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1. SUMMARY
No Cyber-Physical System (CPS) can be guaranteed to never fail. It can be guaranteed to do what it

was supposed to do if no assumptions are violated, but there will always be assumptions that can be 
violated. What do we do when assumptions have been violated and the system manages to get into a state, 
through no fault of its own, that could be catastrophic? What can we know about extreme vulnerabilities 
that were not expected in the system design?  Can we make Learning Enables Components (LECs) that 
will allow us to monitor for excursions from safe operation (MONITOR 3.2) and can we learn to intervene 
in order to recover from some of these excursions (RECOVERY CONTROLLER 3.4) 

There is a strong need for a run-time capability to handle the cases that violate the assumptions 
underlying verified systems, and that fall outside the tested and validated cases. We proposed to build a 
run-time monitoring approach capable of detecting and immediately reacting to surprise, as well 
as diagnosing and learning from surprise. 

Our approach has been to use extensive simulation testing to learn where the vulnerabilities 
lie so that we can learn from simulation data, and enact MONITORS for boundaries to safe behavior. 

Given a machine learning based autonomous CPS that has been rigorously verified and validated (at 
least in simulation) via extensive testing, the primary source of surprise arises from the system attempting to 
operate in a context for which it was not adequately trained. For that reason, we focus on monitoring and 
learning the contexts in which the CPS operates. 

It is a well acknowledged problem with neural networks, that have been trained within a context to very 
accurately classify their inputs with low false positives and negatives within that context, are capable of 
making classifications with high confidence that are very bad, in the sense of not even 
being near misses. Such a system will perform very badly outside of the context within which it 
was trained. One approach is to attempt to see if the inputs are similar to the data upon which it was 
trained. But we did not propose to solve that problem, rather we assumed that contexts would 
exist for which the LECs of CPSs would fail and to be able to detect such critical cases 
and to use machine learning methods to try to get the system back into a stable state where the LEC 
based CPS can continue to safely operate. 

Simulation environments are increasingly realistic, and therefore, can effectively validate a 
system consisting of electro-mechanical elements, where the scope of operation is limited and well 
defined. However, an autonomous system operating over an extended period in an unknown 
environment has a very wide scope of operation and requires significant decision-making complexity to 
operate successfully. Brute force simulation of the type used to validate simple electro-mechanical systems 
is not applicable to the more complex autonomous systems; the combinatorics require 
astronomically large numbers of simulation tests. 

Our goal, therefore, was to develop a validation system that can be used for 
realistic systems but is feasible in terms of computation. 

In summary, our objective was to explore how high-fidelity simulators could be harnessed to synthesize 
run-time monitors that detect deviations from safe operation and further to apply machine learning to 
synthesize controllers that could intervene in order to recover from, at least some, of the deviations. Some 
dangerous deviations from safe operation are not recoverable, but many are. Examples of recoverable 
dangerous situations are well known, in some cases, we have learned recovery techniques and they are 
taught to human controllers. Pilots are taught how to recover from a stall or a spin, for example, but if they 
occur too close to the ground, none of these techniques will work. A car that hits a patch of ice and gets 
into a skid, similarly, can be recovered if there is enough space before going off road or hitting another 
vehicle. For complex modern CPSs, the failure modes can be more complicated than the simple examples 
cited above. 
Our system, “Assured  Autonomy us ing  Dynamic  Moni tors  and Simula t ion”  (ADAM 
DMS), is a research platform consisting of a collection of capabilities that realize the 
objectives described above and consist of the testbed and algorithms that support the clustering, 
machine learning, and risk-aware planning. Whereas we have used a single test-bed for our research, 
it has been our intention that none of what we do should depend in any way on the CPS being a quad-
copter, and that the principles should be applicable to nuclear reactors, or other complex CPSs. 
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2. INTRODUCTION
We set out to use an unsupervised (clustering 3.3) approach to learning contexts of operation of

the target CPS system for offline context learning. By using continuous re-clustering, novel 
contexts to existing context sets can be learned based on the detected response of the CPS to the context. 

It turns out that that also gives us a performance advantage as will be described in the 
section on clustering. The ability a l l o w  s  u  s  to separate out new clusters that represent 
dangerous situations. These data points can be separated out from the benign cases, and allow a 
deep learning network to learn the run-time monitors that efficiently watch out for unsafe areas of the 
state space. 

We utilize high-fidelity simulations in order to discover vulnerabilities that are likely to have 
correlates in the physical system. We cannot afford to crash thousands of jet fighters or melt 
down large nuclear reactors to learn, so simulation seemed to be a viable approach. There remains, 
however, the weakness that if the vulnerabilities in the physical system are completely different 
from the simulation, and that no simulator can ever be good enough, how will we know? We 
formulated a response to that question as a transfer learning problem, and towards the end of our 
research period, we were attempting to demonstrate that, but we ran out of time before 
being able to solve that last goal. We will say more about that towards the end of the report. 

We had proposed to use the recently developed machine learning techniques based on Deep 
Reinforce- ment Learning, but the clustering approach gave us good results and we continued with 
that. There are benefits to both approaches, but we didn’t have time to explore and compare the two. 

We use explicit risk awareness and risk management approaches for the recovery controller. 
The intuition here is clear. A cluster-based reinforcement learner can learn policies for recovery 
from dangerous situations but being able to reason about acceptable risk would add so much complexity 
to the definition of the reinforcement learning problem that it would converge very slowly, if at all. What 
we did instead, was to allow the reinforcement learner to learn without the complexity of risk so that 
it could converge relatively quickly and then to characterize the resulting policy in terms of variables that 
we wish to reason over and then to make choices at run-time that are biased by risk constraints. An 
example helps to make the issues clear, and also serves to introduce our testbed. 

Having used a quadcopter (QC) in a previous autonomous operation project, and having both 
the physical quadcopters and a working control interface, produced a good appreciation of how they 
can fail. The built-in controller allows for stable hovering, movement from one location to another 
way point, and the ability to joystick control it without having to worry about stability. 
Whereas the built-in controller is robust to minor disturbances, a serious disturbance can come 
from, for example, flying past a building and encountering a wind gust that hits the Unmanned air 
vehicle (UAV) asymmetrically and thus flipping it into an orientation from which its built-in 
controller fails to recover. Even at a great height, the built-in controller fails to restore stable 
flight with disastrous consequences. A highly skilled human operator, however, running in 
manual mode, in which the pilot is solely responsible for stability, can save the quadcopter from 
crashing, in many cases, and in general is able to perform the kind 
of aerobatics that the built-in control is incapable of. 

