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Abstract 

The F-22 is combat-proven, operating in conflict areas for over a decade. Though it is the most 

dominant air-to-air fighter on the planet, incremental improvements to the aircraft continue to 

make the F-22 more lethal. Best practices to maximize the Mission Capability (MC) rate are not 

successfully codified and defended with data. This paper uses Data Envelopment Analysis 

(DEA) to identify benchmark environments where the MC rate is optimized and efficient.  DEA 

successfully compared the relative efficiency of inputs and outputs across two units and 

determined the more efficient organization. Additionally, DEA provides current senior USAF 

leaders and tactical managers insight into performance environments where relative efficiency 

can be maximized to support the National Defense Strategy in a fiscally constrained 

environment. Finally, DEA models can be applied to analyzing additional F-22 units, other 

aircraft fleets, and more nuanced input/output relationships within base-level maintenance 

operations.  

  



 2

Table of Contents 

Abstract .......................................................................................................................................... 1 

List of Tables ................................................................................................................................. 3 

I.  Introduction .............................................................................................................................. 4 

II. Literature Review .................................................................................................................... 8 

Aircraft Maintenance Related Studies .................................................................................................. 8 

DEA Related Studies ............................................................................................................................... 9 

III.  Methodology ........................................................................................................................ 12 

Data and Variables ............................................................................................................................... 14 

IV.  Results and Discussion ........................................................................................................ 18 

V.  Conclusion.............................................................................................................................. 28 

Bibliography ................................................................................................................................ 31 

 

  



 3

List of Tables  

Table 1: Input/Output Variables and Definitions .......................................................................... 14 

Table 2:  Unit A Input/Output Descriptive Statistics (36 DMUs) ................................................ 16 

Table 3:  Unit B Input/Output Descriptive Statistics (36 DMUs) ................................................ 16 

Table 4: Cumulative Input/Output Descriptive Statistics (72 DMUs) .......................................... 16 

Table 5: Unit A DEA Efficiency Scores ....................................................................................... 19 

Table 6: Unit B DEA Efficiency Scores ....................................................................................... 20 

Table 7:  Cumulative DEA Efficiency Scores .............................................................................. 21 

Table 8 Bilateral CRS-Input DEA Efficiency Scores ................................................................... 22 

Table 9: DMU A-31 Slack; ........................................................................................................... 23 

Table 10: DMU B-31 Slack; ......................................................................................................... 23 

Table 11: Unit A Slack Averages ................................................................................................. 24 

Table 12: Unit B Slack Averages .................................................................................................. 25 

 

  



 4

I.  Introduction 

 “Aircraft maintenance metrics are important.” Key first words in the Metrics Handbook 

for Maintenance Leaders, which go on to explain how metrics can propel an organization to new 

heights if used correctly and effectively (Rainey, 2001). Performance metrics, or indicators, are 

the quantifiable measures that an organization uses to determine how well it meets its declared 

operational, strategic goals. Leading and lagging indicators effectively cause and effect, and this 

paper will shed light on how to view that relationship.  

With warnings that metrics should be viewed in aggregate, not prescribed standards, 

pressures units to perform as efficiently as possible has warped the value and application of 

foundational aircraft maintenance metrics in the United States Air Force (USAF). This metrics 

handbook was published following the total quality management (TQM) initiatives of the 1990s. 

Despite the US Government Accountability Office's findings, "TQM had a moderate to a very 

positive impact on the Air Force's internal operations" (US. Government Accountability Office, 

1993), Air Force leaders felt that it lacked relevance to military operations (Todorov, 2006).  

The fall of 2005 introduced a new wave of process improvement and redesign, following 

a jarring memo published by General Michael Moseley introducing "Lean across the Air Force," 

challenging commanders to fundamentally change the culture and eliminate activities that do not 

add value to the mission (Moseley, 2005). This messaging pressed Airmen at all levels to 

eliminate waste around all core mission sets. This memo developed into the 2007 instruction 

"Air Force Smart Operations for the 21st Century (AFSO21) – CONOPS and Implementation 

Plan. 

Performance metrics were tools during TQM and AFSO21 despite the mixed reviews of 

success and progress. However, performance indicators still reign supreme in leaders' eyes 
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focused on making data-driven decisions, enabling procedures with facts versus anecdotes. Even 

aircraft fleets dependent on Contracted Logistics Support (CLS) are expected to adhere to the 

standards established by higher headquarters and require future contracts to be written 

concerning demonstrated metric sensitivity (ACC/A4M, 2018). The indoctrination that 

reportable metrics are relevant and infallible is systemic despite changing landscapes in aircraft 

health, data analytics, and DoD acquisition practices. Col McAneny argues that these metrics 

(despite warnings in handbooks) drive culture and influence behavior (2009). 

Practically, maintenance managers are charged with assessing metrics and contributing to 

their unit meeting mission requirements while constantly searching for additional bandwidth to 

increase output. A commonly accepted set of reportable metrics has been used to describe fleet 

performance to review units. The metric division is into two categories:  leading and lagging. 

The leading indicators express the immediate impact on a maintenance organization's ability to 

provide resources to conduct its operations. While lagging indicators show "firmly established 

trends," summed up as "the leading indicators will show a problem first, and the lagging 

indicators will follow" (Rainey, 2001).  

