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Abstract

Reverse engineering (RE) is a rigorous process of exploration and analysis to

support software design recovery and exploit development. The process is often con-

ducted in teams to divide the workload and take full advantage of engineers’ indi-

vidual expertise and strengths. Collaboration in RE requires versatile and reliable

tools that can match the environment’s unpredictable and fluid nature. While stud-

ies on collaborative software development have indicated common best practices and

implementations, similar standards have not been explored in reverse engineering.

This research conducts semi-structured interviews with reverse engineering experts

to understand their needs and solutions while working in a team. The results describe

an array of major challenges that are each addressed by employing tools such as

issue tracking software, shared workspaces, and version control systems. Such tools

support documentation and continuity, while mitigating redundancies in concurrent

work. Though the value of these tools is acknowledged by the experts, seamless

workflow integration remains a challenge. The identification of current needs and

practices offers additional opportunities for collaborative tool developers to aid reverse

engineers.
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INVESTIGATING COLLABORATION IN SOFTWARE REVERSE

ENGINEERING

I. Introduction

1.1 Background and Problem Space

In a 2021 executive order on improving the nation’s cybersecurity, the President

of the United States highlighted “enhancing software supply chain security” as a vi-

tal part of the federal government’s efforts [1]. The document addresses utilizing

methods of manual or automated testing of software, such as the static and dynamic

analysis of source code and use of code review tools. Such testing is a part of the re-

verse engineering process, in which a thorough understanding of a system’s structure,

components, and their interrelationships is sought after for the purposes of design

recovery or exploit development [2]. Through this capability, the United States can

better defend against adversaries and advance offensive tactics in cyberspace.

Reverse engineering (RE) differs significantly from software design and develop-

ment, or forward engineering. Rather than a defined series of tasks that result in a

functioning product, RE is an open-ended process of examination and trial and error,

to fully understand what a software system does, how it does it, why it does it, and

more [2]. Engineers must often rely on personal experience and general knowledge

on artifacts and environmental factors. In a collaborative environment, they may

also seek the varied experiences of colleagues. While a team of reverse engineers may

benefit from this shared knowledge pool, collaboration in RE poses an additional set

of potential challenges.
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Improving collaboration can benefit the experiences of new reverse engineers as

well. Entry into RE can be daunting for new engineers, as the field is highly technical

and there is no systematic training. Because RE is such a niche skill set, there

are also fewer RE experts, compared to other software-related fields. Knowledge is

most commonly gained on the job by learning from those who are more experienced.

Enhancing collaboration practices can impact that process by enabling more efficient

flows of information.

Reverse engineering tools were not designed for collaboration [3]. Therefore, when

multiple engineers combine efforts on a single file, they must either work on separate

copies of the file and compare notes, or take turns working on a shared file. Alterna-

tively, each engineer could be assigned different files in the system to investigate. In

either instance, communication and documentation involves external tools. Reverse

engineers must employ the collaboration tools that best fit their needs. While studies

have explored collaboration in other fields, this research presents the needs unique

to collaborative RE and the tools that reverse engineers currently use to meet those

needs.

1.2 Research Objectives

Through the experiences of subject matter experts, this research seeks to un-

derstand the processes of reverse engineering teams. The results should answer the

research question, How is collaboration currently conducted in reverse engineering?

The primary objectives of the research are as follows:

• Determine the user needs and challenges unique to collaborative RE

• Identify the collaborative tools used by RE teams

• Establish the standard collaborative RE workflow

2



• Discern how the collaborative tools are integrated into an RE team’s workflow

1.3 Research Approach

This research solicits reverse engineers with at least five years of experience to

participate in interviews. The participants are asked to recall a critical incident or

project in which active collaboration between team members occurred. The survey

instrument dives deep into the methods of communication and strategies for docu-

mentation throughout the incident. The participants are questioned about the impact

of collaborative tools on each step of the collaborative process. The interviews aim

to understand the specific needs and challenges that are being met by the tools that

the RE teams choose to utilize.

The interview data is analyzed to uncover the general collaborative RE workflow,

most commonly used collaborative tools, and their significance to RE teams. Though

these tools may not have all been designed specifically for RE, they serve a purpose

that reverse engineers identify as critical. Challenges may still exist in the integration

of the tools into each individual’s workflow. However, recognition of their value to

the team must be achieved first.

1.4 Thesis Overview

This chapter offered a brief discussion of the scope and intent of the research.

Chapter II reviews existing literature on the individual RE workflow, RE tools, and

collaboration solutions in other software-related fields. Chapter III introduces the

methodology and analysis strategy employed in conducting this research. Chapter IV

provides the results of the data analysis and answers the research question. Chapter V

summarizes the research conclusions and offers avenues for future work.

3



II. Background and Literature Review

2.1 Overview

Chapter I introduced the problem of understanding how reverse engineers col-

laborate with each other and presented the research question: How is collaboration

currently conducted in reverse engineering?

This chapter begins with a review of the reverse engineering (RE) workflow and

tools used by an individual engineer in preparation for examining the collaborative

RE workflow in this research. Next, solutions that have been developed to support

collaborative RE are discussed, before exploring how collaboration is optimized in

software development. Finally, the chapter concludes with an overview of interviewing

methods for eliciting knowledge from subject matter experts.

2.2 Reverse Engineering Process

No standard RE process exists that can adequately capture all the work done by

reverse engineers [4]. Every project is unique in its complexity and challenges, and

each engineer may take a different approach to complete it. However, the process of

reverse engineering an unknown binary is simplified by Quist and Liebrock down to

four steps: setting up an isolated environment, executing the program for initial anal-

ysis, deobfuscation and disassembly, and finally, identifying and analyzing relevant

portions [5]. A similar workflow, but specifically for vulnerability discovery, is identi-

fied by Votipka, et al.: information gathering, program understanding, attack surface,

exploration, vulnerability recognition, and reporting [6]. These two characterizations

of the RE workflow represent the process from a technical perspective. The work-

flows introduced later in this section will examine the RE process from higher levels

of abstraction.
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2.2.1 Mental Processes

In a separate study, Votipka, et al. gained insights into the individual reverse en-

gineer’s mental processes, using a semi-structured interview protocol [7]. The themes

that emerged from the interviews reveal reverse engineering to be an iterative process,

depicted in Figure 1.

Figure 1: Illustration of the loop reverse engineers iterate through when analyzing
programs [7]

“Reverse engineering is inherently a process of knowledge discovery,” [7] as high-

level goals and questions lead to more specific questions. Once a question is pin-

pointed, the next step is to simulate or execute a scenario, either mentally or with a

dynamic analysis tool. As the program is simulated, the engineer may recognize bea-

cons that point to additional inferences. With those inferences, the engineer makes a

decision on how to best use their time, considering further questions and hypotheses

to test. These decisions are often made based on prior experience with findings that

seem familiar. When there are no similarities to prior work, the engineer makes de-

cisions based on heuristics, such as function size or complexity. The process iterates

until the engineer discovers the program’s functionality.

5



2.2.2 Reverse Engineering Workflow

The reverse engineering workflow can be captured from a higher level of abstrac-

tion. Based on data from semi-structured interviews with professional reverse engi-

neers, Henry broke the workflow down into five processes [8] illustrated in Figure 2.

Metadata analysis includes obtaining the basic, static information about the binary

that provides a “broad understanding of the compiled program” [8]. Disassembly

analysis involves the use of a disassembler to statically analyze the code. Dynamic

analysis most frequently occurs using a debugger in a virtual machine.

The results of the three forms of analysis must then be synthesized and docu-

mented in an organized manner [8]. Depending on external stakeholders, the docu-

mentation may be translated into language that is able to be easily interpreted by

non-technical management. Reverse engineers who are working in teams also meet

regularly and share documentation with each other. However, reading one’s docu-

mentation alone may not be enough to gain an understanding of where they are at

in their analysis process. Collaborating in reverse engineering often involves taking

Figure 2: Overview of the reverse engineering workflow process [8]
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time to recreate another engineer’s work to reach the same level of understanding.

Documentation and collaboration are not commonly discussed as core stages of

reverse engineering. However, these stages are as critical to the success of the process

as the technical analysis [8]. The challenges reverse engineers face in these stages can

translate into preventable inefficiencies, due to the lack of tools specific to the reverse

engineer’s needs.

2.2.3 Reverse Engineering Workflow in Varying Contexts

A high-level workflow for RE in a security context is identified by Treude et al.

as five key processes: analyzing, documenting, transferring knowledge, articulating

work, and reporting [4]. Analyzing the assembly code and following the flow of data

in a program is “at the heart of most reverse engineering projects” [4]. Documenting

serves several purposes, providing cognitive support for the engineers during analysis,

while communicating code comprehension to collaborators or outside stakeholders.

