Carnegie Mellon University
Software Engineering Institute

John Klein
10 February 2022

Motivation

Consider a computation using floating point arithmetic to produce some result values. This com-
putation executes in a single process (or in multiple processes using a mechanism like RPC for
interprocess communication). If the computation is decomposed and distributed over a set of pro-
cesses that use an XML-based mechanism to exchange intermediate computation results as floating
point values, then the results of the distributed computation will generally be different from results
produced by executing the computation in a single process, unless care is taken to preserve precision
in the XML literals exchanged.

Introduction

This short paper explains some issues that arise when XML is used to exchange floating point values,
how to address those issues, and the limits of technology to enforce a correct implementation. We
begin by specifying the problem to be solved and the correctness conditions of a solution. We
then provide brief background on the relevant aspects of XML and floating point data arithmetic.
We conclude by describing how to solve the problem using the features of several programming
languages.

Problem Statement and Notation

M is the representation of a floating point value in the source process memory

L, is an XML literal representation of M, (text using decimal digits). This literal exchanged from the
source process to the destination process in an XML document.

M, is the representation of L, as a floating point value in the destination process memory.

End-to-end error is defined here as the difference between source in-memory value and destination
in-memory floating point value: £ = My — M,

We want to define a series of transformations:

M; — L, — My such that M; = M, or equivalently £ =0

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[Distribution Statement A] Approved for public release and unlimited distribution.



Background

XML Data Types

Each XML data type is defined in terms of a value space and a lexical space [1, §2.1]. The value
space defines the information that can be represented using the data type, while the lexical space
defines the literals (i.e., text) that represent those values in XML. For example, see the XML Schema
standard definition of the float data type [1, §3.2.4].

An XML document contains literals that represent values (L, in the Problem Statement above). This
is in contrast to mechanisms like RPC that exchange data values (M, above). For most data types,
this distinction between values and literals is not a concern. However, for floating point data types, a
value is generally represented using base-2 fractions (e.g., the IEEE 754 format discussed below),
while the literal is text using base-10 digits. The implementor of an information exchange must
decide how many significant base-10 digits to use in the literal representation of the value.

Floating Point Arithmetic

Most computers store floating point values using formats defined by the IEEE Standard for Floating-
Point Arithmetic (IEEE 754) [5], which represents a value using base-2 normalized mantissa and a
base-2 exponent.

XML Encoding

XML documents can be encoded in various ways. Encoding as text is probably the most common
and recognizable, however there are also binary encodings such as Efficient XML Interchange (EXI)
[3] and Fast Infoset [2]. The choice of XML encoding method does not affect the problem discussed
above or the solution discussed below: All XML encoding methods preserve the value represented
by a literal through the encoding and decoding process, regardless of data type.

How to Use XML to Exchange Floating Point Values

We must preserve sufficient precision so that the error in the base-2 — base-10 — base-2 conversions
is less than the smallest value that can be represented using our base-2 format [5, §5.12.2]:

* Error-free exchange of single float requires representing 9 significant decimal digits in the
lexical space

* Error-free data exchange of double float requires representing 17 significant decimal digits in
the lexical space

Note that significant digits are not the same as fractional digits. For example, 1.23, 12.3, and 123 all
have 3 significant digits.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 2
[Distribution Statement A] Approved for public release and unlimited distribution.



Also note that these requirements specify worst case limits for the number of significant decimal
digits. For example, the value 1.0, x 10, 2 0.519 can be exchanged error-free using a literal with
just 1 significant decimal digit.

Implementation Considerations

This subsection discusses features and limitations of the technology involved in implementing a
solution that satisfies these requirements. There are many ways to develop a correct solution, and
this section provides some guidance to help make tradeoffs. It assumes some familiarity with XML
processing and with programming languages.

XML Schema’s facet mechanism [1, §2.4] can constrain the literals that are allowable to represent
the value of an element, however the pattern facet is the only one that can restrict literals to have a
minimum number of significant decimal digits. Use of the pattern facet to enforce the restriction in
this case is possible, but not practical: This restriction would have to be represented by a complicated
regular expression that must process a diverse set of inputs: e.g., “-1E4, 1267.43233E12, 12.78e-2,
12, -0, 0 and INF are all legal literals for float” [1, §3.2.4.1]. Executing this validation at runtime
would have a performance impact on any implementation. Finally, XML processor APIs such as
JAXB (discussed below) do not execute pattern facet validation at runtime.

The application programming interfaces (APIs) for XML processors do not provide direct support to
constrain the number of significant decimal digits in the lexical representation of a floating point value.
APIs such as SAX " treat lexical literals as unconstrained strings when creating XML documents.

The mechanism to transform a base-2 floating point representation to a base-10 literal (text using
decimal digits) in the XML lexical space depends on the programming language being used. For
example, in the C programming language, the conversion would be performed using a library
function like snprint£2. Many other modern programming languages provide a similar function.
The correctness requirements stated above can be satisfied using snprintf with a format string
using the E conversion specifier, which allows specification of significant digits. For example, the
format string “%1.8E” will preserve 9 significant digits (1 digit to the left of the decimal point and
8 digits in the fraction to the right of the decimal point). A format string using the £ conversion
specifier is limited to specifying only the number of fraction (not significant) digits. The format string
“%1.9£” will always contain 9 fraction digits (whether needed to satisfy the correctness requirements
or not—for example, the literal may have sufficient significant digits to the left of the decimal so that
no fraction digits are needed), and so will produce larger XML documents than using an “E” format
string, on average.

The C++ language provides a library function std: : toString, however unlike the similarly-named
Java function discussed below, this function produces a literal with 6 fraction digits.