The Mission Capable (MC) rate is a standard metric to determine aircraft fleet health is 

Mission Capable (MC) rate. This lagging indicator has highlighted the combat readiness of the 

Total Joint Force and its aging aircraft. In 2018, Secretary of Defense Jim Mattis ordered the Air 

Force and Navy to increase their MC rates to 80-percent for F-16, F-18, F-22, and F-35 fleets by 

September 2019. However, in 2020, Chief of Staff of the Air Force, General Charles "CQ" 

Brown, produced a written statement to the Senate Armed Forces Committee that the Air Force 

would no longer require the 80-percent threshold. However, he will still be relying on 

MAJCOMs to "determine required MC rates to meet readiness objectives" (2020).  
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Due to the small population of the F-22 and the constant weapons system upgrades, it is 

challenging to compare maintenance performance indicators (MPIs) to 4th generation fighter 

aircraft like the A-10, F-16, or F-15.  However, as stated, national leaders rely on specific 

metrics to be a barometer of readiness for aircraft.  This study provides a benchmark for Senior 

Leaders to understand the context where F-22 operations have existed most successfully 

concerning MC rate and sorties flown related to common leading indicators currently tracked as 

required from higher headquarters’ policy.  While summary in nature, the data and observations 

will provide insight to F-22 sustainment and provide context as to which current metrics provide 

more influence on fleet performance, focusing readiness efforts in today's constrained 

environments.  

Data Envelopment Analysis (DEA) enables this study to focus on individual efficiency 

observations for each Data Measurement Unit (DMU). This paper focuses on DEA to use 

existing MPIs, to identify efficiency across combat coded F-22 squadrons within the United 

States Air Force.  This study will advance the conversation about whether existing measurements 

are adequate for projecting and maintaining required readiness levels and provide a method to 

compare cause and effect beyond simple correlation. W.F. Bowlin (1984) explained that DEA 

would quantify the inefficiencies in an entity through observations and enable a heightened sense 

of managerial control of those variables.  That control epitomizes tactical aircraft maintenance 

management. USAF A4/7, Lt Gen Judith Fedder explained, “We cannot understand or improve 

our processes unless we know what our systems are telling us. We need tools to guide our efforts 

and focus our resources…it is a fundamental tenet that what gets measured gets improved.” 

(Department of the Air Force, 2018). 
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 Research Question: How can USAF aircraft maintenance management systems be 

changed to improve the identification and correction of factors which limit the efficiency of F-22 

military operations using established performance indicators?  
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II. Literature Review 

The application of DEA pertaining to a 5th-Generation aircraft fleet required an 

understanding of performance metrics as a whole. A study of related studies applying performance 

metrics to aircraft maintenance organizations provides context for this research. Understanding 

how academia and industry leverage performance indicators provide insight into best practices 

illustrates the cause and effect relationship that Air Force maintenance leaders expect from data 

(Rainey, 2001). Additionally, studying the application of DEA on large-scale government entities 

guarantees a balanced perspective of appropriate modeling. Finally, the comparison provided 

scope and language to assimilate the existing work body.  

Aircraft Maintenance Related Studies 

Taaffe et al. (2014) analyzed performance indicators for aircraft maintenance. These 

metrics were designed to ensure process control and maintain organizational success. Their team 

assessed Lockheed Martin's existing performance metrics. Taaffe measured each metric, using a 

scorecard, against five graded elements and determined its effectiveness. This research aligned 

with the balanced scorecard (BSC) and "SMART" metrics introduced by Kaplan and Norton in 

the 1990s. This approach is more qualitative than DEA; a series of surveys assisting in aligning 

efforts determined the calculated weight of each area's score. The qualitative analysis of critical 

metrics successfully revealed that not all metrics were appropriately presented, and some could 

be removed entirely. Because of the simplicity, the efforts could be easily replicated in other 

organizations.  

Verhoeff et al. (2015) highlight the priority of military aviation to maximize operational 

readiness. They surmise that standard practice is reactive as daily management combats aircraft 

availability, serviceability, and the fleet's sustainability. Their flight and maintenance planning 
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(FMP) optimization model proactively and comprehensively addresses those variables to 

maximize operational capability. This novel linear program requires inputs and provides 

optimized outputs. The authors applied their model to Royal Netherlands Air Force aircraft over 

three years. Their findings indicated a defined solution for long-term flight and maintenance 

schedules while encompassing user-defined inputs for mathematically optimized responses to 

contingencies.  

Werner et al. (2019) polarize maintenance requirements like the USAF in that you have 

scheduled, preventative, maintenance, and unscheduled, reactive maintenance.  Focusing on the 

Remaining Useful Life (RUL), preventive maintenance projections rely on significant 

repositories of relevant data. Constructing models and algorithms is difficult, but they argue that 

it is critical to compare the estimated RUL with the actual performance of production machines, 

ultimately improving the simulation for future cycles.  They conclude that machines can utilize 

modeling based on data acquisition and physics-based modeling from reoccurring inspection 

with existing sensor data. The digital twin would then optimize itself and provide insight into the 

physical counterpart. While there may not be capacity for all machines to incorporate this, new 

systems should require performance-based feedback and optimization strategies.  