While the quadcopter is in an orientation more or less perpendicular to the ground, it is falling 
like a brick and recovery must occur very rapidly in order to save the vehicle. Even if stable level 
flight is reestablished, it can still be falling with such speed that there is not enough time to avoid a 
collision with the ground. 

Consider the situation in which the quad copter is almost flipped over and is initially thrusting itself 
towards the ground even faster than gravity would do alone. We can learn to operate the rotors so that the 
copter reestablishes level flight. To avoid hitting the ground, we raise the quadcopter to an altitude that 
will allow for recovery after trial and error.  This is a helpful strategy with reinforcement learning, 
because it allows some unsuccessful attempts before hitting upon a good solution. The good solution 
updates the policy and later a good solution will be found sooner, and eventually, the recovery time 
decreases.  

Approved for Public Release; Distribution Unlimited.



One form of stability is found when the quad copter is fully inverted, and the rotors are going in 
the reverse direction to normal. For copter that is almost inverted anyway, achieving stable inverted 
flight is much faster than rotating back to upright flight. Our learner is able to find both of these solutions 
and the different solutions have recovery times and lost altitude as part of what is learned. The learned 
policy will have entries for multiple paths to stability but some of those paths will fail if there is not 
enough altitude. Now, we can evaluate, what decision to make given a policy that has multiple successful 
paths. The built-in controller requires upright flight. If we pass control back to the QC when it is 
inverted, it will crash very quickly. If there is not enough altitude to do a full rotation to upright 
orientation, the controller might try and crash anyway. With risk-aware planning, we can adjust the 
equality of choices to consider     the probability of success given the observed sensors, one of which is 
recording height above ground. This reformulation prefers the choice of stable inverted flight followed by 
stable inverted gain in altitude, until the probability of doing a 180-degree rotation is high, at which point 
it can perform the rotation to stable upright flight without crashing. 

2.1 ADAM-DMS Testbed Simulators 
We built our quad-copter simulator using off the shelf and open-source components. For 

Autopilot features, we adopted ArduPilot (https://ardupilot.org/) and a Simple Quadcopter 
Simulator which can be found at https://github.com/dollabs/Quadcopter_simulator.git. The 
ARDU pilot runs within Gazebo and is a high-fidelity simulation of the physical quadcopter that 
responds to winds and other disturbances. The simple simulator represents a similar quadcopter but 
is a crude simulation that has no support for wind disturbances, but which can be run many times 
real-time, and is thus useful for learning where a large number of episodes are necessary in order to 
learn good policies. 

ArduPilot is quite advanced, it is designed to operate in real-time and for flying real vehicles. It is this 
advanced nature of ArduPilot that made it difficult to speed up simulations with ArduPilot. To speed up 
our simulations and reinforcement learning, we adopted the ‘Simple QC Sim ‘; see Figure 2. 

2.1.1 The Ardu Gazebo simulator 
ArduPilot is autopilot control software and interfaces  with  other  components  such  as  

Ground Station, Planners etc. via the MavLink protocol. For our simulation, we adopted ArduPilot 
Software In The Loop ( SITL) implementation that interfaced with GazeboSim and the provided 
Robot Operating System ( ROS) based interface named Mavros (which implements the MavLink 
interface). We call the collection of these components the Ardu Gazebo Simulator as shown in 
Figure 1.   It has a valuable property, that it can be used to control our physical quadcopter which makes 
it easy to test that our learned controllers and monitors function correctly with the physical hardware. 

2.1.2 The Simple Quadcopter Simulator 
This simulator is a very simple implementation of a quad-copter,  developed  in  Python  and 

designed  for headless operation with support for time scaling which allows the simulator to run as fast as 
the processor can support. The implementation itself is comprised of few classes, namely Propeller, 
Quadcopter and Controller. The propeller class defines the thrust generated by a propeller at a given 
speed of rotation and specified size. The implementation of this class is based on equations as provided 
here: http://www.electricrcaircraftguy.com/2013/09/propeller-static-dynamic-thrust-equation.html. 
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The quad-copter class performs the simulations of the dynamics based on the state space solution of a 
quad-copter. The state space representation of a quad-copter model have been adapted from Quadcopter 
Dynamics, Simulation, and Control by Andrew Gibiansky and Quadrotor Dynamics and Control by 
Randal Beard. The state space is defined as 

X = [x,y,z,x_dot,y_dot,z_dot,theta,phi,gamma, theta_dot, phi_dot, gamma_dot] 

and state update over a period of time dt is provided by vode, t h e  Ordinary  Dif ferent ia l  
Equat ion  (ODE) solver from the SciPy library. The controller class is intended to provide point to 
point control to move the QC to a desired location in 3D space. It also has an optional Graphica l  
User  In ter face  (GUI) which we instantiate in a separate process and integrate with the sim via 
message passing. 

Figure 1 Ardu Gazebo Simulator 
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2.1.3 Plant Interface with Sim(s) 
Our reinforcement learning and other components work in conjunction with both simulators by means 

of a ‘plant interface’. 
To integrate both sims, we developed a MAVROS plant interface to communicate with Ardu Gazebo 

Simulator and a simple python module that implements the plant-interface to bind the Simple QC sim 
with our components, see Figure 3. 

In this way we can use the two simulators interchangeably which gives us the opportunity to choose 
between speed and accuracy. We had hoped that we could use this to speedup learning by starting out with 
the crude simulator to get to an initial level of flying competence and then switch to the Ardu simulator 
to improve accuracy of the learned policy. This is described later under transfer learning. Unfortunately, 
our period of performance ended before we could achieve this stretch goal. 

Figure 2 Simple QC Simulator 

Figure 3 Sim Connections 
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3. METHODS, ASSUMPTIONS, AND PROCEDURES

3.1 Architectural Overview 
The ADAM-DMS enabled QC is shown in Figure 4, of the Adam Learned Controller, the Ardu built-in 

Controller, the Monitor and the Big Switch. In this section, we give a brief overview of the ADAM 
components and their role and interaction with other components. 

