
Contract No. HQ0034-19-D-0003 UNCLASSIFIED WRT-1016

Task Order No. 0620 UNCLASSIFIED Report No. SERC-2021-TR-009
i

FINAL TECHNICAL REPORT SERC-2021-TR-009
WRT 1016

REDUCING TOTAL OWNERSHIP COST (TOC) AND
SCHEDULE

Date: JANUARY 17, 2021

PRINCIPAL INVESTIGATOR: DR. BARRY BOEHM, UNIVERSITY OF SOUTHERN CALIFORNIA

Sponsor(s): Office of the Under Secretary of Defense for Research & Engineering

Contract No. HQ0034-19-D-0003 UNCLASSIFIED WRT-1016

Task Order No. 0620 UNCLASSIFIED Report No. SERC-2021-TR-009
ii

DISCLAIMER

Copyright © 2021 Stevens Institute of Technology, Systems Engineering Research
Center

The Systems Engineering Research Center (SERC) is a federally funded University
Affiliated Research Center managed by Stevens Institute of Technology.

This material is based upon work supported, in whole or in part, by the U.S. Department
of Defense through the Office of the Assistant Secretary of Defense for Research and
Engineering (ASD(R&E)) under Contract [HQ0034-19-D-0003, TO#0620].

Any views, opinions, findings and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views of the United
States Department of Defense nor ASD(R&E).

No Warranty.
This Stevens Institute of Technology and Systems Engineering Research Center Material
is furnished on an “as-is” basis. Stevens Institute of Technology makes no warranties of
any kind, either expressed or implied, as to any matter including, but not limited to,
warranty of fitness for purpose or merchantability, exclusivity, or results obtained from
use of the material. Stevens Institute of Technology does not make any warranty of any
kind with respect to freedom from patent, trademark, or copyright infringement.

This material has been approved for public release and unlimited distribution.

RESEARCH TEAM

Name Org. Labor Category
Barry Boehm USC Principal Investigator
Pooyan Behnamghader USC Post Doctorate Researcher
Michael Shoga USC Graduate Research Assistant (PhD)
Iordanis Fostiropoulos USC Graduate Research Assistant (PhD)
Jincheng He USC Graduate Research Assistant (PhD)
Elaine Venson USC Graduate Research Assistant (PhD)

Contract No. HQ0034-19-D-0003 UNCLASSIFIED WRT-1016

Task Order No. 0620 UNCLASSIFIED Report No. SERC-2021-TR-009
iii

TABLE OF CONTENTS

Disclaimer .. ii
Research Team .. ii
Table of Contents ... iii
List of Figures .. iv

List of (Tables, Sequences) ... iv

Executive Summary .. 1

Research Overview ... 1
 Software Qualities Understanding by Analysis of Abundant Data (SQUAAD) 2

1.1.1 Purpose .. 2
1.1.2 On-going Work .. 3

 Categorizational Study on Characteristics of Commits and Their Impacts on Software
Quality ... 4

1.2.1 Purpose .. 4
1.2.2 On-going Work .. 5

 Preliminary Study on Software Quality Interrelationships in Open-Source Software 6
1.3.1 Purpose .. 6
1.3.2 On-going work .. 6

 Source Code as a Graph Learning Task-Agnostic Representations 7
1.4.1 Purpose .. 7
1.4.2 On-going work .. 7

 The Cost of Developing Secure Software ... 7
1.5.1 Purpose .. 7
1.5.2 On-going work .. 8

Conclusion ... 10

Project Timeline & Transition Plan .. 10

Appendix A: Acronyms ... 11

Appendix A: List of Publications from Task (Sep 2019 – Jan 2021) 11

Appendix B: Cited and Related References Error! Bookmark not defined.

Contract No. HQ0034-19-D-0003 UNCLASSIFIED WRT-1016

Task Order No. 0620 UNCLASSIFIED Report No. SERC-2021-TR-009
iv

LIST OF FIGURES

Figure 1. History of Commits Over Time ... 4

Figure 2. Percent of Commits Over the Number of Categories 5

Figure 3. Synergies and Conflicts Between System Qualities ... 6

Figure 4. Impact of Security on TOC Error! Bookmark not defined.