DEA Related Studies 

Clarke and Goudin (1991) applied DEA to the vehicle maintenance function of a large-scale, 

non-profit logistics network. Logistics managers were interested in measuring the relative 

efficiency of the 17 vehicle maintenance shops as related to transportation and distribution 

activities. Their study measured available resources like workforce, material costs, the quantity 

of personnel, and adjust vehicle days. The model provided by Charnes, Cooper, and Rhodes, 

observing the relative efficiency of each shop, shaped their methodology. Unique to this study, 
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efficiency results were presented to shop managers, who were charged with improving their 

scores. Their findings concluded that all 17 shops showed efficiency improvement over the four-

year study. Additionally, the local managers found the DEA information understandable and 

actionable without formal grounding in operations research.  

Han and Sohn (2011) proposed that DEA assist the Republic of Korea's Air Force (ROKAF) 

in proactively managing vast inventories of military assets. Each supply squadron evaluated 

nineteen output variables without consideration to the inputs. Thus, DEA effectively considers 

these units without assuming which inputs or outputs are most important. The study suggests that 

grouping inventory management functions would be more efficient than current practices with no 

grouping. An analysis compares each base individually and also provides 15 groups to evaluate. 

Three input and four output variables were identified through surveys conducted. It was 

determined that grouping the base supply systems by aircraft would be the most efficient. DEA 

models (CCR and BCC) supported these findings.  

Charnes et al. (1985) introduced the DEA application to military aircraft maintenance to 

evaluate capability and efficiency. Fourteen Air Force Wings were selected and measured through 

input and output variables used by commanders at the time. They examined the relative 

maintenance efficiency of each organization. Their study enabled Air Force leaders in the Tactical 

Air Command to determine, objectively, whether efficiency values varied between units and their 

mission types. Findings indicated that the unit's efficiency scores, whose primary mission was 

devoted to training, were uniformly high. 

Additionally, units were qualitatively compared to enable further studies to identify the sources 

and amounts of inefficiency. They also noted that DEA does involve optimizations. Finally, this 
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route provides access to bodies of theory (e.g., from economics and mathematical programming) 

that are available both for immediate use and further extensions. 

Goulany and Seroussy (1989) targeted Israeli Air Force aircraft maintenance units by 

evaluating efficiency through direct inputs and outputs. Rather than simply focus on a DEA-

generated efficiency, the study took additional effort to consider their input and output factors as 

to which were most correlated with overall efficiency. The resulting research developed the 

hierarchical efficiency monitoring system (HEMS), which allowed the study to assess various 

management levels of the Israeli Air Force maintenance division. Essentially, the HEMS enabled 

the data to be analyzed for relative efficiency through DEA at different reference sets. These 

differences enabled general inferences as to efficiencies at each level of management. Further 

development of the HEMS would enable a sharper management control tool with periodic 

reviews of the pertinent output and input factors.  

Sutton and Stanko (2013) highlighted the complexity of managing global assignments to the 

US Navy. To analyze the problem with multiple objectives, metrics, and performance indicators, 

they designed a DEA-based tool, the Generalized Symmetric Weight Assignment Technique (g-

SWAT). This denomination enabled the minimization of overall cost while maximizing other 

reportable metrics.  They argue that the success of their model can be applied beyond the Navy's 

PCS concerns, but other DoD personnel processes and in the private sector to align services with 

clientele specifications. Recognizing that g-SWAT and DEA are not the only viable solutions to 

this problem set, their findings outperformed current methods being used by the US Navy. 
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III.  Methodology 

DEA is used to measure the relative efficiencies of F-22 maintenance performance 

indicators on the overall MC Rate in a given month. Like all production theories, this focuses on 

manipulating leading and lagging indicators to represent input conversion to output. DEA is a 

unique application of linear programming based on the frontier methodology of Farrell (1957). 

Since Farrell, a significant breakthrough for advancing DEA was performed by Charnes et al. 

(1978) and Banker et al. (1984). DEA supports the observation of multiple input and output 

variables simultaneously with ambiguous preference. The measured combinations of input and 

output variables are called decision-making units or DMUs. Because DEA can identify relatively 

efficient DMU(s) among a sample of given DMUs, it is a reliable tool for comparative analysis 

or benchmarking. 

To explore the mathematical property of DEA, let E0 be an efficiency score for the base 

DMU 0 then, 

Maximize 
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yrk: the observed quantity of output r generated by unit k = 1, 2, …, N, 
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xik: the observed quantity of input i consumed by unit k = 1, 2, …, N, 

ur0: the weight to be computed given to output r by the base unit 0, 

vi0: the weight to be computed given to input i by the base unit 0, 

: a very small positive number. 

 

Linear fractional programming compares the ratio of two linear functions, and that 

relationship can convert into a standard linear programming (LP) model. An assumption of LP is 

a linear relationship among variables. Consequently, an LP for DEA utilizes a constant returns-

to-scale so that all observed input/output combinations can be scaled up or down relative to the 

other (Charnes et al., 1978).  

However, when we use a piecewise LP, we can model returns-to-scale that do not possess a 

proportional relationship, such as an increasing, decreasing, or variable-returns-to-scale (Banker 

et al., 1984). Thus, different types of DEA models are available depending on returns-to-scales 

and various modeling approaches.  