Transferring knowledge refers to the sharing of completed work beyond what is pos-

sible through documentation alone. Treude et al. cite the restrictiveness of workflow

support tools in an RE environment as a roadblock to success. Articulating work in-

cludes scheduling sub-tasks, recovering from errors, assembling resources, and other

items required to coordinate task completion. Finally, the results of the RE activities

must be reported when external stakeholders are involved. Breaking the RE workflow

in these five processes allowed the researchers to acknowledge the lack of adequate

tools to support the flexibility required in RE. The task complexity, security context,

and tool constraints of RE “make it impossible to follow a structured heavyweight

process” [4].

Wagner, et al. explore the background and problem characterization of malware

analysis [9]. They identify the basic differences between static and dynamic analysis

7



in the process of behavior-based malware recognition. While each approach has its

purpose and limits in the reverse engineering process, they both “yield patterns and

rules, which are later used for malicious software detection and classification” [9].

Reverse engineers often use static and dynamic analyses simultaneously, “using the

results of one to feed the other” [7].

Reports from a series of case studies were analyzed by Ceccato et al. to produce

a model that describes how hackers understand an application and identify sensitive

assets [10], shown in Figure 3. Static and dynamic program analysis play a dominant

role in this process. Beyond enabling code comprehension, they possess the ability

to limit the scope of attack. For example, studying string references in the code can

reveal “specific constant strings [that are] referenced in the proximity of sensitive

assets” [10]. Tampering with execution can also identify sensitive assets, to extract

a crypto key for instance. Lastly, when hackers recognize libraries with well-known

functionalities, they get important clues on how they function for asset protection. If

program analysis and reverse engineering is inhibited and when tampering of program

Figure 3: Model of hacker activities related to understanding the app and identifying
sensitive assets [10]
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execution is not allowed, the hackers’ tasks of understanding the application and

identifying sensitive assets becomes harder to carry out, as illustrated in this model.

2.3 Reverse Engineering Tools

In the reverse engineering of assembly code, disassemblers and decompilers are

semi-automated tools used to analyze software systems and understand the underlying

executable program. A disassembler is a program that takes an executable program

as input and outputs the equivalent assembly language in a human-readable format.

A decompiler takes it a step further and translates the program into an equivalent

high-level language, such as C [11].

While performing advanced static analysis, reverse engineers rely heavily on the

disassembler program to view the program’s functions, libraries, strings, and more

[12]. The disassembler can also provide a control flow graph of the program that can

help the engineer understand the sequence in which functions are executed and vari-

ables change. Upon developing hypotheses and uncovering functionalities, engineers

can add comments to the code or rename functions as documentation.

Popular disassemblers also offer a built-in decompiling feature. However, the out-

puts of decompilers (i.e., the recovered C code) are not extensively used in academia

as trusted evidence [13]. The recovered high-level code is commonly believed to be

unusable for recompilation, and decompilers are understood to have bugs and defi-

ciencies that may impede the correctness of their outputs. Nevertheless, decompilers

remain among the most fundamental tools for code comprehension.

The two most popular reverse engineering tools are Ghidra and IDA Pro. Ghidra

is an open source software reverse engineering (SRE) framework developed by the

National Security Agency’s (NSA) research directorate [14]. Ghidra’s capabilities in-

clude disassembly, decompilation, graphing and scripting, and more. The tool can

9



be run in “both user-interactive and automated modes” [14] and supports a variety

of processor instruction sets and executable formats. The exposed application pro-

gramming interface (API) allows users to develop their own plug-in components or

scripts. As shown in Figure 4 below, Ghidra’s graphic interface displays the assembly

code of the selected function in the main window, with side panels that break down

the sections of the executable, as well as imports, exports, functions, and strings.

Figure 4: Ghidra disassembler interface

IDA Pro is another widely used disassembler developed by Hex Rays, available

for Windows, OS X, and Linux. The tool claims to be able to analyze binaries “in a

matter of seconds” [15], and comes with local and remote debugging features. Unlike

Ghidra, the free version of IDA does not include select advanced features such as

decompiling, Python scripting, batch analysis, and support for processors beyond x86

and x64 [15]. However, the full version supports “more than 65 families of processors
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that include x86/x84, ARM/ARM64, MIPS/MIPS 64, etc.” [15], a greater number

than supported by Ghidra [16]. IDA Pro’s interface is similar to that of Ghidra,

with the main tab for the assembly code accompanied by a list of the functions. The

binary’s imports, exports, and strings are also easily accessible as additional tabs.

Binary Ninja is another reversing platform created by Vector 35, featuring a built-

in scriptable decompiler [17]. The tool supports the disassembly, lifting, decompila-

tion, inline-assembly editing, and C compilation for a range of processor architectures.

While there is no free version of the software, Binary Ninja boasts an extensive API

that has enabled an active community of plug-in developers. Binary Ninja’s great-

est advantage is its modern user interface, that is highly customizable “for a fast,

pleasant experience” [17].

2.4 Collaborative Reverse Engineering Tools

This section introduces RE collaboration tools used alongside the general RE tools

discussed previously.

2.4.1 Version Control Tools

Ghidra Server is a built-in feature of the Ghidra SRE framework that allows users

to create shared project repositories [18]. Shared projects facilitate collaboration

among reverse engineers by allowing them to share changes and annotations made to

the binaries. With Ghidra Server, users can save a snapshot of a file’s current state,

also known as a “commit.” Collaborators can push or pull commits to and from the

server, add comments to each new commit, and maintain a backlog of all commits

made to the server.

To create a Ghidra Server shared project, the server must first be set up on any

network-connected machine running Ghidra. The server setup files are included in
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Ghidra’s system files. Given the server IP address and port, anyone can then create

a shared project within Ghidra and start adding files. When a file is added to the

project, the “Add to Version Control” option will become available in the right-click

menu, shown in the leftmost image of Figure 5. Once changes or comments are made

in the file and saved, the “Check In” option, shown in the center image, will push

those changes to the server for other contributors to view.

Figure 5: Ghidra server interface

To begin work on a file, users must first “Check Out” the file, shown in the

rightmost image. While the file is checked out, if updates were made and checked

in by other users, the “Update” option will provide the newest version of the file. A

green check indicates that the file is completely up to date. Users can use the “Show

History” option to view a complete log of commits, including timestamps, user IDs,

and comments. The “View Checkouts” option also shows who has opened the shared

file, even if no changes were made and pushed. These capabilities allow teams to

maintain documentation of the work done on a project involving multiple reverse
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engineers.

For teams that use a variety of disassembling tools, CollaRE allows teams to share

project files from separate locations. The tool does not integrate directly into any

RE tool, but supports project files from Binary Ninja, Cutter, Ghidra, Hopper, IDA,

and JEB [19]. Simple version control, including check-in and check-out operations,

manages files produced by these tools so that all members of a team have access to

work done by one another.

2.4.2 Workflow Synchronization Tools

No other disassemblers have a shared project feature like Ghidra Server built into

the program. However, third party developers have created plug-ins for IDA Pro and

Binary Ninja that support collaboration. One example is CollabREate, an IDA plug-

in that goes one step beyond sharing files on a server. CollabREate also captures user

actions and database updates. Actions that are captured include function added, byte

patched, operand type changed, comment changed, and more. Users can selectively

choose to publish this data to the server, subscribe to changes that others publish,

or both publish and subscribe [3]. Users have “granular and flexible control” [3] at

the project level or individual session level over what is shared. For example, a user

can choose to only publish comments and subscribe to patched bytes and function

name changes. This flexibility is particularly useful if engineers have varying levels

of experience or play different roles on the team, but need to keep their materials

synchronized.

IDArling is another IDA plug-in that supports collaboration by synchronizing

“real-time changes made to an IDA database by multiple IDA users” [20]. The plug-

in collects one user’s actions within IDA, just like CollabREate, but immediately

propagates the changes to other users that have the same snapshot loaded, through
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the server architecture. While some teams may prefer the granular control over what

is shared that CollabREate offers, others may value the efficiency that IDArling’s

real-time synchronization affords instead.

Visualization needs in collaborative RE are addressed by SensorRE, a plug-in for

Binary Ninja that leverages the concept of analytic provenance. Analytic provenance

is the understanding of “a user’s reasoning process through the study of their inter-

actions with a visualization” [22]. SensorRE captures user actions in Binary Ninja

as they are executed and provides a provenance graph that visually communicates a

timeline of events. The provenance graph, depicted in Figure 6, is a vertical tree made

up of nodes, edges, and branches. Each node represents a state in the disassembler.

