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Executive Summary  

As the 2020 Nagorno-Karabakh war demonstrated, the role of drones is becoming 
increasingly critical and will be one of the key decisive factors in future operations. 
Extrapolating the number and type of autonomous platforms (both ground and 
aerial Robotics and Autonomous Systems [RAS]) and considering near-peer 
adversaries motivate the Distributed and Collaborative Intelligent Systems and 
Technology (DCIST) Collaborative Research Alliance (CRA). This innovative 
program brings together leading RAS academic and US Army Combat Capabilities 
Development Command Army Research Laboratory researchers with the objective 
of significantly increasing our capability to scale RAS technologies, to prevent 
adversarial advantage, and to counter and neutralize an adverse force. The DCIST 
CRA spirals out technologies, shows experimental proofs for others to build upon, 
and trains the next generation of Army researchers that will truly enable RAS to 
become integrated into the Army of the future. This technical report summarizes 
the technological challenges and research progress through September 2020.  

Through basic research, DCIST is exploring key underlying technologies and 
methods needed to enable RAS operations across all Army-relevant environments; 
provide better situational awareness; increase warfighter capabilities and standoff; 
increase coverage and create dilemmas for the adversary; provide force 
multiplication; enable faster decision-making; and extend maneuverability in ways 
yet to be imagined. The program is organized into the following three capability-
based research thrusts plus a set of cross-disciplinary experiments:  

Distributed Intelligence: This thrust focuses on multi-agent intelligent system 
perception, communication, and planning. These systems must plan and work 
together efficiently, learn collaboratively, and adapt to wireless networking. 
Specific research goals include the following: 

• Develop knowledge representations that enable adaptive perception-
action-communication loops for distributed intelligence. 

• Establish a theory of hierarchical and abstract representations that 
enable distributed inference and decision-making.  

• Enable efficient learning across scalable teams that is modular, 
composable, and data-efficient. 

Heterogeneous Group Control: This thrust focuses on control of large 
autonomous teams with varying levels of heterogeneity and degrees of 
autonomy. Advancing the state of the art in this thrust requires developing 
fundamental understanding and formalism necessary to incorporate a variety of 
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robots within operational and tactical teams. The work is capability driven, to 
enable hierarchical and distributed control for adversarial operations, scalable 
task assignment for heterogeneous multi-unit teams, tactical engagement in 
complex environments, and Soldier interaction. Research goals include the 
following

• Control and communication for scalable teams 

• Tactical heterogeneous team behaviors 

• Multi-agent coordination with Soldiers 

Adaptive and Resilient Behaviors: This thrust focuses on robustness and 
adaptation of heterogeneous teams to achieve resilience to failures, loss, and 
degraded communications in the face of dynamic intelligent adversaries and 
changing environmental conditions. Some specific areas of research include 
resilient situational awareness, wireless communication networks for 
distributed collaborative systems, exploiting heterogeneity for resilience, multi-
agent behaviors in the presence of adversaries, and rapid adaptation to large 
disturbances. The research in this thrust addresses two key questions: 

• How do we build algorithms and deploy scalable systems that can 
maintain effectiveness despite operation in heavily contested situations? 

• How do large distributed intelligent systems react to rapid change due 
to an adversary without sacrificing stability or performance?  

Cross-Disciplinary Research Experiments (CDEs): The CDEs are designed 
to bring multiple principal investigators together in an experimental setting, 
explore and discover interdependencies across research areas, and 
experimentally demonstrate new capabilities. The CDEs include physical 
multi-robot experiments and a 3-D realistic simulation environment. The two 
CDEs are structured around 

• Heterogeneous Multi-Agent Situational Awareness  

• Dynamic Teaming Operations in Contested Environments 

The DCIST team is exploring and developing novel algorithms in artificial 
intelligence (AI)/machine learning (ML), autonomy, and robotics. These take 
multi-sensory input from multiple heterogeneous robots (ground and air) to 
perceive the environment and aid in system- and subsystem-level autonomous team 
operation in contested environments. A key aspect of the algorithm effort is to 
leverage advances in AI to enable robust collaborative autonomous robotic 
operations and behaviors. Some examples are learning communications for multi-
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robot planning, learning optimal resource allocation in multi-agent systems, 
semantic scene understanding and inference for building a rich perception of the 
world, learning a sparse representation of the environment that is sufficiently 
lightweight for long distance path planning and navigation, learning decentralized 
Perception Action Communication loops for robot teams, and integrating learning 
and planning for resilient autonomous behaviors in complex and adversarial 
environments.  

The DCIST CRA also addresses technology enablers, such as a robust and resilient 
wireless networking, and data architectures. This ensures that Army-relevant 
communication constraints are always considered and accounted for, including 
denied, intermittent, or limited communications. DCIST is exploring and 
developing novel robust/resilient algorithms to optimize communications of 
heterogeneous team members, use mobile robotics to adapt and maintain 
communications in distributed operations, address information sharing in 
intermittent communications environments, and learning what and with whom to 
communicate in order to adapt and optimize resources and behaviors. This research 
is essential for the DCIST program’s cross-disciplinary experiments where multiple 
heterogeneous agents have to rely on a network to reliably exchange data. Likewise, 
DCIST is focused on extending RAS perception, planning, and tactical behaviors 
to scalable heterogeneous teams in Army-relevant operational environments and 
while under realistic infrastructure constraints (e.g., no GPS, stale maps, 
limited/degraded communications) and mission, environmental, and adversarial 
complexity.  

Selected significant accomplishments by thrust area through the first three years of 
DCIST are as follows: 

Distributed Intelligence 

• A framework for multi-modal and hierarchical knowledge representation 
that includes both metric and semantic information. A specific example is 
“Kimera-Multi,” which is a distributed multi-robot mapping system that 
builds a metric-semantic model of an environment in real time and with 
limited communication. 

• Methods that learn in a way that generalizes to multiple tasks and objectives 
and can learn skills and capabilities in the context and constraints of a team 
to solve heterogeneous multi-agent coordination problems. 

• A framework for vision-based robotic navigation that can readily generalize 
to diverse real-world environments, operate in GPS-denied environments, 
and enable simple and accessible goal specification by humans or upstream 
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planning algorithms through desired locations, images of goal landmarks, 
and latent (learned) goal representations. 

• A mathematical and algorithmic framework for distributed problems that 
respect communication constraints where autonomous agents are expected 
to work together to solve inference, learning, and control problems. 

• Planning models that are hierarchical and composable, and that represent 
both prior and acquired knowledge to deal with complexity and allow more 
efficient planning. 

• Advancement of graph neural networks as a fundamental enabling 
technology for designing agent controllers that work for large-scale 
collaborative systems. 

Heterogeneous Group Control 

• Theory and algorithms aimed at strategic deployment of agents in large 
environments with dynamically changing scenarios involving models of 
adversarial agents and imperfect/delayed communication when confronted 
with the realities of fast-moving swarm-versus-swarm engagements and the 
presence of imperfect information exchange and nonrational players. 

• Methods to produce sufficient or “good enough” solutions in a 
computationally feasible, distributed, and adaptive manner to rapidly adapt 
and retask to ensure mission success (i.e., not waiting for “optimal” 
solutions that may not be achievable for the given task and context). 

• Methods and tools for the analysis and development of cooperative team 
strategies in the presence of adversarial agents. 

• Improved modeling techniques for how humans perceive and communicate 
time-evolving information, and frameworks for modeling human 
capabilities with the goal of improving human–robot coordination in the 
context of teams operating in complex environments.  

Adaptive and Resilient Behaviors 

• Active sensing techniques that go beyond optimization for computational 
efficiency and information gain that dynamically adjust their perception and 
motion to achieve resilient situational awareness in the presence of sensor 
failures, jammed communications, detection risk, and/or compromised 
agents. 

• Methods that dynamically adjust to achieve resilient communication and 
mobility at scale for teams of heterogeneous agents that ensures mission 
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progress and preserves core capabilities of the team in the face of failures, 
disruption, and loss. 

• Multi-agent reinforcement learning algorithms that can empower agents 
with resilience in dynamic environments or in the presence of adversaries 
who may rely on deception or other intelligent strategies at mission time. 

• Tools to track and engage an adversarial team while managing uncertainty 
in strategy, execution, and environment for multi-robot surveillance and 
perimeter security scenarios. 

• Adaptive ML algorithms that enable teams of robots to adapt on-the-fly to 
unforeseen large and rapid changes in environmental conditions, mission 
parameters, and robot state by means of online learning and meta-learning 
algorithms. 

Details on these and other advancements can be reviewed in Section 3, “Methods 
and Findings: Progress to Date and Future Plans,” and a full bibliography for the 
period through FY20 is included in the Appendix. 
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1. Introduction 

Future Multi-Domain Operations (MDO) will require a Force that can conduct 
cross-domain strategic maneuvers to penetrate and operate in complex and 
contested areas. The operational concepts within MDO rely heavily on 
advancements in Robotic and Autonomous Systems (RAS). Hence, RAS are being 
explored to operate across all environments to provide better situational awareness, 
increase warfighter capabilities and standoff, increase coverage and dilemmas to 
the adversary, allow for Force multiplication, and provide the ability to greatly 
extend maneuverability in ways yet-to-be-imagined to support reconnaissance, 
breach, attack, protect, and sustainment operations. To realize these scalable 
concepts within real teams of heterogeneous RAS and in Army relevant 
environments, significant research gaps must be overcome. For example, these 
scalable RAS teams will need the capability to do the following:  

• Assess dynamic scenes and create and share information in a scalable way 
across heterogeneous teams within the communication resources available 
at that point in time. 

• Coordinate across echelons, teams, sub-teams, and individual systems to 
operate tactically and create windows of opportunities and overmatch 
situations. 

• Collaboratively perceive and learn the context of the operational 
environment to understand, model, predict, and adapt to adversary force 
maneuvers. 

• Adapt and be resilient to large disturbances in understanding, changes in the 
environment or available infrastructure, and adversarial operations to 
maintain mission success. 

Several axes of complexity exist that limit these operational capabilities of RAS in 
relevant Army environments and operations and therefore must also be addressed. 
These include the following: 

• Mission complexity, including scalability in physical area and number of 
platforms, risk, duration, numbers and types of tasks, operational tempo, 
and many other factors. 

• Environmental complexity, including all forms of man-made, man-
destroyed, and natural terrain. 

• Adversarial complexity, including counter-autonomy in its many potential 
forms. 
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Environments, such as complex off-road terrain and dense urban, pose severe 
challenges to mobility, perception, networking, and sensing for both ground and 
small aerial platforms operating within the environment. Limited prior access to the 
operational environment may limit the application of today’s big-data learning 
approaches. The complexity of human behavior makes discerning noteworthy 
behaviors or formulating appropriate responses challenging. And there may be little 
or no available infrastructure, such as power, GPS, or communication networks. 
For the Army, it is not feasible or even possible, as it is in the commercial world, 
to drive and generate detailed maps of all potential routes a priori for autonomous 
systems. Future military missions will require not only single agents but teams of 
autonomous vehicles capable of collaboratively determining passable routes over 
damaged roads and off-road areas as well as through wooded or dense urban 
environments where prior training data is not available. The Army RAS challenge 
then is to operate in these complex unknown environments, with little or no 
infrastructure, at a very high operational tempo while also overcoming system level 
complexity. Army RAS will not only need to move from point A to point B, they 
will need to perform tasks along the way. Most efforts today only deal with mission 
complexity for single RAS or collaborative and homogeneous RAS over a single 
or sequential set of missions or tasks. Future tasking of RAS will require a much 
more dynamic tasking and control approach where N multiple agents are 
performing M several asynchronous tasks and where individual robots can adapt 
roles as the mission success demands. Another axis of complexity that is unique to 
Army RAS will be the need to operate in environments that include peer adversarial 
manned and unmanned systems. This will require systems to communicate in 
jammed or denied environments, individually and collectively perceive and predict 
adversarial maneuvers and behaviors, and adapt their behaviors and collectively act 
in tactical ways to exploit things like windows of opportunity to identify and 
maintain corridors in contested space or swarm and create overmatch situations.  

The goal of the Distributed and Collaborative Intelligent Systems and Technology 
(DCIST) Collaborative Research Alliance (CRA) is to collaborate with the 
academic community to study the underlying science questions and develop 
innovative methods and concepts that will address these capability gaps and enable 
behaviors that are not brittle and preprogrammed but rather adaptive, resilient, and 
learnt.  

In the process, the CRA will address the assumptions, constraints, and axes of 
complexity to understand and inform future operational concepts and how diverse, 
multi-agent RAS can collectively sense, infer, reason, plan, and execute in the face 
of a peer adversary.  
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2. DCIST Research Plan 

The US Army Combat Capabilities Development Command Army Research 
Laboratory has established an enterprise approach to intelligent systems that 
couples multi-disciplinary internal research, analysis, and operations with 
extramural research and collaborative ventures. CRAs are one of the principal 
contract vehicles that DEVCOM Army Research Laboratory uses in this enterprise 
approach to focus on the rapid transition of innovative science and technology for 
Army Modernization. CRAs are Cooperative Agreements awarded to a Consortia 
of industry and academia. Collaboration is a key element of the CRA model and 
together the Consortia and the Government work together through an Alliance 
where each member brings with it a distinctly different approach to research. This 
approach enables the Alliance to bring together world class research talent and 
focus it on Army-specific technology objectives for application to Army priorities.  

For the DCIST CRA, the Consortium Lead Research Organization (LRO) is the 
University of Pennsylvania. The University of Pennsylvania is supported by 
Georgia Tech and the Massachusetts Institute of Technology as Thrust Area Lead 
Organizations. Representatives from both DEVCOM ARL and the Consortia Lead 
Research and Thrust Area Lead Organizations make up the Technical Management 
Group (TMG) of the CRA. The TMG works to continuously steer the vision and 
quality of research within the program as well as develop the CRA’s Biennial 
Program Plan (BPP). The BPP covers a two-year timeframe and provides a detailed 
plan of research activities and objectives for the CRA. The BPP also includes the 
efforts of the Consortia technical subawardee organizations. This report specifically 
covers activities under the DCIST CRA BPP for Fiscal Year (FY) 2019–2020, 
which included subawardees from the Massachusetts Institute of Technology 
(MIT), Georgia Institute of Technology, University of Southern California, the 
University of California, Berkeley, the University of California, San Diego, the 
University of Cambridge, and the New York University.  

To address the Army challenges and underlying science questions, the DCIST CRA 
is organized into three research Thrust Areas: 

• T1: Distributed Intelligence: Perception-action-communication decision 
and control loops for distributed and collaborative intelligence, inference, 
and decision-making for future manned-unmanned teams in dynamic and 
complex environments. 

• T2: Heterogeneous Group Control: New methods and architectures and 
realize speed of battle operation and control of large-scale heterogeneous 
group behaviors and interactions between humans and autonomous agents. 
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• T3: Adaptive and Resilient Behaviors: Robustness and adaptation of 
heterogeneous teams to realize resilience to failures, loss, and compromised 
systems and communications in face of dynamic situational awareness, 
changing environmental conditions, and adversarial behaviors and 
capabilities. 

To drive the research to relevant Army outcomes and to also foster communication 
across individual principal investigators and tasks, the CRA is further organized 
along fourteen capabilities that have been identified as enabling capabilities for 
future RAS in MDO. These are as follows: 

RAS capabilities being developed under the T1: Distributed Intelligence:  

• Multi-Agent Situational Awareness 

• Collaborative Learning and Intelligence 

• Adaptation and Learning in Wireless Autonomous Systems 

• Hierarchical Abstractions for Planning 

• Joint Resource Allocation in Perception Action Communication Loops 

RAS capabilities being developed under the T2: Heterogeneous Group 
Control: 

• Hierarchical & Distributed Control for Adversarial Operations; 

• Scalable Task Assignment for Heterogeneous Multi Unit Teams; 

• Tactical Engagement of Heterogeneous Teams in Complex Environments; 
and 

• Human Interaction with Large Heterogeneous Teams 

RAS capabilities being developed under the T3: Adaptive and Resilient 
Behaviors: 

• Adaptive and Resilient Behaviors  

• Resilient Situational Awareness 

• Wireless Communication Networks for Distributed Collaborative Systems 

• Exploiting Heterogeneity for Resilience 

• Multi Agent Behaviors in the Presence of Adversaries  

• Rapid Adaptation to Large Disturbances  
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In addition to the Thrust Area research, the program is also doing research in Cross-
Disciplinary Experiments (CDEs) that serve to explore and discover 
interdependencies across the three research Thrust Areas, build coordinated and 
cumulative experimentation to demonstrate the Art-of-the-Possible, and answer 
more operational focus research questions to inform RAS concepts and capabilities 
for future MDO and drive academic-government collaboration and technology 
transition. Two CDE capabilities that are reported out here in 1) Heterogeneous 
Multi-agent Situational Awareness and 2) Dynamic Teaming Operations in 
Contested Environments. 

The research within the DCIST CRA is being transitioned into DEVCOM ARL’s 
AI for Maneuver and Mobility (AIMM) and Emerging Overmatch Technologies 
(EOT) Essential Research Programs (ERPs). It also has links to the Versatile 
Tactical Power and Propulsion (VICTOR) and Human-Autonomy Teaming (HAT) 
ERPs. Through these programs, the methods being developed are informing future 
concepts involving Next Generation Combat Vehicles and Future Vertical Lift 
modernization priorities and the Army’s Autonomy Priority Research Area.  

The following sections provide a brief introduction into each Thrust Area, provide 
a short description of the relevancy and innovative research being explored to 
address each capability, highlight some of the key technical accomplishments that 
have happened during the two-year BPP reporting period, and summarize the 
potential impact of the findings to date. 

3. Methods and Findings: Progress to Date and Future Plans 

This section describes the three major research thrust areas and the CDEs that focus 
on developing capabilities to address scenarios described earlier. Each thrust 
summarizes the technical objective, list of capabilities planned, major 
accomplishments to date, and the future plans. 

3.1 Thrust 1: Distributed Intelligence  

A large team composed of humans, ground vehicles, and aerial vehicles with 
various prior information and sensing, memory, and computation capabilities 
should be able to plan and execute complex missions in an uncertain, contested, 
dynamic environment in a way that is more effective, robust, and resilient than any 
individual agent. Robust and resilient collective behavior requires the ability to 
maintain shared situational awareness in dynamic environments with different 
spatio-temporal scales, achieve joint tasks whose specifications involve unknown 
parameters such as identities of people or locations of objects, and do so while 
operating with degraded and disrupted network communications.  
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The conventional approach to providing such a shared representation across 
multiple agents is to design the system with a central processing unit (a base station 
or “the cloud”) that maintains a consistent model of the world at a fixed level of 
representation (e.g., fixed spatial resolution) that is updated in real time as 
information is received from other agents. While this approach may successfully 
achieve robust performance in small-to-medium teams, it has many drawbacks: the 
central unit creates a single point of failure; the system cannot respond swiftly to 
new data; an all-to-one communication topology cannot guarantee satisfactory 
levels of quality of service to all agents in a large team; and, if agents experience 
loss in communication to the central unit, they are forced to retain all gathered 
information until they reconnect. Systems that deviate from all-to-one 
communication topologies are typically based on hand-coded abstractions of 
sensors and actuators and consensus algorithms that attempt to achieve the same 
representation across all agents. These hand-coded abstractions are brittle in the 
face of dynamic environments, especially in adversarial settings, and frequently do 
not scale to large numbers of agents.  

Recent advances in sensing, control, and autonomy allow a single agent to build an 
environmental model from sensor data and generate plans through that 
environment, and may even be able to design point solutions for centralized multi-
agent systems. However, basic research is needed to develop the foundational 
principles for designing a truly distributed system that can accomplish the 
following:  

• Build and distribute hierarchical and composable representations of 
heterogeneous information;  

• Perform general data fusion, inference, and planning with these distributed 
representations;  

• Incorporate learning and adaptation to enable these representations to 
flexibly handle system heterogeneity and dynamics; and  

• Move beyond assumptions of network availability and permissiveness and 
perform sensing, acting, and learning that is cognizant of constraints in 
communication resources. 

These challenges are addressed by driving and coordinating Thrust 1 technical 
research toward five enabling capabilities:  

• Multi-Agent Situational Awareness,  

• Collaborative Learning and Intelligence,  

• Adaptation and Learning in Wireless Autonomous Systems,  
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• Hierarchical Abstractions for Planning, and  

• Joint Resource Allocation in Perception-Action-Communication Loops.  

3.1.1 Capabilities Description and Major Accomplishments 

3.1.1.1 Multi-Agent Situational Awareness  

Advanced situational awareness in complex, unstructured, and dynamical 
environments require autonomous agents in multi-agent teams to be able to build 
and maintain multifaceted models of the environment, including geometric 
abstractions (useful for safe navigation), semantic labeling (useful for identification 
and characterization of mission-relevant entities), and temporal dynamics (useful 
for op-tempo situational awareness). It is of great interest to develop foundational 
tools and theory supporting efficient spatiotemporal fusing of distributed metric-
semantic information across a heterogeneous team, adapting to the computation, 
information, and communication resources of individual agents to achieve global 
situational awareness. Some underlying research topics that need to be addressed 
include the following:  

• Representations and algorithms for joint and hierarchical modeling of 
geometry, semantics, and physics in real time. 

• Object shape, appearance, and dynamics models as well as hierarchical and 
composable abstractions.  

• Learning and inference algorithms that utilize data available from prior 
experience as well as online real-time observations. 

• Algorithms that quantify uncertainty and provide probabilistic guarantees, 
which are critical for decentralizing the representations and enabling 
adaptive behaviors.  

This capability is developing new representations and algorithms that are able to 
perform efficient probabilistic inference over disparate forms of information such 
as spatial, semantic, temporal, and topological. The capability will also develop 
resource-aware techniques for deciding asynchronously how and when to 
communicate data and models to teammates and to fuse and update the environment 
representations. Our research agenda is investigating online object-level mapping; 
distributed Bayesian inference; construction of dynamic scene graphs; association, 
alignment, and fusion of incomplete and heterogeneous representations; distributed 
pose graph optimization; and uncertainty quantification and propagation in dense 
metric-semantic environment abstractions. 
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Research under this capability has developed several significant underlying 
software approaches for enabling multi-agent representations of geometric and 
semantic information for enhanced localization, mapping, planning, and situational 
awareness. One of them, Kimera-Multi (Chang 2020), is the first system for 
distributed and dense metric-semantic simultaneous localization and mapping 
(SLAM) that can use a team of robots to gain situational awareness over a large 
environment, under realistic constraints on communication bandwidth, local 
sensing, and computation at each robot. The goal is to estimate a metric-semantic 
3-D model of the environment that describes the geometry of the scene the robots 
operate in (e.g., presence and shape of obstacles), as well as its semantics, where 
the robots are tasked with annotating the scene with human-understandable labels 
in a given dictionary (e.g., “building,” “road”). 

