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EXECUTIVE SUMMARY

Array signal processing for radar traditionally is focused on computing complex weight vectors to be
applied linearly to the complex signals received at each array element in order to estimate signals from
different directions. The linear framework is quite powerful and flexible, but does suffer from some inherent
limitations for sparse arrays, as the degrees of freedom are tied directly to the number of elements. Nonlinear
approaches involving second-order statistics have long been used to overcome these limitations when applied
to receive-only applications such as direction finding and spectral estimation, but have not been seen as
applicable to active sensing as signal coherence is lost.

In recent years, several new works appeared focused on directly processing the covariance, itself, as a
virtual signal with support on the difference coarray. This contrasts with older techniques that augment
the sparse covariance matrix in order to estimate the equivalent covariance of a filled array, and the papers
promised (or at least implied) both higher resolution and greater effective degrees of freedom due to the
double length of the coarray. These results prompted a renewed look at the role such techniques might play
in both the traditional applications as well as in active sensing.

In this project, we considered the problem from several angles. The primary concern at the outset
was sample support; at first glance, it appeared that the number of snapshots required for covariance
estimation could prove incompatible with practical radar timelines. Cramer-Rao lower bound analysis for
angle estimation showed that the problem was actually worse than expected; resolving a larger number of
sources than physical array elements (which is the primary case of interest) requires a prohibitive number of
data snapshots for active sensing. Thus, we ultimately focused on direction-of-arrival applications rather than
radar, and on the application of single-snapshot covariance estimation approaches to compute an approximate
covariance for a decorrelated coarray virtual signal. Our second objective was to compare the coarray-based
approaches with the augmented covariance approaches to determine whether the recent works did, in fact,
represent something fundamentally new. The results were mixed; the Cramer-Rao lower bound analysis
showed that the coarray and augmented-covariance approaches have identical theoretical performance when
it comes to estimating source directions. However, the algorithms applied to the coarray did tend to perform
better in practice. For the resolution of two closely spaced targets, the longer apparent length of the coarray
again appeared to produce better results. Finally, we designed a hardware testbed with which to perform
proof-of-concept experiments to verify that the performance was robust to typical signal and hardware errors.
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NONLINEAR ARRAY PROCESSING

1. INTRODUCTION

The 2017 Department of the Navy (DON) 30-year R&D plan outlines a future battle space that is 
heavily reliant on intelligent, autonomous and distributed sensing systems, for which radar, due to its 
all-weather and long-range detection capability, will continue to be an essential element. As operational 
demands increase in complexity, antenna arrays, rather than single physical apertures, will be expected to 
play a dominant role in next-generation radar systems. Antenna arrays provide the necessary degrees of 
freedom (DOF) to carry out the sophisticated spatial-processing functions to meet future challenges of the 
battle space. Examples include rapid target direction finding (DF), intelligent and robust mitigation against 
electromagnetic interference, and multifunction space-time capabilities providing simultaneous detection, 
ranging, tracking, and communication. In addition to increased design complexity, a major drawback of 
arrays in comparison to single-antenna systems is a substantial increase in size, weight, and power (SWAP) 
demands. As sensing platforms seek to become lighter, more agile, and more sustainable, reducing SWAP 
requirements of array-based radar systems is critical. This project was launched with the intent to develop 
algorithms to take advantage of sparse antenna arrays in the hopes of trading increased signal processing for 
substantially less physical hardware.

1.1 Background: Sparse Arrays

Two important parameters affecting the overall performance of an array are its physical size and the 
number of individual elements 𝑁 that constitute the array. The size directly affects the resolution or how 
finely targets/sources can be resolved in space, while the choice of 𝑁 defines the available DOF that can be 
leveraged for processing. Traditional arrays feature elements distributed uniformly across their extent using 
an interelement spacing on the order of half the wavelength of operation. This variant of the well-known 
Nyquist criterion assures that no ambiguities (grating lobes) arise within the array’s field of view (FOV). 
Thus, for uniformly spaced arrays, the resolution performance and DOF are directly proportional to each 
other. Sparse (non-uniform) arrays break this linkage and violate the Nyquist criterion with the aim of using 
as few elements as possible in order to fill the desired extent. Fewer elements implies a loss in the direct DOF 
of the array, which limits the performance of conventional spatial signal-processing techniques. However, in 
some cases, a combination of proper element placement, second-order statistics, and advanced algorithms 
can buy back these lost DOF.

The recognition that second-order statistics could be used to extend the effective degrees of freedom 
in antenna arrays is a fairly old one, and possibly originated from the field of radio astronomy (e.g., [1]) 
where fully populated arrays are often impractical. Moffet introduced the concept of minimum redundancy 
arrays (MRAs) [2], which are sparse arrays with the fewest elements required to provide a complete set 
of pairwise element separations. The difference coarray [3] later formalized the idea of a virtual array 
defined on these separations. In this context, a weighted sum of the correlation values came to be known as 
correlation beamforming [3, Sec. IV], with the corresponding “pattern” having degrees of freedom based 
on the length of the coarray (O(𝑁2)) rather than the number of physical elements (𝑁). A different approach

Manuscript approved April 6, 2022.
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based on the same concepts is known as covariance-matrix augmentation [4–7]. Here, it was recognized
that the covariance matrix of a uniform linear array (ULA) receiving uncorrelated signals has a Toeplitz
structure, and thus is highly redundant. (Indeed, such a covariance matrix merely encodes a central segment
of the covariance sequence of a stationary spatial process.) Sparse arrays whose element spacings created
filled difference coarrays thus provided sufficient correlation values to reconstruct the covariance matrix
of a filled ULA. This covariance matrix then could be used in various algorithms as if a full ULA were
available. One can extend these virtual-array ideas further to high-order moments [8–10], although this
requires non-Gaussian sources and will not be considered further here.

The current revival of difference-coarray-based processing that sparked this project seems to have been led
by [11], which is focused on the specific nested-array sparse configuration and a matching spatial smoothing
technique. A second sparse scheme, coprime arrays [12, 13], also has found favor, at least in part on the
largely unsubstantiated claim that it mitigates mutual coupling.1 As in the older correlation-beamforming
approach, the analysis revolves around a nonlinear model of the covariance, itself, as a virtual signal with
support on the coarray, with signal powers replacing complex amplitudes. In this way, these papers generally
claim available degrees of freedom equivalent to a linear array the length of the coarray, which was notable
(and, as we will show, questionable).

1.2 Outstanding Questions and Challenges

The discussion above suggests potential benefits that nonlinear array processing (NAP) can offer to sparse
array processing in general. However, the recent body of literature has left some significant questions and
challenges unresolved. Below, we pose some fundamental questions that guided our research.

NAP degrees of freedom: One of the more confusing concepts related to NAP is determining the true
number of DOF that are available to be exploited. Given 𝑁 sensors in a sparse configuration with a
span of 𝑀 between the outer elements and a filled difference coarray of length 2𝑀 − 1, which of those
numbers represents the true degrees of freedom? The short answer turns out be, “It depends.” Context,
as always, is key.

Sample-support requirements: One of the primary drawbacks of much of the NAP literature is that the
analysis is based on the ideal covariance of the incoming signals. This leads to somewhat unintuitive
results, such as noise being deterministic and occupying a single-dimensional subspace. This analysis
is not wrong, per se, but it also can be quite misleading in the overwhelmingly common case in
which the covariance must be estimated using finite sample data. Here, the cross-correlations between
nominally uncorrelated sources remain nonzero and thus appear in the NAP signal model as a large
number of additional “sources” that threaten to absorb the additional DOF that are NAP’s raison
d’être. Determining how many data snapshots are required is thus fundamentally important, and yet
is largely overlooked. In standard linear-adaptive filtering, the popular “RMB” rule of thumb derived
in [14] requires 2𝑁 data snapshots for an 𝑁-element ULA. It will be shown, however, that far more
samples typically are needed for NAP, especially in the case of more sources than physical sensors.
NAP generally assumes that the underlying signals are uncorrelated; however, in practice, a virtual

1This claim derives from the fact that a coprime array has fewer immediately adjacent elements, which are presumed to have
greater coupling. However, all sparse arrays depend on having at least one minimum-spaced pair of elements to generate the lag-1
correlation, and coprime arrays of any significant length have multiple such pairs. It is far from clear that their more-scattered
distribution vs. other schemes improves performance in practice.
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measurement becomes contaminated with contributions from cross terms existing due to limited time
support that tend to decay rather slowly. As such, they can be a significant source of interference for
the virtual array, as they can leak through the increased sidelobes of the virtual pattern.

Algorithms to maximize the full potential of NAP: As previously mentioned, the key idea in NAP is to
treat the virtual array as if it were a Nyquist array and to transpose over known spatial-processing
algorithms. However, this poses a challenge for many conventional direction-of-arrival (DOA) estima-
tion algorithms, such as MUltiple SIgnal Classification (MUSIC), that rely on estimating an array’s
data covariance matrix from a collection of array snapshots. In the virtual array, a single (virtual)
measurement is this estimated covariance, so in fact, what would be needed would be the covariance
of the covariance. Such a creature is elusive, as the statistics of the sample covariance violate the usual
assumptions: It has a nonzero mean (the true data covariance) and is composed of correlated sources
(the positive-valued signal powers). So even if we were to have sufficient data to compute multiple
virtual snapshots (sample covariances) and then to use those to compute a sample covariance of the
covariance, in general, it would not contain the subspace information we seek. At least three potential
solutions have presented themselves so-far:

1. Compute multiple sample covariances from successive blocks of data, and form a covariance
estimate directly. This requires the blockwise “quasi-stationarity” of [15], where the data within
each block is stationary with the signal powers (but not directions) varying between blocks. This
has obvious drawbacks due to both the large amount of data required and the tenuous assumptions.

2. Use spatial smoothing to build up the rank of the virtual covariance matrix using only a single
virtual measurement, as in [11]. The drawback with this is that spatial smoothing decreases the
length of the virtual array by half, which, as we discuss in this report, may reduce the spatial
resolution performance.

3. Use single-snapshot methods based on compressive sensing [16] or reiterative minimum-mean-
square-error (MMSE) estimation [17]. The latter produces as a byproduct an estimate of the
covariance of the random process that generated the snapshot, which then can be used in MUSIC
or other algorithms.

We chose to focus our efforts on item 3, as that appeared to be the most promising avenue.

The suitability of NAP for active sensing: The NAP literature is focused almost exclusively on passive,
receive-only array processing such as spectral estimation and DOA estimation. Linear adaptive pro-
cessing (beamforming) is widely used in active sensing such as radar and sonar, and so it is natural to
wonder if NAPmight provide benefits to such applications. However, there are fundamental differences
between active and passive sensing, and between linear-adaptive processing and NAP, which tend to
limit NAP’s applicability to active sensing. We note that there exists a class of adaptive beamforming
algorithms [18, 19] that are hybrids of active and passive methods. These approaches apply augmented-
covariance methods in order to enhance DOA and signal-power estimation, then use that information
to generate a non-augmented covariance and compute a linear filter to be applied to the original sparse
data. These methods do not increase the available degrees of freedom in the beamforming, itself, but
may improve the robustness of the beamforming. We mention these approaches for completeness, but
will not consider them further here and will focus on adaptive beamforming applied to the coarray,
itself [20].
In linear-adaptive processing, the noise-plus-interference covariance ideally is estimated from data
without the desired signal present, so-called auxiliary data. This covariance then is used either to



4 Hatim F. Alqadah, Dan P. Scholnik, and Jean de Graaf

“whiten” the interference spectrum of the complex data prior to conventional filtering, or equivalently,
to design adaptive beamformer weights to remove the interference. The usual effect is to place nulls
in the direction of interference sources, and the number of such nulls is limited in linear processing by
the number of physical elements. Because the filtering or whitening is a linear operator, it generally
can be performed either before or after other coherent linear processing. However, in NAP coarray
beamforming, the input “signal” is the sample covariance. Clearly this must contain any desired
signals one hopes to detect. For passive receivers, this is not a problem for stationary sources, which,
by definition, are persistent. But active systems such as radar generally must limit the duration over
which they illuminate a given direction in order to scan the entire volume in a timely manner. This
limits the data available with a given target present. What’s more, radars generally require coherent
integration over the full temporal extent of the waveform in the form of pulse compression and Doppler
processing, which leaves no remaining dimension from which to pull independent data snapshots.
Thus, one must either extend the signal duration or reduce the coherent integration. Combined with
the aforementioned high snapshot requirements, the problem quickly becomes infeasible. Another
obstacle is that because the output of NAP processing has lost its phase information, it must come last
in the processing chain after any linear processing. Deferring spatial processing until the end may
greatly multiply the total computation required.

1.3 Contributions

The challenges itemized above motivate what we see as the main contributions of this work:

Establishing a basic characterization of the necessary time sample support: We take a more in-depth
look at understanding the level of error introduced when limited to 𝐾 snapshots for estimating the
virtual arraymeasurements. Although this is done under simplified conditions of uncorrelatedGaussian
sources, the insights gained provide for a good rule of thumb for understanding the level of error
introduced, and to our knowledge is the only contribution towards this question to date.

Understanding limitations in DOF and resolution performance of the approach: As mentioned above,
spatial smoothing has the effect of reducing the size of the virtual array by half, which effectively
reduces the available DOF in the virtual array as well as the resolution performance. Looking more
deeply using Cramer-Rao lower bound (CRLB) analysis, we can establish that this limitation in DOF
is not a specific property of spatial smoothing, but rather an inherent limitation of the information
content captured by the sparse array. However, our study finds that this is not necessarily the case for
the aperture size in terms of resolution performance. We hypothesize that this is a specific limitation
of spatial smoothing.

Evaluating efficacy of non-spatial-smoothing-based algorithms for NAP: We look to compare several
state-of-the-art algorithms for the conventional linear model and to understand if they can provide
alternatives to spatial smoothing in order to maximize performance gains within the NAP framework.
This includes which algorithmic families are more efficient with respect to their time sample support,
and which can leverage the full aperture length of the virtual array for resolution performance.

Establishing a suitable experimental testbed for evaluating NAP: Most, if not all, of the NAP studies to
date have presented results based on simulation and from a receive-only point of view. One of the key
contributions of this work is the construction of a testbed that effectively emulates the receive side of a
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monostatic radar system using a 12-channel array at a 3.4 GHz center band. In this study, we employed
up to eight independent far-field sources that can emulate a linear frequency modulated (LFM) chirp
signal or can serve as sources of incoherent interference. Although of most of the analysis in this work
was geared toward a 6-element nested array, other sparse arrays, such as minimum redundancy arrays,
that fit within the extent of a 12-channel uniform linear array could be analyzed as well.

1.4 Outline of the Report

The remaining chapters of the report are summarized as follows: Chapter 2 serves as a technical
overview of the major concepts and notation concerning space-time processing with linear arrays. This
includes modeling the array and its received signals and summarizing state-of-the-art beamforming and
DOA algorithms for the conventional linear model that later will extend to the NAP framework. Chapter 3
introduces various concepts related to sparse array signal processing, including covariance beamforming,
the difference coarray, and the augmented covariance matrix. Chapter 4 extends the algorithms introduced
in Chapter 2 to the NAP framework and is where the main theoretical and algorithmic contributions of this
work are described. We show that in terms of information content, there is no advantage of NAP over other
traditional approaches, such as covariance augmentation, in terms of obtaining more DOF than the number of
elements in the array. We then characterize the finite sample support contribution of error in the NAP virtual
array as well as consider a number of algorithms and their performance for the DOA estimation problem.
We then consider algorithms for the adaptive filtering problem, where we show the detriment of limited time
sample support on performance. Our experimental setup is described in Chapter 5, as well as the specific
data collections that were performed in this work. Here, we also apply the algorithms of Chapter 4 to selected
experimental data, to demonstrate the effects of real-world model mismatch and errors on the algorithms.
Final conclusions and recommendations for follow-on work round out the report in Chapter 6.
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2. ARRAY-PROCESSING BACKGROUND

In this chapter, we briefly summarize background material on array processing that is prerequisite to
the remainder of this report. This includes the basic space-time geometry, the signal model, and common
processing including beamforming and various DOA estimation algorithms. The reader familiar with these
topics can skip this chapter and return as needed for reference. We will confine ourselves to linear (one-
dimensional) array architectures only, since the established concepts can be generalized trivially to multiple
dimensions, and this avoids the added complication in notation.

2.1 Linear Arrays

Broadly speaking, an antenna array is a collection of antennas that work together to emulate the function of
a single antenna during transmit or receive operations. As mentioned in the introduction, the chief advantage
of antenna arrays over continuous-aperture antennas is the increase in DOF. Each individual antenna in an
array is called an element of the array. When the elements of the array are laid out across a line, the array
is referred to as a linear array. As such, the field of view of a linear array is restricted to only [−90◦, 90◦]
across the polar angle, and has no diversity with respect to azimuth.2 More general 2D surface arrays enable
diversity over the entire half-space (2𝜋 steradian). Consider the case of 𝑁 antenna elements on a line as
shown in Fig. 1. The position of the 𝑗 th antenna is denoted as r 𝑗 = [𝑢 𝑗 , 0, 0]𝑇 , where 𝑢 𝑗 = 𝑛( 𝑗)Δ𝑢 with 𝑛( 𝑗)
taken from some integer set S ⊂ Z+ such that |S| = 𝑁 . The quantity Δ𝑢 ∈ R+ defines the minimum spacing
between consecutive elements and typically is taken to be theNyquist distance ofΔ𝑢 = 𝜆/2. Let’s saywe have
an incoming monochromatic source 𝑒𝑖𝜔𝑡 (such as a scatterer or interference) at angular frequency 𝜔. For
most applications of interest, the targets and signal sources are well into the far-field region of the array, and
we assume that the electromagnetic field is in the form of a plane wave Ψ(𝑡, r) = 𝑒𝑖 (𝜔𝑡− 2𝜋𝜆 d̂·r) , where vector

✓
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Fig. 1—Basic geometry of a linear array relative to an incoming plane wave

2Here, “azimuth” refers to the generic spherical-coordinate angle about the coordinate-system pole, which, for a linear array, is
naturally the array axis. This should not be confused with the specific radar meaning of “azimuth,” which places the coordinate-
system pole normal to the Earth’s surface regardless of the array orientation.
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d̂ defines the direction of propagation. Furthermore, recall that in the case of a nondispersive homogenous
media, we have the relationship 2𝜋

𝜆
= 𝜔/𝑐, with 𝑐 > 0 defining the speed of propagation. According to the

coordinate system in Fig. 1, we can write d̂(𝜃, 𝜙) = −[sin 𝜃 cos 𝜙, sin 𝜃 sin 𝜙, cos 𝜃]𝑇 , where 𝜃 is the polar
angle (the angle with respect to the plane normal to the array axis), and 𝜙 is the azimuth angle (the angle
about the axis). Then the electric field sampled at position r 𝑗 at time 𝑡 is given as

𝑥 𝑗 (𝑡) = 𝑒−𝑖𝜔 (𝑡−𝜏𝑛( 𝑗) ) ,

where the propagation delays 𝜏𝑛 are given as

𝜏𝑛 = −𝑛Δ𝑢 sin 𝜃
𝑐

. (1)

More generally, for a signal 𝑓 (𝑡) =

∫
𝐹 (𝜔)𝑒𝑖𝜔𝑡𝑑𝜔 propagating in the form of a plane wave, the array

response is given as

𝑥 𝑗 (𝑡) = 𝑓 (𝑡 − 𝜏𝑛),

where we have dropped the dependence of 𝑛 on 𝑗 for notational brevity. We are usually interested in the case
of a bandpass waveform centered over a certain frequency 𝜔𝑐:

𝑓 (𝑡) = 𝑠(𝑡)𝑒𝑖𝜔𝑐 𝑡 ,

where 𝑠(𝑡) is the complex envelope of the transmitted pulse and is bandlimited to a bandwidth of 𝐵. The
response at each array element is then written as

𝑥 𝑗 (𝑡) = 𝑠(𝑡 − 𝜏𝑛)𝑒𝑖𝜔𝑐 (𝑡−𝜏𝑛) . (2)

If the pulse width is such that it is much larger than the maximum time it takes for the wave to propagate
between any two elements in the array 4/𝑐, then we can make a narrowband approximation, essentially
𝑠(𝑡 − 𝜏𝑛) ≈ 𝑠(𝑡). Therefore, in conjunction with Eq. (1), we can reduce Eq. (2) to

𝑥 𝑗 (𝑡) = 𝑠(𝑡)𝑒𝑖
2𝜋
𝜆
𝑢𝑛𝑠𝑖𝑛𝜃𝑒𝑖𝜔𝑐 𝑡 .

After demodulation to baseband and accounting for noise at each antenna element, we have the following
linear model:

x(𝑡) = aS(𝜃)𝑠(𝑡) + n(𝑡),

relating the array measurements to the source amplitudes. The 𝑁 × 1 vector x(𝑡) is the spatial snapshot of
the field at time 𝑡, the vector function aS(𝜃) is known as the array steering vector for the array S, and n(𝑡) is
a random additive noise term. For far-field propagation, the steering vector is defined per Eq. (1) as

aS(𝜃) = [𝑒𝑖 2𝜋𝜆 𝑢0 sin(𝜃) , . . . , 𝑒𝑖 2𝜋𝜆 𝑢𝑁−1 sin(𝜃) ]𝑇 . (3)
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Extending to a more general case of 𝑀 narrowband sources propagating as plane waves simulta-
neously impinging on the array with time dependence s(𝑡) = [𝑠0(𝑡), . . . , 𝑠𝑀−1(𝑡)] and arrival angles
𝜽∗ = [𝜃1, . . . , 𝜃𝑀 ], we can describe the received signal as the coherent sum of all the sources

x(𝑡) = A(𝜽∗)s(𝑡) + n(𝑡). (4)

Here, A(𝜽) = [aS(𝜃1), . . . , aS(𝜃𝑀 )] defines a matrix function of 𝜽 that we will refer to as the array manifold
and depends on the array architecture S. When these signals are zero-mean wide-sense-stationary (WSS)
random processes, they can be characterized via their covariance matrix:

Rx , 𝐸
[
xx𝐻

]
= ARsA𝐻 + Rn. (5)

Here, we have assumed that the noise is uncorrelated with the other signals, and by convention have dropped
the explicit dependence of the manifold A on 𝜽 for notational simplicity.

For digital array processing, in most cases, the output of each array element is sampled with respect to
a fixed sampling rate Δ𝑡. In radar systems. there are a number of time scales in which time samples could
be taken across. In a typical pulse-Doppler system, a periodic series of pulses is transmitted according to
the radar’s pulse repetition interval (PRI). Time samples obtained during each individual pulse correspond
to a fast-time scale and typically are reserved for range processing such as pulse compression. Time samples
taken across a group of pulses within a coherent processing interval (CPI) are referenced to a much slower
sampling rate and commonly are referred to as slow-time samples. Coherent integration operations, such as
those in array or Doppler processing, usually are performed with respect to the slow-time dimension. It is
during a CPI in which the WSS assumption of the underlying sources can be considered reasonable. Time
samples also can be taken across a group of CPIs (an entire radar dwell), in which for most radar applications,
WSS assumptions typically do not hold. In any case, a discretized model based on a sampling rate of the
appropriate scale is given as

x(𝑘) = As(𝑘) + n(𝑘), (6)

where x(𝑘) = x(𝑘Δ𝑡) for time snapshot 𝑘 . Broadly speaking, array-processing algorithms can be classified
as either those that can work readily with a single measurement x(𝑘) at each time instant 𝑘 , or those that
rely on multiple array snapshots in order to render output at time instant 𝑘 . The former will be referred to as
single-measurement-vector (SMV)-capable methods. For the latter type of methods, multiple snapshot data
consisting of 𝐾 snapshots can be organized into the matrix

X𝐾 (𝑘) = [x(𝑘), x(𝑘 − 1), . . . , x(𝑘 − 𝐾 + 1)]𝑇 ,

which we will refer to as multiple measurement vector (MMV) data.

2.2 Beamforming

Focusing the radar’s antenna towards a particular direction can be accomplished by choosing an appro-
priate linear combination of the array channels,

𝑦(𝑘) = w𝐻x(𝑘), (7)
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where w is the weight vector. Substituting Eq. (4) into Eq. (7) yields

𝑦(𝑘) =
𝑀−1∑︁
𝑚=0

w𝐻aS(𝜃𝑚)𝑠𝑚(𝑘) + w𝐻n(𝑘)

=

𝑀−1∑︁
𝑚=0

W (𝜃𝑚)𝑠𝑚(𝑘) + w𝐻n(𝑘). (8)

whereW (𝜃) , wℎaS(𝜃) defines the array pattern. For far-field propagation in Eq. (3), this becomes

W (𝜃) =
𝑁−1∑︁
𝑛=0

𝑤∗
𝑛𝑒
𝑖 2𝜋
𝜆
𝑢𝑛 sin(𝜃)

= 𝑊∗
( sin(𝜃𝑚)

𝜆

)
, (9)

where𝑊 is the spatial Fourier transform of the weight vector:

𝑊 (𝑣) =
𝑁−1∑︁
𝑛=0

𝑤𝑛𝑒
−𝑖2𝜋𝑢𝑛𝑣 .