Sherman and Ladino (1995) summarize the capability of DEA in the following manner: 

 Identifies the best practice DMU that uses the least resources to provide its products 

or services at or above the quality standard of other DMUs; 

 Compares the less efficient DMUs to the best practice DMU; 

 Identifies the number of excess resources used by each of the less efficient DMUs; 

 Identifies the amount of excess capacity or ability to increase outputs for less 

efficient DMUs, without requiring added resources. 

This study highlights the versatility of DEA for comparative benchmarking and 

quantitative feedback for organizational inefficiency. A Charnes-Cooper-Rhodes (CCR) model, a 
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Banker, Charnes, and Cooper (BCC) model, and a slack-based measure of efficiency (SBM) are 

employed. All models view the data from input and output-oriented perspectives. First, relative 

efficiency scores were assessed using CCR and BCC models. Next, two DMUs are highlighted, 

exploring the additional information provided by DEA to the information owner. Finally, slack-

based measures are considered, providing actionable insight to unit maintenance managers.   

Data and Variables 

The Logistics, Installations, and Mission Support – Enterprise View (LIMS-EV database 

provided the source data analyzed for this project—the same raw data available to Senior 

Leaders and decision-makers in the USAF. The decision-making units (DMUs) selected for the 

study are monthly performances from two USAF Wings that operate a similar quantity of F-22 

aircraft.  Performance efficiency measurements utilize commonly stated "leading" and "lagging" 

indicators, providing a cause and effect context (Rainey 2001).  DMUs will not refer to the wing 

and month utilized to preserve confidentiality but instead indexed 1 through n. We collected data 

from 2018-2020, incorporating aircraft inventory and seven “leading indicator” inputs, 

contrasting two "lagging indicator" outputs and total sorties flown during that time. Using actual 

data provided from LIMS-EV enables future research and analysis for tactical or academic 

application. The inputs and outputs used in this study, with accompanying definitions, are shown 

in the following table: 

Table 1: Input/Output Variables and Definitions  

INPUTS OUTPUTS 
BREAKS 
CANN 

MCHRS 
12HRFIX 

Definitions of Input and Output Variables 
BREAKS The number of code-3 breaks in a wing in a specific month. 
12HRFIX The number of code-3 breaks in a wing in a specific month, fixed within 

12 hours. 
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CANN The total number of reported cannibalizations on an installation in a 
specific month. 

MCHRS The total number of hours in a specific month in which the possessed 
aircraft on each wing were fully or partially mission capable. 

 

Some metrics were scaled by multiplication with a scalar to compare all values best. 

Scaling metrics is an acceptable practice in DEA as an optimum DMU will not vary with the 

units of measurement. However, the BREAKS and CANN outputs are undesirable as they track 

adverse effects on the fleet. To best compare the 12HRFIX and MCHRS outputs, we measure 

BREAKS and CANN by subtracting the LIMS-EV values from 1,000. Associating higher values 

with positive functions ensures that as negative instances increase, the calculated value 

decreases. The number 1,000 is used arbitrarily but enables calculated values to remain near 

1,000.  The consistent application consistently views variables with higher values as favorable.  

Since the sample size influences DEA results, some discussion on the adequacy of 

sample size is warranted here. The sample size utilized in the present study is consistent with the 

various rules of thumb available in DEA literature. Cooper et al. (2007) provide two such rules: 

that sample size should be greater than equal to the product of inputs and outputs, and that 

number of observations in the data set should be at least three times the sum of the number of 

input and output variables. Given two inputs and two outputs, the sample size should be at least 

12 DMUs. The 72 used in the present study exceeds the desirable size as suggested by the 

abovementioned rules of thumb to obtain sufficient discriminatory power. 

Descriptive statistics of the raw data for Unit A, Unit B, and combined data are listed 

below. It is worth noting that Unit A has standard deviations 1.6 times those of Unit B after 

dropping CANN. However, even these summaries of the two units drive the question of which is 

more efficient and why. 
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Table 2:  Unit A Input/Output Descriptive Statistics (36 DMUs) 

 Max Min Mean Std Dev 
BREAKS        114.00           27.00              61.56           19.02  
12HRFIX          72.00           16.00              36.78           12.46  
CANN          61.00                  0.00              19.08           17.01  
MCHRS   22,374.57      6,322.22      14,964.84      3,678.18  

 

Table 3:  Unit B Input/Output Descriptive Statistics (36 DMUs) 

 Max Min Mean Std Dev 
BREAKS          62.00           12.00           31.56           9.52  
12HRFIX          49.00              6.00           21.94           7.48  
CANN             7.00                  0.00              1.08           1.67  
MCHRS   31,790.13    19,668.05    25,325.22    2,537.38  

  

Table 4: Cumulative Input/Output Descriptive Statistics (72 DMUs) 

 Max Min Mean Std Dev 
BREAKS        114.00         12.00           46.56         21.24  
12HRFIX          72.00           6.00           29.36         12.67  
CANN          61.00               0.00           10.08         15.07  
MCHRS   31,790.13    6,322.22    20,145.03    6,067.79  

 