LIST OF (TABLES, SEQUENCES)

Table 1. Security Ratings - One Line Summary .. 9

Table 2. Security Rating - Detailed Description ... 9

Contract No. HQ0034-19-D-0003 UNCLASSIFIED Report No. SERC-2021-TR-009
1

EXECUTIVE SUMMARY

An essential driver for reducing Total Ownership Cost (TOC) and schedule is maintainability. This
system quality (SQ) is key to reducing 75% of most systems’ life cycle costs. Also, Maintainability
plays a key role in other top-level SQs: Life Cycle Efficiency, Dependability, and Changeability.
Dependability needs Maintainability to relate Reliability to Availability; and Changeability needs
Maintainability to address new system challenges and opportunities.

USC developed a tool called the Software Qualities Understanding by Analysis of Abundant Data
(SQUAAD) for use in analysis of software technical debt1. SQUAAD has recently been extended
to identify additional sources of technical debt by using uncompilability (computer code that fails
to convert into machine instructions) as a symptom of careless development and analyzing
software quality evolution over sequences of uncompilable commits. A commit is an event where
computer code is modified, returned to the software code repository, and compiled (converted into
machine instructions).

Another research focus was on the categorization for software commits and investigating how
multiple-categories in a commit impacts software quality. Uncompilability increased when a
software commit had more than two categories of change indicating a reduction in software
quality. Work continues in refining categorization and training models to automate categorizing
commits.

Research was also done on the identification of synergies and conflicts between system qualities.
Using computer code from open-source Apache projects and the CAST tool, a correlation analysis
was done to detect synergistic and conflicting qualities across ten different quality metrics. This
research can provide a better understanding of what trade-offs will need to be made and the costs
associated with ensuring levels of different qualities for the intended system.

A new security cost driver has been developed for COCOMO II and for later use in the emerging
definition of COCOMO III. This involved surveys of the Linked-In security community,
presentation and discussion of the proposed security cost driver rating scale at the SERC Doctoral
Forum, and an experts’ workshop at the 2019 annual COCOMO Forum, and an experts’ Delphi
consensus of the cost multipliers for each of the rating scale levels. This work will result in
understanding how the total cost of a software system can be reduced with the appropriate
allocation of resources in the early stages of the software project, thus reducing TOC.

RESEARCH OVERVIEW

The WRT-1016 project proposed to research and develop systems and software technology that
enables future DoD mission-critical systems to more cost-effectively cope with increasingly
challenging threats. It proposes to address future challenges in the context of the four SERC
Research Council roadmaps. Digital Engineering addresses Life Cycle Maintainability and DoD
Systems of Systems Interoperability; Security is extended to include Safety; AI/Autonomy and

1 Technical debt a concept in software development that reflects the implied cost of additional rework caused by
choosing an easy or lower quality solution now instead of using a better approach that would take longer.

Contract No. HQ0034-19-D-0003 UNCLASSIFIED Report No. SERC-2021-TR-009
2

Velocity are also directly addressed.

The project also builds on the Systems Quality Ontology developed in SERC RTs 46 through 209,
along with anticipatory technology for improving Maintainability during development, such as
Maintainability Opportunity Trees, technology for identifying a software system’s technical debt
such as the Software Qualities Understanding by Analysis of Abundant Data (SQUAAD), and
addressing non-technical sources of technical debt. These have led to their experimental use in
Navy applications and discussions and demonstrations for FFRDCs such as MITRE for SQUAAD
and Aerospace for natural language processing to determine root causes of software problem
reports, and our lead participation in the recent SERC workshop on the use of Continuous
Development and Deployment (CD&D) on future DoD systems and systems of systems. A recent
example of SQUAAD scalability was the analysis of technical debt increases and decreases of 1.3
billion lines of code across 5 to 15 years of software development and maintenance of Google,
Apache, and Netflix code. More details on SQUAAD and other methods and tools needed for
DoD systems are provided in our recently-published Wiley Systems Engineering journal article
[1].

Discussions with MITRE and other potential users indicated that a version of SQUAAD based on
a private cloud would be needed for classified work, and user-interface features developed for use
by non-specialists. This will be a main task, along with identifying potential early users,
supporting their use, and addressing their usage suggestions. Other tasks include research and
experimentation in extending SQUAAD to identify additional sources of technical debt or
deficiencies in security, safety, autonomy, interoperability, and velocity.

Considerable additional research and experimentation are needed to address the ontology and tools
support for assessing deficiencies in security, safety, autonomy, interoperability, and velocity, and
to identify synergies and conflicts among the additional system qualities. This were to begin in
optional follow-on research.