The array pattern is a fundamental property of a linear beamformer and represents its response to a single
incoming plane wave in the absence of noise. The argument 𝑣 = sin(𝜃)/𝜆 is a spatial frequency, with units
of reciprocal distance. The standard response of the array is a simple sum across the channels, i.e., a unity
weighting across all the array elements. This corresponds to the unadapted pattern of the array and can
be characterized by a main lobe at boresight and a finite number of sidelobes at various points within the
field of view. The width of the main lobe defines the Rayleigh diffraction limit 𝐵𝑤 of the array, which is
approximately proportional to the inverse of the array length:

𝐵𝑤 ≈ 𝜆/𝐿.

Thus, for a Nyquist ULA, the resolution of the array is dictated by the number of elements 𝑁 . More generally,
we seek a choice of w (and thus 𝑊) to spatially filter the FOV, i.e., we seek to enhance the response of a
desired signal or direction, and when appropriate, to suppress energy from other directions. The Fourier
beamformer,

𝑦(𝑡) = a𝐻S (𝜃)x(𝑡),

is a simple example of a beamformer that enhances the signal from a particular direction against overall noise,
and is the spatial equivalent of matched filtering. Indeed, through a simple Cauchy-Schwarz argument, it
can be shown that a Fourier beamformer maximizes SNR for a single signal from direction 𝜃 in white noise,
providing a SNR gain of 𝑁 relative to a single sensor. Fourier beamforming, however, is still subject to the
Rayleigh resolution limit and also features a number of relatively high sidelobes that can admit interference
from undesired directions. The sidelobes can be improved via amplitude tapering, but this also has the effect
of reducing SNR.
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More sophisticated beamformers seek not only to improve the overall array’s response in the desired
direction, but also to null out undesired directions containing potential interference. If we consider a scenario
in which𝑀−1 jammers/interferers are impinging on the array from the directions 𝜃1, . . . , 𝜃𝑀−1, respectively,
the array signal can be decomposed as

x(𝑡) = t(𝑡) + i(𝑡) + n(𝑡),

where t(𝑡) = aS(𝜃1)𝑠1(𝑡) corresponds to the desired signal (target), i(𝑡) =
∑𝑀
𝑚=2 aS(𝜃𝑚)𝑠𝑚(𝑡) corresponds

to the interference component, and n(𝑡) represents ambient noise. Note that subsequently, we simply will
use the notation a(𝜃) when referring to the array steering vector, and only use the full notation aS when the
context of the discussion requires an explicit reference to the array’s geometric structure. If the directions
of the sources and the interference are known, a beamformer w can be designed so that the overall beam
matches the response b(𝜽) = [1, 0, . . . , 0]𝑇 in a least-square sense. So for the underdetermined case𝑀 ≤ 𝑁 ,
one exact (but non-unique when 𝑀 < 𝑁) solution is

w = A
(
A𝐻A

)−1
b, (10)

while for the overdetermined case 𝑀 > 𝑁 , the closest (inexact) solution is

w =

(
AA𝐻

)−1
Ab, (11)

where again, A is the array manifold defined for the vector 𝜽 = [𝜃1, . . . , 𝜃𝑀 ]𝑇 . Thus, we see for an 𝑁
element array, we can specify no more than 𝑁 − 1 explicit nulls. In this sense, the DOF of the array also
plays an important role in guarding against being overwhelmed by a large number of interference sources.

When the directions of the interference sources are not known a priori, adaptive approaches such as the
minimum-variance distortionless response (MVDR) beamformer can be considered. The MVDR weights
are designed to maximize the signal-to-interference-plus-noise ratio (SINR) and can be shown to be

wmvdr =
R−1
𝑖+𝑛a(𝜃1)

a𝐻 (𝜃1)R−1
𝑖+𝑛a(𝜃1)

, (12)

with R𝑖+𝑛 denoting the covariance matrix with respect to the interference and noise components only
(interested readers may refer to Appendix B for a brief discussion on the derivation). Another adaptive
approach of interest is the minimum mean-square error (MMSE) filter, where the mean-square error is
minimized with respect to the underlying target signal amplitude 𝑠1(𝑡). These weights can be shown to be
computed as

wmmse = 𝜎21
(
R𝑖+𝑛 + 𝜎21a(𝜃1)a

𝐻 (𝜃1)
)−1

a(𝜃1), (13)

where 𝜎21 = 𝐸
[
|𝑠1 |2

]
. In fact, we further can show that the MMSE weights are actually a shrinking factor

of the MVDR solution,

wmmse = 𝛽(𝜎1)wmvdr, (14)
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with 0 ≤ 𝛽(𝑠) ≤ 1 and monotonically increasing with 𝜎21 . Thus, the MMSE beamformer also maximizes
SINR (when R𝑖+𝑛 is known), but is known to provide a better estimate of 𝑠1(𝑘) as it is scaled to minimize
the estimation error with respect to this. An obvious but important note is that the MMSE filter requires in
addition to R𝑖+𝑛 that the target power be known a priori.

Spatial filters likeMVDR andMMSE achieve their respective optimal performance under the assumption
that R𝑖+𝑛 is known exactly. In practice, however, the covariance data needs to be estimated from MMV data.
This usually entails using the sample covariance matrix,

S𝑥 =
1
𝐾

𝐾∑︁
𝑘=1

x(𝑘)x𝐻 (𝑘), (15)

in place of the ideal covariance matrix. The choice of 𝐾 then plays an important role; 𝐾 should be chosen
large enough so that S𝑥 is full-rank and sufficiently converges to the underlying covariance matrix; however,
𝐾 should be small enough to satisfy the stationary assumption and to adhere to radar system performance
requirements. In practice, a good rule of thumb (known as the Reed-Mallat-Brennan (RMB) rule) [21] is
about twice the number of elements to ensure that the average SNR loss of an adaptive beamformer output is
nomore than 3 dB. Another issue of practical importance specifically to spatial filters likeMVDR andMMSE
beamforming is that in many cases, the signal of interest is also present in the MMV data, in which case
directly using the associated sample covariance matrix often leads to significant performance degradation.
Although this issue is outside the scope of this report, we do note that there are various techniques, such
as diagonal loading the sample covariance matrix, that can help mitigate such effects. We refer interested
readers toward [22] for a comprehensive discussion on the topic.

2.3 DOA Estimation

The problem of identifying the direction of arrival of various plane wave sources is referred to as the
DOA estimation problem. Beamforming techniques such as the ones discussed above can serve readily as
DOA estimators by sweeping the viewing angle 𝜃 across the FOV of the array,

𝑝(𝜃) =
��w𝐻 (𝜃)x(𝑘)

��2 .
For the case of a discrete angular search grid vector 𝜽 = [𝜃1, . . . , 𝜃𝑃]𝑇 , beamforming-based DOA estimation
can be described by a 𝑁 × 𝑃 matrix (filter bank)W, whose spectrum output is given as

𝑝(𝜽) = |W𝐻x(𝑘) |2.

Fourier beamforming, where we haveW = A, has the advantage of computational simplicity as well as being
easily adaptable to arbitrary array architectures. Furthermore, Fourier DOA estimation also is suitable for
SMV data. The main drawbacks of the Fourier approach are again the Rayleigh resolution limit as well as the
sidelobes that can mask potential sources. In fact, sidelobes are particularly problematic with sparse arrays,
as we can see in Fig. 2. In this example, we see the nested array exhibiting sidelobes roughly 10 to 12 dB
larger than those using a sufficiently sampled ULA. Distinguishing sources from sidelobes, however, can be
aided through non-coherent integration across MMV data. For example, in Fig. 2, we have a case where the
nearby source potentially could be confused with a sidelobe, but when integrating across multiple snapshots,
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(a) Single snapshot

(b) Multiple snapshots

Fig. 2—Illustrating Fourier-based DOA estimation with SMV and MMV data for both a
ULA and a nested array. In the SMV case, the source at 10◦ appears as a sidelobe for both
arrays. Non-coherent averaging with multiple snapshots helps bring out the second source
but does not improve resolution.
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the second source is significantly enhanced. However, note that the use of MMV data did not help with
improving the overall resolution of the Fourier estimator. Adaptive beamforming techniques such as MVDR
beamforming, on the other hand, rely on MMV data in order to compute the necessary sample covariance
matrices. In this scenario, unlike the beamforming problem, covariance from derived from the MMV data
should capture all the signals. The advantage of these types of beamforming-based DOA estimators is that
they can achieve some degree of super-resolution. Another important point regarding beamforming-based
DOA estimation is that beamforming is a linear operator with respect to the array data, thus the output signal
of the filter bank retains phase information, and thus DOA estimation can be applied prior to any range or
Doppler processing. This is not generally the case for DOA estimation techniques, as more sophisticated
algorithms are nonlinear and thus do not preserve any phase information for subsequent coherent processing.

2.3.1 Subspace Methods

Subspace methods are among the most recognized super-resolution DOA estimation approaches in the
current literature. These approaches are based on an assumed structured covariance model that arises under
the following assumptions:

Assumption 1. The additive noise term in Eq. (6) is stationary, and n(𝑘) ∼ CN
(
0, 𝜎20 I

)
.

Assumption 2. The sources s(𝑘) are wide-sense stationary.

Assumption 3. The sources are zero mean and uncorrelated with each other, i.e.,

𝚺 = 𝐸
[
s(𝑘)s𝐻 (𝑘)

]
= diag

[
𝜎21 , . . . , 𝜎

2
𝑀

]
.

Under these assumptions, the covariance data matrix defined in Eq. (5) can be represented as

R𝑥 = A𝚺A𝐻 + 𝜎20 I. (16)

The MUSIC algorithm is one of the most established methods in the class of subspace techniques. These
methods rely on an eigendecomposition of the correlationmatrixR𝑥 to isolate the noise/interference subspace
from the signal subspace, and exploiting the orthogonality of the two. More specifically, if 𝚺 is full rank and
𝑀 ≤ 𝑁 , then the rank of A𝚺A𝐻 is 𝑀 , with the smallest 𝑁 − 𝑀 of its eigenvalues being zero. Therefore,
by performing an eigendecomposition and ranking the eigenvalues and their associated eigenvectors from
largest to least, we find that the top𝑀 Eigenvectors {u1, . . . u𝑀 } correspond to the signal subspace, while the
remaining 𝑁 −𝑀 eigenvectors {u𝑀+1, . . . , u𝑁 } form a basis of the noise subspace with repeated eigenvalue
of 𝜎20 . Since the signal and noise subspaces form orthogonal complements of each other, and since a(𝜃) is a
basis of the signal subspace, then

𝑝(𝜃) = 1
a𝐻 (𝜃)U𝑀−𝑁U𝐻

𝑀−𝑁 a(𝜃)

can be used as an indicator function for the DOAs, whereU𝑀−𝑁 = [u1, . . . u𝑀 ]. Indeed, since a𝐻 (𝜃)u 𝑗 = 0,
for any 𝑗 = 𝑀 +1, . . . , 𝑁 , the MUSIC spectrum becomes infinite (or very large in practice) when 𝜃 coincides
with the DOA of one of the sources. Other examples that are in this class include ESPIRIT [23], which
is a computational and storage-reduction improvement over MUSIC, and root-MUSIC [24], which further
improves on resolution by looking for the roots of the spectrum explicitly.
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2.3.2 Reiterative Superresolution Algorithms

Aswe have discussed above, theMMSE beamformer attempts to estimate the underlying signal of interest
in a least-mean-square sense. Under the assumed covariance structure Eq. (16), the associated MMSE filter
bank then is given as

Wmmse =
(
A𝚺A𝐻 + 𝜎20 I

)−1
A𝚺. (17)

Like wementioned before, theMMSE estimator Eq. (17) assumes knowledge of the source covariancematrix
𝚺, which is generally unknown a priori. Blunt proposed a recursive scheme for updating the MMSE filter
bank using successive estimates of the source covariancematrix that he termed as a reiterative superresolution
(RISR) algorithm [25]. More specifically, for a given initial estimate 𝚺 (0) , the technique can be summarized
as follows:

W(𝑝+1) =
(
A𝚺 (𝑝)A𝐻 + 𝜎20 I

)−1
A𝚺 (𝑝)

𝚺 (𝑝+1) = diag

[
1
𝐾

𝐾∑︁
𝑘=1

W𝐻 (𝑝+1)x(𝑘)
]
� I,

iterating until some convergence criteria is satisfied. While to our knowledge, a rigorous study of the
convergence properties of the RISR method has not been performed, we observed in our experimental
studies that RISR tends to approach a solution rather quickly and admits high-resolution DOA estimates
similar to those computed by subspace techniques like MUSIC. However, the method also tended to oscillate
around a saddle point and/or to exhibit false modes at the expense of missing true sources entirely. As an
example, we consider Fig. 3, where we can see at iteration 24 RISR mistakenly places two peaks at the
source located at 48◦. A variant of the RISR algorithm, as proposed in [26], is based on replacing the MMSE
filter bank with a MVDR filter bank, in which case the RISR iterations become

R(𝑝+1)
𝑥 =

(
A𝚺 (𝑝)A𝐻 + 𝜎20 I

)
W(𝑝+1) =

(
R(𝑝+1)
𝑥

)−1
A

1𝑁 diag
[
A𝐻

(
R(𝑝+1)
𝑥

)−1
A
]

𝚺 (𝑝+1) = diag

[
1
𝐾

𝐾∑︁
𝑘=1

W𝐻 (𝑝+1)x(𝑘)
]
� I,

where 1𝑁 is the 𝑁 × 1 vector of ones. As we know with MVDR beamformers, the source covariance matrix
does not factor in explicitly into the filter update equation; rather, it’s contained implicitly in the measurement
covariance matrix. The effect of this that we observed in our numerical and experimental study is that using
the MVDR update provided more overall stability at the expense of a moderate decrease in resolution as
compared to the MMSE version. Figure 3 shows an example of this, in which we see that convergence
of RISR-MVDR was achieved as early as iteration 5. Furthermore, the sources were identified correctly
as opposed to the MMSE version; however, a significant degradation in resolution also can be seen when
compared to the resolution performance provided by the MMSE version of RISR.
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(a) RISR-MMSE, iteration 5 (b) RISR-MMSE, iteration 24

(c) RISR-MVDR, iteration 5 (d) RISR-MVDR, iteration 24

Fig. 3—An example to highlight some of the differences in behavior between the two RISR
variants. Here, we apply both RISR DOA estimation algorithms to a 12-element ULA with
six sources. The MMSE version exhibits much sharper resolution, but tends to miss sources
and/or to display false peaks. Using the MVDR weight update seems to provide better
stability overall at the expense of resolution performance loss.
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2.3.3 Maximum Likelihood Estimation and Expectation Maximization

Taking a stochastic view of the array data, each snapshot x(𝑘) constitutes an independent observation of
the random vector 𝒙, for which we denote 𝑓𝒙 (x|𝜶) as its underlying probability distribution function (PDF)
conditioned on a set of parameters 𝜶. The parameter vector 𝜶 includes the DOAs as well as the amplitudes
of the sources. Based on the assumed covariance structure Eq. (16), the problem of finding the maximum
likelihood estimate (MLE) with respect to each parameter 𝛼𝑘 (as shown in Appendix C) can be reduced to
solving the following equation:

𝐾tr
[(

R−1
𝑥 S𝑥R−1

𝑥 − R−1
𝑥

) 𝜕R𝑥

𝜕𝛼𝑘

]
= 0. (18)

We see that in general, finding the roots of the left-hand side in Eq. (18) is a nonlinear optimization problem
that would require a numerical approach such as Newton’s method, which is too computationally complex
for most practical applications. In practice, a more efficient but suboptimal method can be used instead to
obtain a meaningful solution. For example, expectation maximization (EM) is a paradigm that is known
to converge to some local stable point of the log-likelihood function. EM assumes a framework in which
we have an incomplete data space X and a complete (latent) data space S for which there is a many-to-one
mapping from the complete data space to the incomplete data space. As such, the incomplete data is uniquely
determined by the complete data. In our case here, the source snapshots {s(𝑘), . . . , s(𝑘 + 𝐾 − 1)} form 𝐾

observations of the complete data space having diagonal covariance matrix 𝚺. The incomplete data is given
by the many-to-one mapping x(𝑘) = As(𝑘). With Gaussian sources, the likelihood functions of both spaces
are given as

𝐿𝑐𝑑 (𝚺 |S𝑠) = −𝐾 log |𝚺 | − tr
[
𝚺−1S𝑠

]
(19)

and

𝐿𝑖𝑑 (R𝑥 |S𝑥) = −𝐾 log |R𝑥 | − tr
[
R−1
𝑥 S𝑥

]
. (20)

The EM algorithm is an iterative recipe with two basic steps:

1. The “E” step, where, at the current iteration, we compute the conditional expected value of the complete
data with respect to the observed data X𝑘 and the current estimate of the latent parameter 𝚺 (𝑝) ,

𝐸

[
𝐿𝑐𝑑 (𝚺) |X𝑘 ,𝚺 (𝑘)

]
= −𝐾 log |𝚺 | − tr

[
𝚺−1𝐸

[
S𝑠 |X𝑘 ,𝚺 (𝑝)

] ]
. (21)

2. The “M” step, where, 𝚺 (𝑝+1) is computed by maximizing Eq. (21) with respect to 𝚺 (𝑝) ,

𝚺 (𝑝+1) = argmax
𝚺 (𝑝)

{
𝐸

[
𝐿𝑐𝑑 (𝚺) |X𝑘 ,𝚺 (𝑝)

]}
.

The work of Barton and Fuhrman [27] provided explicit computations of the above two steps, which can be
boiled down to two convenient formulas:

𝚺 (𝑝+1) =
(
𝚺 (𝑝) + 𝚺 (𝑝)B(𝑝)𝚺 (𝑝)

)
� I

R(𝑝)
𝑥 = A𝚺 (𝑝)A + 𝜎20 I,
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where � denotes the Hadamard product and

B(𝑝) = A𝐻R−1(𝑝)
𝑥 (S𝑥 − R𝑥) R−1(𝑝)

𝑥 A.

On the surface, this approach seems only applicable withMMVdata, however there is no explicit requirement
for this and the method extends to the single-snapshot case without any modification. Furthermore, it is
important to note that the EM method also can be extended to handle non-Gaussian noise characterizations
by replacing 𝜎20 I with a more general noise covariance matrix, R𝑛.

2.3.4 Compressive Sensing

A number of recent DOA estimation algorithms have been based on the concept of compressive sensing
(CS) [16, 28, 29] that are aimed specifically towards sparse arrays. Typically, a CS framework seeks to
exploit sparsity as a regularization prior to recover physically meaningful signals from under-determined
linear systems. For the DOA estimation problem, a sparsity prior can be assumed if the number of sources
are coming from only a few directions relative to the total number of directions in a discretized search grid
𝜽 . It is important to note that while the other DOA estimation methods discussed above all use a discretized
search grid for computing their solutions, the core assumptions of these algorithms are independent of the
chosen grid. This is not the case in conventional CS-based methods, and as we discuss below, the choice of
grid can have direct impact on underlying sparsity assumptions.

For the case of SMV data, it is known that the maximum number of sources that can be estimated by
leveraging sparsity is 𝑁/2 − 1, about half of what can be expected with DOA estimation techniques such as
MUSIC. More specifically, when the matrix A satisfies a Kruskal rank condition (Theorem 2 in Appendix
D), it can be assured that the null space of A is free of vectors of a specified sparsity; thus, when restricting
solutions to such a space, the under-determined problem becomes well-posed. Under a sparsity prior, DOA
estimation is then ideally accomplished through a ℓ0-based optimization program such as

min‖s‖0 subject to
‖As(𝑘) − x(𝑘)‖ < 𝜎20 .

In practice, such ℓ0 approaches are not feasible, since these programs are known to be non-convex and fall
under the class of NP-hard problems (i.e., finding a solution polynomial time is not guaranteed). However,
using an alternative based on the use of the ℓ1 norm in place of the ℓ0 norm has been recognized as a better
approach. This is because not only are ℓ1-based programs convex, and thus computational feasibility can be
assured, but also under some mildly stricter conditions on the structure of A, it can be shown that solutions
admitted by this method correspond (or very closely correspond) to sparse solutions yielded by ℓ0 techniques.
Some example ℓ1 recovery algorithms are the basis pursuit denoising (BPDN) approach,

min‖s‖1 subject to (22)
‖As(𝑘) − x(𝑘)‖2 < 𝜎20 , (23)

and its unconstrained equivalent form, the least absolute shrinkage and selection operator (LASSO) program,

min
1
2
‖As(𝑘) − x(𝑘)‖22 + 𝛼‖s‖1. (24)
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Another class of sparsity-based approaches includes greedy methods, which are not based on structured
convex optimization. Greedy methods such as orthogonal matching pursuit (OMP) are advantageous for
larger-scale problems, as they are computationally more efficient than ℓ1-based algorithms. However, any
assurances of such techniques converging to optimal sparse solutions can be shown only under much stricter
conditions on A [30].

When MMV data is available and is full rank, the maximum number of sources that potentially can
be estimated through sparsity approaches becomes 𝑁 − 1 (Appendix D, theorem 3), which is on par with
conventional DOA estimation methods. For the MMV case, ℓ1-based algorithms are based on a so-called
joint-sparsity assumption, where (like the other techniques discussed here) the underlying source directions
are fixed across the time span of the MMV data. A joint-sparsity version of LASSO, for example, is

min
S∈C𝑀×𝐾

1
2
‖AS(𝑘) − X(𝑘)‖2𝐹 + 𝛼‖S‖1,𝑟 ,

where ‖ · ‖𝐹 is the Frobenius norm and

‖S‖1,𝑟 =
𝑀∑︁
𝑚=1

(
𝐾∑︁
𝑘=1

| [S]𝑚𝑘 |2
)1/2

.

This norm generalizes the concept of an ℓ1 norm by viewing the temporal dimension of the underlying
signal as a multi-component signal. Thus, the joint-sparsity LASSO penalizes an ℓ1 norm across the spatial
dimension of S.

For either SMV or MMV sparsity-based DOA estimation, the gridding problem is one of the biggest
drawbacks [16] of these approaches. As we mentioned, the matrix A relies on an explicit grid; however, the
underlying assumed sparsity is taken with respect to this grid. In reality, the probability that the true DOAs
align exactly with the chosen grid is zero. This is the case no matter how finely we sample our grid, and thus
there will always be an imbalance between our assumed steering vectors and the true DOAs of the sources.
This imbalance can be highly detrimental to the performance of sparsity-based methods. An explanation for
this lies in the fact that the mismatched steering vectors leads to a violation of our assumed sparsity [31],
since energy will be distributed across all the coefficients. Furthermore, as the number of columns in the
matrix A increases, the steering vectors in the matrix A become more mutually coherent, which decreases
the suitability of leveraging sparsity as an effective prior. Consequently, the maximum number of sources
that algorithms like BP, LASSO, or OMP can identify reliably will decrease. Recent works on compressive
DOA estimation have thus focused on so-called “gridless” methods. These methods are on a more general
concept of signal parsimony rather than sparsity; in other words, the signal we wish to receive is somehow
low-dimensional with respect to building blocks of atomic functions. This motivated the development of
compressive sensing based on the use of the atomic norm [32], which can be seen as a generalization of the
ℓ1 norm for recovering sparse vectors or the nuclear norm for low-rank matrices. In essence, the work in [33]
showed that through employing atomic norm minimization in the form of a semi-definite program (SDP),
one can uniquely recover the underlying sources with overwhelming probability and with infinite precision!
This is shown to be the case when the maximal spacing of the spatial frequencies satisfy

Δ𝜈 > 4/𝑁,
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for the single-snapshot case. In other words, the maximal number of sources that can be recovered using
such an approach is 𝑁/4, about half of what can be expected with a conventional ℓ1 penalty under completely
matched steering vectors. Thus, such approaches in addition to being computationally expensive, seem to
imply a rather inefficient use of the DOF offered by the array.
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3. SPARSE ARRAYS, THE DIFFERENCE COARRAY, AND THE AUGMENTED
COVARIANCE MATRIX

In the previous chapter, we discussed a number of conventional spatial-processing algorithms that are
commonly employed for ULAs. In particular, we showed that generally for the DOA estimation problem,
estimating 𝑁 − 1 sources serves as an upper bound on the number of sources that can be estimated. This
upper bound is one of the major drawbacks of sparse arrays, i.e., the lack of spatial DOF as compared to dense
arrays. As discussed in Chapter 1, there are approaches based on the second-order statics of the array signals
that allow for greater DOF to be extracted from certain sparse arrays. Two examples of such techniques that
are prevalent in the current literature both rely on forming a so-called virtual uniform linear array (VULA)
by exploiting covariance information. The first approach is based on augmenting the measured covariance
matrix [4, 5] to estimate the larger measurement covariance matrix corresponding to the ULA of the same
outer dimension as the sparse one. This augmented ULA is referred to as the VULA and thus allows
for employing spatial processing algorithms that rely on covariance data to be employed with no special
modification. The second approach, which is the main focus of this chapter, is based on viewing the central
ULA segment of the difference coarray as a VULA in itself, and treating the corresponding covariance data
as a signal received at this virtual array. Linear beamforming of this virtual signal, referred to as “correlation
beamforming” in [3, Sec. IV], appears to be the earliest example of this approach. We will refer to the first
approach as covariance augmentation and the second approach as NAP. This chapter proceeds as follows:
We first consider linear beamforming of the covariance matrix of a sparse array, as this naturally leads to the
derivation of the difference coarray as well as the assumptions that underlie and enable much of what is to
come. We then compare this to the augmented-covariance approach, which uses the same underlying data
and assumptions but in a different format. We use these results to compare some different classes of sparse
arrays that are appropriate for extending their respective DOFs within the two frameworks discussed.