These variables have been curated and labeled by decades of anecdotal experience, as 

noted in the Metrics Handbook for Maintenance Leaders:  "leading indicators are those that 

directly impact maintenance's capability to provide resources to execute the mission. Lagging 

indicators show firmly established trends" (2001).  These variables will show, in part, efficiency 

in this accepted relationship. This vignette into the LIMS-EV database applied to the F-22 can 

provide insight into tactical maintenance practices, multi-year health of fleet assessment, and a 

perspective on the strategic application of how metrics are collected at the unit level. This data 

was collected at the unit level and subsequently archived. Choosing only two inputs and outputs 

keeps the experiment parsimonious. Future applications tailored to the MDS, sustainment 

climate, or management preference could be curated for a better fit. DMU efficiencies will be 
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inherently influenced by under and over-reported metrics. It is not in the scope of this paper to 

provide context or alibis for those instances. Instead, it is a discussion point as to whether the 

data collected is value-added, reliable, or actionable in the first place. 
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IV.  Results and Discussion 

 The first step was to apply CCR and BCC DEA models to each unit and their related 

DMUs to express each unit's efficiency. Next, we compared the relative efficiency against all 

DMUs, combining both units. Finally, a slack-based model was applied to each DMU, 

measuring individual performance, assessing the inefficiency of inputs, and identifying 

benchmarks for future managerial consideration. DEA enables the comparison of all DMUs 

simultaneously, allowing for identifying best practices. For example, those less efficient DMUs 

might be more closely analyzed to determine weaknesses, or the most efficient DMUs might be 

further researched to establish a performance benchmark.  

 Due to the balance of reducing resource consumption for a given goal and maximizing 

outputs for given resources, DEA considers input and output-oriented models.  Both orientations 

measure the technical efficiency of each DMU. Our first DEA model, CCR, processes DMUs 

under an assumption that constant returns-to-scale (CRS) measuring inefficiency based on 

input/output configuration and the size of operation—as inputs increase, outputs increase on a 

linear scale. BCC, our second model, compares DMUs with variable returns-to-scale (VRS), 

allowing for the measurement of managerial underperformance—there are multiple efficiency 

edges of production, independent of scale. Comparing Units A and B through output-oriented 

CRS and VRS DEA models will provide concerned managers insight into under-realized 

productivity and wasted resources in current production efforts.  
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Table 5: Unit A DEA Efficiency Scores 

DMU CRS-O VRS-O 
a-1 0.9944 1.0000 
a-2 0.9909 0.9934 
a-3 1.0000 1.0000 
a-4 1.0000 1.0000 
a-5 0.9984 0.9987 
a-6 0.9875 0.9905 
a-7 0.9949 0.9955 
a-8 1.0000 1.0000 
a-9 0.9940 0.9981 
a-10 1.0000 1.0000 
a-11 1.0000 1.0000 
a-12 0.9999 1.0000 
a-13 1.0000 1.0000 
a-14 0.9905 0.9941 
a-15 0.9997 1.0000 
a-16 1.0000 1.0000 
a-17 0.9881 0.9882 
a-18 0.9936 0.9987 
a-19 1.0000 1.0000 
a-20 1.0000 1.0000 
a-21 0.9896 0.9926 
a-22 0.9943 0.9965 
a-23 0.9997 0.9998 
a-24 0.9854 0.9918 
a-25 0.9863 0.9959 
a-26 0.9933 1.0000 
a-27 0.9789 0.9848 
a-28 0.9781 0.9866 
a-29 0.9784 0.9900 
a-30 1.0000 1.0000 
a-31 0.9848 0.9877 
a-32 1.0000 1.0000 
a-33 0.9897 0.9938 
a-34 0.9961 0.9984 
a-35 0.9930 1.0000 
a-36 0.9948 0.9990 
Avg. 0.9937 0.9965 
σ 0.00666 0.00456 
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Table 6: Unit B DEA Efficiency Scores 

DMU CRS-O VRS-O 
b-1 0.9785 0.9932 

b-2 0.9817 1.0000 

b-3 0.9809 0.9928 

b-4 0.9807 0.9898 

b-5 0.9774 0.9896 

b-6 0.9751 0.9886 

b-7 0.9808 0.9942 

b-8 0.9816 0.9935 

b-9 0.9798 0.9945 

b-10 0.9845 0.9927 

b-11 0.9930 0.9995 

b-12 0.9965 1.0000 

b-13 1.0000 1.0000 

b-14 0.9866 0.9968 

b-15 0.9899 0.9940 

b-16 0.9868 0.9937 

b-17 0.9784 0.9886 

b-18 0.9754 0.9879 

b-19 0.9744 0.9858 

b-20 0.9792 0.9921 

b-21 0.9749 0.9878 

b-22 0.9749 0.9861 

b-23 0.9774 0.9915 

b-24 0.9855 0.9980 

b-25 0.9794 0.9911 

b-26 0.9776 0.9943 

b-27 0.9735 0.9891 

b-28 0.9743 0.9913 

b-29 0.9798 0.9948 

b-30 0.9693 0.9754 

b-31 0.9870 0.9980 

b-32 0.9790 0.9906 

b-33 0.9808 0.9922 

b-34 0.9738 0.9890 

b-35 0.9823 0.9965 

b-36 0.9798 0.9909 

Avg. 0.9809 0.9923 
σ 0.00645 0.00482 
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Table 7:  Cumulative DEA Efficiency Scores 

 CRS-O VRS-O 
Unit A µ 0.9937 0.9965 
Unit A σ 0.00666 0.00456 
Unit B µ 0.9809 0.9923 
Unit B σ 0.00645 0.00482 

Combined µ 0.9873 0.9944 
Combined σ 0.0093 0.0052 

 
These DMUs can be compared in multiple ways, qualitatively, depending on managerial 

interest. For discussion, efficiency scores were assessed as to whether F-22 maintenance metrics 

indicated improved relative efficiency or reduced. In all models, both units show negative linear 

trend lines from 2018-2020, with Unit A outperforming Unit B. These consistent trends support 

Unit A displaying a higher average efficiency score and a lesser standard deviation across its 36 

DMUs.  

