char line , return status , beam beam , ap debug , task task , debug assert , input beam , task input 

 

Repo  2 , Fault  5 
 For Fault commits:  

Top 10 correlated unigrams: apr ,  ap ,  sequence ,  hp ,  handles ,  buff ,  obj ,  refcount ,  task ,  nan 

Top 10 correlated bigrams: ap debug , struct hostent , destroy pool , use atomics , len read , ssl callback , task output , create pool , debug assert , obj 
refcount 
 For NO fault commits:  

Top 10 correlated unigrams: tmp ,  filetype ,  rc ,  message ,  based ,  present ,  str ,  work ,  pthread ,  called 

Top 10 correlated bigrams: char err , text html , char end , ap strchr , length apr , apr dir , type apr , ok return , server error , core dir 
 

Repo  4 , Fault  1 

 For Fault commits:  
Top 10 correlated unigrams: character ,  17 ,  01 ,  errno ,  ong ,  artifacts ,  00 ,  cli ,  sun ,  morphology 

Top 10 correlated bigrams: info id , image header , quantum info , size ead , count ssize , ssize length , length break , wand wand , info page , cli 
wand 

 For NO fault commits:  
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Top 10 correlated unigrams: eset ,  signature ,  ocale ,  black ,  png ,  critical ,  resize ,  windows ,  continue ,  export 
Top 10 correlated bigrams: const unsigned , authentic pixels , red image , static void , image image , size type , agick size , false status , ernel info , 
locale file 

 

Repo  4 , Fault  5 

 For Fault commits:  
Top 10 correlated unigrams: composite ,  local ,  function ,  specification ,  integer ,  trans ,  goto ,  bitmap ,  eturn ,  device 

Top 10 correlated bigrams: psd info , composite op , png color , source colorspace , memory size , alpha traits , op case , number colors , info id , 
type sync 
 For NO fault commits:  

Top 10 correlated unigrams: etermine ,  epsilon ,  ync ,  index ,  ax ,  class ,  method ,  long ,  storage ,  register 
Top 10 correlated bigrams: channel blue , proceed defined , continue channel , ueue cache , endif proceed , attributes assert , storage class , void et 
, image estroy , mage null 

 

Repo  4 , Fault  7 

 For Fault commits:  
Top 10 correlated unigrams: global ,  field ,  tiffg ,  mapped ,  build ,  cli ,  fourier ,  block ,  ourier ,  single 

Top 10 correlated bigrams: field tiff , signature signature , sizeof pixel , mapped agick , double kernel , color red , cli wand , info mapped , null draw 
, memory info 
 For NO fault commits:  

Top 10 correlated unigrams: data ,  event ,  channel ,  hue ,  component ,  authentic ,  debug ,  extent ,  og ,  mage 
Top 10 correlated bigrams: image attributes , attributes assert , pixel channel , void og , og magick , event et , magick event , elinquish magick , 
pixel channels , image channel 

 

Repo  6 , Fault  1 

 For Fault commits:  
Top 10 correlated unigrams: alloc ,  result ,  external ,  tok ,  far ,  outfile ,  nan ,  free ,  fds ,  char 
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Top 10 correlated bigrams: add buffer , result false , return null , data change , null char , change proxy , base 64 , conn firstsocket , define curl , 
connect conn 
 For NO fault commits:  

Top 10 correlated unigrams: blocking ,  ignored ,  terminated ,  open ,  dd ,  ase ,  sslversion ,  wait ,  body ,  ingle 

Top 10 correlated bigrams: ransfer ncoding , int nread , cleanup struct , ssl version , new url , ase 64 , len strlen , conn send , conn secondarysocket 
, function returns 
 

Repo  6 , Fault  3 

 For Fault commits:  
Top 10 correlated unigrams: recipient ,  opy ,  completion ,  holding ,  nitialize ,  basically ,  necessary ,  uery ,  secpkg ,  passdwp 

Top 10 correlated bigrams: recipient arameters , message ready , data session , userp passwdp , char passwdp , outlen curl , passdwp user , userp 
user , char userp , userp const 
 For NO fault commits:  

Top 10 correlated unigrams: ase ,  existing ,  index ,  os ,  32 ,  win ,  mac ,  target ,  obsolete ,  usage 

Top 10 correlated bigrams: conn data , url add , sys select , data easy , case curle , win 32 , int res , proxy host , data null , 32 cleanup 

 
Repo  6 , Fault  5 

 For Fault commits:  

Top 10 correlated unigrams: char ,  send ,  problem ,  conn ,  ftp ,  data ,  connected ,  url ,  false ,  nan 
Top 10 correlated bigrams: struct ession , ession handle , handle data , handle multi , ssl connection , curle ok , bits tunnel , data conn , easy handle 
, char ptr 

 For NO fault commits:  
Top 10 correlated unigrams: subject ,  note ,  timestamp ,  headerfile ,  decode ,  big ,  ld ,  method ,  nodelay ,  encoded 

Top 10 correlated bigrams: conn allocptr , data progress , url base , curle ssl , static curl , win 32 , ifdef curl , passwd result , host result , tcp nodelay 

 

Repo  7 , Fault  1 
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 For Fault commits:  

Top 10 correlated unigrams: used ,  user ,  null ,  init ,  response ,  ptr ,  path ,  store ,  st ,  type 
Top 10 correlated bigrams: static int , logprintf log , log verbose , local file , resp header , auth finished , user passwd , ip address , static bool , static 
char 

 For NO fault commits:  

Top 10 correlated unigrams: ind ,  owever ,  ote ,  know ,  reverse ,  contents ,  eep ,  strcasecmp ,  onnection ,  log 
Top 10 correlated bigrams: header req , char end , logputs log , null return , set header , request set , convert links , end return , html files , rel value 

 

Repo  7 , Fault  3 
 For Fault commits:  

Top 10 correlated unigrams: errors ,  command ,  pointer ,  ote ,  required ,  add ,  authorization ,  right ,  multiple ,  reverse 

Top 10 correlated bigrams: return null , len strlen , enable ipv , int file , address addr , null return , return return , resp header , int fd , char end 
 For NO fault commits:  

Top 10 correlated unigrams: static ,  secs ,  used ,  cookie ,  downloaded ,  char ,  seen ,  conversion ,  path ,  maybe 

Top 10 correlated bigrams: char const , int int , hash table , params const , ifdef windows , set header , request set , rel value , header req , static bool 

 
Repo  7 , Fault  5 

 For Fault commits:  