Figure 6: SensorRE visualization with a captured provenance graph and storyboard
[21]
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Each edge represents the user action taken that resulted in a state change. Branches

occur in the tree where the user tried different courses of action to test potential

hypotheses. This scalable visual history of actions can be replayed sequentially using

the storyboard side panel of SensorRE, also shown in Figure 6. The graph and sto-

ryboard can be exported and presented to other engineers or project stakeholders to

describe the user’s workflow.

2.5 Collaboration in Software Development

Compensating for communication loss in geographically distributed teams has

driven research and design of collaboration tools for software development, or for-

ward engineering. Christian and Rotenstreich created an evaluation framework for

such tools that represent the needs of asynchronous teams [23]. Through an investiga-

tion of tools that have proven beneficial to asynchronous teams, five key characteristics

emerged: awareness, calendar assist, context persistence, coordination, and visualiza-

tion. Awareness tells the user who is in the workspace and what they are working on.

Calendar assist refers to the ability to coordinate the team to conform to a schedule

and notify them of meetings and deadlines. Context persistence allows users to see

events that have occurred, as well as who or what contributed to them. Coordination

mechanisms includes rules and procedures that facilitate the prompt completion of

distributed tasks. Visualization provides a visual channel for large amounts of data

and information exchange. When evaluating a collaboration tool, the more of these

five characteristics the tool exhibits, the more effective it is at supporting a distributed

team.

Seven standard classes of collaborative development tools were identified by Lanu-

bile, et al.: version-control systems, trackers, build tools, modelers, knowledge centers,

communication tools, and Web 2.0 applications [24]. Version control systems, such
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as Git and Mercurial, allow developers to share software artifacts and maintain team

synchronization. Trackers, such as Jira, help a team manage and document issue res-

olutions in an ongoing project. Build tools offer secure, remote repositories and build

management. Modelers help developers create artifacts such as Unified Modeling Lan-

guage (UML) models and customized software processes. Knowledge centers contain

internal documents, technical guides, standards, and best practices for team members

to share with each other. Communication tools can support both asynchronous and

synchronous communication, with features ranging from videoconferencing and mail-

ing lists to document sharing and concurrent editing. Web 2.0 applications, such as

Confluence, allow direct user contributions and community building, representing a

valuable means to increase overall communication among team members. Supporting

all the types of collaborative tools has become a strategic priority for teams with

distributed resources and software needs.

As discussed previously, version control systems are integral tools in collaborative

software development. Git is the leading software in this category, as its functionalities

and efficiency have evolved by leaps and bounds since its creation in 2005 [25]. Just

like its predecessors, Git tracks changes in working source code and allows multiple

developers to work together. However, Git’s unique branching model sets it apart

from other version control systems. If a repository’s history of revisions is to be

thought of as a linear tree, Git users are encouraged to create local “branches” in the

tree that remain independent of each other. These branches can be deleted without

impacting the rest of the tree, or merged with the main line [26]. Users can seamlessly

switch between different branches within a repository, experimenting with different

feature ideas without fear of breaking existing features.

Git is also a distributed control system. Being distributed means that each devel-

oper in the team has their own copy or “clone” of the repository. Therefore, if the
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team is using a centralized workflow, depicted in Figure 7, each developer has a full

backup of the files.

Figure 7: Subversion-style workflow [27]

Git’s distributed nature, combined with the branching system, enables easy imple-

mentation of a wide range of workflows. For instance, a common approach involves

an integration manager, who is the sole person who can commit to the “blessed”

repository. Developers must clone from that repository, push to their own indepen-

dent repositories, and then ask the integration manager to pull in their changes [27].

This workflow model, shown in Figure 8, is commonly seen in open source projects.

Microsoft’s Visual Studio integrated development environment (IDE) is a code

Figure 8: Integration manager workflow [27]
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development tool that offers the Live Share extension feature for collaboration. In

a Live Share session, multiple Visual Studio users can “co-edit, co-debug, chat with

peers, share terminals, servers, and look at comments” [28], all in real-time. Live

Share does not require users to clone a repository or configure an environment to

function. Inviting collaborators is as simple as sharing a link. Users can be working

from any operating system and with any language. Tools similar to Live Share have

been created by third party developers as standalone collaboration tools or for use

with other IDEs such as Atom [29]. However, Live Share is the only collaboration

functionality of its kind that is offered by the creator of the IDE. Microsoft’s code

editor, Visual Studio Code, also supports the Live Share extension.

2.6 Interviewing Methods

As the director of the Defense Advanced Research Projects Agency (DARPA)

from 1975-1977, Dr. George H. Heilmeier crafted a set of questions to help agency

officials think through and evaluate proposed research programs [30]. They became

known as the “Heilmeier Catechism” questions. When proposing a new research idea,

the questions ask the researcher to reflect on ideas including, “how is it done today,

what are the limits of current practices, and what difference will it make if you are

successful?” In this research, select Heilmeier Catechism questions are used to ask the

participants about the state of collaborative tools currently employed in RE.

The Critical Decision Method (CDM) is a semi-structured retrospective interview

protocol aimed at capturing expert decision making in a naturalistic environment

[31][32]. The technique has proven useful for eliciting expert knowledge, decision

strategies, and cues in cognitive research. In a CDM interview, the subject matter

expert is asked to identify a specific incident of interest. The incident is then dissected

in four stages:
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1. Incident selection and recall

2. Timeline verification and decision point identification

3. Deepening

4. “What-if” queries

Votipka, et al. implemented a modified version of the CDM in their study’s

interview protocol [7]. Participants were asked to choose an interesting program

they recently reverse engineered and demonstrate the steps they took. Throughout

the program walkthrough, the interviewers asked directed questions to probe the

participants’ mental models. The researchers used an iterative open coding method

to identify themes from the interview transcripts.

A 2003 study investigating the factors behind surgical errors in hospitals also

utilized the CDM to elicit details from relevant incidents [33]. Surgeons were asked to

provide an open-ended description of each incident and the factors that contributed

to the errors made. The interviewer and surgeon then discussed the events of the

incident in detail. Finally, the interviewer asked the surgeons about the role of 15 pre-

determined possible contributing factors. This procedure follows the basic structure

of the CDM while tailoring the “what-if” queries stage to the unique objectives of

the study.

In a study on bar coding in medication administration and improving patient

safety, the researchers conducted CDM interviews with nurses and pharmacists to

understand “near-miss, wrong-patient” incidents involving bar code technology [34].

By recognizing recurring patterns across the CDM interviews, the researchers were

able to identify unanticipated side effects of introducing the technology to existing

practices.

Similarly, in this research, the CDM is used to understand the existing practices

and workflow of collaborative RE, as well as the reasoning behind the choices of tools
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utilized. This method offers the researcher the most structured and consistent way

to collect the data required to answer the research questions. The specifics of the

implementation of the CDM are detailed further in the research’s methodology.

2.7 Chapter Summary

This chapter reviewed how RE is conducted by individuals and the tools required.

The existing solutions for collaborative RE are discussed, along with collaborative

tools used in software development. Finally, relevant interviewing methods are intro-

duced ahead of the next chapter’s description of the study’s design.
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III. Methodology

3.1 Overview

The purpose of this research is to discover the needs and challenges of a reverse

engineering (RE) team and the collaborative tools implemented to meet those needs.

Selecting the appropriate methodology is critical to fully understand how RE teams

collaborate. Figure 9 provides an outline of the method followed. The process starts

by defining the research problem, selecting the suitable research method, and design-

ing the study. After the design is executed, data analysis is performed to present

results that answer the research questions.

This chapter describes the methodology used to collect and analyze the study’s

data and the rationale behind the chosen approach. The discussion includes the

design of the interview process and questionnaire, how participants were identified

and selected, and the data analysis strategy.

Figure 9: Overview of the research methodology
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3.2 Research Problem

RE is conducted in teams to increase the rate at which software systems can be

dissected or exploits can be developed. Adding engineers may allow the work to be

split up and given multiple perspectives. However, increasing the number of person-

nel does not always directly translate into greater efficiency. At a minimum, a team

must have the proper communication channels and documentation practices in place

to see increased productivity. If a team does not make these considerations, potential

challenges may include redundancies, inconsistencies, or misunderstandings. Multiple

engineers may end up unintentionally analyzing the same function, wasting time that

could be spent making discoveries elsewhere. Team leads may have difficulties keeping

track of who is responsible for the completion of assigned tasks and holding members

accountable for their work. Without an organized method of documentation, indi-

vidual engineers may spend extra time searching for archived material that they need

on a current project. These hypothetical dilemmas represent how collaborative RE

differs from individual RE, and require more than a simple conversation to address.