To illustrate the managerial application, we will propose that Unit B outperforms Unit A: 

𝐻: Both Unit A and Unit B are equally efficient. 

𝐻: Unit B is more efficient than Unit A. 

The hypothesis is rejected, where Unit B performed worse than Unit A concerning CRS and 

VRS, at α = 0.05. This conclusion was reinforced when we viewed the data from an input-

oriented lens. Table 8 assesses DMUs with a bilateral CRS model, measuring deviation from the 

most efficient DMU. This enables the DMUs to no longer be bound between 0 and 1. Through 

this, we retained the above hypothesis and concluded, again, that the null hypothesis must be 

rejected, this time at well over α = 0.01.  
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Table 8 Bilateral CRS-Input Efficiency Scores 

Rank DMU Score  Rank DMU Score 
1 a-13 1.0622  37 a-28 0.9972 
2 a-8 1.0382  38 b-11 0.9932 
3 a-1 1.0323  39 a-29 0.9930 
4 a-3 1.0308  40 b-15 0.9899 
5 a-20 1.0246  41 b-31 0.9870 
6 a-30 1.0232  42 b-16 0.9869 
7 a-32 1.0226  43 b-14 0.9867 
8 a-23 1.0224  44 b-24 0.9855 
9 a-19 1.0221  45 b-10 0.9845 
10 a-4 1.0209  46 b-35 0.9823 
11 a-34 1.0185  47 b-2 0.9817 
12 a-16 1.0148  48 b-8 0.9816 
13 a-36 1.0142  49 b-3 0.9809 
14 a-15 1.0138  50 b-33 0.9808 
15 a-5 1.0135  51 b-7 0.9808 
16 a-7 1.0131  52 b-4 0.9807 
17 a-26 1.0128  53 b-9 0.9798 
18 a-22 1.0117  54 b-29 0.9798 
19 a-10 1.0116  55 b-36 0.9798 
20 a-35 1.0115  56 b-25 0.9794 
21 a-33 1.0111  57 b-20 0.9792 
22 b-13 1.0109  58 b-32 0.9790 
23 a-17 1.0098  59 b-1 0.9785 
24 a-9 1.0097  60 b-17 0.9784 
25 a-21 1.0087  61 b-26 0.9776 
26 a-18 1.0085  62 b-5 0.9774 
27 a-11 1.0080  63 b-23 0.9774 
28 a-12 1.0075  64 b-18 0.9754 
29 a-2 1.0071  65 b-6 0.9751 
30 a-31 1.0062  66 b-22 0.9749 
31 a-6 1.0051  67 b-21 0.9749 
32 a-14 1.0046  68 b-19 0.9744 
33 a-24 1.0016  69 b-28 0.9743 
34 a-25 1.0007  70 b-34 0.9738 
35 a-27 1.0003  71 b-27 0.9735 
36 b-12 0.9978  72 b-30 0.9693 
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 A tool enabled by DEA is the analysis of slack for inefficiencies within a DMU. Slacks 

relate to the further increases in output or reduction of input that could be gained. This specific 

feedback to a DMU on historical performance represents a potential improvement compared to 

efficient peers and provides benchmark targets. To illustrate, we can look at two DMUs where 

Unit A's efficiency out-performed Unit B's efficiency within the CRS-O lens.  The “Observed 

Value” represents the value used for the DEA calculations, not the raw data pulled from LIMS-

EV. The “Efficient Value” in the final column is calculated from the “Measured Value” added to 

the “Slack” value.  When we use the SBM to evaluate the context, we can have an appropriate 

stratification of the DMU performance levels. Of note, DMUs A-31 and B-31 represent July 

2020.  

Table 9: DMU A-31 Slack  
Efficiency = 0.6155 

INPUTS OBSERVED 
VALUE 

SLACK EFFICIENT 
VALUE 

BREAKS 927 0.0% 927 
CANN 1000 -0.21% 997.95 

OUTPUTS -- -- -- 
MCHRS 8504.6 124.94% 19130.32 
12HRFIX 957 0.0% 957 

 

Table 10: DMU B-31 Slack  
Efficiency = 0.5796 

INPUTS OBSERVED 
VALUE 

SLACK EFFICIENT 
VALUE 

BREAKS 955 0.0% 955 
CANN 1000 0.0% 1000 

OUTPUTS -- -- -- 
MCHRS 8504.6 145.09% 20844.09 
12HRFIX 980 0.0% 980 

 

The significant inefficient output of MCHRS indicates that there may be more at play for 

this period since both DMUs were significantly inefficient compared to the entire sample. 
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Running the program with tailored variables could provide additional managerial insight.  The 

amalgamation of data is a cornerstone of DEA; DMUs are measured on an equal plane, 

comparing relative efficiency rather than optimization based on the simple correlation.   