Top 10 correlated unigrams: filename ,  char ,  struct ,  data ,  using ,  close ,  port ,  res ,  log ,  nan 
Top 10 correlated bigrams: url file , logputs log , char const , log notquiet , output document , opt output , opt verbose , local file , static void , static 
char 

 For NO fault commits:  
Top 10 correlated unigrams: defined ,  init ,  old ,  store ,  sure ,  run ,  hen ,  default ,  abort ,  current 

Top 10 correlated bigrams: address addr , set header , header req , request set , rel value , char end , return return , return true , static int , static struct 

 

Repo 10 , Fault  1 
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 For Fault commits:  

Top 10 correlated unigrams: fclose ,  free ,  editions ,  types ,  dlclose ,  model ,  input ,  protected ,  psz ,  nan 
Top 10 correlated bigrams: sd psz , free psz , psz meta , bg mux , sys types , return total , stream stream , ead line , psz buffer , pes size 

 For NO fault commits:  

Top 10 correlated unigrams: actory ,  x05 ,  identity ,  chromas ,  truncated ,  code ,  orce ,  strcmp ,  coord ,  double 

Top 10 correlated bigrams: psz vlc , output aout , duration et , strdup psz , visible height , sizeof vout , sys video , ufd fd , module vlc , output stream 
 

Repo 10 , Fault  3 

 For Fault commits:  
Top 10 correlated unigrams: png ,  vasprintf ,  folder ,  equal ,  tab ,  allow ,  00 ,  kludge ,  flags ,  olor 

Top 10 correlated bigrams: init sys , psz vlc , qp oint , bg obj , input var , button new , fd vlc , psz header , ql ist , tmp return 

 For NO fault commits:  
Top 10 correlated unigrams: comment ,  mute ,  spudec ,  submodules ,  menu ,  gpu ,  strncpy ,  onfiguration ,  nan ,  ebuild 

Top 10 correlated bigrams: lockval address , stack central , unlock lockval , include intf , push var , free input , item category , aout input , menu 
null , define frame 

 
Repo 10 , Fault  5 

 For Fault commits:  

Top 10 correlated unigrams: tree ,  dec ,  dvd ,  tests ,  intf ,  vdec ,  css ,  vpar ,  netlist ,  nan 
Top 10 correlated bigrams: rr msg , es decoder , bytes line , fprintf stderr , ac dec , intf bg , intf rr , widget size , bg msg , vout bytes 

 For NO fault commits:  

Top 10 correlated unigrams: dvdnav ,  panels ,  got ,  hoose ,  nsupported ,  high ,  pointers ,  esc ,  ugly ,  body 
Top 10 correlated bigrams: display mode , arn demux , media type , libvlc event , display width , main panel , intf volume , mouse moved , demux 
null , null continue 

 

Repo 11 , Fault  1 
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 For Fault commits:  

Top 10 correlated unigrams: stream ,  check ,  pri ,  ssize ,  nvlen ,  head ,  include ,  num ,  valuelen ,  readlen 
Top 10 correlated bigrams: data frame , hd stream , flag end , nghttp session , stream dep , frame hd , nghttp shut , end stream , stream nghttp , stream 
session 

 For NO fault commits:  

Top 10 correlated unigrams: raw ,  tablelen ,  ctrl ,  don ,  provider ,  ignore ,  cat ,  pack ,  temporal ,  function 
Top 10 correlated bigrams: frame type , callback session , uint flags , error nghttp , session add , init nghttp , frame return , init frame , frame session 
, data spdylay 

 
Repo 11 , Fault  5 

 For Fault commits:  

Top 10 correlated unigrams: priority ,  http ,  spec ,  res ,  free ,  pri ,  payload ,  nghttp ,  stream ,  readlen 
Top 10 correlated bigrams: nghttp nv , effective weight , window size , case nghttp , break case , nghttp data , weight nghttp , stream free , pri spec 
, return stream 

 For NO fault commits:  

Top 10 correlated unigrams: promise ,  capacity ,  mask ,  raw ,  ping ,  nomem ,  opening ,  del ,  static ,  default 
Top 10 correlated bigrams: inflate init , preface len , session add , uint flags , data data , init nghttp , session spdylay , data spdylay , stream init , 
nghttp hd 

 
Repo 12 , Fault  1 

 For Fault commits:  

Top 10 correlated unigrams: params ,  variant ,  clear ,  free ,  int ,  error ,  buffer ,  df ,  dictionary ,  nan 
Top 10 correlated bigrams: psz filename , et dictionary , object et , output stream , df dictionary , dictionary dd , df object , dd key , df variant , df 
error 

 For NO fault commits:  

Top 10 correlated unigrams: rite ,  len ,  table ,  tring ,  info ,  14 ,  string ,  op ,  operator ,  range 
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Top 10 correlated bigrams: buffer len , df reference , operator rhs , std vector , object obj , static cast , df output , const iterator , buffer size , df 
document 
 

Repo 12 , Fault  3 

 For Fault commits:  

Top 10 correlated unigrams: test ,  font ,  ifdef ,  ase ,  reate ,  case ,  width ,  writer ,  var ,  14 
Top 10 correlated bigrams: variant var , error ut , ut memory , const int , len buffer , const df , filter filter , object object , df font , font et 

 For NO fault commits:  

Top 10 correlated unigrams: null ,  delete ,  format ,  cache ,  ref ,  tmp ,  load ,  ap ,  code ,  nan 
Top 10 correlated bigrams: output stream , df object , color space , object obj , object et , df page , object eference , char buffer , df error , df reference 

 

Repo 12 , Fault  5 
 For Fault commits:  

Top 10 correlated unigrams: number ,  return ,  path ,  parser ,  xr ,  objects ,  buffer ,  psz ,  writer ,  nan 

Top 10 correlated bigrams: df font , object df , object obj , vec objects , char psz , buffer size , reate font , df object , xr ef , char buffer 

 For NO fault commits:  
Top 10 correlated unigrams: obj ,  descriptor ,  reference ,  malloc ,  set ,  key ,  list ,  ase ,  trailer ,  handle 

Top 10 correlated bigrams: et buffer , variant var , output device , char malloc , cast char , df output , podofo raise , et dictionary , stream et , font et 

 
Repo 13 , Fault  1 

 For Fault commits:  

Top 10 correlated unigrams: hash ,  err ,  abort ,  good ,  async ,  total ,  gnore ,  nan ,  job ,  necessary 
Top 10 correlated bigrams: update md , void buf , return 509 , buffer null , async job , igest update , openssl crypto , int ok , hash evp , free bio 

 For NO fault commits:  