Kimera-Multi brings together key distributed localization and mapping capabilities 
as each robot runs single-robot Kimera (including Kimera-VIO and Kimera-
Semantics) to estimate the local trajectory and a mesh representation of the 
environment. Robots then communicate to perform distributed loop closure 
detection and outlier rejection. Globally consistent estimation is achieved using the 
novel distributed pose graph optimization (PGO) algorithm developed in this task 
(Tian 2020), which has been shown to outperform state-of-the-art distributed PGO 
methods. Kimera-Multi has been evaluated in two large-scale simulation scenarios 
using the DCIST unity simulator and three ground robots (see Fig. 1). Results show 
that Kimera-Multi is an efficient, accurate, and robust solution for distributed 
metric-semantic SLAM and 1) is able to build accurate 3-D metric-semantic 
meshes, 2) is robust to incorrect loop closures while requiring less computation than 
state-of-the-art distributed SLAM backends, and 3) is efficient, both in terms of 
computation at each robot as well as communication bandwidth. 

 

Fig. 1 Dense metric-semantic 3-D mesh model of an urban scene generated by Kimera-
Multi with three robots 
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A second accomplishment was the development of the Consistent Lifting, 
Embedding, and Alignment Rectification (CLEAR) framework (Fathian 2019) for 
fusing observations across agents to obtain a common representation. The 
conventional approach to building such shared representations is to fuse 
observations incrementally between agent pairs, which can yield inconsistent 
representations with low accuracy. The multi-way framework of CLEAR improves 
alignment and fusion accuracy by associating observations jointly across all agents, 
and the research addressed technological gaps in previous methods, such as high 
computational complexity and inconsistencies. CLEAR was benchmarked on both 
synthetic and real-world data sets; showcased in the DCIST photo-realistic 
simulator to fuse object-level abstractions of the environment across multiple 
robots; and evaluated experimentally in a collaborative mapping mission to 
construct a fused occupancy map of a forest canopy (see Figs. 2 and 3). These 
evaluations confirmed that CLEAR has 1) several orders of magnitude performance 
improvement over state-of-the-art techniques in both accuracy and runtime,  
2) superior scalability to large-size problems, and 3) low computational complexity 
that is essential for real-time missions. Continuing research is focused on  
1) extending the framework to fuse heterogeneous representations obtained from 
sensors with different modalities, 2) integrating geometric outlier rejection 
techniques to extend framework’s resiliency to large noise and outliers, and  
3) developing methods of incorporating out-of-order, asynchronous data in the 
fusion process to account for delay and packet loss in challenging communication 
regimes. 

 

Fig. 2 An aerial vehicle in a collaborative forest mapping mission 
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Fig. 3 Fused 3-D occupancy grid of environment and vehicle trajectories at the end of the 
mission. Vehicle paths are shown in blue and yellow and each coordinate frame represents the 
origin of a submap. 

More details for the research on Kimera-Multi and CLEAR can be found in 
references (Fathian 2019; Chang 2020; Rosinol 2020a; Tian 2020a, 2020b). In 
addition to Kimera-Multi (Chang 2020) and CLEAR (Fathian 2019), this capability 
has advanced algorithms for single-platform object-based SLAM (OrcVIO) (Shan 
2020), robust data association (CLIPPER) (Lusk 2020), and Distributed PGO (Tian 
2020), additional research developments under this capability can be found in   
Atanasov (2018), Feng (2019, 2020), Paritosh (2019, 2020), Rosinol (2019, 2020b, 
2020c), Chamon (2020), Duong (2020), Lajoie (2020), Milano (2020), Shan 
(2020), and Zobeidi (2020). Together, this research has created a framework that 
will enable a distributed multi-robot spatial perception engine that builds metric, 
semantic, and/or abstracted models of the environment in real-time and under 
limited communication.  

Impact: The impact of this research is that, during a maneuver operation by 
multiple autonomous systems, the autonomous systems will use this software to 
create and align geometric and semantic information to reduce uncertainty and 
enable better individual and team localization, mapping, and path planning in 
complex dynamic environments.  

3.1.1.2 Collaborative Learning and Intelligence 

The key developments are focused around learning behavioral skills suitable for 
multi-agent coordination, and developing constrained optimization and learning 
methods that can utilize such skills to solve complex multi-agent coordination 
problems. There are two key research highlights in this capability that both relate 
to new learning systems. The first contribution consists of a framework to train a 
vision-based navigation system entirely using autonomously collected data. The 
second contribution consists of a new model for learning to coordinate multi-agent 
systems where individual agents have distinct objectives. These two contributions 
are detailed next. 
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We developed a framework for vision-based robotic navigation that can readily 
generalize to diverse real-world environments, operate in GPS-denied 
environments, and enable simple and accessible goal specification by humans or 
upstream planning algorithms through desired locations, images of goal landmarks, 
and latent (learned) goal representations. The core concept behind our framework 
is to train a vision-based navigation system entirely using autonomously collected 
data: all data collected by one or more mobile robots is collected into a single large 
data set, and then used to learn models of reachability, traversability, collision 
avoidance, and other navigational affordances. In a series of papers, we present the 
capabilities of this framework. The BADGR (Kahn 2021a) system uses unlabeled 
navigational data to learn how to reach user-specified destinations while satisfying 
desired constraints, such as staying on paved roads, avoiding paved roads, or 
avoiding collisions. This system can navigate through urban environments, as well 
as off-road environments including tall grass, where the learned model can 
determine what types of vegetation are traversable and what types are impassable 
obstacles. The follow-up LaND (Kahn 2021b) system incorporates online user 
feedback (in the form of safety aborts) to further learn how to navigate urban 
environments while following user-desired conventions, such as staying on 
sidewalks. This system was able to navigate several kilometers of Berkeley 
sidewalks autonomously, using only onboard camera observations (without 
LIDAR, GPS, or other sensors). The ViNG (Shah 2021a) system (as illustrated in 
Fig. 4) further extends this capability to reach distant goals specified by goal images: 
a human user can take a photograph of a desired destination, and the robot will 
navigate to this destination by using the learned model and a topological graph 
representation of landmarks. The RECON (Shah 2021b) system further extends this 
capability to search for visually indicated targets in new environments, performing 
a fringe-based search using the same learned model. All of these systems share a 
common backbone and can all be trained on all data collected by the mobile robot 
platforms, without any human labeling (with the exception of LaND, which also 
uses human-provided labels to learn the semantics of navigating sidewalks in 
cities). 
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Fig. 4 Learning robotic navigation: ViNG builds and plans over a learned topological 
graph consisting of previously seen egocentric images, and uses a learned controller to execute 
the path to a visually indicated goal. Unlike prior work, our method uses purely offline 
experience and does not require a simulator or online data collection. Note that the graph 
constructed by our algorithm is not geometric and nodes are not associated with coordinates 
in the world, but only with image observations—the top-down satellite image is provided only 
for visualization and is not available to our method. 

When considering multi-agent systems with multiple, distinct objectives, the 
standard design choice is to model these as separate learning systems. Such a design 
choice, however, precludes the existence of a single, differentiable communication 
channel, and consequently prohibits the learning of inter-agent communication 
strategies. We addressed this gap by presenting a learning model that 
accommodates individual non-shared rewards and a differentiable communication 
channel that is common among all agents. We developed a new model for learning 
to communicate to coordinate multi-agent systems in the presence of agents with 
potentially conflicting objectives (Blumenkamp 2020). This model consists of three 
key components, 1) a monolithic, decentralizable neural architecture that 
accommodates multiple distinct reward functions and a common differentiable 
communication channel, 2) a reinforcement learning algorithm that elicits the 
emergence of strategic communications, and 3), a post-hoc interpretability 
technique that enables the visualization of communicated messages. 

The experimental evaluation is based on a multi-agent system with a mix of 
cooperative and self-interested agents and demonstrates the effectiveness of the 
learning scheme in multi-agent coverage and path planning problems (Fig. 5). 
Results show that it is possible to learn highly effective communication strategies 
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capable of manipulating other agents to behave in such a way that it benefits the 
self-interested agents. Overall, we demonstrate that adversarial communication 
emerges when local rewards are drawn from a finite pool, or when resources are in 
contention. We also show that self-interested agents that communicate 
manipulatively, however, need not be adversarial by design; they are simply 
programmed to disregard other agents’ rewards. 

 

Fig. 5 Cooperative multi-agent tasks: Overview of grid-world environments used in our 
experiments. Cooperative and self-interested agents are visualized as blue and red squares, 
respectively. Black cells correspond to obstacles. In the coverage environments, different 
colors indicate the coverage achieved by individual agents. In the path planning environment, 
labeled goal locations are indicated by circles. 

Impact: The end result are methods that learn in a way that generalizes to multiple 
tasks and objectives and can learn skills and capabilities in the context and 
constraints of a team to solve heterogeneous multi-agent coordination problems. 
The impact of this research is that large heterogeneous robot teams can be trained 
using small data sets and an optimized centralized solution. This learned heuristic 
is then generalized so that in practice, such as during a coverage and tracking 
mission, the team can adapt to previously unseen coverage scenarios, handle 
communication link losses, address partially known environments, and scale to 
larger numbers of agents and larger maps than possible in the training phase. 

3.1.1.3 Adaptation and Learning in Wireless Autonomous Systems  

In addition to sensing and navigating, autonomous agents must work together to 
solve inference, learning, and control problems. This is the computing that turns the 
sensor measurements into actionable decisions. Solving these problems optimally 
requires agents to communicate with one another, as they see only local, 
overlapping views of the field of interest. In realistic scenarios, the agents are 
immersed in different environments at different times, are subject to different 
dynamics and constraints, and their ability to communicate with one another 
changes rapidly. In addition, decisions must be made in real-time and with limited 
computational requirements, and the agents deployed might have different compute 
capabilities. The goal of this capability is to build new mathematical and 
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algorithmic frameworks for distributed multi-agent learning problems that respects 
these constraints and to develop the following:  

• An understanding for the role that communication plays in our ability to 
learn models, and the effect of communication limits on decentralized 
learning, and  

• Machine learning frameworks that can be implemented in a distributed 
manner while preserving the privacy and security of participating agents.  

The approach is focused on distributed reinforcement learning for navigation and 
control as well as federated learning, but many of the general techniques developed 
might be applied to other inference problems.  

Our focus in this subtask over the last year has been on formalizing the multi-task 
reinforcement learning (MTRL) problem, and understanding when and how it can 
be solved. As we describe below, we have investigated the optimality conditions 
for the MTRL problem in the general setting where the tasks may have different 
state spaces and transition probabilities, and have studied the convergence rates 
both of a decentralized version of policy gradient and decentralized Q-learning for 
solving multi-task multi-agent reinforcement learning (RL). The analysis of the 
algorithms is complemented with experiments on real world MTRL problems. 

It has been shown that in single-task RL, there always exists a deterministic optimal 
policy (under mild assumptions). We have found a relatively simple example 
demonstrating that the same is not true for the MTRL problem: a deterministic 
optimal policy may not exist. As many iterative algorithms for RL (e.g., Q-learning) 
implicitly rely on an optimal deterministic policy, this immediately demonstrates 
that the multi-agent and single-agent cases are fundamentally different. Another 
difference is that the objective function for a single-task RL problem is known to 
obey the so-called “gradient domination” condition, which essential implies that 
every stationary point of the objective function is globally optimally (Fig. 6, left). 
A consequence of this property is that it allows gradient descent algorithms to find 
the globally optimal solution. We have shown, however, that in general MTRL 
problems do not enjoy this property, and hence there may exist suboptimal 
stationary points (Fig. 6, right).  
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Fig. 6 Optimization landscape of single-task/multi-task RL. Unlike single-task learning 
problems, multi-task RL problems can have isolated local minima, meaning that there are no 
a priori guarantees that descent algorithms will find globally optimal solutions. 

We have also studied the convergence rate of a decentralized multi-task policy 
gradient algorithm. We show that in the general setting, the algorithm converges to 
a stationary point with rate 𝑂𝑂(1

𝐾𝐾
) (the norm of the gradient is inversely proportional 

to the number of iterations) and under a further assumption that guarantees the 
states common between two tasks to be visited equally often, the algorithm finds a 
globally optimal policy with rate 𝑂𝑂( 1

√𝐾𝐾
). Empirically we test the algorithm on a  

4-task simulated drone navigation problem. With the performance measured by the 
mean safe flight (MSF), the multi-task algorithm learns a common policy effective 
for all tasks without compromising its performance in any task; this is shown in 
Fig. 7. 

 

Fig. 7 MSF for (simulated) aerial drones trained to navigate in different indoor 
environments. In the table on the right SA-i is a drone trained only in environment i; the policy 
learned performs well in environment i but poorly in the other three environments. When a 
single policy is learned for all four environments using distributed optimization (row DCPG), 
the results are superior across all cases. 

Finally, we have studied a decentralized stochastic approximation framework and 
shown its application to decentralized multi-task Q learning. Under mild regularity 
assumption, we show that the algorithm converges to a ball around the optimal 
solution (i.e., the root of a strongly monotone operator) linearly under a constant 
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step size and converges exactly to the optimal solution with rate 𝑂𝑂(1
𝐾𝐾

) under a 
properly selected diminishing step size. 

We have continued our study of distributed optimization problems whose structure 
is described by a graph. The mathematical goal is to solve an optimization problem 
of the form 

 ∑𝑇𝑇
𝑖𝑖 𝑓𝑓𝑖𝑖�𝑥𝑥[𝑖𝑖]� , 𝑥𝑥𝑇𝑇 = (𝑥𝑥0𝑇𝑇 , 𝑥𝑥1𝑇𝑇 , … , 𝑥𝑥𝑚𝑚𝑇𝑇 ) ,𝑥𝑥𝑖𝑖 ∈ 𝑅𝑅𝑛𝑛𝑖𝑖 

where each 𝑥𝑥[𝑖𝑖] is a partial selection from the entire subset of variables. We can 
associate each function 𝑓𝑓𝑖𝑖 with a node on a graph, and draw an edge between nodes 
if two functions share at least one variable. The key questions we are interested in 
include: Is there a "fast-updating" scheme with guarantees to update the solution? 
When adding a node, do we really have to update the entire solution, or can we 
perform a "limited memory" local update? 

Problems of this sort arise in many interesting problems in signal processing, 
machine learning, control, and statistical inference. For example, in localization and 
tracking the 𝑥𝑥[𝑖𝑖] are locations/orientations, and 𝑓𝑓𝑖𝑖 capture dynamics and 
measurements. In multi-task learning, 𝑥𝑥[𝑖𝑖] are decision variables for different tasks, 
and the 𝑓𝑓𝑖𝑖 are loss functions and some local regularizers. 

We began our study with chain graphs (i.e., path); they have a simpler topology and 
correspond to key problems as tracking and time-varying optimization. Our main 
theoretical result stems from the observation that under certain mild conditions on 
the coupling of the loss functions, the update to the solution as we add a new 
function at the end of the chain decays exponentially as the update travels backward 
in the chain. In turn, this tells us that the estimate 𝑥𝑥(𝑇𝑇) eventually converges to limit 
point 𝑥𝑥𝑡𝑡∗ as 𝑇𝑇 → ∞, and that this convergence is exponential such that 
‖𝑥𝑥𝑡𝑡∗ − 𝑥𝑥𝑡𝑡|𝑇𝑇‖2 ≤ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶.𝑎𝑎𝑇𝑇−𝑡𝑡 for some positive constant 𝑎𝑎 < 1. Capitalizing on the 
exponential convergence result, we also derived an online-like Newton algorithm 
that solves such optimization programs while using only finite memory with 
provable accuracy guarantees.  

In addition, we have considered how these results can be extended into more 
general graphs. As a result, we were able to derive a graph reduction transformation 
that reduces any graph into a chain graph. The transformation is equivalent in the 
sense that any theoretical results that can be obtained from the reduced graph also 
apply to the unreduced graph. This idea is illustrated in Fig. 8. As a preliminary 
result, we get that, again, local modification to the graph leads to updates that 
exponentially decay as they travel inside the graphs. We are now working on 
finalizing these results and an efficient algorithm for computing the updates.  
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Fig. 8 (a) -G(V,E) and its evolution as new nodes and edges are added—the goal is to update 
the solution to the associated optimization program efficiently. (b) We reduce the general 
graph (left) to the chain graph (right); starting from the new node f8, expanding one edge 
outward each time, we collect all unassigned neighbors into a single node. 

Impact: The key outcome of this research is a mathematical and algorithmic 
framework for distributed problems that respects communication constraints. 
Autonomous agents are expected to work together to solve inference, learning, and 
control problems. Solving these problems optimally requires agents to 
communicate with one another where that ability can change rapidly and decisions 
must be made in real-time with limited or varied computational capabilities. 
Methods developed here will enable software developers to assess potential 
performance gains, understand trade-offs, and provide performance guarantees for 
new classes of learning algorithms (e.g., agent teams that can assess realistic bounds 
on their joint localization and mapping accuracy as communications degrade). 

3.1.1.4 Hierarchical Abstractions for Planning  

Future multi-agent autonomous operations will require instantaneous real-time 
decisions in a rapidly changing environment. The computational complexity of 
planning in a highly dynamic multi-agent environment grows exponentially with 
the time and length scales and the number of cooperative and non-cooperative 
agents in the environment. This specific capability addresses the computational 
complexity of the planning process using hierarchical planning with abstractions. 
Some underlying research topics that need to be addressed include the following: 

• Design planning models that are hierarchical and composable and that 
represent the prior and acquired knowledge. Hierarchical representations 
imply a notion of abstraction, the ability to group similar items together.  

• Identify which parts of the world model to incorporate into the planning 
model, which parts of the world model can be grouped together, and which 
can be abstracted away without loss of required details.  
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• An additional research issue is how the abstracted model changes with 
actions, and predicts performance with respect to the objective function.  

The innovative approach taken defines novel complex mission languages to 
specify mission requirements that can incorporate both geometric and semantic 
environmental uncertainty, as well as scalable, distributed planning methods that 
can quickly adapt to continuously learn semantic-geometric models of the 
environment. 

Object-level semantic information can provide important contextual cues beyond 
the range of dense geometric information to inform more intelligent long-horizon 
decisions. Despite their intuitive usefulness, object-level maps can be difficult to 
integrate within planners designed for unknown environments. In this work, we 
combined the computational power of randomized motion planners with higher-
level semantic information via a learned sampling distribution, enabling intelligent 
navigation in structured, unknown environments. We developed a planning 
approach that optimizes a predictive sampling distribution inferred from dense 
geometric representations that track unobserved space, explicit object-level 
contextual cues both within and beyond the range of dense geometry, and 
information about the goal.  

Plans generated by the Learned Sampling Distribution (LSD) and baseline were 
compared, demonstrating that a probabilistic road map using our LSD sampler was 
more likely to find feasible plans than using a sampler informed only by geometry. 
We note that the learned distribution outperformed the baseline most notably at low 
sample counts, indicating that our method is especially useful for resource-
constrained platforms.  

For “Information-Theoretic Resource-Aware Perception and Planning,” we have 
developed a framework for path-planning on abstractions that are not provided to 
the agent a priori but instead emerge as a function of the available computational 
resources. We show how a path-planning problem in an environment can be 
systematically approximated by solving a sequence of easier-to-solve problems on 
abstractions of the original space. Specifically, we consider complexity reduction 
in path-planning problems by means of graph abstractions for resource-limited 
agents by combining aspects from both the planning and bounded-rational decision-
making communities. Our contribution is two-fold. Firstly, we employ an 
information-theoretic approach to generate multi-resolution abstractions that are 
not provided a priori for the purposes of path-planning and secondly, our 
framework couples the environment resolution to the resulting path quality. To the 
best of our knowledge, there are no existing approaches that utilize information-
theoretic abstractions for complexity reduction in path-planning that also guarantee 
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the monotonic improvement of the path-cost as a function of environment 
resolution. Coupling the path-cost with the environment resolution provides a link 
between the path quality, the complexity of executing graph-search algorithms and 
the information-processing capabilities of the agent determined by the information 
contained in the generated abstractions.  

The example in Fig. 9 shows the utility of the approach and corroborates the 
theoretical findings. Figure 9a shows the original environment and Fig 9b shows 
the finest resolution (maximum complexity) path. Example abstract paths are 
shown in Figs. 9c and d. The figure of merit is the reduction in representation 
complexity, while preserving the ability to accurately estimate the costs of paths. 
In this example, utilizing a representation with approximately 70% of the nodes 
results on average in an abstract path for which the cost is within 30% of the cost 
of the finest resolution path.  

 

Fig. 9 Planning results for various abstraction levels 

In a second sub-task on “Semantic Swarms: Distributed Semantic Planning for 
Multi-Robot Teams in Unknown Semantic Worlds,” we addressed a motion 
planning problem for a team of mobile sensing robots with known dynamics that 
operate in environments with metric and semantic uncertainty. Specifically, the 
uncertain environment is modeled by static landmarks with uncertain classes 
(semantic uncertainty) located at uncertain positions (metric uncertainty) giving 
rise to an uncertain semantic map. The semantic map is determined by Gaussian 
and arbitrary discrete distributions over the positions and labels of the landmarks, 
respectively. Such maps can be initially user-specified or can be obtained and 
updated by recently proposed semantic SLAM algorithms. We considered robots 
equipped with noisy sensors that are tasked with accomplishing collaborative tasks 
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captured by a global temporal logic formula in the presence of metric and semantic 
uncertainty. To account for sensing and environmental uncertainty, we extended 
Linear Temporal Logic (LTL) by including sensor-based predicates. This allowed 
us to incorporate uncertainty and probabilistic satisfaction requirements directly 
into the mission specification. First, we formulated the planning problem as an 
optimal control problem that designs open-loop sensor-based control policies that 
satisfy the assigned specification. To solve this problem, we developed a new 
sampling-based approach that explores the robot motion space, the metric 
uncertainty space, and an automaton space corresponding to the assigned mission. 
The open loop control policies can be updated online at time instants determined 
by an automaton to adapt to the semantic map that is continuously learned using 
existing semantic SLAM algorithms. To ensure that the proposed sampling-based 
approach can efficiently explore this large joint space, we built upon our previous 
works to design sampling strategies that bias explorations toward regions that are 
expected to be informative and contribute to satisfaction of the assigned 
specification. We have shown that the proposed sampling-based algorithm is 
probabilistically complete and asymptotically optimal under Gaussian and linearity 
assumptions in the sensor models, and shown extensions of the proposed algorithm 
to account for mobile landmarks and nonlinear sensor models. 

Figure 10 illustrates an example problem where a team of N = 20 robots need to 
accomplish a sequence of collaborative subtasks in an environment with M = 15 
targets, 12 of which are dynamic and 3 of which are static. Some subtasks can be 
performed in parallel, and have complex temporal constraints between them. The 
figure of merit is the run-time required to find a sequence of control inputs that 
satisfies the mission as specified by an LTL formula, and our algorithm is able to 
generate a sequence of control inputs with terminal horizon H = 421 in 14.2 min 
(Liu 2020; Larsson 2021). 
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Fig. 10 Robot trajectories that satisfy the LTL task. The robots are initially located at the 
top left corner. The green and red squares represent the initial and final locations of the targets 
while the black paths correspond to the target trajectories. 

Impact: The key outcomes of this capability are planning models that are 
hierarchical and composable and that represent both prior and acquired knowledge 
to deal with complexity and allow more efficient planning. For example, as a single 
agent or a teams of autonomous agents maneuver through partially known 
environments, obstacles are revealed during the plan execution. The methods 
developed here will address the resulting need for fast, on-the-fly, replanning at 
both the local and global scale for teams of multiple agents at operational tempo 
and DCIST-relevant length-scales. 