Table 11:  SBM CRS-O Efficiency Scores 

Rank DMU Score  Rank DMU Score 
1 a-3 1.000  37 b-2 0.8501 
1 a-4 1.000  38 b-25 0.8482 
1 a-8 1.000  39 b-36 0.8481 
1 a-10 1.000  40 a-33 0.8456 
1 a-11 1.000  41 a-17 0.8328 
1 a-13 1.000  42 b-9 0.8322 
1 a-16 1.000  43 b-35 0.8272 
1 a-19 1.000  44 b-5 0.8243 
1 a-20 1.000  45 a-26 0.8146 
1 a-30 1.000  46 b-7 0.8003 
1 a-32 1.000  47 a-6 0.79501 
1 b-13 1.000  48 b-32 0.7919 
13 a-12 0.9998  49 b-8 0.7919 
14 a-15 0.9980  50 b-33 0.7852 
15 a-23 0.9928  51 b-17 0.7777 
16 b-12 0.9896  52 b-34 0.7746 
17 b-11 0.9765  53 b-23 0.7709 
18 a-5 0.9681  54 a-21 0.7689 
19 b-15 0.9554  55 b-22 0.7524 
20 b-14 0.9467  56 a-18 0.7511 
21 a-14 0.9424  57 b-1 0.7498 
22 b-16 0.9396  58 b-6 0.7353 
23 a-34 0.9319  59 b-19 0.7059 
24 b-10 0.9315  60 b-20 0.6913 
25 a-36 0.9261  61 b-21 0.6887 
26 a-7 0.9123  62 b-26 0.6878 
27 a-9 0.90888  63 b-28 0.6767 
28 a-1 0.9047  64 a-28 0.6736 
29 b-24 0.9007  65 b-27 0.6612 
30 a-2 0.8834  66 a-27 0.6592 
31 a-24 0.8830  67 b-29 0.6315 
32 a-35 0.8820  68 b-18 0.6310 
33 a-22 0.8814  69 a-29 0.6269 
34 b-4 0.8653  70 a-31 0.6155 
35 a-25 0.8588  71 b-31 0.5796 
36 b-3 0.8546  72 b-30 0.4327 
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Table 12: Summary SBM CRS-O Efficiency Scores  

  Average Max Min St Dev 
Eff. Score 0.8439 1.0000 0.4327 0.1311 

DMU Rank 35.58 72.00 1.00 22.27 
BREAKS Data 953.44 988.00 886.00 21.39 

Projection 952.71 985.18 886.00 20.83 
Diff.(%) -0.08 0.00 -0.56 0.16 

CANN Data 989.92 1000.00 939.00 15.17 
Projection 989.86 1,000.00 939.00 15.17 
Diff.(%) -0.01 0.00 -0.24 0.04 

12HRFIX Data 970.6389 994 928 12.7603 
Projection 970.85 994.00 928.00 12.68 
Diff.(%) 0.02 0.75 0.00 0.10 

MCHRS Data 14,964.84 22,374.57 6,322.22 3,704.00 
Projection 20,310.90 22,854.51 6,322.22 3,187.60 
Diff.(%) 43.75 261.50 0.00 45.75 

 

Summarizing the data enables managers to view DMU efficiency more abstractly, 

potentially mitigating biases.  Case in point, we see pairs of DMUs in the bottom third of the data 

set: X-27, X-28, X-31, etc. Identifying cross-installation trends might enable local and enterprise 

managers to conduct root-cause analysis with those 6 data points more quickly.  This DEA 

analysis would provide further incentive for higher headquarters to oblige as we can see the 

potential return on investment (ROI) in the form of MCHRS. Bowlin (1984) expresses that 

because there is no inherent "market mechanism," the USAF relies on historical consumption 

data to determine budget and requirements. Understanding the cost and benefit of input and 

output would enable managers at all levels to compare the price of paying for improved supply 

chain responsiveness and the ROI of more mission capability with data to support those 

decisions.  
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Finally, the limitations of this analysis include the use of LIMS-EV data. The F-22 uses 

Integrated Maintenance Information System (IMIS) to consolidate maintenance and repair data 

for Lockheed Martin and USAF managers worldwide. Unfortunately, for that IMIS data to be 

translated into a format to be archived into LIMS-EV, it is manipulated and filtered through other 

USAF systems like IMDS.  

In this study, we used CANN as an input. CANN may be misleading from week to week 

or month to month. CANN accounts for the frequency when a unit cannibalizes a part from one 

aircraft to fix another; however, how that action is accounted for can vary from unit to unit. 

Based on local policies, a more specific variable might be more appropriate to consider.  

Additionally, the variables identified as an input versus output might be interchangeable 

based on perspective. That ambiguity would be a barrier to the sustained application of DEA for 

the Department of the Air Force. Aircraft Availability (AA) rate might be considered for future 

study iterations as it is a subset of TAI. The Department of the Air Force defines AA in AFI 3-

4.21V1 (2018) as the proportion of TAI capable of meeting flying mission requirements. AA 

might also be considered an output, vice MC rate because it accounts for aircraft that are not 

impacting MC rate but are not available for a unit's use.  