Top 10 correlated unigrams: req ,  rt ,  bits ,  just ,  know ,  initial ,  hint ,  application ,  fips ,  retry 
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Top 10 correlated bigrams: client hello , openssl psk , key sizeof , al fatal , set cert , openssl sys , state ssl , ifdef openssl , int type , flags ssl 

 
Repo 13 , Fault  3 

 For Fault commits:  

Top 10 correlated unigrams: mentioning ,  eric ,  core ,  65 ,  packet ,  256 ,  digest ,  12 ,  session ,  pkey 
Top 10 correlated bigrams: ll advertising , distribution ll , advertising materials , features use , software display , mentioning features , materials 
mentioning , default return , int main , reserved edistribution 

 For NO fault commits:  

Top 10 correlated unigrams: rights ,  nid ,  255 ,  sent ,  selftest ,  xff ,  obj ,  rec ,  aa ,  ve 
Top 10 correlated bigrams: obj nid , sizeof ctx , return evp , int char , break endif , ssl debug , md endif , ifdef ssl , debug fprintf , obj obj 

 

Repo 13 , Fault  5 
 For Fault commits:  

Top 10 correlated unigrams: fixture ,  crl ,  packet ,  mismatch ,  cookie ,  tag ,  nist ,  mdebug ,  pkt ,  nan 

Top 10 correlated bigrams: al ssl , debug fprintf , tlsext err , hash evp , uint 32 , rand bytes , 509 crl , decode error , crypto mdebug , bn nist 

 For NO fault commits:  
Top 10 correlated unigrams: allow ,  memcpy ,  min ,  ctrl ,  certificate ,  prime ,  dup ,  input ,  long ,  neg 

Top 10 correlated bigrams: ctx bn , version ssl , bn zero , return tls , tls 12 , len null , ec group , public key , key null , ossl statem 

 
Repo 14 , Fault  1 

 For Fault commits:  

Top 10 correlated unigrams: error ,  status ,  addr ,  size ,  sizeof ,  eintr ,  io ,  writable ,  ngx ,  sockaddr 
Top 10 correlated bigrams: sys error , req handle , uv req , uv stream , uv tcp , watcher uv , int uv , errno eintr , ngx queue , struct sockaddr 

 For NO fault commits:  

Top 10 correlated unigrams: arg ,  mode ,  file ,  goto ,  int ,  req ,  strdup ,  length ,  current ,  result 
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Top 10 correlated bigrams: size return , error error , buffer size , handle int , defined apple , apple defined , fs req , loop init , uv init , int result 

 
Repo 14 , Fault  3 

 For Fault commits:  

Top 10 correlated unigrams: char ,  win ,  ip ,  type ,  path ,  user ,  count ,  line ,  ticks ,  address 

Top 10 correlated bigrams: int uv , ngx queue , io watcher , void uv , static void , uv io , int fd , unsigned int , uv signal , char path 
 For NO fault commits:  

Top 10 correlated unigrams: valgrind ,  self ,  guard ,  wsag ,  ipv ,  open ,  access ,  switch ,  insert ,  include 

Top 10 correlated bigrams: loop int , return assert , ev return , return void , return loop , cb int , ev unref , stop uv , data uv , init ev 
 

Repo 14 , Fault  5 

 For Fault commits:  
Top 10 correlated unigrams: watcher ,  run ,  eintr ,  struct ,  ngx ,  64 ,  want ,  sa ,  family ,  type 

Top 10 correlated bigrams: type uv , sockaddr addr , queue init , init uv , ngx queue , errno eintr , req req , req handle , static int , const char 

 For NO fault commits:  

Top 10 correlated unigrams: options ,  written ,  reading ,  dir ,  malloc ,  flags ,  memset ,  send ,  handle ,  line 
Top 10 correlated bigrams: error loop , malloc sizeof , pipe handle , handle read , handle pipe , handle return , uv init , uv handle , handle flags , 
flags uv 

 
Repo 15 , Fault  1 

 For Fault commits:  

Top 10 correlated unigrams: timers ,  xffffffff ,  results ,  work ,  mysqlerror ,  ag ,  short ,  return ,  log ,  int 
Top 10 correlated bigrams: auto row , id id , inst inv , item ame , err mysqlerror , begin mu , result og , result row , et inv , array query 

 For NO fault commits:  

Top 10 correlated unigrams: outapp ,  select ,  packet ,  total ,  app ,  ffect ,  entries ,  spdat ,  ump ,  changed 
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Top 10 correlated bigrams: row row , result safe , char id , mysql res , res result , query select , result mysql , id emp , packet outapp , ump packet 

 
Repo 15 , Fault  3 

 For Fault commits:  

Top 10 correlated unigrams: target ,  orpse ,  ttack ,  erc ,  aug ,  iterator ,  extern ,  ana ,  effect ,  merc 

Top 10 correlated bigrams: essage tring , tem class , emove merc , ast client , et group , sc lient , group et , spell spell , et merc , et id 
 For NO fault commits:  

Top 10 correlated unigrams: message ,  string ,  true ,  array ,  uery ,  zone ,  const ,  value ,  item ,  pell 

Top 10 correlated bigrams: result og , row query , delete array , id tem , safe delete , id atoi , errmsg size , mysql errmsg , row row , res result 
 

Repo 15 , Fault  5 

 For Fault commits:  
Top 10 correlated unigrams: damage ,  temp ,  changed ,  dont ,  20 ,  xport ,  target ,  ry ,  added ,  lua 

Top 10 correlated bigrams: et class , 100 command , truct item , sep arg , ataset result , eqa pplication , pplication packet , win 32 , database oad , et 
target 

 For NO fault commits:  
Top 10 correlated unigrams: 11 ,  list ,  leader ,  hate ,  corpse ,  rom ,  online ,  file ,  needed ,  ake 

Top 10 correlated bigrams: zone id , zone et , return false , hate list , id zone , list et , group id , id uint , eqe mu , query mysql 

 
Repo 16 , Fault  1 

 For Fault commits:  

Top 10 correlated unigrams: offline ,  applied ,  requirements ,  data ,  20 ,  paladin ,  29 ,  creature ,  type ,  et 
Top 10 correlated bigrams: type iterator , id true , type uint , et battle , id result , et auras , data data , spellfamily druid , pet guid , row delete 

 For NO fault commits:  

Top 10 correlated unigrams: odify ,  og ,  log ,  loaded ,  guess ,  vent ,  day ,  load ,  team ,  uild 
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Top 10 correlated bigrams: data smsg , log debug , bject accessor , target spell , guid et , class class , db reature , message type , accessor et , type 
const 
 