Obtaining a comprehensive understanding of the collaborative RE environment

and existing workflow is necessary to identify solutions to meet the specific needs

of the users. The question driving this research is: How is collaboration currently

conducted in reverse engineering? Several supporting questions were developed to

support this core question:

1. What does the collaborative RE workflow look like, from start to finish?

2. What are the user needs and challenges unique to the collaborative process?

3. What collaborative tools do RE teams currently use?

4. How are those collaborative tools integrated into a team’s workflow?
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3.3 Research Method Selection

There are two primary methods for conducting research studies, quantitative and

qualitative. Quantitative approaches have features advantageous for researchers look-

ing to make statistical generalizations on a large number of cases. They use standard

measures to fit many perspectives and experiences into predetermined responses [35].

However, without utilizing statistics, qualitative studies enable the researcher to gain

more depth and detail on a limited number of cases, while allowing subjectivity of in-

dividual experiences to be captured. For this research, a qualitative study was chosen

to seek a variety of experiences of subject matter experts (SMEs).

A series of semi-structured interviews with reverse engineering SMEs were con-

ducted in accordance with the interviewing strategies outlined by Wood. The goal

of Wood’s techniques is to describe users’ current work practices and propose ways

their work can be enhanced by introducing a software support application [36]. The

SMEs have the professional experience necessary to credibly speak on the goals and

challenges of reverse engineering in a collaborative environment. Their knowledge

and experience with collaborative tools can also help reveal how RE teams choose to

take on those challenges, addressing the research questions.

3.4 Design of Study

The semi-structured interviews follow a predetermined format in which partici-

pants are asked the same questions in order. However, depending on the participant’s

responses, further elaboration, clarification, or examples may be necessary [37] [38].

Semi-structured interviews allow the interviewer to adapt to the conversation and

elicit more intricate details from the subject while staying on theme throughout the

allotted time. This section describes the purpose of each group of questions and how

the subject matter experts were selected.
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3.4.1 Purpose of the Question Groups

Before beginning the questionnaire, the researcher read the purpose of the study

aloud for the participant’s awareness, and asked if there were any questions or con-

cerns before starting. This standard introduction reduces the likelihood of misunder-

standings or off-topic responses from the participant throughout the interview.

The preliminary interview questions serve as a demographic survey of the partici-

pant. Without requiring personally identifiable information, the questions ask about

the participant’s educational background, amount of professional reverse engineering

experience, and nature of that experience. Though demographic data is not a pri-

mary variable of interest, the information could be referenced during data analysis to

explain trends or outliers.

The remainder of the interview is organized into two lines of questioning. The

first section prompts the participants for initial thoughts on the state of collaboration

tools and techniques available today to reverse engineers, including their history and

evolution, as well as benefits and limitations. These questions are inspired by the

Heilmeier Catechism questions [30], because they effectively establish current best

practices and shape the problem space for future developments.

The second line of questioning follows the Critical Decision Method (CDM) of

eliciting knowledge. The CDM offers the ability to capture tasks in “naturalistic en-

vironments characterized by high time pressure, high information content, and chang-

ing conditions” [37]. Figure 10 depicts the CDM interview process in four sweeps of

questioning [32]. First, the researcher asks the participant to recall a specific, past

incident in which they collaborated with others to accomplish a RE task or project.

Because this prompt immediately follows the Heilmeier Catechism questions, the par-

ticipants will likely bring up incidents relevant to the limitations of tools discussed

previously. Based on the participant’s overview of the incident, the researcher creates
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Figure 10: Overview of the Critical Decision Method [37]

a timeline of events and identifies key decision points in this timeline. After verifying

the timeline’s accuracy with the participant, the researcher begins the next sweep

into each decision point.

In the ensuing deep dive into each point on the timeline, the participant identifies

the specific challenge encountered at, or prior to, that decision point. The participant

is encouraged to expand and reflect on the team’s use of collaborative tools during the

time of the incident. For each challenge, the researcher asks the following follow-up

questions:

1. How did the involved engineers’ level of experience (at the time) contribute to

the handling of the situation?

2. How did the integration of collaborative tools affect the courses of action taken?

3. From this decision point, what were some lessons learned? Did any of these

lessons reappear later in the project?

After exploring every key decision point, the researcher restates all of the lessons

learned that the participant previously mentioned. “Did any of these lessons have

an impact on a future collaborative RE process?” The lessons that the participant
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reiterates in response to this question are more likely to be of greater significance

than others mentioned. The researcher also collects ideas for possible improvements

to available tools, as well as possible risks, trade-offs, and indicators of success for

such changes.

Finally, the researcher offers the participant an opportunity to provide any ad-

ditional thoughts or closing comments on any subject that was not previously men-

tioned. The complete questionnaire can be found in Appendix C.

3.4.2 Pilot-Testing the Interview Questionnaire

Before approaching potential study participants and proceeding with the inter-

views, the researcher submitted the survey instrument to the Institutional Review

Board (IRB) for approval, documented in Appendix A. Once approved by the IRB,

the researcher proceeded with a test run of the questionnaire with a reverse engi-

neer of intermediate experience. The purpose of the test run was to ensure that the

elicited responses remained relevant to the research question and did not confuse the

participant. An intermediate-level reverse engineer was selected because if they have

enough experience to draw meaningful thoughts from, an engineer with greater expe-

rience would likely be able to as well. The results of the test run demonstrated that

the questions were appropriately structured and relevant to the research problem.

3.4.3 Selection of Participants

Research participants were selected based on their knowledge and experience in

software RE in collaborative environments. Participants have at least five years of

experience with software RE in their professional careers. Recruited reverse engi-

neers have also collaborated with others to complete RE projects in the past. Par-

ticipants were solicited from active duty military members, Department of Defense
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civilians, and contractors. The researcher recruited them from U.S. Air Force units

that conduct software reverse engineering on a day-to-day basis. The participants

were contacted by the researcher through email and informed that there would not

be compensation for their participation.

3.5 Administration of Interviews

The interviews were conducted throughout November 2021. Participants were

given the option of an in-person or phone interview. Four participants opted for a

call, while the other four met with the researcher in-person. The length of the inter-

views ranged from 50 minutes to an hour and 40 minutes. The researcher took notes

during the interview in a text editing software. The dialogue was also recorded using

voice recording software that distorted the incoming audio to mask the participant’s

identity. Text and audio file names did not include any personal identifiable informa-

tion for the same reason. Throughout the interview, the participants were given as

much time as they required to answer the questions to their satisfaction.

The researcher took note of technical terminology and asked for clarification where

necessary. In each interview, the researcher was careful not to mention new terminol-

ogy learned from previous interviews, to avoid data contamination across interviews.

The researcher avoided asking leading questions that alluded to the responses of other

participants or any preconceived response.

3.6 Data Analysis

Upon completion of the interviews, the researcher transcribed the audio data

and compiled the text into a readable narrative for analysis. Qualitative analysis

connects, describes, and classifies the data collected to produce meaningful themes,

patterns, and insights [35]. To achieve this, the interview data and the researcher’s
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notes were loaded into the data analysis software, MaxQDA [39], for easy viewing

and comparison. Analysis highlights are easily retrievable in MaxQDA, with a range

of filter options displaying all relevant data and results.

Even though the CDM approach to interviewing yields a unique scenario for each

participant, similarities still emerge in the challenges and decision points encountered.

In MaxQDA, the researcher could associate blocks of text with major themes and as-

sign labels and weights to the text segments. Themes and patterns are acknowledged

and reported in the following results.

An example of how the responses produce patterns across participants is described.

The questions concerning current collaboration tools and techniques asked in the

questionnaire are, “Describe the tools/techniques utilized today while performing RE

with others, specific to the collaborative environment. If they have evolved over the

course of your career, please specify how,” and “What are the benefits and limitations

of the tools/techniques used today for collaboration in RE?” After consolidating all

the responses on current tools and techniques, the researcher found that the majority

of experts brought up the Ghidra Server plug-in for shared version control. The high

frequency of these responses indicate that the use of Ghidra Server is prevalent, rather

than a one-time phenomenon.