 SOFTWARE QUALITIES UNDERSTANDING BY ANALYSIS OF ABUNDANT DATA (SQUAAD)

1.1.1 PURPOSE

Dr. Pooyan Behnamghader and his team carried out research and experimentation in extending
SQUAAD to identify additional sources of technical debt by using uncompilability (computer code
that fails to convert into machine instructions) as a symptom of careless development and
analyzing software quality evolution over sequences of uncompilable commits. The results of this
research are recently accepted for publication at the 20th IEEE International Conference on
Software Quality, Reliability, and Security (QRS) [2] as a regular paper in the research track. This
work consists of the following contributions:

1) a methodology for identifying and assessing software quality change over sequences of
uncompilable commits,

2) a taxonomy for categorizing commit purpose including different aspects of software
maintainability,

Contract No. HQ0034-19-D-0003 UNCLASSIFIED Report No. SERC-2021-TR-009
3

3) a dataset of 914 commits tagged using this taxonomy,

4) findings on the relationship between commit size and purpose, and

5) results on the incidence of commit purpose over uncompilable commits.

A joint workshop was held with CAST, Inc. to explore the integration of USC and CAST qualities
assessment capabilities. Data has been collected using SQUAAD and CAST tools, including CISQ
Common Weakness Evaluations, to be used in publications by Ph.D. and MS students at USC. A
half-day tutorial [3] was held at the 24th annual Aerospace Corp. Ground System Architectures
Workshop (GSAW) to summarize current research and operational results from performing large-
scale data analysis on large-scale software technical debt using SQUAAD as an example. A poster
was presented on architecture design for SQUAAD and its applications at the 2019 SSRR [4]. A
paper was published on SQUAAD results in the proceedings of the IEEE Empirical Software
Engineering and Measurement conference [5]. Analysis was also presented on the latest results
conducted by SQUAAD at the 34th Annual Forum on COCOMO and Systems and Software Cost
Estimation and USC CSSE 28th Annual Research Review.

1.1.2 ON-GOING WORK

Figure 1 below shows SQUAAD's analysis of the coevolution of SLOC (an indicator of size) and
Code Smells (an indicator of technical debt) in the core module of an open-source software system
over a period of 9 years. The analysis includes more than 1200 software changes (commits), and
all contributions of each developer are denoted by a unique color. None of the two trends increases
monotonically over time, however, the size analysis shows less variation. The ratio of commits
that increase the size to the ones that decrease size is 3.00. The ratio for the number of code smells
is 1.45.

Contract No. HQ0034-19-D-0003 UNCLASSIFIED Report No. SERC-2021-TR-009
4

The SQUAAD tool is being extended to data mine large open-source computer code to investigate
quality categorization and software quality interrelationships.

 CATEGORIZATIONAL STUDY ON CHARACTERISTICS OF COMMITS AND THEIR IMPACTS ON
SOFTWARE QUALITY

1.2.1 PURPOSE

Mr. Jincheng He’s research with respect to WRT-1016 is creating a purpose-oriented
categorization for software commits and investigating how different types of commits impact
software quality. A commit is an event where computer code is modified, returned to the software
code repository, and compiled (converted into machine instructions). The commit categories are
Bug Fix, Build, Documentation, Feature Add, Maintenance, and Refactoring. The investigation
looks at the number of commit categories in a single commit and assess if the commit broke the
software (called a Breaker) thus delaying development and increasing TOC.

Figure 1. History of Commits Over Time

Contract No. HQ0034-19-D-0003 UNCLASSIFIED Report No. SERC-2021-TR-009
5

Developing software with the source code open to the public is very common; however, similar to
its closed counterpart, open source has quality problems, which cause functional failures, such as
an unsatisfactory user experience, and non-functional failures, such as long response time.
Previous researchers have revealed when, where, how, and what the developers contribute to
projects and how these aspects impact software quality. However, there has been little work on
how different categories of commits impact software quality. To improve the quality of open-
source software, thus reducing total ownership cost, Mr. He is creating a purpose-oriented
categorization for software commits and investigating how different types of commits impact
software quality. After identifying these impacts, a new set of guidelines will be established for
committing changes, thus improving the quality.

1.2.2 ON-GOING WORK

Figure 2 shows one aspect of how multi-purpose commit categories impact software quality (with
respect to compilability - computer code that fails to convert into machine instructions). Neutral
(compilable) commits are less likely to have multiple purposes while the counterpart, Breaker
(uncompilable) have multiple purposes. From this figure, we conclude that multi-purpose commits
are more likely to introduce uncompilable commits (grey bars in the figure), thus negatively
impacting software quality and lengthening development time.