Repo 16 , Fault  3 

 For Fault commits:  

Top 10 correlated unigrams: size ,  dd ,  time ,  mail ,  flags ,  16 ,  pos ,  triggered ,  etch ,  map 
Top 10 correlated bigrams: fields result , entry const , spell effect , uint 64 , uery select , bject mgr , uery result , result result , result etch , typeid 
player 

 For NO fault commits:  
Top 10 correlated unigrams: event ,  32 ,  script ,  eset ,  list ,  create ,  combat ,  load ,  item ,  far 

Top 10 correlated bigrams: caster et , delete itr , game object , dummy aura , pack guid , uint 32 , db reature , layer caster , et item , item item 

 
Repo 16 , Fault  5 

 For Fault commits:  

Top 10 correlated unigrams: bg ,  ch ,  realm ,  sec ,  config ,  arena ,  world ,  save ,  og ,  roup 
Top 10 correlated bigrams: dummy aura , id player , bg et , world config , et instance , achievement mgr , uint 64 , player player , pet guid , const 
char 

 For NO fault commits:  

Top 10 correlated unigrams: se ,  dd ,  nstance ,  plr ,  lower ,  items ,  used ,  int ,  debug ,  false 
Top 10 correlated bigrams: et player , guid return , object mgr , ext row , iterator itr , attle ground , emove auras , spell spell , result result , uery 
result 

 
Repo 17 , Fault  1 

 For Fault commits:  

Top 10 correlated unigrams: strlen ,  undefined ,  long ,  nikon ,  return ,  break ,  order ,  default ,  case ,  exif 

Top 10 correlated bigrams: exif format , data data , case exif , data size , exif data , data priv , ifd exif , exif entry , format undefined , case mnote 
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 For NO fault commits:  

Top 10 correlated unigrams: entry ,  printf ,  xif ,  memset ,  olympus ,  debug ,  null ,  mnote ,  int ,  count 
Top 10 correlated bigrams: case strncpy , maxlen break , entry components , buf size , entry format , sizeof xif , val maxlen , unsigned int , snprintf 
val , mnote data 

 

Repo 17 , Fault  3 
 For Fault commits:  

Top 10 correlated unigrams: entry ,  buf ,  break ,  strncpy ,  vs ,  val ,  strlen ,  case ,  sizeof ,  xif 

Top 10 correlated bigrams: val maxlen , exif short , exif tag , maxlen break , break case , strncpy val , entry data , sizeof xif , case exif , xif entry 
 For NO fault commits:  

Top 10 correlated unigrams: offset ,  parent ,  format ,  count ,  order ,  note ,  min ,  priv ,  nikon ,  void 
Top 10 correlated bigrams: data priv , entry components , cf entry , data entry , cc entry , exif format , entry size , entry order , components maxlen 
, snprintf maxlen 

 

Repo 17 , Fault  5 

 For Fault commits:  
Top 10 correlated unigrams: nan ,  format ,  snprintf ,  olympus ,  cc ,  maxlen ,  unsigned ,  int ,  entry ,  strncpy 

Top 10 correlated bigrams: exif format , exif short , format short , cc entry , strncpy val , entry order , unsigned char , val maxlen , maxlen cc , 
snprintf val 
 For NO fault commits:  

Top 10 correlated unigrams: include ,  memset ,  offset ,  strlen ,  min ,  maker ,  long ,  debug ,  endif ,  return 

Top 10 correlated bigrams: sizeof xif , data data , case exif , mnote data , exif data , exif ifd , data size , maker note , exif entry , tag exif 
 

Repo 18 , Fault  1 

 For Fault commits:  

Top 10 correlated unigrams: ust ,  sec ,  strncpy ,  siocgifflags ,  appears ,  beginning ,  did ,  hat ,  reason ,  local 
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Top 10 correlated bigrams: errno free , don support , null endif , header sizeof , size pcap , int ret , ifr sizeof , ifr ioctl , fd siocgifflags , return error 

 For NO fault commits:  
Top 10 correlated unigrams: open ,  including ,  bother ,  snapshot ,  message ,  live ,  nl ,  string ,  err ,  bufsize 

Top 10 correlated bigrams: pcap strerror , return pcap , return null , null return , pcap close , errno return , null snprintf , static int , fp null , live 
capture 

 
Repo 18 , Fault  5 

 For Fault commits:  

Top 10 correlated unigrams: strdup ,  min ,  appears ,  strerror ,  handle ,  dag ,  ll ,  md ,  offset ,  aix 
Top 10 correlated bigrams: snprintf ebuf , null snprintf , include sys , 802 11 , case dlt , ieee 802 , static int , op pcap , handle md , dlt ieee 

 For NO fault commits:  

Top 10 correlated unigrams: assume ,  strncpy ,  tv ,  means ,  siocgifflags ,  sec ,  hat ,  dd ,  int ,  pcap 
Top 10 correlated bigrams: bpf filter , null pcap , errbuf return , void snprintf , snprintf handle , ifr sizeof , int ret , fd siocgifflags , ifr ioctl , tv sec 

 

Repo 19 , Fault  1 

 For Fault commits:  
Top 10 correlated unigrams: tr ,  client ,  addr ,  def ,  raffic ,  cls ,  erver ,  request ,  set ,  oc 

Top 10 correlated bigrams: proxy config , ts lua , rocesses efault , http ctx , tr rocesses , raffic erver , config http 

 For NO fault commits:  
Top 10 correlated unigrams: import ,  http ,  ts ,  config ,  nan ,  int ,  port ,  len ,  size ,  char 

Top 10 correlated bigrams: config http , raffic erver , tr rocesses , http ctx , rocesses efault , ts lua , proxy config 

 
Repo 19 , Fault  5 

 For Fault commits:  

Top 10 correlated unigrams: proxy ,  http ,  config ,  nan ,  ts ,  error ,  null ,  value ,  field ,  loc 
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Top 10 correlated bigrams: raffic erver , rocesses efault , tr rocesses , config http , http ctx , ts lua , proxy config 

 For NO fault commits:  
Top 10 correlated unigrams: request ,  hdr ,  raffic ,  efault ,  erver ,  rror ,  make ,  tsh ,  release ,  check 

Top 10 correlated bigrams: proxy config , ts lua , http ctx , config http , tr rocesses , rocesses efault , raffic erver 

 

Repo 20 , Fault  5 
 For Fault commits:  