In an ADAM-DMS enabled system, we track two mutually exclusive regions of operation. The normal 
operating region when the QC is under its default (Ardu Controller in our case) controller and the out-of- 
normal regions when the QC is controlled by the Adam Learned Controller. Whenever the QC slips out 
of the normal region, in the event of unexpected situations, and its default controller is unable to bring 
it back within normal operating specs, we transfer control to the ADAM-DMS controller which then is 
responsible for stabilizing the QC to a point where it is back within its normal operating region. After the 
QC’s state has switched from abnormal region to normal region, we hand back the control to QC’s default 
controller. 

Figure 4 gives a high-level diagram of the ADAM components as used in the quad-copter test-bed. We 
envision the same architecture working with little or no change with other, dissimilar, CPSs. 

3.1.1 The Monitor 
The monitor receives select sensor data from the CPS, for example, in the case of the quadcopter, the 

Inertial Movement Unit (IMU)  data, but in general it could be any of the sensor data that is available, some 
subset of which the learned monitor uses. 

Figure 4 High Level Architecture 

Approved for Public Release; Distribution Unlimited. 



7 

3.1.2 The Big Switch 

Big switch, as shown in Figure 4, is responsible for observing operating region of the quadcopter and 
handing over control to either the ADAM-DMS Controller or the built-in (Ardu) Controller. It 
receives input from the monitor that  indicates whether the CPS is in its safe operating region, which should 
usually be the case, but when the monitor detects that the CPS is no longer operating with its safe 
region of the state space, it causes the big switch to take control from the built-in controller and gives 
control to the ADAM-DMS controller. There are numerous complexities to the big switch in terms of 
how control can be switched without suffering transition effects. We will not discuss that further in this 
report because it is part of establishing an ADAM- DMS wrapper for a new CPS. The simplistic view of 
how it works is that actuation commands issued by the deselected controller are simply ignored, the 
problem comes when the controller doesn’t know that its commands are being ignored and yet it sees 
sensor data that indicates the results, not of its own actions, but of the other controller. The ADAM-
DMS controller is under our control, so we can signal that it has been deselected, but the built-in 
controllers are assumed to be black boxes and thus some effort needs to be put into avoiding sudden 
unwanted violent control actions when it suddenly regains control. 

3.2 Monitor 
3.2.1 ADAM Learned Runtime Monitor 

Figure 5a: Wind 0 Figure 5b: Wind 1 

Figure 5c: Wind 2 Figure 5d: Wind 3 

Figure 5: Safe and Unsafe regions under different wind conditions 
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Learning the run-time monitor is a two-step process with some engineering decisions involved in 
deciding how to explore the state space. 

The first stage involves forcing the simulator into a point in the state space so that we can see what 
happens when we let the built-in controller control the CPS in that established state. We give the 
simulator enough time to see if the quadcopter will crash. If it crashes, then that point in the state space 
is marked as bad otherwise it is marked as good. The data collected in this way forms the training data 
used for subsequent learning. It is important to notice the difference between the state space and the 
sensor data. We can put the device into a very specific state, but the sensors don’t tell us state, they tell 
us sensor readings. In order to be able to recognize the dangerous parts of the state space, in the second 
phase, we employ a simple deep learning training that learns to recognize bad state from the available 
sensor data. 

In the case of the quadcopter, we collect data for 
differing wind strengths as follows. We collect 
IMU data for different wind conditions, ranging 
from no wind to velocity of 4 m/s. For each wind 
condition, we programmatically perturb the QC by 
varying Roll and Pitch values of the QC for a 
moment and let QC’s Ardu Controller try and 
recover from it. The perturbation can be viewed as 
some- one taking a hammer and hitting the QC in 
such a way that it’s Roll and Pitch changes to the 
given value. For each perturbation, we collected 
IMU data points and the final condition of the QC 
which was CRASHED or recovered by Ardu 
Controller. 

Figure 5 shows some examples of collected data 
under different wind conditions. Notice that the Figure 6: Monitor Neural Network 
wind has little effect on the quadcopter, because 
the quad copter moves with the wind. 

For each wind condition, we varied roll and 
pitch from -40 to 40 and observed the final state of QC to be crashed or recovered under Ardu Control. 

In each of the Figures 5a – 5d involving different wind conditions, the green areas represent points in 
the state space where the Ardu controller could safely control the device. The red areas represent the 
points in the state space that inevitably lead to a crash. The Ardu controller will keep the QC within the 
green areas except for exceptional conditions where the quadcopter is perturbed by an outside event. 

The monitor that we produce from these data is a learned Neural Network (NN), see Figure 6 that keeps 
track of normal flight operational envelope based on IMU variables (linear acceleration and angular 
velocities). We developed a fully connected NN with 6 IMU variables as input and 1 variable as output. 
Output variable, CRASHED, is a Boolean and value true implies that the inputs indicate the the QC is in a 
state that will lead to a crash with the current controller. The Monitor will use this signal to switch over to 
the learned recovery controller. 

For each of the wind condition, we split IMU data into learn and eval datasets. We kept the size of each 
learn data set constant to 10000 out of 179k+ total data points. i.e. We used maximum of 5.5% of the data 
for learning. When splitting data, we randomly sampled data points while ensuring that distribution of 
output variable CRASHED is consistent with the complete dataset. Then we combined the learn data set 
for each wind condition into a single dataset and used it for learning. 
   We evaluated our learned model with the eval dataset and found our model to have accuracy of 91% 
or higher.  Evaluation results were: 

8 
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Eval results 
data file: eval.wind_0_imu.csv 
accuracy: 93.19% 

data file: eval.wind_1_imu.csv 
accuracy: 91.37% 

data file: eval.wind_2_imu.csv 
accuracy: 92.93% 

data file: eval.wind_3_imu.csv 
accuracy: 92.28% 

data file: eval.wind_4_imu.csv 
accuracy: 91.64% 

Total IMU Data points 
179572 ../wind_0_imu.csv 

203840 ../wind_1_imu.csv 

223979 ../wind_2_imu.csv 

241794 ../wind_3_imu.csv 

200867 ../wind_4_imu.csv 

Subset of data used for learning 
10000 learn.wind_0_imu.csv 

10000 learn.wind_1_imu.csv 

10000 learn.wind_2_imu.csv 

10000 learn.wind_3_imu.csv 

10000 learn.wind_4_imu.csv 

Learning sample distribution 
../../src/imu_analyse.py learn.wind_0_imu.csv Crashed / Not Crashed %: 56.87 43.13 

../../src/imu_analyse.py ../wind_0_imu.csv 

Crashed / Not Crashed %: 56.86911099726015 43.13088900273985 
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3.3 CLUSTERING 
3.3.1 Simultaneous Learning of State Space and Policies 

Natural and Cyber-Physical Systems, alike, deal with very large state-spaces, yet animals learn effectively with a 
small number of training episodes. Massive, annotated training corpora are not found in nature, neither is 
a massive number of episodes that would be infeasible for a physical living agent to perform. 