After refinement of the categorization, the data is being utilized to train prediction models. For
instance, one model is being trained with the purpose of a commit and the commit’s meta-data (for
example, commit message) to automate tagging commits. Another model is being trained with the
purpose of the commit and quality metrics to predict the potential impact on quality.

Additionally, the plan is to further calibrate the commit categorizations based on the code changes
to reduce the ambiguity and overlap between categories.

There is also a web application under development to visualize the above works, data, and to run

Figure 2. Percent of Commits Over the Number of Categories

Contract No. HQ0034-19-D-0003 UNCLASSIFIED Report No. SERC-2021-TR-009
6

the analysis.

 PRELIMINARY STUDY ON SOFTWARE QUALITY INTERRELATIONSHIPS IN OPEN-SOURCE
SOFTWARE

1.3.1 PURPOSE

Mr. Shoga’s research with regard to WRT-1016 focuses on the identification of synergies and
conflicts between system qualities. This information can help stakeholders to identify potential
conflicts where overemphasis of a particular quality can have strong negative impacts on other
qualities, thus delaying development and increasing TOC. The research can further provide a better
understanding of what trade-offs will need to be made and the costs associated with ensuring levels
of different qualities for the intended system. A literature study identified current approaches for
handling quality interrelationships and the gaps in those approaches [6]. The presentation at the
2021 CSSE ARR provided results of the mapping study and an empirical study showing an
approach using the CAST tool to assess quality and correlation analysis as a basis for identifying
quality synergies and conflicts.

1.3.2 ON-GOING WORK

Figure 3 depicts the Spearman correlation coefficient matrix for Apache projects. Statistically
significant correlations are identified with single asterisked cells for p-values below 0.05 and
double asterisked cells for p-values below 0.01. The magnitude of the correlation coefficient
indicates the strength of a relationship between the variables. Positive values indicate potential
synergies while negative values indicate potential conflicts between the quality metrics. For
instance, Robustness-Security and Security-CISQ Reliability are two potential synergies with high
correlations. SEI Maintainability - Security and SEI Maintainability - CISQ Performance
Efficiency are two potential conflicts highlighted in the figure.

Figure 3. Synergies and Conflicts Between System Qualities

Mr. Shoga’s work involves expanding the empirical study to include additional open-source
projects from different ecosystems and domains. This aims at identifying potential effects these
may have on the quality interrelationships. The mapping study identified several qualities that tend
to be involved in synergies and conflicts which are not covered in the current empirical study;
these are planned for further investigation. Finally, the identification of these interrelationships is

Contract No. HQ0034-19-D-0003 UNCLASSIFIED Report No. SERC-2021-TR-009
7

based on correlation analysis; additional options are being evaluated for expanding the analysis to
identify quality interrelationships.

 SOURCE CODE AS A GRAPH LEARNING TASK-AGNOSTIC REPRESENTATIONS

1.4.1 PURPOSE

Mr. Iordanis Fostiropoulos’s research with respect to WRT-1016 is in the use of artificial
intelligence Deep Neural Networks (DNN) for predicting TOC and cost estimation. Current deep
learning techniques require vast amounts of data for training networks that can be over-
parameterized. DNNs have shown to excel in multiple domains.

His work involves introducing improvements to a DNN that will make it possible to train for tasks
such as predicting TOC and cost estimation. There is a limited amount of labelled data that can be
noisy. Moreover, it is resource intensive to collect additional data. The current work is to improve
the efficiency in training DNN with limited size datasets in an unsupervised manner which allows
for fine-tuning in the specific task of Cost Estimation post-hoc.

1.4.2 ON-GOING WORK

Currently Mr. Fostiropoulos is working on researching additional performance advantages in
Transformers that relate directly with software analysis techniques since they allow for longer
sequences of source code to be used for the analysis with higher accuracy since previous methods
are limited by the sequence size.

Mr. Fostiropoulos has submitted results to three conferences: Annual Meeting of the Association
for Computational Linguistics, Foundations of Software Engineering, and Empirical Methods in
Natural Language Processing. His work is under review.