Top 10 correlated unigrams: utility ,  write ,  bool ,  eb ,  elog ,  websocket ,  alog ,  uint ,  status ,  websocketpp 
Top 10 correlated bigrams: return true , utility hex , hex std , websocketpp utility , cout websocketpp , typedef websocketpp , websocketpp log , eb 
socket , lib error , ptr new 

 For NO fault commits:  

Top 10 correlated unigrams: bind ,  placeholders ,  handle ,  read ,  echo ,  async ,  start ,  boost ,  asio ,  return 
Top 10 correlated bigrams: std stringstream , connection std , connection ptr , io service , asio io , msg payload , boost bind , asio placeholders , 
placeholders error , boost asio 

 

Repo 21 , Fault  1 
 For Fault commits:  

Top 10 correlated unigrams: onvert ,  multi ,  ead ,  denied ,  cpio ,  use ,  void ,  data ,  entry ,  ae 
Top 10 correlated bigrams: const char , error access , access denied , error lasterr , lasterr et , dosmaperr lasterr , denied errno , dword lasterr , archive 
entry , static int 

 For NO fault commits:  

Top 10 correlated unigrams: sc ,  bidder ,  standard ,  unsigned ,  file ,  information ,  lseek ,  regular ,  rar ,  info 
Top 10 correlated bigrams: static const , archive fatal , st st , enomem allocate , iso 9660 , len return , ret archive , unsigned int , st mode , unsigned 
char 

 

Repo 21 , Fault  3 
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 For Fault commits:  

Top 10 correlated unigrams: char ,  free ,  end ,  zip ,  start ,  open ,  buffer ,  skip ,  option ,  uncompressed 
Top 10 correlated bigrams: archive ok , const char , archive entry , archive read , return archive , struct archive , static int , stat st , struct stat , data 
struct 

 For NO fault commits:  

Top 10 correlated unigrams: xe ,  se ,  uad ,  integer ,  rite ,  ctime ,  denied ,  est ,  0 ,  does 
Top 10 correlated bigrams: char utf , entry ctime , ctime ae , atime ae , ws int , wchar ws , fd errno , type handle , null free , support format 

 

Repo 21 , Fault  5 
 For Fault commits:  

Top 10 correlated unigrams: 64 ,  private ,  fprintf ,  code ,  unused ,  type ,  new ,  null ,  base ,  char 
Top 10 correlated bigrams: path return , rite file , malloc sizeof , fd const , archive ok , static void , int fd , fprintf stderr , archive archive , return 
null 

 For NO fault commits:  

Top 10 correlated unigrams: goto ,  sc ,  int ,  argv ,  read ,  target ,  stderr ,  filter ,  erify ,  ssize 
Top 10 correlated bigrams: write filter , read ahead , break default , read consume , break case , unsigned int , archive read , include archive , int set 
, ret ret 

 

Repo 22 , Fault  1 
 For Fault commits:  

Top 10 correlated unigrams: enomem ,  start ,  avcodec ,  needed ,  odec ,  default ,  sample ,  video ,  frames ,  256 

Top 10 correlated bigrams: 16 le , type int , context avp , format int , odec context , codec codec , id codec , int 64 , avc odec , return ret 
 For NO fault commits:  

Top 10 correlated unigrams: headers ,  lum ,  like ,  order ,  chr ,  ioc ,  yte ,  specific ,  request ,  function 

Top 10 correlated bigrams: width int , ff thread , int width , int height , current picture , picture ptr , ioc ontext , yte ioc , ontext pb , frame number 

 



InferLink Corporation  Contract # 140D6319C0016 

Repo 22 , Fault  3 

 For Fault commits:  
Top 10 correlated unigrams: release ,  ebml ,  dc ,  alac ,  try ,  exit ,  left ,  program ,  blocksize ,  right 

Top 10 correlated bigrams: size av , typedef struct , avctx priv , ecode context , end avc , avctx release , int max , data size , exit program , context 
const 

 For NO fault commits:  
Top 10 correlated unigrams: run ,  unsigned ,  log ,  width ,  pb ,  64 ,  uint ,  break ,  skip ,  min 

Top 10 correlated bigrams: format int , const avp , return static , rgb 32 , unsigned char , break default , 16 uint , av log , log error , static void 

 
Repo 22 , Fault  5 

 For Fault commits:  

Top 10 correlated unigrams: bitrate ,  framerate ,  height ,  pcm ,  ogg ,  true ,  avi ,  print ,  remaining ,  dv 
Top 10 correlated bigrams: pict type , frame bits , pixels tab , type type , len len , static uint , type 16 , ecode context , uint src , 16 dst 

 For NO fault commits:  

Top 10 correlated unigrams: audio ,  rame ,  cache ,  output ,  count ,  pix ,  flags ,  null ,  samples ,  add 

Top 10 correlated bigrams: stream ost , 16 le , return static , 32 16 , 16 uint , type case , return endif , codec id , avf rame , uint buf 
 

Repo 23 , Fault  1 

 For Fault commits:  
Top 10 correlated unigrams: table ,  debug ,  delete ,  exists ,  able ,  trans ,  single ,  interp ,  prev ,  version 

Top 10 correlated bigrams: 3f ind , parse expr , static int , rc rc , sort order , col tab , sqlite os , sqlite error , char buf , sqlite malloc 

 For NO fault commits:  
Top 10 correlated unigrams: reserved ,  page ,  cnt ,  collate ,  hash ,  pghdr ,  ndebug ,  pager ,  ii ,  depth 

Top 10 correlated bigrams: tab list , sqlite hash , sqlite ok , ok goto , db parse , assert sqlite , static char , ifndef ndebug , ager pager , int ii 
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Repo 23 , Fault  3 

 For Fault commits:  
Top 10 correlated unigrams: em ,  cookie ,  trigger ,  byte ,  enc ,  ota ,  ndex ,  sorter ,  tbl ,  iter 

Top 10 correlated bigrams: sort order , dbe coverage , ts 5i , int byte , table sqlite , iter iter , token token , unsigned int , ager pager , key info 

 For NO fault commits:  

Top 10 correlated unigrams: num ,  associated ,  cursor ,  debug ,  connection ,  test ,  char ,  sure ,  itmask ,  converted 
Top 10 correlated bigrams: result set , sqlite enable , src tab , malloc failed , return sqlite , end sqlite , char buf , db parse , col tab , sqlite debug 

 

Repo 23 , Fault  5 
 For Fault commits:  

Top 10 correlated unigrams: term ,  wrc ,  xplain ,  prev ,  way ,  format ,  nt ,  seek ,  best ,  ref 