Dimensional reduction and state space limitation is a standard technique, but it requires 
human involvement to identify the important dimensions. What is important in the state space should be 
learned as the policies are being learned.  There will be parts of the state space that represents 
things that are happening in the world unrelated to any actions taken and which can safely be 
ignored, a n d  there will be parts of the state space that are not observable Partially Observable Markov 
Decision Process (POMDP) not a Markov Decision Process (MDP). A generalized learner must deal 
with real-world issues in which not all changes are the result of the robot’s action. 

3.3.2 Prior Work 
Generally, the number of actions is limited, they tend to be discrete, and the state space is limited 

Q-learning depends upon representing the state space and the action space. This usually involves discretizing
the state space and the action space too. Fine discretization leads to massive data structures and the need for
an unreasonably large number of learning trials, whereas a rough discretization lacks the precision to
capture important differences between places in the state space that map to a single entry whereas it
would be better if it were finer.

Being too rough, has a negative impact on the learning because it groups parts of the state space that 
should naturally be separate. This adds stochasticity of the problem domain in a bad way.  If in state 
x the action a can lead to two outcomes r0 or r1 it can be because the action is stochastic in its nature 
or because two distinct states have been captured as a single state, but if the state had been encoded as 
two separate states, the actions would be deterministic, or at least less stochastic.  If r0  1% of the time 
leads to success whereas r1 leads to disaster 99% of the time, the Bellman equation learns to avoid this 
action. While Deep Q-learning somewhat alleviates the problem by using deep-learning to estimate Q 
values, it brings other weaknesses that we discus later. Various approaches to representing 
continuous state space models have been proposed that use dueling Double-Deep Q-Networks (DDQN’s) to 
represent continuous state spaces. 
Reinforcement Learning converges on an optimal policy for an MDP. An MDP policy can be represented 
as a table. A table lookup will give for every position in the state space the optimal action to 
perform. 

The size of this table grows as the product of the number of discretized values of each dimension and 
the action dimension (the number of actions can be taken at any point). It would be infinite for continuous 
dimensions, but this can be discretized to avoid that problem while introducing others. Learning the 
optimal policy is achieved as a dynamic programming problem driven by the Bellman Equation [4]. 
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3.3.3 Clusters as compact representations of state space 
The approach is to learn to discretize the state space as is required by what is learned. The mechanism 

provides state space discretization even without any physical world correspondence. Because the 
state space grows only as it is needed. A learning system can represent the context space compactly 
which grows linearly with the number of contexts. High dimensional state spaces, which are normal in 
animal brains, and which cause state spaces to explode, no longer pose a scaling problem since each 
visited state is represented as a point in N-Dimensional space, which clusters with other points to form 
clusters representing contexts of which are only sufficient in number to support the fidelity required to 
represent the learning. 

3.3.4 Overview of the approach 
Rather than representing the immense Q-table directly, we frame the problem as contexts which 

are learned from values in the state. 
Contexts are built from states that have occurred in the learning system. Initially, there is nothing. 

As points in the state space are observed, they are added to a growing collection of points that are 
continually being observed. When an action is taken, observations indicate a state transition.  

<oldstate, action, newstate>   represents a point in a space that is clustered. The 
clusters grow, divide, and coalesce as new points are found. 

When the system observes a state, it maps to the cluster to which it belongs. From this, the actions 
and the new states can be read, just as they are in a conventional Q-table. 

With this approach, continuous state spaces map naturally to clusters whose boundaries represent 
where an action will have a different outcome. The precise boundaries of the important points in a 
continuous state dimension can thus be learned simultaneously with the learning of the policy. Many 
clusters will be formed where necessary to capture the important parts of the state space whereas almost 
no clusters are generated where nothing interesting happens. 

For any state, we can know where it is in a cluster and how close it is to a cluster boundary. 
This approach can be used equally well for goal-less exploration for schema learning and reward driven 

learning for reinforcement learning. The key computational part is the incremental clustering algorithm 
can be computed, using a graphics processing unit (GPU), to track many points in parallel. 

Initially we kept all points, which at some point takes up a lot of memory and takes longer, even for a 
GPU to compute. To solve this problem, when the number of saved states grows beyond a fixed number, 
we replace two points that are close together with a single point, set a position between the original two 
and which is given a count of 2. Later, in general, the points can be collapsed to form higher order points. 
As such we can place a parametric upper bound on the number of points stored with some loss of 
maximum attainable precision. 

In the following sections, we describe the clustering algorithm and how that allows non-convex inter- 
tangled clusters to be learned incrementally. 

3.3.5 Contexts
The algorithm builds upon previous development of a system called Grounded Reflective 

Adaptive Vision Architecture (GRAVA), that segments and labels aerial images in a way that attempts to 
mimic the competence of a human expert. 

The states achieved by the learning system provide multiple positive examples of a structure that we 
wish to model. The structures in question have one or more dimensions, and the available observations 
provide examples of the structure that enable us to model the location within the appropriate 
multidimensional space. One way of doing this is to model the structures as a probability distribution 
function (PDF). Consider two-dimensional space and the collection of positive examples shown in Figure 7. 

11 
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Given a set of data points it is possible to find a mean point and the principle and secondary 
eigenvectors.  In general, f o  r  a  n d i m e n s i o n a l  s p a c e ,  t h  e  r  e  a  r  e  n eigenvalues and Eigenvectors,  



We provide two dimensional examples in this report because they can be graphically illustrated on a two dimensional medium. In 
practice the number of dimensions is far larger than two. 
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Figure 7. The Need for Decomposition 
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Unfortunately, the resulting model is unsuitably crude since most of the points that it generates are not 
suggested by the data. The problem gets successively worse for higher dimensional spaces. 

