
IMPROVING ANONYMIZED SEARCH
RELEVANCE WITH NATURAL LANGUAGE
PROCESSING AND MACHINE LEARNING

THESIS

Niko A Petrocelli, Captain, USAF

AFIT-ENG-MS-22-M-055

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.

AFIT-ENG-MS-22-M-055

IMPROVING ANONYMIZED SEARCH RELEVANCE WITH NATURAL

LANGUAGE PROCESSING AND MACHINE LEARNING

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Electrical Engineering

Niko A Petrocelli, B.S.E.E., B.S.C.E.

Captain, USAF

March 26, 2021

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-ENG-MS-22-M-055

IMPROVING ANONYMIZED SEARCH RELEVANCE WITH NATURAL

LANGUAGE PROCESSING AND MACHINE LEARNING

THESIS

Niko A Petrocelli, B.S.E.E., B.S.C.E.
Captain, USAF

Committee Membership:

Brett J. Borghetti, Ph.D
Chair

George E. Noel, Lt Col, Ph.D
Member

Warren B. Watkinson, Col, Ph.D
Member

AFIT-ENG-MS-22-M-055

Abstract

Users often sacrifice personal data for more relevant search results, presenting a

problem to communities that desire both search anonymity and relevant results. To

balance these priorities, this research examines the impact of using Siamese networks

to extend word embeddings into document embeddings and detect similarities be-

tween documents. The predicted similarity can locally re-rank search results provided

from various sources. This technique is leveraged to limit the amount of information

collected from a user by a search engine. A prototype is produced by applying the

methodology in a real-world search environment. The prototype yielded an addi-

tional function of finding new documents related to a provided sample document.

The prototype is evaluated using real-world search examples. Results indicate that

the Siamese network can produce document embeddings superior to current encoders

like the Universal Sentence Encoder. Results also show the promising performance of

the prototype in improving search relevancy while limiting user data transmission.

iv

Table of Contents

Page

Abstract . iv

List of Figures . viii

List of Tables . x

I. Introduction . 1

1.1 Attributes and Challenges of Desired System . 2
1.2 Assumptions, Limitations, and Constraints . 3
1.3 Research Questions . 4
1.4 Impact . 5
1.5 Document Overview . 5

II. Background and Literature Review . 7

2.1 Text Pre-Processing . 7
2.2 Feature Extraction for NLP . 10

2.2.1 Bag-of-Words . 10
2.2.2 TF-IDF . 11
2.2.3 Word Embeddings . 13
2.2.4 Universal Sentence Encoder . 15
2.2.5 Word2Vec . 16
2.2.6 Bidirectional Encoder Representations from

Transformers . 16
2.3 Techniques for Determining Similarity . 17

2.3.1 Techniques for Scoring Search Relevancy . 20
2.4 Applying Supervised Machine Learning to NLP . 20

2.4.1 Text Classification Using Multinomial Näıve
Bayes . 22

2.4.2 Text Classification Using Logistic Regression 23
2.4.3 Partially Supervised/Supervised Latent Dirichlet

Allocation . 24
2.4.4 Artificial Neural Networks . 24
2.4.5 Siamese Networks for Image Analysis and

One-Shot learning . 25
2.4.6 Triplet Loss Function . 26

2.5 Unsupervised Machine Learning . 27
2.5.1 Topic Modeling/Latent Dirichlet Allocation 27
2.5.2 Paragraph Vector and Doc2Vec . 28
2.5.3 Topic2Vec . 28

2.6 Related Works . 29

v

Page

2.7 Summary . 30

III. Methodology . 31

3.1 Preamble . 31
3.2 Training Data . 32
3.3 Text Pre-Processing . 32
3.4 Analysis of Existing Techniques . 34

3.4.1 Logistic Regression and Multinomial Näıve
Bayes for Multiclass Classification . 35

3.4.2 Latent Dirichlet Allocation and Topic Modeling
for Relevancy Prediction . 39

3.5 Generating Document Embeddings . 46
3.6 Improving Embeddings Through Siamese Network with

Triplet Loss Function . 46
3.6.1 Randomly Select Document . 47
3.6.2 Input Embedding Layer . 48
3.6.3 Fully Connected Deep Neural Network . 48
3.6.4 Triplet Loss Layer . 50

3.7 Using Document Embeddings to Determine Document
Relevancy . 50

3.8 Applying the Trained DNN into a Prototype . 51
3.9 Summary . 54

IV. Results and Analysis . 55

4.1 Preamble . 55
4.2 Siamese Network Embedding Performance . 55
4.3 Performance and Utility Analysis of Search Tool . 61
4.4 Summary . 67

V. Conclusions . 69

5.1 Re-ranking Search Results . 69
5.2 Scalability . 70
5.3 Performance Comparison . 71
5.4 Problem Domain Exploration . 72
5.5 General Conclusions . 73
5.6 Future Work . 73

Appendix A. Additional Results from Supervised Classification
Techniques . 77

Appendix B. Raw Training Data Handling . 82

vi

Page

Appendix C. Latent Dirichlet Allocation Visualization . 85

Appendix D. Siamese Network Model Generation Results . 86

Appendix E. Prototype Use Case 2 Searches . 88

Bibliography . 89

vii

List of Figures

Figure Page

1 Universal Sentence Encoder . 15

2 Cosine Similarity . 19

3 Flow Chart of Raw Data Handling Logic . 34

4 Micro-averaged F-Score Performance of Logistic
Regression and Näıve Bayes vs Number of Queries
Model Trained On . 37

5 Feature Selection Counts for Naiv̈e Bayes and Logistic
Regression . 38

6 Supervised Confusion Matrices 5-Query . 38

7 Supervised Confusion Matrices 10-query . 39

8 Supervised Confusion Matrices 20-query . 40

9 Probability Threshold Analysis for Latent Dirichlet
Allocation . 41

10 LDA Emerged Topics . 43

11 LDA Confusion Matrices . 44

12 LDA Multistage Classifier Confusion Matrix . 45

13 Flow Chart of Siamese Network Training With Triplet
Loss . 48

14 DNN Architecture . 49

15 Accuracy Scores of Siamese Network and USE . 56

16 Cosine Similarity Comparison as Document Length
Varies . 57

17 Additional Cosine Similarity Comparison as Document
Length Varies . 58

18 USE vs DNN TSNE . 60

viii

Figure Page

19 Prototype Use Case 1 Search Example . 62

20 Use Case 1 Performance of Prototype . 63

21 Prototype Use Case 2 Search Example . 65

22 Use Case 2 Performance of Prototype . 66

23 Supervised Classification Optimization Pipeline . 78

24 Supervised Classifiers Confusion Matrix . 79

25 Supervised Multistage Classifier Confusion Matrix 80

26 Supervised Ensemble Confusion Matrix . 81

27 Processed Raw Data . 84

28 Visualization of Topic Modeling . 85

ix

List of Tables

Table Page

1 LDA Lookup Table . 42

2 Example of a use case 2 search . 53

3 Supervised Classification Model Hyperparameter List 77

4 Supervised Classification Feature Count and Scores 77

5 Example of Raw Training Data: QID to DocID . 82

6 Example of Raw Training Data: QID to Query Text 82

7 Example of Raw Training Data: DocID to Document
Text . 83

8 Processed Text: Post Cleanup and Tokenization . 84

9 Preliminary Siamese Network Setups . 86

10 Preliminary Siamese Network Results . 87

11 Secondary Siamese Network Results . 87

12 Final Siamese Network Results on Test Data . 87

13 Prototype Use Case 2 Searches . 88

x

IMPROVING ANONYMIZED SEARCH RELEVANCE WITH NATURAL

LANGUAGE PROCESSING AND MACHINE LEARNING

I. Introduction

There is a need for a text-based search system that can provide relevant search

results for a constrained-term search query. This system can be used to provide

increased privacy, as well as provide more relevant results for user’s who already

possess a sample of what they are looking for. There are a multitude of communities

who would benefit from a system such as this. Companies doing research who want

to protect their intellectual property could utilize this tool to limit the amount of

information revealed during their online searches and prevent data leakage on what is

being researched. Individuals concerned with their online footprint and privacy could

leverage the system to ensure their privacy needs are met. Research communities who

find an interesting paper could use this system to find more papers like it, without

the need to conduct multiple repeated searches using differently formed queries to

find documents similar to the desired document. This system will aid in avoiding the

aforementioned problem. The intelligence community also has a need for improved

search results without providing tracking data to commercial search engines.