Top 10 correlated bigrams: gh dr , sqlite vdbe , op ull , assert sqlite , db sql , src tab , op sqlite , int ii , expr return , return wrc 
 For NO fault commits:  

Top 10 correlated unigrams: compute ,  testing ,  oto ,  atabase ,  registers ,  given ,  ai ,  ws ,  sort ,  rite 

Top 10 correlated bigrams: 3 ind , seq parse , coll seq , expr op , stmt stmt , sqlite 3 , aff assert , ws flags , parse reg , list expr 

 
Repo 24 , Fault  1 

 For Fault commits:  

Top 10 correlated unigrams: doing ,  add ,  way ,  sub ,  destroy ,  structrp ,  ex ,  routine ,  correct ,  won 
Top 10 correlated bigrams: chunks png , static png , end png , endif ifdef , const bytep , data png , rows png , png infop , structrp png , static int 

 For NO fault commits:  

Top 10 correlated unigrams: define ,  libpng ,  palette ,  null ,  void ,  gamma ,  version ,  dp ,  crc ,  return 
Top 10 correlated bigrams: png read , bit depth , defined png , png malloc , null png , malloc png , ptr bit , row info , palette png , row null 

 

Repo 24 , Fault  5 
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 For Fault commits:  

Top 10 correlated unigrams: malloc ,  define ,  chunk ,  crc ,  row ,  rp ,  bpp ,  idat ,  pixel ,  ihdr 
Top 10 correlated bigrams: png size , ptr nvalid , ptr chunk , pixel depth , read 16 , png idat , chunk png , unsigned int , endif endif , row info 

 For NO fault commits:  

Top 10 correlated unigrams: zlib ,  method ,  multiple ,  rgba ,  supported ,  read ,  filter ,  value ,  null ,  buf 

Top 10 correlated bigrams: png debug , png structp , supported ifdef , end png , endif png , 32 png , info ptr , png read , png free , debug png 
 

Repo 25 , Fault  1 

 For Fault commits:  
Top 10 correlated unigrams: line ,  struct ,  offset ,  mp ,  version ,  extern ,  scale ,  bounds ,  use ,  swfv 

Top 10 correlated bigrams: static int , read ui , utput write , swfr ect , swfs ound , int num , write ui , int flags , ovie add , return null 

 For NO fault commits:  
Top 10 correlated unigrams: code ,  action ,  swf ,  println ,  case ,  actions ,  indent ,  decompile ,  puts ,  swfaction 

Top 10 correlated bigrams: swfm ovie , method data , swff ont , swfi nput , ont font , swf error , swfo utput , break case , swf action , case swfaction 

 

Repo 25 , Fault  5 
 For Fault commits:  

Top 10 correlated unigrams: ction ,  begin ,  case ,  println ,  puts ,  indent ,  sact ,  decompile ,  actions ,  swfaction 

Top 10 correlated bigrams: static int , swff ont , swfm ovie , write ui , swfb lock , utput block , method data , swf action , begin swf , case swfaction 
 For NO fault commits:  

Top 10 correlated unigrams: utput ,  file ,  printf ,  write ,  offset ,  swfm ,  swfo ,  error ,  number ,  struct 

Top 10 correlated bigrams: swff ont , static int , nt 16 , swfi nput , read ui , swfm atrix , ui nt , ovie add , swfo utput , utput write 
 

Repo 26 , Fault  1 

 For Fault commits:  
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Top 10 correlated unigrams: flags ,  forc ,  height ,  3 ,  parse ,  16 ,  10 ,  width ,  id ,  32 
Top 10 correlated bigrams: idata make , present uchar , make anon , offset seek , 9050 present , 940 ushort , 940 present , dcraw dcraw , save seek , 
ifp fseek 

 For NO fault commits:  

Top 10 correlated unigrams: buf ,  start ,  ens ,  version ,  table ,  case ,  iso ,  lens ,  0 ,  short 
Top 10 correlated bigrams: unsigned len , buf 9050 , imgdata image , buf 940 , imgdata lens , imgdata sizes , ib start , lens makernotes , table buf , 
makernotes ens 

 

Repo 26 , Fault  5 
 For Fault commits:  

Top 10 correlated unigrams: adobe ,  ushort ,  length ,  mul ,  crop ,  len ,  printf ,  sizes ,  sorder ,  wb 
Top 10 correlated bigrams: ib raw , imgdata color , ifdef libraw , library build , libraw library , load raw , raw class , ftell ifp , tag type , imgdata 
sizes 

 For NO fault commits:  

Top 10 correlated unigrams: dx ,  18 ,  iheight ,  cur ,  x0 ,  linear ,  writer ,  switch ,  4 ,  imgdata 

Top 10 correlated bigrams: 940 present , save ftell , margin col , image row , int col , row row , int row , height row , ushort imgdata , col width 
 

Repo 27 , Fault  1 

 For Fault commits:  
Top 10 correlated unigrams: heck ,  image ,  24 ,  sbyte ,  open ,  byte ,  rgb ,  ile ,  ata ,  allocate 

Top 10 correlated bigrams: tif tifftag , tag tiff , tiff sbyte , clientdata module , tif uint , 32 tiff , dir td , tiffd ata , type tiff , tiff float 

 For NO fault commits:  
Top 10 correlated unigrams: compression ,  cp ,  short ,  bytes ,  cc ,  row ,  input ,  memcpy ,  mode ,  tsize 

Top 10 correlated bigrams: et field , tiffe rror , tifff ield , uint 32 , tiff free , td td , tif tif , uint 16 , tiff memcpy , tiff short 

 

Repo 27 , Fault  3 
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 For Fault commits:  

Top 10 correlated unigrams: tiff ,  tif ,  int ,  uint ,  dir ,  unsigned ,  dp ,  16 ,  tiffd ,  entry 
Top 10 correlated bigrams: tif dir , tiffe rror , tifff ield , tiff free , tiffs et , et field , td td , uint 32 , tif tif , uint 16 

 For NO fault commits:  

Top 10 correlated unigrams: configuration ,  byte ,  tiffw ,  values ,  ata ,  switch ,  realloc ,  tiffc ,  open ,  allocate 

Top 10 correlated bigrams: ind field , tag tiff , return tif , tifff ind , tiff long , tif clientdata , ext tif , rror ext , tif uint , clientdata module 
 

Repo 27 , Fault  5 

 For Fault commits:  
Top 10 correlated unigrams: tiffc ,  tiffg ,  write ,  colorimetry ,  sbyte ,  header ,  space ,  bytes ,  array ,  ok 