We experimented with a number of standard clustering approaches such as K-means [1] and K-medoids 
but our use requires that the clustering be performed automatically on dynamically collected data and 
we needed an algorithm that was non-parametric. In particular, we should not have to specify the 
number of clusters or to specify typical values. We need to have the number of clusters and their com- 
position be determined automatically.  Furthermore, since natural clusters are often non-convex, we need 
an algorithm that can separate intertwined non-convex clusters. The algorithm described below depends 
solely on the notion of minimal description length and as such requires no parameters.  

Principle component decomposition is the interpretation of a set of data points into the component 
collections (five in this example) by analyzing the principal components of the interpretation space. 

The algorithm builds upon two earlier works. The first is a classification program developed by Wallace. 
Wallace’s [2] SNOB program worked by finding a minimum message length (MML) description of a set 
of points. The second is the practice of using principal component analysis (see [3]) to reduce the 
dimensionality of high dimensional problems so that the separate populations can be modeled. 

Our algorithm applies principal component analysis recursively to separate the collection into 
successively smaller clusters. At each point the criterion for separating a population is that it reduces the 
global description length of the original population. 

Below we present our algorithm for producing such principal component decompositions. 

3.3.6 A Statistical Model for Clusters 
Given an n-dimensional space Sn containing m points. we can interpret the points in this space as being: 

1.  Unrelated points.
2. Unrelated points.
3. All members of a single cluster.
4. Grouped into a number of clusters.
A model has a shorter description length if it reduces the amount of uncertainty about the values

of features. The best interpretation of the data points that constitute the collected state observations, 
therefore, is the interpretation that reduces the uncertainty about where the data points appear in the 
multidimensional space. 

The entropy of the collection data points in a data set is given by: 

(1) 

The lower bound Minimum Description Length (MDL) of a description that represents all of the points in 
the Sn is given by: 

         (2) 
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n 

In order to compute this theoretical description length, it is necessary to know the PDF for points in Sn. 
A data set doesn’t specify every possible point in the space. It provides a collection of representative points 
in the space. The job of interpreting the data set involves modeling the PDF. There are many choices for 
modeling a PDF. One model that is simple, predictive, and which often pertains to naturally occurring 
distributions is the Gaussian. 

The description of a Gaussian model consists of a mean and variance of the distribution < µ, σ2 >. For 
a set of points the Gaussian model can be fitted simply by computing the mean µ and the variance σ2. 
Given this characterization, for any point d we can compute the probability P(d) as follows: 

(3) 

where pos(d) is the position of the point d, E is the position resolution, µn is the n-dimensional mean, 
σ2 is the n-dimensional variance, and erf() is the error function. 

The choice of whether to consider the points in the data set as (1) unrelated individual points, (2) all 
members of the same model, or (3) divided into groups each of which is modeled, is to select the choice 
that yields the minimum description length. The interpretation task can therefore be characterized as 
dividing the data points in Sn into n proper subsets Ci,n such that: 

(4) 

(5) 

where ddl(Ci) is the description length of the distribution used to model Ci. The description of a point 
is divided into two parts. The first part identifies its position  in  the  space  (−log2P(d|Ci)) and the 
second part identifies to which collection it belongs (−log2P(d ∈ Ci)). 
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The statistical models chosen for Ci determine the size of 
the point descriptions. In order to specify the position of a 
point we choose a resolution E to be used uniformly since 
otherwise a point can have an arbitrary precision and its 
representation would be arbitrarily large. 

If the representation of a collection includes its mean 
position µ, the positions of the points in the collection 
can be described as distances δ from the mean. Figure 8 
shows the representation of a point within a collection Ci 
as an n-dimensional mean (n = 2 in this example) 
and a n-dimensional displacement.       So, any point d can be 
described as: 

(6) (6)

Given the original set of points it is possible to reconstruct the statistical model that was used to rep- 
resent it.  So, to communicate the collections, all that is required is the mean position represented to an 
accuracy of E. The points are represented as a description of which collection they belong to and the offset 
from the mean: < Ci, δ >. 

If all points are separate collections, each of a single point, the size of their offset will be 0 since all 
points reside at the collections mean. Since clusters and points have a one-to-one relationship, and the point 
description contains no information other than the collection assignment, the representation only requires 
the positions of the individual points in the collection. Collections that are represented as individual points 
in this way have no predictive value. 

If all points are members of a single collection the representation of a point doesn’t need to identify to 
which collection it belongs because there is only one collection. 

As the data points in a data set are divided up into smaller collections the description length of the 
individual points is reduced if the distribution that characterizes the collection is more predictive about the 
position of its component points than the distribution for the entire data set was. Any suitable statistical 
distribution can be chosen for a collection.  

3.3.7 Algorithm for Decomposition 
Having defined the criteria for an optimal division of the data points into separate models we are left with 

the task of defining an effective procedure for achieving such a division. To accomplish this, we developed 
an efficient algorithm that approximates a solution to Equation 4. Our algorithm, which we call “principal 
component decomposition” (PCD), attempts to divide the data by searching for dividing hyper planes 
tangential to the eigenvectors of the data. The intuition behind the algorithm is that the principal 
eigenvectors represent the dimensions with the greatest spread. The spread can be caused by a single 
phenomenon with a large variance, or it can be caused by more than one phenomenon distributed throughout 
the space. To distinguish these two cases, we compute the entropy of the data points as a whole and then we 
compute the sum of the entropies of the two collections formed by dividing the data points into two 
collections with a hyper plane perpendicular to the eigenvector. We do this for all possible cut points along 
the eigenvector. If all sums of divided collections yield a higher description length than the original 
combined collection the collection is not divided, otherwise the collection is divided at the place that yields 
the minimum description length. 
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Figure 9 Dividing the Data Points to Reduce Description

Figure 9 shows the 2-dimensional data introduced earlier. There are two eigenvectors. The lengths of 
the principal and secondary lines are the square root of the corresponding eigenvalues. 

The hyper plane that is used for cutting the data is perpendicular to the principal eigenvector.   The 
graph below shows the change in the total description lengths resulting from cutting the collection at any 
point along the eigenvector. 

A 2-dimensional hyper plane is a line. 
The eigenvectors are computed from a co-variance matrix, so the eigenvalues are variances, and the square root of the 
eigenvalues are standard deviations. 
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When the change is greater than zero, cutting makes the description length larger. In this case the total 
description length is significantly reduced by cutting the collection at the point where the “division” line 
is drawn. This point can be seen as the minimum point in the entropy curve. 