3.1 Linear Beamforming of the Covariance Matrix

Let us return to the 𝑁-element linear array signal model of Eq. (4) and its corresponding 𝑁×𝑁 covariance
matrix of Eq. (5). We wish to apply a linear beamformer (filter) to the covariance, which we represent here
as the 𝑁 × 𝑁 complex matrixW. We can write the filter output as

〈
R𝑥 ,W

〉
=

〈
AR𝑠A𝐻 ,W

〉
+

〈
R𝑛,W

〉
=

〈𝑀−1∑︁
𝑚=0

𝑀−1∑︁
𝑛=0

aS(𝜃𝑚)a𝐻S (𝜃𝑛) [Rs]𝑚,𝑛,W
〉
+

〈
R𝑛,W

〉
=

𝑀−1∑︁
𝑚=0

𝑀−1∑︁
𝑛=0

a𝐻S (𝜃𝑛)W
𝐻aS(𝜃𝑚) [Rs]𝑚,𝑛 +

〈
R𝑛,W

〉
, (25)

where the third line uses the identity
〈
ab𝐻 ,W

〉
= b𝐻Wa. From this, we see that the quantitya𝐻

S
(𝜃𝑛)W𝐻aS(𝜃𝑚)

determines the gain applied to the signal cross-covariance term [Rs]𝑚,𝑛. Defining the two-input array cross-
pattern function

W (𝜃, 𝜃 ′) , a𝐻S (𝜃
′)W𝐻aS(𝜃), (26)
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we see that it serves as the second-order equivalent of the linear array pattern w𝐻aS(𝜃). Indeed, if W is
defined as the rank-1 outer product ww𝐻 then we have

W (𝜃, 𝜃 ′) = a𝐻S (𝜃
′)ww𝐻aS(𝜃)

= (w𝐻aS(𝜃 ′))∗(w𝐻aS(𝜃)),

the product of linear beamformer responses in the two directions. Substituting the steering-vector expression
Eq. (3) into Eq. (26) yields

W (𝜃, 𝜃 ′) =
𝑁−1∑︁
𝑚=0

𝑁−1∑︁
𝑛=0

𝑤∗
𝑚,𝑛 𝑒

− 𝑗 2𝜋
𝜆
(𝑥𝑛 sin(𝜃 ′)−𝑥𝑚 sin(𝜃)) (27)

= 𝑊∗(sin(𝜃)/𝜆,− sin(𝜃 ′)/𝜆), (28)

where𝑊 is the two-dimensional spatial Fourier transform of filterW.

The cross-pattern function is linear in the 𝑁2 coefficients ofW and thus represents 𝑁2 degrees of freedom,
compared to 𝑁 for the linear beamformer. On the other hand, 𝑀 sources can result in up to 𝑀2 cross-terms
in the signal covariance Rs, and so in general, a beamformer based on second-order statistics cannot resolve
any more sources than a linear one. It is only when some of the sources are uncorrelated, so that their
corresponding cross-terms are zero, that these degrees of freedom can be used to resolve additional sources.
Indeed, a most-common case is to assume that all of the sources are uncorrelated. Let us revisit Eq. (25),
assuming that [Rs]𝑚,𝑛 = 0 for 𝑚 ≠ 𝑛:

〈
R𝑥 ,W

〉
=

𝑀−1∑︁
𝑚=0

W (𝜃𝑚, 𝜃𝑚) [Rs]𝑚,𝑚 +
〈
R𝑛,W

〉
=

𝑀−1∑︁
𝑚=0

C (𝜃𝑚) [Rs]𝑚,𝑚 +
〈
R𝑛,W

〉
. (29)

Now we can see that the cross-pattern derived in the previous section has embedded within it the array
response to such signals by evaluating it at the same angle for both arguments:

C (𝜃) , W (𝜃, 𝜃) =
𝑁−1∑︁
𝑚=0

𝑁−1∑︁
𝑛=0

𝑤∗
𝑚,𝑛 𝑒

− 𝑗 2𝜋
𝜆
(𝑥𝑛−𝑥𝑚) sin(𝜃) . (30)

We see that this diagonal cut through the cross-pattern is the Fourier transform of the sequence of values
{𝑤∗

𝑚,𝑛} on the locations {x𝑛 − x𝑚} representing all of the pairwise differences of array element positions.
The set of pairwise differences is known as the difference coarray [3], and it represents the locations of
elements in a virtual array whose pattern C we will call the coarray pattern.

Comparing Eqs. (29) and (30) to Eqs. (8) and (9), we see that the signal term of Eq. (29) is analogous
to that of a conventional linear beamformer, with the signal powers {[Rs]𝑚,𝑚} taking the place of complex
signal amplitudes {𝑠𝑚}, and the coarray pattern taking the place of the linear array pattern. Since the coarray
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is larger and less sparse than the physical array, second-order beamforming can provide increased resolution
for uncorrelated sources. More generally, (Eq.) (29) implies that in appropriate contexts, we can treat the
covariance of the linear array as a virtual “signal,” itself, with support on the coarray. This idea will be
formalized and developed further in the following sections.

3.2 Sparse Array Architectures

There are many ways to arrange sparse array elements, but in this report, we are specifically interested
in sparse array architectures that admit a full (or nearly full) difference coarray. The hypothesis is that these
types of sparse arrays would contain the covariance information captured by a ULA of the same length.
Before we discuss specific examples of such arrays, we formalize our definition of the difference coarray and
introduce a few related concepts.

Definition 1 (Difference Coarray). Let S be the set of relative antenna locations. The set of all spatial lags
associated with S is defined as

D𝑙 = {𝑛𝑖 − 𝑛 𝑗 | 𝑛𝑖 , 𝑛 𝑗 ∈ S}

and the difference coarray is the set D𝑐 containing all unique elements of D𝑙.

Note in this definition we allow the set D𝑙 to have repeated elements. An important property of both the sets
D𝑙 and D𝑐 is that their elements are symmetric about zero. In other words, if 𝑚 ∈ D𝑙, then −𝑚 ∈ D𝑙 as well,
and the same holds for D𝑐 . the following definitions aid in developing a means to measure how complete a
certain sparse array is in reference to a ULA:

Definition 2 (Central ULA Segment). Let D𝑐 be the difference coarray associated with an array S, and let
�̃� be the largest integer in D𝑐 such that the set U = {0,±1, . . . ,±�̃�} is also contained in D𝑐 . Then we say
that U is the central ULA segment of D𝑐 .

We say that a certain 𝑁-element sparse array is fully augmentable when its central ULA segment coincides
with its coarray. In other words, there are no gaps in D𝑐 . The second measure is related to the amount of
redundancy captured by a given array.

Definition 3 (Weight Function). For a given 𝑁-element array with spatial lagsD𝑙 and coarrayD𝑐 , we define
the weight function 𝑤 : D𝑐 → Z+ as

𝑤(𝑚) = |{𝑚 ∈ D𝑙}|. (31)

The weight function is essentially a histogram of the spatial lags contained in the coarray giving a count of
repeated spatial lags. It is not difficult to show that the weight function adheres to the following properties:

The weight function of some arbitrary array S with |S| = 𝑁 satisfies:

1. 𝑤(0) = 𝑁 .

2. 1 ≤ 𝑤(𝑚) ≤ 𝑁 , for all 𝑚 ∈ D𝑐 .
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3. 𝑤(𝑚) = 𝑤(−𝑚), for all 𝑚 ∈ D𝑐 .

4.
∑
𝑚∈D𝑐\{0} 𝑤(𝑚) = 𝑁 (𝑁 − 1).

In particular, properties 1, 2, and 4 imply we can aim to achieve a longer central ULA segment of a particular
array by minimizing the amount of redundancy in D𝑙. In fact, a completely non-redundant array would yield
the weight function

𝑤nonredundant(𝑚) =
{
𝑁, for 𝑚 = 0
1, otherwise

, (32)

which yields a central ULA segment of length 𝑁 (𝑁 − 1) + 1. Interestingly, one can show that any ULA is
completely redundant and always admits a central ULA segment of length 2𝑁 − 1. As a simple example, the
non-redundant 4-element array given as S = {0, 1, 4, 6} admits a central ULA segment that coincides with a
7-element ULA, which we can see in Fig. 4.

Fig. 4—Comparing the weight functions of a 4-element non-redundant array with a
7-element ULA of equivalent length

We now can discuss specific sparse architectures that admit favorable characteristics in terms of re-
dundancy and the length of their central ULA segments. One of the earliest sparse architectures is a
minimum-redundancy array (MRA) [2, 34] in which 𝑁 elements are positioned to yield as few redundancies
as possible but subject to a fully augmentable constraint. Since the number of redundancies is minimized,
as we discussed, this results in the maximal length of the coarray �̃� and is ensured to have no gaps; i.e.,
its central ULA segment coincides with D𝑐 . The element positions satisfying this objective and constraint
typically are found through computational optimization algorithms. Another relevant sparse architecture is a
minimum-hole array (MHA) [35], which relaxes the no-gap constraint ofMRAs. In other words, MHAs have
no redundancies but are allowed to have holes with the aim of keeping the number of gaps to a minimum.
As such, it admits an array that has the minimum aperture possible without introducing redundancy. Like
MRAs, there are no closed-form formulas for finding the optimal element placing. Nested [11] and coprime
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arrays [36] are more recent sparse architectures, both of which have explicit formulas for placing 𝑁 elements;
however this comes at a cost of not being able to adhere to the minimal redundancy or hole criteria as is
done with MRAs and MHAs. Nested arrays can be thought of as the concatenation of two ULAs: a dense
one and a sparse one. Coprime arrays are composed of two sparse arrays: one that is of length 𝑁1 and one
that is of length 𝑁2, where 𝑁1 < 𝑁2 and such that they are coprime integers. Both of these structures have
the advantage of closed-form formulas for determining the element positions, which could be important for
applications where one needs to reconfigure the array elements rapidly. It is claimed in [37] that coprime
arrays admit a reduced mutual coupling between sensor elements as compared to nested arrays, which could
be the case, given that coprime arrays have fewer immediately adjacent elements, but this is not substantiated.
Figure 5 illustrates an example of all four architectures for the case of 𝑁 = 6 and their respective difference
coarrays. Notice that in contrast with coprime arrays, nested arrays are fully augmentable.

0 1 2 3 4 5 6 7 8 9 10 11

Coprime array

Nested array

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Minimum redundancy array

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Minimum hole array

Physical layout Nonnegative portion of the coarray

Fig. 5—Illustration of the element positioning of the four different sparse arrays discussed
for the case of 𝑁 = 6 as well as the non-negative portions of their respective difference
coarrays

3.3 Extending the DOF of Sparse Arrays through the Difference Coarray

For simplicity of the discussion, we will assume throughout this section (and the remainder of the report)
that the sparse arrays under consideration induce a filled coarray without gaps, which corresponds to the
“restricted” class in [2]. While much of what we discuss also could apply to non-fully augmentable arrays
(such as coprime arrays) by either focusing solely on its central ULA or through some interpolation scheme,
we choose to focus on the fully augmentable case to focus on the conceptual aspects of the approach.

3.3.1 Covariance Matrix Augmentation

To get more specific about the two approaches, let �̃� ≤ (𝑁) (𝑁 − 1) + 1 denote the length of the central
ULA segment of a given sparse array S. Covariance augmentation seeks to estimate a covariance matrix R̃𝑥

of size ( �̃�+1)
2 × ( �̃�+1)

2 corresponding to the ( �̃�+1)
2 ULA. Since the sparse array captures all possible spatial

lags of this ULA, we can construct an initial guess S̃𝑥 for R̃𝑥 by filling in the covariance data corresponding



Nonlinear Adaptive Array Processing 25

to the lags 𝑚 = 0, . . . , ( �̃�−1)
2 . Note that repeated elements can be filled by an averaging scheme. However,

this resulting matrix does not necessarily admit the properties of a covariance matrix, mainly that of being
Toeplitz and being positive semidefinite. To ensure these crucial properties, one then can find the closest
Hermitian, Toeplitz, and positive definite ( �̃�+1)

2 × ( �̃�+1)
2 matrix to this initial estimate. Let us denote the vector

space H( �̃�+1)/2 as the space containing all Hermitian matrices of size ( �̃�+1)
2 × ( �̃�+1)

2 . Note that H( �̃�+1)/2 in
fact constitutes a Hilbert space endowed with the inner product 〈A,B〉H = tr [AB] for all A,B ∈ H( �̃�+1)/2.
Now define the sets P( �̃�+1)/2 ⊂ H( �̃�+1)/2 and T( �̃�+1)/2 ⊂ H( �̃�+1)/2 as

P( �̃�+1)/2 = {A ∈ H( �̃�+1)/2 | x𝐻Ax ≥ 0}, for all x ∈ C( �̃�+1)/2 (33)

and

T( �̃�+1)/2 = {A ∈ H( �̃�+1)/2 | A is Toeplitz}. (34)

In plain English, P( �̃�+1)/2 is the set of Hermitian positive semidefinite matrices and T( �̃�+1)/2 is the set of
Hermitian Toeplitz matrices. It is not hard to establish the following:

1. The sets P( �̃�+1)/2 and T( �̃�+1)/2 are convex.

2. The sets P( �̃�+1)/2 and T( �̃�+1)/2 are closed.

3. The intersectionM( �̃�+1)/2 = P( �̃�+1)/2 ∩ T( �̃�+1)/2 is a closed and convex set.

It is known that for any closed and convex subset W of a Hilbert space H, for every element 𝑢 ∈ H, there
exists a unique best approximation 𝑤 ∈ W to 𝑢. This is known as the projection of 𝑢 onto the setW and is
denoted as projW (𝑢). For our specific case, we seek the projection of S̃𝑥 onto the setM( �̃�+1)/2. This can be
solved formally as

projM(�̃�+1)/2
(
S̃𝑥

)
= arg inf

R∈H(�̃�+1)/2
‖R − S̃𝑥 ‖ subject to R ∈ M( �̃�+1)/2. (35)

This can be solved efficiently using Dykstra’s alternating projection onto convex sets (POCS) algorithm
[38]. Once a solution is obtained, we can apply conventional DOA estimation techniques with respect to the
estimated larger covariance data R̃𝑥 = projM(�̃�+1)/2

(
S̃𝑥

)
. Based on our discussion of such algorithms, it is

clear, then, the maximum number of sources that we can expect to estimate via this approach is (�̃� − 1)/2.

3.3.2 The NAP Virtual Array Model

In the NAP approach, the VULA is obtained directly by vectorizing the covariance model given in Eq.
(5). As discussed in Appendix A, we can define a transformation VEC (·) : C𝑁×𝑁 → C𝑁

2×1 that maps
the 𝑁2 variables {𝑅11, 𝑅21, . . . , 𝑅𝑁𝑁 } (columnwise order) into the vector z = [𝑧1, 𝑧2, . . . , 𝑧𝑁 2]𝑇 . Applying
VEC (·) to both sides of Eq. (5) and after some algebraic manipulation, we can derive the (redundant) NAP
VULA model

z = (A∗ ~ A) p + 𝜎201. (36)
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Here, p = [𝜎21 , . . . , 𝜎
2
𝑀
]𝑇 ], 1 = VEC (I), and ~ is theKhatri-Rao product. Due to themultiplicative property

of exponential functions, the matrix (A∗ ~ A) resembles the structure of an array manifold corresponding to
an array whose antenna element positions coincide with the set D𝑙. Denoting this (virtual) array manifold as
AD𝑙 we can write Eq. (36) more succinctly as

z = AD𝑙p + 𝜎201. (37)

Our desire is to transform the model Eq. (37) into one that further resembles a physical array. This can be
accomplished by sorting the spatial lags and then removing the redundant elements of 𝐷𝑙 according to some
predefined rule (such as retaining only the first occurrence), or more formally by defining a (nonsquare)
permutation matrix P ∈ R�̃�×𝑁 2 that implements the sorting and selection.

Example 1. Consider the array S = {0, 1, 2, 5} that admits the coarray

D𝑙 = {0, 1, 2, 5,−1, 0, 1, 4,−2,−1, 0, 3,−5,−4,−3, 0}.

The covariance matrix associated with the array has the structure

R𝑥 =


𝑟 (0) 𝑟 (−1) 𝑟 (−2) 𝑟 (−5)
𝑟 (1) 𝑟 (0) 𝑟 (−1) 𝑟 (−4)
𝑟 (2) 𝑟 (1) 𝑟 (0) 𝑟 (−3)
𝑟 (5) 𝑟 (4) 𝑟 (3) 𝑟 (0)


with 𝑟 ( 𝑗) being the covariance data for spatial lag 𝑗 ∈ D𝑙. The permutation matrix

P =



0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0



(38)

maps the vector

z = VEC (R𝑥) = [𝑟 (0), 𝑟 (1), 𝑟 (2), 𝑟 (5), . . . , 𝑟 (−3), 𝑟 (0)]𝑇

into the vector

z̃ = [𝑟 (−5), 𝑟 (−4), . . . , 𝑟 (0), . . . , 𝑟 (5)]𝑇

containing no redundant elements.
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If we apply this operator to both sides of Eq.(36), we have

Pz = z̃ = AD𝑐p + 𝜎201𝑐 , (39)

where AD𝑐 = PAD𝑙 is the array manifold corresponding to the array elements taken from the coarray D𝑐 ,
and 1𝑐 = P1. When the array is fully augmentable, this form of NAP then resembles a uniform linear array
with unique antenna elements distributed across the aperture −(�̃� − 1)/2, . . . , (�̃� − 1)/2.

As we begin to analyze some characteristics of the NAP VULA in Chapter 4, we need a formal means of
mapping back and forth between the various covariance structures in Eqs. (5), (37), and (39). For mappings
between the covariance model Eq. (5) to the redundant coarray data in Eq. (37), this is not an issue because
the operator VEC (·) is a bĳection (one to one and onto mapping) between C𝑁×𝑁 and C𝑁 2×1 and also
preserves the Euclidean distance between points in the respective spaces.

Proposition 1. The transformation z = VEC (R𝑥) is a linear isometry.

Proof. Clearly, VEC (·) is linear and by definition, we have

𝜕 [z]𝑖 ′
𝜕 [R]𝑖 𝑗

=

{
1, for 𝑖 ′ = ( 𝑗 − 1)𝑁 + 𝑖
0, otherwise

(40)

for each 𝑖 ′ = 0, . . . , 𝑁2 = 1. Hence the Jacobian matrix Jvec = I, where I is a 𝑁2 ×𝑁2 identity matrix having
a unity determinant.

It follows from Proposition 1 that a well-defined inverse for VEC (·) exists, which we denote as MAT [·]. It’s
easy to observe that this operator simply reverses the vectorization operator by reshaping a 𝑁2 vector back
to its 𝑁 × 𝑁 matrix form. The operator P : C𝑁 2 → C�̃� , on the other hand, complicates matters because in
general it is not invertible, as we are mapping a 𝑁2 vector down to a lower dimensional space C�̃� . In other
words, P has a null space 𝑁 (P) associated with it, and thus an ambiguity exists when attempting to recover
a vector z from the data z̃ = Pz. However, we can get around this complication by restricting the domain
of the P operator. More specifically, for NAP, we effectively are applying the VEC (·) operator with respect
to the space of Hermitian positive semi-definite and Toeplitz matrices M𝑁 . Furthermore, in practice, if we
assume that underlying array in question is fixed, then the redundant elements in the covariance matrices are
always known a priori. Thus, the covariance data in this case belongs to a sub-space VD𝑙 ⊂ M𝑁 consisting
of matricesM𝑁 whose individual elements follow the redundancies dictated by D𝑙. With this in mind, let us
denote the space X as the range of of VEC (·) when its domain is restricted to VD𝑙 . Thus, the permutation
matrix P now can be seen as a mapping betweenX and its range under such a restriction that we can denote as
Y ⊂ C�̃� . Under this restriction, P still has a null space associated with it, but now 𝑁 (P) can be characterized
explicitly. If we let the set S𝑟 ⊂ {1, 2, . . . , 𝑁2} be the set of vector indices corresponding to the redundant
virtual elements of the coarray data z (for a fixed array structure), then the null space of P becomes

𝑁 (P) = {z ∈ X : 𝑧𝑖 = 0,∀𝑖 ∉ S𝑟 }. (41)
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Thus, for any vector z ∈ 𝑁 (P), we can represent it as

z =
∑︁
𝑖∈S𝑟

𝑎𝑖 ê𝑖 , (42)

where ê𝑖 is the standard basis vector consisting of zeros except for a one at the 𝑖th position, and 𝑎𝑖 ∈ C is
some weighting coefficient. With this in mind, we now can proceed to define a regularized a regularized
inverse of the P operator by leveraging this characterization. For a linear operator to be invertible, we need
to establish a right inverse as well as a left inverse. A right inverse of P is established readily by noting the
following:

Proposition 2. The permutation matrix P : C𝑁 2 → C�̃� is many-to-one and onto.

Proof. It is clear that the rows of P only consists of the standard basis vectors ê𝑖 and thus P has full-row rank
and whose range spans C�̃� .

Thus, we are assured of a right inverse P# : C�̃� → C𝑁
2 , such that PP# = I�̃� . A common and useful

right-inverse is the minimum-norm solution, which in this case is shown to be

P# = P𝑇
(
PP𝑇

)−1
= P𝑇 , (43)

which follows from the orthonormality of the rows of P. It is not hard to see that this choice of right inverse
places zeros for the indices corresponding to the elements that did not get sampled by the forward operator P.
The minimum norm right inverse P𝑇 then would place zeros in exactly these positions. Under the restriction
of P to the domain X , a left inverse then can be established (and thus recovering the redundant elements) by
adding a fixed 𝑁2 × �̃� permutation matrix P𝑟 to the minimum norm solution P𝑇 , which places the repeated
elements back to their original locations. More specifically, the matrix P𝑟 contains a complete basis for
𝑁 (P). One can show that such a basis of the null space forms an orthogonal compliment to 𝑅(P𝑇 ), and thus
we have X = 𝑅(P𝑇 )

⊕
𝑁 (P). As such, we can define the operator P# = P𝑇 + P𝑟 , which serves as a right

inverse on the entire space C�̃�×1 → C𝑁 2×1 and also as a left inverse for Y → X . Using these arguments,
we can make a formal conclusion:

Proposition 3. Let P be a �̃� ×𝑁2 permutation matrix restricted to the domain X with range Y ⊂ C�̃� . There
exists a left inverse P# : Y → X such that for every z ∈ X , we have P#Pz = z.

Consider a concrete example of this as a continuation of Example 1:

Example 2. For the array S = {0, 1, 2, 5} with the permutation matrix P defined in Example 1, we can define
a left inverse from Y to X as

P# = P𝑇 + P𝑟 (44)
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with

P𝑟 =



0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0



. (45)

3.3.3 The Noisy NAP VULA Models

Note that even though the physical array adheres to a noisy linear model, theoretically, the NAP VULA
model here is noiseless because the covariance matrix is deterministic. Again, in practice, we do not have
perfect knowledge of R𝑥 but its estimate, S𝑥 , the sample covariance matrix. Therefore, there is an error
matrix N𝑥 satisfying

S𝑥 = R𝑥 + N𝑥 . (46)

This error term is incorporated into the NAP model by introducing the quantity 𝝂 = VEC (N𝑥) and adding
it as an error term to Eq. (37)

z = AD𝑙p + 𝜎201 + 𝝂. (47)

Furthermore, we can define �̃� = PVEC (N𝑥) to serve as a noise term for Eq. (39),

z̃ = AD𝑐p + 𝜎201𝑐 + �̃�. (48)

We can make Eq. (48) a bit more succinct by augmenting the virtual manifold as A𝑣 =
[
1𝑐 ,A𝐷𝑐

]
,

z̃ = A𝑣p + �̃�. (49)

Note in Eq. (49) the source signal is now defined as p = [𝜎20 , . . . , 𝜎
2
𝑀
]𝑇 . In both the redundant and

nonredundant models, Eqs. (47) and (49), the virtual array data is now a random variable where the source
of noise is strictly due to finite time sample support.
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4. NONLINEAR ARRAY PROCESSING

In this chapter, we examine techniques, performance, and limitations of spatial processing with respect
to the nonlinear model. We take a deep dive into the fundamental questions that we discussed in Chapter
1, which include establishing upper bounds on the number of sources that can be estimated through this
framework. We also give some analysis into the expected time sample support needed to leverage the DOF
of the sparse array effectively. We then proceed to discuss how to adapt some of the existing DOA estimation
and adaptive filtering algorithms we discussed in Chapter 2 to the nonlinear model. We conclude the chapter
with some simulations as a proof of concept of the discussed techniques.

4.1 DOA Estimation via the NAP Model

We begin our analysis by considering the DOA estimation problem. One of the first observations to note
for the nonlinear model (39) is that the associated VULA is �̃� elements long. From Fig. 6, we see that this
is twice as long as the VULA associated with the augmentation approach as well as the physical array, itself.
This observation motivated the claim in [11] that NAP potentially could estimate up to �̃� − 1 sources as
opposed to the conventional limitation of (�̃� − 1)/2 through augmentation. Additionally, the longer virtual
aperture implies better resolution performance, which, for example, we can see in Fig. 7.
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Physical Array

Augmented ULA

Difference Coarray as a ULA

Twice the length (resolution) and twice the amount of DOF over 
augmentation methods

Fig. 6—Demonstrating the VULA generated through augmentation and NAP. The NAP
VULA is twice as long as an augmented ULA.