3.7 Chapter Summary

This chapter introduced the method for conducting the study and the research

questions that drove that choice. The interview questionnaire was created to guide

the deep dive into the participants’ experience with collaborative RE. Interviews

were conducted across the span of three weeks with participants from a variety of

professional backgrounds. The data collected from the interviews were sorted and

analyzed to yield answers to the research questions.
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The next chapter presents the findings of the semi-structured interviews with

the subject matter experts. The interview data is explored to understand the tools

utilized and the needs they address in a collaborative RE environment.
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IV. Results and Analysis

4.1 Overview

This chapter presents the data collected from the interviews introduced previ-

ously. The study’s participants come from a variety of educational and professional

backgrounds and provide insights from their experiences. The interview data assists

in establishing the collaborative reverse engineering (RE) workflow and identifying

challenges and user needs. The participants also discuss the collaborative tools cur-

rently employed and how they fit their needs. This chapter addresses the primary

research question: How is collaboration currently conducted in reverse engineering?

4.2 Interview Data

Eight subject matter experts participated in the study, listed in Table 1. Each

participant has been a part of software RE teams with the purposes of either design

recovery or exploitation development. Educational backgrounds are limited to bach-

elor’s or master’s degrees in computer science, computer engineering, or electrical

engineering. Half of the participants have had only 5 years of professional RE expe-

rience (P1, P3, P5, P6), while the other half have had 10+ years of experience (P2,

Table 1: Participant demographic survey
Participant Degree Education RE Experience

P1 Comp Sci B.S. 5 years
P2 EE M.S. 11 years
P3 Comp Sci M.S. 5 years
P4 Comp Sci M.S. 12 years
P5 Comp Sci M.S. 5 years
P6 Comp Eng M.S. 5 years
P7 EE B.S. 10 years
P8 Comp Sci M.S. 11 years
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P4, P7, P8). Two of the more experienced participants served as their team’s lead

engineer on at least one project (P4, P8). All participants reported receiving no RE-

specific training beyond basic assembly language taught in undergraduate classes.

Advanced RE knowledge was learned solely on the job, working under those with

greater experience.

4.3 Collaborative Reverse Engineering Workflow

During the CDM portion of the interview, the participants outlined the general

workflow followed by a team they worked on, derived from the memory of a specific,

past RE project. After synthesizing all eight responses, the collaborative RE workflow

can be generalized as shown in Figure 11.

Upon receiving a new project, the team lead performs a brief first pass of the

system, taking inventory of all files and determining its basic structure. If provided a

Figure 11: Collaborative reverse engineering workflow
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previous high-level report by the client, they would verify the background information

included to get an accurate picture of the architecture and design of the system. This

initial process identifies the resources that the team needs to build an appropriate

virtual environment around the system for it to “reside in its most natural state”

(P4). This process is known as “rehosting.” Any intelligence on the system’s origin

or attribution could also prepare the team for what kind of tactics, techniques, and

procedures to expect moving forward.

The size of the team assigned to any given project is highly dependant on the

complexity of the job, as well as the time frame they are given to complete it. “The

largest project I’ve ever worked on had a team of 12, all hands on deck, because it

was on a very hot topic at the time” (P5). Most large projects require up to four or

five engineers. However, an average project typically warrants no more than three

engineers, including the team lead (P4, P5, P7).

Next, the team lead starts assigning various tasks or components of the system

to the team members. Some reverse engineers may have expertise or past experience

with particular architectures and types of binaries. Others may have more limited

skill sets and experience at the time. The lead takes everyone’s abilities into account

and plays to the engineers’ strengths as much as possible to maximize the team’s

work efficiency (P2). Team members may also voice a preference for working on a

particular part of the system. These requests are often granted, as one is more likely

to stay motivated working on something they have greater interest in (P5).

The individual engineer starts a rudimentary analysis of their piece of the soft-

ware, looking for functions that stand out, interactions with other files or systems,

or artifacts such as IP addresses, encryption keys, and file names. This process often

involves consulting other team members to share hypotheses, identifying common

patterns, or simply asking for help when challenges arise. Maintaining open lines of
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communication optimizes the team’s coverage and thoroughness. For example, if one

engineer stumbles upon an IP address while working on the encryption protocol, they

may pass it on to someone who is working on network artifacts (P3). This shared

observation could either bring new awareness to the address and its significance or

confirm an existing hypothesis. Collaborative RE also comes with the inherent ben-

efit of an expanded knowledge pool. For instance, when faced with an unfamiliar

binary packing technique, another engineer may have encountered said technique in

a past project and successfully unpacked the file then. Reaching out to each other

when in unfamiliar territory can save the engineers valuable time and allow them to

learn something new in the process (P3).

Constant communication can not only facilitate productivity and prevent redun-

dancies, but save each other headaches from “going down endless rabbit holes” (P2).

“Reverse engineering is agile, things don’t always turn out to be what you thought, and

before you know it you find yourself chasing shiny objects” (P4). This phenomenon

can happen to the most experienced of reverse engineers, and there is no solution

guaranteed to help avoid it entirely. However, an increased awareness of what others

have worked on and found can often help an engineer determine what is or is not

worth taking an deeper look at.

The engineers’ next move depends on the mission of the team, as shown in Fig-

ure 11. Of the eight participants, five were on teams that primarily worked on exploit

development, while the other three focused on design recovery. If the mission is de-

sign recovery, the goal is to achieve a thorough understanding of each component of

the system. This end state may include a full list of system capabilities, command

and control (C2) communication mechanisms, and the big-picture intent of the soft-

ware. If the software is confirmed to be malicious, the team should also develop a

mitigation plan to detect and eradicate it from host machines and prevent reentry
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(P3). During this stage, the engineers are still making key discoveries individually.

But open discussions and constant updates can aid the team in connecting the dots

from everyone’s work to paint a complete picture.

Alternatively, if the team’s primary objective is exploit development, the engineers

are only looking to understand the system’s functionality to the extent required to

identify vulnerabilities and create an effective exploit. This level of understanding is

dependant on the exploit, its access vectors, and potential unintended consequences

(P1). Regardless, the team’s work efficiency benefits from keeping everyone on the

same page, sharing objectives and courses of action, and maintaining situational

awareness.

After the engineers complete their analyses or exploits, the team must put together

a report that documents their findings with technical details to support. “Assuming

everyone found a vulnerability, individual team members are responsible for writing

up their own, which often makes the report’s writing style inconsistent and it takes

some time to get it all to flow” (P5). One drafted document template is passed

around to the engineers, with areas sectioned off to fill in their unique analyses. In

the case of a design recovery report, the entirety of the program’s address space is

tackled, describing, “what address space is responsible for what tasks and identify

cross-referenced addresses and such” (P5). Though executive level summaries are

included, these technical reports are intended for offensive and defensive operators to

read (P4). Oftentimes, engineers can directly paste details from their own notes or

group repository to demonstrate how conclusions were reached.

4.4 User Needs and Challenges

Analysis of the interview data reveals common challenges that reverse engineers

face while collaborating. The key challenges include maintaining documentation,
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mitigating redundancies, supporting continuity, lack of version control, efficient group

communication, and interpersonal factors. This section explores how these problems

can emerge in a collaborative RE environment and the needs that reverse engineers

require to overcome each challenge.

Regardless of the nature of the project, the interviewed subjects’ teams worked in

close physical proximity. This setup allowed the engineers to verbally communicate

and see what others were working on at any given time. When an engineer encounters

roadblocks and consults another team member, “shoulder surfing is the most common

way to collaborate and solve problems” (P6). If this colleague has previous experience

with the issue, they can verbally guide the engineer through the solution or point them

in the right direction within minutes. In other instances, sometimes it just requires

a set of fresh eyes to point out what the engineer may be overlooking. This means

of collaboration is simple and effective. However, it relies on the conscious effort

of the engineer to leave behind any documentation of what transpired. If a similar

problem were to arise again later on, having a documented solution to refer to would

be beneficial, rather than taking an individual away from their work again to help.

When multiple people work on the same system with the same objectives, RE

teams inevitably encounter redundancies in their work, without proper communica-

tion. Though in certain instances, having a second set of eyes on the same problem

could be beneficial, “nine out of ten times, it’s unnecessary and you’d be better off

without. Intentionally placing two people on the same issue tends to be just a waste

of time and effort that could be spent getting something else done” (P2). Teams err

on the side of having insufficient manpower for all the required tasks, rather than

an excess. Exceptions occur where there is a major discovery fundamental to a new

understanding of the system that requires validation.

A team may be able to avoid unintentional redundancies with verbal updates
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and periodic team meetings. However, they would benefit further from a sustained

method of sharing progress and viewing each other’s past and planned work.