This procedure is repeated for each eigenvector of the collection starting from the eigenvector that 
corresponds to the largest eigenvalue until either a division occurs or until all eigenvectors have been 
tried. Once a collection has been split the algorithm is applied to each of the newly divided collections. 
Eventually there are no collections of points that split. The algorithm consists of two parts CHOP and 
MERGE. 

CHOP looks for places to divide a collection of data points into two collections by finding a dividing 
hyper plane as described above.   CHOP thus produces two collections that have the property that if 

collection C0 is divided into C1 and C2, C0 = ∪{C1C2}, and DL(C0) > DL(C1) + DL(C2).  MERGE finds 

two collections of data points (say C1 and C2) that have the property that DL(∪{C1C2}) < DL(C1) + 

DL(C2). If the collection of data points is non-convex CHOP can cause some points to become separated 
from the collection to which they naturally belong. MERGE re-associates points severed in this way with 
their natural collection. The advantage of this approach is that it is possible to construct non-convex 
collections of data points. 

First, we describe the algorithm for CHOP(S) that chops the collection into separate collections. 

CHOP(S): 

1. S is a set of n-dimensional data points. Let m̄  be the mean and C be the co-variance matrix.

2. Let v1 . . . vn and λ1 . . . λn be the eigenvectors and corresponding eigenvalues, respectively, sorted
into decreasing order of eigenvalue.

3. For each eigenvector vi starting with v1 (the one with the largest eigenvalue—the principle eigenvec- 
tor), search for the best place to cut the data points into two collections as follows:

a) Establish the cutting hyper plane. The cutting hyper plane is the plane that is perpendicular to
the eigenvector vi. We arbitrarily choose the hyper plane that passes through the mean m̄ .

(7)
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where r¯ is a point specified as a row matrix. 

This is the perpendicular form of the equation of a hyper plane. This representation is 
convenient because it permits fast calculation of the distance of a point from the hyper plane. 
For any point d the distance from the plane in equation 7 is given by n − dvi. 

b) Sort the points in S in order of distance from the cutting hyper plane. Since the hyper plane
cuts through the mean, approximately half of the points will be on one side of the hyper plane,
with the rest on the other side. Approximately half of the points, therefore, will have a negative
distance from the plane. The distance is not the absolute distance from the plane, it is how far
to move along the normal to the hyperplane to reach the plane in the direction of vi.

c) Let A be the sorted list of data points.

d) Let B be an empty list.

e) Let the cutPoint = 0 and position = 0

f) Now we simulate sliding the cutting hyperplane along the eigenvector from one end of the set
of data points to the other, by taking points one at a time from A, putting them into B, and
computing the description length of the two collections as follows:

For each point dj in A do:

i. Remove dj from A.

ii. Add dj to B.

iii. Increment the position (position = position + 1).

iv. Compute the new description length as newDL = DL(A) + DL(B).

v. If newDL < minDL set minDL = newDL and cutPoint = position.

g) If cutPoint > 0 divide the data points S into two collections S1, and S2 at the position indicated
by cutPoint. Then recursively apply CHOP to both sub-collections to see if further chopping
can be performed. Finally return the complete list of chopped collections:

return append(CHOP(S1), CHOP(S2))

4. At this point, all of the eigenvectors of S have been searched for chop points, and none have been
found. The data points cannot be represented with a smaller description length by chopping along
an eigenvector so return the list of collections as the single collection S:

return list(S)

The nature of the way the collections are divided up results in some groups of data points being divided 
unnecessarily. This can be seen in the second and third iteration for this example data. 

In the first iteration (Figure 10 top) one point is chopped off the right most collection. Later, in the fifth 
iteration (Figure 10 bottom right) two points are completely severed, so as to be small, disembodied 
collections of points (one point and two points respectively in this example). These accidentally severed 
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fragments are corrected in phase two of the algorithm—the merge phase. 
In phase two of the algorithm (MERGE) pairs collections of points are checked to see if the description 

length would be reduced if they were to be merged. If the description length would be reduced by merging 
them they are merged. This is repeated until no more useful merges can be found. 

MERGE(C): 
If C is a collection of clusters resulting from the application of CHOP to the original data, the merge 

phase proceeds as follows: 

1. For each pair of clusters Ci ∈ C and Cj ∈ C check to see if the description length can be reduced by

merging them (DL(Ci) + DL(Cj) > DL(Ci ∪ Cj)).

2. If no merge candidates are identified in (1) the merge phase is complete.

3. Produce C1 by replacing each pair of mergeable clusters with their merged union.

4. Repeat steps 1, 2, and 3 on the new set of clusters.

In the given example, after 16 iterations the division of the data points in to separate collections is complete. 
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Figure 11 shows the final result of decomposition. 
The algorithm described above has a number of 
interesting characteristics: 
1. PCD produces a structural description of the data

points that is an approximation to a global MDL
description of the points.

2.

3.

4.

Each remaining collection of points can be represented
efficiently by the statistical model chosen for it since if
the collection could not be represented well it would
have been divided.
Each collection is a good candidate for Principal Component
Analysis (PCA) modeling because of (2).
The algorithm can be implemented efficiently and can
produce good decompositions very quickly using a GPU
implementation. The number of “chop” and “merge”
operations that are performed in producing a
decomposition is very small compared to the number of points.

Figure 11: Example Result of Principal 
Component De- composition 
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5. The algorithm can produce non-convex collections.

The final point (5) is an interesting feature of the algorithm that is not obvious from the example given 
above. Non-convex collections cannot be disentangled by using the “chop” operation alone, but inclusion of 
the “merge” operation allows two convex collections to be joined to produce a non-convex merged 
collection. 

To demonstrate this capability, we 
generated a set of data points by picking points 
randomly along two interlocking ’C’ shapes in a 
ying-yang configuration. Even though the data is 
quite dense and intertwined the algorithm 
manages to “chop” it apart and then “merge” 
the severed parts back together. Figure 12 
shows the first iteration on the               data. 