 THE COST OF DEVELOPING SECURE SOFTWARE

1.5.1 PURPOSE

Ms. Elaine Venson’s research with respect to WRT-1016 is one the cost of developing secure
software. The benefits of applying security practices early in the Software Development Life Cycle
(SDLC) are frequently discussed in the literature, Figure 4. Such benefits are considered as
motivation in many studies, which state that security can be improved, and the total cost of a
software system can be reduced with the appropriate allocation of resources in the early stages of
the software project, thus reducing TOC.

The total cost of development is reduced because security defects are found and fixed close to their
point of introduction. If the same security issues are left to be found during testing and operation,
the costs to repair are much higher. This statement is drawn as an analogy with known studies in
Software Engineering, which observed the realization of cost savings when problems are detected
and fixed early in the lifecycle. Besides considering the savings in security patching, authors often
relate benefits with avoiding risks relative to vulnerabilities. Researchers ponder that more secure
software implies less losses with down-time and recovery costs from attacks, i.e., operational costs.

Contract No. HQ0034-19-D-0003 UNCLASSIFIED Report No. SERC-2021-TR-009
8

Market value is also cited, as software products delivered with vulnerabilities may cause customer
dissatisfaction, reputation loss, and sales loss.

An important question to be answered in the context of the cost-effectiveness of developing secure
software is how much to invest in order to get the benefits. In secure software development,
security competes for a slice of a limited budget - adding more security usually means removing
features from the scope. While the growing field of Software Security provides technical solutions
to address current security problems, financial issues are still a barrier to their effective
introduction in projects. The few proposed cost models for security effort do not consider security
practices and were not properly validated, challenging the resulting estimates, which, in turn,
hinders cost-effectiveness analysis and resource planning for software projects.

Given the current context of secure software development, this research aims to examine the
effects of applying software security practices to the software development effort. The research
questions are centered on determining if there is an increase/decrease in software development
effort caused by the incorporation of security practices. Understanding the influence of the security
practices will allow for improved project estimation and planning, which will, in turn, ensure the
provision of proper resources to build secure software, less susceptible to cyber-attacks.

1.5.2 ON-GOING WORK

In a previous phase of this research, a new measurement scale for secure software development
was established. Such a scale provided the basis for the data collection and calibration of a
proposed software security cost model, see Table 1 and Table 2 below.

Costs
• Higher repair costs
• Patching
• Down-�me
• Recovery costs
• Reputa�on loss

Benefits
• Priority to features
• Time to market

Costs
• Exper�se
• Tools
• Training
• Improving processes
• Investment in early phases

Benefits
• Vulnerabili�es

preven�on/detec�on
• Avoided risks

+ Security - Security

Figure 4. Impact of Security on TOC

Contract No. HQ0034-19-D-0003 UNCLASSIFIED Report No. SERC-2021-TR-009
9

Table 1. Security Scale Ratings - One Line Summary

 None/Ad-hoc Basic Moderate Extensive Rigorous

One Line
Security Scale
Summary

Security-related
activities for
requirements,
coding, and
testing
nonexistent.

Basic security-
related activities
for
requirements,
coding, and
testing.
Typical security
functional
features.
Regular use of
static analysis
tools to detect
security defects
within the
project.

Moderate security-
related activities for
requirements,
design, coding, and
testing.
Additional security
features (audit/log,
cryptography).
Identification and
controlled update
of third-part
components'
security patches.
Routine use of
static analysis and
penetration testing
tools. Security V&V
activities
conducted by an
independent group.

Complex security
requirements and threat
modeling.
Advanced secure-by-
design security features.
Extensive adversarial
testing and security
design/code review.
Security assessment of
third-part components
and timely security
patches updates.
Thorough use of statics
analysis, black-box, and
penetration testing tools.
V&V activities
conducted by an
independent group at
the organization level.

Extreme security
requirements and threat
modeling.
Container-based
approaches to advanced
security features.
Exhaustive adversarial
testing, security
design/code review, deep-
dive analysis penetration
testing, and use of formal
methods throughout the
lifecycle.
Third-part components
rigorously assessed and
updated by a security
science team. Maximal use
of tools for static analysis,
penetration testing, and
black-box security testing.
Use of formal verification
and custom developed V&V
tools. Security V&V
activities conducted by an
outside certified company.

Table 2. Security Scale Ratings - Detailed Description

Group None/Ad-hoc Basic Moderate Extensive Rigorous

Security
Requirements
and Design

No security
requirements
specified.

Basic security
requirements
and features.
Basic threat
modeling.