3.1.1.5 Joint Resource Allocation in Perception-Action-Communication Loops  

Large scale collaborative systems have the potential to satisfactorily accomplish 
tasks such as exploration, search and rescue, and surveillance; tasks that could 
otherwise be dangerous or expensive. To realize this potential, these systems have 
to operate effectively in an unsupervised manner. This means relevant controllers 
need to be decentralized and rely only on communications between the neighboring 
autonomous agents that compose the system, avoiding the need for centralized 
computation units or fusion centers that could become a security threat. Some 
underlying research topics that need to be addressed include the following: 

• The use of graph neural networks for learning naturally decentralized 
controllers for large scale collaborative systems.  
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• Training methods including imitation learning and unsupervised self-
learning, in order to understand the learning efficiency of various 
alternatives and how these affect the performance of graph neural networks.  

• The robustness of graph neural network-based controllers to changes in the 
communication network, and to external attacks on the system. 

The fundamental innovation in this research resides in using graph neural networks 
to learn controllers for large scale collaborative systems. Graph neural networks are 
an extension of graph filters, obtained by adding pointwise nonlinearities. The 
research approaches the problem of studying the performance of graph neural 
networks on learning decentralized controllers. It looks at the question of 
robustness. It addresses the application of graph neural networks (GNNs) to tasks 
that are relevant to DCIST missions, primarily coverage and navigation in dynamic 
settings.  

This research has been very successful, developing the scientific basis for learning 
in large scale distributed collaborative autonomy. The capability research has led 
to a body of work that substantiates the use of GNNs as the technology that enables 
the learning of collaborative policies that can be implemented in a distributed 
manner in large scale multi-agent autonomous systems. The fundamental 
conclusions of this work are 1) the implementation of GNNs can be matched to the 
wireless communication restrictions of a distributed system; 2) GNNs can be 
transferred from one system to another because of their transference and stability 
properties; 3) GNNs can scale solutions that are learned for small numbers of agents 
to implementations that involve large numbers of agents; and 4) GNNs can leverage 
centralized protocols to learn distributed approximations. Specific 
accomplishments are detailed next. 

The challenge of collaborative robot teams lies in our need to address the team's 
Perception-Action-Communication (PAC) loop. We have made significant strides 
toward solving the integrated PAC loop problem by developing the underlying 
theory to apply GNNs to multi-agent systems and by addressing challenging Army-
relevant tasks such as perimeter defense (Shishika 2020a). We consider a team of 
defenders that move along a perimeter and must block intruders from breaching 
(Fig. 11). Critically, we are interested in obtaining a distributed policy that obeys 
the partial information structure of the problem. Our key insight is that agent-
intruder observations and agent-agent communication links may be viewed as edge 
sets of a multigraph, and local aggregations of information on these graphs obey 
the information structure. In addition, this graph input naturally addresses the 
dynamically changing number of defenders and intruders present as the game 
evolves. In practice, we learn to exchange latent feature vectors as fixed width 
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messages that efficiently encode task-relevant information and exclude redundant 
information. The framework is capable of taking advantage of what communication 
opportunities exist: we recover nearly the performance of an omniscient centralized 
expert when exchanging multi-byte messages, but can still produce meaningful 
policies when communication is completely cut off (Paulos 2019). 

 

Fig. 11 Perimeter defense: A team of agents defends a perimeter 

In a second success story we considered large scale swarms composed of multiple 
agents that collaborate to accomplish a task. Individual agents must decide on 
control actions that are conducive to accomplishing a collective task from their 
local observations and communication with nearby peers. It has long been known 
that finding optimal controllers in these distributed settings is challenging. This 
motivates the use of heuristics in general and the use of learned heuristics in 
particular. It is germane to emphasize that the challenge in decentralized control 
stems from the local information structure generated by the unavoidable restriction 
to communicate with nearby agents. Otherwise, selecting optimal control actions 
by clairvoyant agents that have access to global information is often not difficult. 
Building on this observation we propose the use of imitation learning to train 
policies that respect the local information structure of a distributed system while 
attempting to mimic the global policy of a clairvoyant central agent. When 
designing multi-agent systems, we must contend with the dimensionality growth of 
the system as new agents are added. Furthermore, it is unreasonable to assume that 
the network during training is the same as the network during execution. Both of 
these problems can be overcome if we use GNNs. We examine flocking tasks to 
highlight the ability of our approach to handle dynamic communication networks; 
see Fig. 12. We show that a global controller outperforms such local controllers, 
but global approaches are not practical for real deployments. The novelty of our 
approach to flocking is to aggregate from multi-hop neighbors; this ability allows 
us to approach the performance of global solutions while respecting realistic 
communication constraints. Under standard configuration parameters collisions 
and velocity variances of GNN controllers are within 4× and 7× of the respective 
metrics of existing decentralized controllers (Tolstaya 2020). Prior to this work, 
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there has been no principled approach for augmenting the communication between 
neighbors to pass on information aggregated from multi-hop neighbors. 

 

Fig. 12 Flocking tasks to highlight the ability of our approach to handle dynamic 
communication networks 

In a third successful case study, we focused on the problem of coverage, in which 
a robot team must visit a set of locations in an environment. We encode the task as 
a graph: the known map locations and team members are graph nodes, and allowed 
moves are graph edges; see Fig. 13. A moderate-size coverage task with dozens of 
goals and fewer than 10 agents can be solved with existing approaches when posed 
as a vehicle routing problem (Tolstaya 2021). We collect a data set of trajectories 
generated using the centralized expert solution and use behavior cloning to train a 
GNN controller to imitate the expert solution. This learned heuristic can then 
generalize to previously unseen coverage scenarios with more agents and larger 
maps. The trained GNN models effectively generalize to larger robot teams and 
map sizes. The models were first trained on 4 agents and 228 waypoints on average. 
Then, the models were tested on a map size of 5659 waypoints with a graph 
diameter of 205. The team size varied from 10 to 100 agents. For both the coverage 
and exploration generalization experiments, the map and team sizes made the 
centralized expert solution intractable.  

 

Fig. 13 Encoding the task as a graph: the known map locations and team members are 
graph nodes, and allowed moves are graph edges  
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Finally, we developed a learning method to solve the unlabeled motion problem 
with motion constraints and space constraints in 2-D space for a large number of 
robots. To solve the problem of arbitrary dynamics and constraints we propose 
formulating the problem as a multi-agent problem. In contrast to previous works 
that propose using learning solutions for unlabeled motion planning with 
constraints, we are able to demonstrate the scalability of our methods for a large 
number of robots; see Fig. 14. The curse of dimensionality one encounters when 
working with a large number of robots is mitigated by employing a GNN to 
parametrize policies for the robots. The GNN reduces the dimensionality of the 
problem by learning filters that aggregate information among robots locally, similar 
to how a convolutional neural network is able to learn local features in an image. 
The key takeaway from our experiments is that decentralized inference using this 
methodology performs always within a small margin (approximately 12–15 s) of 
the optimal solution and this margin remains more or less constant even if the goals 
are further away and if the number of robots is increased (Khan 2020). Thus, from 
this we empirically demonstrate that GNNs trade some measure of optimality in 
exchange for decentralized behavior and this tradeoff remains more or less constant 
even as the number of robots are increased (Khan 2019).  

 

Fig. 14 Demonstrating the scalability of our methods for a large number of robots 

Impact: The key outcome from this capability is the advancement of GNNs as the 
fundamental enabling technology for obtaining effective controllers for large scale 
collaborative systems. A large heterogeneous robot team must visit a set of 
locations in coverage and tracking task. They are trained using small data sets and 
an optimized centralized solution; this learned heuristic is then generalized so that 
in practice the team can adapt to previously unseen coverage scenarios, handle 
communication link losses, address partially known environments, and scale to 
larger numbers of agents and larger maps than possible in the training phase. 
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3.2 Thrust 2: Heterogeneous Group Control 

Thrust 2 develops the fundamental understanding and formalism necessary to 
incorporate heterogeneous robots within operational and tactical planning and 
execution of mixed Soldier/robot teams. It postulates those theories for developing 
complex/adaptable control structures within an adversarial setting must be 
developed to achieve effective alignment of multi-agent team action with strategic 
goals. It also hypothesizes that a greater diversity of agent capabilities and team 
compositions (i.e., combined arms formations with associated doctrine) will be 
required to successfully fight in this new reality, and that the primary challenge for 
robot teams is to function effectively as part of closely coordinated teams despite 
the adversary and the complexity of the battlefield.  

In order to unlock human–robot collaboration and deliver on the promise of large-
scale heterogeneous systems, we must overcome technical challenges in three 
domains: models, architectures, and algorithms. There is, indeed, as of yet no 
unifying, formal mathematical modeling framework that fully incorporates sensing, 
actuation, computation, and communication diversity. As such, existing approaches 
cannot answer questions about human-robot teaming (HRT) arrangements in 
general as they rely on ad-hoc, brute force techniques such as explicit enumeration 
of the differing capabilities of each agent. Among other drawbacks, such a brute-
force approach precludes proper analysis of the interplay between task 
requirements and agent capabilities as well as an understanding of the interplay 
between the heterogeneous capabilities of complex human and nonhuman agents 
and groups. 

To address these challenges, this thrust is organized around two main pillars, 
namely Operational Control and Tactical Maneuvers, driving and coordinating T2 
technical research toward four enabling capabilities in Hierarchical & Distributed 
Control for Adversarial Operations; Scalable Task Assignment for Heterogeneous 
Multi-Unit Teams; Tactical Engagement of Heterogeneous Teams in Complex 
Environments; and Human Interaction with Large Heterogeneous Teams.  

Operational Control is focused on developing control structures/frameworks that 
promote robust and adaptive large-scale heterogeneous group control. Specifically 
pursuing advancements enabling two capabilities:  

• Hierarchical & Distributed Control for Adversarial Operations 

• Scalable Task Assignment for Heterogeneous Multi-Unit Teams 

Tactical Maneuvers is focused on effective tactical (combined arms) maneuvers 
result in achieving positions of advantage over an adversary and necessitating the 
effective fusion of movement with an understanding of the battlefield and the 
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adversary. Effective combined arms maneuvers require tight coordination between 
heterogeneous agents performing a diversity of roles. Specifically pursuing 
advancements enabling two additional capabilities: 

• Tactical Engagement of Heterogeneous Teams in Complex Environments  

• Human Interaction with Large Heterogeneous Teams 

The culminating outcome of T2 will be the development of the technological 
understanding necessary to realize truly collaborative performance in the face of an 
adversary, while in complex environments, through the optimal exploitation of 
available agents. 

3.2.1 Capabilities Description and Major Accomplishments 

3.2.1.1 Hierarchical & Distributed Control for Adversarial Operations  

Dynamic engagements against swarming adversaries in realistic battlefield 
scenarios present a multitude of challenges for the current state of the art 
technologies and algorithms. For instance, deploying resources (forces, robots, 
sensors, or supplies) to appropriate locations at the appropriate time is a 
fundamental problem related to resilient situational awareness, perimeter defense, 
and many other DCIST-relevant scenarios. This will involve a degree of motion 
planning as well as allocation of heterogeneous resources across the environment 
requiring a coherent use of appropriate abstractions, discrete optimization 
algorithms, game theoretic techniques, and geometric considerations.  

This capability will develop theory aimed at strategic deployments of resources 
over large environments in dynamically changing scenarios involving models of 
adversarial agents and imperfect/delayed communication. As such there are three 
innovative contributions to this capability:  

1) Models, abstractions and algorithms for adversarial teams 

2) Non-equilibrium strategies for decision-making 

3) Incorporating heterogeneity and diversity into mission and task planning 

Adversarial Teams 

The DCIST consortium formulated models for blue teams defending high value 
targets from attacking red teams in a dynamic setting allowing applications of game 
theory to solve for optimal defense strategies (Shishika 2020a-b). Specifically, we 
showed how we might be able to design teams of agents given models of the 
adversary, the environments, and the resources available to different robots and 
humans. How a team of defenders can optimally defend against intruders 
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approaching a convex perimeter by intercepting them, first using a one-on-one 
defense, and then using a two-on-one defensive strategy. Here the optimal strategy 
is a Nash Equilibrium where neither the blue team nor the red team has an incentive 
to deviate from the optimal strategy. The general multi-player game was shown to 
be NP-hard, but solved using a sub-optimal matching strategy. Finally, an imitation 
learning algorithm was used to develop a team strategy for large groups in which a 
model-based algorithm for small teams was used to train perception-action-
communication loops for large teams engaged in perimeter defense (Shishika 
2020a). This body of work is the first systematic approach to design, analysis, and 
realization of blue team strategies and implementations on both simulation and 
virtual platforms used to validate the approaches.  

Non-Equilibrium Decision-Making Strategies  

The DCIST consortium developed (Tsiotras 2021) hierarchical decompositions for 
multi-player stochastic games as a means to a) remedy the computational 
complexity of a general stochastic game; and b) capture heterogeneity in a team 
that includes agents of different rationality levels. In particular, we formalized and 
designed “non-equilibrium” strategies, which depart from traditional Nash-
equilibrium-based approaches using a Markov Decision Process model as the 
framework to analyze sequential decision-making under uncertainty. 

Heterogeneity for Mission and Task Planning 

The DCIST consortium developed a methodology for specifying high-level mission 
requirements and designed abstractions (traits) of individual agents that were used 
to synthesize first specifications for tasks and then plans for individual agents. We 
were able to map trait combinations to measures of efficacy and identify the trade-
space of cost versus performance. We were able to perform integrated, multi-level 
optimization for joint coalition/task assignment, local scheduling, and controller 
synthesis. At a high level, this can be abstracted as the control of the distribution of 
traits on a graph, while at a lower level it reduces to task scheduling using 
MILP/MICP techniques to encode convex team constraints while solving problems 
efficiently. 

Impact: The key output of this capability is the development of an initial theory 
and the algorithms aimed at strategic deployments of agents in large environments 
in dynamically changing scenarios involving models of adversarial agents and 
imperfect/delayed communication. For example, as teams of autonomous systems 
deploy on an intelligence, surveillance, and reconnaissance (ISR) or perimeter 
defense task, they would use the methods developed under this project to arrive at 
planned locations and at planned times when confronted with the realities of fast-
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moving swarm-versus-swarm engagements and the presence of imperfect 
information exchange and non-rational players. 

3.2.1.2 Scalable Task Assignment for Heterogeneous Multi-Unit Teams  

Given a high-level mission specification, such as patrolling and securing an area or 
performing a search-and-rescue operation, the capabilities needed to carry out that 
mission must be assembled by, and distributed across, the participating team of 
heterogeneous agents. For example, certain sensing modalities might be needed to 
be able to detect targets, different types of mobility, such as ground and air vehicles, 
might be required to effectively sweep the area, while different computational and 
communications capabilities and knowledge bases might be necessary to process 
and relay information back to a base station. Given a set of such requirements, this 
Capability focuses on how to assemble and deploy a dynamic, outclassing, 
heterogeneous team as a function of the mission specifications.  

One particular manifestation of the heterogeneity concept is mixed human-
autonomous agent teams. To be able to reason about such teaming arrangements, 
one needs computational models that accurately capture human characteristics 
relevant to the present and future concepts of operation, and must incorporate such 
models in computation team-level coordination schemes. These models must 
additionally be able to support team-level assignment tasks. Relevant 
characteristics will include both physical traits (e.g., fatigue, available weapons), 
as well as cognitive traits (e.g., trained skills, cognitive load). 

Due to the computational complexity associated with optimal assignment strategies 
in dynamic environments, an enabling, key research issue is how to produce 
satisficing (i.e., good enough) solutions, in a computationally feasible, distributed, 
and adaptive manner. The search for such a computationally feasible, “satisficing” 
solution is the primary research issue to be investigated under one task in this 
capability. In particular, dynamic constraints will be phrased as control barrier 
functions that ensure that satisfying solutions are always available through the so-
called forward invariance property—if the system starts satisficing, it stays 
satisfying even in the face of dynamic changes. 

One prime target application in which the developed framework will be tested is 
“coverage control” (as interpreted broadly) where the teams are composed of 
individuals with different sensing, mobility, communications, and computational 
capabilities. The agents are to spread out in order to cover/explore/protect/attack a 
given area. As such, coverage control constitutes an enabling capability in a number 
of assignment problems, including reconnaissance and surveillance.  
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Research under this capability has shown that by allowing for redundant task 
assignments, where multiple agents may be assigned to the same task, significant 
robustness to uncertainty in task performance can be achieved (Malencia 2021). In 
particular, optimization of average costs across all tasks as well as the 
generalization to the minimization of worst-case costs are considered as a way of 
minimizing the maximum damage done. Key to achieving this latter objective is 
through the interpretation of a fair optimization objective. 

Take for example the assignment of robots to deliver medical supplies to wounded 
Soldiers. Optimizing the average wait time of the Soldiers does not prevent an 
individual Soldier from waiting arbitrarily long for their supplies, as illustrated in 
Fig. 15. This performance may cause the system to be perceived as ineffective, 
unfair, and/or untrustworthy. 

 

Fig. 15 Redundant assignment answers the question, which task should receive extra 
resources? Given an existing non-redundant assignment and respective cost distributions (top 
right), a single redundant robot, Robot 2, can be assigned to either task. Utilitarian approaches 
assign Robot 2 to Person 0 because of the higher improvement in cost (Graph A), whereas fair 
approaches assign Robot 2 to Person 1 because of their higher need (Graph B). 

Specifically, a fairness criterion for redundant assignment based on the philosophy 
of John Rawls’ Theory of Justice was defined and subsequently formulated as a 
min-max problem that captures this fairness criterion and the assignment problem 
constraints (Rawls 1971). Unfortunately, solving this problem fully is strongly NP-
hard. But, by leveraging the particular structural properties of the mathematical 
problem formulation a polynomial-time, near-optimal solution is found through the 
introduction of a second decision variable that lets the problem be decomposed 
using half interval search combined with greedy assignment. 
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Following the theme of computationally feasible, heterogeneous assignment 
algorithms, an additional result under this task, reported in (Emam 2020), involves 
the notion of good enough assignment, where the assignment specifications are 
turned from costs (optimality) to constraints (feasibility). Recent results in this 
general area show how such a framework can be made robust and take 
environmental disturbances or unknown phenomena into account. Without such 
robustifying measures, the quality of both the allocation and the execution of tasks 
by the robots may be negatively affected. More importantly, even small 
environmental disturbances may result in the deterioration of the estimated 
specialization of the robots at performing tasks. In other words, the framework 
cannot distinguish between disturbances that the robots actually can and cannot 
overcome. This negatively affects the ability to allocate tasks based on 
specialization in an effective fashion. 

Motivated by these limitations, a novel framework using Gaussian processes and 
robust control barrier functions is developed as part of this task that lets the robots 
learn and model the disturbances in conjunction with assurances of the task 
execution under these disturbances. Which further allows the robots to distinguish 
between disturbances that the robots can and cannot overcome; the former being 
due to model errors, while the latter is caused by the actual incapability of the robots 
at performing the task. This construction is illustrated in Fig. 16.  

 

Fig. 16 By learning, in real-time, models of environmental disturbances and individual 
agents’ suitability to particular tasks, an adaptive and robust framework is obtained for task 
allocation and execution for heterogeneous teams. 

Impact: The key output from this capability is exploring how to produce sufficient 
or “good enough” solutions, in a computationally feasible, distributed, and adaptive 
manner. For example, as a team of heterogeneous robots executing multiple tasks 
(such as perimeter defense, reconnaissance, security, resupply, etc.) experience 
unexpected terrain changes (affecting mobility), weather events (affecting sensing), 
and adversarial attacks (affecting sensing and communications) degrading task 
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performance resulting the agents would use the methods developed under this task 
to rapidly adapt and retask (not waiting for optimal solutions that may not exist 
given the complexity and context of the task) to ensure mission success. As such, 
the measures of success of the capability are given in terms of an order of magnitude 
increase in the size of the heterogeneous assignment problems that can be solved 
rapidly (from 10s of robots to 100s of robots) as well as quantifiable robustness to 
uncertainties associated with the assignment parameters. 

3.2.1.3 Tactical Engagement of Heterogeneous Teams in Complex Environments  

This capability focuses on the development of abstractions, algorithms, and 
frameworks to address two challenges with a particular emphasis on heterogeneity, 
and adversarial behavior: autonomous tactical team behavior and tactical team 
composition. Perimeter defense is embedded and essential in many Army missions. 
In future perimeter defense operations, it is envisioned those robotic vehicles will 
help assist monitoring and neutralizing threats. It is also generally assumed that 
dynamic team formation (i.e., the formation of teams based on the threat to be 
addressed) should perform better, when compared to the static teams, agents in 
which the teams are determined a priori before any information about the threats 
become available. This task addresses the above questions, resulting in a formal 
representation that enables the system to effectively characterize human skills, and 
aid high-level coordination algorithms, such as task assignment and team 
composition. 

Designing controllers and compositions for heterogeneous multi-robot 
coordination in complex and unknown environments requires considerable 
expertise and a significant amount of manual effort. To circumvent these demands, 
end-to-end methods for learning multi-agent policies have been proposed. 
However, these often require vast amounts of data, are not interpretable, and are 
limited to low-level coordination. We have developed a structured approach shown 
in Fig. 17.  

 

Fig. 17 Overview of the proposed two-level approach to learning heterogeneous multi-robot 
coordination 
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Our investigation of tactical team behaviors in partial information target defense 
games are focused on a scenario in which an autonomous defender is tasked with 
intercepting an intruder that tries to reach a target region (Shishika 2021). Unlike 
the original target guarding problem and its various extensions, we consider the 
effect of partial information by imposing sensing limitations on the robots (Fig. 18). 
A major accomplishment is the spatiotemporal decomposition of the game into 
three phases: deployment, asymmetric information, and engagement phase. 
Focusing on a particular parameter regime, we propose a defender strategy together 
with the lower bound on its probability of win. A surprising outcome of this study 
is the emergence of a “see-wait-strike” strategy, whereas waiting is generally 
suboptimal for the full information game. The defender strategy in each phase is 
constructed so that the subsequent phase starts in a desired initial configuration. 
The proposed strategy is also robust against parametric uncertainty. 

 

Fig. 18 A limited-sensing model for target guarding 

We have begun a theoretical investigation of perimeter defense using a 1-D 
parameterized line segment (Fig. 19). The defenders on the perimeter are 
constrained to move on the line with predetermined maximum speed. The 
adversarial agents appear uniformly randomly and descend on the unit interval with 
a unit speed until they breach the perimeter. An adversarial attacker agent is 
captured if a defender is present at the point of breach of the attacker. Given a set 
of attacker positions and their maximum speed, we compute the minimum number 
of defenders to neutralize the attackers. We solve this problem by constructing a 
directed acyclic graph whose nodes represent the attackers. We show that the 
problem can be solved using the well-known maximum bipartite matching 
algorithm. 
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Fig. 19 The red triangles represent the attackers, and the blue circle denotes the defender. 
At least three defenders are required to neutralize attack. 