Figure 12: Intertwined Non-Convex Shapes 

Figure 13: Curved example: CHOP 
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The second and third iterations chop the data down further as shown in Figure 13. 
Later iterations merge the severed portions back into their rightful places as shown in Figure 14. 
The final decomposition of the data is shown in Figure 15. 
It should be noted that separating clusters in a 2D space is harder than in a higher dimensional space 

because higher dimensional spaces are naturally sparser. This is a similar observation to that used to good 
effect in support vector machines. Sometimes, high dimensionality is a benefit and not a problem. 

We have developed an approach to dynamically constructing a state space map by decomposing complex 
models into collections of simpler models. This forms a backbone mechanism for interpreting learning 
policies. 

The algorithm has some important features: 
1. The algorithm supports non-convex shapes.
2. The algorithm uses the MDL criteria for interpretation.
3. The algorithm doesn’t over fit. The algorithm doesn’t try

to circumscribe a set of data points. It simply tries to
separate collections of points by finding the best place to cut.

4. The algorithm is fast because it only searches for cut points
along eigenvector dimensions.

5. The algorithm is non-parametric which removes one more
barrier to automation.

The important observation from the standpoint of learning a 
recovery policy using a reinforcement learning approach, is that 
instead of having a static huge representation of a discretized state 
space, we have a dramatically smaller number of clusters, each 
one of which represents something that is important to the policy 
being learned.  If more divisions are necessary, the clusters divide 
naturally as new points are learned. 

Figure 14: Curved example: MERGE 
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3.4 LEARNED RECOVERY CONTROLLER
Given the above apparatus, learning the recovery controller simply involves initializing the 

simulated  quadcopter outside of the safe operating configuration such as is shown in Figure 16. 
Regardless of the shape of the region, we learn by picking red points on the grid that are adjacent to a 

green node and run episodes that succeed if the quadcopter achieves a green area, and which fails if the

Figure 15: Final Decomposition of Example Non-Convex Data quadcopter crashes. 
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quad-copter crashes. We have a parameter to decide to consider the episode failed if it has not 
achieved the green zone before a fixed number of steps. Fortunately, for this scenario, the quad-copter 
crashes rather quickly in the absence of a good solution. When a policy has been learned for the first 
point, we restart with another point close to the first, usually adjacent, and run the learning again.  
Finding a solution to the first case takes a long time, but subsequent points, which are close in the state 
space, are learned fast because they differ only slightly from the previous case. Eventually, this results in 
a policy that can recover from any quad-copter configuration. Note, that in general, we would 
expect some parts of the state space to be unrecoverable and in those cases, we should develop a 
separate run-time monitor for cases where the learned controller has been unable to find a policy that can 
recover it. Maybe, we should have three colors for the zones: Green for the cases where the built-in 
controller has no problem; Orange, where the built-in controller cannot control the CPS, but the learned 
controller can recover it; and Red where neither the built-in controller nor the learned recovery 
controller are able to regain control. This latter category would potentially give designers possibilities for 
minimizing damage. Since our quad-copter scenario did not have any such regions, given sufficient 
altitude, we did not implement a second monitor for unrecoverable configurations. 

It should be noted that the learning time was of the order of weeks, but the result 
was a controller capable of reestablishing control, albeit with some crazy looking maneuvers. 

Figure 17 shows the start of an episode. The quadcopter starts up on the ground and climbs to a preset 
altitude. We tried instantiating the quadcopter already at altitude, but the built-in controller couldn’t 
control the vehicle starting from rotors off at altitude. In order to make the scenario realistic in terms of 
QC start, rotors running at the correct speed to maintain altitude, we always start the episode on the 
ground and fly up to the desired altitude and then perturb the orientation of the QC and let the learner 
attempt to recover from it.  We used the same strategy for learning the safe configuration for the monitor. 
It adds a few seconds to the startup of an episode, but it guarantees that the QC state is realistic at the start 
of each episode. 

Once stable at the desired altitude, the quadcopter is perturbed into the selected Red configuration, 
as shown in Figure 18. In this case we have selected an orientation that is the least necessary for the built-in 
controller to fail. It is adjacent to a Green node in the safe/unsafe map. Although this configuration seems 
benign to the naked eye, it is a point at which the quadcopter begin to fall fast. The built-in controller 
never recovers from this orientation and the quad-copter crashes quickly. In this run, we are learning the 
recovery controller, and early in the training all episodes fail.
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Figure 16: Circumnavigating the dangerous (red) region 

Figure 18 shows the quadcopter just a fraction of a second after the previous one. 
And finally, Figure 19 shows the quadcopter inverted on the ground after a crash. 
It takes several seconds to restart after each episode and in early episodes, all episodes end in failure, 

with some amusing twitching of the falling quadcopter as it tries actuation commands that might save it 
without success. It would be easy to believe that the approach wasn’t working but after several days of 
trials it produces a success. Success is output into the log, so we can see that it happened, but you must be 
in front of the screen to see it, and that is implausible. 

As is normal with reinforcement learning, after the first success, subsequent successes begin to occur 
more frequently and finally, they begin to occur frequently enough that watching the screen for a few 
minutes will demonstrate a recovery. 

The nature of the early recoveries is laughably haphazard, and the quadcopter can be seen flailing 
about before recovering. Over time the learned recovery controller learns to recover efficiently with few 
deviations from an optimal recovery. 

3.5 TRANSFER LEARNING 
Our last experiment was to try transfer learning from a policy learned on the crude but fast simulator 

and used as a starting point for the Gazebo simulator. Time ran out on our experiment before we could 
claim success, but the reasoning for this is worthy of discussion. 

The idea behind transfer learning was originally to solve the question of how we could trust a recovery 
controller that was learned in simulation and which we dare not try with a physical CPS because if it 
doesn’t work, bad things will happen, expensive bad things! 