Moderate security
requirements and
additional security
features (audit/log,
cryptography).
Moderate threat
modeling.

Complex security
requirements, advanced
secure-by-design
security features
middleware
development. Threat
modeling with specific
attackers' information.

Extreme security
requirements, container-
based approaches for
advanced security features
development. Rigorous
threat modeling.

Secure Coding
and Security
Tools

No secure
coding and no
use of static
analysis tool.

Basic
vulnerabilities
applicable to the
software will be
prevented with
secure coding
standards
and/or detected
through basic
use of static
analysis tools.

Known and critical
vulnerabilities
applicable to the
software will be
prevented with
secure coding
standards and/or
detected through
routine use of
static analysis
tools.

Extensive list of
vulnerabilities and
weaknesses applicable
to the software will be
prevented with secure
coding standards and/or
detected through
extensive use of static
analysis and black-box
tools.

Very extensive list of
vulnerabilities and
weaknesses applicable to
the software will be
prevented with secure
coding standards and/or
detected through rigorous
use of static analysis and
black-box security testing
tools with tailored rules.
Employ formal methods in
coding.

Contract No. HQ0034-19-D-0003 UNCLASSIFIED Report No. SERC-2021-TR-009
10

Group None/Ad-hoc Basic Moderate Extensive Rigorous

Security
Verification and
Validation

None.

Basic
adversarial
testing and
security code
review. Basic
penetration
testing. Security
V&V activities
conducted
within the
project.

Moderate
adversarial testing
and security code
review. Routine
penetration testing.
Security V&V
activities
conducted by an
independent group.

Extensive adversarial
testing and security
design/code review.
Frequent and
specialized penetration
testing. Security V&V
activities conducted by
an independent group at
the organizational level.

Rigorous adversarial testing
and security design/code
review. Exhaustive deep-
dive analysis penetration
testing. Use of formal
verification and custom
developed V&V tools.
Security V&V activities
conducted by an outside
certified company.

Experts’ estimation and project effort data are being collected and analyzed to build a model and
quantify the factors that affect software development effort, with a focus on security. An Online
Delphi technique was applied to collect expert opinion from security experts that were invited from
the Software Security group from LinkedIn. Two rounds of the Delphi were performed, collecting
estimates for the productivity range of the scale for the three groups of security-related activities -
Requirements & Design, Coding & Tools, and Verification & Validation. Data from actual
projects, containing effort, size, security level and other cost driver are currently being collected
from companies in Brazil. Based on these sources of data, a model to predict effort for different
levels of security is being built and validated.

Ms. Venson’s paper on the topic was one of the top papers in the recent Empirical Software
Engineering and Measurement conference [7].

CONCLUSION

The research focus of WRT-1016 was reducing TOC and schedule. Maintainability was identified
as a system quality that is key in reducing 75% of most system’s life cycle costs. One research
approach sought to measure the technical debt, Code Smells, carried forward in computer code
using SQUAAD and CAST tools. Using the technology developed for the SQUAAD tool, another
area of research examined the number of change categories in a single software commit. It was
found commits with more than two change categories often resulted in uncompilable code which
in turn created rework and more cost. Ten different quality metrics were measured on open-source
software to determine synergies and conflicts. Identification of potential quality conflicts, where
overemphasis of a particular quality can have strong negative impacts on other qualities, can delay
development, create rework, and increase cost. Another research focus was assessing the cost of
developing secure software early in the life cycle. The total cost of a software system can be
reduced with the appropriate allocation of resources for developing secure software in the early
stages of the software project. All of these research directions show benefit in reducing
development and maintenance costs thus reducing TOC and schedule.

PROJECT TIMELINE & TRANSITION PLAN

This is the final report for the Research Task (WRT-1016) – “Reducing Total Ownership Cost
(TOC) and Schedule.” It was the first year of a proposed 3-year project: Phases 2 and 3 are option
years. Phase 2 plans included:

Contract No. HQ0034-19-D-0003 UNCLASSIFIED Report No. SERC-2021-TR-009
11

• Continue collaboration with CAST in integrating CAST and SQUAAD capabilities.

• Continue to explore use of fuzzy analytics in qualities analysis.

• Workshops on cost of security model and its data collection instrument at the virtual 35th
COCOMO Forum October 26-27, including capture of the size of security extensions.

• Continued deep dive in exploring CISQ Reliability and Security synergies and conflicts
via Common Weakness Evaluations.