Impact: The key output from this capability are the methods and tools for the 
analysis and development of cooperative team strategies in the presence of 
adversarial agents. For example, a team of heterogeneous agents, using learned 
coordination policies from observations of an expert team, engage an adversarial 
team and infer the opponents decision-making process, then decompose the 
engagement into different phases based on information asymmetry to create 
windows of opportunity and tactical advantage (Pierpaoli 2020; Silva 2019). 

3.2.1.4 Human Interaction with Large Heterogeneous Teams  

We envision heterogeneous multi-agent teams, consisting of both autonomous and 
human agents, coordinating seamlessly to accomplish complex task objectives. 
Toward this goal, much research has focused on how to coordinate autonomous 
agents within such a team, but significantly less work has examined how human 
operators can work effectively as part of a human–robot team. Research in this task 
focuses on identifying techniques that enable improved human interaction with, and 
control of, a heterogeneous robot team. Some underlying research topics that are 
addressed include: 

• Design of formal representations that characterize human skills and model 
how humans perceive and communicate time-evolving information. 

• High-level coordination algorithms, such as task assignment and team 
composition, that leverage the above representations to demonstrate 
improved human–robot coordination in complex environments. Algorithms 
that enable multi-agent task models to be actively learned from human 
operator input. 

Our research represents a multifaceted and multidisciplinary approach to studying 
the role and interaction dynamics of humans in human–robot teams. Our work has 
contributed new insights into human perception and communication, including how 
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to optimally compress communication while maintaining accuracy (Lynn and 
Bassett 2020). Leveraging these insights, we contributed techniques for measuring 
and modeling human capabilities and traits relevant to multi-agent teaming (Kolb 
et al. 2021); such models help improve team performance through more effective 
task assignment (in preparation). To learn models of multi-agent tasks, we 
contributed novel learning methods that actively maintain value alignment and 
model the situational awareness of both robotic and human agents (Shannon et al. 
2017). Finally, we seek to not only build a priori models of humans, but also track 
and respond to dynamic changes in human operator abilities over time. Toward this 
goal we are working on active techniques for tracking user performance over time 
(in process). 

Human perception and communication: Complex environments are characterized 
by many events among which the pattern of possible event-to-event transitions has 
non-trivial topological structure. Each event leads to a specific set of other events, 
with some probability. The event-to-event path leading from an adversarial 
interaction (a potentially negative event) to a desired outcome (a positive event) 
can be long, circuitous, and not always apparent to any given Soldier or multi-agent 
team on the field. Similarly, the event-to-event path leading from the movement of 
one robot in the swarm to a conformational change in the swarm signaling a 
message of import to the human is complex, and must be accurately inferred by the 
human in order for them to anticipate outcomes and respond swiftly. Human, robot, 
and human–robot communication regarding event patterns similarly displays a non-
trivial topology, as do the set of actions and plans that must be used to effectively 
engage in the complex environment. Thus, humans and robots are faced with the 
challenges of accurately perceiving and communicating the topological structure of 
event-to-event transitions in complex environments, and choosing the appropriate 
action-to-action transitions in response to that environment. Moreover, they must 
often solve these challenges under massive constraints of time and limited sensing, 
leading ultimately to sparse data (Suri et al. 2019). 

The study of human perception and communication of event transitions has 
typically focused on pairs of events: A and B (Fig. 20). This focus has limited the 
resultant insights to simple environments, elementary agents, and short time 
horizons. PI Bassett’s lab has pioneered a transformative approach to the study of 
human perception and communication of event transitions arising in complex 
environments, performed by sophisticated agents, and evolving over long time 
horizons. We define graph learning to be the process whereby humans learn and 
represent the networks of event transitions in the world around them. Using this 
innovation, we have determined optimal models for the compression of 
communication while maintaining accuracy (Lynn and Bassett 2020), and have 
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made significant progress on the control of human perception of the environment 
(in preparation).  

 

Fig. 20 Principles of design for optimal communication in multi-agent teams under 
constraints of time and limited sensing 

Modeling human traits: HRT enables groups of humans and autonomous robots to 
communicate, coordinate, and collaborate to perform a joint activity. Human agents 
are highly heterogeneous with respect to their innate abilities. Indeed, prior work 
has shown that humans varied up to 87.5% in two traits associated with active robot 
path planning (Shannon et al. 2017). Such examples of heterogeneity motivate the 
need for careful allocation of agents to the various tasks that need to be carried out 
in an HRT setting. Prior work on task allocation in human–robot teams has largely 
ignored this variation in favor of simpler aggregate models (Ravichandar et al. 
2020). In particular, it is often assumed that all human agents within a given 
category (e.g., Soldier, firefighter, rescuer) have approximately equivalent 
attributes and can therefore be assigned arbitrarily. Treating all human operators as 
identical fails to account for individualized differences in capabilities across 
operators.  



 

37 

In this work, we model natural variations in human operator capabilities, and then 
study whether these variations translate into differences in individual performance 
on HRT tasks. Specifically, we introduce two cognitive tests that measure human 
cognitive capabilities that are pertinent to interacting with and coordinating 
multiple robots. Our central research question is to determine whether individual 
performance on certain cognitive tests serves as a predictor for HRT performance. 
If so, this information can serve to improve heterogeneous task assignment 
frameworks, such as Stochastic Trait-based Task Assignment (STRATA). Our 
results (Kolb et al. 2021) demonstrate that our cognitive tests can be used to 
effectively predict operator performance on certain tasks, but not others (Fig. 21). 
Specifically, the situational awareness test predicts performance on the remote 
teleoperation task, and the network test (shown below) predicts performance on the 
ad-hoc networking task. This finding indicates that targeted cognitive tests can be 
developed to quickly and effectively probe individual human abilities prior to task 
assignment.  

 

Fig. 21 The Network Inference pretest (left) is a simple 5-min cognitive test. Human 
operator performance on this pretest is highly correlated (middle) with operator performance 
on complex multi-robot teaming tasks, such as teleoperating multiple ground and aerial 
vehicles while maintaining an ad-hoc communication network (right). The ability to quickly 
determine which human operators are better suited for robot control can help inform task 
allocation in complex HRT scenarios. 

Impact: The key outcome from this capability is improved modeling techniques 
for how humans perceive and communicate time-evolving information and 
frameworks for modeling human capabilities, with the goal of improving human–
robot coordination in the context of teams operating in complex environments. As 
an example, pre-tests are used to predict an individual person’s ability in controlling 
a robot swarm and adapt communication of time-evolving information with the 
robot team. Then models and methods that account for individual human 
capabilities are used in high-level coordination activities such as task assignment 
and team composition in mixed human–robot teams to improve coordination and 
performance. 
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3.3 Thrust 3: Adaptive and Resilient Behaviors 

The DCIST vision calls for a team of heterogeneous agents providing increased 
situational awareness, warfighter standoff, and dilemmas to the adversary. These 
capabilities, building on the foundations of Distributed Intelligence and 
Heterogeneous Group Control, must thrive in dynamically evolving and potentially 
unknown and hazardous environments. Successful systems must encode resilience 
to disturbances into their design. These disturbances go beyond passive effects due 
to the environment and extend to include effects driven by an adversary force. 
Attrition of agents, rapid changes in the environment, and unexpected or deliberate 
loss of wireless communication all represent the operational conditions under 
which autonomous technology on the battlefield must operate.  

Traditional approaches address resilience primarily with the tool of over-
provisioning. Assigning larger numbers of agents to perform a task or additional 
communication links to a network in order to overcome modeled losses of these 
resources at runtime. Indeed, there is a rich and growing literature for the theory of 
resilience even in the challenging space of networked control systems as are found 
in many modern infrastructures (e.g., the power-distribution grid). However, the 
Army-specific challenges encountered in MDO may not always allow for gross 
over-provisioning and overmatch will likely come by operating closer to the edge 
of the envelope in terms of how assets are allocated. Likewise, changes in the 
environment or interaction with other entities are often addressed through 
replanning, adaptive control, or online learning. Unfortunately, many of these 
approaches can be exploited by an adversary, putting autonomous systems at risk 
of always operating reactively rather than proactively, which leads to inadequate 
performance. 

Our approaches will strive to maximize robustness at the micro level of individual 
perception, inference, or learning modules subject to the available resources, and 
seek resilience at the macro level of the team. Robust perception and learning 
strategies must be developed to recognize and reject unexpected or adversarial 
inputs at the micro level, while resilient collaborative control and decision-making 
strategies must be developed to cope with compromised and failed agents and 
communication loss at the macro level. The challenge is to design strategies that 
cope with all of these issues in a general and foundational manner and, yet are 
practically realizable across various platforms, computing substrates, and 
communication networks. Our goal in this research thrust is to develop a science of 
resilience for teams that explores performance/resilience tradeoffs subject to 
mission context. 
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Furthermore, in this research thrust, we will utilize a powerful unified 
representation of uncertainty across many DCIST characteristics (team 
composition, heterogeneity, environment, context, and communications) and 
update it rapidly in time, despite its large-scale and distributed nature. In turn, we 
will develop adaptive group behaviors that are aware of increasing uncertainty in 
the surroundings as well as models of the adversary and explicitly seek to trade-off 
uncertainty reduction with task performance optimization. 

In order to realize adaptive and resilient multi-agent autonomous systems on the 
battlefield there are many technical challenges that follow from the research gaps 
and goals described above. We organize them into two high-level pillars or 
capabilities: 1) Scalable Multi-Agent Information Acquisition and 2) Adaptive 
Planning for Adversarial Actions and Large Disturbances. The first is about 
realizing the vision of improved situational awareness while maintaining increased 
warfighter standoff and coverage. The second is fundamentally about providing 
force multiplication, increasing the number of dilemmas presented to an adversary 
while rapidly adapting to a changing landscape. 

Scalable Multi-Agent Information Acquisition is focused on the task of doing 
resilient multi-agent target detection and tracking. It is spearheaded by efforts to 
tackle the problems of resilience at scale. As previously described, methods exist 
to pre-plan for over-provisioning with respect to failure models. Previous DCIST 
work has spearheaded techniques to tackle these resilience problems dynamically 
and current efforts seek to increase the scale at which these algorithms can be 
implemented. Second, situational awareness is constrained by a communication 
infrastructure that is robust to the failure of individual links or even whole swaths 
of the network. We aim to address this problem by developing techniques that 
dynamically allocate wireless network infrastructure in ways that explicitly 
consider the uncertainty of channels, mobility of the agents, and actions of potential 
adversaries. Finally, we are studying how to exploit heterogeneity as a means to 
achieve resilience.  

Adaptive Planning for Adversarial Actions and Large Disturbances is focused 
on working explicitly in the context of the adversary. Rather than blindly reacting 
to disturbances, this pillar gets at the technical challenges of operating in a 
fundamentally adversarial environment. Initially this focuses on algorithms for 
distributed estimation of the adversary state and prediction of intent and future 
actions. These approaches are challenged by sensing uncertainty and limited 
knowledge of the environment. Key to this idea is the development of theory and 
algorithms to explicitly learn how to plan in the context of uncertain knowledge of 
the adversary. Indeed, online learning in the context of large disturbances is critical 
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and we aim to push the state of the art in terms of providing guarantees for fast and 
robust online learning. 

These challenges are addressed by driving and coordinating T3 technical research 
toward five enabling capabilities:  

• Resilient Situational Awareness 

• Wireless Communication Networks for Distributed Collaborative Systems 

• Exploiting Heterogeneity for Resilience 

• Multi-Agent Behaviors in the Presence of Adversaries 

• Rapid Adaptation to Large Disturbances 

3.3.1 Capabilities Description and Major Accomplishments 

3.3.1.1 Resilient Situational Awareness 

The objective of this capability is to establish the foundations of resilient distributed 
situational awareness for DCIST. By situational awareness we mean behaviors such 
as mapping, target identification, localization, and adversarial tracking, in the 
presence of sensor failures and/or compromised agents. Situational awareness in 
DCIST scenarios requires the deployment of a mobile team of robots, where each 
robot needs to be agile; coordinate its motion with its team in a decentralized way; 
and navigate itself in unknown, complex, and GPS-denied environments, with the 
objective of gathering the most information about the environment or target of 
interest. This capability will aim to provide zone reconnaissance for local and 
global situation awareness using a team of heterogeneous robots in the presence of 
failures or attacks. 

Existing state-of-the-art situational awareness approaches focus mainly on 
computational efficiency for maximizing information without offering resilience-
to-failure mechanisms, especially for distributed or heterogeneous DCIST 
architectures and behaviors. Furthermore, they are myopic, non-scalable, not-
energy efficient, and not resilient to changes or failures to the DCIST robot team. 
Addressing these challenges requires shifting the perspective of off-line learning 
from big data and maximizing the performance of every available asset to a 
parsimonious approach, where only reliable data, sensors, and actions are 
intelligently selected to obtain sufficient and resilient situational awareness.  

The problem of designing the motion of a team of mobile robots to infer the state 
of an unknown process is known as active information gathering. The first objective 
of this capability is to generalize active sensing techniques to handle distributed 
inference and control in multi-robot teams, supporting nonlinear sensing models, 
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visibility and collision constraints, and adaptation to dynamic changes in the 
geometry, semantics, or communicability of the surroundings. A second objective 
is to consider failure-prone and adversarial environments where the robots can get 
attacked, their communications channels can jam, or their sensors can fail. In such 
failure-prone or adversarial scenarios, resilient design against worst-case and 
system-wide failures and attacks becomes important. We developed behaviors for 
resilient active information gathering that go beyond the traditional objective of 
uncertainty minimization and guards against worst-case failures or attacks that can 
cause the withdrawal of robots from the information acquisition task. Resilient 
active information gathering with mobile robots is a computationally challenging 
task, since it needs to account for all possible removals of robots from the joint 
motion design task, which is a problem of combinatorial complexity. 

 Our research agenda pursued 1) distributed inference and dynamic programming 
formulations of exploration, active mapping, and target search; 2) distributed 
submodular optimization; 3) risk-sensitive formulations of estimation, control, and 
reinforcement learning; 4) value iteration and policy gradient algorithms for active 
sensing; 5) the development of a software infrastructure of active sensing 
algorithms for the DCIST consortium. Some highlights include the following: 

Energy-aware active information acquisition. A collaboration across DCIST 
recently considered the problem of planning trajectories for a team of sensor-
equipped robots to reduce uncertainty about a dynamical process. Optimizing the 
trade-off between information gain and energy cost (e.g., control effort, distance 
traveled) is desirable but leads to a non-monotone objective function in the set of 
robot trajectories. Therefore, common multi-robot planning algorithms based on 
techniques such as coordinate descent lose their performance guarantees. Methods 
based on local search provide performance guarantees for optimizing a non-
monotone submodular function, but require access to all robots' trajectories, making 
it not suitable for distributed execution. We recently proposed a distributed 
planning approach based on local search that shows how lazy/greedy methods can 
be adopted to reduce the computation and communication of the approach. We 
demonstrated the efficacy of the proposed method by coordinating robot teams 
composed of both ground and aerial vehicles with different sensing/control profiles 
and evaluated the algorithm's performance in two target tracking scenarios. 
Compared to the naive distributed execution of local search, our approach saves up 
to 60% communication and 80–92% computation on average when coordinating up 
to 10 robots, while outperforming the coordinate descent-based algorithm in 
achieving a desirable trade-off between sensing and energy cost. This 
accomplishment, published recently in (Cai et al. 2021), was recently highlighted 
by MIT News at https://news.mit.edu/2021/robots-collaborate-search-0513. 

https://news.mit.edu/2021/robots-collaborate-search-0513
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Scalable multi-robot information acquisition. In (Kantaros and Pappas 2021), 
we recently proposed a novel highly scalable nonmyopic planning algorithm for 
multi-robot Active Information Acquisition (AIA) tasks. AIA scenarios include 
target localization and tracking, active SLAM, surveillance, environmental 
monitoring and others. The objective is to compute control policies for multiple 
robots that minimize the accumulated uncertainty of a static hidden state over an a 
priori unknown horizon. The majority of existing AIA approaches are centralized 
and, therefore, face scaling challenges. To mitigate this issue, as shown in Fig. 22, 
we proposed an online algorithm that relies on decomposing the AIA task into local 
tasks via a dynamic space partitioning method. The local subtasks are formulated 
online and require the robots to switch between exploration and active information 
gathering roles depending on their functionality in the environment. The switching 
process is tightly integrated with optimizing information gathering giving rise to a 
hybrid control approach. We showed that the proposed decomposition-based 
algorithm is probabilistically complete for homogeneous sensor teams and under 
linearity and Gaussian assumptions. We provided extensive simulation results 
showing that the proposed algorithm can address large-scale estimation tasks that 
are computationally challenging to solve using existing centralized approaches. As 
demonstrated in (Kantaros and Pappas 2021), this approach allows us to push the 
scale by an order of magnitude (100+ robots). 

 

Fig. 22 Decomposition of global active information acquisition tasks into local tasks 

Reinforcement learning with information theoretic objectives. Information 
Acquisition for multi-robot systems can be formulated as a multi-agent 
reinforcement learning problem (MARL). MARL is prone to the straggler effect 
where some learners are slower than others. Stragglers arise frequently in a 
distributed learning system, due to the existence of various system disturbances 
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such as slow-downs or failures of compute nodes and communication bottlenecks. 
To resolve this issue, in (Wang et al. 2021) we recently proposed a coded 
distributed learning framework, which speeds up the training of MARL algorithms 
in the presence of stragglers, while maintaining the same accuracy as the centralized 
approach. As shown in Fig. 23, a coded distributed version of the multi-agent deep 
deterministic policy gradient (MADDPG) algorithm is developed and evaluated in 
(Wang et al. 2021). Different coding schemes, including maximum distance 
separable (MDS) code, random sparse code, replication-based code, and regular 
low-density parity check (LDPC) code are also investigated. Simulations in several 
multi-robot problems demonstrated the promising performance of the proposed 
framework. 

 

Fig. 23 Codes for multi-agent reinforcement learning 

Impact: The key outcome of this capability is active sensing techniques that go 
beyond optimization for computational efficiency and information gain that 
dynamically adjust their perception and motion to achieve resilient situational 
awareness in the presence of sensor failures, jammed communications, detection 
risk, and/or compromised agents. As teams of robots are deployed in unknown or 
partially known failure-prone and adversarial environments, the methods 
developed here will enable efficient and resilient missions such as ISR and target 
tracking. 

3.3.1.2 Wireless Communication Networks for Distributed Collaborative Systems  

The scenarios envisioned and studied in DCIST are of a distributed and 
collaborative nature. In any distributed and collaborative scenario, autonomous 
agents must share information among themselves in order to accomplish a common 
task. The information exchanged can range from sensing information, to agent state 
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information or even abstract data related to the on-board algorithms being executed 
by the agents. Whichever case it might be, the agents must ultimately rely on 
sharing information, a procedure that they necessarily must do over a wireless 
channel. To this end, this task deals with the design of scalable and adaptive 
networking algorithms in order to support the DCIST scenarios. 

The overall objective of this capability is to design algorithms capable of supporting 
the required wireless network connectivity necessary for accomplishing the 
distributed tasks put forward in DCIST. We must begin by noting that existing WiFi 
and 5G capabilities are not well tailored to DCIST environments. Both of these 
technologies rely heavily on the availability of infrastructure, which is not a realistic 
assumption in DCIST environments. Rather, our DCIST agents must operate in 
environments where communication infrastructure is not available. To bridge this 
gap, we advocate a three-pronged approach in which we 1) dedicate a part of the 
team to establish communication infrastructure on demand. We do that by 
leveraging mobility. 2) Operate in environments with intermittent communications. 
We do that by leveraging communication opportunities. 3) Optimize team 
trajectories to acquire information that can be successfully relayed back to the 
command center. We do that by finding navigation policies based on information 
gains.  

We developed a platform named Mobile Wireless Infrastructure on Demand (Mox 
2020). This consists of a framework capable of providing wireless connectivity to 
multi-robot teams via autonomously reconfiguring ad-hoc networks. In many cases, 
previous multi-agent systems either assumed the availability of existing 
communication infrastructure or were required to create a network in addition to 
completing their objective. Instead, this system explicitly assumes the 
responsibility of creating and sustaining a wireless network capable of satisfying 
end-to-end communication requirements of a team of agents, called the task team, 
performing an arbitrary objective. To accomplish this goal, we use a joint 
optimization framework that alternates between finding optimal network routes to 
support data flows between the task agents and improving the performance of the 
network by repositioning a collection of mobile relay nodes referred to as the 
network team. In order to verify the operation of the Mobile Wireless Infrastructure 
on Demand system, we implemented the system on a custom-built quadrotor 
platform, equipped with conventional IEEE 802.11 WiFi and tested their 
performance in a large-scale experimental setup as shown in Fig. 24. In this 
considered environment, the task agents perform a circular patrol of a diameter of 
around 30 m. This range is sufficient for direct communication between the task 
agents at the required rate to be impossible. Throughput and delay measurements 
of this scenario are shown in the figure. The agents progressively move away to 
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their patrol radius, losing connectivity at around 75 s into the experiment, the 
moment in which the mobile infrastructure team is activated at around. As the 
network team comes into play, the throughput and delay are stabilized to a reliable 
rate (Mox 2020). 

 

Fig. 24 Large-scale experimental setup to test our custom infrastructure 

Despite our best efforts to develop infrastructure, we still expect that DCIST teams 
may need to operate under intermittent communication. We have therefore 
advanced the design of time-varying networks where the communication links 
between nodes may emerge and disappear over time (Yu 2020). The objective is to 
develop motion control and coordination strategies for robots in a team to maintain 
an intermittently connected communication network while ensuring successful 
propagation of information throughout the network. In this work, we leverage a 
robot’s mobility to expand the amount of space a team can monitor while 
maintaining the connectivity of the mobile robot communication network. The idea 
is to design coordination strategies that allow robots to “lock in” future periodic 
encounters with other robots in the team at predetermined locations to enable 
information exchange (Fig. 25). Outside of these prescheduled encounters, robots 
can move outside of each other’s communication ranges, enabling the team to 
achieve wider coverage of a region than if they were required to maintain a fully 
connected network all the time. Our work shows that mobile communication 
networks with time-varying connectivity can be formed by synchronizing the 
frequency in which pairs of robots periodically encountered one another in the 
workspace. By ensuring future encounter events between pairs of robots, the team 
not only achieves a communication network with intermittent connectivity, but 
information can also propagate from any robot to the whole team through the 
network within a finite time window. Additionally, we have extended this strategy 
to enable robot teams to form time-varying communication networks that are 
resilient to the presence of malicious agents (i.e., agents that provide incorrect 
and/or faulty information). In this context, robots can further leverage their mobility 
to change the resilience of their networks by actively seeking out new encounters 
and/or removing previously set encounters with other team members (Yu 2020).  
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Fig. 25 Designing coordination strategies to allow robots to periodically encounter at 
predetermined location 

A fundamental aspect of our work on mobile infrastructure on demand and 
intermittent communications is the design of trajectories that improve 
communication between members of the team. We have also addressed the 
complementary problem of designing optimal exploration trajectories by a robot 
team that must maintain communication (Schack 2021). The robot team maximizes 
the information gain along a path while maintaining communication with other 
team members and a static base station. Walls or other occluding objects may limit 
radio communication. Furthermore, the information gain at any one configuration 
depends on previous positions visited by the robots (i.e., observations at different 
positions are not independent), so metrics for exploration (e.g., information gain) 
are non-Markovian in terms of robots' positions. Our approach finds a locally 
optimal solution in the three steps shown in the scheme in Fig. 26. First, we find a 
heuristic final robot configuration where the robots can communicate and with a 
non-zero amount of information gain. Second, we use bidirectional, sampling-
based planning to find a satisficing path to this final configuration. Third, we locally 
optimize the satisficing path. By considering the entire path during optimization, 
we improve information gain relative to path cost compared to other approaches 
that consider information gain at only the final configuration. In our tested 
scenarios, our approach achieved 2–5 times more information gain relative to path 
cost than baseline sampling-based approaches. 
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Fig. 26 Developing a locally optimal solution in three steps 

Impact: The key objective of this capability is to design a system that dynamically 
adjusts to achieve resilient communication and co-optimized network and mobility 
at scale. It also explores questions such as can increased resilience be achieved at 
the cost of intermittent connectivity? As a team of heterogeneous agents is deployed 
on an ISR task, they must necessarily share information. The information can range 
from sensing information, to agent state information, or even abstract data related 
to the on-board algorithms being executed by the agents. Methods here will 
determine the configuration of a communication team that can best support a task 
team, learn optimal resource allocations, and develop vehicle motion coordination 
strategies to synthesize resilient mobile robot communication networks with time-
varying connectivity. 