Top 10 correlated bigrams: tif clientdata , ext tif , err tiffr , entry err , free data , tiff long , static void , tiff sbyte , colorimetry support , case tifftag 

 For NO fault commits:  
Top 10 correlated unigrams: tdir ,  jpeg ,  nan ,  count ,  values ,  compression ,  cp ,  define ,  tsize ,  sizeof 

Top 10 correlated bigrams: tiff free , et field , type tiff , yc bc , break case , tiff short , static int , return return , tiff memset , char module 

 

Repo 28 , Fault  1 
 For Fault commits:  

Top 10 correlated unigrams: data ,  valid ,  ok ,  cast ,  written ,  blocking ,  std ,  new ,  efault ,  ctx 

Top 10 correlated bigrams: zmq ctx , errno einval , void zmq , msg msg , int rc , rc errno , errno assert , static cast , const int , errno efault 
 For NO fault commits:  

Top 10 correlated unigrams: log ,  term ,  number ,  pipes ,  args ,  process ,  pgm ,  nbytes ,  transport ,  openpgm 
Top 10 correlated bigrams: fd handle , ifdef zmq , current active , assert false , return false , assert nbytes , msg flags , zmq assert , cmd args , zmq 
openpgm 

 

Repo 28 , Fault  5 
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 For Fault commits:  

Top 10 correlated unigrams: include ,  terminate ,  push ,  object ,  return ,  don ,  af ,  decoder ,  string ,  state 
Top 10 correlated bigrams: char buffer , slot sync , errno einval , zmq recv , einval return , sizeof int , int assert , void zmq , return false , close errno 

 For NO fault commits:  

Top 10 correlated unigrams: uses ,  getsockopt ,  bi ,  directional ,  pipepair ,  decode ,  structure ,  openbsd ,  false ,  data 
Top 10 correlated bigrams: void socket , init errno , based select , return return , zmq openbsd , endpoint max , string char , wsa error , errno wsag , 
engine write 

 

6.6 Feature importance for selected repositories 
 

30: nginx_mock, 
 Fault 1;Y:N=129:6426; BL=0.02, 

 

SciKit Feature Importance 
 [                               gain 

  feature                             

  modifications_count_commit  0.43797 

  author_login                0.34511 

  committer_login             0.09768 

  committer_date_hour         0.03975 

  additions_count_commit      0.02318 

  committer_date_weekday      0.01889 

  deletions_count_commit      0.01683 

  committer_email_type        0.01262 

  author_date_hour            0.00801], 

  

AutoML Feature Importance 
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author_login_chobits 0.06265 

author_login_NMorozxov 0.05593 

committer_login_Khaless 0.05227 

author_login_LinuxJedi 0.05189 

committer_login_tSed 0.04818 

deletions_count_commit 0.04764 

author_login_xeioex 0.03862 

additions_count_commit 0.03804 

author_login_Khaless 0.02357 

author_login_bartw72 0.02198 

committer_login_LinuxJedi 0.02131 

committer_login_VBart 0.02037 

committer_login_pushrax 0.01955 

committer_login_FdaSilvaYY 0.01939 

author_login_leblanc-simon 0.0193 

committer_login_NMorozxov 0.01751 

committer_login_maximkonovalov 0.01743 

committer_login_chobits 0.01738 

author_login_vl-homutov 0.01627 

author_login_lepatryk 0.01448 

author_login_maage 0.01339 

committer_login_arut 0.01292 

author_login_tSed 0.01289 

author_login_ottok 0.01112 

 

 

 

Weka Classification and Feature Importance 



InferLink Corporation  Contract # 140D6319C0016 

Weka: Precision = 0, Recall = 0 

 

32: ssl_mock, 
 Fault 1;Y:N=336:23655; BL=0.01, 

 

 SciKit Feature Importance 
 [                               gain 

  feature                             

  deletions_count_commit      0.53116 

  modifications_count_commit  0.45573 

  author_login                0.01243 

  additions_count_commit      0.00073], 

AutoML Feature Importance 

 

 

33: libuv_mock, 
 Fault 1;Y:N=101:4276; BL=0.02, 

 SciKit Feature Importance 
 [                               gain 

  feature                             

author_login                0.91938 

modifications_count_commit  0.03728 

AutoML Feature Importance 
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additions_count_commit      0.02721 

deletions_count_commit      0.01610 

], 

author_login_1st1 0.07958 

author_login_Trott 0.04894 

author_login_ashaffer 0.04256 

author_login_Qix- 0.04116 

author_login_btrask 0.03992 

modifications_count_commit 0.03728 

author_login_bkize 0.02924 

additions_count_commit 0.02721 

author_login_bontibon 0.02539 

author_login_Gottox 0.0253 

author_login_Keno 0.02422 

author_login_AvianFlu 0.02384 

author_login_chopdown 0.02026 

author_login_EdSchouten 0.01942 

author_login_alex 0.0192 

author_login_CurlyMoo 0.01829 

author_login_HungMingWu 0.01716 

author_login_ararslan 0.01673 

author_login_XadillaX 0.0161 

deletions_count_commit 0.0161 

author_login_bajtos 0.01513 

author_login_PeterJohnson 0.01438 

author_login_bonifaido 0.01403 

author_login_ai-rayven 0.01302 

author_login_KryDos 0.01262 
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 34: vlc_mock, 
 Fault 3;Y:N=1126:80363; BL=0.01, 

 

 SciKit Feature Importance 
 [                               gain 

  feature                             

  modifications_count_commit  0.99975 
  additions_count_commit      0.00025], 

AutoML Feature Importance 

 

Note: For vlc_mock there seems to be an inflection point at modifications_count of 800,000. Above that almost all instances are Fault=Y. Below 
that NO instance is Fault = Y 

 
 35: server_mock, 
 Fault 3;Y:N=382:7856; BL=0.05, 

  SciKit Feature Importance 
 [                               gain 

  feature                             

  modifications_count_commit  0.55289 

AutoML Feature Importance 
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  author_login                0.43844 

  deletions_count_commit      0.00616 

  additions_count_commit      0.00251], 

 

36: sqlite_mock, 
 Fault 3;Y:N=237:20636; BL=0.01, 

 

 SciKit Feature Importance 
 [                               gain 

  feature                             

  modifications_count_commit  0.99976 

  additions_count_commit      0.00024], 

AutoML Feature Importance 
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37: curl_mock, 
 Fault 5;Y:N=934:23231; BL=0.04, 

 