Utilizing commercially available search engines to collect data often requires users

to sacrifice private data in exchange for improved search results. Major search en-

gines maintain search histories and profiles to provide more relevant results to the

end users. This presents a concern to communities that desire both relevant search

results tailored to them and anonymity. The expected contribution for this thesis is a

machine-learning based system that improves the relevancy of search results without

1

sacrificing privacy.

Significant research has already been conducted on improving relevancy-ranked

search results. Existing work uses natural language processing tools such as topic

modeling and semantic networks to improve search engine results This optimization

depends on server-side techniques that collect client information to provide person-

alized results. These search engines build a profile on the user based on aspects such

as career, interests, hobbies, search histories, and past links clicked on [1]. This in-

formation is used to tailor search results to the user. These processes do not work

when information cannot be collected from the client, such as specific search terms

(keywords), user traffic (clicking behavior), and website loiter time. This research will

focus on developing a process that can provide similar results without transmission

of client data.

Developing a machine learning tool that can determine relevancy on a local ma-

chine suffers from severe scalability issues. Any solution must take into account that

the user may present search queries the model has never encountered and the model

must still be able to detect similarities between queries and search returns. The pri-

mary goal is to provide more relevant results to a user while maintaining anonymity,

but additionally to provide results in a timely manner, and the ability to scale. Rele-

vancy is related to similarity and machine learning solutions exist that are capable of

providing scalable similarity determinations between two entities, even if the entities

have not been seen before.

1.1 Attributes and Challenges of Desired System

The machine learning tool developed should meet the following requirements:

1. Provide relevant results to search queries it has never encountered before—in

training or in use.

2

2. Produce relevant results for constrained-term search queries by considering a

context that is hidden from the underlying search engine.

3. Provide increased privacy to user by limiting the amount of information relayed

to a search engine.

4. Eliminate the ability for the underlying search engine to track user behavior,

such as clicks and website loiter time.

5. When given a document, it should be able to find more documents like it.

Some of the challenges this system must overcome include:

1. Producing a machine learning model that is able to handle search queries not

encountered during training.

2. Using locally stored information to re-rank search engine returns.

3. Being computationally efficient, as local computer resources will be required to

perform calculations.

4. Providing relevancy that is equal to or better than major search engines without

leaking client information.

5. The system must be independent of the search engine—it should be adaptable

to work with any search engine.

1.2 Assumptions, Limitations, and Constraints

A major assumption for this research is that the underlying search engine has

the ability to provide good performance. The developed system is designed to work

regardless of what search engine is utilized. If the underlying search engine yields

low performance, then the search system will also suffer. The better the underlying

3

search engine, the better the system’s performance. This assumption also leads to

a limitation—the system requires an underlying search engine to function. Further

limitations arise that stem from the underlying search engine, such as potential biases

in the original search engine or lack of relevant results to choose.

The computational resources available for model training are limited to a small

computer typically used by an individual. As such there is a constraint with how

much data can be utilized during model training. The model training is dependent

on a training corpus consisting of queries and documents relevant to these queries.

This training data only contains documents that are exclusively relevant to a single

query. These documents are mutually exclusive, such that no document shall be

found by more than one query. Thus, there is no information in the training set on

documents which may be relevant to multiple search queries.

1.3 Research Questions

The previous section discusses an overview of the problem domain, some existing

research in the field, desired attributes, challenges to overcome, assumptions, limita-

tions, and constraints. This sections provides five research questions to be answered

by this research.

1. How can major search engine results be reorganized in a way that is useful to

the user while limiting data transmission?

2. How can a technique be scaled to handle new search queries without requiring

retraining?

3. What is the performance of the reorganized results when compared to a major

search engine?

4

4. What is the effect of applying a scalable machine learning technique in this

problem domain?

1.4 Impact

The research conducted provides a new search tool that is beneficial to various

communities of users. There are many organizations, companies, or individuals who

would benefit from reduced tracking and data collection. Data privacy is an enormous

concern which is often sacrificed for improved convenience such as improved search

results, but the research presented identifies a way to obtain relevant search results

without sacrificing anonymity. Military intelligence and corporations protecting in-

tellectual property are examples of interested communities.

In addition to the improved privacy the search tool will provide, it aims to improve

search results when provided a user specific context. This context can be populated

by a multitude of sources. One such application is if a user were to find something of

interest when browsing the web. The search tool will make use of this as context and

find more information similar to it. Many users would benefit from functionality such

as this, one being the research community. When a useful research paper is found,

a “find more like this” capability can be used to find more academic papers that are

similar to the initial.

1.5 Document Overview

Chapter II presents an overview of background knowledge and existing techniques

in the Natural Language Processing (NLP) domain. It also presents machine learn-

ing algorithms that can be applied to this research problem. Chapter III outlines

the methodology utilized to answer the research questions. Chapter IV presents the

results and analysis of all experimentation conducted in accordance with the method-

5

ology presented. Finally, Chapter V provides the conclusions drawn from the results

as well as potential future work to be conducted.

6

II. Background and Literature Review

This chapter provides an overview of Natural Language Processing (NLP), text

pre-processing, feature extraction, and applications of Machine Learning (ML) for

NLP. Broad descriptions and important definitions are provided for each concept.

First, text pre-processing and its implications are provided. Then various NLP feature

extraction techniques are examined. Lastly, a background on ML techniques that can

be applied to NLP is presented.

NLP problems involve the extraction of information from text based data. An

example of an NLP problem that ML can solve is Sentiment Analysis (SA). SA is

a technique for determining the opinions, sentiments, and subjectivity of text using

ML [2]. A simple and practical example of SA using ML is the binary classification of

movie reviews from the IMDB dataset [3]. The data consists of multiple reviews that

are labeled either positive or negative and the goal is to train a model using ML and

NLP to predict whether a movie review has a positive or negative sentiment. ML uses

features to make these predictions and the first step is to generate features from the

movie reviews. Since the movie reviews are text based, this is where NLP is leveraged.

The text must be manipulated and transformed, this is called feature generation. A

useful technique for generating features is by tokenization—partitioning the sentences

into a list of individual words.

2.1 Text Pre-Processing

Before words, sentences, or paragraphs can be turned into features to identify a

document, the text needs to be processed. The output of this process is typically a

list of tokenized text that has been cleaned up. Each step in this chain as implications

that are both positive and negative [4].

7

1. Make the text lower case.

(a) Positive impact: if a word is at the start of a sentence it will no longer be

treated differently than if it were in the middle of the sentence. Without

this step sentences such as “Dogs like food” and “The dogs ran” would

treat Dogs differently from dogs.

(b) Negative impact: it is sometimes impossible to differentiate between a

proper noun and a noun. For example Windows, the operating system,

becomes the same as windows in a car.

2. Spell out the contractions.

(a) Positive impact: contractions can be treated the same as their spelled-out

counterparts, can’t and cannot will no longer be treated as different words.

(b) Negative impact: none.

3. Remove websites from the text.

(a) Positive impact: some of the documents contain URLs, these are not useful

features to use—eliminating them improves performance.

(b) Negative impact: none.

4. Remove numbers from the text.

(a) Positive impact: eliminates non-descriptive document content such as page

numbers, or numbers from a list.

(b) Negative impact: numeric digits can be useful. The technique could remove

important dates which could be good descriptors of a document.

5. Remove punctuation from the text.

8

(a) Positive impact: USA and U.S.A. refer to the same thing.

(b) Negative impact: acronyms that spell words could be transformed into

their word counterpart. For example, S.H.I.E.L.D. would become shield,

causing confusion between a fictional organization and a medieval tool.

6. Remove non-ascii characters from the text.

(a) Positive impact: this ensures the text is in a format that can be universally

handled.

(b) Negative impact: some important descriptive characters that are not ascii

could exist and be removed.

7. Remove words too short (≤ 3 characters) or too long (≥ 20 characters) from

the text.

(a) Positive impact: short words typically are not descriptive. Long words

could be the body of a website URL.

(b) Negative impact: some of the short or long words removed may be actual

descriptive words.

8. Remove a defined list of stop words from the text.

(a) Positive impact: eliminates words that exist commonly in all languages,

reducing unnecessary features.

(b) Negative impact: there is a low probability that a stop word could be

useful.

9. Lemmatize all the words in the text.

(a) Positive impact: words are reduced their lemma making words like am,

are, and is become the same as the word be.

9

(b) Negative impact: need to find the correct headword from a dictionary for

successful lemmatization.

2.2 Feature Extraction for NLP

After the words have been pre-processed, they need to be represented numerically

in order for them to be used as features by a ML model. This is typically accomplished

in one of two ways: sparse matrix representation or dense vector embeddings. Both

techniques transform text into viable numeric features for model training, and have

their own benefits and limitations. This section will explore text feature extraction

techniques, their benefits, and limitations.