“It’s really great to be able to see what others have done, are working on,
and plan to work on at any given time. If you need to reference someone
else’s work because it interacts with your stuff, that information is there.
If you want to know if a possible rabbit hole has already been looked at,
you can check and save yourself the trouble” (P4).

Such documentation can serve as a central hub for the team, minimizing overhead

and streamlining the flow of critical information.

The timeline of an average RE project worked on by three to five engineers can

span approximately six months. During this time, the team composition is subject to

change and ongoing work may be passed on to new team members. Maintaining con-

tinuity is a common challenge, since insufficient documentation and communication

often hinders a seamless transition. If possible, the incoming and outgoing engineers

sit down together and go over all the discoveries and observations made up to this

point, as well as possible next moves and objectives. However, once left on their own,

the remaining engineer may find themselves spending more time playing catch-up

than progressing in the project. Deciphering others’ old notes is often easier said

than done, as every engineer has their own method and style (P2). Time can also

be wasted recreating past analyses to understand how conclusions were reached. A

shared working repository for notes can standardize how this information is organized

and stored, if the engineers can get into the habit of tidying their documentation in

tandem with making advances.

Though the engineers are each assigned their own portion of the software system

to analyze, the team should remain aware of what version of the files they are all

looking at. Circumstances change and new revelations happen regularly. Manually

redistributing all the project files every time a binary is successfully unpacked or
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decrypted would be inefficient and cumbersome to the team’s workflow, inevitably

resulting in errors. “Built into a disassembler [the team] already uses, it’s nice to

be able to maintain version control of the binaries, including comments and renamed

functions, just like you would with source code in forward programming” (P6). Cen-

tralizing documentation is pointless if the base material is inconsistent and cannot be

referenced reliably.

When consulting each other for assistance or inspiration, engineers commonly de-

fault to verbal communication for convenience and quick response time. “There is

tremendous value in informally talking with the people around you, helping each other

pick up on things that might otherwise go unnoticed” (P4). While the documenta-

tion of such verbal interactions has been discussed previously, there are alternative

methods of communication that serve different purposes. For instance, an engineer

may stumble upon an IP address and want to reach out to the team to see if it has

been identified elsewhere in the system. Bringing this inquiry up verbally may not

be the most appropriate means. Not only are technical information like IP addresses

and hashes cumbersome to relay verbally, other team members may miss it entirely

if they are immersed in their own work at the time. A group chat program allows

the team to simultaneously get word out quickly, allow for a flexible turnaround, and

maintain records. If another engineer did not recognize the IP address at that time

but discovers it later on, they can go back through the chat log and get in contact

with the one who initially brought it up.

In any project, collaboration cannot be neglected when there is a significant skill

disparity across the team. Both experienced and newer reverse engineers can make

choices in communication that can affect team productivity. Because expertise in

reverse engineering is developed almost entirely on the job rather than in a classroom,

rookies almost always come in as a blank slate. At this stage, “it is so important to
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be vocal about what you don’t understand and be asking questions” (P4). Many less

experienced engineers can be reluctant to reach out for help, resulting in nothing

getting completed. This hesitance can be attributed to personality traits or fear of

looking incompetent. Though not always the case, junior engineers also tend to be

less likely to champion for the ideas they have (P2). Meanwhile, more experienced

reverse engineers naturally possess more knowledge and insightful tips, given the

greater amount and variety of software and situations encountered in their careers.

However, “it isn’t uncommon to hear about some of the [veteran engineers] refusing to

share what they know or are experts in” (P5). They may feel a sense of irreplaceability

and pride in their skillsets. This choice can have both individual impact, impeding

“opportunities for mentorship” (P2), and a greater impact on the workplace for the

whole team. Open communication regarding the expectations on team members of

all levels of experience would help to make the team comfortable conveying their own

needs. Mutual understanding and “being connected well on a personal level affects

the work they bring to the table” (P5).

“When people feel like they are contributing, there is more motivation,
productivity, and efficiency. When people feel like they’re fighting against
the team, there is less work getting done” (P7).

The need for communication does not end once it comes time to write up the

project report. While being passed around from one engineer to the next, the report

undergoes a multi-layered review process by the team lead (P4, P5). If sections of

the report are inadequate, the lead might sit down with the engineer responsible and

ask them to explain the concept they tried to document. Through this conversation,

either the engineer realizes what was missing, or the lead is able to give better feedback

on how to improve the report (P2). “Sometimes something thought to be common

knowledge isn’t. [The engineer] needs to make it clear to the reader how they got from
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A to B [with] actionable and relevant notes” (P4). Other times, an engineer may

“make things harder for themselves and the reader with just words” (P5) instead of

using a diagram or table to better convey the information, until prompted.

4.5 Collaborative Tools Employed

For each of the needs and challenges discussed in the previous section, a tool

built for workplace collaboration has aided RE teams in its own unique way. Though

complete integration of the tools into existing workflows remains a challenge, their

value and necessity are acknowledged by both experienced and new reverse engineers.

Each column in Table 2 represents a collaborative tool, while the rows list the user

Table 2: Collaborative reverse engineering user needs and solutions matrix
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needs that the tools meet. The tools identified by the experts interviewed include

issue tracking software, shared workspaces, team chat platforms, and version control

systems.

4.5.1 Issue Tracking Software

Issue tracking software provides an elegant solution for the organization of tasks.

Within a team’s workspace, members are assigned projects which require a series of

tasks. Tasks are commonly categorized as completed, ongoing, or to-do, using labels

(P3). Each task is a new issue ticket, containing details such as assigned personnel,

timestamps, comments, and subtasks. These features facilitate the documentation of

every course of action throughout an RE project, starting at the beginning. “Once [the

team] has reached an initial understanding of the all tasks that need to be completed,

[the lead] can create them and start assigning people to them all within Jira” (P4).

Participants P1, P2, P3, P5, P6, and P8 all cited frequent use of the Jira issue tracking

software on their teams to track assigned work and communicate progress.

Updating an issue ticket when a task is completed is not only to help individ-

uals stay organized and on track, but for other team members’ awareness as well.

Everyone on the project can view all the tasks and their statuses, so the tracking

system, “makes for more structured and connected work. [The engineers] don’t lose

information along the way and keep in sync with each other” (P4). Redundancies are

mitigated with labels indicating which team members are working on which tasks.

Participants can be added on to an existing issue and make comments or changes,

if needed. If a conversation with another team member took place that assisted in

the completion of a task, that can be indicated within an issue as well. In the event

another similar dilemma arises, an engineer can immediately reference the details,

which point to exactly where to find the archived notes, and save themselves from
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repeating the conversation. The platform can also address the challenge of continuity

documentation by offering a standardized, yet customizable, method of showing how

a conclusion was reached through a timeline of tasks, subtasks, and details within

each ticket.

4.5.2 Shared Workspace

RE teams almost always work in close physical proximity. Therefore, the col-

laborative tools employed often serve the primary purposes of documentation and

reference, rather than pure communication. This is most evident with the use of a

shared workspace, commonly referred to as a “wiki.” Five of the eight participants

discussed using the Confluence web-based wiki system to aggregate group knowledge

(P1, P3, P4, P5, P8). All of the resources and background information on a project

are uploaded to the wiki for the team to reference at any time. How a team maintains

the wiki as the project progresses is unique to each team’s preferences. One possi-

ble use case is creating a running tasklist that mirrors the one in the issue tracking

software. Each task can be expanded into its own page where files can be uploaded,

accessible to everyone on the team.

While the issue tracking software is primarily managing workflow, the wiki houses

relevant artifacts for each task, such as screen captures and detailed notes taken

by the engineer assigned to the task. This shared workspace serves as a single,

central location for any information that may need to be referenced later for any

purpose, including writing the final report. For instance, if the team lead suggests

adding evidence in the report to support a conclusion, engineers can often “copy and

paste technical details straight from their Confluence pages” (P4). Alternatively, if

an engineer knows that a problem they currently face has been solved in the past

by themselves or a colleague, they can navigate straight to the wiki page where
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the solution was documented, rather than combing through stacks of old notes or

bothering the colleague.

In the issue tracking software, an engineer can simply indicate that a conversation

with a colleague occurred. The shared workspace would be where one could elaborate

on the details and outcomes of the discussion, available to be referenced at a later

time if necessary. Continuity in the event of a personnel change also becomes more

convenient through use of the shared workspace. If well-maintained, the outgoing

engineer’s pages document precisely how they arrived at the current state and every-

thing they found along the way. The incoming engineer would not need to recreate

all the analysis, based off of a few verbal pointers, in order to arrive at the same level

of comprehension. Furthermore, since the pages can be viewed by everyone, redun-

dancies that slipped past the issue tracking system can be identified in the shared

workspace.