3.3.1.3 Heterogeneity for Resilience  

This task complements the Adaptive Swarm Behaviors for Uncertainty Mitigation 
capability by developing a theory of resilient networking and cooperation that 
ensures mission progress and preserves core capabilities of the team in the face of 
failures of whole subnetworks of agents due to disruption in sensing and control, 
sporadic or permanent communication loss, GPS outage, or degrading visual 
conditions. The main innovation is the development of mathematical models of 
resilience, with a particular focus on heterogeneity and scale. The task develops 
abstractions for information flow, network reconfiguration, and robustness to 
provide quality of service guarantees for the team’s mission by exploiting the 
heterogeneity in team composition. 
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We have formulated the problem of resilient multi-robot target tracking with 
adversarial sensing and communication attacks (Fig. 27). We consider the robots 
may encounter any fixed number of worst-case sensing and communication attacks 
from an adversary. The sensing attack on a robot results in the removal of all its 
sensor measurements to the targets it can observe. The communication attack cuts 
off the communication links among robots and thus disables the sharing of sensor 
measurements. Our objective is to investigate resilient, active target tracking 
algorithms to enable provably good tracking performance, measured by the 
uncertainty in targets’ positions, despite the sensing and communication attacks 
from the adversary. To this end, we model this resilient target tracking problem as 
a Stackelberg game or a two-stage sequential game with perfect information 
between the robots and the adversary. Specifically, the robots play as the leader and 
plan motions to optimize the tracking performance. While the attacker, as the 
follower, responds with the worst-case sensing and communication attacks to 
undermine the tracking performance. With a view to finding the equilibrium of the 
game, we design a resilient approximation algorithm that provides hard guarantees 
to secure the team’s tracking performance even though the adversary blocks some 
robots’ sensing measurements and blanks some communication links among them.  

 

Fig. 27 A team of robots (green unmanned aerial vehicles [UAVs]) is tasked to track multiple 
targets (red UAVs). The adversary can attack the sensing/observations (black arrows) of the 
robots and blank communications (blue dotted lines) between them. The objective is to 
minimize the uncertainty (light blue ellipses) of the robots’ positions despite the sensing and 
communication attacks. 

We have also developed a control framework (Mayya 2021) that implicitly 
addresses the competing objectives of performance maximization and sensor 
preservation (which impacts the future performance of the team). Our framework 
(Fig. 28) consists of a predictive component, which accounts for the anticipated 
risk, and a reactive component, which maximizes the performance of the team 
regardless of the failures that have already occurred. We apply this in a scenario 
where a team of robots with heterogeneous sensors must track a set of hostile targets 
that induce sensory failures on the robots. The likelihood of failures depends on the 
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proximity between the targets and the robots. Based on a measure of the abundance 
of sensors in the team, our framework can generate aggressive and risk-averse robot 
configurations to track the targets. Crucially, the heterogeneous sensing capabilities 
of the robots are explicitly considered in each step, allowing for a more expressive 
risk-performance trade-off. 

 

Fig. 28 Hostile target tracking using a proximity-based model 

We have developed a framework for resilience in a networked heterogeneous multi-
robot team subject to resource failures (Ramchandaran 2021). Each robot in the 
team is equipped with resources that it shares with its neighbors. Additionally, each 
robot in the team executes a task, whose performance depends on the resources to 
which it has access. When a resource on a particular robot becomes unavailable 
(e.g., a camera ceases to function), the team optimally reconfigures its 
communication network so that the robots affected by the failure can continue their 
tasks. We focus on a monitoring task, where robots individually estimate the state 
of an exogenous process. We encode the end-to-end effect of a robot’s resource 
loss on the monitoring performance of the team by defining a new stronger notion 
of one-hop observability. By abstracting the impact that low-level individual 
resources have on the task performance, our framework leads to the principled 
reconfiguration of information flow in the team to effectively replace the lost 
resource on one robot with information from another. A controller based on finite-
time convergence control barrier functions drives each robot to a spatial location 
that enables the communication links of the modified graph. We validate the 
effectiveness of our framework (Fig. 29) by deploying it on a team of differential-
drive robots estimating the position of a group of quadrotors. 
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Fig. 29 Experiments with a resilient networked testbed: A team of five quadrotors executing 
coordinated motion are monitored by ground robots 

Impact: The key goal of this capability is to develop a theory of networking and 
cooperation, with a focus on heterogeneity and scale that ensures mission progress 
and preserves core capabilities of the team in the face of failures of whole 
subnetworks of agents due to disruption in sensing and control, communication 
loss, GPS outage, or degrading visual conditions. As robot teams are deployed to 
perform a complex breach operation, this project explores the potential trade-offs 
in a heterogeneous team approach that can distribute required capabilities (sensing, 
comms, mobility, etc.) amongst the team in order to adapt to sudden and large 
mission, system, and environmental changes. 

3.3.1.4 Adaptive Swarm Behaviors for Uncertainty Mitigation  

The objective of this task is to develop tools and strategies that will enable a team 
of autonomous systems to effectively engage and interact with an opposing team. 
Such tools are especially necessary for Force Protection and Force Multiplication 
to enable not only a rich understanding of dynamically evolving and potentially 
hazardous environments but also the ability to adapt to and engage with increasing 
uncertainty, infrastructure failures, or adversarial deception by autonomously 
inferring their intents, taking informative actions to improve the situational 
awareness of the team, and executing suitable countermeasures. To address these 
challenges, we have explored the following: 

• MARL algorithms that can empower the agents with resilience in dynamic 
environments or in the presence of adversaries who may rely on deception 
or other intelligent strategies at mission time. Fast adaptation behaviors 
necessary to achieve high-performance under such non-stationarity and 
high sample-efficiency of the MARL algorithm for large team sizes are 
desirable (Kim 2020; Sun 2020, 2021).  
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• Distributed strategies for heterogeneous teams to adapt to changing task 
requirements. The focus is on strategies that can track the evolution of the 
tasks and determine how best to reallocate or re-task the team’s resources 
to better achieve the mission objectives (Salam 2022).  

• Data-driven system identification for inferring an adversarial swarm’s 
behavioral patterns and intra-swarm interactions that give rise to the 
observed behaviors (Zhang 2021).  

• Tools to track and engage an adversarial team while managing uncertainty 
in strategy, execution, and environment for multi-robot surveillance and 
perimeter security scenarios. 

Innovation and Technical Approach. To ensure multi-agent systems are resilient 
in dynamically changing environments, we leverage latent conditional policy 
learning with a hierarchical structure, which allows for maximal exploitation of 
different environmental modes while enabling high adaptability due to the flexible 
policy network structure. To overcome the non-stationarity from learning and 
deceptive adversaries, we develop approaches to perceive the intelligent 
adversaries’ behavior, followed by meta-learning algorithms in the category of 
fine-tuning methods and beyond. To improve the scalability of such multi-agent 
learning algorithms with large team size, efficient communication networks and 
diverse skills are learned to accomplish high sample-efficiency and performance. 
To enable the adaptation to changing task requirements, we leverage the spectral 
properties of kernel transfer operators to develop efficient feature-based 
representations of time-varying density functions in complex environments. The 
proposed framework allows for data-driven distributed estimation, tracking, and 
model representation to enable a heterogeneous team to continuously adapt to 
changing mission requirements and environmental conditions. Simultaneously, 
data-driven system identification strategies to infer a swarm’s behavior and intent 
enable effective interactions and responses to an unknown, potentially adversarial, 
swarm. Techniques to synthesize countermeasures for interacting with adversarial 
entities in the context of multi-robot surveillance and perimeter defense are 
considered. The developed strategies focus on approaches that can simultaneously 
manage uncertainty in strategy, execution, and environment.  

We developed a framework to enable a team of heterogeneous mobile robots to 
model and sense a multiscale system, for example, an animal or human swarm 
moving through a complex environment (Fig. 30). We propose a coupled strategy, 
where robots of one type collect high-fidelity measurements at a slow time scale 
and robots of another type collect low-fidelity measurements at a fast time scale, 
for the purpose of fusing measurements together. The multiscale measurements are 



 

52 

fused to create a model of a complex, nonlinear process that is dynamically 
changing across both space and time. The model helps determine optimal sensing 
locations and predict the evolution of the process. The key contributions are  
1) consolidation of multiple types of data into one cohesive model, 2) fast 
determination of optimal sensing locations for mobile robots, and 3) adaptation of 
models online for various monitoring scenarios (Salam 2022). We have illustrated 
the proposed framework by modeling and predicting the evolution of a simulated 
spatiotemporal process and propose to extend the strategy to track the movement 
of swarms of agents.  

 

Fig. 30 Example of a heterogeneous team tracking the movement of a herd of animals 

In a second sub-task we consider the task of learning swarm behaviors based on the 
observation of the individual agents’ trajectories. Collective swarming behaviors 
are the results of agent-level dynamics. Extracting these agent-level dynamics is of 
paramount importance to understanding the emergence of swarming patterns, 
informing artificial swarm design, and staging adversarial attacks on swarms. 
However, more often only the observation of swarming trajectories is available, 
posing a challenge to identifying the agent-level dynamics. We adopt a state-of-
the-art continuous-time modeling approach, the knowledge-based neural ordinary 
differential equations (K-NODEs), to extract agent-level dynamics from 
observations. The continuous-time nature of K-NODEs enables straightforward 
knowledge embedding into neural networks for hybrid learning, which drastically 
reduces the amount of data needed for training and improves the model 
performance. Using flocking as an example, we apply K-NODEs on a small swarm 
of flocking agents, and incorporate simple assumptions as knowledge. Our 
assumptions include a decentralized information structure, a dynamic 
communication network, and swarm homogeneity, all of which are reasonable 
assumptions in both natural and artificial swarms. We have demonstrated efficient 
and scalable learning of the closed-loop agent-level dynamics with K-NODEs, 
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which finishes training within minutes on the CPU of a desktop computer. The 
resulting agent-level dynamics model was applied to a larger swarm and the same 
flocking pattern emerges, demonstrating the generalizability of the learnt agent-
level model as shown in Fig. 31. In addition, if the open-loop dynamics for each 
agent are known, it can be incorporated into the model. In other words, learning 
decentralized controllers in a swarm is a special case of our learning problem, 
where the open-loop dynamics can simply be treated as knowledge. To our 
knowledge, this work is the first adopter of the most recent continuous-time deep 
learning techniques in the system identification of swarming behaviors (Zhang 
2021).  

 

Fig. 31 Learning to swarm using K-NODEs 

In many real-world scenarios, it is imperative for mobile robots to safely navigate 
through rough terrain. While incorporating geographic and geometric terrain 
features for these tasks are very important, these aspects have rarely been studied 
in the multi-robot setting. We have developed a strategy to characterize terrains 
based on their complexity, and visibility constraints, using metrics adopted from 
Geographic Information Systems (GIS) and computational geometry respectively. 
We further developed an approach to show how this characterization can be utilized 
in multi-robot adversarial settings to formulate optimal strategies for safe and 
stealthy navigation. This is done in light of a two-player zero-sum game 
formulation between a heterogeneous team of mobile robots, the transporters, and 
another stationary team positioned strategically across different locations in the 
environment, the observers. We have evaluated our strategies using synthetic and 
real-world terrains (Fig. 32).  
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Fig. 32 Example of different paths with different detection likelihoods taking into 
consideration terrain geometry 

3.3.1.5 Robust Adaptive Machine Learning  

Autonomous learning-enabled teams of robots will need to respond intelligently to 
unforeseen circumstances. This includes adapting rapidly to changing conditions. 
By developing robust adaptation techniques that can modify learned models on-
the-fly in response to changing mission parameters, environment conditions, and 
system integrity (e.g., damage to components, sensors, actuators), the algorithms 
developed as part of this effort will provide a degree of resilience to DCIST 
platforms that would be difficult to attain with standard static learned models. 

To this end, we developed algorithms that enable online adaptation of both 
individual robot controllers and team-level coordination mechanisms suitable for 
DCIST platforms, which would cover both perception and control mechanisms. In 
contrast to prior work in meta-learning and online learning, the focus in this task 
will specifically be on robust and resilient adaptation methods that are suitable for 
multi-agent coordination problems in contested open-world environments. For 
instance, if one of the robots in a team is immobilized, while the camera on another 
(still mobile) robot is disabled, the immobilized robot should be able to provide 
“spotting” capability to the mobile robot with degraded perception. In the domain 
of meta-learning, a standard assumption in the literature is that the distribution over 
tasks (i.e., disturbances, commands, etc.) at test-time matches the distribution over 
which meta-training was performed, so while classically meta-trained models may 
be able to adapt to new tasks, those tasks themselves must be in-distribution. For 
practical robust and resilient open-world behavior, this standard assumption is 
extremely limiting: it is precisely those unpredictable task changes that most require 
online adaptation. For example, if the meta-training process simulated a variety of 
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component failure scenarios for a team of robots (e.g., the steering system fails on 
one robot, a sensor fails on another, etc.), an adversary that understands the adaptive 
capabilities of the team might intentionally attempt to disable parts of the robot 
team in such a way as to cause their adaptation mechanism to fail. On-the-fly 
adaptation to unexpected disturbances is therefore essential. Therefore, we aimed 
to develop mathematical and algorithmic frameworks for reasoning about 
adaptation to unexpected and out-of-distribution tasks, both in a meta-learning 
setting and in an online learning setting. The first task will focus on the meta-
learning setting, and the second task will focus on the online learning setting. 
Research under this task has developed several key algorithmic advances in terms 
of basic meta-learning algorithms, and has evaluated these methods in the context 
of several real-world robotic platforms that reflect capabilities relevant to DCIST. 
We highlight a few of these algorithms and evaluations here. 

Model-based reinforcement learning algorithms learn to perform complex tasks by 
first learning a predictive model (for example, a neural network that predicts the 
resulting state when the robot takes a particular action, such as the velocity that will 
result from applying a particular motor command), and then using this predictive 
model to construct a plan to solve a given task. In effect, the predictive model 
represents the algorithm’s estimate of the laws of physics that govern the robot, 
other objects in the environment, and other agents. However, such algorithms can 
fail catastrophically at runtime if the learned model fails to generalize to the test-
time setting. This could occur, for example, because the robot is operating in a new 
environment that differs too much from the conditions under which the model was 
learned, due to mechanical damage to the robot itself, or due to systematic changes 
in the behavior of other agents. Research under this task developed the first 
algorithm for model-based meta-reinforcement learning (McAllister 2021), which 
meta-trains a model that can quickly adapt at test-time to changing environment 
conditions, damage or changes to the robot itself, and other unexpected events. This 
approach is fully general, and represents a fundamental advance in model-based 
reinforcement learning. In experiments, it enables both simulated and real-world 
robots to adapt to changing dynamics, such as mechanical damage or unexpected 
terrain, in under a second, whereas naive adaptation methods either fail completely 
or require several orders of magnitude more data to adapt, precluding adaptation at 
real-time speeds. The practical implications of such an approach include 
substantially improved robustness to changing environmental conditions and robots 
that can dynamically adjust their behavior to handle mechanical damage. In 
quantitative evaluations, two variants of our method attained final performance that 
was on some tasks up to 2× better than prior non-meta-learned model-based 
algorithms and model-free approaches. These results are summarized in Fig. 33.  
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In future work, analogous methods could also enable autonomous systems that can 
adapt to changing behavior of other collaborative and adversarial agents. 

 

Fig. 33 Quantitative comparisons of two variants of model-based meta-RL (McAllister 
2021) developed as part of this project (gradient-based adaptive learner [GrBAL] and 
recurrence-based adaptive learner [ReBAL] + model predictive path integral control [MPPI]) 
on simulated (left) and real-world (middle) benchmark tasks that require rapid adaptation to 
test-time changes, including mechanical damage to a robot and changing terrains. Right image 
shows the real-world legged platform used for experiments. The y-axis shows (normalized) 
total reward over the course of an episode (which includes adaptation time), after meta-
trained for a fixed number of samples (chosen to be realistically low, equivalent to a few hours 
in simulated tasks and 30 min for the real-world tasks). Our methods (GrBAL and ReBAL) 
attain results that are significantly better than prior approaches, often by 2× or more. 

In contrast to model-based reinforcement learning, model-free algorithms learn 
through trial and error. Such methods can be preferable in settings where learning 
the “laws of physics” can be difficult—this is especially relevant in multi-agent 
settings, where learning a model requires also learning how other agents will 
behave, whereas model-free learning only requires acquiring a suitable strategy. 
Meta-learning can enhance the efficiency and capability of model-free algorithms 
as well. Such algorithms are conventionally highly inefficient (for example, the 
well-known AlphaGo result showed that model-free RL could beat the world 
champion at Go, but required playing billions of virtual games to learn to do so—
this would never be feasible in the real world). Meta-reinforcement learning can in 
principle learn how to learn via reinforcement, using multiple prior tasks to acquire 
effective exploration and learning strategies. As part of this research, we developed 
PEARL (Rakelly 2020), a state-of-the-art model-free meta-reinforcement learning 
algorithm that improved over the sample efficiency of prior meta-reinforcement 
learning methods by one to two orders of magnitude depending on the task, as 
compared to prior algorithms that existed at the time of publication (in 2019). A 
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graph showing quantitative comparisons to state-of-the-art model-free meta-RL 
methods at the time of publication on standard benchmark tasks is shown in Fig. 
34, with the x-axis corresponding to a log scale in terms of the number of meta-
training samples, and the y-axis indicating post-adaptation performance on new 
tasks at that point in meta-training (which is not available to the algorithm but 
shown only for evaluation). 

 

Fig. 34 Quantitative comparison of our method, PEARL, with state-of-the-art meta-RL 
algorithms circa 2019 at the time our method was developed. The x-axis is a log scale showing 
the number of samples needed by the algorithm, and the y-axis is the performance (total 
reward) at that point during meta-training on unseen test tasks. Across most benchmarks, 
PEARL learns about two orders of magnitude faster, and often attains significantly better 
final results. 

Impact: The key outcome of this capability are adaptive machine learning 
algorithms that enable teams of robots to adapt on-the-fly to unforeseen large and 
rapid changes in environmental conditions, mission parameters, and robot state by 
means of online learning and meta-learning algorithms. For example, as a robot or 
robot team perform complex maneuvers, the agents would use the methods 
developed here to 1) overcome damage to individual platforms, which may require 
other robots in the team to realign their objectives to compensate for the diminished 
capability of one or more of the robots; 2) adapt to novel commands issued by a 
human teammate or leader; or 3) adapt to changing or unexpected behavior on the 
part of bystanders or potential adversaries, so as to better predict future behavior 
and enable a coordinated response. 
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3.4 Thrust 4: Cross Disciplinary Experiments (CDE) 

In the Army’s future concept for MDO, robotics and autonomous systems are a key 
enabler for sensing, detecting, and communicating while operating in contested 
environments. This task establishes a foundation for operationalizing the use of 
mixed air-ground robot teams to provide situational awareness at standoff by tying 
together work in distributed mapping, learning, and coordination to provide an 
experimental baseline. By proposing metrics that capture some of the essential 
features of MDO, such as speed, accuracy, and intra-team information latency, and 
beginning to incorporate adversarial models, such as communications jammers, this 
task will provide a foundation for future analysis and development programs of the 
Army. 

3.4.1 Capabilities Description 

3.4.1.1 CDE-A– Heterogeneous Multi-Agent Situational Awareness  

This CDE focuses on a single operational capability of Route Reconnaissance, but 
evaluates a range of technical capabilities including world modelling, planning, and 
communication strategies. This specific operation will be used to clarify the 
requirements for and evaluate the success of a DCIST collaborative framework that 
will establish 1) easy entry to Army-relevant simulations and experiments;  
2) scalable simulation and experimentation in terms of numbers of vehicles, types 
of vehicles, environment scale and complexity, or level of fidelity/abstraction;  
3) access to facilities; and 4) exchange of reference implementations between RA 
tasks to compose DCIST collaborative capabilities. Toward this end we have 
already begun implementation of an open testbed to facilitate and drive 
collaboration among the research teams and to integrate research efforts across the 
alliance, including our DEVCOM ARL collaborators. 

CDE-A explores complex scene understanding, inference and multi-agent planning 
over long time and length scales in the presence of adversaries in a dynamically 
changing environment. Particular emphasis is placed on 1) inference of a hybrid 
semantic-geometric world model; 2) complex mission planning over a distributed 
team of heterogeneous agents; and 3) resilience in the face of a complex 
communication environment. These topics will be addressed in the context of the 
mission profile of Route Reconnaissance. 

We consider a scenario where a team is to move through a contested urban area, 
with multiple routes through the environment and dynamic agents to be avoided. 
The goal of the blue forces is to detect and identify all static and dynamic obstacles 
and threats in the scene, while minimizing the detection of the blue forces by the 
red forces and avoiding regions of conflicts including no-fly zones.  
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Consider the scenario in Fig. 35, where the team of blue force robots has to move 
through the environment to the goal location, with stale or possibly no prior 
information about the environment. The green arrows show some of the example 
routes that the robots could consider. The robots must collaboratively decide how 
to partition the problem of exploration for situational awareness to identify routes, 
as well as locations of the red forces. Scores will be a function of speed of 
maneuver, as well as the number of red forces detected and the number of blue 
forces identified.  

 

Fig. 35 A team is moving through a contested urban area, with multiple routes through the 
environment and where dynamic agents are to be avoided 

Individual robots only have local information without line of sight, and the 
communication network will be intermittent due to environment complexity as well 
as adversarial jamming. It will be essential to have mobile robots that can operate 
with only partially situational awareness, and can also merge information when the 
network is available into a consistent world model.  

The scenario can be made incrementally challenging in various axes by varying the 
area, placing red force agents above the road or inside buildings, increasing the 
speed and maneuverability of the red force agents, and increasing the complexity 
of the environment and the availability of communication resources by introducing 
red force jammers. 

Experimental Variables 

1) Scale: size of area, duration of one episode. 

2) Complexity of environment: numbers of chokepoints, numbers of types of 
environments (indoor vs. outdoor, one-story vs. multi-story), the presence 
of adversarial agents. 