2.2.1 Bag-of-Words

Before text can be used to train a classifier, features need to be extracted. An

example technique is to use word counts. The text from the training documents is

used to build a vocabulary, a data structure that stores each word encountered during

training. Each document will produce a dictionary that maps this vocabulary to the

frequency each word appears. The bag-of-words feature extraction technique does

have limitations when applied to machine learning, such as high dimensionality and

sparsity. High dimensionality refers to the feature count used to train a ML model

and the curse of dimensionality is a term used to describe the phenomena that arises

when dealing with high-dimensional data [5]. Often high-dimensional data presents

detrimental behaviors on ML models, such as decline in performance, over-fitting

the data, or other unwanted behaviors . Thus, feature count is a trade-off between

having enough to adequately describe the data while minimizing the cost incurred by

the curse of dimensionality.

In this context, the primary contributing factor for highly-dimensional data is

10

sparsity. Sparsity occurs when the features, in this case the dictionary that maps vo-

cabulary to word frequency, contain many zeros. This occurs because the vocabulary

consists of words encountered across each training document. Individual documents

will only contain a fraction of the words contained in the entire vocabulary, which

results in a dictionary that maps much of the vocabulary to zero. Word importance

is a critical aspect that is not included in word count feature generation. When a

word occurs often in all documents, it likely is an unimportant word. These word

counts are used to distinguish between documents, so when all documents possess a

high word count for a given word, that word provides no distinguishing information.

Term Frequency—Inverse Document Frequency (TF-IDF) extends words counts to

incorporate word importance and address this issue.

2.2.2 TF-IDF

A method for feature extraction from text documents is TF-IDF, an extension of

simple word counts that takes word importance into account [6]. The basic mathe-

matical principle is [7] :

wt,d = tft,d · idft (1)

tf(t, d) =
ft,d∑
t̂ϵd ft̂

(2)

idf(t) = log10

(
N

nt

)
(3)

In eq. (1), w(t,d) describes the TF-IDF value for word t in document d, tf(t,d)

is the percentage of word t out of the total words in document d, eq. (2). Inverse

document frequency describes how much information can be gleaned from a specific

11

word. If a word is unique to a single document, it provides more information than

if it were common across all documents. This can be seen from eq. (3), where N is

the number of documents and nt is the number of documents where word t appears.

With N remaining the same, as nt increases the log becomes smaller until finally, it

becomes zero when nt = N . In practice, this means that a word that appears in every

document would have a weight of zero. In contrast, a word that appears in very few

documents would have a much higher weight. This is useful in ensuring meaningful

words carry larger weights when used as features.

TF-IDF produces sparse matrices that do not encompass the semantic relation-

ships between words. These semantic relationships are necessary for relevancy de-

termination. Text cannot be naturally used with machine learning algorithms and

so feature extraction must take place. TF-IDF can be insufficient for this task for

multiple reasons. Firstly, TF-IDF is a bag-of-words approach which treats each word

independently and does not consider word orderings or pairings, such as in phrases.

The lack of consideration results in a probability calculation solely driven by the

frequency of the independent words. With an N-gram approach, conditional prob-

abilities are also considered. The N is the length of the sequence of words being

considered as a unit, for example in a bigram model, where N = 2, considering the

sentence “The boy ran” would calculate P (boy|the) as well as P (ran|boy). It is also

possible to capture items other than words in the N-gram window, such as delim-

iters, sentence starts, or the end of the sentence. The simplistic approach would not

consider the preceding word of “boy” when considering the word “ran”.

Secondly, TF-IDF, without feature selection, produces a dictionary using every

word it has encountered during training. This dictionary becomes a sparse matrix of

features when used to transform text. The matrix is sparse because it will populate

zeroes whenever it encounters a word that exists in the dictionary, but not in the text

12

being transformed. The sparse matrix results in high feature dimensionality which can

lead to overfitting and poor generalization of the model on unseen data, considered

the curse of dimensionality in machine learning [8]. The sparsity of the data results

in a waste of memory as all those uninformative zeros still must be stored. While

feature-selection can mitigate some of these issues, experimentation from Section 2.4

showed that optimal TF-IDF feature count increased as more queries were considered,

because as the model trains for more search queries, the amount of training data

must increase, which results in expansion of the dictionary. For example, in a 10-

query model there were approximately 25,000 features to choose from, on average

feature selection found optimal performance when selecting approximately 8,000 of

those features. While this is definitely an improvement in dimensionality, this is still

a sparse matrix, wasting space, and highly dimensional suffering from the curse of

dimensionality. Dense vector embeddings can be used to produce matrices that are

no longer sparse, and exist in a much lower dimension—often in the hundreds.

2.2.3 Word Embeddings

While the bag-of-words approach produces sparse matrices, the word embeddings

approach produces dense vectors. A bag-of-word approach is unable to capture the

contextual relationships between words in a sentence. These relationships can be

taken into consideration using word embeddings. Word embeddings are much more

complex than a standard bag-of-words approach, and often take more time to train.

This is an important tradeoff to consider when selected between a bag-of-words and

a word embedding feature extraction technique.

A major advantage of word embeddings is the ability to manipulate text as though

it were numerical. More traditional ML techniques, such as linear regression, often

use analysis to determine relationships between an independent and dependent vari-

13

able [9]. The process for doing this requires numeric features. Numerical features

are already in a usable feature, but categorical features must first be converted to

numbers. While feature selection and transformation are often utilized to improve

ML algorithms, they focus on numeric features [10]. Other techniques that seek to

transform text into usable features, such as TF-IDF, suffer from sparsity and high

dimensionality. Often the number of features needs to be limited, and a feature

selection technique needs to be employed to ensure that important features are not

eliminated [11]. The result is a large vector that consists primarily of zeros, and while

this is a valid technique for creating features from text, all of contextual information

is lost. Some of these contextual relationships provide useful information and enable

analysis that would not be possible with a sparse matrix. For example:

1. Gender can be determined from a word such as queen or king.

2. Mathematical operations can be performed on the word embeddings such as

king - male + female = queen.

3. Similarities between words can easily be calculated using the cosine similarity.

A good embedder is defined by the ability to produce embeddings which place

similar items in tight groups, resulting in distinct groups of embeddings called clusters.

Intra-cluster distancing is the distance between elements within a cluster and inter-

cluster distances is defined as the distance between clusters [8]. In the case of words,

the embedder should place similar words close to each other, resulting in low intra-

cluster distancing. Another attribute of a good embedder is to place dissimilar words

far away from each other, resulting in high inter-cluster distance. This same concept

extends to sentences, paragraphs, and documents.

14

2.2.4 Universal Sentence Encoder

Google research has provided models for encoding sentences into vector embed-

dings [12]. These embeddings are specifically designed to target transfer learning

into alternate NLP taskings. There are two model variants available that trade off

accuracy and computational complexity. The embeddings generated by both vari-

ants of the Universal Sentence Encoder (USE) achieve promising results from Word

Embeddings Association Tests (WEAT)– a statistical test designed to evaluate word

associations from embeddings [13]. Good performance is also reported for transfer

learning. Figure 1 shows Deep Averaging Network (DAN) variant of the USE.

Although the USE reports good associations from WEAT, indicating the embed-

dings produced capture important contextual information and word associations, they

are still designed to primarily embed sentences. This presents a major limitation if

the desired outcome is to produce embeddings on longer bodies of texts, such as

paragraphs, topics, or document embeddings.

Figure 1: Diagram showing the DAN model of the USE

15

2.2.5 Word2Vec

Word2Vec has two possible model architectures that turns words into vectors,

Continuous Bag of Words (CBOW) and skip-gram [14]. The word2Vec models differ

from the USE because they do not embed series of words, sentences, paragraphs, or

documents. Word2Vec specifically focuses on transforming a single word into a dense

vector. While many pre-trained models exist, it did not fit the application of this

project because the domain requires generation of document embeddings. There are

techniques available that can combine word embeddings to create paragraph embed-

dings or even document embeddings. Some of these techniques such as paragraph

vector and doc2vec are presented in Section 2.5.2.

2.2.6 Bidirectional Encoder Representations from Transformers

Bidirectional Encoder Representations from Transformers (BERT) is a trans-

former network model, which maps all output elements to an input element and

dynamically adjusts the weightings between them based on their connections [15].

BERT introduces bidirectionally with regards to text, where historically text could

only be read from left to right or right to left BERT has the ability to leverage

transformers to achieve bidirectionality-the ability to read text from both directions

simultaneously.