4.5.3 Team Chat Platform

Though verbal communication is indispensable in collaborative RE, some occa-

sions call for a digital means of transmitting a message to the team. Through a group

chat service, an engineer is able to get a message out to the greatest number of people

in the shortest amount of time. This method allows the recipients flexibility in their

response times and opportunity to alter responses, unlike if one were to yell across the

room and expect an immediate, definitive response. “Some of [the engineers] don’t

like to be disturbed when they’re really in the zone, so being able to have a message

put aside to get back to later allows them to stay aware of their surroundings while

maintaining focus” (P3).

As discussed previously, when a short conversation takes place, the engineer re-

ceiving assistance bears the responsibility of documenting the takeaways in the task’s
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wiki page. This process happens automatically in a team chat platform, where records

of conversations are maintained by the software and easily retrievable down the road.

Chat services are also customizable, allowing integration with issue tracking software

to send automated message updates to the team on the status of issue tickets. This

capability keeps everyone aware of the team’s progress and ongoing endeavors. Ad-

ditionally, upon encountering something potentially worth looking into, an engineer

could either search the chat history or poll their colleagues to find out if it has al-

ready been investigated. A positive response could save them from falling victim to

redundant work.

4.5.4 Ghidra Server

On top of sharing updated notes and documentation of work, keeping all project

files synchronized and up to date for the whole team can be equally important to

productivity. When major changes and breakthroughs occur, the whole team should

not only be made aware but have access to the most current version of the files. The

Ghidra Server capability allows engineers to push and pull changes to the team’s

repository of project files, such as comments, function name changes, or addition of

files. Integrated into a popular disassembling tool, the service is “no fuss and gets

the job we need it to do done very well. It’s not very resource intensive and it’s

nice to not really feel the presence of it” (P4). Being able to reference past changes

can also be helpful alongside documentation for continuity purposes in a handoff.

For the individual, the server operates as a backup in the event of a system crash

and mass data loss. Conflicts in commits made to the repository may arise, alerting

the engineers to redundancies occurring in the team’s work. Rollbacks to previous

versions are occasionally necessary as a result (P4).

While not all interviewed engineers use Ghidra as their disassembler of choice, the
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shared version control functionality has enticed many to either make the switch or

use it in conjunction with their preferred disassembler for the value it provides. For

instance, participants P5 and P6 recall switching to Ghidra only to share project files

with collaborators, while continuing to use IDA Pro for disassembly. Participants

P1, P2, P4, and P8 use Ghidra for their day-to-day work and find the shared project

functionality well-integrated and easy to use.

4.5.5 Workflow Integration

In a teamwork environment, “efficiency is easily the most obvious thing to look to

improve” (P8). Increased efficiency is attained with better communication, resulting

in “being able to get through more system and programs in less time, but also doing

so in a more thorough manner.” When executed well, the client also receives a higher

level of assurance that the team has found everything there is to be found.

Reverse engineers of all experience levels have recognized the value that collabora-

tive tools such as issue tracking software, shared workspaces, and chat services bring

to their team’s efficiency and productivity. Despite that widespread acknowledge-

ment, full integration of the tools into their existing workflow has proven difficult.

“A lot of the time, it’s about breaking old habits and enforcing discipline [of using the

tools] for the good of the team” (P5). Though notes are still taken individually, team

leads are encouraging a new mindset of “collaborative notetaking,” where collective

knowledge and awareness is a constant consideration.

4.6 Limitations and Threats to Validity

A limiting factor of the research was the sample size of eight interview partici-

pants. A larger sample size may have revealed opposing opinions on the needs and

priorities of engineers in a collaborative environment. Discussions were also limited
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by confidentiality concerns with specific details of the participants’ workflows. The

researcher mitigated this limitation by focusing on the interactions between engineers

and use of collaborative tools, and generalizing workflow processes.

To avoid asking leading questions influenced by previous interviews, the researcher

used a standard survey instrument in each interview. Acquiescence bias, where par-

ticipants tend to just agree with the interviewer, was mitigated with open-ended

questions that appealed to their real-life experiences. Additionally, participants may

have been hesitant to be candid about their past trials and failures if they deemed it

hurtful to their pride or professional reputation. To mitigate this effect and any other

retrospective bias, the researcher did not imply or refer to task completions as accom-

plishments, instead redirecting attention to the collaborative elements of interactions

between the engineers involved in the process. The researcher also did not demand

technical details where no value would be added to narrative regarding collaboration.

The process of data analysis involved drawing conclusions from interview data. To

mitigate making presumptions with under-developed evidence, the researcher ensured

multiple sources could support the findings presented in the results and analysis.

All of the research’s participants currently work for the Department of Defense

(DoD) in some capacity. Though some drew on their experiences in the private sector,

the study’s results’ generalizability is limited to reverse engineering work in the DoD.

4.7 Chapter Summary

This chapter detailed the collaborative RE workflow as recalled by the industry

experts interviewed. The process spanned from the initial triage of the software sys-

tem to the final report written presenting the teams findings. Participants identified

the needs of an RE team and challenges encountered on a regular basis, and dis-

cussed how the tools they commonly employ meet those needs. The chapter answers
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the research question: How is collaboration currently conducted in reverse engineer-

ing? The next chapter will summarize the contributions of this research and make

recommendations for future work.
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V. Conclusions

Software reverse engineering (RE) in a team can easily prove less efficient than

individual RE without robust collaboration practices in place. The collaborative RE

process can differ from one project to the next, presenting new roadblocks that require

creative solutions to overcome. This research consulted expert reverse engineers to

identify their needs throughout the collaborative workflow and explore how specific

tools work to fit those needs. The interviews drew on the participants’ experiences

that involved the use of collaborative tools and practices. The results successfully

mapped all of the participants’ needs to one or more tools employed by their teams,

and explained each connection. This chapter summarizes the research conclusions

and opportunities for future research.

5.1 Research Conclusions

The survey instrument was designed with the intent of answering one core research

question by addressing four supporting questions. The first supporting question,

“What does the collaborative RE workflow look like, from start to finish?” was an-

swered by identifying common decision points in the CDM portion of the interviews.

The result was the complete collaborative RE workflow presented. Establishing this

workflow is essential to understanding where their needs and challenges occur in the

larger timeline of events.

Through the CDM’s deep dive into each decision point and factors that affected

each decision outcome, the interviews addressed question 2, “What are the user needs

and challenges unique to the collaborative process?” Though each participant used

unique scenarios to convey their needs, several common themes emerged across the in-

terviews. Maintaining concurrent documentation, mitigating redundancies, and man-
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aging continuity documentation while collaborating were a few of the major challenges

that the experts encountered.

Question 3 was posed to the participants directly at the start of the interview,

“What collaborative tools do RE teams currently use?” Issue tracking software, shared

workspaces, team chat platforms, and shared file version control were the tools iden-

tified as able to fulfill their collaborative needs. The participants also explained how

those collaboration tools affected each course of action taken throughout the CDM

timeline, addressing question 4, “How are those collaborative tools integrated into

a team’s workflow?” Optimizing integration remains an ongoing challenge as reverse

engineers face difficulties with breaking old habits to maximize the tools’ values.

The conclusions drawn from each of the four supporting questions contribute to

answering the main research question, “How is collaboration currently conducted in

reverse engineering?” The results show the complete workflow of an RE team and

explain how the collaborative tools discussed were found to meet one or more of the

team’s needs.

5.2 Recommendations for Future Work

Given the results of this research, there are several opportunities for future work.

One possibility involves consolidating the various collaborative tools currently used.

Experts seem satisfied with the functionalities the tools provide and their ability to

fulfill the team’s needs. For instance, one major factor in the appeal of the Ghidra

server functionality lies in its seamless integration with a widely used RE analysis

tool. Meanwhile, other tools discussed, such as issue tracking and chat software,

lack the same convenience. Each tool stands alone and requires additional effort to

capitalize on their value. A common complaint when introducing new tools to an

existing workflow is “unnatural and cumbersome” (P2) implementation. Combining
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the unique features of all the commonly used tools into a single solution could afford

users greater improvements to the collaborative RE experience with less overhead.

Currently, the Ghidra Server capability allows collaborators to maintain a com-

plete log of commits and past versions of a shared project. The viewable details

include timestamps, the user who made the commit, and comments. Another possi-

ble avenue for future work involves including provenance data with each commit in

Ghidra Server. Provenance data shows the actions that the engineer took within the

disassembler in chronological order. This information could assist one collaborator in

understanding how another was able to solve a problem or reach a conclusion within

a commit. As discussed previously, a provenance plug-in was built for Binary Ninja.