3) Complexity of communication environment: maximum range, radius of 
jamming, bandwidth. 
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4) Operational tempo: speed of other agents and changes in the environment 
In addition to the four experimental variables, the size and heterogeneity of 
the team is important. 

5) Team size: number of robots. 

6) Heterogeneity: number of types of robots, ground vehicles only, mix of air 
and ground vehicles.  

Evaluation Metrics 

1) Time to traverse: the overall time to complete the site traversal (from start 
to goal) while obeying constraints (e.g., no-fly zones, staying out of line-of-
sight from adversaries). Performance of a human-only team can be used as 
a baseline for comparison. 

2) Latency of awareness: for a particular piece of information (such as part of 
an environment map or a detection of an object of interest), the largest 
length of time between initial acquisition and incorporation into the models 
of other systems that need it. This captures the effectiveness of distributed 
intelligence and the ability to incorporate communications and control, and 
lower numbers are better. 

3) Latency of data exfiltration: a specialization of latency of awareness, this 
refers specifically to the time that it takes for each piece of information to 
be relayed back to the blue teammates waiting at the starting point. 

4) Accuracy of obstacle/threat detection: the number, correct classification, 
and accurate estimation of static and dynamic obstacles and threats in the 
environment. This could apply to all possible obstacles/threats or only to 
the subset that would impact the future route that the system is seeking to 
establish. 

5) Time-to-detection for objects: essentially a measure of exploration 
efficiency, this is the total elapsed time from experiment start until confident 
detection of objects. This could be normalized against the earliest possible 
time that an object could be detected based on the top speed of the platforms, 
and lower numbers are better. 

6) Time-to-reveal for blue team: the length of time from experiment start until 
blue team members are detected by adversaries. Perfectly satisfying the 
line-of-sight constraints would maximize this time, but generally the goal is 
to delay this as long as possible. 



 

61 

We have focused on integration of several of the technologies developed elsewhere 
in the program, notably in Thrust 1 and 2 to validate the performance of these 
technologies, both in realistic simulation and on field trials. Our Army-relevant 
convoy protection scenario features a team of air and ground robots traversing an 
environment containing potential adversaries, where the air robots can be tasked to 
investigate potential adversaries and determine safe passage for the ground 
vehicles. The technologies being assessed include the following: 

• OrcVIO: OrcVIO is the single-platform object-based SLAM technology. 
The software for this technology has been transitioned into the CDE-A 
simulator, and work is progressing to optimize it for operation on the real 
robot, especially in terms of computational speed.  

• Kimera-Multi: Kimera-Multi is the rich multi-robot metric-semantic 
mapping system. The software for this technology has been transitioned into 
the CDE-A simulator and also evaluated on the real CDE-A robot platforms. 
In the simulator, in the Camp Lejeune environment, we have demonstrated 
the ability of three robots to build a consistent map simultaneously at 8× 
speed. We have also demonstrated the ability to recover labeled meshes of 
buildings (assuming ground-truth semantic labeling).  

• CLEAR and CLIPPER: CLEAR is the centralized system for alignment 
of point clouds, and CLIPPER is the robust data association system. Both 
have been transitioned into the CDE-A simulator. CLEAR has been shown 
to perform map merging between four robots in simulation, and CLIPPER 
has been shown to perform inter-robot loop closure detection between air 
and ground vehicles in simulation. CLIPPER has also been transitioned to 
real robot platforms, and used to infer coordinate frame alignments between 
air and ground vehicles. 

• Semantic planning: The semantic planning system is the technology for 
using semantic non-geometric information to inform the planner in terms of 
desirable and undesirable trajectories. The software for this technology has 
been transitioned into the CDE-A simulator, and trained to infer trajectories 
that minimize visibility profiles, using the semantics of the environment to 
predict observer locations and concurrent visibility. Figure 36 gives 
example trajectories in simulation. This technology has also been 
transitioned to the real CDE-A quadrotor platform.  

• CDE-A has a strong commitment to validating its algorithms in perception, 
estimation, and planning in photo-realistic simulation. This Unity-based 
simulation was originally developed at MIT, transitioned to DEVCOM 
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ARL, and allows several of the tasks under CDE-A to validate performance 
before assessing on real vehicles.  

• CDE-A has begun assessment on real vehicles. Initial trials of mixed 
quadrotor-ground vehicle systems were conducted in late 2020 at test 
facilities in both the Boston area and the Philadelphia area. Further 
extensions of these trials to experimentally assess Kimera-Multi, CLIPPER, 
and the semantic planner were conducted in May 2021. Figure 37 gives an 
example mission in this experimental exercise.  

 

Fig. 36 Two example trajectories of a quadrotor choosing minimum visibility trajectories 
that it has learned to predict from the semantics in the environment 

 

Fig. 37 The test facility at Medfield, Massachusetts, outside Boston. The blue trajectory is 
the initial trajectory of a Clearpath Jackal, and the green trajectory is the initial trajectory of 
a quadrotor using the stealthy semantic navigation strategy. When objects of interests are 
detected by the Jackal, the quadrotor is tasked with deviations to inspect and refine the pose 
of the objects, denoted by the dashed green lines. This scenario exercises the state estimation, 
object localization, coordinate frame alignment, and stealth navigation. 
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3.4.1.2 CDE B – Dynamic Teaming Operations in Contested Environment 

To realize the vision of teams of distributed intelligent heterogeneous systems as 
force multipliers and force protectors for Soldiers in complex military relevant 
environments, the innovations proposed in each of the research thrust areas must 
be informed by the needs of large-scale, high op-tempo operations in the presence 
of adversaries and evaluated through simulation and experimentation in 
representative environments. 

This CDE addresses operational capabilities for teams in adversarial environments 
with a focus on Perimeter Defense. The goal is to defend against a red team of 
sophisticated adversaries by deploying large numbers of heterogeneous blue team 
assets in a complex environment with the constrained communications inherent to 
Army-relevant scenarios. The key innovations include 1) synthesis of team 
behaviors with high operational tempo to respond and adapt to dynamic 
adversaries; and 2) establishing the communication networks required for 
coordination and collaboration among team members. 

We developed algorithms for a team of ground robots tasked with intercepting 
intruders and defending a perimeter (a pre-specified high security zone), and 
demonstrated the ability to perform swarm-versus-swarm maneuvers using game 
theoretic techniques in the DCIST simulator. To overcome the limited visibility of 
these robots operating in occluded environments such as urban canyons, aerial 
robots equipped with sensors to detect intruders are deployed around the 
perimeters, with the aim of relaying intruder position information to the defense 
team. These robots utilize results from the resilient multi-robot coverage research 
performed in Thrust 3. Figure 38 (right) shows the six defender Warthog robots 
(shown in blue) instantiated on two high-security perimeters, with aerial intruder 
robots (shown in red) making their way to the perimeters in the urban canyon. 

 

Fig. 38 (Left) Patrolling operations of 15 Warthog robots in the DCIST Unity simulation. 
(Right) Perimeter defense operations on two urban perimeters using six Warthog defender 
agents (blue) and six aerial intruders (red). 
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We have also developed a Mobile Infrastructure on Demand (MID), a team of 
agents whose sole task is to provide and guarantee network connectivity across task 
agents (defender Warthog robots), performing a supporting role critical to 
successful task accomplishment. 

Figure 39 (left) shows a configuration of aerial robots that are dedicated to ensuring 
communication among the defense team. These agents leverage a connectivity 
maintenance algorithm to constantly move in order to maintain connectivity among 
the task agents. The image on the right shows the view of a building from a 
quadrotor. 

 

Fig. 39 (Left) shows a configuration of aerial robots that are dedicated to ensuring 
communication among the defense team. These agents leverage a connectivity maintenance 
algorithm to constantly move in order to maintain connectivity among the task agents. (Right) 
shows the view of a building from a quadrotor. 

While the above-described behaviors aim to intercept intruders in the immediate 
vicinity of the perimeters, it is also critical to maintain situational awareness over 
the large operational environment. Since maintaining complete coverage is 
impossible due to the size of the environment and limitations on the team size, 
patrolling behaviors are being generated by solving a polymatrix game between the 
aerial and ground patrol agents. We aim to test the operations of this integrated 
system by simulating sharp changes in intruder deployments and testing the ability 
of the robot team to effectively respond to the adversary. Sophisticated mechanisms 
for simultaneous task allocation, task planning, scheduling, and motion planning 
will be leveraged to coordinate the operations of the robot team.  
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4. Key Program Metrics and Impact (18Q3 to 20Q3) 

4.1 Education: Number of Students Supported 

Undergraduates – 6 

Masters – 36 

PhDs – 107 

Post Docs – 32  

4.2 Number of Publications 

Journals – 29 

Conferences – 237  

4.3 Notable Papers, Awards, and Recognitions 

1) 2020 IEEE ICRA Best Paper Award in Robot Vision: “Graduated Non-
Convexity for Robust Spatial Perception: From Non-Minimal Solvers to 
Global Outlier Rejection” Heng Yang, Pasquale Antonante, Vasileios 
Tzoumasand, and Luca Carlone.  

2) 2020 IEEE ICRA Finalist for Best Paper Award in Robot Vision: 
“Metrically-Scaled Monocular SLAM using Learned Scale Factors”  
W. Nicholas Greene and Nicholas Roy.  

3) 2020 ICASSP Best Paper Award: "Better Safe than Sorry: Risk-aware 
Nonlinear Bayesian Estimation" by Dionysios Kalogerias, Luiz Chamon, 
George J. Pappas and Alejandro Ribeiro.  

4) 2020 ICASSP Best Student Paper Award: "The Empirical Duality Gap of 
Constrained Statistical Learning," by Luiz Chamon, Santiago Paternain, 
Miguel Calvo-Fullana, and Alejandro Ribeiro.  

5) 2019 ICRA Finalist Best Paper Award on HRI: “Deconfliction of Motion 
Paths with Traffic Inspired Rules in Robot–Robot and Human–Robot 
Interactions,” Federico Celi, Li Wang, Lucia Pallottino, and Magnus 
Egerstedt. 

6) 2019 RSS Best Student Paper: “An Online Learning Approach to Model 
Predictive Control,” Wagener, Nolan; Cheng, Ching-an; Sacks, Jacob; 
Boots, Byron (DCIST Supplemental Task). 
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7) 2019 Eusipco–Student Paper Award: “Gated Graph Convolutional 
Recurrent Neural Networks,” Luana Ruiz, Fernando Gama, and Alejandro 
Ribeiro. 

8) 2019 ACC Finalist Best Student Paper Award: “Motion Planning with 
Secrecy,” Anastasios Tsiamis(Student Author), Andreea Alexandru, 
George J. Pappas. 

9) 2019 ICCPS Finalist Best Paper Award: “Encrypted LQG using Labeled 
Homomorphic Encryption,” Andreea Alexandru and George Pappas. 

10) 2019 IROS Finalist Best Paper Award: “Safety, Security, and Rescue 
Robotics, FASTER: Fast and Safe Trajectory Planner for Flights in 
Unknown Environments,” Jesus Tordesillas Torres, Brett Lopez, and 
Jonathan Patrick How. 

11) 2019 ACC O. Hugo Schuck Best Paper Award: “Permissive Barrier 
Certificates for Safe Stabilization Using Sum-of-squares” Li Wang, 
DongkunHan, and Magnus Egerstedt. 

5. Conclusion  

Research within the DCIST CRA has significantly advanced the state of the art in 
multi-agent autonomy for Army applications in the areas of Multi-Agent and 
Resilient Situational Awareness, Collaborative Learning and Intelligence, 
Adaptation and Learning in Wireless Autonomous Systems, Hierarchical 
Abstractions for Planning, Joint Resource Allocation in Perception-Action-
Communication Loops, Hierarchical & Distributed Control for Adversarial 
Operations, Scalable Task Assignment for Heterogeneous Multi-Unit Teams, 
Tactical Engagement of Heterogeneous Teams in Complex Environments, Human 
Interaction with Large Heterogeneous Teams, Heterogeneity for Resilience, and 
Adaptive Swarm Behaviors for Uncertainty Mitigation. 

Future collaborative robotic systems will leverage this research to create and align 
geometric and semantic information to reduce uncertainty and enable better 
individual and team localization, mapping, and path planning in complex dynamic 
environments; adapt to previously unseen events, communication link losses, and 
changes to the environment; perform fast, on-the-fly, replanning at both the local 
and global scale; strategic deployments of agents in dynamically changing 
scenarios involving models of adversarial agents and imperfect/delayed 
communication; produce sufficient or “good enough” solutions, in a 
computationally feasible, distributed, and adaptive manner;  improve techniques 
for how humans perceive and communicate time-evolving information; perform 
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active sensing that dynamically adjusts perception and motion to achieve resilient 
situational awareness in the presence of sensor failures, jammed communications, 
detection risk, and/or compromised agents; and achieve resilient communication 
and co-optimized network and mobility at scale. 
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DCIST Program to Date Bibliography Feb 26, 2022 

1. Title: A Unifying View of Geometry, Semantics, and Data Association in 
SLAM, Venue: International Joint Conference on Artificial Intelligence 
(IJCAI), Lead Author: Nikolay Atanasov, Year: 2018 

2. Title: Adversarial Information Acquisition, Venue: Robotics: Science and 
Systems Workshop, Lead Author: B. Schlotfeldt, Year: 2018 

3. Title: Aggregation Graph Neural Networks, Venue: ICASSP, Lead Author: 
Fernando Gama, Year: 2019 

4. Title: Attention and Anticipation in Fast Visual-Inertial Navigation, Venue: 
Transactions on Robotics, Lead Author: Luca Carlone, Year: 2018 

5. Title: Collective Online Learning of Gaussian Processes in Massive Multi-
Agent Systems, Venue: Thirty-Third AAAI Conference on Artificial 
Intelligence (AAAI-19), Lead Author: Trong Nghia Hoang, Year: 2019 

6. Title: Composable Learning with Sparse Kernel Representations, Venue: 
International Conference on Intelligent Robots and Systems, Lead Author: 
Ekaterina Tolstaya, Year: 2018 

7. Title: Control Aware Radio Resource Allocation in Low Latency Wireless 
Control Systems, Venue: IEEE Internet of Things Journal, Lead Author: Mark 
Eisen, Year: 2019 

8. Title: Convolutional Neural Networks via Node-Varying Graph Filters, 
Venue: 2018 IEEE Data Science Workshop, Lead Author: Fernando Gama, 
Year: 2018 

9. Title: Coordinating Multi-Robot Systems Through Environment Partitioning 
For Adaptive Informative Sampling, Venue: ICRA, Lead Author: Nikolas 
Fung, Year: 2019 

10. Title: Coverage Control for Multi-Robot Teams with Heterogeneous Sensing 
Capabilities, Venue: Robotics and Automation Letters, Lead Author: Maria 
Santos, Year: 2018 

11. Title: Coverage Control for Multi-Robot Teams with Heterogeneous Sensing 
Capabilities Using Limited Communications, Venue: IEEE/RSJ International 
Conference on Intelligent Robots and Systems, Lead Author: Maria Santos, 
Year: 2018 

12. Title: Deconfliction of Motion Paths with Traffic Inspired Rules in Robot-
Robot and Human-Robot Interactions, Venue: RA-L, IEEE Robotics & 
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Automation Letters, and ICRA, IEEE International Conference on Robotics 
and Automation, Lead Author: Federico Celi, Year: 2019 

13. Title: Dense Spatial Segmentation from Sparse Semantic Information, Venue: 
Workshop on Learning and Inference in Robotics at RSS, Lead Author: 
Qiaojun Feng, Year: 2018 

14. Title: Learning in Non-Stationary Wireless Control Systems via Newton's 
Method, Venue: American Controls Conference, Lead Author: Mark Eisen, 
Year: 2018 

15. Title: Learning In Wireless Control Systems Over Non-Stationary Channels, 
Venue: IEEE Transaction on Signal Processing, Lead Author: Mark Eisen, 
Year: 2018 

16. Title: Learning Statistically Accurate Resource Allocations In Non-Stationary 
Wireless Systems, Venue: International Conference on Acoustics, Speech, and 
Signal Processing, Lead Author: Mark Eisen, Year: 2018 

17. Title: Local-Game Decomposition for Multiplayer Perimeter-Defense 
Problem, Venue: CDC, Conference on Decision and Control, Lead Author: 
Daigo Shishika, Year: 2018 

18. Title: Localization, Grasping, and Transportation of Magnetic Objects by a 
team of MAVs in Challenging Desert-Like Environments, Venue: IEEE 
Robotics and Automation Letters and ICRA 2018, Lead Author: Giuseppe 
Loianno, Year: 2018 

19. Title: LQG Control and Sensing Co-design, Venue: Transactions on 
Automatic Control, Lead Author: Vasileios Tzoumas, Year: 2020 

20. Title: Meta-Learning Through Coupled Optimization in Reproducing Kernel 
Hilbert Spaces, Venue: ACC, Lead Author: Juan Cerviño, Year: 2019 

21. Title: MIMO Graph Filters for Convolutional Networks, Venue: 2018 19th 
IEEE International Workshop on Signal Processing for Advances in Wireless 
Communications, Lead Author: Fernando Gama, Year: 2018 

22. Title: On the Convergence of Distributed Subgradient Methods under 
Quantization, Venue: 2018 56th Annual Allerton Conference on 
Communication, Control, and Computing (Allerton), Lead Author: Thinh 
Doan, Year: 2018 

23. Title: On the Trade-Off Between Communication and Execution Overhead for 
Control of Multi-Agent Systems, Venue: ACC, American Control Conference, 
Lead Author: Anqi Li, Year: 2019 
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24. Title: Online Deep Learning in Wireless Communication Systems, Venue: 
Asilomar Conference on Signals, Systems and Computers, Lead Author: Mark 
Eisen, Year: 2018 

25. Title: Optimal Covariance Control for Stochastic Systems Under Chance 
Constraints, Venue: 57th IEEE Conference on Decision and Control, Lead 
Author: Kazuhide Okamoto, Year: 2018 

26. Title: Optimization of Switched Linear Systems Over Non-Stationary Wireless 
Channels, Venue: International Workshop on Signal Processing Advances in 
Wireless Communications, Lead Author: Mark Eisen, Year: 2018 

27. Title: Predicting Power Outages Using Graph Neural Networks, Venue: 2018 
6th IEEE Global Conference on Signal and Information Processing, Lead 
Author: Damian Owerko, Year: 2018 

28. Title: Prioritized Path Planning in Heterogeneous Robot Teams, Venue: ICRA, 
Lead Author: Wenying Wu, Year: 2020 

29. Title: Probabilistic Model-Agnostic Meta-Learning, Venue: NIPS, Lead 
Author: Chelsea Finn, Year: 2018 

30. Title: Resilient Backbones in Hexagonal Robot Formations, Venue: DARS, 
International Symposium on Distributed Autonomous Robotic Systems, Lead 
Author: David Saldana, Year: 2018 

31. Title: Resilient Non-Submodular Maximization over Matroid Constraints, 
Venue: IEEE Transactions on Automatic Control, Lead Author: Vasileios 
Tzoumas, Year: 2021 

32. Title: Resource-Aware Algorithms for Distributed Loop Closure Detection 
with Provable Performance Guarantees, Venue: International Workshop on the 
Algorithmic Foundations of Robotics, Lead Author: Yulun Tian, Year: 2018 

33. Title: Sample Complexity of Networked Control Systems Over Unknown 
Channels, Venue: 57th IEEE Conference on Decision and Control, Lead 
Author: Konstantinos Gatsis, Year: 2018 

34. Title: VIO-Swarm: An Autonomous Swarm of Vision Based Quadrotors, 
Venue: IEEE International Conference on Robotics and Automation ICRA 
2018, Workshop Robot Teammates Operating in Dynamic, Unstructured 
Environments (RT-DUNE), Lead Author: Aaron Weinstein, Year: 2018 

35. Title: Visual Inertial Odometry Swarm: An Autonomous Swarm of Vision-
Based Quadrotors, Venue: IEEE Robotics and Automation Letters and ICRA 
2018, Lead Author: Aaron Weinstein, Year: 2018 
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36. Title: 3-Dimensional Keypoint Repeatability for Heterogeneous Multi-Robot 
SLAM, Venue: IEEE International Conference on Robotics and Automation 
(ICRA), Lead Author: Elizabeth Boroson, Year: 2019 

37. Title: Autonomous Landing On a Moving Vehicle with an Unmanned Aerial 
Vehicle, Venue: Journal of Field Robotics, Lead Author: Tomas Baca, Baca 
Petr, Stepan Vojtech Spurny, Daniel Hert, Robert Penicka, Martin Saska, 
Justin Thomas, Giuseppe Loianno, Vijay Kumar, Year: 2019 

38. Title: Control Aware Communication Design for Time Sensitive Wireless 
Systems, Venue: ICASSP, Lead Author: Mark Eisen, Year: 2019 

39. Title: Convergence Rates of Distributed Gradient Methods under Random 
Quantization, Venue: IEEE Trans. Automatic Control, Lead Author: Thinh 
Doan, Year: 2021 

40. Title: Convolutional Neural Network Architectures for Signals Supported on 
Graphs, Venue: IEEE Transactions on Signal Processing, Lead Author: 
Fernando Gama, Year: 2019 

41. Title: Cooperative Autonomous Search, Grasping, and Delivering in a 
Treasure Hunt Scenario by a Team of Unmanned Aerial Vehicles, Venue: 
Journal of Field Robotics, Lead Author: Vojtěch Spurný, Year: 2018 

42. Title: Design Guarantees for Resilient Robot Formations on Lattices, Venue: 
IEEE Robotics and Automation Letters, Lead Author: Luis Guerrero, Year: 
2019 

43. Title: Diffusion Scattering Transforms on Graphs, Venue: 2019 7th 
International Conference on Learning Representations, Lead Author: 
Fernando Gama, Year: 2019 

44. Title: Efficient Trajectory Planning for High Speed Flight in Unknown 
Environments, Venue: ICRA 2019, Lead Author: Markus Ryll, Year: 2019 

45. Title: Inertial Velocity and Attitude Estimation for Quadrotors, Venue: 
IEEE/RSJ International Conference on Intelligent Robots and Systems IROS 
2018, Lead Author: James Svacha, Year: 2018 

46. Title: Knowledge Gaps in the Early Growth of Semantic Feature Networks, 
Venue: Nature Human Behavior, Lead Author: Ann Sizemore Blevins, Year: 
2018 

47. Title: Latency-Reliability Tradeoffs for State Estimation, Venue: TAC, Lead 
Author: Konstantinos Gatsis, Year: 2020 
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48. Title: Learning Implicit Sampling Distributions for Motion Planning, Venue: 
IROS 2018, Lead Author: Clark Zhang, Year: 2018 

49. Title: Learning Models of Sequential Decision-Making with Partial 
Specification of Agent Behavior, Venue: AAAI Conference on Artificial 
Intelligence, Lead Author: Vaibhav Unhelkar, Year: 2019 

50. Title: Locally adaptive kernel estimation using sparse functional 
programming, Venue: Asilomar 2018, Lead Author: Maria Peifer, Year: 2018 