The thought was that if we learned the best that we could from a good simulator, there would inevitably 
be differences when transitioning to the learned controller on the physical platform. If those differences 
were largely parametric, we could compare the results of actuation commands with what was expected 
and make parametric adjustments so that we could have faith in the learned controller.  In many cases, 
these parametric adjustments could be automated and could occur without ever putting the CPS in danger. 
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Figure 17: Starting a learning run: Takeoff 

Figure 18: Establishing a "Red" configuration at the start of an episode 
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Consider the quadcopter. If the thrust required to maintain level hovering in the simulator is slightly 
different from the physical controller, we can put the physical quadcopter into level flight and upon 
switching to the learned controller it would observe a gradual increase or decrease in altitude and could 
adjust the rotor speeds accordingly. Of course, we want to do this in a way that is general and does not 
depend upon the specific platform. One approach is to have the learned controller "watch" the built- in 
controller during normal use and continually update its model, so that when the learned controller is 
invoked, it will be perfectly adjusted. This is an especially good idea when the platform is likely to 
change during its lifetime. In real CPS systems, such as the Mars Spirit rover, a wheel became unusable, 
others CPSs just degrade gradually over time.  This kind of wear can affect jet engine performance, wheel 
stiffness, and may, in some cases, change after a maintenance event, like adding tire pressure! It is clear, 
that this kind of reparameterization should take place continuously at run-time, and that the controller 
should be able to self-diagnose if it is unable to self-adjust. That way, we can be assured that the recovery 
controller can be trusted, on the physical system, despite have been trained on a simulator. 
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Figure 19: Flight deteriorates rapidly and accelerates towards the ground. 

Figure 20: All early episodes end in a crash. 
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4. RESULTS AND DISCUSSION 

When the monitor detects the "out of the green" configuration and switches to the learned recovery
controller, the learned recovery controller uses the learned policy to select actuation commands after receipt 
of new sensor data. The actuation commands are to set the four rotor speeds that can range from a 
negative value, representing reverse thrust to a positive value representing normal thrust.  We used a 
fixed period for the sample and respond cycle. When new sensor data arrives, it is used to lookup the 
possible actuation commands and the quality. One is selected and the loop waits a few milliseconds 
before its next iteration. 

Figure 21 shows a successful recovery from a perturbation. It was an easy case, so not too much 
altitude is lost in recovering. 

Severe cases, however, take much longer to recover. 
Figures 22, 23, 24, and 25 show the recovery from a completely inverted case. It gathers a lot of 

downward speed before being able to recover an upright configuration.  Even when upright, it takes a 
while for the thrust to compensate for the downward momentum achieved during the first phase of the 
fall and during the rotation to upright configuration. Finally in the last image (Figure 25), the 
quadcopter has recovered, it proceeds to regain its altitude and pass control back to the built-in controller.

Figure 21: Fast recovery from an easy case. 
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4.1 Estimates of Technical Feasibility 
With the clustering approach to state space discretization, we believe that the approach is capable 

of handling complex cases, especially when the approach is optimized to take full advantage of 
massive parallelism. The side of the state space is a function of the complexity of the problem rather than 
on the dimensions of the sensors. 

We believe that the approach is general enough to support a wide range of CPS types. We made an 
effort to not bake in any knowledge of the quadcopter. The plant interface to the simulator, of 
course, needs to enumerate what actuation commands are available for the reinforcement learning 
(RL) learner to try and simulate what sensor data is available. We believe that recovering an imminent 
nuclear reactor melt down would fit in this model. 

There will always be some domain specific knowledge, such as those just mentioned, but the core 
approach is general. 

The difficulty with implementing the big switch will be different for every CPS, and in some cases the 
transition back to the built-in controller might have to be phased in. Wrapping black boxes is hard! Of 
course, new systems that are designed for this kind of architecture would be able to design in hand-offs of 
control that are less complicated. 

The period of the sense act loop will vary from system to system as will the frequency of availability 
of sensor data. For our case, using ROS and RabbitMQ as the means for communicating sensor data 
introduces some lag in response, which is not ideal, but with trial and error, we were able to find a 
period that worked well enough. Arguably, a faster response time would make the recoveries less jerky, 
especially when things are changing rapidly. A quadcopter that is spinning out of control moves a lot in 
a few milliseconds. 

4.2 Open Issues 
As described above, we didn’t get the chance to complete our experimentation of transfer learning, 

which was disappointing. We hope to be able to find opportunities to complete this step, perhaps as 
an internal research and development (IR&D) effort. 

Figure 22: Recovering from an almost inverted perturbation
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Figure 24: Falling fast 

Figure 23: Recovered orientation
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5. CONCLUSIONS
Whereas some failure modes will always be unrecoverable, our experiments have shown that we can

use good simulators to learn fast run-time monitors. The monitors are fast because they depend upon a 
fairly simple deep neural network. These monitors, even in the absence of recovery can be useful for 
designers of new CPSs. They provide a sensor that says that the CPS is operating out of its safe region. 

The big switch/learned recovery controller provides for automatic recovery from serious situations. One 
can imagine a car that takes control when it detects a skid on ice in order to regain control as efficiently as 
possible before handing control back to the human or autonomous operator. Similarly, automatic recovery 
from stalls and spins could be built into planes. These, however, are skills that drivers and pilots are 
expected to learn and arguably don’t need to have automated. Twin engine planes give their owners 
confidence that in the event of an engine outage, the plane can be flown on a single engine. A lot of 
accidents occur when the single engine failure occurs because the owners are not sufficiently experienced 
in flying in the single engine mode in which thrust is asymmetric. 

Undoubtedly the most convincing use cases involve CPSs whose complexity is beyond what a human 
can reasonably be expected to manage.  Electrical power grids, power plants, and high-tech aircraft come 
to mind as candidate targets for this approach.  As systems become more complex, the need for this kind of 
run-time monitoring and recovery controllers will continue to grow. 

32 

Figure 25: Avoided impact 
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7. LIST OF SYMBOLS, ABBREVIATIONS AND ACRONYMS

Acronym Definition 
ADAM-DMS Assured Autonomy using Dynamic Monitors and Simulation 
CPS Cyber-Physical System 
DDQN Double Deep Q-Network 
GPU Graphics Processing Unit 
GRAVA Grounded Reflective Adaptive Vision Architecture 
GUI Graphical User Interface 
IMU Inertial Motion Unit 
IR&D Internal Research and Development 
LEC Learning Enabled Component 
MDL Minimum Description Length 
MDP Markov Decision Process 
MML Minimum Message Length 
NN Neural Network 
ODE Ordinary Differential Equation 
PCA Principal Component Analysis 
PCD Principal Component Decomposition 
PDF Probability Density Function 
POMDP Partially Observable Markov Decision Process 
QC Quadcopter 
RL Reinforcement Learning 
ROS Robot Operating System 
SITL Software In The Loop 
SNOB A clustering algorithm due to C. S. Wallace based on a minimum description length formulation. 
UAV Unmanned Air Vehicle 
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