Now let us consider establishing bounds on the maximum number of sources that can be estimated via
NAP. Since in the nonlinear model the given data R𝑥 or S𝑥 constitutes a single virtual snapshot of z̃, as
discussed in Chapter 2, DOA estimation algorithms such as beamforming-based or CS techniques are the
most straightforward to apply because they are suitable for SMV data without major modification. However,
as we also have discussed, SMV methods are able to estimate only up to (�̃� − 1)/2 sources. In other words,
CS-based or beamforming techniques would not be able to resolve any more sources than an augmentation
approach. On the other hand, in the linear model, we know that correlation-based DOA estimation algorithms
are able to estimate twice the number of sources that such direct methods could on the presumption we could
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Fig. 7—Virtual beam pattern for a 6-element nested array. The virtual pattern exhibits a
narrower main lobe, which is due to its larger aperture.

estimate the data covariance matrix. So the question we ask here is whether this would be the case with
the nonlinear model if we somehow were able to somehow estimate R𝑧 . One possibility of doing this, of
course, is to collect multiple snapshots of z̃, which would imply an observation time equivalent to an entire
dwell. There are many issues with attempting to use an entire dwell to perform DOA estimation with NAP.
Firstly, for R𝑧 to resemble the covariance structure seen in the linear model, this approach would require the
source amplitudes to be quasi-stationary throughout the dwell, meaning a WSS stationary assumption would
need to hold during a single CPI with some statistical fluctuation across the CPIs. Moreover, the DOAs,
themselves, would need to be stationary/constant during the entire dwell, which, as we mentioned before,
is a poor assumption to make for most fielded radar applications. A more practical approach is to consider
correlation-based techniques with a restriction to SMV data. One major roadblock for the SMV approach is
that z̃z̃𝐻 only provides a rank-one estimate of R𝑧 and thus is rank-deficient for DOA estimation. Pal et al
[11] attempted to get around the rank-deficiency issue through a spatial smoothing scheme. In this approach,
an estimate R̂𝑧 is computed through spatial averaging across (�̃� + 1)/2 overlapping sub-arrays of the VULA
(see Fig. 8),

R̂𝑧 =
2

�̃� + 1

( �̃�−1)/2∑︁
𝑖=1

z𝑖z𝐻𝑖 ,

where z𝑖 is the 𝑖th subarray. The drawback with the spatial smoothing approach is that the NAP VULA
has been decimated by half. Thus, again, we see that (�̃� − 1)/2 serves as an upper bound for the number
of sources that can be estimated, and furthermore, we lose the ability to resolve sources beyond a ULA
aperture of (�̃� −1)/2 elements in length. The obvious question at this point is whether (�̃� −1)/2 constitutes
some sort of inherent limit for the under determined DOA estimation problem, or is this simply a specific
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Fig. 8—The spatial smoothing scheme on the coarray

limitation of the spatial smoothing approach? The second issue that we need to address for the nonlinear
model is the issue of time sample support of the physical measurements. In other words, in the virtual SMV
DOA estimation approach, we still require a number of snapshots 𝐾 to form a single virtual measurement.
Numerical simulations seem to indicate that a relatively large number of snapshots are assumed when
estimating more sources than elements via spatial smoothing and the nonlinear model. Older papers on
the covariance augmentation approach [6] also indicated that estimation of sources beyond the number of
elements relied on more snapshots to reduce the estimation error. Since, in the available literature to date,
spatial smoothing has been the only algorithm considered for estimating R𝑧 for the nonlinear model, it is
not clear whether this is a specific limitation of spatial smoothing or the manifestation of a more general
implication of DOA estimation with sparse arrays.

Our plan toward gaining a better understanding of the two fundamental questions we raised above for
NAP DOA estimation is to develop a statistical characterization of the virtual array data using the common
assumptions that usually are taken in analyzing DOA estimation performance with the linear model. More
precisely, we first seek to establish the Cramer-Rao lower bound for the NAP VULA.

4.1.1 The Cramer-Rao Lower Bound for NAP

For the DOA estimation with the linear model, Stoica derived the CRLB in his early influential work of
[39]. In this work, Stoica identified two paths of analysis: the conditional model, in which the sources are
deterministic (their amplitudes are known a priori), and the stochastic model, in which the sources are treated
as random processes. Naturally, these two perspectives lead to two different expressions for the CRLB. Here,
we will focus on the stochastic version which holds under the Gaussian and stationary assumptions 1–3. The
FIM for this case Jlinear(𝜶) can be shown to be (interested readers may consult the derivation presented in
Appendix C)

[Jlinear]𝑖 𝑗 (𝜶) = 𝐾tr
[
R−1
𝑥

𝜕R𝑥

𝜕𝛼𝑖
R−1
𝑥

𝜕R𝑥

𝛼 𝑗

]
. (50)
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We seek to compare this expression with a derivation of the CRLB for the stochastic DOA estimation problem
assuming measurements via the non-redundant virtual model. Our first task is to identify the underlying
PDF of the virtual data (with the same assumptions we have made for the linear model). More specifically,
each snapshot z̃ constitutes an observation of the random vector �̃� that is drawn from a PDF that needs to
be determined. To simplify this determination, we want to relate the random variable �̃� back to the random
variable 𝑺𝑋 for which we can derive its distribution more easily. The first step in doing so is realizing that
the distribution of 𝑺𝑋 coincides with that of the redundant random variable 𝒛. First, we note the following
result, which follows from Proposition 1:

Proposition 4. Let 𝑺𝑥 be the random matrix representing the sample covariance matrix defined in Eq. (15)
with underlying PDF 𝑓𝑺𝑥 (·). Then each measurement z in the nonlinear model Eq. (47) constitutes an
observation of the random vector 𝒛 whose PDF is given as

𝑓𝒛 (z) = 𝑓𝑺𝑥 (MAT [z]).

Relating the PDF of 𝑺𝑥 for the non-redundant random variable �̃� is a little bit trickier, however, since the
Jacobian matrix of the transformation z̃ = Pz is nonsquare and hence does not have a determinant. As
established in Proposition 3, however, we know that we can establish a one-to-one mapping between all
vectors z ∈ X and the space of non-redundant coarray measurements z̃ ∈ Y by means of the operators P
and P#. By applying the chain rule of conditional probability, we can see that the underlying probability
distribution 𝑓𝒛 (z) is completely characterized by the non-redundant elements z̃ = Pz. Consider the following
simple example:

Example 3. Consider the vector z = [𝑧1, 𝑧2, 𝑧3]𝑇 , where 𝑧3 = 𝑧1 for every 𝑧1 ∈ C. Using the chain rule of
conditional probability, we see that

𝑓𝒛 (𝑧1, 𝑧2, 𝑧3) = 𝑓𝒛 (𝑧1, 𝑧2, 𝑧1)
= 𝑓𝒛 (𝑧1 | 𝑧2, 𝑧1) 𝑓𝒛 (𝑧2 | 𝑧1) 𝑓𝒛 (𝑧1).

By definition, however, 𝑓𝒛 (𝑧1 | 𝑧2, 𝑧1) = 1, since 𝑧1 has already occurred. Thus, we see that

𝑓𝒛 (𝑧1 | 𝑧2, 𝑧1) 𝑓𝒛 (𝑧2 | 𝑧1) 𝑓𝒛 (𝑧1)
= 𝑓𝒛 (𝑧2 | 𝑧1) 𝑓𝒛 (𝑧1) = 𝑓𝒛 (𝑧1, 𝑧2).

Therefore, we conclude that

𝑓𝒛 (𝑧1, 𝑧2, 𝑧3) = 𝑓𝒛 (𝑧1, 𝑧2).

In this manner, we can generalize this argument for any vector z ∈ X using a straightforward calculation
of the chain rule to make the claim that the PDF 𝑓𝒛 (z) over the sample space X is only dependent on the
non-redundant portion of the vector. Therefore, we can conclude the following:

Proposition 5. Let 𝑓�̃� (z) denote the PDF of the random variable �̃�. There exists a nonsquare permutation
operator P# : C�̃� → X such that for every z̃ ∈ C�̃� , we have

𝑓�̃� (z̃) = 𝑓𝒛 (P#z̃).
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The implication of Proposition 5 and Proposition 4 is that we only need to determine an appropriate PDF
of the sample covariance matrix, since we can always map back and forth between the two perspectives
with no distortion of the Euclidean space between the non-redundant variables. Therefore, we proceed with
specifying the PDF of the sample covariance matrix. As before, we assume uncorrelated Gaussian sources
and assume further that the number of snapshots 𝐾 is fixed with 𝐾 > 𝑁 . We define the random matrix

W =

𝐾∑︁
𝑘=1

x𝑘x𝐻𝑘 . (51)

Since the source amplitudes are assumed to be Gaussian, we see from Eq. (51) that the elements of 𝑾 are
a sum of squared Gaussian random variables. It can be shown that 𝑾 ∼ CW (R𝑥 , 𝐾), which is a complex
Wishart distribution with 𝐾 degrees of freedom [6]. Again, since 𝐾 > 𝑁 , the𝑾 is a positive-definite random
matrix for which its PDF takes the explicit form

𝑓𝑾 (W | R𝑥 , 𝐾) =
|W|𝐾−𝑁

𝐼 (R𝑥)
exp

(
−tr

[
R−1
𝑥 W

] )
, (52)

where 𝐼 (·) is defined as

𝐼 (R𝑥) = 𝜋𝑁 (𝑁−1)/2 |R𝑥 |𝐾
𝑁∏
𝑛=1

Γ(𝐾 − 𝑛 + 1).

The random matrix 𝑺𝑥 is a linear transformation of𝑾 with a Jacobian of 1/𝐾; hence it is distributed as

𝑺𝑥 ∼ CW
(
1
𝐾

R𝑥 , 𝐾

)
. (53)

With the PDF of 𝑺𝑋 established, we now can compute its log-likelihood function:

𝐿nonlinear(𝜶 | S𝑥) = (𝐾 − 𝑁) log |S𝑥 | − log 𝐼
(
1
𝐾

R𝑥

)
− 𝐾tr

[
R−1
𝑥 S𝑥

]
. (54)

The leftmost term in Eq. (54) vanishes as far as derivatives with respect to any of the parameters are
concerned, hence we can reduce Eq. (54) to the simpler expression

𝐿nonlinear(𝜶 | S𝑥) = − log 𝐼
(
1
𝐾

R𝑥

)
− 𝐾tr

[
R−1
𝑥 S𝑥

]
. (55)

Now, proceeding to compute the gradient of the nonlinear likelihood function, we observe below that we
have two terms to consider:

𝜕𝐿nonlinear
𝜕𝜶𝑖

= −
𝜕 log 𝐼

(
1
𝐾

R𝑥

)
𝜕𝜶𝑖

− 𝐾
𝜕tr

[
R−1
𝑥 S𝑥

]
𝜕𝜶𝑖

. (56)
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The second term on the right-hand side is a familiar quantity seen in the linear model and can be computed
in a straightforward manner:

− 𝐾
𝜕tr

[
R−1
𝑥 S𝑥

]
𝜕𝜶𝑖

= 𝐾tr
[
R−1
𝑥 S𝑥R−1

𝑥

𝜕R𝑥

𝜕𝜶𝑖

]
. (57)

The first term, however, needs a more intricate treatment; first note that

𝐼 (R𝑥/𝐾) = |R𝑥/𝐾 |𝐾 𝜋𝑁 (𝑁−1)/2
𝑁∏
𝑛=1

Γ(𝐾 − 𝑛 + 1)

and using the determinant property |𝑐A| = 𝑐𝑁 |A|, we can simplify this to

𝐾−𝑁𝐾 |R𝑥 |𝐾 𝜋𝑁 (𝑁−1)/2
𝑁∏
𝑛=1

Γ(𝐾 − 𝑛 + 1)

= 𝐾−𝑁𝐾 𝐼 (R𝑥). (58)

Now, carrying out the gradient with respect to the first term on the right-hand side of Eq. (56),

𝜕 [− log 𝐼 (R𝑥/𝐾)]
𝜕𝜶𝑖

= − 1
𝐼 (R𝑥/𝐾)

𝜕𝐼 (R𝑥/𝐾)
𝜕𝜶𝑖

= − 1
𝐼 (R𝑥)

𝜕𝐼 (R𝑥)
𝜕𝜶𝑖

= −
𝐾 |R𝑥 |𝐾−1 𝜋𝑁 (𝑁−1)/2∏𝑁

𝑛=1 Γ(𝐾 − 𝑛 + 1)
𝐼 (R𝑥)

𝜕 |R𝑥 |
𝜶𝑖

= − 𝐾

|R𝑥 |
𝜕 |R𝑥 |
𝜕𝜶𝑖

= −𝐾tr
[
R−1
𝑥

𝜕R𝑥

𝜕𝜶𝑖

]
, (59)

which we see is also a familiar quantity from the likelihood function for the linear model. In fact, when
putting Eqs. (59) and (57) back into Eq. (56), we see that the gradients for the nonlinear and linear models
agree,

𝜕𝐿nonlinear
𝜕𝜶𝑖

=
𝜕𝐿linear
𝜕𝜶𝑖

.

It then follows that the respective Hessians of the two models also agree, thus they yield the same FIM and
ultimately the same CRLB. This is not a surprising conclusion; the nonlinear model is derived from the
physical model without the introduction of any new information, and as such, we cannot expect to attain
additional DOF simply by changing our perspective of the estimation problem.

The analysis above implies that we can establish an upper bound on the number of sources that can be
estimated by reverting back to the FIM for the conventional linear model established in Eq. (50). In other



36 Hatim F. Alqadah, Dan P. Scholnik, and Jean de Graaf

words, we need to establish the conditions for which this FIM becomes singular as a function of the number
of sources impinging on the array. Unfortunately, it is difficult to get perspective on this directly from Eq.
(50); however, the work of Stocia [40] revealed a factorization of J(𝜶) through which the conditions for
when it becomes singular can be seen readily. In fact, this work was furthered by Liu and Vaidyanathan [41],
who established the connection of FIM singularity to the difference coarray. We proceed to summarize these
findings. Using the fact that tr [ABCD] = VEC

(
B𝐻

)𝐻 (
A𝑇 ⊗ C

)
VEC (D) (see Proposition 8, Appendix

A), and (A ⊗ B)−1 = A−1 ⊗ B−1, for nonsingular A and B, we can rewrite the FIM as

J(𝜶) = 𝐾tr
[
R−1
𝑥

𝜕R𝑥

𝜕𝜶𝑖
R−1
𝑥

𝜕R𝑥

𝜶 𝑗

]
(60)

= 𝐾

[(
R𝑇𝑥 ⊗ R𝑥

)− 12 𝜕z
𝜕𝜶𝑖

] [(
R𝑇𝑥 ⊗ R𝑥

)− 12 𝜕z
𝜕𝜶 𝑗

]
. (61)

From here, we can factorize J(𝜶) so that the partials with respect to the angular and power parameters are
separated out:

J(𝜶) = 𝐾
[
G𝐻

H𝐻

] [
G H

]
,

where

G =

(
R𝑇𝑥 ⊗ R𝑥

)− 12 [
𝜕z
𝜕𝜃1

, . . . ,
𝜕z
𝜕𝜃𝑀

]
and

H =

(
R𝑇𝑥 ⊗ R𝑥

)− 12 [
𝜕z
𝜕𝜎20

, . . . ,
𝜕z
𝜕𝜎2

𝑀

]
.

Expanding the expression, we have the block matrix

𝐽 (𝜶) = 𝐾
[
G𝐻G G𝐻H
H𝐻G H𝐻H

]
, (62)

which clearly shows that J(𝜶) is positive semi-definite. We can conclude from Proposition 7 in the appendix
that J(𝜶) is nonsingular if and only if 𝐾H𝐻H and the Schur compliment of J which is G𝐻P⊥

HG, are both
nonsingular. The results can be established directly in terms of the number of sources (see [41] for detailed
proofs):

Lemma 1. The matrix H𝐻H is positive definite if and only if A𝑣 has full column rank, i.e.,

rank(A𝑣 ) = 𝑀 + 1.

To establish the second condition, i.e., that G𝐻P⊥
HG is positive definite, it helps to define the augmented

coarray manifold (ACM).
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Definition 4. The ACM is the �̃� × (𝑀 + 1) matrix defined as

Ã𝑐 = [diag [𝐷𝑐] ,A𝑐] .

Lemma 2. The matrix G𝐻P⊥
HG is positive definite if and only if

rank(Ã𝑐) = 2𝑀 + 1.

These two lemmas provide the basis to conclude the main result:

Theorem 1. If 𝑀 > (�̃� −1)/2, then for any choice of 𝑀 DOA angles, we have that the FIM J(𝛼) is singular.

Theorem 1 answers one important question but at the same time leaves the door open to another fundamental
question. We can safely conclude that NAP does not yield any more DOF than conventional augmentation
can, regardless of which DOA estimator is applied with respect to the non-linear model. However, nothing
that we have discussed yields any limitation to the resolution question due to the seemingly longer aperture
of the nonlinear model, which motivates an exploration of alternative DOA estimation approaches other than
spatial smoothing that can exploit this.

4.1.2 Dependence of the Virtual Covariance on the Number of Snapshots

As we discussed in the introduction of this report, the issue of finite time sample support presents a
challenge for estimating more sources than the number of array elements 𝑁 . Even though we have shown
that for certain sparse arrays NAP allows for more DOF than elements, the amount of time sample support
available plays a crucial for the ability to exploit this. To see this, we can appeal to the CRLB characterization
presented above, as again, the CRLBs for the linear and nonlinear models coincide. As a simple example, we
consider a 6-element nested array in which a varying number of plane wave sources are incident on the array
with fixed DOAs. In this case the number of virtual elements is �̃� = 23 which implies that the maximum
number of sources that can be identified with the array is 11. Figure 9 shows a plot of the maximum CRLB
as a function of SNR for a fixed number of snapshots as well as a plot of the maximum CRLB as a function
of the number of snapshots for a fixed SNR level. In the SNR sweep plot, Fig. 9(a), we can observe two
distinct regions: the overdetermined regime (𝑀 < 𝑁) and the underdetermined regime (𝑀 ≥ 𝑁). In the
underdetermined regime, we see that simply increasing SNR does very little to lower the stagnating error
bound, which is in stark contrast to the overdetermined case, in which the maximum CRLB bound readily
decreases with increasing SNR. However, in Fig. 9(b), we observe that in the underdetermined region, the
estimation error converges to zero as we take the number of snapshots to infinity. This simple example shows
the importance of snapshots for the underdetermined DOA estimation problem, which is independent of
whether NAP is used for DOA estimation. This simple example demonstrates that we cannot expect to treat
the nonlinear model completely as a physical ULA where the traditional RMB rule of thumb is to collect
approximately twice the number of elements, worth of snapshots.
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(a) CRLB as a function of SNR

(b) CRLB as a function of snapshots

Fig. 9—Plots of the CRLB for a 6-element nested array for a varying number of sources

We can get a more concrete sense of the role of finite sample support by explicitly characterizing the
covariance matrix, R𝑧 , that corresponds to the noisy virtual model in Eq. (49). Under the assumption of
Gaussian sources, a straightforward calculation shows that

R𝑧 = 𝐸
[
z̃z̃𝐻

]
(63)

= A𝑣pp𝐻A𝐻𝑣 + 𝐸
[
�̃�p𝐻A𝐻𝑣

]
+ 𝐸

[
A𝑣p�̃�𝐻

]
+ 𝐸

[
�̃��̃�𝐻

]
= A𝑣pp𝐻A𝐻𝑣 + 𝐸 [�̃�] p𝐻A𝐻𝑣 + A𝑣p𝐸 [�̃�]𝐻 + 𝐸

[
�̃��̃�𝐻

]
,
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where we make note that the underlying (power) sources are no longer random in this view, thus, the
expectation operator is taken only with respect to the virtual noise vector �̃�. Under our previously stated
assumptions, here the virtual noise vector R𝜈 is solely attributable to the fact that we have finite sample
data. It is of interest to characterize the first two moments of the virtual noise 𝐸 [�̃�] and R𝜈 = 𝐸

[
�̃��̃�𝐻

]
.

Similar to our CRLB analysis, we again note that it is equivalent to work directly with the redundant matrix
form �̃� = PVEC (N). This means we have a mapping for the virtual spatial lags to the matrix indices of the
covariance data as 𝑖 ′ ↦→ (𝑖, 𝑗) and 𝑗 ′ ↦→ (𝑘, 𝑙). From this mapping we can compute the covariance terms
explicitly:

𝐸
[
[N𝑥]𝑖 𝑗 [N𝑥]∗𝑘𝑙

]
= 𝐸

[
[S𝑥]𝑖 𝑗 [S𝑥]∗𝑘𝑙

]
− 𝐸

[
[S𝑥]𝑖 𝑗

]
𝐸

[
[S𝑥]∗𝑘𝑙

]
.

Based on our prior assumptions, the sample covariance matrix obeys a complex Wishart distribution;
straightforward calculations lead to the obvious conclusion:

𝐸 [S𝑥] = R𝑥 ,

which means that

𝐸 [N𝑥] = 0,

from which, by using the mapping between the covariance data and the virtual array, we conclude that
𝐸 [�̃�] = 0. Using this result in Eq. (63), we see that

R𝑧 = A𝑣pp𝐻A𝐻𝑣 + R𝜈 . (64)

The straightforward, albeit tedious, calculations presented in [42] lead to an expression for the second
moment of S𝑥:

𝐸
[
[S𝑥]𝑖 𝑗 [S𝑥]∗𝑘𝑙

]
= [R𝑥]𝑖 𝑗 [R𝑥]𝑘𝑙 +

1
𝐾

[R𝑥]𝑙 𝑗 [R𝑥]𝑖𝑘 , for 𝑖, 𝑗 , 𝑘, 𝑙 = 1 . . . 𝑁, (65)

implying that the covariance noise term can be expressed as

𝐸
[
[N𝑥]𝑖 𝑗 [N𝑥]∗𝑘𝑙

]
=
1
𝐾

[R𝑥]𝑙 𝑗 [R𝑥]𝑖𝑘 , for 𝑖, 𝑗 , 𝑘, 𝑙 = 1 . . . 𝑁. (66)

Now, again using the mapping (𝑖 ′, 𝑗 ′) ↦→ ((𝑖, 𝑗), (𝑘, 𝑙)), we compute the diagonal and off-diagonal terms as

𝐸

[
[�̃�]𝑖 ′ [�̃�]∗𝑗 ′

]
=
1
𝐾


(∑𝑀

𝑚=0 𝜎
2
𝑚

)2
, for 𝑖 ′ = 𝑗 ′

∑𝑀
𝑚=1

∑𝑀
𝑚′=1 𝜎

2
𝑚𝜎

2
𝑚′𝑒

𝑖 2𝜋
𝜆 (𝑑𝑙 𝑗 sin(𝜃𝑚)+𝑑𝑖𝑘 sin(𝜃𝑚′ )) , 𝑖 ′ ≠ 𝑗 ′,

(67)

where 𝑑𝑖𝑘 , 𝑑 𝑗𝑙 ∈ D𝑙 are the appropriate coarray elements.

Looking at the structure of R𝑧 and R𝜈 in Eqs. (64) and (67), we can make a few observations: First,
as expected, we see that R𝜈 converges to zero as the number of snapshots 𝐾 → ∞ at a rate of O

(
1
𝐾

)
.
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Second, we see that diagonal terms are a direct sum of
(𝑀+2
2

)
terms (self terms + cross terms), which grows

asO
(
𝑀2

)
. Third, unlike the case of the physical array, the noise covariance matrix is not white and actually

depends explicitly on the DOAs of the sources. As a simple example, we can use the variance expression
in Eq. (67) to calculate the virtual SNR for the case of 𝑀 = 11 sources impinging on a 6-element nested
array all with unity power and where we use a per-element SNR of 20 dB to measure each snapshot. In Fig.
10, we show a plot of the average virtual SNR as seen by each virtual channel in the coarray. We note that
in this example, we would require almost 1,000 snapshots to achieve a virtual SNR equivalent to that of the
physical channel’s 20 dB SNR.

Fig. 10—Calculation of the average virtual channel SNR as a function of snapshots for the
case of 11 sources measured at a 20 dB per-physical-channel SNR

4.2 Spatial Processing Algorithms for NAP

We now consider adopting the spatial-processing techniques that we have covered in Chapter 2 for the
linear model toward the NAP virtual model. This includes numerical algorithms for DOA estimation as
well as the spatial filter problem. For all numerical simulations we used a 6-element nested array, which
corresponds to a 23-element virtual ULA.