The Java programming language has a family of toString functions that relieve the implementor
from concerns about precision. When operating on floating point values, these methods produce a
literal with a variable number of significant decimal digits, however in all cases there are sufficient
significant decimal digits in the literal to exactly represent the floating point value [4] and provide an

Thttp://www.saxproject.org
2https://www.gnu.org/software/libc/manual/html_mono/libc.html#Formatted-Output-Functions

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 3
[Distribution Statement A] Approved for public release and unlimited distribution.


http://www.saxproject.org
https://www.gnu.org/software/libc/manual/html_mono/libc.html#Formatted-Output-Functions

error-free value exchange. Java also provides an object-to-XML API called JAXB. While there is
no specification for the conversion behavior of JAXB, it appears to use the toString function to
transform floating point values to literals and thus provides error-free value exchange. Lacking a
specification, implementors should verify this behavior is true in their systems.

NaN Values

IEEE Standard for Floating-Point Arithmetic (IEEE 754) defines a special set of values called NaN
(“Not a Number”) [5, §6.2]. That standard defines two types of NaNs—signaling and quiet. Both
types of NaN can carry additional information in the value representation, e.g., a code indicating an
uninitialized value.

XML maps all NaN values to the single literal “NaN” [1, §3.2.4.1 and §3.5.2.1]. The type of NaN
and any additional information contained in the NaN value is not represented in the literal.

Looking back at our Motivation, any computation that depends on propagating NaN type and value
cannot be distributed using XML as the exchange mechanism.

Rounding to reflect measurement uncertainty

The solution prescribed above may not sit well with some readers—many of us were taught that the
result of a calculation cannot be more precise than the uncertainty of the inputs. For example, if
y = x =13, then for the input x = 1.000, we report that y = 0.077 to match the uncertainty in the
input value. However, for the input x = 1.0, we should round the result to reflect that input and
report y = 0.1. While it is correct to round a final result, the issue presented in the Motivation above
involves exchanging intermediate values, not final results of a computation. If this value is part of
a computation using float data types, then we should exchange y = 0.0769230769 (9 significant
decimal digits).

Conclusion

This discussion should not be construed as a recommendation that a/l XML literals representing
floating point values should contain 9 (or 17) significant decimal digits.

XML is an information exchange mechanism, not a data exchange mechanism. Information is
data in context, and the context determines how a value should be represented by a literal. Some
floating point elements in an XML document may have values that are not related to any underlying
computations, e.g., the information represented is “A thermometer measures that the temperature is
70.1 degrees Farenheit”. In such cases, fewer significant digits are needed. However, if the value is
part of a distributed computation as described above, then a full precision literal representation is
necessary.

It is incumbent on the designer of an XML schema to provide implementation guidance for repre-
senting floating point values, through schema annotations or other means, and then the implementor
must follow that guidance.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 4
[Distribution Statement A] Approved for public release and unlimited distribution.



References

[1] XML Schema part 2: Datatypes. W3C Recommendation Second Edition, W3C, October 2004. URL: https:
/Iwww.w3.0rg/TR/2004/REC-xmlschema-2-20041028/datatypes.html [cited 11 Feb 2022].

[2] Information technology — generic applications of ASN.1: Fast infoset. ITU-T Recommendation ITU-T X.891, ITU,
May 2005. URL: https://handle.itu.int/11.1002/1000/8491 [cited 11 Feb 2022].

[3] Efficient XML Interchange Working Group. Efficient XML interchange (EXI) primer. W3C working draft, April
2014. URL: https://www.w3.org/TR/exi-primer/ [cited 12 June 2020].

[4] Java. java.lang Class Double [online]. 2022. URL: https://docs.oracle.com/javase/7/docs/api/java/lang/Double.html#
toString(double) [cited 17 Feb 2022].

[5] Microprocessor Standards Committee. IEEE standard for floating-point arithmetic. IEEE Std 754-2019 (Revision of
IEEE 754-2008), IEEE Computer Society, New York, NY, USA, 2019. doi:10.1109/IEEESTD.2019.8766229.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 5
[Distribution Statement A] Approved for public release and unlimited distribution.


https://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html
https://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html
https://handle.itu.int/11.1002/1000/8491
https://www.w3.org/TR/exi-primer/
https://docs.oracle.com/javase/7/docs/api/java/lang/Double.html#toString(double)
https://docs.oracle.com/javase/7/docs/api/java/lang/Double.html#toString(double)
https://doi.org/10.1109/IEEESTD.2019.8766229

Contact Us

Software Engineering Institute
4500 Fifth Avenue, Pittsburgh, PA 15213-2612

Phone: 412/268.5800 | 888.201.4479
Web: www.sei.cmu.edu
Email: info@sei.cmu.edu

Copyright 2022 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under
Contract No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software
Engineering Institute, a federally funded research and development center. The view, opinions,
and/or findings contained in this material are those of the author(s) and should not be construed as
an official Government position, policy, or decision, unless designated by other documentation.

References herein to any specific commercial product, process, or service by trade name, trade
mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by Carnegie Mellon University or its Software Engineering Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING
INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY
MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited
distribution. Please see Copyright notice for non-US Government use and distribution.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material
for internal use is granted, provided the copyright and “No Warranty” statements are included with all
reproductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification, and freely
distributed in written or electronic form without requesting formal permission. Permission is required
for any other external and/or commercial use. Requests for permission should be directed to the
Software Engineering Institute at permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

DM22-0231

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 6
[Distribution Statement A] Approved for public release and unlimited distribution.


www.sei.cmu.edu
info@sei.cmu.edu