Sentence BERT is a modification that utilizes triplet loss functions and Siamese

networks to derive semantically meaningful sentence embeddings [16]. Previously

BERT struggled with tasks that include semantic similarity comparisons, clustering,

and information retrieval from semantic searches. Sentence BERT overcomes these

shortcomings, improving on the semantic textual similarity benchmark by leveraging

the triplet loss function to generate sentence embeddings. This is similar in to the

work conducted here, but differs in that the Universal Sentence Encoder is combined

16

with Siamese networks and the triplet loss function to generate document embed-

dings as opposed to sentence embeddings. These documents embeddings are used for

evaluating semantic similarities between different texts, and determining relevancy of

text files in information retrieval systems.

2.3 Techniques for Determining Similarity

Determining similarity between texts can be important in many NLP applications.

Similarity could be used to detect plagiarism, or to group documents into topics. In

the context of Information Retrieval (IR), text similarity can be leveraged to provide

improved relevancy in a question-answer (QA) system. The similarity measurement

between the answer and the question could be an indication of how well a search

result answers the question.

Embeddings can be considered as a point or as a vector. When an embedding

is generated, a sequence of values is created to represent the text. This sequence of

values is considered a vector. The embedding could also be treated as a point in

n-dimensional space. A default vector begins at the origin and continues to the point

with the coordinates in the n-dimensional vector. There also exists a vector that can

be computed by subtracting embedding A from embedding B. If there is a vector X

from A to B, and a vector Y from C to D, then it is possible vector X encodes the

relationship between A and B and vector Y encodes the relationship between C and D.

If vectors X and Y are similar then it is possible that the relationship between A and

B is the same as the relationship between C and D. For example, if A is “Duchess” and

B is “Duke” and C is “Princess” and D is “Prince”, then X may encode the embedded

direction of Female-to-Male as a vector. One technique for determining similarity is

to calculate the Euclidean distance between two embeddings. Equation (4) defines

the formula used to calculate Euclidean distance between two embeddings that exists

17

in n-space where n is the width of the embedding. While this distance can be used to

determine how similar words are when applied to word vectors, it can also be used to

determine how similar documents are by applying it to document vectors. This same

concept can also be applied to a search query and answer. If the query is embedded

using the same technique as the results, the distance between the query and the result

could be used as a metric for relevancy. The requirement for this to hold true is that

the texts that are closely related to each other are placed close in the embedding

space. Thus good embeddings are defined by how well this underlying requirement is

executed.

d(p, q) =

√√√√ n∑
i=1

(qi − pi)2

p, q = two points in Euclidean n-space

qi, pi = Euclidean vectors originating from the initial point

n = n-space

(4)

Another method to measure similarity between two vectors is using cosine similar-

ity. This metric differs from strictly taking the distance by instead taking the cosine

angle between the two vectors [17]. The importance of this is that more information

is captured than distance alone as shown in fig. 2. France and Rome vectors may be

far apart, but when comparing the relationship of France to Paris and Rome to Italy,

these comparisons are similar. Cosine similarity captures this information, while eu-

clidean distance does not. In eq. (5) cosine similarity is calculated given two vectors

v⃗ and w⃗.

18

cos v⃗, w⃗ =
v⃗ · w⃗
|v⃗||w⃗|

=

∑N
i=1 viwi√∑N

i=1 v
2
i

√∑N
i=1 w

2
i

(5)

Cosine similarity is able to capture the angle between the embedding vectors

without regard to the magnitude, whereas Euclidean distance captures the distance

between the two endpoints of the vectors. In Figure 2 the cosine similarity is displayed

between different sets of words/word-pairings. The figure displays an example of how

two embedding vectors would appear when reduced to two dimensions and plotted

next to each other. The angle between these vectors is what is used to determine

similarity. Good embeddings will allow for tight grouping of similar items (words,

phrases/pairings, sentences, paragraphs, documents, etc.) resulting in smaller angles

for related items and larger angles for less similar items. It can also be used to detect

opposites, when the angle between the embeddings is close to 180 degrees, they can

still be considered similar as shown Figure 2 that compares city-country pairings to

country-city pairings [18].

Further examination of the Figure 2 example on city-country/country-city pairings

can be used to further explore the differences between cosine similarity and Euclidean

distance. If the embeddings captured city-country pairings, then the cosine similarity

for Paris-France and Rome-Italy would be high, because these vectors would be point-

ing in the same direction. Euclidian distance would provide the distance between the

Figure 2: [18] Graphs showing cosine similarity between word vectors

19

two endpoints of these vectors, providing numerical evidence that Rome-Italy is closer

to Venice-Italy than it is to Paris-France.

2.3.1 Techniques for Scoring Search Relevancy

A technique for quantifying the quality of document ranking is a necessary compo-

nent to score and evaluate the utility of any search engine [19]. Discounted Cumulative

Gain (DCG) is a technique that is used to score the performance of a search engine.

DCG logarithmically discounts the relevancy rating proportionally to the document’s

position. Thus if highly relevant documents are ranked low the DCG score is ad-

versely affected. DCG scores can be normalized to compare result lists of varying

length. This is achieved by dividing the DCG score by the best possible DCG score.

Equation (6) shows the mathematical formula for calculating the DCG of a search

engine.

DCGp =

p∑
i=1

reli
log2 (i+ 1)

DCGp = DCG score at a specific ranking positionp

p = ranking position

reli = user rated relevancy ranking, if binary ∈ {0, 1}

(6)

2.4 Applying Supervised Machine Learning to NLP

Supervised ML is a technique for mapping inputs to outputs. The supervised

component refers the data that is provided to the algorithm, which consists of example

pairings of inputs to outputs. This data is called training data and is used to develop

a function which can be used to predict an output given an input. Supervised ML

can be used to solve many problems in the NLP domain, such as sentiment analysis

20

and text classification.

The input to output pairings that are provided as examples to infer a mapping

function is called model training. This data is used as truth data where each input has

a known output. This is called a labeled data and can be used to score and improve

the function that is inferred to predict outputs. This is achieved by reserving a portion

of the labeled data, called a validation set. This validation set will be used to test

different models across varying hyperparameters to find the best scoring model. A

test set is often reserved from this labeled data as well. This test set will not be used

for any model making decisions, instead once the validation set is used to optimize

a model, the optimized model is given the test set inputs and is used to predict the

outputs. These predictions are compared to the known truth data to generate a score

and evaluate the final model.

There are two primary applications of supervised machine learning: regression

and classification [8]. The inputs of the model are called features. In a regression

problem the output is a number and the features are used to describe the relationship

between the dependent variable (output) and one or more independent variables (fea-

tures). An example of a regression problem is using numerical features (independent

variables) such as horsepower, cylinder count, and vehicle age to predict miles per

gallon (dependent variable).

In a classification problem, the inputs of the model are features that represent

an observation, but the output is a class, or category. An example of this is in

NLP sentiment analysis, where a set of words (observation) is mapped to a sentiment

(class). For example in a binary classifier movie reviews can have a sentiment of

positive or negative. There also exist multi-class classifiers where the movie review

could be extremely negative, mildly negative, neutral, mildly positive, or extremely

positive. In this example, the movie reviews consists of words which make up the

21

features used to predict the sentiment. These words need to be transformed into

features that can be used for learning. This process is called feature-extraction.

A limitation that arises from supervised ML is the need for those example pairings

of inputs to outputs. This need is often referred to as labeled data. The requirement

of having labeled data for supervised ML can cause issues if a dataset is not already

readily available. Labeling data by hand can be time consuming.

2.4.1 Text Classification Using Multinomial Näıve Bayes

A multinomial Näıve Bayes (NB) model uses the same assumption of all NB mod-

els: the probability of every word is independent of the word sense (the intended

meaning of the word), its context, and placement in a document [6]. Another critical

assumption is that a document’s length does not affect the class [20]. This model as-

sumes a multinomially distributed dataset parameterized by θc = (θcw1
, ..., θcwn

) This

means for a given class c and every word in the vocabulary, w1, . . . wn, the probability

of a word appearing in class c is given by P (wi|c) = θci . Thus θc = P (wi|c), ..., P (wn|c)

which is a vector produced for every possible class. The multinomial NB classifier

estimates the parameter θc by using maximum likelihood with a smoothing parameter

that can be used to optimize performance [21]. The number of times word i appears

in a sample of class c in the training set T is defined by Wci where, Wci =
∑

wϵT wi ,

and T is the training set. This can then be used to estimate θci as shown in eq. (7).