4.2.1 DOA Estimation

DOA estimation using the NAPmodel can be applied using any of the single-snapshot-capable algorithms
we previously discussed in Chapter 2. We briefly run through these and point out differences or parameters
associated with each approach that will need to be adapted for the NAPmodel. Although a Fourier approach,

p̂(𝜽) = A𝐻𝑐 z̃,

is the most straightforward, as it requires almost no modification from the physical array version, resolution
and sidelobe concerns are still an issue. Another SMV method we discussed in Chapter 2 is BPDN, which
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again is a superresolution approach that is free of sidelobes. A useful modification of BPDN for use with
NAP is to add a positivity constraint, as this imposes additional regularization, which explicitly enforces the
fact that source powers are real and positive:

min
p∈R𝑀

‖p‖1 subject to: (68)

‖A𝑐p − z̃‖2 < 𝜖𝜈 (69)
𝑝𝑖 ≥ 0, for i=1,. . . ,M. (70)

Here, the parameter 𝜖𝜈 =
√︃
𝐸

[
‖𝝂‖2

]
, which, with the aid of Eq. (67), we can estimate as

𝜖𝜈 =

√︄
�̃�

𝐾

𝑀∑︁
𝑚=0

𝜎2𝑚.

The iterative correlation-based approaches RISR, RISR-GC, and EMare all single-snapshot-capablemethods
and could also be applied to theNAP virtual array. Again, all of thesemethods assume a structured covariance
model for which our characterization of R𝑧 in Eq. (63) could be used in place. Examination of Eq. (63),
however, reveals that both the virtual source and the virtual noise covariance matrices are nondiagonal. As
we are only interested in estimating the diagonal terms of the virtual source covariance matrix, we seek to
enforce the following virtual covariance structure:

R𝑧 = A𝑐𝚺𝑐A𝐻𝑐 + R𝜈 ,

with 𝚺𝑐 = diag
[
𝜎40 , . . . , 𝜎

4
𝑀

]
and R𝜈 is the virtual noise covariance matrix. Although we calculated both

the diagonal and off-diagonal terms of the virtual noise covariance in Eq. (67), it is clear that the off-diagonal
terms depend on knowledge of the source DOAs, which we do not know a priori. Therefore, for DOA
estimation, we only consider the variance terms, which, as shown, are simply the total power received at
each element squared and would be known prior to any DOA estimation.

Numerical simulations were conducted to quantitatively evaluate the different DOA estimation algorithms
withNAP.Although themean-square error (MSE) between the true angles and the estimated ones is a common
metric to evaluate DOA estimation performance, we argue that it is not adequate to capture the behavior of
false or missed sources that is prevalent with underdetermined DOA estimation. This is because calculating
the MSE relies on a peak detector as well as an alignment of the estimated angles with the ground truth grid.
Furthermore, it also assumes that the spectrum of an estimation algorithm will always yield 𝑀 peaks. What
we observed in our numerical experiments, however, is that missed detections, false peaks, and angular drift
often can occur with of these methods being applied to the virtual array. As such, we will characterize the
performance of the various DOA estimation algorithms through their respective receiver operating curves
(ROCs), which is a plot of the probability of detection 𝑃𝑑 against the probability of false alarm 𝑃 𝑓 𝑎 for
various peak thresholds. The ROCs were generated from different sets of Monte Carlo simulations using
the discussed estimation algorithms under different simulation parameter permutations, including SNR, the
number of sources, snapshots, and power characteristics. During each trial run, the source DOAs were
chosen randomly according to a uniform distribution along the entire FOV using a grid with 1◦ spacings. For
the off-grid trials, a perturbation factor was added to the true DOAs according to a normal distribution with



42 Hatim F. Alqadah, Dan P. Scholnik, and Jean de Graaf

half a degree of variance. The power levels of the respective sources also were chosen randomly according
to a Swerling 1 power fluctuation model; i.e., the power levels were drawn from a Chi-square distribution
with two DOF and with no fluctuation from snapshot to snapshot. After estimating the spectrum using the
various NAP algorithms discussed, we thresholded the resulting spectrums across their respective dynamic
ranges using linearly increasing thresholds to compute detection and false-alarm characteristics. To account
for angular drift in the detection process, we declared any spectral energy meeting the threshold characteristic
that was within a 1◦ tolerance of the true DOA a true detection.

The first set of experiments considered only on-grid sources. Figure 11 shows some results corresponding
to the case of seven plane wave sources measured using a 40 dB per element SNR. From here, we clearly
see that BPDN as well as RISR-GC exhibit the best performance characteristics exhibiting the best detection
performance over all false alarm probabilities. This was especially the case within the lower-snapshot
regimes. The ROC plot for RISR shows rather poor performance of the method, which was expected, as the
technique seemed to be highly prone to generating false peaks. Spatial smoothing appeared to be on par

(a) 500 snapshots (b) 1,000 snapshots

(c) 5,000 snapshots (d) 10,000 snapshots

Fig. 11—ROC curves for the case of 7 sources and 40 dB SNR
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with EM when the number of sources is low; however, spatial smoothing demonstrates a clear increase in
performance as the number of snapshots increases. At least in this case, spatial smoothing exhibited the most
sensitivity to time sample support. Figure 12 shows the results of another set of similar experiments in which
ten planewave sourceswere used in the estimation experiments. Note thatwe droppedRISR from these results
because the appearance of false sources dramatically increased with an increase in the number of sources,
which resulted in very poor performance. Here, again, BPDN demonstrates the most favorable performance,
while RISR-GC and EMexhibited similar performance for lower numbers of snapshots. However, differences
between RISR-GC and EM become more notable as the number of snapshots increases. Spatial smoothing
has visibly worse characteristics here than in the previous trial.

(a) 500 snapshots (b) 1,000 snapshots

(c) 5,000 snapshots (d) 10,000 snapshots

Fig. 12—ROC curves for the case of 10 sources and 40 dB SNR

A similar story occurs in Fig 13, which is the case where the array is operating at the maximum limit
in terms of the number of sources. Again, we see a considerable gap between the performance of spatial
smoothing MUSIC and the rest of the other algorithms. Even as the number of snapshots becomes relatively
large, spatial smoothing is unable to close the gap. Although we did conduct other experiments using lower
SNR levels, we note that similar conclusions between the various algorithms can be drawn as presented here.
Again, as shown in our analysis, in the underdetermined region, NAP performance is really dominated by
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(a) 500 snapshots (b) 1,000 snapshots

(c) 5,000 snapshots (d) 10,000 snapshots

Fig. 13—ROC curves for the case of 11 sources and 40 dB SNR

time sample support rather than SNR. Figure 14 presents Monte-Carlo simulations in which ten plane wave
sources using off-grid DOAs were considered. Surprisingly, BPDN still exhibits the best performance and
again, we see spatial smoothing had the least-favorable performance. Our next set of numerical experiments
was focused on the question of resolution. As discussed in Chapter 2, RISR, RISR-GC, and EM can be
seen as spectrum estimators that effectively yield an estimate of the data covariance R𝑥 using a structured
covariance model. Subsequently, MUSIC then can be applied with respect to this reconstruction. We can
apply this same approach for each of these algorithms toward estimation of R𝑧 . In this manner, we can
compare resolution performance of these spectrum estimators against spatial smoothing.
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(a) 500 snapshots (b) 1,000 snapshots

(c) 5,000 snapshots (d) 10,000 snapshots

Fig. 14—ROC curves for the case of 10 off-grid sources whose response was measured at
40 dB SNR

Figure 15 shows a single simulation in which two sources of equal power separated by 1◦ are estimated
using MUSIC through spectrums generated by spatial smoothing, RISR-GC, and EM. Although for all
three methods we do observe some angular drift, it is clear that the spectrums of RISR-GC and EM yield
sharper estimates of the two peaks than the spectrum of spatial smoothing. In an attempt to conduct a fair
quantitative analysis, we consider computing the probability of resolution [43] using the MUSIC spectrums
corresponding to each of the three methods. More specifically, let 𝑝

(
𝜃

��� R̂𝑧
)
be theMUSIC spectrum yielded

for a given estimate of the NAP covariance matrix. The corresponding null spectrum then is given as

𝑛(𝜃) = 1

𝑝

(
𝜃

��� R̂𝑧
) .

Then, for any two sources with corresponding DOA angles 𝜃1 and 𝜃2, we have the metric

𝛾(𝜃1, 𝜃2) = 𝑛(𝜃𝑚) −
1
2
(𝑛(𝜃1) + 𝑛(𝜃2)) , (71)
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Fig. 15—Comparison of the MUSIC spectrum as estimated through spatial smoothing and
iterative estimation techniques for two sources separated by 1◦

where 𝜃𝑚 = (𝜃1 + 𝜃2)/2 is the midpoint angle between the two DOAs. We say that the two sources are
resolved whenever 𝛾(𝜃1, 𝜃2) > 0. The probability of resolving the two sources at two fixed DOAs 𝜃1 and 𝜃2
is then

𝑃res = Pr [𝛾 > 0] .

We attempted to estimate probability of resolution for all three estimation methods using Monte Carlo
simulations for two closely spaced DOAs. To remove the effect of angular drift in our comparison, a peak
detector was employed during each run to determine the angular positions of the two peaks. The center
angle 𝜃𝑚 then is computed using the detected angles rather than the true center angle. If only one peak was
obtained, then we would assign 𝛾 a value of zero. We used 2,000 snapshots to perform the estimations of
R𝑧 for all the runs. Figure 16 shows the results of the comparison between spatial smoothing, RISR-GC,
and EM in terms of their respective probabilities of resolution. It is clear that both iterative methods exhibit
better resolution performance than does spatial smoothing. Although these results could be attributed to the
fact that both iterative methods make use of the full length of the coarray, a more rigorous study should be
undertaken to confirm this.
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Fig. 16—An estimation of the probability of resolution comparing iterative spectrum
estimators RISR-GC and EM to spatial smoothing

4.2.2 Adaptive Beamforming

At first glance, adaptive beamforming with the NAP virtual array appears straightforward, since beam-
forming weights such as Eqs. (10) and (12), or any other set of weights designed for a ULA with the same
length as z, could be applied directly. However, in reality, the issue of time sample support (both physical and
virtual) and the fact that NAP relies on incoherent integration puts limits on its applicability toward radar. It
is not hard to see that techniques likeMVDR become problematic for NAP beamforming, since not only does
a noise-plus-interference virtual covariance matrix R𝑧 need to be estimated from a single virtual snapshot,
but also, as we have shown in our discussion above, interference in the virtual array largely can result from
signal cross-terms that have not decayed sufficiently. Thus, the expectation is that adaptive spatial filters like
MVDR, which compute their nulls based on covariance data, will end up expending the increased DOF of
the virtual array towards suppressing cross-term energy rather than the physical interference sources. On the
other hand, we can employ beamformers where nulls are specified explicitly (such as Eq. (10)) to ensure
mitigation of the interference directions, themselves, rather than the cross-terms. However, this comes at the
risk of cross-term energy coming in through the sidelobes of the virtual array. So a natural question here is
whether the increased DOF offered by NAP really does result in an overall increase in SINR, given that we
should expect cross-term energy to be present for any quasi-reasonable radar dwell time.

We conducted some preliminary simulations to assess how such a clairvoyant virtual beamforming
approach would work within the context of a typical monostatic radar system, and whether any gain in
SINR over conventional linear beamforming could be observed. Since NAP relies on incoherent integration,
snapshot data would need to be obtained only after all coherent integration stages are completed. One way
to implement this is to consider array snapshots over multiple CPIs within a dwell. Our goal, then, is to
implement NAP using this approach and then to compare the resulting SINR with what could be achieved
using using linear array processing. In both cases, we will assume clairvoyant knowledge of the interference
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directions and design a beamformer using Eq. (11) for the linear array processing case and Eq. (10) for the
NAP case. To ensure a fair comparison, for the same dwell, we first process each CPI along the range and
Doppler dimensions to yield a data cube over the physical array channels, range, andDoppler dimensions. For
linear processing, beamforming is applied within the same CPI block, which yields a single range-Doppler
image for each CPI block. The final image for the linear processing case is then incoherently integrated
across each CPI block within the dwell. For NAP, we take each channel-range-Doppler map and compute
a sample covariance matrix for each range-Doppler cell with snapshots taken as samples across each CPI
block. This results in a data cube over virtual channel, range, and Doppler. Virtual beamforming then is
applied across the virtual channel dimension to obtain a single range-Doppler spectrum. Our simulations
were conducted assuming a target of interest located at an approximate range of 4 kilometers, azimuth angle
0◦, and a constant radial velocity of 100 mph. The target is interrogated using 64 pulses of a 10 MHz LFM
chirp using a variable number of CPI blocks. We assume the target’s parameters remain constant for the entire
dwell. The received signal then is corrupted with a variable number of stationary Gaussian noise jammers
𝑀 (for 𝑀 greater than the number of array elements), all with equal power relative to the RCS of the target.
Each physical channel also is corrupted with white Gaussian noise using a 30 dB SNR. Figure 17 shows one
example of a case where eight jammers with DOA angles 𝜃 = [−65◦,−47◦,−32◦,−15◦, 25◦, 35◦, 48◦, 68◦]𝑇
flood the 6-element physical array, each with a power strength of 50 dB relative to the RCS of the target.

In Fig. 17(b), we see the adapted beam patterns of the nested array and resulting virtual ULA.We observe
that the nested array’s beam pattern does a poor job at maintaining gain at the look direction while it tries
to mitigate the flood of interference, while the virtual array’s beam pattern clearly leverages the increased
DOF to place deep nulls at the desired locations while maintaining gain in the desired look direction. In Fig.
17(c), however, the resulting range-Doppler map of the NAP approach shows a much higher noise floor than
the resulting heat map of the linear approach shown in Fig. 17(b). We can attribute this result to the effect
of limited time sample support where the cross terms of the various jammers induce secondary interference
at various DOA angles. By increasing the radar dwell time (the number of CPI blocks) we can obtain more
snapshots for virtual beamforming. Figure 18 plots the gain in SINR as a function of the number of CPI
blocks used to estimate the virtual array data z. As expected, we see that SINR gain does indeed increase
as the number of CPI blocks increase; however, it is only when using approximately 512 CPI blocks that we
finally achieve a positive gain. This simple example demonstrates the impracticality of NAP, as it seems an
incredibly long time dwell time still only manages a small amount of SINR gain.
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(a) Unadapted Patterns (b) Adapted Patterns

(c) Linear Processing (d) NAP

Fig. 17—Adapted patterns and resulting range-Doppler maps using 64 CPIS for the case of
eight jammers at about 50 dB above the RCS of the target
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Fig. 18—Comparison between linear and nonlinear processing as a function of dwell time.
We see that the relative gain in SINR for NAP becomes positive around 512 CPIs.
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5. TESTBED AND EXPERIMENTAL SETUP

A significant component of this project involved constructing a testbed to allow the generation and capture
of signals in a controlled environment as a means to augment the simulations and to provide some “real-
world” grounding. For budgetary reasons, we repurposed as much existing hardware and test equipment as
possible, with a mixture of custom designs and new test equipment making up the balance. The end result
had certain specific limitations but was more than sufficient to generate the data needed here. In this chapter,
we document the design, implementation, and operation of the testbed.

An overview of the main functional components of the testbed developed for the NAP project is shown
in Fig. 19. The testbed consists of two primary functional units: the scene generator (left side of the figure)
and the receive array (right). The former is used to create test waveforms with programmable spatial and
temporal dependence, while the latter receives the waveforms and stores the data for later processing. These
units are described in greater detail below, followed by an overview of the software used to integrate and
control the testbed and procedures used for testing.
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Fig. 19—Top-level overview of NAP experimental system

5.1 Scene Generator

The purpose of the scene generator, as the name implies, is to generate and transmit electromagnetic
fields corresponding to a variety of scenarios. It can generate signals from up to eight independent sources,
each of which can be either continuous white noise or a pulse train of identical pulses. The white noise
sources are independent and uncorrelated with each other. The pulses can be programmed arbitrarily (within
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the hardware limitations) and thus can be made to be correlated or uncorrelated with each other as desired.
In addition, the pulse trains can be delayed independently and frequency-modulated in order to simulate
range and velocity of a radar target. With this setup, we thus can model radar returns, radar multipath, and
both noise- and DRFM-based jammer returns, as well as other pulsed and CW-type interferences.

The scene generator consists of three primary subsystems, as shown from top to bottom in Fig. 20.
The first is baseband waveform generation, which consists of four Rigol DG1032Z dual-channel arbitrary
waveform generators (AWGs). The second is the custom upconverter, which translates the eight AWG output
to our RF of 3.4GHz while applying any Doppler offsets and amplifying the signals. Finally, the signals are
transmitted from eight S-band horn antennas, which can be either tripod-mounted or mounted to an 80/20
rail for greater positioning precision. We describe each in turn.
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Fig. 20—The major components of the scene generator include (from top) Rigol DG1032Z
arbitrary waveform generators, eight-channel custom upconverter, and S-band horn antennas
with mounts

5.1.1 Rigol DG1032Z Arbitrary Waveform Generator

The signals for the eight sources were generated using four Rigol DG1032Z dual-channel AWGs. Each
channel can be operated independently, providing eight independent signals, and the Rigols can be controlled
remotely via USB or ethernet to automate waveform loading and configuration. The Rigol is fairly inexpen-
sive, with the primary associated drawback that its documentation can be vague and somewhat misleading
as to the unit’s true capabilities. The basic capabilities of each AWG is summarized in Table 1, with some
commentary on the modes following.
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Table 1—Summary of AWG Modes and Capabilities

Parameter SiFi AWG Mode DDS AWG Mode Noise Mode
Sample rate ≤60MSa/s 200MSa/s 200MSa/s
Output BW (one-sided) ≤30MHz ≈90MHz ≈90MHz
Memory depth 8MiSa 8KiSa ∞
DAC Resolution 14 bit 14 bit 14 bit

The Rigol has two arbitrary-waveform modes, named “SiFi” and “DDS” in the manual. In SiFi mode,
the full 8MiSa memory depth is available for waveforms with an adjustable sample rate; however, the
sample rate is limited to ≤60MSa/s. This mode thus supports less than 30MHz of bandwidth, although
the second-Nyquist region does not appear to be filtered beyond the sinc rolloff due to the DAC and thus
could be used with appropriate bandpass filtering. The DDS mode uses the maximum DAC sample rate of
200MSa/s, which is fixed, and has output filtering that rolls off around 90MHz. In this mode, however,
only a fixed 8,192-sample waveform segment is allowed; this is quite unclear in the documentation and
significantly limits the usefulness of the unit as an AWG. Given our frequency plan, this is the AWG mode
we wound up using despite the limitations; it produces radar pulses up to 40.96 µs wide at a fixed PRF of
24.4 kHz, both of which are reasonable values for a medium-PRF radar waveform. The AWG waveforms in
either mode can be repeated any number of times and triggered with an adjustable delay.

In addition to the arbitrary-waveform modes, the Rigol also has a noise mode, which produces free-
running white noise controlled by a gate signal. Although not well specified in the manual, analysis of the
output indicates that the noise is generated digitally and played out of the DAC at 200MSa/s, with analog
filtering limiting the output to around 90MHz, similar to the DDS mode.

Thewaveforms need to be generated at an IF prior to upconversion in order to effect quadraturemodulation
with a single channel and a single LO. Given the 200MSa/s sampling rate, the natural choice is 𝑓𝑠/4 =

50MHz. For pulsed waveforms, this first upconversion is applied directly to the AWG data. For noise
waveforms, no such modulation is needed (or possible), as the upconverter filtering will simply select a band
of noise around 50MHz.

5.1.2 Upconverter

The eight-channel upconverter for the scene generator is a relatively straightforward custom design, with
the schematic shown in the middle of Fig. 20 and the cascade analysis shown in Fig. 21. The 50MHz IF input
from the Rigol AWGs is mixed with a 3350 MHz local oscillator to generate the final 3400 MHz RF output.
The mixer output is bandpass filtered and then amplified. The mixer and amplifier are stock Minicircuits
components, but the sharp filtering requirements necessitated custom filters (Reactal 4C7-3400-X20), with
the frequency response shown in Fig. 22. The filters have a flat passband over 20MHz, with an approximate
3 dB bandwidth of 30MHz. Stopband suppression of the image at 3300 MHz is better than 70 dB.
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5.1.3 Valon 5009 Dual RF Frequency Synthesizer

The LOs for each pair of upconverter channels were supplied by a Valon 5009 dual RF frequency
synthesizer, which provides a compact and economical source for a pair of LOs with both programmable
frequency and power level. The Valon can be programmed over a serial/USB connection. Its relevant
parameters are given in Table 2. The available frequency steps depend on both the frequency output range
and the reference frequency; Table 2 shows the values for RF above 3GHz and with both an external 10MHz
reference (as used here) as well as the internal 20MHz reference in the Valon. The documented steps
for 10MHz and 20MHz are 4,884 Hz and 9,768 Hz, respectively, and these were verified experimentally.
However, undocumented steps of 5,000Hz and 1,000Hz alsowere confirmed. Since 4, 884Hz = 4MHz/819,
the frequency steps cycle every 4MHz for the 10MHz reference. Conveniently, this meant that at our LO
frequency of 3.35GHz, the available offsets are {. . . ,−7328,−5000,−2444, 0, 2442, 5000, 7326, . . . } Hz,
providing better than the advertised resolution. These offsets were used to impose virtual Doppler shifts on
radar targets.

Table 2—Summary of the Programmable Parameters of the Valon 5009
Frequency Synthesizer

Parameter 10MHz Reference 20MHz Reference
Frequency range 23.5MHz to 6GHz 23.5MHz to 6GHz
Frequency step (RF above 3GHz) 4884Hz and 5000Hz 9768Hz and 10 000Hz
Power range −15 dBm to 15 dBm −15 dBm to 15 dBm
Power step 0.5 dBm 0.5 dBm
Phase Noise @ 3GHz + 1 kHz −92 dBc/Hz −92 dBc/Hz
Phase Noise @ 3GHz + 1MHz −130 dBc/Hz −130 dBc/Hz
Non-harmonic spurs < − 60 dBc < − 60 dBc

5.1.4 Transmit Horns

The transmit horns used in this project are L3 Narda/ATM S-band horn antennas, model 229-440, as
shown in Fig. 23. These have a gain of 10 dB and beamwidths greater than 50◦ in both the E- and H-planes,
thus requiring no precision in aiming them. They are mounted easily to provide either vertical or horizontal
polarization; here, the latter was used to match the array.



56 Hatim F. Alqadah, Dan P. Scholnik, and Jean de Graaf

Fig. 23—The S-band horn antenna used for the far-field sources, and its typical
principal-plane patterns

5.2 Array and Receiver

The array, array receiver, and associated hardware form the second major hardware component of the
testbed. To demonstrate the sparse processing techniques, we required simultaneous capture of sufficient
elements to represent useful sparse configurations. The number of channels captured from the array was
dictated largely by the cost of implementing the corresponding receivers. Ultimately, 12 channels were
implemented, as this allowed both a six-element nested configuration and the 12-element ULA of the same
spatial extent to be captured simultaneously.

The array receiver is distributed between an on-array receiver section, an off-array IF receiver section,
and a 12-channel IF digital receiver in the form of three digital sampling scopes. In addition, two vector
signal generators provide the 10MHz reference, LO, trigger, and calibration waveforms, which then are
distributed across the system. Figure 24 provides a pictoral overview of the major components, which are
discussed individually below.

5.2.1 Array and On-Array Receiver

The array elements used are simple printed dipoles, as shown in Fig. 25. The 18-element board was
repurposed from a previous project. As used here, the outer three elements on each end were terminated
to make the active element patterns more uniform. The central 12 elements were used for capture and
beamforming. A future user easily could reconfigure the 12 active channels as desired.

Immediately behind the array elements lies the 12-channel on-array receiver. The purpose of the on-array
receiver is to provide filtering, amplification, and downconversion from the 3,400 MHz RF to the 640MHz
IF prior to the cable run to the IF receiver section. This greatly reduces cable losses for longer runs and
allows the use of inexpensive cables. This design initially was intended for an outdoor experiment, with the
off-array components housed in a trailer, although we ultimately chose to perform the tests indoors, instead.
Figure 26 shows the schematic for the on-array receiver at lower right. Each channel consists of a calibration
injection coupler, a highpass/lowpass pair of filters, a LNA, and a mixer to convert from the 3400 MHz RF
down to the 640MHz IF. The left side of Fig. 26 shows the distribution of the 2,760 MHz local oscillator
(LO) as well as the calibration waveform injected into each coupler. We will defer discussion of these items
to Section 5.2.4. The cascade analysis for both the on-array and IF receivers is shown in Fig. 27, with the
input power level assumed coming from the cascade analysis of Fig. 21.
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Array

(a) Array and on-array receiver (top layer) with LO and Cal distribution (bottom layer)

IF section IF section, IF = 640 MHz

1. Input RF cables (qty. = 12) from array down-converter

2. Output RF cables (qty. = 12) to a set of three, 4-channel, high-

speed scopes: Followers 1 and 2, and leader. 