However, Ghidra Server is a popular, well-established tool that could also benefit

from additional visualization features for efficient collaboration.

This research has established that in-person communication plays a large role in an

RE team’s ability to solve problems quickly. Shoulder-surfing, posing questions to the

entire room, and impromptu brainstorming sessions are common practices that are

difficult to replicate to the same effect without the team members’ physical presence.

As many other software-related fields are beginning to conduct operations remotely

with certain amounts of success in the new decade, reverse engineers remain adamant

that it isn’t plausible and “[working remotely] just doesn’t work” (P4). Future research

could investigate the specific aspects of RE that make the work unsuitable for remote

collaboration.

5.3 Closing Remarks

Working in teams seems like an obvious solution to reverse engineering software

systems better and faster. However, collaboration does not equate to efficiency. Ef-

forts must be made to identify emerging challenges and their solutions. This research
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investigated the workflow of RE teams, the needs that they encounter, and the col-

laborative tools employed as solutions for those needs. The results indicate that

collaborative tools are capable of organizing team logistics and managing communi-

cation channels, so that engineers can focus on analyzing the code and developing new

exploits. Establishing an understanding of how collaborative tools meet RE teams’

needs reveals opportunities for tool developers to enhance processes and optimize

productivity in the future.
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Appendix A. Request for Human Experimentation

This appendix provides the request for exemption determination from human

experimentation requirements, submitted on 17 September 2021.
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DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY (AETC) 

 

17 September 2021 
 

MEMORANDUM FOR  AFIT HUMAN RESEARCH PROTECTION PROGRAM (HRPP), OFFICE OF 
SPONSORED PROGRAMS AND RESEARCH (ENR) 
 
FROM:  AFIT/ENG 
 
SUBJECT: Principal Investigator Cover Letter for Exempt Determination Request for Examining 
Collaborative Cognition in Software Reverse Engineering 
 
1. Request AFIT HRPP review and approval of the Exempt Determination Request protocol named 

above which should be considered as a freestanding protocol. 
 

2. As principal investigator (PI), the undersigned affirms that the protocol complies with the 
requirements for exempt research set forth in Federal code and the DoD, Air Force, and AFIT 
instructions implementing it. In addition, the undersigned agrees to: 

 
a. Ensure that all exempt research conducted under this protocol will conform to the written, 

approved document, including any restrictions imposed during the approval process. The funding 
and resources for this research have been procured/acquired to conduct this project as submitted 
in the protocol. The funding source is:  
 

Funding Agency/Organization: AFIT/ENR 

Funding Amount: $13,800 JON#: 21-901

 
b. Personally conduct and supervise the study and be responsible for the conduct of all persons 

acting on behalf of the Principal Investigator. 
 

c. Monitor the progress of this research and notify the AFIT HRPP in writing within 24 hours of any 
unexpected event, unanticipated problem, safety concern or medical misadventure. 
 

d. Promptly notify AFIT HRPP, if either the risk or the benefit of the research appears substantially 
different from those represented in the protocol, or if early results clearly resolve the hypothesis. 
 

e. Ensure all individuals assisting in the study are adequately trained, and aware of their 
responsibilities. 
 

f. Maintain and retain all study and protocol documents as required by the protocol and DoD 
regulations. 
 

g. Conduct this research in compliance with the principles of Human Subjects Research found in the 
Belmont Report: 1. Respect for Persons requires that subjects, to the extent they are capable, be 



given the opportunity to choose what will or will not happen to them. The informed consent 
process contains three elements: information, comprehension and voluntariness. 2. Beneficence 
closely relates to the risk/benefit assessment which is concerned with the probabilities and degree 
of possible harm and anticipated benefits. 3. Justice addresses moral requirements that there be 
fair procedures and outcomes in the selection of research subjects. Individual justice ensures that 
the selection of subjects is done in fairness. Social justice requires that distinction be drawn 
between who should and who shouldn’t participate in any particular kind of research based on the 
ability of individuals to bear burdens and on the appropriateness of placing further burdens on 
already burdened persons.  

3. As the Principal Investigator of this research study I assume responsibility for the overall
management of this protocol and ensuring each investigator meets the reporting requirements of the
attached Conflict of Interest Disclosure Checklist. I agree to notify AFIT HRPP in writing if any
conflict of interest within the research team exists or arises during the project.

4. In accordance with DoD 8520.02, only Principal Investigators with a CAC card may provide an
electronic signature as permitted on this template. For Principal Investigators who do not have a CAC
card, please print the completed application, provide a handwritten signature, and scan the document
so that it may be attached to an email for submission.

WAYNE HENRY/LT COL/ASST PROFESSOR
Principal investigator 



Appendix B. Ethics Approval

This appendix provides the approval for the exemption request for human experi-

mentation requirements protocol number REN2021013R from the Air Force Institute

of Technology. The study was approved on 27 October 2021.
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DEPARTMENT OF THE AIR FORCE 

AIR EDUCATION AND TRAINING COMMAND 
AIR FORCE INSTITUTE OF TECHNOLOGY 

WPAFB, OH 

 

 

 
MEMORANDOM FOR AFIT/ENG 
  ATTN: LT. COL. WAYNE C. HENRY 
 
FROM AFIT/ENS 
 2560 Hobson Way 
 WOAFB, OH 45433 
 
SUBJECT: Exempt Determination Official (EDO) Review of REN2021013R, “Examining 
Collaborative Cognition in Software Reverse Engineering” 
 
References: (a) 32 CFR 219, Protection of Human Subjects 
 (b) DoDI3216.02_AFI40-402, Protection of Human Subjects and Adherence to      

Ethical Standards in Air Force Supported Research  
 
In accordance with Reference (b), Enclosure 2, Paragraph 10(d), an EDO review has been 
completed for the above-referenced activity. It was determined that this activity qualifies as 
research involving human subjects and is exempt under Section 219.104(d)(2)(i)/(ii) of 
Reference (a) based on the following rationale: 
 
This study will evaluate the practices of software reverse engineers in DoD while collaborating 
synchronously and asynchronously. No PII will be collected. Risk in similar to that experienced 
in an every-day office environment. The questions should not put the subjects at risk personally, 
financially, or politically. The results of the interview will be used to conduct a systematic 
investigation designed to understand software reverse engineers’ needs and goals and examine 
challenges and recommendations for future research and development. 
 
Prior to implementation, if there are any questions or changes to this activity that may alter the 
findings of this exempt determination, please contact Dr. Seong-Jong Joo at seong-
jong.joo@afit.edu. 
 
 
 
 
 
 
 Seong-Jong Joo, PhD. 
 Professor of Logistics & Supply Chain Management 
 AFIT/ENS 



Appendix C. Survey Instrument

Survey Instrument

The purpose of the study is to examine the collaborative software reverse engineer-

ing (RE) process. The study will examine the processes and tools employed today by

reverse engineers in the DoD and identify common challenges and recommendations

for future research and development. The data collected today will help in forming

a cognitive model of those regularly involved in such processes to better understand

their needs.

The interview session will take approximately 2 hours, not to exceed 3 hours. You

may request a 10-minute break at any time.

Preliminary:

1. Briefly describe your educational background. To what extent was RE a part

of your formal education?

2. How many years of professional experience RE do you have thus far?

3. Please describe/summarize your professional experience. What kind of RE/How

much collaboration?

Part 1:

1. Without going into to the team RE process just yet, describe the tools/tech-

niques utilized today while performing software RE with others, specific to the

collaborative environment. If they have evolved over the course of your career,

please specify how.

2. What are the limitations of the tools/techniques used today for collaboration

in RE?
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Part 2:

1. How does the collaborative RE workflow look for the team? Recall a specific,

past incident in your career, where you have had to collaborate with other

reverse engineers to complete a RE project/task.

(a) Take us through a big-picture timeline of what happened first.

(b) (For each CDM decision point,) what was the major challenge, and how

was it addressed?

(i) How did the involved engineers’ level of experience (at the time) con-

tribute to the handling of the situation?

(ii) How did the integration of collaborative tools affect the courses of

action taken?

(iii) From this decision point, what were some lessons learned? Did any of

these lessons reappear later in the project?

2. (Reiterate previous lessons learned,) did any of these lessons have an impact on

a future collaborative RE processes?

3. Based on this experience, what improvements to the collaborative RE tool-

s/techniques could have been of further assistance?

(a) Possible risks or tradeoffs to these improvements?

(b) What outcomes would indicate success/How specifically would it improve

the collaborative experience?

Closing Comments:
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