51. Title: Model Predictive Trajectory Tracking and Collision Avoidance for 
Reliable Outdoor Deployment of Unmanned Aerial Vehicles, Venue: 
IEEE/RSJ International Conference on Intelligent Robots and Systems IROS 
2018, Lead Author: Tomas Baca, Year: 2018 

52. Title: Modeling Perceptual Aliasing in SLAM via Discrete-Continuous 
Graphical Models, Venue: RA-L & ICRA, Lead Author: Pierre-Yves Lajoie, 
Year: 2019 

53. Title: Network Constraints on Learnability of Probabilistic Motor Sequences, 
Venue: Nature Human Behavior, Lead Author: Ari E. Kahn, Year: 2018 

54. Title: Nuclear Environments Inspection with Micro Aerial Vehicles: 
Algorithms and Experiments, Venue: International Symposium on 
Experimental Robotics ISER, Lead Author: Dinesh Thakur, Year: 2018 

55. Title: Optimal Task Distribution in Heterogeneous Multi-Robot Systems, 
Venue: European Control Conference, Lead Author: Gennaro Notomista, 
Year: 2019 

56. Title: Overcoming Blind Spots in the RealWorld: Leveraging Complementary 
Abilities for Joint Execution, Venue: AAAI Conference on Artificial 
Intelligence, Lead Author: Ramya Ramakrishnan, Year: 2019 

57. Title: Resilient Active Information Gathering with Mobile Robots, Venue: 
IEEE/RSJ International Conference on Intelligent Robots and Systems, Lead 
Author: B. Schlotfeldt, Year: 2018 

58. Title: Resilient Monotone Sequential Maximization, Venue: Proceedings of 
the 57th IEEE Conference on Decision and Control (CDC), Lead Author: 
Vasileios Tzoumas, Year: 2018 

59. Title: Search and Rescue under the Forest Canopy using Multiple UAS, Venue: 
International Symposium on Experimental Robotics, Lead Author: Yulun 
Tian, Year: 2018 
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60. Title: Self-Assembly of a Class of Infinitesimally Shape-Similar Frameworks, 
Venue: IEEE/RSJ International Conference on Intelligent Robots and Systems, 
Lead Author: Ian Buckley, Year: 2019 

61. Title: Spatio-Temporally Smooth Local Mapping and State Estimation Inside 
Generalized Cylinders With Micro Aerial Vehicles, Venue: IEEE Robotics 
and Automation Letters and IROS 2018, Lead Author: Tolga Ozaslan, Year: 
2018 

62. Title: Accelerated Inference in Markov Random Fields via Smooth 
Riemannian Optimization, Venue: RA-L & ICRA, Lead Author: Siyi Hu, 
Year: 2019 

63. Title: Active Perception in Adversarial Scenarios using Maximum Entropy 
Deep Reinforcement Learning, Venue: ICRA, Lead Author: Macheng Shen, 
Year: 2019 

64. Title: Adaptive Sampling and Reduced Order Modeling of Dynamic Processes 
by Robot Teams, Venue: IEEE RA-L, Lead Author: Tahiya Salam, Year: 2019 

65. Title: Asymptotic Optimality of a Time Optimal Path Parametrization 
Algorithm, Venue: IEEE Control Systems Letters, Lead Author: Igor 
Spasojevic, Year: 2019 

66. Title: Block-Coordinate Minimization for Large SDPs with Block-Diagonal 
Constraints, Venue: Technical Report (arXiv), Lead Author: Yulun Tian, 
Year: 2019 

67. Title: Dual Domain Learning of Optimal Resource Allocations in Wireless 
Communication Systems, Venue: ICASSP 2019, Lead Author: Mark Eisen, 
Year: 2019 

68. Title: Dynamic Tube MPC for Nonlinear Systems, Venue: American Controls 
Conference, Lead Author: Brett Lopez, Year: 2019 

69. Title: Incremental Visual-Inertial 3D Mesh Generation with Structural 
Regularities, Venue: ICRA, Lead Author: Antoni Rosinol, Year: 2019 

70. Title: Large Scale Wireless Power Allocation with Graph Neural Networks, 
Venue: SPAWC 2019, Lead Author: Mark Eisen, Year: 2019 

71. Title: Learning Decentralized Controllers for Robot Swarms with Graph 
Neural Networks, Venue: International Conference on Robot Learning, Lead 
Author: Ekaterina Tolstaya, Year: 2020 
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72. Title: Learning Optimal Resource Allocations in Wireless Systems, Venue: 
IEEE Transcations on Signal Processing, Lead Author: Mark Eisen, Year: 
2019 

73. Title: Median Activation Functions for Graph Neural Networks, Venue: 
ICASSP 2019, Lead Author: Luana Ruiz, Year: 2019 

74. Title: Navigation of a Quadratic Potential with Ellipsoidal Obstacles, Venue: 
CDC, Lead Author: Harshat Kumar, Year: 2019 

75. Title: Redundant Robot Assignment on Graphs with Uncertain Edge Costs, 
Venue: DARS, Lead Author: Amanda Prorok, Year: 2019 

76. Title: Robot Co-design: Beyond the Monotone Case, Venue: ICRA, Lead 
Author: Luca Carlone, Year: 2019 

77. Title: S. Kemna, G. Sukhatme, Coordinating Multi-Robot Systems through 
Environment Partitioning for Adaptive Informative Sampling, ICRA, May 
2019, Montreal, Venue: ICRA, Lead Author: Nick Fang, Year: 2019 

78. Title: Task Allocation for Heterogeneous Multi-Robot Teams, Venue: IROS, 
Lead Author: Yousef Emam, Year: 2019 

79. Title: 6D Interaction Control with Aerial Robots: The Flying End-Effector 
Paradigm, Venue: The International Journal of Robotics Research, Lead 
Author: Markus Ryll, Year: 2019 

80. Title: A Decentralized Heterogeneous Control Strategy for a Class of 
Infinitesimally Shape-Similar Formations, Venue: ICRA, Lead Author: Ian 
Buckley, Year: 2019 

81. Title: A Taxonomy for Characterizing Modes of Interactions in Goal-driven, 
Human-robot Teams, Venue: IROS, Lead Author: Priyam Parashar, Year: 
2019 

82. Title: Activity Recognition by Learning from Human and Object Attributes, 
Venue: International Conference on Robotics and Automation (ICRA) 
Workshop on Robot Teammates Operating in Dynamic, Unstructured 
Environments (RT-DUNE), Lead Author: B. Reily, Year: 2019 

83. Title: Adaptive Sampling and Energy Efficient Navigation in Time-Varying 
Flows, Venue: Autonomous Underwater Vehicles: Design and Practice, Lead 
Author: Tahiya Salam, Year: 2019 

84. Title: All Graphs Lead to Rome: Learning Geometric and Cycle-Consistent 
Representations with Graph Convolutional Networks, Venue: CVPR 2019 
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Workshop Image Matching: Local Features and Beyond, Lead Author: 
Stephen Phillips, Year: 2019 

85. Title: An Online Learning Approach to Model Predictive Control, Venue: 
Proceedings of Robotics Science and Systems XV (RSS), Lead Author: Nolan 
Wagener, Year: 2019 

86. Title: An Optimal Task Allocation Strategy for Heterogeneous Multi-Robot 
Systems, Venue: European Control Conference, Lead Author: Gennaro 
Notomista, Year: 2019 

87. Title: Asymptotically Optimal Planning for Non-myopic Multi-Robot 
Information Gathering, Venue: Robotics: Science and Systems (RSS), Lead 
Author: Yiannis Kantaros, Year: 2019 

88. Title: Bayesian-Markov Feedback in Constraint-based Planning, Venue: 
International Conference on Robotics and Automation (ICRA) Workshop on 
Robot Teammates Operating in Dynamic, Unstructured Environments (RT-
DUNE), Lead Author: M. Schack, Year: 2019 

89. Title: Channels in High-Fidelity Simulations of Unmanned Aerial Systems, 
Venue: Signal Processing Advances in Wireless Communications (SPAWC), 
Lead Author: T. R. Godbole, Year: 2019 

90. Title: Convergence Rates of Distributed Two-Time-Scale Gradient Methods 
Under Random Quantization, Venue: IFAC-PapersOnLine, Lead Author: 
Thinh Doan, Year: 2019 

91. Title: Convolutional Graph Neural Networks, Venue: Asilomar SSC 2019, 
Lead Author: Fernando Gama, Year: 2019 

92. Title: Decentralization of Multiagent Policies by Learning What to 
Communicate, Venue: ICRA 2019, Lead Author: James Paulos, Year: 2019 

93. Title: DEDUCE: Diverse scEne Detection methods in Unseen Challenging 
Environments, Venue: IEEE/RSJ International Conference on Intelligent 
Robots and Systems, Lead Author: Anwesan Pal, Year: 2019 

94. Title: Differentiable Gaussian Process Motion Planning, Venue: ICRA, Lead 
Author: Mohak Bhardwaj, Year: 2020 

95. Title: Experimental Evaluation of Group Communications Protocols for Data 
Dissemination at the Tactical Edge, Venue: ICMCIS 2019, Lead Author: 
Niranjan Suri, Year: 2019 
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96. Title: Gated Graph Convolutional Recurrent Neural Networks, Venue: 
Eusipco 2019, Lead Author: Luana Ruiz, Year: 2019 

97. Title: Generalizing Graph Convolutional Neural Networks with Edge-Variant 
Recursions on Graphs, Venue: Eusipco 2019, Lead Author: Elvin Isufi, Year: 
2019 

98. Title: Graph Embedding for the Division of Robotic Swarms, Venue: 
International Conference on Robotics and Automation (ICRA) Workshop on 
Robot Teammates Operat-ing in Dynamic, Unstructured Environments (RT-
DUNE), Lead Author: B. Reily, Year: 2019 

99. Title: Human Sensitivity to Community Structure is Robust to Topological 
Variation, Venue: Complexity, Lead Author: Elizabeth Karuza, Year: 2019 

100. Title: Hypothesis Assignment and Partial Likelihood Averaging for 
Cooperative Estimation, Venue: IEEE Conference on Decision and Control 
(CDC), Lead Author: Parth Paritosh, Year: 2019 

101. Title: Information Filter Occupancy Mapping using Decomposable Radial 
Kernels, Venue: IEEE/RSJ International Conference on Intelligent Robots and 
Systems (IROS), Lead Author: Siwei Guo, Year: 2019 

102. Title: Leveraging Experience in Lazy Search, Venue: Proceedings of Robotics 
Science and Systems XV (RSS), Lead Author: Mohak Bhardwaj, Year: 2019 

103. Title: Linear Two-Time-Scale Stochastic Approximation: A Finite-Time 
Analysis, Venue: Allerton, Lead Author: Thinh Doan, Year: 2019 

104. Title: Localization and Mapping using Instance-Specific Mesh Models, 
Venue: IEEE/RSJ International Conference on Intelligent Robots and Systems 
(IROS), Lead Author: Qiaojun Feng, Year: 2019 

105. Title: Optimal Stochastic Vehicle Path Planning Using Covariance Steering, 
Venue: International Conference on Robotics and Automation, Lead Author: 
Kazuhide Okamoto, Year: 2019 

106. Title: Optimal WDM Power Allocation via Deep Learning for Radio on Free 
Space Optics Systems, Venue: Globecom 2019, Lead Author: Zhan Gao, Year: 
2019 

107. Title: Perception-Aware Trajectory Generation for Aggressive Quadrotor 
Flight Using Differential Flatness, Venue: American Control Conference 
(ACC), Lead Author: Murali, Varun, Year: 2019 
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108. Title: Resilient Active Target Tracking with Multiple Robots, Venue: IEEE 
Robotics and Automation Letters, Lead Author: L. Zhou, Year: 2019 

109. Title: Search and rescue under the forest canopy using multiple UAVs, Venue: 
IJRR, Lead Author: Yulun Tian, Year: 2020 

110. Title: Sparse Learning of Parsimonious Reproducing Kernel Hilbert Space 
Models, Venue: ICASSP, Lead Author: Maria Peifer, Year: 2019 

111. Title: The Blackbird UAV Dataset, Venue: IJRR, Lead Author: Amado 
Antonini, Year: 2020 

112. Title: Unsupervised Role Discovery Using Temporal Observations of Agents, 
Venue: International Conference on Autonomous Agents and MultiAgent 
Systems, Lead Author: Andrew Silva, Year: 2019 

113. Title: Visual Planning with Semi-Supervised Stochastic Action 
Representations, Venue: ICML 2019 Workshop Visual planning with semi-
supervised stochastic action representations, Lead Author: Karl 
Schmeckpeper, Year: 2019 

114. Title: WaveToFly: Using Gesture Commands to Direct UAVs, Venue: ICRA-
WS RT_Dune, Lead Author: Shixin Li, Year: 2019 

115. Title: Ad hoc Teamwork with Behavior Switching Agents, Venue: 
Proceedings of the 28th International Joint Conference on Artificial 
Intelligence (IJCAI), Lead Author: Manish Ravula, Year: 2019 

116. Title: Approximated Dynamic Traits for Task Assignment in Heterogeneous 
Multi-Robot Teams, Venue: IEEE International Conference on Intelligent 
Robots and Systems (IROS), Lead Author: Glen Neville, Year: 2020 

117. Title: Assumed Density Filtering Q Learning, Venue: IJCAI 2019, Lead 
Author: heejin Cloe Jeong, Year: 2019 

118. Title: Building Self-Play Curricula Online by Playing with Expert Agents in 
Adversarial Games, Venue: Proceedings of the 8th Brazilian Conference on 
Intelligent Systems (BRACIS), Lead Author: Felipe Leno Da Silva, Year: 
2019 

119. Title: Desiderata for Planning Systems in General-Purpose Service Robots, 
Venue: Proceedings of the ICAPS Workshop on Planning and Robotics 
(PlanRob 2019), Lead Author: Nick Walker, Year: 2019 
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120. Title: Generative Adversarial Imitation from Observation, Venue: Imitation, 
Intent, and Interaction (I3) Workshop at ICML 2019, Lead Author: Faraz 
Torabi, Year: 2019 

121. Title: Human Gaze-Driven Spatial Tasking of an Autonomous MAV, Venue: 
IEEE RA-L Robotics and Automation Letters and ICRA, 2019, Lead Author: 
Liangzhe Yuan, Year: 2019 

122. Title: Imitation Learning from Video by Leveraging Proprioception, Venue: 
Proceedings of the 28th International Joint Conference on Artificial 
Intelligence (IJCAI), Lead Author: Faraz Torabi, Year: 2019 

123. Title: Importance Sampling Policy Evaluation with an Estimated Behavior 
Policy, Venue: Proceedings of the 36th International Conference on Machine 
Learning (ICML), Lead Author: Josiah Hanna, Year: 2019 

124. Title: Inertial Yaw-Independent Velocity and Attitude Estimation for High 
Speed Quadrotor Flight, Venue: IEEE RA-L Robotics and Automation Letters 
and ICRA, 2019, Lead Author: James Svacha, Year: 2019 

125. Title: Input Hard Constrained Optimal Covariance Steering, Venue: CDC 
2019, Lead Author: Kazuhide Okamoto, Year: 2019 

126. Title: Lessons Learned From Deploying Autonomous Vehicles at UC San 
Diego, Venue: Field & Service Robotics, Lead Author: D. Paz, Year: 2019 

127. Title: Leveraging Human Guidance for Deep Reinforcement Learning Tasks, 
Venue: Proceedings of the 28th International Joint Conference on Artificial 
Intelligence (IJCAI), Lead Author: Ruohan Zhang, Year: 2019 

128. Title: Millimeter Wave Remote UAV Control and Communications for Public 
Safety Scenarios, Venue: International Workshop on Internet of Autonomous 
Unmanned Vehicles, IAUV 2019, Lead Author: William Xia, Year: 2019 

129. Title: Modeling mmWave Channels in High-Fidelity Simulations of 
Unmanned Aerial Systems, Venue: Signal Processing Advances in Wireless 
Communications (SPAWC), Lead Author: Tanmay Ram Godbole, Year: 2019 

130. Title: Nonlinear Uncertainty Control with Iterative Covariance Steering, 
Venue: CDC 2019, Lead Author: Jack Ridderhof, Year: 2019 

131. Title: Online Estimation of Geometric and Inertia Parameters for Multirotor 
Aerial Vehicles, Venue: IEEE International Conference on Robotics and 
Automation (ICRA) 2019, Lead Author: Valentin Wuest, Year: 2019 
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132. Title: Open-World Reasoning for Service Robots, Venue: Proceedings of the 
29th International Conference on Automated Planning and Scheduling (ICAPS 
2019), Lead Author: Yuqian Jiang, Year: 2019 

133. Title: Optimal Temporal Logic Planning for Multi-Robot Systems in Uncertain 
Semantic Maps., Venue: IROS 2019, Lead Author: Ioannis Kantaros, Year: 
2019 

134. Title: Persistification of Robotic Tasks, Venue: IEEE Transactions on Control 
Systems Technology, Lead Author: Gennaro Notomista, Year: 2019 

135. Title: Policy Improvement Directions for Reinforcement Learning in 
Reproducing Kernel Hilbert Spaces, Venue: Conference on Decision and 
Control, Lead Author: Santiago Paternain, Year: 2019 

136. Title: Primal–Dual Gradient Dynamics for Cooperative Unknown Payload 
Manipulation Without Communication, Venue: ACC, Lead Author: Tatsuya 
Miyano, Year: 2020 

137. Title: Recent Advances in Imitation Learning from Observation, Venue: 
Proceedings of the 28th International Joint Conference on Artificial 
Intelligence (IJCAI), Lead Author: Faraz Torabi, Year: 2019 

138. Title: Resilience by Reconfiguration: Exploiting Heterogeneity in Robot 
Teams, Venue: IROS, Lead Author: Ragesh Ramachandran, Year: 2019 

139. Title: Resilient Assignment Using Redundant Robots on Transport Networks 
with Uncertain Travel Time, Venue: IEEE T-ASE, Lead Author: Amanda 
Prorok, Year: 2019 

140. Title: RIDM: Reinforced Inverse Dynamics Modeling for Learning from a 
Single Observed Demonstration, Venue: Imitation, Intent, and Interaction (I3) 
Workshop at ICML 2019, Lead Author: Brahma S. Pavse, Year: 2019 

141. Title: Sample-Efficient Adversarial Imitation Learning from Observation, 
Venue: Imitation, Intent, and Interaction (I3) Workshop at ICML 2019, Lead 
Author: Faraz Torabi, Year: 2019 

142. Title: Scalable Representation Learning for Long-Term Augmented Reality-
Based Information Delivery In Collaborative Human-Robot Perception, 
Venue: International Conference on Virtual, Augmented and Mixed Reality 
(VAMR), Lead Author: Fei Han, Year: 2019 

143. Title: Second-Order Filtering Algorithms for Streaming Optimization 
Problems, Venue: CAMSAP 2019, Lead Author: Tomer Harari Hamam, Year: 
2019 
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144. Title: Solving Service Robot Tasks: UT Austin Villa@Home 2019 Team 
Report, Venue: AAAI Fall Symposium on Artificial Intelligence and Human-
Robot Interaction for Service Robots in Human Environments (AI-HRI 2019), 
Lead Author: Rishi Shah, Year: 2019 

145. Title: Stable, Concurrent Controller Composition for Multi-Objective Robotic 
Tasks, Venue: Proceedings of the 58th Conference on Decision and Control 
(CDC-2019), Lead Author: Anqi Li, Year: 2019 

146. Title: Stochastic Latent Actor-Critic, Venue: NeurIPS, Lead Author: Sergey 
Levine, Year: 2020 

147. Title: Task-Motion Planning with Reinforcement Learning for Adaptable 
Mobile Service Robots, Venue: Proceedings of the IEEE/RSJ International 
Conference on Intelligent Robots and Systems (IROS 2019), Lead Author: 
Yuqian Jiang, Year: 2019 

148. Title: "Looking at the Right Stuff" - Guided Semantic-Gaze for Autonomous 
Driving, Venue: IEEE/CVF Conference on Computer Vision and Pattern 
Recognition, Lead Author: Anwesan Pal, Year: 2020 

149. Title: Adaptive Task Allocation for Heterogeneous Multi-Robot Teams with 
Evolving and Unknown Robot Capabilities, Venue: IEEE International 
Conference on Robotics and Automation, Lead Author: Yousef Emam, Year: 
2020 

150. Title: CLEAR: A Consistent Lifting, Embedding, and Alignment Rectification 
Algorithm for Multi-View Data Association, Venue: Robotics: Science and 
Systems, Lead Author: Kaveh Fathian, Year: 2019 

151. Title: Conterfactual Programming for Optimal Control, Venue: L4DC, Lead 
Author: Luiz Chamon, Year: 2020 

152. Title: Controller Synthesis for Infinitesimally Shape-Similar Formations, 
Venue: IEEE International Conference on Robotics and Automation, Lead 
Author: Ian Buckley, Year: 2020 

153. Title: DC-CAPT: Concurrent Assignment and Planning of Trajectories for 
Dubins Cars, Venue: IEEE International Conference on Robotics and 
Automation (ICRA), Lead Author: Michael Whitzer, Year: 2019 

154. Title: Graph Policy Gradients for Large Scale Robot Control, Venue: CORL 
2019, Lead Author: Arbaaz Khan, Year: 2019 

155. Title: Human Information Processing in Complex Networks, Venue: Nature 
Physics, Lead Author: Christopher Lynn, Year: 2019 
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156. Title: Kimera: An Open-Source Library for Real-Time Metric-Semantic 
Localization and Mapping, Venue: ICRA, Lead Author: Antoni Rosinol, Year: 
2020 

157. Title: Learning Q-network for Active Information Acquisition, Venue: IEEE 
IROS, Lead Author: Heejin Jeong, Year: 2019 

158. Title: Maximum Information Bounds for Planning Active Sensing 
Trajectories, Venue: IEEE IROS, Lead Author: Brent Schlodtfelt, Year: 2019 

159. Title: Modular Robot Formation and Routing for Resilient Consensus, Venue: 
IEEE American Control Conference (ACC), Lead Author: Xi Yu, Year: 2019 

160. Title: Multi-Agent Task Allocation using Cross-Entropy Temporal Logic 
Optimization, Venue: ICRA 2020, Lead Author: Christopher Banks, Year: 
2020 

161. Title: Multi-Robot Coordination for Estimation and Coverage of Unknown 
Spatial Fields, Venue: ICRA 2020, Lead Author: Alessia Benevento, Year: 
2019 

162. Title: Multi-Robot Path Deconfliction through Prioritization by Path 
Prospects, Venue: IEEE R-AL, Lead Author: Wenying Wu, Year: 2020 

163. Title: Optimal Computation-Communication Trade-offs in Processing 
Networks, Venue: IEEE Transactions on Network Science and Engineering, 
Lead Author: Luca Ballotta, Year: 2020 

164. Title: Optimization-Based Distributed Flocking Control for Multiple Rigid 
Bodies, Venue: IEEE Robotics and Automation Letters , Lead Author: Tatsuya 
Ibuki, Year: 2020 

165. Title: Planning with Uncertain Specifications (PUnS), Venue: IEEE Robotics 
and Automation Letters, Lead Author: Ankit Shah, Year: 2020 