3. Ethernet control cables

4. N5182A #1: CAL generator

5. N5182A #2: LO at 2760 MHz CW, +6 dBm

6. Dividing Styrofoam board to channel warm evacuated air from 

side vents of followers 1 and 2

1

2

3

IF Section 

3

3

5

4

6

IF and Data Acquisition System

(b) Off-array receiver components: IF receiver section, digital sampling oscilloscopes, LO generator, Cal generator

Fig. 24—Array and receiver overview
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• 18 dipole elements
– Micro-strip

– Multilayer PCB

• Element spacing = 4.6cm, ~l/2 @ 3258 MHz

• Carrier frequency = 3400 MHz

• Elemental gain ~ 2 dBi

• Bandwidth ~ 1 GHz

• Physical length = 83.3 cm

• Width = 7.1 cm

• Twelve center elements used

• Three elements on either end of array are 

terminated into 50 ohms

• Power handling ~ 2 to 3 W

S-band, Linear Array Antenna

Code 5317 (Dorsey & Pickles)

Fig. 25—Array elements and key parameters
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Fig. 26—Details of on-array receiver with LO and Cal distribution
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Input Power -61

# Component
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NF 
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IP2 
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CUM 

Gain 
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CUM 

NF (dB)

CUM 
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(dBm)

CUM IP3 

(dBm) Idc (mA) Vdc Model# Vendor

1 Coupler -0.5 0.5 100 100 -61.5 -0.5 0.5 100 100 N/A N/A ZADC - 10 - 63 - S+ Mini-Cir

2 HPF -0.5 0.5 100 100 -62 -1 1 93.73 96.73 N/A N/A VHF-3100+ Mini-Cir

3 LPF -0.5 0.5 100 100 -62.5 -1.5 1.5 89.95 94.71 N/A N/A VLF-3400+ Mini-Cir

4 LNA1 24 0.9 42 35 -38.5 22.5 2.4 42 35 5 ZX60-3800LN-S+ Mini-Cir

5 Mixer -6 6 28 22 -44.5 16.5 2.44 25.09 21.21 N/A N/A ZX05-43LH+ Mini-Cir

6 Cable -6 3.5 100 100 -50.5 10.5 2.51 19.09 15.21 N/A N/A LMR-240 Pasternack

7 BPF1 -2 2 100 100 -52.5 8.5 2.64 17.09 13.21 N/A N/A SXBP-640+ Mini-Cir

8 IF AMP 40 3 36 31 -12.5 48.5 2.96 35.27 30.97 12 ZKL-1R5+ Mini-Cir

9

Predicted receive power at array element 

Predicted receive power level at scope channel input prior to ADC

Sub-

System

2/Rx

Sub-

System

3/IF

Fig. 27—Receiver cascade analysis

5.2.2 IF Receiver Section

The IF receiver section provides additional signal conditioning (filtering and amplification) prior to the
digital receivers (scopes). Implementing these functions off the array conserves space and, as mentioned
previously, would allow for widely separating the on-array and off-array components, if needed. Details of
the 12 channels into and out of the IF receiver box are shown in Fig. 28 along with the internal circuits.
Because of the differing geometry between the original proposed outdoor tests and the actual chamber tests,

1. Input RF cables (qty. = 12) from array down-converter

2. Output RF cables (qty. = 12) to scopes 

3. Mini-circuits cables, CBL-25FT-SMSM+ (Qty. = 8)

4. Mini-circuits IF AMPs, ZKL-1R5+ (Qty. = 12)

5. Mini-circuits BPFs, SXBP-640+ (Qty. = 12)

6. Pasternack LMR-240 cables, (Qty. = 4)  (note: Only 8 

CBL cables were purchased)

2

3

4

5

1

6

Fig. 28—IF receiver section detail
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we repurposed eight of the long RF cables originally intended to span between the array and IF section
to drive the far-field horns and replaced them with shorter cables. Calibration served to equalize out any
differences between the two cable types.

5.2.3 Agilent/Keysight Infinium DSO/DSA

Since a dedicated 12-channel digital receiver was not readily available for a reasonable cost, we used
three available 4-channel Keysight (formerly Agilent) Infinium digital oscilloscopes as digital receivers. The
models used were V-series models 334A and 204A, but any of the V-series and some of the S-series will
give comparable results and use a compatible command set. Some relevant parameters are given in Table 3.

Table 3—Agilent/Keysight Infinium Parameters and Modes

Parameter Real-Time (standard) mode High-Resolution mode
Sample rate ≤80GSa/s ≤40GSa/s
BW 20GHz (204A), 33GHz (334A) Varies (lower)
Memory depth 512MiSa per channel 256MiSa per channel
ADC Resolution 8 bit up to 12 bit

The scopes have two capture modes of interest here: Real-time mode is the standard mode, which returns
ADC samples at the chosen rate without temporal filtering, while high-resolution mode averages blocks of
adjacent samples and outputs one sample per block. In real-time mode, the ADC can be run at a variety of
rates, while in high-resolution mode, the ADC is always run full-speed internally, with the output sample
rate a fraction of the full rate. The more samples that are averaged, the higher the effective resolution and the
lower the output rate. The simple averaging filter also causes a significant reduction in effective bandwidth;
thus, while real-time mode at 2GSa/s is sufficient to capture our receive IF of 640MHz, in high-resolution
mode an output sample rate of 5GHz is required, as the filter bandwidth is much less than the Nyquist
frequency. This drives up the number of samples required to be captured in high-resolution mode, so the
mode is most useful when capturing for relatively short durations.

5.2.4 Agilent N5182A VSG w/ AWG

The Agilent N5182A is a vector signal generator with an integrated AWG providing baseband I and Q
signals to the modulator. Two units were used in the experimental setup; the first provided the 2,760 MHz
LO for the array receivers, while the second one was used to produce a loopback calibration waveform as
well as to generate the master trigger for the system. Its relevant parameters are summarized in Table 4.

The LO from the first VSG is sent by cable to the on-array receiver, where it is amplified, filtered, and
split 12 ways. The distribution network is shown at lower left in Fig. 26, while the cascade analysis is given
in Fig. 29. The second VSG was used in its AWG mode to generate a linear-FM calibration pulse with
40MHz bandwidth centered at 3,400 MHz. This signal was routed to a cal distribution network on the array
as shown at lower middle left in Fig. 26. The 12 outputs then were routed to the couplers behind each active
element. This loopback calibration setup provided a common reference signal on each channel to equalize
differences in the receiver responses, between the elements and the scopes. While it is not able to calibrate
any differences in the element responses themselves, the uniformity of a printed array and the three dummy
elements per side should minimize variation. One binary marker output was available from the VSG, and
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Table 4—Agilent N5182A Vector Signal Generator Parameters

Parameter Values
Center Frequency range 100 kHz to 6GHz
Sample rate 125MSa/s
Output BW (one-sided) 50MHz
Memory depth 8MiSa
DAC Resolution 16 bit
Phase Noise @ 3.5GHz + 1 kHz −105 dBc/Hz
Phase Noise @ 3.5GHz + 1MHz −130 dBc/Hz

Output power from Keysight N5182 source in Sub-system B 

Predicted power level at LO port of front-end mixer in receiver 

Input Power 6
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(dBm) Idc (mA) Vdc Model# Vendor

1 Coaxial Cable (75 FT) -11.3 11.3 100 100 -5.3 -11.3 11.3 100 100 N/A N/A LMR-240 pasternack

2 LO DRV 33 5 57 55 27.7 21.7 16.3 57 55 1 15 AMF-302000400-55-30P-LPN Miteq

3 LO BPF -2.7 2.7 100 100 25 19 16.3 54.26 52.3 N/A N/A ZAFBP-2793-S+ Mini-Cir

4 LO DIV (2-way) -3.4 3.4 42 35 21.6 15.6 16.3 39.33 34.83 N/A N/A ZN2PD-63S+ Mini-Cir

5 Flex-line RF cable -0.4 0.4 28 22 21.2 15.2 16.3 25.83 21.76 N/A N/A 086-12SM+ Mini-Cir

6 LO DIST (6-way) -8.6 8.6 100 100 12.6 6.6 16.32 17.23 13.16 N/A N/A ZN6PD-63S+ Mini-Cir

7 Flex-line RF cable -0.4 0.4 100 100 12.2 6.2 16.32 16.83 12.76 N/A N/A 086-12SM+ Mini-Cir

Fig. 29—LO distribution cascade analysis

was used as the master trigger for the system. The trigger was distributed to the scopes as well as to the
eight Rigol channels in the scene generator, as shown in Fig. 30. In order to handle the large fanout, multiple
Pulse Research Labs TTL line drivers were used.

The triggering and calibration scheme that was used is illustrated in Fig. 31. The marker output from
the calibration VSG is shown at top, while the bottom curve shows a typical capture at one scope channel.
The marker is held high prior to a capture. When a trigger is initiated via software at 𝑡 = 0, the marker goes
low and the falling edge triggers any Rigol channels that are configured in DDS mode and the oscilloscopes.
Rigol channels configured as noise sources are controlled by a gate level, rather than by trigger edges, and
are turned off at this time. After a delay of 100 µs, the VSG AWG plays out the 200 µs loopback calibration
pulse, and then after another delay of 100 µs, the marker returns high. This enables the Rigol noise sources,
which will play out until the next capture cycle, and marks the start of the main data capture. The Rigol
DDS sources have a programmable delay parameter, which is set by default to 400 µs so that the first pulse
is aligned with the noise sources. This delay can be modified to simulate target range, or to provide a
second effective calibration pulse. One of the far-field DDS sources can be set to have one PRI-less delay,
thus playing out the first pulse in the dead time between the loopback calibration waveform and enabling
of the other sources. This provides the capability to transmit a single far-field calibration pulse. Unlike the
loopback cal, this pulse does include the response of the array elements, possibly eliminating a source of
mismatch. However, it potentially adds new sources of channel mismatch due to differences in propagation
to each element, and it adds the frequency response of the upconverter and horn antenna (to be fair, the
loopback cal includes the VSG AWG response and coupler mismatches as well). Ultimately, the loopback
cal was used throughout the experiments, while the far-field cal was used primarily for sanity checking.



62 Hatim F. Alqadah, Dan P. Scholnik, and Jean de Graaf

Keysight E5182A

“CAL”

IF and Data Acquisition System/Trigger

PRL-414B

PRL-

414B

Keysight

DSOV334

“Follower 2”

Event 1

RG58

RG58
PulseResearchLab

TTL line driver

E5182A

“LO”

E5182A

“CAL” (Event 1) & 
Trigger GEN

PRL-414B

TTL Buffer

Keysight

DSVA334

“Leader”

RIGOL1

RG58

RG58

RIGOL 2

RIGOL3

RIGOL4

Keysight

DSOV204

“Follower 1”

Keysight

DSVA334 

“Leader”

PRL-

414B

RG58

RG58

BNC 

Tee

IF and Data Acquisition System/Trigger

AWG and Upconverter/Trigger

Event 1

To control laptop

From 

E5182A/

Trigger

RG58

Ethernet 

Distribution

Fig. 30—Trigger distribution

0

1

Trigger/Gate

Falling edge triggers

Rigol DDS sources,

scopes

High gate enables

Rigol noise sources

0 100 200 300 400 500 600 700 800

t (us)

Scope Data

Loopback Cal

Far-Field

Cal

Far-Field Data

Fig. 31—Trigger and calibration timing



Nonlinear Adaptive Array Processing 63

5.3 Software

One of the requirements when assembling the various pieces of equipment for these experiments was
that everything would be remotely programmable, preferably through a simple text interface such as SCPI.
As we planned to perform many captures, we needed a way to automate the process. The integration was
done using Matlab and its Instrument Control Toolbox. The software, itself, will not be fully documented
here, but an overview of the code is given below.

5.3.1 Class Hierarchy

For each of the major pieces of equipment, a Matlab class was written to encapsulate the functionality
needed for the experiments. The authors have found that this approach has several benefits: It allows for a
reasonably uniform interface to equipment with potentially very different underlying command sets, it serves
as a compact self-documenting distillation of the (often quite lengthy) programming guide for each piece
of equipment, and it simplifies subsequent uses of the equipment. A class NAP_testbed then was written
to integrate the individual classes and to contain all of the experiment-specific code. The class hierarchy is
therefore:

class NAP_testbed

class Infiniumclass N5182Aclass Valonclass Rigol

The headers (property definitions) for each of the classes are typeset in Appendix E for readers curious as to
the available settings and parameters. The full code package is available from the authors upon request.

5.3.2 Configuration Files

To encapsulate all the settings for the eight far-field sources, a configuration file format was defined. This
allows easy parameter changes and leaves behind documentation of the settings used for a given capture.
The config files use a standard line-based comma-separated value (CSV) format with eight fields:

1. Channel number: (1–8)
2. Waveform type: (dds,noise,off)
3. Arbitrary waveform file (dds mode only): local .mat file
4. Apparent target range (dds mode only): range in meters
5. Apparent target velocity (dds mode only): Doppler offset in Hz
6. Power level at AWG: power in dBm
7. Number of pulses Kp (dds only): positive integer (no cal), negative integer (w/ cal), 0 (cal only)
8. Position of source horn antenna along rail: signed offset in cm

Many of the settings are specific to the DDSAWGmode, as the noise mode does not provide any way to delay
or pulse the output and applying a Doppler shift to the noise will have no significant effect. Any settings that
don’t apply to a particular mode are ignored, as are any lines beginning with “#”. Nonzero range values are
converted to an equivalent delay in the corresponding Rigol DDS channel, while nonzero Doppler values
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are converted to an equivalent offset in the corresponding Valon LO. The absolute value of the seventh field
gives the number of DDS pulses that are played out after the marker gate goes high (turning on any noise
sources). If the number is negative, an extra calibration pulse is enabled, which fires one PRI prior to the
gate. If the number is zero, then only a calibration pulse is sent, after which the source remains off. The
eighth field records the position of the corresponding horn antenna along the 80/20 rail in centimeters. This
has no effect on the waveforms, but is merely a bookkeeping convenience. An example config file is shown
below; it enables two pulsed (DDS) waveforms, two noise sources, and one far-field cal pulse:
#Ch Type Arb file Rng (m) Dop (Hz) Pow (dBm) Kp Pos (cm)
1, dds, chirp_20MHz_40us_200MSps.mat, 5000, 10000, -45.0, 100, 80
2, dds, chirp_40MHz_40us_200MSps.mat, 0, 0, -15.0, 0, 40
3, noise, , 0, 0, -35.0, 1, 20
4, off, , 0, 0, -15.0, 1, 0
5, noise, , 0, 0, -25.0, 1, -20
6, off, , 0, 0, -15.0, 1, -40
7, off, , 0, 0, -15.0, 1, -80
8, dds, chirp_20MHz_40us_200MSps.mat, 52500, 0, -60.0, 100, -160

5.3.3 A Minimum Working Example

With the equipment-control code tucked into the class library and use of the configuration files, a script
to perform a capture can be very compact. All that remains is to initialize the hardware, to choose a few
run-time parameters, to load the configuration file, to set up the scopes and calibration, and to trigger and
retrieve the data. A minimum working example is given below:

1 % MWE.m: A minimum working example for using the NAP_testbed class
2
3 %% Units
4 m=1; cm=1e−2*m; in=2.54*cm; ft=12*in;
5 s=1; ms=1e−3*s; us=1e−6*s; ns=1e−9*s;
6 Hz=1/s; kHz=1e3*Hz; MHz=1e6*Hz; GHz=1e9*Hz;
7
8 %% instantiate class
9 nap=NAP_testbed;
10 nap.open; % connect to and config equipment
11
12 %% set up cal, uses current parameters
13 nap.upload_Cal_Wfm;
14 nap.trigger; % dummy trigger here to set up the marker state correctly
15 pause(1);
16
17 %% scope mode
18 %nap.sampleMode='RTIM'; nap.fs_Capture=2*GHz; % for non−hires sampling
19 nap.sampleMode='HRES'; nap.fs_Capture=5*GHz; % for hi−res sampling
20
21 %% array parameters
22 nap.FFDist=196.5*in; % distance from array to baseline of far−field antennas
23
24 %% load config file and apply
25 nap.load_FF_config('MWE.conf');
26 nap.config_sources; % send parameters to sig gens
27
28 %% setup scopes and cal amplitude to match
29 nap.T_capture = duration(nap) + 100*us;
30 CaldB_offset=12; % magic number, empirical
31 scope_mult=1.5*[1 1 0.8]; % account for different cable loss to scopes
32 nap.Vpp_capture=scope_mult*max(0.15,nap.Vpp_estimate); % need to put a floor on the scope level
33 nap.VSG.Amplitude=20*log10(nap.Vpp_capture(1))−CaldB_offset; % scale cal pulse with scope
34 nap.config_DSO;
35 pause(1); % avoid lockups
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36
37 %% trigger scopes
38 nap.trigger;
39 pause(3); % need this to prevent VISA/scope lockups
40
41 %% get data and save to file
42 y=nap.save_data('MWE');

5.4 Anechoic Chamber Setup and Test Procedures

The tests for the NAP project were carried out in the small anechoic chamber in room 16A3 of building
A59 at themainNRL campus inWashington, D.C.A schematic of the system layout is shown in Fig. 32, where
the left half of the figure is the chamber, and the right side is the adjacent equipment room (antechamber).
Figure 33 shows photos of the setup. The array was mounted on a positioner at the front of the chamber
and faced the rear of the chamber. An aluminum 80/20 rail was mounted horizontally along the back of the
chamber, with the scene-generator horn antennas mounted so that they could be slid along the rail. This
allowed for relatively precise positioning of the sources. The rail was located about 5m (≈16 ft) from the
array at its center and allowed linear offsets from array normal between −1.8m and 2.1m. This corresponds
to angles between −20◦ and 23◦. In later tests, the horizontal spread was increased by adding two tripods
outside the ends of the rails and somewhat closer to the front of the chamber, yielding additional source
angles of ≈ ±31◦. Other than the rail, horns, and array assembly, the rest of the system was kept on racks in
the antechamber.

Fig. 32—High-level schematic of the experimental setup. Eight source horns were located at the
back wall of the chamber, the array was mounted to the positioner at the front of the chamber, and
the rest of the setup was located in the antechamber.
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Fig. 33—Photos of the rail at the rear of the chamber with the horns mounted (left) and of
the positioner with the array mounted (right)

Anumber of different tests were performedwith the system between spring and fall 2018. These included:

Element pattern sweeps: The antenna is physically rotated by the positioner in 1◦ increments. At each
step, a single, common probe pulse is sent out of all eight far-field sources with sufficient delay stagger
to separate them in time.

Incoherent resolution tests: Two noise sources are activated at various separations and relative power
levels.

Coherent resolution tests: Same as previous, but two sources are DDS sources transmitting the same
waveform to simulate multipath.

Spectral Estimation Tests: Various numbers of noise sources at various positions and power levels.

Incoherent interference tests: One DDC source representing a radar return, and various numbers of inter-
ference noise sources with various power levels.

Coherent interference tests: Same as previous, except that some of the interference sources are copies of
the radar signal to represent repeater jamming.
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5.5 Element-Pattern and Steering-Vector Characterization

The element-pattern sweeps mentioned in the preceding section were performed in order to assess how
the experimental setup behaved relative to an ideal linear array. Many potential sources of error exist,
including nonuniformity in the array elements and their individual electromagnetic environment, multipath
in the chamber, and geometrical considerations. The following sections provide an analysis of the expected
and measured element patterns in the array.

5.5.1 Geometry Considerations

One known source of deviation between our array and an ideal array is due to the geometry; the ≈ 5m
distance from array center to the center of the rail with the source horns mounted on it does not meet the
usual rule of thumb for the far-field:

2
𝐷2

𝜆
= 2

(12𝑑)2
𝜆

= 6.9m.

Thus, our sources are technically in the Fresnel region of the array rather than the Fraunhofer (far-field)
region. This means that the wavefronts arriving at the array are not quite planar; there is a residual range-
dependent quadratic term. In this region, we assume that the amplitude at each element is constant but
account for phase due to the actual distance from each element to the source position. Thus, the elements of
the steering vector to a source located at range 𝑟 and angle 𝜃 from the array origin are

[v]𝑘 (𝑟, 𝜃) = 𝑒− 𝑗
2𝜋
𝜆
(𝐷𝑘 (𝑟 , 𝜃)−𝑟 ) , (72)

where 𝐷𝑘 is the distance from the source to the 𝑘th element and where we normalize by removing the central
distance 𝑟 . For the element at coordinate (𝑥, 𝑦) = (𝑥𝑘 , 0), this yields
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where we take the first three terms of the Taylor series of the square root in the third line. Substituting Eq.
(73) into Eq. (72) yields the Fresnel steering vector

[v]𝑘 (𝑟, 𝜃) = 𝑒 𝑗
2𝜋
𝜆

(
sin(𝜃)𝑥𝑘−
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𝑘
2𝑟

)
, (74)

which, for large 𝑟 , converges to the standard far-field steering vector

[v]𝑘 (𝑟, 𝜃) = 𝑒 𝑗
2𝜋
𝜆
sin(𝜃)𝑥𝑘 . (75)
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For the 12 elements here, the far-field and Fresnel steering vectors at boresight are compared in Fig. 34.
Since the distance from a boresight source to the outer elements is larger than to the center elements, they
have a proportionally larger phase delay. The bottom plot shows the first-order phase difference between
elements; since the “extra” Fresnel phase is quadratic, the difference is linear.
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Fig. 34—Comparison of the phases and the interelement phase steps of the far-field and
Fresnel boresight steering vectors

5.5.2 Measured Element Patterns

With the array mounted on a motorized positioner, it was a straightforward task to rotate it through 180◦
of azimuth in 1◦ steps to measure the embedded array element patterns. The scene generator was configured
to transmit one 40 µs pulse out of each of the eight sources, staggered in time so there was no overlap. The
sources were spread out over ±31◦ of azimuth, yielding eight independent captures at each angle. The pulses
were equalized using the loopback calibration, compressed, and delay-compensated, and were angle-aligned
to yield a 12 × 8 × 181 data cube giving estimate of the complex response at each element from each source
at each angle.

The measured magnitude responses of the element patterns are shown in Fig. 35. Each plot contains eight
traces, one for each source; they are generally consistent other than overall scaling, which is primarily due
to different power levels coming from the sources. The element patterns are, for our purposes, reasonably
behaved over ±30◦ or so, with some exceptions. There are obvious differences between the elements, with
some amount of mirror symmetry across the center of the array. The phase response of the elements is
dominated by a linear slope that is proportional to sin(𝜃), which tends to obscure the errors. Therefore,
we instead plot the element-to-element phase differences for the measured responses, which removes the
slope. The top plot of Fig. 36 shows the result using source #5 from angles in the range ±45◦. In an ideal
far-field array, all the lines would be horizontal with heights proportional to sin(𝜃); here, the trend is roughly
horizontal but we clearly have various errors. If we further remove the ideal vertical offset from each curve,
what remains is just the phase errors, shown in the bottom plot of Fig. 36. Computing the linear trend (green
line) shows that it almost exactly matches the expected slope (dashed, red line) due to the Fresnel-region
geometry.
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The preceding analysis suggests that theremay be a benefit to using either the ideal Fresnel steering vectors
or the measured array steering vectors instead of the standard far-field steering vectors when processing
captured data. To investigate this for simple linear beamforming, we compare various cases in Fig. 37. The
first plot is for reference and shows the response of an ideal array to a far-field source, where the processing
is linear beamforming using ideal far-field steering vectors. We see the classic sinc structure cross each axis
cut. The subsequent three plots show the result of beamforming actual measured data from the array using
source #5. The second plot from the left uses far-field steering vectors, the third plot uses Fresnel steering
vectors, and the fourth plot uses steering vectors measured using source #4. All three are quite similar,
although the far-field steering vector case shows a degraded (filled-in) first null while the Fresnel vectors
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Fig. 37—A comparison of the beamforming response to different sets of steering vectors. At
left is the reference response of an ideal array to a far-field source, beamformed using ideal
far-field steering vectors. The subsequent plots show the measured response of the NAP
array to Fresnel-zone source #5, beamformed using far-field, Fresnel, and measured (from
source #4) steering vectors, respectively.

largely preserve the null. Interestingly, while the measured-vector case also preserves the null for small
angles, at higher angles, it appears to degrade also. This likely represents phase and amplitude errors that are
independent from measurement to measurement. Interestingly, this advantage for linear processing did not
appear to carry over to the nonlinear algorithms. Using either the Fresnel or the measured steering vectors
tended to make the algorithms less stable in terms of identifying source locations relative to the far-field
vectors. This is likely because the far-field vectors provide a more uniform basis for the space of signals and
noise even if they are not quite the best fit for the signals of interest.

Finally, as a sanity check, the data from all eight sources was processed with ideal far-field steering
vectors to verify roughly that their position was registered properly. The results are shown in Fig. 38, with
the white, dashed line indicating identical values on both axes.
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dashed line through the origin has unity slope.

5.6 NAP Results

Here, we show some samples of the data we used to evaluate the efficacy of NAP with the measured data.
Like the simulations presented in the previous chapter, we considered the DOA estimation problem and the
adaptive beamforming problem, respectively. All the spatial processing shown below was performed using
only the six channels that corresponded to a nested-array configuration.

5.6.1 DOA Estimation

For these experiments, we set the relevant transmitters to emit a Gaussian noise waveform. In the cases
shown here, the noise sources were emitted with approximately uniform power levels. We used 𝐾 = 5, 000
(fast time) snapshots for all the cases shown here.