θ̂ci =
wci + α∑n

i=1wci + α + |V ocabulary|
(7)

With α = 1, Laplace smoothing is occurring. With α = 0 there is a possibility

for zero probabilities, which can negatively affect model performance. Lastly, with

α < 1, Lidstone smoothing is happening. Lapcian smoothing can be considered a

bias-variance tradeoff, and can be a tunable hyperparameter for model optimization.

22

The θc with the highest probability is chosen as the classification for the document.

2.4.2 Text Classification Using Logistic Regression

Logistic regression is a common tool for using a regression algorithm as a classifier.

It classifies by estimating the probability that an observation belong to a class [22]. If

this estimated class probability exceeds 50% then logistic regression will predict the

observation belonging to that class, if not then it will be predicted as not belonging

to this class. This results in a binary classifier, but logistic regression can be extended

to multiple classes. This can be accomplished in different ways, such as ensembles,

or predicting the percentage of each class and selecting the class with the highest

probability, resulting in a multi-class classifier. The logistic regression model is driven

by the logistic function, defined in eq. (8).

σ(t) =
1

1 + exp (−t)
(8)

Logistic regression can be used for text classification, but like many other NLP

problems, must first have numeric features. Once a text is converted to numeric

features, logistic regression can be used to classify text as though it were any other ML

problem. The feature extraction component of using logistic regression is important

because it does add hyper-parameters that can affect performance outside of the

scope of normal logistic regression parameters. For example, if the feature extraction

technique was TF-IDF, then parameters such as maximum vocabulary, and n-grams

could play a role in how the logisitic regression hyper-parameters affect performance.

This increases the number of search parameters for ideal performance exponentially.

23

2.4.3 Partially Supervised/Supervised Latent Dirichlet Allocation

Unsupervised LDA is primarily used to create features, producing topics that are

beneficial to categorization. This is useful on large amounts of unlabeled data, but

it may be less helpful when the data already has a label. When the model’s primary

objective is to predict relevance, unsupervised topic modeling may not be the optimal

choice. In Blei’s paper, supervised LDA is tested against two problems: movie ratings

predicted from reviews and web page popularity predicted from text descriptions [23].

This technique could also be applied to estimate the relevance of a document to a

given query.

2.4.4 Artificial Neural Networks

Artificial neural networks (ANN) are a type of ML model that are inspired by

the way signals are sent through synapses in the human brain. ANNs are especially

useful for feature sets that have complex relationships. ANNs are often used in word

embedding models because they are capable of capturing the complex relationship

between words. Word embeddings can be used as a layer inside a larger ANN and

optimized using the triplet loss function to perform one-shot learning and same/not

same classification on documents.

An ANN is typically a fully connected neural network where all layer’s neurons

connect to the following layer’s neurons. Each layer receives data as an input, applies

a weight, and passes the sum of the weighted data to an activation function. ANNs

will improve the results achieved by adapting the weights being applied to the data

at each layer or modifying parameters that are part of the system. This tuning can

occur during training by minimizing loss.

24

2.4.5 Siamese Networks for Image Analysis and One-Shot learning

Initially designed to detect fraudulent signatures, the primary role of a Siamese

network is to detect similarity between two items [24]. Using a Siamese network, it

is possible to create a model that when presented with two images of an animal from

the same species it should report that they are the same and otherwise, that they are

not. When a new species of animal is encountered that was not seen during training

this model could still be used to determine if two images were of the same species,

using a reference image and a new image. For example a Siamese network which did

not contain images of a giant squid during training can then be shown two unique

images of a giant squid and it should report them as the same. If it were shown a

picture of a lion and a squid, it should report them as not same. The limitation of

this technique is the substantial amount of training data required for the model to

learn how to implement this same/not same functionality.

Another example using a Siamese network is for facial recognition, but this presents

a new problem, how to train a network on every human’s face. One-Shot learning

tackles this problem by enabling a Siamese network to classify images it has never

seen before by detecting similarity between a known and unknown sample [25]. This

results in training the network to learn how to detect similarities between features,

rather than similarities between new images and a database of known classes. In

facial recognition, a large database of faces is used to train the Siamese network to

learn how to detect the same person, regardless of age, or even adaptive features, such

as a beard. The network can then be given an image of a new face, not encountered

during training, and from a large set of images select images most likely belonging to

the same person. An example of this could be providing an image of high value target

such as Osama Bin Laden. Even though this network had never encountered images

of Osama Bin Laden during training, it could be provided a large set of images from

25

security cameras and detect which cameras Osama Bin Laden showed up on without

a human having to sift through and analyze thousands of photographs. One such

function for accomplishing this task is the triplet loss function.

2.4.6 Triplet Loss Function

The triplet loss function is a a technique for numerically comparing a reference

input (anchor) to a matched input (positive) and a non-matched input (negative)

[26]. Each of these inputs are unique observations. The anchor and the positive

must be observations that are similar, while the anchor and the negative must be

observations that are markedly different. Equation (9) shows the formula for the

function–which uses Euclidean distance to compare the distance between the anchor

and the positive, and the anchor and the negative, within a defined margin of α.

The anchor is first selected from the training batch at random. From the anchor,

a positive and negative are generated. These inputs are then embedded, and the

distance is calculated. As this loss is minimized, the embeddings will place anchors

closer to positives and further from negatives. This results in embeddings that are

capable of placing similar inputs nearer each other in the embedding space, resulting

in distinct clusters of like elements.

L(a, p, n) = max(||f(a)− f(p)||2 − ||f(a)− f(n)||2 + α, 0)

a = anchor input

p = positive–input similar to anchor

n = negative–input dissimilar to anchor

f = embedding function

α = margin between positive/negative pairs

(9)

26

2.5 Unsupervised Machine Learning

Unsupervised ML differs from its supervised counterpart by handling data that

does not have truth labels. This technique can be useful in handling large quantities of

data that has not been curated. This type of machine learning can be combined with

supervised techniques to form ensembles, or to label data for future use in supervised

learning. It is possible to improve the labeling performance of unsupervised learning

by human interaction. A human can review the labels produced and provide feedback

to the unsupervised algorithm so that it can improve its labeling capability, this is a

form of partially supervised learning.

2.5.1 Topic Modeling/Latent Dirichlet Allocation

Topic modeling is a tool used for classifying topics, especially if they lack la-

bels. One such unsupervised technique that can accomplish this is Latent Dirichlet

Allocation (LDA). LDA follows a three-level hierarchical Bayesian model and is a

probabilistic generative model [27]. LDA will have a parameter to set the number

of topics to emerge, and then will be fed unlabeled data. The algorithm will then

produce “topics” defined by the words that occur most frequently in that topic. For

an example of an LDA model using topic clustering see Appendix C. In this example

LDA was trained on documents related to the Manhattan Project and three topics

emerged: topic 1 contains terms that most closely match the Manhattan Project and

topics 2 and 3 are topics with words that do not appear often in the Manhattan

Project documents. An important observation is that LDA does not name the topics,

but rather defines them by their most relevant terms. Therefore, it may still require

a human intervention to classify which topic equates to which query, although there

may be a way to automate this by extracting key words from a query and comparing

them to the topic. The major limitation of this technique is that it requires retraining

27

every time a new query needs to be added. Creating a way to merge LDA models may

overcome this limitation by creating a new model for the new query and exporting its

probability matrix. Then exporting the probability matrix of the old model. The two

probability matrices would be merged and normalized and then used as a starting

point to train a new LDA model with an increased number of topics. In theory, this

may overcome the issue of long model training time when a new topic is added.

2.5.2 Paragraph Vector and Doc2Vec

Extending on Word2Vec, is paragraph vector and Doc2Vec. Both techniques re-

tain ordering and semantics of the words [28]. They are unsupervised algorithms that

learn fixed-length feature representations. The key component that these techniques

expand upon is that they can generate these dense vector feature representations on

variable-length pieces of text, such as sentences, paragraphs, and even documents.

2.5.3 Topic2Vec

Expanding further upon Doc2Vec is Topic2Vec. Topic vectors will take a series of

document embeddings and cluster them [29]. Documents that appear close together

in this cluster are considered of the same topic. These clusters are then used to create

an embedding to represent the entire topic. In theory, a query could be embedded

and a set of documents, relevant and irrelevant, could be used to generate topic vec-

tors. The topic vector closest to the query embedding, would be returned. This topic

vector represents a cluster of documents, that are relevant to the original query. A

potential flaw with this technique is difficulty with very specific queries. For example,

the specific queries “How many football teams are in the NFL” and “What are com-

mon football penalties” will both be close to the same topic vector that represents

“football”. However, this could be a preliminary technique to gather the generic doc-

28

uments for the topic vector of “football” to be further sorted by relevancy for specific

queries that fall under the topic vector.