Maintenance managers at all levels could apply DEA to their interests. USAF 

performance indicators have been refined as leading and lagging; they are taught to the lowest 

levels as a cause-and-effect relationship (Rainey, 2001). Because of this assumed relationship, 

the correlation between egregious negative outputs and negative inputs is referenced to create 

action plans to address mission performance. Indexing relative efficiency against past 

performance would be a more objective perspective and analytical starting point to review 

performance. For USAF Maintenance Managers, metrics should be able to inform: 
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1. Correct decision behaviors 

2. A clear understanding of process relationships 

3. Process improvement  

(Department of the Air Force, 2018) 

With additional analysis, it would be possible to compare "traditional" metrics and 

learning models against teams using DEA regularly. After months of trial, a survey and 

performance data could be extracted to see if DEA effectively met USAF expectations for core 

metrics.  

Strategic Managers would use DEA to understand the cause and effect of their inputs and 

outputs. Understanding the data relationships would likely drive insight into new data collected 

and added to the model. Bowlin (1984) described non-profit organizations uniquely to know 

which results they desire but often struggled to evaluate effectiveness without some subjectivity. 

As illustrated in Tables 10 and 11, strategic decision-makers now can quantitatively compare 

inefficient units and have milestones for ROI in the currency of MCHRS. Conversely, they can 

decide if increasing efficiency is worth the money. Headquarters can make informed decisions 

using cost per flight hour, or sorties per MCHR, and a cost to improve the contracted logistics 

support. If refined, a level of budgeting awareness could be applied. Annually, the "Use-It or 

Lose-It" mantra is popularized as depicted in the Military Times (Rempfer, 2019).  Bowlin 

(1984) comments, “If an Air Force wing has been operating inefficiently in the past; historical 

costs will include the cost of operating inefficiently.”  Rather than reward inefficient Units with 

larger flying hour budgets, efforts and incentives to create efficiency may allow creative 

solutions to a fiscally constrained future.  
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Unfortunately, a significant issue for popular Air Force metrics is that they are not 

accurate inputs. These metrics mainly summarize outputs such as Aircraft Availability, 8-/12-HR 

Fix Rates, Sorties, etc. Without accurately capturing the information or resources, how can 

managers understand the performance (efficiency) of the maintenance processes? If inputs such 

as labor hours are not considered, you just focus on outputs. However, the Catch-22 is that these 

outputs drive the bills and are performance indicators for existing contracts. Ever-increasing 

sustainment costs will continue to be a considerable discussion for the lifecycle of many aircraft 

fleets.  

V.  Conclusion 

While the Air Force logistics community has been pressed to Accelerate, Change or Lose 

and has birthed projects like Tesseract. Aircraft maintenance managers’ tools to interpret 

production data are older than the maintained aircraft. Based on a Government Accountability 

Office report published, the F-22 MC rates have fallen over the last decade. Performance losses 

are, in part, is due to degraded stealth coatings, aircraft spare parts shortages, and more flight 

hours per aircraft than originally programmed (McCullough, 2020). The 5th Generation fighter 

fleet needs improved tools to maintain readiness until their watch is over. This study provided 5th 

Generation context to aircraft metrics applied to USAF maintenance operations for decades. The 

relative efficiency between highlighted leading and lagging indicators provides benchmark 

performance efficiency between F-22 units and uses fleet data to inspire additional research into 

areas of inefficiency.   

Further DEA analysis can be used to fine-tune the cause and effect relationship valued by 

the USAF aircraft maintenance community or refine the data collected within LIMS-EV. 

Assessing fleet trends with DEA will empower our newest Airmen and long-time industry 



 29

partners to preserve the F-22 fleet for conflicts to come.  Explicitly comparing inputs and outputs 

enables tactical, unit-level, and strategic, USAF-wide, analysis, and comparison of strengths and 

weaknesses within any mission designation of aircraft. Maintenance managers can quickly 

identify which variables affect their operations significantly while more generally indexing 

relative performance efficiency at the tactical level. These analyses are accomplished using slack 

measurements and comparable efficiency scores highlighted in the research.  Strategically, DEA 

provided a distinct vantage point towards the profusion of aircraft data and required performance 

reporting. Calculating inputs and outputs, coupled with relative efficiency accurately, allows the 

in-kind comparison of an aircraft being non-mission capable due to spare parts and the potential 

training (or combat) sorties. Quantifying that data enables direct comparisons for purposes of 

resource management and overall mission execution.   

The application of DEA was limited in this study due to software limitations, data 

accuracy, and the impacts of non-discretionary inputs. The USAF maintains data for all aircraft 

fleets across many years in the LIMS-EV system. That data, however, is a reflection of various 

system inputs. For the F-22, information is translated through multiple Lockheed Martin 

software interfaces, USAF software, and ultimately to LIMS-EV. It should be noted that there is 

an honest effort to maintain data integrity at the unit level before reporting. However, database 

management is tedious and can be subject to many shortfalls in data transference. Expanding the 

study to larger data sets would reduce the chance of incorrect reporting. Non-discretionary inputs 

are variables that we did not consider in this study, which vary without management direction 

(e.g., favorable weather). This study is limited to discretionary inputs to allow future discussion 

of managerial actions available to maintenance leaders.  
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This study was designed to highlight efficiency trends using USAF aircraft maintenance 

performance metrics for the F-22 community and continue discussing improved data analytics 

for maintainers to keep aging fleets flying.  Providing data analysis tools at the tactical and 

strategic levels enables those closest to the aircraft to make data-based decisions to prolong the 

effective employment of our airframes.    
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