Figure 39 shows results for the case of𝑀 = 6 transmitters located atDOAangles [23.3◦, 14.9◦, 6.4◦,−2.9◦,
−11.5◦,−20.2◦]𝑇 , and for the case of 𝑀 = 7 transmitters with DOA angles [23.3◦, 16.5◦, 9.3◦, 1.7◦,−5.8◦,
−13.2◦,−20.2◦]𝑇 all relative to boresight. For the 𝑀 = 6, case, we do note that all three methods (spatial
smoothing, EM, and RISR-GC) experienced some angular drift (even more so than observed in simulation)
relative to their true angular locations. We also note that for runs where 𝑀 < 𝑁 , this was not the case
for any of the three methods. We can see that EM exhibited the sharpest peaks relative to the other two
methods. For the 𝑀 = 7 case, both spatial smoothing and EM exhibit a false source in roughly the same
angular location. RISR-GC did not, but did fail to identify all seven peaks. The inability of the methods to
identify all seven sources was not specific to the NAP approach, as we note that this was the case even DOA
estimation was performed with all 12 channels using conventional methods. This could be attributed to the
angular spacing of the sources, which could not be increased due to the limited field of view that the chamber
could accommodate. We also considered tests to compare the spatial resolution of the techniques. For this,
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(a) Spatial smoothing: six sources
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(b) Spatial smoothing: seven Sources
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(c) EM: six sources
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(d) EM: seven sources
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(e) RISR-GC: six sources
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Fig. 39—Comparison of the different methods for coarray-based DOA estimation showing
spatial smoothing, EM, and RISR for the cases of six and seven Gaussian noise sources
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we used two noise sources emitting the same power and placed within close angular proximity, roughly 2◦
of separation. Figure 40 shows the results for linear MUSIC (conventional MUSIC using the linear model),
SS, EM, and RISR. We can clearly see that EM and RISR are able to leverage the longer virtual array as
opposed to linear MUSIC and spatial smoothing MUSIC.
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(a) Nested array
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(b) Virtual array, spatial smoothing
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(c) Virtual array, EM
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Fig. 40—DOA estimation comparison of resolution performance. We demonstrate
empirically that iterative methods such as RISR and EM applied to the nonlinear model
can take advantage of the seemingly longer aperture.

5.6.2 Adaptive Beamforming

In similar fashion to our simulation-based experiments, we sought to assess whether NAP could improve
SINR when more noise jammers than elements are used to flood the array. For these tests, we set one of the
transmitting horns to radiate a coherent waveform corresponding to a fixed range-Doppler cell while setting
a variable number of other horns to radiate Gaussian noise. In all test cases the target horn was fixed at
−20.2◦ relative to boresight and 2,000 pulses of a 40 µs 10 MHz LFM chirp was radiated. This coherent
source was set to emulate a target at a range of about 1.47 km and zero velocity. Like before, we consider
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beamforming under the assumption of clairvoyant knowledge of the DOAs of all incoming sources using the
minimum-norm beamformer. Also as before, we split the overall dwell time of 2,000 pulses into roughly 41
CPIs consisting of 48 pulses, where each CPI was used to coherently process range-Doppler maps for each
of the six receive channels.

Figure 41 shows an example comparison between linear processing and NAP for the case of seven
Gaussian noise jammers spaced at [23.3◦, 17.6◦, 11.5◦, 5.2◦,−1.76◦,−8.16◦,−14.3◦]. In this case, the chirp
was transmitted at roughly the same power as each of the noise sources, and as a result, overall SINR is
favorable even for linear processing and can be attributed mainly to coherent gain. Nevertheless, we still
observe that NAP had roughly a 4.3 dB gain over the linear processing approach. In the next experiment, we
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Fig. 41—Adaptive beamforming comparison between nonlinear and linear models. In these
experiments, the target was roughly the same power as each of the jammers. NAP had a clear
gain over linear processing in this case, although most of the SINR gain can be attributed to
coherent gain.
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wanted to see if NAP could provide SINR gain for a case in which coherent gain did not result in favorable
SINR. In this case, we had five noise jammers with DOA angles [23.3◦, 11.5◦, 5.2◦,−1.76◦,−8.16◦]𝑇 , except
now the coherent source was roughly 50 dB down in amplitude relative to each of the jammer sources. Figure
42 shows the results, where we can observe about a 1.5 dB SINR gain for NAP over the linear model.
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Fig. 42—Another comparison between linear and nonlinear adaptive beamforming. Here,
the target was roughly 50 dB gain down relative to each of the jammers. We can observe
that NAP achieves about a 1.5 dB gain advantage over conventional processing.
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6. FINAL SUMMARY AND CONCLUSIONS

In summary, the purpose of this study was to investigate a NAP framework that is based on treating the
difference coarray of a sparse array as a virtual ULA and to assess its applicability in radar. Our study was
supported by a number numerical simulations to assess array-processing algorithms for DOA estimation and
beamforming. Furthermore, an experimental testbed was designed and built for the purpose of evaluating
array-processing algorithms within an emulated radar framework. We also note that testbed, as well as the
various data that was captured, is not specific to NAP, and as such could be used for future studies concerning
full/sparse array research.

The following conclusions, which were, for the most part, consistent with numerical simulations and
experiments, summarize various aspects of our study:

• A CRLB analysis was conducted under the usual Gaussian assumptions and showed that no new infor-
mation is gained through the NAP perspective. As such, earlier conclusions regarding the maximum
number of DOF that can be exploited for DOA estimation that have been known in the literature for
some time now still hold for NAP: The maximum number of sources that can be estimated is approxi-
mately half of the difference coarray. Furthermore, as prior studies [6] have stated, time sample support
becomes a critical issue for sparse augmentable arrays when the number of sources exceeds the number
of physical elements. This is still the case with the NAP framework.

• We offered a concrete characterization of the virtual covariance matrix for NAP using a Gaus-
sian/Wishart analysis. This was important for being to able to explicitly characterize the virtual
SNR, as well as to show differences between the virtual covariance matrix structure and physical data
covariance matrix structure.

• We presented the application of a number of alternatives to spatial smoothing for DOA estimation
with the virtual array. Specifically, iterative algorithms such as RISR, RISR-GC, and EM do not rely
on decimating the virtual array in half, as is the case with a spatial smoothing approach. Although
this does not imply the ability to exploit the full DOF of the virtual array for DOA estimation, it
may have some benefits toward the resolution performance of the estimators, especially when viewed
as covariance matrix estimators for the MUSIC algorithm. This seemed to be the case in the DOA
estimation simulations and experiments that were conducted.

• We showed that adaptive beamforming with the virtual array was not a practical approach mainly due
to the need for limiting the long dwell times needed by NAP to reduce cross-term energy. Although
our simulations and measured experiments show that it is possible to achieve SINR gains with NAP,
the amount of time needed to dwell on the scene was not within reasonable time frames.

From these key summarized points, the overall conclusion is that NAP could have some benefit primarily
as a passive receive system for which spectrum estimation is the primary objective rather than a complete
replacement of array processing for monostatic radar systems.
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Appendix A

MATRIX NOTATION AND CALCULUS

A.1 Matrix Algebra

Let C𝑚×𝑛 denote the space of 𝑚 × 𝑛 matrices taken over the field of complex numbers. Generally, we
will use capital bold face letters to denote an 𝑚 × 𝑛 matrix A ∈ C𝑚×𝑛 and [A]𝑖 𝑗 to denote the (𝑖, 𝑗) element
of the matrix A. The notation A𝑇 will be used to denote the transpose operator applied to a matrix A.
Similarly, we have A∗ denoting the complex conjugate operator, and A𝐻 denoting the conjugate transpose
operator. We will use lowercase, boldfaced letters to denote vectors in some 𝑛 dimensional space over the
field of complex numbers, e.g., , a ∈ C𝑛. Oftentimes, we need to sum over elements of a matrix or a vector
or define certain quantities elementwise. When it is advantageous to do so for these cases, we will adopt
the Einstein summation convention with the hope that this will result in a more clean presentation of some
of the intermediate calculations. In this convention, we will use the notation 𝑎𝑖 𝑗 to denote [A]𝑖 𝑗 , where
repeated indices are understood to mean a summation is performed over those indices. For example, consider
the definition of matrix multiplication; Let A ∈ C𝑚×𝑛 and B ∈ C𝑛×𝑝, then the (𝑖, 𝑗) element of the matrix
C = AB is given as

𝑐𝑖 𝑗 = 𝑎𝑖𝑘𝑏𝑘 𝑗 . (A1)

Another key operator with respect to matrix quantities is the trace operator,

Definition 5. Let A ∈ C𝑛×𝑛. We define the trace of a matrix, denoted as tr [A], as

tr [A] = 𝑎𝑖𝑖 . (A2)

In fact, matrix multiplication is commutative under action of the trace operator,

Proposition 6. Let AB ∈ C𝑛×𝑛, then

tr [AB] = tr [BA] . (A3)

Proof. This is straightforward from the definition of a matrix product and the trace operator:

tr [AB] = 𝑎𝑖 𝑗𝑏 𝑗𝑖
= 𝑏 𝑗𝑖𝑎𝑖 𝑗

= tr [BA] .

We will use the notation I𝑛 to refer to the identity matrix in the space C𝑛×𝑛.
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Definition 6. A matrix A ∈ C𝑛×𝑛 is said to be invertible if there exists some matrix A−1 ∈ C𝑛×𝑛 such that

AA−1 = A−1A = I𝑛. (A4)

Furthermore, if such a matrix exists, it is unique in C𝑛×𝑛.

A square matrix whose inverse exists is often referred to as nonsingular. Conversely, a non-invertible square
matrix is said to be nonsingular. A fundamental result that frequently arises in array processing is the
Sherman-Morrison-Woodbury identity:

Lemma 3. Let A, C, and C−1 + DA−1B be nonsingular square matrices. Then the matrix A + BCD is
invertible and

(A + BCD)−1 = A−1 − A−1B(C−1 + DA−1B)−1DA−1. (A5)

Proof. The result follows by direct multiplication of (A+BCD) with A−1B(C−1 +DA−1B)−1DA−1 to obtain
the identity matrix.

A special case of Lemma 3 (see [44]) can be stated as follows:

Lemma 4. If A and A + B are invertible, and B has rank 1, then let 𝑔 = tr
[
BA−1] . Then 𝑔 ≠ 1 and

(A + B)−1 = A−1 − 1
1 + 𝑔A−1BA−1. (A6)

Proof. Since B is a rank 1 matrix, we can represent it as the outer product of two column vectors B = uv𝐻 .
Thus, by Lemma 3,

(A + B)−1 =
(
A + uv𝐻

)−1
= A−1 − A−1u

[
1 + v𝐻A−1u

]−1 v𝐻A−1

= A−1 − A−1uv𝐻A−1

1 + v𝐻A−1u

= A−1 − A−1BA−1

1 + v𝐻A−1u
.

A direct calculation of the scalar factor in the denominator shows that

v𝐻A−1u = 𝑣∗𝑗
[
A−1]

𝑗𝑘
𝑢𝑘 (A7)

=
[
A−1]

𝑗𝑘
𝑢𝑘𝑣

∗
𝑗 (A8)

=
[
A−1]

𝑗𝑘
[B]𝑘 𝑗 (A9)

=
[
A−1B

]
𝑗 𝑗
= tr

[
A−1B

]
. (A10)
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The special case of positive definite Hermitian matrices is of interest because they are always nonsingular.

Definition 7. A matrix A is said to be Hermitian if A𝐻 = A.

A Hermitian matrix A is said to be positive-definite if and only if x𝐻Ax > 0 for all nontrivial vectors x. An
important characterization of such matrices is provided by the Schur complement:

Proposition 7. For any Hermitian matrix F of the form

F =

[
A B

B𝐻 D

]
(A11)

where A and D are also Hermitian matrices, we have F is nonsingular if and only if D and the Schur
compliment of D, A − BD−1B𝐻 are both nonsingular.

Proof. First note that we have the following factorization of F:

F =

[
I BD−1

0 I

] [
A − BD−1B𝐻 0

0 D

] [
I BD−1

0 I

]𝐻
Thus, taking the determinant of F, we see that

|F| = |A − BD−1B𝐻 | |D|;

if both matrices A−BD−1B𝐻 and D are non-singular, it then follows that F is non-singular, i.e., , |F| ≠ 0.

Recall that an 𝑛-dimensional Euclidean space is a Hilbert space with inner product

〈a, b〉 = a𝐻b, ∀a, b ∈ C𝑛. (A12)

The inner product can be used to induce the Euclidean norm

‖a‖2 =
√︁

a𝐻a, ∀a ∈ C𝑛. (A13)

In fact, the space C𝑚×𝑛 can be viewed as a Hilbert space through the inner product

〈A,B〉 = tr
[
A𝐻B

]
, ∀A,B ∈ C𝑚×𝑛, (A14)

with induced norm

‖A‖𝐹 =

√︃
tr

[
A𝐻A

]
, ∀a ∈ C𝑚×𝑛. (A15)
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For any arbitrary matrixA ∈ C𝑚×𝑛 we can associate with it a unique element inC𝑚𝑛 simply by unraveling
the elements in the matrix into a vector:

VEC (A) :


𝑎11 𝑎12 . . . 𝑎1𝑛
𝑎21 𝑎22 . . . 𝑎2𝑛
...

...
. . .

...

𝑎𝑛1 𝑎2𝑛 . . . 𝑎𝑛𝑛


↦→


𝑎11
𝑎21
...

𝑎𝑛𝑛


(A16)

Note that here we have chosen to use column-major indexing in the unraveling. One equivalently may use
a row-major indexing here as long as consistency between element mappings is maintained. It is not hard
to see that VEC (·) operator is a linear operator, and in fact defines an isomorphic relationship between the
Hilbert spaces C𝑚×𝑛 and C𝑚𝑛, i.e., the Euclidean distances between elements of these respective spaces are
preserved under the VEC (·) operator. As such, one can define an inverse such that a ↦→ A as

MAT [a] :


𝑎11
𝑎21
...

𝑎𝑚𝑛


↦→


𝑎11 𝑎12 . . . 𝑎1𝑛
𝑎21 𝑎22 . . . 𝑎2𝑛
...

...
. . .

...

𝑎𝑚1 𝑎2𝑛 . . . 𝑎𝑚𝑛


, (A17)

with ‖a‖2 = ‖MAT [a] ‖𝐹 . This isomorphic mapping between the two representations can be used to
simplify the derivation of new relationships between various quantities. For example, one useful property
relates the trace operator to inner products in the vector space C𝑚𝑛:

Proposition 8. For any 𝑛 × 𝑛 matrices A and B, we have

tr [AB] = VEC
(
A𝐻

)𝐻
VEC (B) . (A18)

Proof. This follows from a straightforward componentwise calculation of matrix multiplication and the trace
operator

tr [AB] = 𝑎𝑖𝑘𝑏𝑘𝑖 (A19)
= 𝑎11𝑏11 + 𝑎12𝑏21 + . . . 𝑎𝑛𝑛𝑏𝑛𝑛 (A20)
= 𝑎𝑇11𝑏11 + 𝑎

𝑇
21𝑏21 + · · · + 𝑎𝑇𝑛𝑛𝑏𝑛𝑛 (A21)

= VEC
(
A𝑇

)𝑇
VEC (B) (A22)

= VEC
(
A𝐻

)𝐻
VEC (B) . (A23)

Another important relationship can be derived as follows:
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Definition 8. Let A ∈ C𝑚×𝑛 and B ∈ C𝑝×𝑞. The 𝑚𝑝 × 𝑛𝑞 matrix

A ⊗ B =


𝑎11B 𝑎12B . . . 𝑎1𝑛B
𝑎21B 𝑎22B . . . 𝑎2𝑛B
...

...
. . .

...

𝑎𝑚1B 𝑎2𝑛B . . . 𝑎𝑚𝑛B


(A24)

is defined to be the Kronecker product of A and B.

Proposition 9. Let A and B be 𝑚 × 𝑛, 𝑛 × 𝑝, and 𝑝 × 𝑞 sized matrices, respectively. Then

VEC (ABC) =
(
C𝑇 ⊗ A

)
VEC (B) . (A25)

Proof. Put C = [c1, . . . , c𝑛] (assuming a size of 𝑚 × 𝑛) and B = [b1, . . . , b𝑚]. By definition of matrix
products, we have

[ABC]𝑖 𝑗 = 𝑎𝑖𝑘𝑏𝑘𝑙𝑐𝑙 𝑗 , (A26)

therefore, the 𝑗 th column of the above can be expressed as

A
𝑚∑︁
𝑘=1

b𝑘𝑐𝑘 𝑗 = [𝑐1 𝑗A, 𝑐2 𝑗A, . . . , 𝑐𝑚𝑗A]


b1
b2
...

b𝑚


= ( [𝑐1 𝑗 , 𝑐2 𝑗 , . . . , 𝑐𝑚𝑗] ⊗ A)︸                           ︷︷                           ︸

c𝑇
𝑗
⊗A


b1
b2
...

b𝑚

︸︷︷︸
VEC(𝐵)

.

By stacking all the remaining columns, the result follows.

A.2 Calculus

We first consider some important properties concerning differentiation of matrix-valued quantities with
respect to a real-valued scalar 𝜃. For such matrices that depend implicitly on 𝜃, we have A = A(𝜃), and the
derivative of A with respect to 𝜃 is then taken componentwise:

𝜕A
𝜕𝜃

=



𝜕𝑎11
𝜕𝜃

𝜕𝑎12
𝜕𝜃

. . .
𝜕𝑎1𝑛
𝜕𝜃

𝜕𝑎21
𝜕𝜃

𝜕𝑎22
𝜕𝜃

. . .
𝜕𝑎2𝑛
𝜕𝜃

...
...

...
𝜕𝑎𝑛1
𝜕𝜃

𝜕𝑎𝑛2
𝜕𝜃

. . .
𝜕𝑎𝑛𝑛
𝜕𝜃


. (A27)
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Based on this definition, we now derive a few important quantities that we are likely to encounter when
deriving Cramer-Rao bounds.

Proposition 10 (Chain Rule). Let A(𝜃) ∈ R𝑚×𝑛 and B(𝜃) ∈ R𝑛×𝑝. Then the derivative of their product with
respect to 𝜃 is given by the chain rule:

𝜕AB
𝜕𝜃

=
𝜕A
𝜕𝜃

B + A
𝜕B
𝜕𝜃
. (A28)

Proof. Put C(𝜃) = AB. Consider a direct calculation of
𝜕C
𝜕𝜃
from the individual elements 𝜕𝑐𝑖 𝑗

𝜕𝜃
:

𝜕𝑐𝑖 𝑗

𝜕𝜃
=
𝜕

𝜕𝜃

𝑛∑︁
𝑘=1

𝑎𝑖𝑘𝑏𝑘 𝑗

=

𝑛∑︁
𝑘=1

𝜕𝑎𝑖𝑘𝑏𝑘 𝑗

𝜕𝜃
.

We can now employ the conventional chain rule on the scalar derivatives inside the summation:

𝜕𝑎𝑖𝑘𝑏𝑘 𝑗

𝜕𝜃
=

𝑛∑︁
𝑘=1

[
𝜕𝑎𝑖𝑘

𝜕𝜃
𝑏𝑘 𝑗 + 𝑎𝑘 𝑗

𝜕𝑏𝑖𝑘

𝜕𝜃

]
=

𝑛∑︁
𝑘=1

𝜕𝑎𝑖𝑘

𝜕𝜃
𝑏𝑘 𝑗 +

𝑛∑︁
𝑘=1

𝑎𝑘 𝑗
𝜕𝑏𝑖𝑘

𝜕𝜃
,

which we see corresponds to the chain rule products defined above.

Proposition 11. Let A be a nonsingular 𝑛 × 𝑛 matrix whose elements are dependent on a scalar 𝜃. Then

𝜕A−1

𝜕𝜃
= −A−1 𝜕A

𝜕𝜃
A−1 (A29)

Proof. Recall that by definition,

A−1A = I.

Now, applying the derivative with respect to 𝜃 to both sides of the equation above, we obtain

𝜕A−1A
𝜕𝜃

= 0.

Using the chain rule (Proposition 10), we see that

𝜕A−1

𝜕𝜃
A + A−1 𝜕A

𝜕𝜃
= 0,

where we can now solve for 𝜕A−1

𝜕𝜃
to obtain Eq. (A29).
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Finally, we recall another important matrix calculus identity that proves useful for Cramer-Rao analysis:

Proposition 12 (Jacobi’s Formula). Let A(𝜃) be differentiable with respect to the scalar 𝜃. Then the
derivative 𝜕 |A |

𝜕𝜃
exists and is given as

𝜕 |A|
𝜕𝜃

= |A|tr
[
A−1 𝜕A

𝜕𝜃

]
. (A30)



This page intentionally left blank

88



Appendix B

ADAPTIVE BEAMFORMING

When the output of an 𝑁-element array is experiencing interference from an unknown but finite number
of interference sources, adaptive beamforming techniques such asMVDR andMMSE can be used to suppress
their contribution in order to preserve signal integrity from the direction of interest. Again, the array output
thus can be decomposed as

x(𝑡) = t(𝑡) + i(𝑡) + n(𝑡),

with t(𝑡) = 𝑠(𝑡)a(𝜃), where 𝑠(𝑡) is the source signal of interest. For this discussion, we will assume that
it is a stochastic source with zero mean and variance 𝐸

[
|𝑠 |2

]
= 𝜎2. Furthermore, we assume that 𝑠(𝑡) is

uncorrelated with the interference and noise components:

𝐸 [𝑠∗(𝑡)i] = 0 (B1)
𝐸 [𝑠∗(𝑡)n] = 0, (B2)

and that the covariancematrix corresponding to the interference and noise components is known (written here
as R for brevity). The MVDR beamformer seeks weights w that the corresponding output 𝑦(𝑘) = w∗x(𝑘)
maximizes SINR:

SINR :=
𝐸

[
|w𝐻 s|2

]
𝐸

[
|w𝐻 (i + n) |2

] =
𝜎21 |w

𝐻a(𝜃1) |2

w𝐻Rw
. (B3)

If we fix the numerator, then clearly, maximizing SINR can be accomplished by minimizing the denominator
of the ratio. This plan of attack can be achieved formally through the constrained optimization program

min
w

w𝐻Rw subject to w𝐻a(𝜃1) = 1. (B4)

The unique minima for the convex program in Eq. (B4) is derived analytically by calculating the gradient
with respect to w∗ and employing a Lagrange multiplier 𝜇 > 0 to convert the gain constraint into a penalty
term. This results in a linear equation in terms of w and 𝜇:

Rw = 𝜇a(𝜃). (B5)

After inverting the covariance data incorporating the gain constrain in Eq. (B4), we find that the optimal
weights are given as

w =
R−1a(𝜃)

a𝐻 (𝜃)R−1a(𝜃)
.
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We now derive weights corresponding to a MMSE beamformer. The MSE criteria is defined as

𝐽 (w) = 𝐸
[
|𝑦(𝑡) − 𝑠(𝑡) |2

]
. (B6)

To bring out the explicit dependence of 𝐽 (w) on the weights, we can expand Eq. (B6) as follows:

𝐽 (w) = 𝐸 [𝑦𝑦∗ − 𝑦𝑠∗ − 𝑠𝑦∗ + 𝑠𝑠∗]
= 𝐸

[
w𝐻xx𝐻w

]
− 2𝐸 [𝑦𝑠∗] + 𝜎2. (B7)

For the first term in the expansion, we have

𝐸
[
w𝐻xx𝐻w

]
= w𝐻𝐸

[
(t + i + n) (t + i + n)𝐻

]
w

= 𝜎2w𝐻aa𝐻w + w𝐻Rw, (B8)

where we have used the fact that the target and interference/noise sources are uncorrelated. Considering the
second term, we see that

𝐸 [𝑦𝑠∗] = w𝐻𝐸 [(t + i + n)𝑠∗]
= 𝜎2w𝐻a(𝜃). (B9)

Putting Eqs. (B8) and (B9) back into Eq. (B7), we have

𝐽 (w) = 𝜎2w𝐻aa𝐻w + w𝐻Rw − 2𝜎2w𝐻a(𝜃) + 𝜎2 (B10)
= w𝐻Rw + 𝜎2 |w𝐻a − 1|2. (B11)

Thus, we see that the MSE objective function has a similar form to the objective of a MVDR beamformer,
where the first term is the denominator of the SINR expression and the right term is a gain control term,
except we are now scaling the gain in the look direction 𝜃 by the source power 𝜎2. Now, if we compute the
gradient of 𝐽 (w) with respect to w∗ and set it to zero, we arrive at the equation(

R + 𝜎2aa𝐻
)

w = 𝜎2a. (B12)

Solving Eq. (B12) for w yields

w = 𝜎2
(
R + 𝜎2aa𝐻

)−1
a(𝜃), (B13)

which, at first glance, looks much different in form than Eq. (12). However, we can observe that(
R + 𝜎2aa𝐻

)−1 is the sum of an invertible matrix and a rank one matrix; hence, with the aid of Lemma 4
we obtain the expression

w = 𝜎2
(
R−1 + 1

1 + 𝑔𝜎
2R−1aa𝐻R−1

)
a(𝜃), (B14)
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where 𝑔 = 𝜎2tr
[
aa𝐻R−1] . Now, observe that by definition of the trace operator and matrix multiplication,

tr
[
aa𝐻R−1] = [

aa𝐻
]
𝑖𝑘

[
R−1]

𝑘𝑖
(B15)

= 𝑎𝑖𝑎
∗
𝑘

[
R−1]

𝑘𝑖
(B16)

= 𝑎∗𝑘
[
R−1]

𝑘𝑖
𝑎𝑖 (B17)

= a𝐻R−1a. (B18)

Incorporating this result into Eq. (B14) we see that

w = 𝜎2
(
R−1 − 1

1 + 𝑔𝜎
2R−1aa𝐻R−1

)
a(𝜃) (B19)

= 𝜎2
(
(1 + 𝑔)R−1a − 𝜎2R−1aa𝐻R−1a

)
/(1 + 𝑔) (B20)

= 𝜎2
(
(1 + 𝑔)R−1a − 𝑔R−1a

)
/(1 + 𝑔) (B21)

=
𝜎2R−1a

1 + 𝜎2a𝐻R−1a
. (B22)

Multiplying the numerator and the denominator of this result by the factor a𝐻R−1a, we see that

w =
𝜎2a𝐻R−1a
1 + 𝜎2a𝐻R−1a

R−1a
a𝐻R−1a

(B23)

= 𝛽( |𝑠 |)wmvdr. (B24)

Thus, the MMSE beamformer is simply a rescaled version of the MVDR filter incorporating the a priori
knowledge of |𝑠 |2, and thus improving estimation error of the source in the mean-squared sense.
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Appendix C

MAXIMUM LIKELIHOOD ESTIMATION AND CRAMER RAO LOWER BOUNDS

We consider the MLE with respect to the linear array model,

x(𝑘) = As(𝑘) + n(𝑘), (C1)

where we wish to estimate the underlying parameters of the 𝑀 sources given measurements from an 𝑁
element array. Each array measurement x(𝑘) yields a sample of the random vector 𝒙 that we assume follows
a circularly symmetric Gaussian distribution,

𝑓𝒙 (x|R𝑥) = 𝜋−𝑁
��R−1
𝑥

�� exp (
−x𝐻R−1

𝑥 x
)
, (C2)

and is assumed to be independent of the other measurements. Thus, the MMV data X, itself, is a sample of
the random variable 𝑿 whose distribution is given as the product of 𝐾 Gaussian vectors:

𝑓𝑿 (X|R𝑥) = 𝜋−𝑁𝐾
��R−1
𝑥

��𝐾 exp (
−

𝐾∑︁
𝑘=1

x𝐻𝑘 R−1
𝑥 x𝑘

)
. (C3)

It is important to note that based on our assumptions in Chapter 2 regarding the covariance data, the matrix
R𝑥 is completely defined by the underlying parameter vector

𝜶 = [𝜃1, . . . , 𝜃𝑀 , 𝜎20 , 𝜎
2
1 , . . . , 𝜎

2
𝑀 ]𝑇 . (C4)

Therefore, we can write 𝑓𝑿 (X|R𝑥) equivalently as 𝑓𝑿 (X|𝜶). The log-likelihood function associated with
Eq. (C3) (now seen as a function of the parameter vector conditioned on the data) is then

𝐿 (𝜶 |X) = −𝑁𝐾 log 𝜋 + 𝐾 log
��R−1
𝑥

�� − 𝐾∑︁
𝑘=1

x𝐻𝑘 R−1
𝑥 x𝑘 , (C5)

where we note that we left off the dependence of R𝑥 on 𝜶 for notational clarity.