Topic2Vec is also another competitor to LDA topic modeling. LDA only works

well when the user has a good idea of how many topics they should expect to emerge.

Tuning LDA parameters to achieve optimal performance can be time consuming and

require a lot of human interaction. Topic2Vec has the potential to solve some of these

problems, specifically by allowing topics to emerge naturally, without requiring the

number of topics to be specified before training the model. LDA also requires further

training whenever a new topic needs to be added. Topic2Vec has the potential to add

new topics without needing to be retrained.

2.6 Related Works

Siamese networks have been used to generate word embeddings that enable a ML

model to predict a document’s topic [30]. This technique varies from unsupervised

topic modeling (Section 2.5.1) because it incorporates document labels into the learn-

ing process. It is possible for the ML model to discover label-specific topics. This

approach to topic modeling can be powerful, but the underlying requirement is that

labeled training data is available. If it is not already available, the labeling of the

data can cost an extensive amount of time. While predicting a document’s topic can

be useful for document classification, it does not answer the question of how relevant

a document is to a specific search query.

Siamese networks have also been leveraged to detect the similarity between ques-

tions [31]. This is a useful technique for determining if two search queries may be

identical even if worded differently. For example, the question “Is bronchitis conta-

gious?” and “Can you catch bronchitis from somebody who has it?” can be considered

the same question. Siamese networks can be used to detect the similarity between

29

these two queries and label them as the same question. While this can be useful for

a Frequently Asked Questions (FAQ) section of a website or condensing forum top-

ics for already answered questions, it does not solve the problem of determining the

similarity between a question and an answer (how relevant or correct is the answer),

or between answers for the same question (do the answers agree).

Lastly, a Siamese network has been used to detect the effectiveness of an argument,

defined as persuasiveness (how convincing an argument is) [32]. This can be applied to

domains other than the field of debate such as information retrieval. The correctness

of an answer can be evaluated instead of the persuasiveness of the argument. These

three related works justify exploration into the application of a Siamese network in

the problem domain of this research.

2.7 Summary

Turning text into features is an integral part of solving NLP tasks. There are

multitude of ways to accomplish it, each with their own benefits and limitations.

Text rarely comes in a format conducive to creating features, and as such many pre-

processing techniques have emerged to generate better performing features. Once

features are obtained, there are a multitude of machine learning techniques that can

be leveraged to determine document similarity. Document similarity can be used

as a metric for calculating relevancy, and eventually rank ordering a list of search

returns. ANNs are very powerful tools capable of handling the complex relationships

that exist between words. ANNs combined with word embeddings have the potential

to solve the NLP problem of detecting document relevancy. Lastly, Siamese neural

networks show particularly promising results when applied to problems similar to the

one presented in this research.

30

III. Methodology

3.1 Preamble

This research contains multiple goals. The primary goal is to create a search tool

capable of providing relevant search results without compromising data security and

privacy. The secondary goal is to create a solution that is scalable, measured by its

ability to handle search queries not encountered during training. The performance of

the resulting solution is compared to the original search engine, with a goal of equiv-

alent or better performance. The primary technique for accomplishing these goals is

by adapting facial recognition algorithms, which detect similarity using Siamese net-

works, the triplet loss function, and one-shot learning to detecting similarity between

bodies of text.

The method for achieving these research goals starts by conducting an analysis

of some existing techniques in the supervised and unsupervised classification domain.

Feature extraction techniques such as TF-IDF are examined in the problem domain

of this research. Then text pre-processing techniques are presented to explain how

text is transformed into something useful to model training, and eventually relevancy

prediction. After pre-processing, dense vector embeddings are generated, the possible

choices are outlined and one path is selected. Next, a Siamese network using triplet

loss function is created and trained to improve these embeddings when working with

longer documents. The new embeddings are exploited to detect similarities between

documents and predict relevancy to a search query. Finally, the developed model

is integrated into a research prototype that is applied and evaluated in the problem

domain.

31

3.2 Training Data

The data set that is used to train each of the machine learning models tested comes

from the TREC 2020 data set. It consists of an extensive list of search queries. Each

search query possesses 100 documents classified as relevant. While each corresponding

document is definitively relevant to its search query, they are not all equally relevant.

As such the data is ranked by relevancy. This ordering is not taken into consideration

during model training. The goal of the data is to train a model to classify the

relevancy of a document with respect to a search query. More detail can be found on

the training data in Appendix B.

3.3 Text Pre-Processing

The training data in its raw form comes from the TREC 2020 dataset (Ap-

pendix B) and must be manipulated into a more conducive format for generating

embeddings. Section 2.1 discusses the generic process that text undergoes prior to

being sent to the model. The raw dataset comes in a three-file structure: a text

file which ties a query identification number (QID) to a ranked list of 100 document

identification numbers (DocID), a file that connects each QID to the query text, and

a file that contains the document body of each DocID. A visual representation of the

file types can be seen in Appendix B.

Due to the extensive file size of the training data, special techniques had to be

applied to handle it. In python the files were read line by line, preventing a memory

overflow due to file size. Each QID that is going to be used for training is turned into

a list of relevant DocIDs. Then the line by line reader scans for the bodies of text

belonging to the QIDs on the training list. If the line contains a QID not on the list,

it gets skipped, otherwise it gets scanned into memory and stored in a data structure

that ties the document text body to the QID it belongs with. Once each QID has all

32

of its corresponding documents read in, a file is saved that contains all relevant bodies

of text pertaining it. This generates a separate file for each QID on the training list,

with one corpus that contains 100 documents that each relate to their QID. For future

uses, these files can be loaded as the process can take some time. If more QIDs are

added to the training list, the ones that already have a generated file can just be

loaded. Each step of this process can be seen in Appendix B. The execution logic is

shown in Figure 3, each “box” in the figure is saved upon execution to be loaded for

any future uses. Appendix B shows the data each step of the way as it progresses

through the stages outlined in Section 2.1. The final body of text used in training is

a cleaned up list of words, called tokens.

33

Figure 3: Flow chart of how raw data is organized for training a model. Note N
is the total number of QIDs in the training list. The QID numbers in each box are
independent of each other and were randomly chosen for the sake of providing an
example. They have no significance outside of identifying a query as unique and
mapping it to a class.

3.4 Analysis of Existing Techniques

There are many existing techniques that can be leveraged to accomplish the afore-

mentioned research goals. Each have distinct benefits and limitations. Combination of

34

existing techniques are possible to overcome individual limitations. Some techniques

are outright dismissed due to poor adaption to this domain. The techniques presented

do not represent every algorithm tested. Logistic Regression (LR) and Multinomial

Näıve Bayes (NB) are the two supervised classification techniques presented in this

section, but more techniques were also explored, as well as ensembles and multi-stage

classifiers. The findings can be found in Appendix A, however, they suffer from the

same limitations as LR and NB. The unsupervised technique presented is Latent

Dirichlet Allocation (LDA). LDA is also examined in both a partially supervised way

via human interaction and combined with supervised techniques such as LR and NB.

Lastly, the feature extraction technique used in the classification experiments, term

frequency-inverse document frequency (TF-IDF), is analyzed.

3.4.1 Logistic Regression and Multinomial Näıve Bayes for Multiclass

Classification

Logistic regression and Multinomial Näıve Bayes are used as a multi-class classifier

with the goal of classifying documents, “observations”, to queries, “classes”. The data

consists of 10 search queries each with 100 relevant and irrelevant documents split into

three balanced sets: training data (80%), validation data (10%), and test data (10%).

The training data is used exclusively for the classifier to learn, while the validation set

is used to examine performance as hyperparameters are changed. This is accomplished

using halving-grid search with a micro averaged f1 score as a performance metric. The

test set is reserved for final score reporting once all parameters are optimized and the

model is finalized. The features for all three sets of data are generated using TF-IDF.

Seventeen models are developed, each trained on a different number of search

queries, from 3-20. The data for these models is randomly selected from 350 possible

search queries. This process is repeated 3 times for both LR and NB, resulting in

35

102 point estimates of model performance. The model performance results is plotted

in Figure 4 and a regression line is fitted to display the trend. The data presented

in this figure supports that LR has superior performance to NB and shows that

performance in general declines as more search queries are considered. During model

training, the validation set is used to optimize the following hyper-parameters, for

LR: C value, L1 value, maximum iterations, penalty, solver, and TF-IDF max feature

count. The hyper-parameters explored for NB only included alpha and TF-IDF max

feature count. The TF-IDF feature count had over 25,000 words to choose from on

a 10-query model, the optimal number of words chosen for LR was 4,821 and for

NB was 7,128 resulting in an extensive reduction in feature dimensionality for both

model techniques. Figure 5 shows the final number of features used after feature

selection across the different models tested. Sample confusion matrices produced

when the models were executed on the reserved test data can be seen for a 5-query

(Figure 6), 10-query (Figure 7), and a 20-query (Figure 8) model. The zero class in the

confusion matrices represents a document that does not belong to any of the trained

search queries. These basic techniques were also extended to other supervised multi-

class classifiers, as well as combination techniques such as ensembles and multi-stage

classifiers, sample results can be seen in Appendix A.