 SciKit Feature Importance 
 

 [                               gain 

  feature                             

  author_login                0.99941 

  additions_count_commit      0.00041 

  deletions_count_commit      0.00011 

  modifications_count_commit  0.00010], 

 

author_login_AndreHeinecke  0.97953 

author_login_ArchangelSDY  0.01757 

additions_count_commit  0.00041 

author_login_Aulddays   0.00021 

author_login_DimStar77  0.00021 

author_login_Andersbakken  0.00021 

author_login_Jactry   0.00011 

author_login_CarloWood  0.00011 

author_login_LEW21   0.00011 

author_login_ComputerDruid 0.00011 

author_login_3dyd  0.00011 

author_login_Hawk777  0.00011 

author_login_JeremR  0.00011 

AutoML Feature Importance 
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author_login_Karlson2k  0.00011 

author_login_FabianFrank 0.00011 

author_login_CaViCcHi  0.00011 

author_login_Alexxz  0.00011 

deletions_count_commit  0.00011 

author_login_CrazyHackGUT 0.00011 

author_login_BurningEnlightenment0.0001 

author_login_Jan-E  0.0001 

author_login_IhorKarpenko 0.0001 

modifications_count_commit 0.0001 

author_login_AdrianPeniak 4e-05 

author_login_ErikMinekus 1e-05 

 

Weka Classification and Feature Importance 
Weka: Decision Tree (J48). Precision = 0.996 Recall = 1.00 

 

Information Gain Ranking Filter 

Ranked attributes: 

 0.236072   7 committer_date 

 0.200384   8 committer_date_hour 

 0.19899   10 author_date_hour 

 0.09661   11 author_date_weekday 

 0.096132   9 committer_date_weekday 

 0.051154  18 path2 

 0.030761   5 additions_count_commit 

 0.029956   4 modifications_count_commit 

 0.029824  19 ext 
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 0.023498   6 deletions_count_commit 

 0.022194  17 path1 

 0.010134   1 author_login 

 0.003325  16 organization 

 0.002295   2 committer_login 

 0.000643  12 company 

 0.000632  14 has_bio 

 0.000506  15 has_company 

 0.000397   3 committer_email_type 

 0.000243  13 has_location 

 

38: eqemu_mock, 
 Fault 5;Y:N=202:7129; BL=0.03, 

 

 SciKit Feature Importance 
 [                               gain 

  feature                             

  author_login                0.92086 

  additions_count_commit      0.05020 

  deletions_count_commit      0.01721 

  committer_login             0.00904 

  modifications_count_commit  0.00269], 

author_login_Derision  0.45327 

author_login_AMDmi3  0.28062 

author_login_Siroro  0.07093 

additions_count_commit  0.0502 

author_login_AthrogatePEQ 0.04712 

AutoML Feature Importance 
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deletions_count_commit  0.01721 

author_login_spdkils  0.0132 

author_login_dencelle  0.01063 

author_login_mackal  0.01024 

committer_login_Golgie  0.00592 

author_login_cavedude00 0.00427 

modifications_count_commit 0.00269 

author_login_Uleat  0.00234 

author_login_briankinney 0.00228 

author_login_Drajor  0.00214 

author_login_Natedog2012 0.00116 

author_login_SCMcLaughlin 0.00115 

author_login_zerosum0x0 0.00103 

author_login_Corysia  0.001 

committer_login_Derision 0.00097 

author_login_fryguy503  0.00096 

author_login_Shendare  0.00096 

author_login_SecretsOTheP 0.00088 

author_login_httm  0.00071 

author_login_Cilraaz  0.0007 

 

Weka Classification and Feature Importance 
Weka Decision Tree (J48): Precision = 0.7 Recall = 0.69 

 

Information Gain Ranking Filter 

Ranked attributes: 

 0.177819586   7 committer_date 

 0.053244525   8 committer_date_hour 

 0.052605641  10 author_date_hour 
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 0.040213529  18 path2 

 0.03703775    9 committer_date_weekday 

 0.035848207  11 author_date_weekday 

 0.025067947   4 modifications_count_commit 

 0.024729462   5 additions_count_commit 

 0.022081905   6 deletions_count_commit 

 0.013254739   1 author_login 

 0.008327429   2 committer_login 

 0.005775394  19 ext 

 0.005615917  17 path1 

 0.005400034  16 organization 

 0.001542587   3 committer_email_type 

 0.001208503  14 has_bio 

 0.000033919  13 has_location 

 0.000029483  15 has_company 

 0.000000155  12 company 

 

39: libtiff_mock 

 

SciKit Feature Importance 
                               gain 

  feature                             

  additions_count_commit      0.93852 

  deletions_count_commit      0.05787 

  committer_email_type        0.00098 

  modifications_count_commit  0.00090 

  committer_date_hour         0.00087 

AutoML Feature Importance 
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  author_login                0.00086 

  committer_login             0.00001 

 

 

 
Weka Classification and Feature Importance 
Weka Decision Tree (J48):  Precision=0.99, Recall=1.0 

 

 Information Gain Ranking Filter 

Ranked attributes: 

 0.253563   7 committer_date 

 0.183307   8 committer_date_hour 

 0.183307  10 author_date_hour 

 0.121511  11 author_date_weekday 

 0.121511   9 committer_date_weekday 

 0.086407   4 modifications_count_commit 

 0.042354  18 path2 

 0.027185  17 path1 

 0.026971  19 ext 

 0.021536   5 additions_count_commit 
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 0.018311   6 deletions_count_commit 

 0.015065  16 organization 

 0.000428   3 committer_email_type 

 0          2 committer_login 

 0         12 company 

 0         13 has_location 

 0         15 has_company 

 0         14 has_bio 

 0          1 author_login 

40: imagemagick_mock, 
 Fault 1;Y:N=158:15032; BL=0.01, 

 SciKit Feature Importance 
 [                               gain 

  feature                             

  additions_count_commit      0.33887 

  author_login                0.29072 

  committer_email_type        0.06618 

  path1                       0.05787 

  path2                       0.04848 

  committer_date_hour         0.04056 

  author_date_hour            0.03568 

  modifications_count_commit  0.03383 

  deletions_count_commit      0.03179 

  company                     0.01914 

  organization                0.01656 

  has_bio                     0.01001 

  committer_login             0.00634 

AutoML Feature Importance 

 



InferLink Corporation  Contract # 140D6319C0016 

  committer_date_weekday      0.00204 

  author_date_weekday         0.00173 

  has_location                0.00032 

 

41: libming_mock 

SciKit Feature Importance 
 
                                gain 

  feature                             

  additions_count_commit      0.99591 

  modifications_count_commit  0.00409 

 

AutoML Feature Importance 
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