166. Title: Representing Multi-Robot Structure through Multimodal Graph 
Embedding for the Selection of Robot Teams, Venue: 2020 IEEE International 
Conference on Robotics and Automation (ICRA), Lead Author: Brian Reily, 
Year: 2020 

167. Title: Semi-Supervised Learning of Decision-Making Models for Human-
Robot Collaboration, Venue: CORL, Lead Author: Vaibhav Unhelkar, Year: 
2019 
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168. Title: Simultaneous Learning from Human Pose and Object Cues for Real-
Time Activity Recognition, Venue: 2020 IEEE International Conference on 
Robotics and Automation (ICRA), Lead Author: Brian Reily, Year: 2020 

169. Title: Target Driven Visual Navigation Exploiting Object Relationships, 
Venue: IEEE Transactions on Robotics, Lead Author: Kaveh Fathian, Year: 
2020 

170. Title: Team Composition for Perimeter Defense with Patrollers and Defenders, 
Venue: 58th IEEE Conference on Decision and Control (CDC 2019), Lead 
Author: Daigo Shishika, Year: 2019 

171. Title: TEASER: Fast and Certifiable Point Cloud Registration, Venue: IEEE 
Transactions on Robotics (TRO), Lead Author: Heng Yang, Year: 2020 

172. Title: Towards Online Observability-Aware Trajectory Optimization for 
Landmark-Based Estimators, Venue: https://arxiv.org/abs/1908.03790, Lead 
Author: Kris Frey, Year: 2019 

173. Title: Visual Coverage Maintenance for Quadcopters Using Nonsmooth 
Barrier Functions, Venue: ICRA 2020, Lead Author: Riku Funada, Year: 2020 

174. Title: “Looking at the right stuff” - Guided semantic-gaze for autonomous 
driving,” Venue: Computer Vision and Pattern Recognition (CVPR), Lead 
Author: Anwesan Pal, Year: 2020 

175. Title: 3D Dynamic Scene Graphs: Actionable Spatial Perception with Places, 
Objects, and Humans, Venue: RSS, Lead Author: Antoni Rosinol, Year: 2020 

176. Title: A Polynomial-Time Solution for Robust Registration with Extreme 
Outlier Rates, Venue: Robotics: Science and Systems (RSS), Lead Author: 
Heng Yang, Year: 2019 

177. Title: A Quaternion-Based Certifiably Optimal Solution to the Wahba Problem 
with Outliers, Venue: International Conference on Computer Vision (ICCV), 
Lead Author: Heng Yang, Year: 2019 

178. Title: A Zeroth-order Learning Algorithm for Ergodic Optimization of 
Wireless Systems with No Models and No Gradients, Venue: 45th IEEE 
International Conference on Acoustics, Speech and Signal Processing, Lead 
Author: Dionysios Kalogerias, Year: 2020 

179. Title: Almost-Zero Duality Gaps in Model-Free Resource Allocation for 
Wireless Systems, Venue: EUSIPCO, Lead Author: Dionysios Kalogerias, 
Year: 2020 
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180. Title: Approximate Supermodularity of Kalman Filter Sensor Selection, 
Venue: IEEE Transactions on Automatic Control, Lead Author: Luiz Chamon, 
Year: 2020 

181. Title: Architecture and Evolution of Semantic Networks in Mathematics Texts, 
Venue: Proceedings of the Royal Society A, Lead Author: Nicolas 
Christianson, Year: 2020 

182. Title: Autonomous Navigation in Unknown Environments using Sparse 
Kernel-based Occupancy Mapping, Venue: IEEE International Conference on 
Robotics and Automation (ICRA), Lead Author: Thai Duong, Year: 2020 

183. Title: Cooperative Team Strategies for Multi-Player Perimeter-Defense 
Games, Venue: IEEE Robotics and Automation Letters, Lead Author: Daigo 
Shishika, Year: 2020 

184. Title: Counterfactual Programming for Optimal Control, Venue: 2nd 
Conference on Learning for Dynamics and Control, Lead Author: Luiz 
Chamon, Year: 2020 

185. Title: Covariance Steering for Discrete-Time Linear-Quadratic Stochastic 
Dynamic Games, Venue: IEEE Conference on Decision and Control (CDC), 
Lead Author: Ramana Makkapati, Year: 2020 

186. Title: Decentralized Minimum-Energy Coverage Control for Time-Varying 
Density Functions, Venue: International Symposium on Multi-Robot and 
Multi-Agent Systems (MRS), Lead Author: Maria Santos, Year: 2019 

187. Title: Deep Imitative Models for Flexible Inference, Planning, and Control, 
Venue: International Conference on Learning Representations (ICLR), Lead 
Author: Nicholas Rhinehart, Year: 2020 

188. Title: Dense r-Robust Formations on Lattices, Venue: IEEE International 
Conference on Robotics and Automation, Lead Author: Luis Guerrero, Year: 
2020 

189. Title: DOOR-SLAM: Distributed, Online, and Outlier Resilient Slam for 
Robotic Teams, Venue: IEEE Robotics and Automation Letters (RA-L), Lead 
Author: Pierre-Yves Lajoie, Year: 2020 

190. Title: Dynamic Target Tracking and Energy Efficient AUV Path Planning for 
Trash Collection Using Ocean Current, Venue: Oceans, Lead Author: Michelle 
Sit, Year: 2020 

191. Title: EdgeNets: Edge Varying Graph Neural Networks, Venue: TPAMI, Lead 
Author: Elvin Isufi, Year: 2021 
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192. Title: Fast and Safe Path-Following Control using a State-Dependent 
Directional Metric, Venue: IEEE International Conference on Robotics and 
Automation (ICRA), Lead Author: Zhichao Li, Year: 2020 

193. Title: Federated Classification with low Complexity Reproducing Kernel 
Hilbert Space Representations, Venue: 45th IEEE International Conference on 
Acoustics, Speech and Signal Processing, Lead Author: Peifer Maria, Year: 
2020 

194. Title: From Sensor to Processing Networks: Optimal Estimation with 
Computation and Communication Latency, Venue: IFAC World Congress, 
Lead Author: Luca Ballotta, Year: 2020 

195. Title: Functional Brain Network Architecture Supporting the Learning of 
Social Networks in Humans, Venue: NeuroImage, Lead Author: Steve 
Thompson, Year: 2020 

196. Title: Functional Nonlinear Sparse Models, Venue: IEEE Transactions on 
Signal Processing, Lead Author: Luiz Chamon, Year: 2020 

197. Title: Game Theoretic Formation Design for Probabilistic Barrier Coverage, 
Venue: IEEE/RSJ International Conference on Intelligent Robots and Systems 
(IROS), Lead Author: Daigo Shishika, Year: 2020 

198. Title: Gated Graph Recurrent Neural Networks, Venue: IEEE Transactions on 
Signal Processing, Lead Author: Luana Ruiz, Year: 2020 

199. Title: Graduated Non-convexity for Robust Spatial Perception: From non-
minimal solvers to global outlier rejection, Venue: IEEE Robotics and 
Automation Letters (RA-L), Lead Author: Heng Yang, Year: 2020 

200. Title: Graph Learning: Inferring the Network Structure of the Environment, 
Venue: Proceedings of the National Academy of the Sciences, Lead Author: 
Christophe W. Lynn, Year: 2020 

201. Title: Graph Neural Networks for Decentralized Multi-Robot Path Planning, 
Venue: IROS, Lead Author: Qingbiao Li, Year:  

202. Title: Graph, Convolutions and Neural Networks, Venue: IEEE Signal 
Processing Magazine, Lead Author: Fernando Gama, Year: 2020 

203. Title: Graphon Filters: Signal Processing in Very Large Graphs, Venue: 
EUSIPCO, Lead Author: Luana Ruiz, Year: 2021 

204. Title: Graphon Pooling in Graph Neural Networks, Venue: EUSIPCO, Lead 
Author: Alejandro Parada Mayoraga, Year: 2021 
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205. Title: Graphon Signal Processing, Venue: IEEE Transactions on Signal 
Processing, Lead Author: Luana Ruiz, Year: 2021 

206. Title: In Perfect Shape: Certifiably Optimal 3D Shape Reconstruction from 2D 
Landmarks, Venue: IEEE Conf. on Computer Vision and Pattern Recognition 
(CVPR), Lead Author: Heng Yang, Year: 2020 

207. Title: Individual Differences in Learning Social and Nonsocial Network 
Structures, Venue: J Exp Psychol Learn Mem Cogn., Lead Author: Steve 
Thompson, Year: 2019 

208. Title: Invariance-Preserving Localized Activation Functions for Graph Neural 
Networks, Venue: IEEE Transactions on Signal Processing, Lead Author: 
Luana Ruiz, Year: 2020 

209. Title: Invertible Generalized Synchronization: A Putative Mechanism for 
Implicit Learning in Biological and Artificial Neural Systems, Venue: Chaos, 
Lead Author: Zhixin Lu, Year: 2020 

210. Title: Latent State Models for Meta-Reinforcement Learning, Venue: CoRL, 
Lead Author: Anusha Nagabandi, Year: 2020 

211. Title: Learning Constrained Resource Allocation Policies in Wireless Control 
Systems, Venue: In 59th IEEE Conference on Decision and Control, Lead 
Author: Vinicius Lima, Year: 2020 

212. Title: Learning Hierarchical Relationships for Object-Goal Navigation, 
Venue: Conference on Robot Learning, Lead Author: Cassie Y. Qiu, Year: 
2020 

213. Title: Learning Navigation Costs from Demonstration in Partially Observable 
Environments, Venue: IEEE International Conference on Robotics and 
Automation (ICRA), Lead Author: Tianyu Wang, Year: 2020 

214. Title: Learning Navigation Costs from Demonstrations with Semantic 
Observations, Venue: Learning for Dynamics and Control (L4DC), Lead 
Author: Tianyu Wang, Year: 2020 

215. Title: Learning Predictive Models From Observation and Interaction, Venue: 
European Conference on Computer Vision, Lead Author: Karl 
Schmeckpepper, Year: 2020 

216. Title: Mobile Wireless Network Infrastructure on Demand, Venue: 
International Conference on Robotics and Automation (ICRA), Lead Author: 
Daniel Mox, Year: 2020 
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217. Title: Model-Based Meta-Reinforcement Learning for Flight with Suspended 
Payloads, Venue: ICRA, Lead Author: Suneel Belkhale, Year: 2021 

218. Title: Multi-mode Autonomous Communication Systems, Venue: Asilomar 
Conference on Signals, Systems, and Computers,, Lead Author: Miguel Calvo-
Fullana, Year: 2019 

219. Title: Navigation of a Quadratic Potential with Star Obstacles, Venue: 2020 
IEEE American Control Conference, Lead Author: Harshat Kumar, Year: 
2020 

220. Title: Network Architectures Supporting Learnability, Venue: Proceedings of 
the Royal Society B, Lead Author: Perry Zurn, Year: 2020 

221. Title: Optimal Algorithms for Submodular Maximization with Distributed 
Constraints., Venue: Learning for Dynamics and Control, Lead Author: Alex 
Robey, Year: 2021 

222. Title: Optimal Power Flow Using Graph Neural Networks, Venue: 45th IEEE 
International Conference on Acoustics, Speech and Signal Processing, Lead 
Author: Damian Owerko, Year: 2020 

223. Title: Outlier-Robust Spatial Perception: Hardness, General-Purpose 
Algorithms, and Guarantees, Venue: IEEE/RSJ Intl. Conf. on Intelligent 
Robots and Systems (IROS), Lead Author: Vasileios Tzoumas, Year: 2019 

224. Title: Perimeter-Defense Game Between Aerial Defender and Ground 
Intruder, Venue: 59th IEEE Conference on Decision and Control (CDC), Lead 
Author: Elijah S. Lee, Year: 2020 

225. Title: Probabilistic Safety Constraints for Learned High Relative-Degree 
System Dynamics, Venue: Learning for Dynamics and Control (L4DC), Lead 
Author: Mohammad Javad Khojasteh, Year: 2020 

226. Title: Realization of r-Robust Formations in the Plane Using Control Barrier 
Functions, Venue: IEEE Control Systems Letters, Lead Author: Luis Guerrero, 
Year: 2020 

227. Title: Resilient Control: Compromising to Adapt, Venue: IEEE Conference on 
Decision and Control, Lead Author: Luiz Chamon, Year: 2020 

228. Title: Resilient Coverage: Exploring the Local-to-Global Trade-off, Venue: 
IROS, Lead Author: Ragesh Ramachandran, Year: 2021 

229. Title: Resilient Information Acquisition for Multi Robot Teams, Venue: IEEE 
Transactions on Robotics, Lead Author: Brent Schlotfeldt, Year: 2021 
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230. Title: Resource Allocation in Large-Scale Wireless Control Systems with 
Graph Neural Networks, Venue: 21rst IFAC World Congress, Lead Author: 
Vinicius Lima Silva, Year: 2021 

231. Title: Resource Allocation in Wireless Control Systems via Deep Policy 
Gradient, Venue: SPAWC 2020, Lead Author: Vinicius Lima, Year: 2020 

232. Title: Risk-Constrained Linear-Quadratic Regulators, Venue: IEEE 
Conference on Decision and Control, Lead Author: Anastasios Tsiamis, Year: 
2020 

233. Title: Robust and Efficient Forward, Differential, and Inverse Kinematics 
using Dual Quaternions, Venue: IJRR, Lead Author: Neil Dantam, Year: 2020 

234. Title: Robust Assignment Using Redundant Robots on Transport Networks 
with Uncertain Travel Time, Venue: IEEE Transactions on Automation 
Science and Engineering (T-ASE), Lead Author: Amanda Prorok, Year: 2020 

235. Title: Scaling Up Multiagent Reinforcement Learning for Robotic Systems: 
Learn an Adaptive Sparse Communication Graph, Venue: IEEE/RSJ 
International Conference on Intelligent Robots and Systems (IROS), Lead 
Author: Chuangchuang Sun, Year: 2020 

236. Title: Sparse Multiresolution Representation with Adaptive Kernels, Venue: 
IEEE Transactions on Signal Processing, Lead Author: Maria Peifer, Year: 
2020 

237. Title: Spatial Gating Strategies for Graph Recurrent Neural Networks, Venue: 
45th IEEE International Conference on Acoustics, Speech and Signal 
Processing, Lead Author: Luana Ruiz, Year: 2020 

238. Title: Stability of Graph Neural Networks to Relative Perturbations, Venue: 
45th IEEE International Conference on Acoustics, Speech and Signal 
Processing, Lead Author: Fernando Gama, Year: 2020 

239. Title: Stochastic Policy Gradient Ascent in Reproducing Kernel Hilbert 
Spaces, Venue: IEEE Transactions on Automatic Control, Lead Author: 
Santiago Paternain, Year: 2020 

240. Title: Structure from Noise: Mental Errors Yield Abstract Representations of 
Events, Venue: Nature Communications, Lead Author: Christopher Lynn, 
Year: 2020 

241. Title: Sufficiently Accurate Model Learning, Venue: 2020 International 
Conference on Robotics and Automation, Lead Author: Clark Zhang, Year: 
2020 
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242. Title: Supervised Chaotic Source Separation by a Tank of Water, Venue: 
Chaos, Lead Author: Zhixin Lu, Year: 2020 

243. Title: Synthesis of a Time-Varying Communication Network by Robot Teams 
With Information Propagation Guarantees, Venue: IEEE Robotics and 
Automation Letters, Lead Author: Xi Yu, Year: 2020 

244. Title: The Empirical Duality Gap of Constrained Statistical Learning, Venue: 
45th IEEE International Conference on Acoustics, Speech and Signal 
Processing, Lead Author: Luiz Chamon, Year: 2020 

245. Title: The Graphon Fourier Transform, Venue: 45th IEEE International 
Conference on Acoustics, Speech and Signal Processing, Lead Author: Luana 
Ruiz, Year: 2020 

246. Title: A Distributed Pipeline for Scalable, Deconflicted Formation Flying, 
Venue: IEEE Robotics and Automation Letters (RA-L), Lead Author: Parker 
Lusk, Year: 2020 

247. Title: Asynchronous and Parallel Distributed Pose Graph Optimization, 
Venue: IEEE Robotics and Automation Letters (RA-L), Lead Author: Yulun 
Tian, Year: 2020 

248. Title: Better Safe Than Sorry: Risk-Aware Nonlinear Bayesian Estimation, 
Venue: 45th IEEE International Conference on Acoustics, Speech and Signal 
Processing, Lead Author: Dionysios Kalogerias, Year: 2020 

249. Title: Chance-Constrained Optimal Covariance Steering with Iterative Risk 
Allocation, Venue: American Control Conference, Lead Author: Joshua 
Pilipovksy, Year: 2020 

250. Title: Computation-Communication Trade-offs and Sensor Selection in Real-
time Estimation for Processing Networks, Venue: IEEE Trans. on Network 
Science and Engineering, Lead Author: Luca Ballotta, Year: 2020 

251. Title: Consensus of Multi-Agent Systems with Asynchronous Cloud-
Communication, Venue: Automatica, Lead Author: Sean Bowman, Year: 2020 

252. Title: Covariance Steering with Optimal Risk Allocation, Venue: IEEE 
Transactions on Aerospace and Electronic Systems, Lead Author: Joshua 
Pilipovksy, Year: 2020 

253. Title: Dense Incremental Metric-Semantic Mapping via Sparse Gaussian 
Process Regression, Venue: IEEE/RSJ International Conference on Intelligent 
Robots and Systems (IROS), Lead Author: Ehsan Zobeidi, Year: 2020 
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254. Title: Distributed Attack-Robust Submodular Maximization for Multi-Robot 
Planning, Venue: ICRA, Lead Author: Lifeng Zhou, Year: 2020 

255. Title: Finite Time Performance of Distributed Two-Time Scale Stochastic 
Approximation, Venue: ACC 2020, Lead Author: Thinh Doan, Year: 2020 

256. Title: Forward Chaining Hierarchical Partial-Order Planning, Venue: 
Workshop on the Algorithmic Foundations of Robotics, Lead Author: Andrew 
Messing, Year: 2020 

257. Title: Fully Convolutional Geometric Features for Category-level Object 
Alignment, Venue: IEEE/RSJ International Conference on Intelligent Robots 
and Systems (IROS), Lead Author: Qiaojun Feng, Year: 2020 

258. Title: Infinitesimal Shape-Similarity for Characterization and Control of 
Bearing-Only Multi-Robot Formations, Venue: IEEE Transactions on 
Robotics, Lead Author: Ian Buckley, Year: 2020 

259. Title: Information Theoretic Active Exploration in Signed Distance Fields, 
Venue: ICRA, Lead Author: Kelsey Saulnier, Year: 2020 

260. Title: Learned Sampling Distributions for Efficient Planning in Hybrid 
Geometric and Object-Level Representations., Venue: International 
Conference on Robotics and Automation, Lead Author: Martina Stadler, Year: 
2020 

261. Title: Learning Predictive Models From Observation and Interaction, Venue: 
European Conference on Computer Vision, Lead Author: Karl Schmeckpeper, 
Year: 2020 

262. Title: Marginal Density Averaging for Distributed Node Localization from 
Local Edge Measurements, Venue: IEEE Conference on Decision and Control 
(CDC), Lead Author: Parth Paritosh, Year: 2020 

263. Title: Metrically-Scaled Monocular SLAM using Learned Scale Factors, 
Venue: 2020 IEEE International Conference on Robotics and Automation 
(ICRA), Lead Author: Nick Greene, Year: 2020 

264. Title: One Ring to Rule Them All: Certifiably Robust Geometric Perception 
with Outliers, Venue: 34th Conference on Neural Information Processing 
Systems (NeurIPS 2020), Lead Author: Heng Yang, Year: 2020" 

265. Title: OrcVIO: Object Residual Constrained Visual-Inertial Odometry, Venue: 
IEEE/RSJ International Conference on Intelligent Robots and Systems 
(IROS), Lead Author: Mo Shan, Year: 2020 
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266. Title: Reactive Temporal Logic Planning for Multiple Robots in Unknown 
Environments., Venue: ICRA, Lead Author: Yannis Kantaros, Year: 2020 

267. Title: Resilience in Multi-Robot Target Tracking Through Reconfiguration, 
Venue: ICRA, Lead Author: Ragesh Ramachandran, Year: 2020 

268. Title: Semantic Trajectory Planning for Long-Distant Unmanned Aerial 
Vehicle Navigation in Urban Environments., Venue: International Conference 
on Intelligent Robots and Systems (IROS), Lead Author: Markus Ryll, Year: 
2021 

269. Title: Steering the State of Linear Stochastic Systems: A Constrained 
Minimum Principle Formulation, Venue: American Control Conference, Lead 
Author: Ali Pakniyat, Year: 2020 

270. Title: STRATA: A Unified Framework for Task Assignments in Large Teams 
of Heterogeneous Robots, Venue: Journal of Autonomous Agents and Multi-
Agent Systems (J-AAMAS), Lead Author: Harish Ravichandar, Year: 2020 

271. Title: Tracking and Relative Localization of Drone Swarms with a Vision-
based Headset, Venue: IEEE Robotics and Automation Letters, Lead Author: 
Maxim Pavliv, Year: 2021 

272. Title: A Continuous Representation of Belief over SO(3) for Robust Rotation 
Learning with Uncertainty, Venue: Robotics: Science and Systems (RSS), 
Lead Author: Valentin Peretroukhin, Year: 2020 

273. Title: A Policy Gradient Algorithm for Learning to Learn in Multiagent 
Reinforcement Learning, Venue: ICML 2021, Lead Author: Dong-Ki Kim, 
Year: 2021 

274. Title: A Resource-Aware Approach to Collaborative Loop Closure Detection 
with Provable Performance Guarantees, Venue: International Journal of 
Robotics Research (IJRR), Lead Author: Yulun Tian, Year: 2020 

275. Title: Adaptive Partitioning for Cooperative Multi-agent Perimeter Defense., 
Venue: IEEE/RSJ International Conference on Intelligent Robots and Systems 
(IROS), Lead Author: Douglas Guimares Macharet, Year: 2020 

276. Title: Approximated Dynamic Trait Models for Heterogeneous Multi-Robot 
Teams, Venue: IROS 2020, Lead Author: Glen Neville, Year: 2020 

277. Title: Asynchronous Adaptive Sampling and Reduced-Order Modeling of 
Dynamic Processes by Robot Teams via Intermittently Connected Networks, 
Venue: International Conference on Intelligent Robots and Systems (IROS), 
Lead Author: Hannes Rovina, Year: 2020 
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278. Title: Autonomous Vehicle Benchmarking Using Unbiased Metrics, Venue: 
International Conference on Intelligent Robots and Systems (IROS), Lead 
Author: David Paz-Ruiz, Year: 2020 

279. Title: Distributed Attack-Submodular Submodular Maximization, Venue: 
IEEE Transaction on Robotics, Lead Author: Lifeng Zhou, Year: 2020 

280. Title: FENet: Fast Real-time Semantic Edge Detection Network, Venue: IEEE 
International Symposium on Safety, Security, and Rescue Robotics (SSRR), 
Lead Author: Yang Zhou, Year: 2020 

281. Title: Finite Sample Analysis of a Two-Time-Scale Greedy Natural Actor-
Critic Algorithm, Venue: IEEE Trans. Automatic Control, Lead Author: Sajad 
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