Analysis of the experimental observations and data presented in Figure 4–Figure 8

yielded the following observations and limitations:

1. The model must be retrained and hyper-parameters need to be re-optimized to

accommodate new queries.

2. From analysis of model performance vs query count (Figure 4): the performance

drops significantly as the model grows to accommodate more queries.

3. From analysis of confusion matrices (Figure 6–Figure 8): the zero class, the class

36

used to identify irrelevant documents, suffers the highest performance impact

as scale grows.

4. From analysis of features selected vs query count (Figure 5): the feature dimen-

sionality increases significantly as the model trains for more queries. Even with

feature selection techniques, the optimal features trended up as more queries

were considered.

The requirement for retraining and re-optimizing holds true regardless of scale.

Experimentation showed that even when considering two models trained on the same

amount of queries, they always had differing hyper-parameters, performance, and, in

general, produced entirely different models.

These experiments exemplify how logistic regression, Näıve Bayes, and classifica-

tion algorithms in general do not lend themselves to the problem this research seeks

to solve. The requirement to retrain and re-optimize a model each time a new search

Figure 4: F-score performance of NB and LR as the number of queries the model is
trained on increases. The solid lines represent regression lines that show performance
to trend down as query count increases.

37

Figure 5: The number of features used after feature selection across trained NB and
LR models.

Figure 6: Final model performance on reserved test data for a 5-query model

query needs to be added renders these techniques infeasible. The performance drop

as the model is scaled to accommodate more queries is also concerning. A final con-

sideration is the amount of data required, dozens of relevant/irrelevant examples, to

train each model iteration, when a new query needs to be added. It is not possible

to train the model on every possible search query a user may enter because there is

38

Figure 7: Final model performance on reserved test data for a 10-query model

an infinite amount of queries a user may input. As such, the experiments show that

a supervised classifier is insufficient for the task this research seeks to accomplish.

3.4.2 Latent Dirichlet Allocation and Topic Modeling for Relevancy

Prediction

An experiment similar to that found in Section 3.4.1 is conducted with unsuper-

vised machine learning. The data for this experiment is for three search queries, each

with 100 relevant documents. Again the data is split into three sets: train (60%),

validation (30%), and test (10%). The validation set is used to tune the hyper-

parameters of LDA and find the optimal model. LDA is used to generate four topics.

Three of four topics had words closely related to the trained search queries. Unlike

supervised models, an advantage LDA provided is that it did not require irrelevant

documents to train. Instead, LDA is used to predict the probability a document

belongs to one of the topics it produced. If this probability is lower than a threshold,

then it means it is a poor match for any of the topics and thus is considered irrel-

evant. An example of this is a probability vector where it predicts 30%—Topic 1,

39

Figure 8: Final model performance on reserved test data for a 20-query model

40

30%—Topic 2, 40%—Topic 3, this shows a poor match to any of the topics and there-

fore it would be classified not relevant. This confidence threshold becomes a tuneable

hyper-parameter, and its effects on the validation data can be seen in Figure 9. A

visualization of how LDA works is shown in Appendix C.

A limitation that arises from using LDA is that the number of topics LDA produces

is a hyper-parameter, and the optimal number does not necessarily equal the number

Figure 9: Threshold value for LDA probability that a document is relevant vs percent
of correct predictions. The blue line represents irrelevent predictions, while the orange
represents relevant predictions.

41

of search queries. The topic numbers that are generated by LDA do not coincide

with the class numbers assigned to each query and so a lookup table must be created.

Figure 10 shows the topics that emerged for the queries [‘what helps with burns’],

[‘weft knit definition’], [‘size of check in baggage for international’]. Matching the

words from the LDA topic descriptors to the search queries yields the lookup table

in Table 1. The limitation is the manual labor involved in using LDA to predict

relevancy. In this experiment, only three queries were examined, but the issue lies in

scalability. Creating a lookup table for a large number of topics becomes much more

complex and time-consuming.

LDA Topic Number Class
0 0
1 2
2 1
3 3

No Fitting Topics 0

Table 1: LDA lookup table for classification

The results for LDA on the validation data can be seen in the top left of Figure 11.

This shows excellent performance at predicting relevancy for the trained queries,

but poor performance at detecting irrelevent documents. Thus, combination with

supervised techniques is explored. Equally weighted ensembles with LR and NB were

examined, Figure 11, and a multi-stage classifier of feeding LDA predictions into LR

is examined in Figure 12. As Figure 9 shows, it is also possible to prioritize classifying

relevant documents. While this improved the performance of LDA by itself, it resulted

in a minimal effect to the ensembles, and performance degradation in the multistage

classifier.

42

Figure 10: The topics that emerged from running LDA on the training data. Each
topic is defined by the set of words shown.

While the ensembles and multistage classifier solve the problem of poor perfor-

mance at predicting irrelevant documents, new flaws now exist. Firstly, the same

limitations that existed for supervised classifiers carry over and compound. LDA and

the supervised techniques need to be retrained each time a query is added. LDA alone

has the ability to export the probability matrices as a starting point for retraining

when new queries need to be added, substantially reducing the retraining time. The

43

Figure 11: Confusion matrices generated by LDA and Ensembles

addition of a supervised technique now re-applies the limitation of retraining. Sec-

ondly, the number of topics that emerge from LDA does not need to equal the number

of classes. It is possible that a situation where P (class1) = P (topic2)+P (topic3) could

arise. This means that the probability of class 1 could equal the sum of probabilities

for two (or more) topics. This occurs when multiple LDA topics relate to a single

class. In the experiment conducted, this did not occur, but a similar issue occurs

44

Figure 12: Confusion matrix generated by LDA multistage classifier

where topics do not line up directly with classes (seen in Table 1).

The code that required to handle these techniques creates a list and a dataframe.

The rows in this dataframe are documents, and the columns are topics, each cell

filled in with a probability. An example of a row is Document 42: 5%, 1%, 90%, 4%.

Indicating Document 42 has a 5% match to topic 0, a 1% to topic 1, a 90% to topic

2, and a 4% to topic 3. For each row in this dataframe (for every document), the

topic and the probability are examined. A dictionary is created representing each

class and initialized to zero. If the topic is 0, then the probability gets added to class

0; if the topic is 1, then the probability gets added to class 2, topic 2 goes to class 1,

and topic 3 goes to class 3. This logic follows the lookup table from Table 1, except

it, uses probabilities.

This technique can be adapted for when multiple topics point to a single class.

For example, the case P (class1) = P (topic2) + P (topic3) , the probability for topics

2 and 3 contribute to the probability of class 1. To accomplish this in code, class 1

would have probability added whenever the topic number matched 2 or 3. This is

45

even more complex to implement than just using a lookup table and further suffers

from scalability issues. Repeating this process by hand on a model with many queries

is unrealistic. The multitude of problems that arise from trying adapt LDA to the

problem this research seeks to solve show that unsupervised and partially supervised

topic modeling are not valid approaches.

3.5 Generating Document Embeddings

There were three possible paths for generating embeddings (Section 2.2.3): make

new ones from scratch, use existing embeddings, or attempt to improve existing em-

beddings. The approach taken in this research was to improve existing embeddings.

The reasoning behind this choice is that generating new embeddings from scratch

would be computationally costly, take a long time to train, and require a large amount

of labelled data. Using existing embeddings is a valid option, except that the read-

ily available embedders such as Universal Sentence Encoder (USE), word2vec, para-

graph2vec, and BERT thrive at creating shorter embeddings, such as word, sentence,

or paragraph embeddings. What was ideal for this research is for a document embed-

ding. While there is an existing document embedder, doc2vec, available, it relies on

unsupervised learning and may not be trained appropriately for the use case that was

ideal for this research. As such, the path chosen was to improve existing embeddings

to create quality embeddings for entire documents.