C.1 Calculating the Gradient of the Likelihood Function

The MLE is obtained by maximizing Eq. (C5) with respect to 𝜶, which requires that we find the zeros
of its gradient with respect to 𝜶. To simplify calculation of the gradient, we seek to rewrite the likelihood
function in a more convenient form; first, we safely can drop the constant log 𝜋, since it will vanish for any
derivatives with respect to 𝜶. Second, we note

x𝐻R−1
𝑥 x = tr

[
x𝐻R−1

𝑥 x
]
, (C6)
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since x𝐻R−1
𝑥 x is a scalar. Making use of the commutative property of the trace operator (Eq. (A3)), we have

tr
[
x𝐻R−1

𝑥 x
]
= tr

[
R−1
𝑥 xx𝐻

]
. (C7)

Applying Eq. (C7) to the summation in Eq. (C5), we obtain

𝐿 (𝜶 |X) = −𝐾 log |R𝑥 | − 𝐾tr
[
R−1
𝑥 S𝑥

]
, (C8)

where, as before, S𝑥 is the sample covariance matrix:

S𝑥 =
1
𝐾

𝐾∑︁
𝑘=1

x𝑘x𝐻𝑘 . (C9)

We now proceed to compute the gradient of the likelihood function with respect to the implicit spatial fre-

quency parameters, which we denote as D𝐿 =

[
𝜕𝐿
𝜕𝛼1

, . . . , 𝜕𝐿
𝜕𝛼2𝑀+1

]𝑇
. Deriving this is simplified significantly

by use of the chain rule and some the basic matrix calculus results derived in Appendix A. Considering the
first term in Eq. (C8) we have

𝜕

𝜕𝛼𝑖
[−𝐾 log |R𝑥 |] = − 𝐾

|R𝑥 |
𝜕 |R𝑥 |
𝜕𝛼𝑖

(C10)

= −𝐾tr
[
R−1
𝑥

𝜕R𝑥

𝜕𝛼𝑖

]
, (C11)

where we note the use of Jacobis formula (Proposition 12) for arriving at the result. Now, considering the
second term,

𝐾
𝜕tr

[
R−1
𝑥 S𝑥

]
𝜕𝛼𝑖

(C12)

= −𝐾tr
[
𝜕

[
R−1
𝑥 S𝑥

]
𝜕𝛼𝑖

]
(C13)

= −𝐾tr
[
𝜕R−1

𝑥

𝜕𝛼𝑖
S𝑥

]
(C14)

= 𝐾tr
[
R−1
𝑥

𝜕R𝑥

𝜕𝛼𝑖
R−1
𝑥 S𝑥

]
(C15)

= 𝐾tr
[
R−1
𝑥 S𝑥R−1

𝑥

𝜕R𝑥

𝜕𝛼𝑖

]
, (C16)

where, in the last step, we made use of the commutative property tr [AB] = tr [BA]. Putting expressions
Eqs. (C11) and (C16) together, we obtain the final form of the likelihood gradient:

(D𝐿)𝑖 = 𝐾tr
[(

R−1
𝑥 S𝑥R−1

𝑥 − R−1
𝑥

) 𝜕R𝑥

𝜕𝛼𝑖

]
, for 𝑖 = 1, . . . , 2𝑀 + 1. (C17)
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C.2 Calculating the Hessian of the Likelihood Function

Another important quantity relating to the MLE of the underlying parameters is the Hessian with respect
to the likelihood function, which is defined as

D2𝐿 =



𝜕2𝐿
𝜕𝛼21

𝜕2𝐿
𝜕𝛼1𝛼2

. . . 𝜕2𝐿
𝜕𝛼1𝛼2𝑀+1

𝜕2𝐿
𝜕𝛼2𝛼1

𝜕2𝐿
𝜕𝛼22

. . . 𝜕2𝐿
𝜕𝛼2𝛼2𝑀+1

...
...

. . .
...

𝜕2𝐿
𝜕𝛼2𝑀+1𝛼1

𝜕2𝐿
𝜕𝛼2𝑀+1𝛼2

. . . 𝜕2𝐿
𝜕𝛼22𝑀+1


. (C18)

To compute this, we can consider the derivative with respect to an arbitrary component of the gradient
computed in Eq. (C17):

𝜕2𝐿

𝜕𝛼𝑖𝛼 𝑗
=

𝜕

𝜕𝛼𝑖
𝐾tr

[(
R−1
𝑥 S𝑥R−1

𝑥 − R−1
𝑥

) 𝜕R𝑥

𝜕𝛼 𝑗

]
, for 𝑖, 𝑗 = 1, . . . , 2𝑀 + 1. (C19)

Since the trace operator is linear, it can be interchanged with the partial derivative; hence,

𝜕

𝜕𝛼𝑖
𝐾tr

[(
R−1
𝑥 S𝑥R−1

𝑥 − R−1
𝑥

) 𝜕R𝑥

𝜕𝛼 𝑗

]
(C20)

= 𝐾tr
[
𝜕

𝜕𝛼𝑖

((
R−1
𝑥 S𝑥R−1

𝑥

) 𝜕R𝑥

𝜕𝛼 𝑗

)
− 𝜕

𝜕𝛼𝑖

(
R−1
𝑥

𝜕R𝑥

𝜕𝛼 𝑗

)]
(C21)

= 𝐾tr
[
R−1
𝑥

𝜕R𝑥

𝜕𝛼𝑖
R−1
𝑥 S𝑥R−1

𝑥

𝜕R𝑥

𝜕𝛼 𝑗
+ R−1

𝑥 S𝑥
𝜕

𝜕𝛼𝑖

(
R−1
𝑥

𝜕R𝑥

𝜕𝛼 𝑗

)
− 𝜕

𝜕𝛼𝑖

(
R−1
𝑥

𝜕R𝑥

𝜕𝛼 𝑗

)]
, (C22)

where in Eq. (C22), we used the matrix derivative chain rule applied to the first term in Eq. (C21). We
elect to leave the Hessian for the physical array model in the current form of Eq. (C22) since, as we shall
observe, when computing the associated Cramer-Rao lower bound, we can cancel out some of the terms
without explicitly computing the remaining partials.

C.3 Cramer-Rao Lower Bound for the Physical Array Model

Recall that the CRLB is a lower bound of the estimation error over all possible unbiased estimators with
respect to the unknown implicit parameters 𝜶. We derive the CRLB for the DOA estimation with respect
to the linear model under the assumption that underlying sources are Gaussian random sources. For this we
require the Fisher Information Matrix (FIM) which is given as

[J]𝑖 𝑗 (𝜶) = −𝐸
[

𝜕2

𝜕𝜶𝑖𝜕𝜶 𝑗
log 𝑓x(𝒙 |𝜶)

]
. (C23)

The CRLB matrix then is simply the inverse of the FIM:

C(𝜶) = J−1(𝜶). (C24)
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We are now in a position to derive the main CRLB result. Using the results in Eq. (C22), and the fact
that 𝐸 [·] is a linear operator, we have

[J]𝑖 𝑗 (𝜶) = −𝐸
[
𝐾tr

[
R−1
𝑥

𝜕R𝑥

𝜕𝛼𝑖
R−1
𝑥 S𝑥R−1

𝑥

𝜕R𝑥

𝜕𝑢𝑙
+ R−1

𝑦𝑦S𝐾
𝜕

𝜕𝛼𝑖

(
R−1
𝑥

𝜕R𝑥

𝜕𝛼 𝑗

)
− 𝜕

𝜕𝛼𝑖

(
R−1
𝑥

𝜕R𝑥

𝜕𝛼 𝑗

)] ]
(C25)

= 𝐾tr
[
𝐸

[
R−1
𝑥

𝜕R𝑥

𝜕𝛼𝑖
R−1
𝑥 S𝑥R−1

𝑥

𝜕R𝑥

𝜕𝛼 𝑗
+ R−1

𝑥 S𝑥
𝜕

𝜕𝛼𝑖

(
R−1
𝑥

𝜕R𝑥

𝜕𝛼 𝑗

)
− 𝜕

𝜕𝛼𝑖

(
R−1
𝑥

𝜕R𝑥

𝜕𝛼 𝑗

)] ]
(C26)

= 𝐾tr
[
R−1
𝑥

𝜕R𝑥

𝜕𝛼𝑖
R−1
𝑥 𝐸 [S𝑥] R−1

𝑥

𝜕R𝑥

𝜕𝛼 𝑗
+ R−1

𝑥 𝐸 [S𝑥]
𝜕

𝜕𝛼𝑖

(
R−1
𝑥

𝜕R𝑥

𝜕𝛼 𝑗

)
− 𝜕

𝜕𝛼𝑖

(
R−1
𝑥

𝜕R𝑥

𝜕𝛼 𝑗

)]
. (C27)

Using the fact that

𝐸 [S𝑥] = R𝑥 , (C28)

we can show that Eq. (C27) reduces to

𝐾tr
[
R−1
𝑥

𝜕R𝑥

𝜕𝛼𝑖
R−1
𝑥 R𝑥R−1

𝑥

𝜕R𝑥

𝜕𝛼 𝑗
+ R−1

𝑥 R𝑥

𝜕

𝜕𝛼𝑖

(
R−1
𝑥

𝜕R𝑥

𝜕𝛼 𝑗

)
− 𝜕

𝜕𝛼𝑖

(
R−1
𝑥

𝜕R𝑥

𝜕𝛼 𝑗

)]
(C29)

= 𝐾tr
[
R−1
𝑥

𝜕R𝑥

𝜕𝛼𝑖
R−1
𝑥

𝜕R𝑥

𝜕𝛼 𝑗

]
. (C30)

Thus, from Eq. (C30), we obtain the CRB C(𝜶) = J−1(𝜶) as

[
C−1]

𝑖 𝑗
= 𝐾tr

[
R−1
𝑥

𝜕R𝑥

𝜕𝛼𝑖
R−1
𝑥

𝜕R𝑥

𝜕𝛼 𝑗

]
, for 𝑖, 𝑗 = 1, . . . , 2𝑀 + 1. (C31)



Appendix D

COMPRESSIVE SENSING

Compressive sensing (CS) is a relatively recent mathematical framework for enabling the reconstruction
of a signal from a small number of measurements. The term “small” here is often used in reference to
uniform sampling at the Nyquist rate (in space or time). Fundamentally, CS encompasses measurement
paradigms in conjunction with regularization techniques that enable physically meaningful solutions of the
underlying underdetermined linear systems. For array processing, this is accomplished through sparse array
architectures (random or deterministic) that are amenable toward processing with CS-based reconstruction
algorithms. To get a basic understanding of such algorithms, first let us consider the noiseless DOAestimation
problem for a single snapshot of array data,

As(𝑘) = x(𝑘), (D1)

where the aim is to recover s(𝑘), or at the very least, its angular support. Here, the signal s is taken over
an angular grid 𝜽 that discretizes the array’s FOV. The assumption here is that the true angular support of
s, �̂� is a subset of the angular grid 𝜽 , i.e., �̂� ⊂ 𝜽 . When the number of sources in the grid 𝑀 exceeds the
number of measurements 𝑁 , Eq. (D1) is underdetermined, and thus an infinite number of solutions s will fit
the data x. By introducing some prior information regarding s, we can effectively reduce the solution space
in the hopes that solutions within this space yield the information that we seek. One important prior in CS
is the concept of sparsity — that is, when the number of sources impinging upon the array (denoted as 𝑠) is
much smaller than the number of angles in the grid, the true solution ŝ to Eq. (D1) contains mostly zeros.
In other words, ideally, we should restrict our search only toward vectors that are 𝑠-sparse, i.e., vectors that
have at most 𝑠 nonzero elements. Under such a constraint, in many cases underdetermined systems such as
(D1) admit unique solutions. Formally, such a search is given by the program

min ‖s‖0 subject to (D2)
As(𝑘) = x(𝑘);

that is, if a unique solution 𝑠-sparse solution does exist, solving program Eq. (D2) is a concrete way of
finding it. To characterize the existence of a unique sparse solution to a particular underdetermined system,
we look to the null space of A, which we denote as 𝑁 (A). Specifically, we need to ensure that 𝑁 (A) is
void of any linear combinations of 𝑠-sparse vectors. It is not hard to show that the space of 2𝑠-sparse vectors
encompasses all possible linear combinations of 𝑠-sparse vectors [45] and therefore a unique sparse solution
can be ensured if and only if 𝑁 (A) does not contain any 2𝑠-sparse vectors. One measure that checks to
ensure this null space condition is the Kruskal rank of a matrix [46].

Definition 9. The Kruskal rank of a matrix A, denoted as krank(A) is the largest positive integer 𝑘 such that
every set of 𝑘 columns of A is linearly independent.

Theorem 2 (Unique Recovery of a Sparse Signal). A unique 𝑠-sparse solution to Eq. (D2) exists if and only
if

krank(A) > 2𝑠.
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For the DOA estimation problem, using the fact that krank(A) ≤ rank(A) in conjunction with Theorem 2,
we have the following corollary:

Corollary 1. The maximum number of sources that can be uniquely recovered from SMV data for a given
array S with |S| = 𝑁 is 𝑁/2 − 1.

In other words, no more source than half the number of elements can be imaged when restricted to SMV
data. However this limitation can be overcome by leveraging temporal diversity. To show this, as before, we
assume all the sources are on the grid and that our measurements are noiseless. We further assume that the
spatial support of the sources does not change across the observation period 𝑇 . In this case, the rows of A in

AS(𝑘) = X(𝑘) (D3)

share a common joint sparsity support 𝜽∗. Then, similarly to the SMV case, we can seek to uniquely recover
the MMV source data according to the program

min
S

∈ C𝑀×𝐾 ‖S‖0,𝑟 subject to (D4)

AS(𝑘) = X(𝑘),

where we define

‖S‖0,𝑟 =








(
𝐾∑︁
𝑘=1

|S:,𝑙 |2
)1/2







0

.

The results of [47] establish the conditions in which this possible.

Theorem 3. Consider the MMV model in Eq. (D3), where it is assumed that 𝜽∗ ⊂ 𝜽 indicates the common
directional support of the underlying sources across the rows of S. Then the support 𝜽∗ can be uniquely
identified by the solution of Eq. (D4) if and only if

𝑀 <
krank(A) + rank(X𝐾 )

2
,

Such conditions include the mutual coherence measure

𝜇(A) = max
𝑖, 𝑗<𝑆,𝑖≠ 𝑗

��a𝐻
𝑖

a 𝑗
��

‖a𝑖 ‖2‖a 𝑗 ‖2
.

For example, recovery with convex relaxed methods can be achieved as long as 𝑀 < (1 + 𝜇−1(A))/2 [45],
and while weaker recovery conditions could be established with other metrics, such as the restricted isometry
property (RIP), mutual coherence is the only metric that is amenable for computing in polynomial time.



Appendix E

MATLAB CLASS HEADERS
1 classdef NAP_testbed < handle
2
3 properties
4 Valons; % Valon dual−channel sources 1:4
5 Rigols; % Rigol dual−channel AWGs 1:4
6 VSG; % Cal Arb/VSG combo
7 DSO; % Keysight scopes
8 fRF=3.4e9; % RF center frequency
9 fIF_CAL = 25e6; % VSG/Arb IF
10 fIF_AWG = 50e6; % Rigol/upconverter IF
11 fIF_RX = 640e6; % Receive IF at scopes
12 Tp = 30e−6; % Far−field pulse width (not noise)
13 BW = 20e6; % Far−field pulse bandwidth (not noise)
14 Tpre=100e−6; % extra delay before pulse to let noise gate turn off
15 Tgate=100e−6; % extra delay before raising gate at end
16 Tp_CAL = 200e−6; % cal pulse length
17 BW_CAL = 40e6; % cal pulse bandwidth
18 channels=1:4; % which Rigol/Valon combos to use, 1:4
19 fs_Capture = 2e9; % scope sample rate
20 sampleMode = 'RTIM'; % regular ('RTIM') or hi−res ('HRES') sampling
21 T_capture = 2e−3; % capture time interval
22 T_disp = 500e−6; % display interval
23 Vpp_capture = 0.4; % Volts P−P setting on scopes
24 trigdelay = 100e−6; % Make about the same as Tpre to keep from capturing junk
25 FFsources = struct('type',repmat({'off'},1,8),'arb',repmat({0},1,8),'range',repmat({0},1,8),...
26 'Doppler',repmat({0},1,8),'Amplitude',repmat({−20},1,8),'Kp',repmat({100},1,8),'d',repmat({0},1,8));
27 FFDist = 16*0.3048; % distance to far−field source plane
28 FFcal_src = []; % which sources to turn on early to get a clean far−field cal pulse
29 % before all the other sources turn on
30 Aspect_Angle = 0;
31 end % properties

1 % matlab class to control Valon programmable signal generator
2 classdef Valon < handle
3
4 properties
5 handle; % instrument−conrol serial fid
6 end % properties
7
8 % properties to set once at init time that should not change
9 properties (SetAccess=private)
10 port; % which com port is used
11 baud=9600; % current baud rate
12 ID; % read from instrument
13 SerialNum;
14 end
15
16 properties (Dependent)
17 % state variables stored in the Valon; some are per−channel and
18 % others are per−device
19
20 % per−device:
21 Status;
22 ReferenceSource;
23 ReferenceFreq;
24 ReferenceDouble;
25 Lock;
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26
27 % per−channel:
28 % Note: frequency quantization depends on frequency range. For
29 % 3−6GHz with a 10MHz reference, the step appears to be 4884 Hz, which
30 % I think is 4MHz/819? Experimentally, the device also seems to accept
31 % frequencies that are multiples of 5000 Hz. (Need to check what really comes out.)
32 % Available frequencies: 3000e6, 3000e6+4884, 3000e6+5000, 3000e6+9768, 3000e6+10000
33 % 3001e6, 3001e6+1220, 3001e6+5000, 3001e6+6104, 3001e6+10000
34 % 3002e6, 3002e6+2442, 3002e6+5000, 3002e6+7326, 3002e6+10000
35 % 3003e6, 3003e6+3662, 3003e6+5000, 3003e6+8546, 3003e6+10000
36 % and so one, cycling every 4MHz. Around a center freq of 3.35 GHz, we have offsets
37 % [−12212 −10000 −7328 −5000 −2444, 0, 2442, 5000 7326 10000 12210]*Hz
38 % The manual lists 9768 Hz steps for a 20MHz
39 % reference, which I confirmed directly; The manual
40 % suggests that turning off the double will give another factor of
41 % 1/2, but I didn't find that to be the case.
42 Output_Enable;
43 Power; % determined by Attenuation
44 Attenuator;
45 Frequency;
46
47 end % dependent properties

1 % Rigol.m : class to control a Rigol DG1032Z AWG
2
3 % matlab class to control Valon programmable signal generator
4 classdef Rigol < handle
5
6 properties
7 handle; % instrument−control VISA fid
8 end % properties
9
10 % properties to set once at init time that should not change
11 properties (SetAccess=private)
12 addr; % VISA address
13 ID; % read from instrument
14 Model;
15 SerialNum;
16 end
17
18 properties (Dependent)
19 % state variables stored in the Rigol; some are per−channel and
20 % others are per−device
21
22 % per−device
23 RefSource;
24
25 % per−channel settings
26 WaveformMode; % sine/square/ramp/pulse/noise/arb
27 % Rigol has 2 Arb modes: SRATE/Sifi mode can have a variable (virtual) sample rate up to
28 % 60MS/s and memory depth to 8MS. FREQ/DDS mode has a fixed DAC sample rate of 200 MS/s and
29 % a fixed memory length of 8192, which yields a PRI of 40.96us and a PRF of 24.414kHz.
30 ArbMode; % FREQ or SRATE (DDS or SiFi modes)
31 ArbSampleRate; % Sample rate in SRATE/Sifi mode
32 Period; % seems to be general setting, applies to Arb waveform in DDS mode
33 Burst; % burst mode on/off
34 BurstMode; % TRIGgered|INFinity|GATed
35 BurstCount; % number of cycles per burst (except noise)
36 BurstDelay; % delay before furst pulse of burst (except noise)
37 BurstTrigSource; % trig/gate source for burst mode (INT|EXT|MAN)
38 BurstTrigSlope; % POS or NEG, also for gate
39 BurstIdle; % value to hold between bursts; #|FPT|TOP|CENTER|BOTTOM
40 Modulation; % on/off
41 Impedance;
42 Amplitude;
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43 AmpUnits; % amplitude units: VPP|VRMS|DBM
44 Offset;
45 Frequency; % This is the PRF for Arb waveforms, and fundamental for sin/square
46 Sync; % ON/OFF: sync signal output (ext trigger setting might disable anyway)
47 OutputEnable;
48
49 end % dependent properties

1 classdef N5182A < handle
2
3 properties
4 handle; % instrument−control VISA fid
5 end % properties
6
7 % properties to set once at init time that should not change
8 properties (SetAccess=private)
9 addr; % VISA address
10 ID; % read from instrument
11 Model;
12 SerialNum;
13 end
14
15 properties (Dependent)
16
17 RefSource; % reference source, 'INT' or 'EXT'
18 Amplitude;
19 Frequency;
20 OutputEnable;
21 ALC;
22 ArbEnable;
23 ArbWaveform;
24 ArbSampleRate;
25 ArbFreqOffset; % Arb can digitally shift to an IF
26 ArbMode; % continuous, triggered, sequence
27 ArbTriggerSource; % button/software/external
28
29 end % dependent properties

1 classdef Infinium < handle
2
3 properties
4 handle; % instrument−control VISA fid
5 end % properties
6
7 % properties to set once at init time that should not change
8 properties (SetAccess=private)
9 addr; % VISA address
10 ID; % read from instrument
11 Model;
12 SerialNum;
13 ActiveChannels;
14 end
15
16 properties (Dependent)
17 % state variables stored in the Rigol; some are per−channel and
18 % others are per−device
19
20 % per−device
21 AcqMode; % RTIM or HRES
22 NumPoints; % this is the number of points to capture, not to display
23 Tcapture; % alternate way to set the points
24 RefSource;
25 TrigSource;
26 TrigLevel;
27 TrigSlope;
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28 TrigDelay;
29 TrigSweep; % trig or auto
30 SampleRate;
31 Tdisplay; % sets the display width, make this short for speed
32 Nchan;
33 Bandwidth; % acq. bandwidth limit (down to 1GHz)
34
35 % per−channel
36 VertRange;
37 VertOffset;
38
39 end % dependent properties
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