• Continue learning CAST and executing more analysis using both CAST and the SQUAAD
graphical user interface for executing a DoD SQUAAD private-cloud standalone server.

APPENDIX A: ACRONYMS

AI Artificial Intelligence
ARR Annual Research Review
CISQ Consortium for Information Technology Software Quality
COCOMO Constructive Cost Model for software cost estimation
CSSE Center for Systems and Software Engineering
QRS Quality, Reliability, and Security
SDLC Software Development Life Cycle
SEI Software Engineering Institute
SERC Systems Engineering Research Center
SLOC Source Lines of Code (computer code)
SQUAAD Software Qualities Understanding by Analysis of Abundant Data
SSRR SERC Sponsored Research Review
TOC Total Cost of Ownership
USC University of Southern California

APPENDIX A: LIST OF PUBLICATIONS FROM TASK (SEP 2019 – JAN 2021)

[1] Boehm B, Behnamghader P. “Anticipatory development processes for reducing total owner-
ship costs and schedules”, The journal of The International Council on Systems Engineering,
2019;1–10.

[2] J. He, S. Min, K. Ogudu, S. Shoga, A. Polak, I. Fostiropoulos, B. Boehm, and P. Behnamghader
“The Characteristics and Impact of Uncompilable Code Changes on Software Quality Evolution.”
IEEE Software Quality, Reliability, and Security (QRS), 2020.

[3] B. Boehm and P. Behnamghader “Large Scale Mission Software Data Exploitation.”

Contract No. HQ0034-19-D-0003 UNCLASSIFIED Report No. SERC-2021-TR-009
12

Aerospace Corp. Ground Systems Architecture Workshop, 2020.

[4] P. Behnamghader and B. Boehm “Software Quality Understanding by Analysis of Abundant
Data (SQUAAD): Towards Better Understanding of Life Cycle Software Qualities.”, SERC
Sponsored Research Review, 2019.

[5] P. Behnamghader, B. Boehm et al, “A Scalable and Efficient Approach for Compiling and
Analyzing Commit History,” Proceedings, IEEE Empirical Software Engineering and
Measurement, 2020.

[6] M. Y. Shoga, C. Chen and B. Boehm, "Recent Trends in Software Quality Interrelationships:
A Systematic Mapping Study," 2020 IEEE 20th International Conference on Software Quality,
Reliability and Security Companion (QRS-C), 2020, pp. 264-271.

7] Venson, E., Alfayez, R., Marília M. F., G., Rejane M. C., F., Boehm, B., 2019. The Impact of
Software Security Practices on Development Effort: An Initial Survey, in 2019 ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement (ESEM).
Presented at the 2019 ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement (ESEM), pp. 1–12.

Other Task-Related Publications

[8] Venson, E., Guo, X., Yan, Z., Boehm, B., 2019. Costing Secure Software Development: A
Systematic Mapping Study, in: Proceedings of the 14th International Conference on Availability,
Reliability and Security, ARES ’19. ACM, New York, NY, USA, p. 9:1-9:11.

[9] Venson, Elaine. “The Effects of Required Security on Software Development Effort.”
Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering:
Companion Proceedings, Association for Computing Machinery, 2020, pp. 166–69.

[10] Venson, Elaine, et al. “Costing Secure Software Development: A Systematic Mapping
Study.” Proceedings of the 14th International Conference on Availability, Reliability and Security,
ACM, 2019, p. 9:1-9:11.

	Disclaimer
	Research Team
	Table of Contents
	List of Figures
	List of (Tables, Sequences)
	Executive Summary
	Research Overview
	1.1 Software Qualities Understanding by Analysis of Abundant Data (SQUAAD)
	1.1.1 Purpose
	1.1.2 On-going Work

	1.2 Categorizational Study on Characteristics of Commits and Their Impacts on Software Quality
	1.2.1 Purpose
	1.2.2 On-going Work

	1.3 Preliminary Study on Software Quality Interrelationships in Open-Source Software
	1.3.1 Purpose
	1.3.2 On-going work

	1.4 Source Code as a Graph Learning Task-Agnostic Representations
	1.4.1 Purpose
	1.4.2 On-going work

	1.5 The Cost of Developing Secure Software
	1.5.1 Purpose
	1.5.2 On-going work

	Conclusion
	Project Timeline & Transition Plan
	Appendix A: Acronyms
	Appendix A: List of Publications from Task (Sep 2019 – Jan 2021)