3.6 Improving Embeddings Through Siamese Network with Triplet Loss

Function

Once the data is properly organized and pre-processed, it is time to train the

model. The model used is a Siamese neural network trained on the triplet loss func-

tion. From the processed data, an anchor will be chosen. An anchor is a document

46

that will be used to produce a positive and a negative. The positive is a separate

unique document of the same class(QID) as the anchor, whereas the negative is a sep-

arate unique document of a different class (QID) than the anchor. These documents

are then embedded using the Universal Sentence Encoder (USE) and passed into a

fully connected deep neural network. The triplet loss is calculated and the weights

are adjusted. The process is repeated until the loss is minimized. The network is able

to take the embeddings from the USE and add relevance information between docu-

ments into the embedded values. This allows for the embeddings to be more suited

for entire documents, as the initial embeddings produced by the USE are designed to

perform well with shorter inputs, such as words and sentences.

3.6.1 Randomly Select Document

In this stage a document from the list of training data will be selected at random

from any possible QID on the training list–this document becomes the anchor. Once

chosen, another distinct document belonging to the same QID as the anchor is chosen–

this document becomes the positive. Lastly, a third document is chosen belonging to

any QID other than that of the anchor–this document becomes the negative. These

three documents, collectively referred to as a “triplet” will be used as a single training

sample. There are a number of training samples in each batch. Each training step

will make use of a different triplet batch, that is the triplet (Ai, Pi, Ni) is used at most

once. There are a number of steps per training epoch, and a number of total training

epochs. While the triplets will not be re-used for multiple steps within a single epoch,

it is possible, though statistically unlikely, that they can be reused in a single step

inside a different epoch. So triplets are unique per step, but not necessarily per epoch.

For this research batch training was utilized, with a batch size of 64, 100 steps per

epoch and 500 epochs.

47

Figure 13: Flow chart of training a Siamese network with triplet loss using the doc-
ument texts and embeddings.

3.6.2 Input Embedding Layer

In order to generate the input embeddings, first all the documents are pre-processed

and then passed into the USE to generate the input embeddings. The output of the

USE results in a matrix of size (N, 512) where N represents the number of training

documents, and 512 represents the embedding size produced by the USE. Comparing

the feature size of this technique to a bag-of-words approach presents a large reduc-

tion in feature dimensionality. TF-IDF produced a vocabulary size of over 50,000

words after feature reduction for a 20-query model, resulting in a sparse matrix of

size (N, 50000). The USE produces a matrix where N has no bearing on the sec-

ond matrix dimension. Whereas with TF-IDF, as the value of N increases, so does

the second dimension, as shown in Figure 5. From here these input embeddings will

go into the DNN, which will further reduce dimensionality of the embeddings, and

generate improved document embeddings.

3.6.3 Fully Connected Deep Neural Network

The output of the embedding stage of the network produces three vectors for

each triplet component in the training batch. The vectors are 512-wide for each

48

of the three documents–anchor, positive, negative. Each of these vectors enters an

identical (defined as having the same weights and bias) fully connected DNN. The

DNN layer of the overarching network is a sub-network consisting of three dense

layers, each going through batch normalization as seen in Figure 14. The output

width of each of these dense layers can be treated as hyperparameters that can be

tuned for highest performance, see Appendix D. The training data consisted of 34,500

documents balanced across 345 search queries. A validation set was created using 500

documents across five search queries. Finally, a test set was reserved, also using 500

documents across five search queries. The validation set was used to make design

decisions, such as hyperparameter tuning. The test set was left untouched until final

performance reporting. Figure 14 shows the final model architecture used in this

research with an output vector of size 320. The different architectures attempted and

their corresponding performance is shown in Appendix D.

Figure 14: Sub-Network architecture of the Deep Neural Network.

49

3.6.4 Triplet Loss Layer

The triplet loss layer produces the loss to be minimized during training. It utilizes

two distances to compute this loss. The first distance is called p-distance (p) which is

defined as the distance between the anchor and the positive (eq. (10a)). The second

distance is called the n-distance (n), defined as the distance between the anchor and

the negative (eq. (10b)). Each of these distances can be calculated using Euclidean

distance (eq. (4)), but other distance formulas could be utilized as well. Next, the

n-distance (n) is subtracted from the p-distance (p), and if greater than zero, this is

the loss returned, otherwise zero is returned (eq. (10c)). By minimizing the loss, the

network is learning how to place anchors closer to the positives and further from the

negatives in the document embedding space. A zero loss indicates that the anchor is

closer to the positive than it is the negative.

p = dist(anchor, positive) (10a)

n = dist(anchor, negative) (10b)

loss = max(p− n, 0) (10c)

dist(a, b) = distance between a and b (10d)

3.7 Using Document Embeddings to Determine Document Relevancy

The new embeddings are then used to determine cosine similarity between two

documents from the validation set. Since the validation set consists of labeled data, it

is possible to derive an accuracy score of the document embeddings. Two documents

are considered related if the both belong to the same QID. Thus each document in

the validation set is embedded using the trained DNN layer and its cosine similarity

to every other document in the set is calculated. If the cosine similarity score between

50

two documents is high (≥ 0.6) and the two documents belong to the same QID, then

this indicates a correct relevancy prediction. Similarly, if the cosine similarity score

between two documents is low (< 0.6) and the two documents did not belong to the

same QID, then this indicates a correct irrelevancy prediction. This can be used to

generate an accuracy score by dividing the total number of correct predictions by the

total number of predictions. This process is repeated using the USE, the input to

the DNN. These two accuracy scores can be compared to quantify how the Siamese

network improved the original embeddings. After all tuning is complete, the process

is repeated with the reserved test set to acquire a final accuracy score.

An important consideration when determining relevancy between validation/test

QIDs is that no documents relevant to these QIDs were encountered during training.

As such, the network learned how to determine the relationship between documents

as opposed to simply learning which documents belong to what QID, as a classifier

does (Section 3.4.1). This is important for the scalability of the research. The network

needs to be able to embed search results it has never seen before and still be able to

detect relevancy between them. The goal of the DNN is to place documents of varying

length that are related to each other close in embedding space, creating clusters of

relevant documents. These clusters should be distinct and separate from clusters

belonging to other QIDs.

3.8 Applying the Trained DNN into a Prototype

Now that the model is capable of placing documents of varying length in an

embedding space it can be applied to the original problem. A search query is sent

through a search engine and the results are stored. Next, a document that is known

to be relevant to the search query is provided as a context, this information is stored

locally and never seen by the search engine. This context and all the search query

51

results are then embedded by the DNN. The cosine similarity is calculated between

each search return and the provided context. The results are then re-ranked by this

similarity score. There are two use cases of this application tested:

1. The user has a constrained-term search query and a relevant context file. This

simulates a “find more like it” functionality, where searching the internet, a user

comes across something of interest. This is used to re-rank results to find more

documents similar to that which was previously found.

2. The user has knowledge of a subject but wishes to obscure their search while

still achieving relevant results. This allows the user to transmit a less specific

search, and re-rank the results offline using more specific keywords.

Each of these use cases can be quantified by leveraging normalized Discounted Cumu-

lative Gain (Section 2.3.1), but the technique behind the quantification varies between

use cases.

For use case 1, a search is performed using the protoype with a constrained-

term search query and a relevant context file. The top 198 results are downloaded

and labeled with their original rank (no context consideration) and their new rank

(with context consideration). The labels are then hidden and the results are randomly

shuffled. A user then goes through all 198 results and scores their relevancy on a scale

of 1-5. Once all results are scored, the labels are revealed and their ranking combined

with the blind user score are used to calculate a DCG score for both the prototype

with context and the underlying search engine with no context. The best possible

DCG score is obtained by manually ordering the user’s blind scores in ascending

order and calculating the DCG. Both the prototype and the search engine’s DCG

get divided by the best possible DCG score to produce a normalized score that is

between zero and one. If the prototype yields are higher normalized DCG score

than the underlying search engine then it is considered to have met objectives and

52

improved search relevancy. This process is conducted on 20 searches, 10 specific to

military related searches and 10 inspired by recent most common searches [33].

The technique for scoring use case 2 varies slightly from use case 1. This time three

scores must be considered: the search engine without hidden context, the prototype,

and the search engine with hidden intent. Use case one does not consider a score

for the search engine with hidden context, because in that scenario the context is

an entire text document. When an entire document is typed into a search engine,

the search query becomes too long and no results are provided. Use case 2 differs

by using a few added keywords to hide true intentions. An example military search

is shown in Table 2. The top 24 results from the search “missile” are downloaded

and labeled with their rank and source (search without context). The top 24 results

from the search “Intercontinental Ballistic Missile” are downloaded and labeled with

their rank and source (search with context). Lastly, the top 24 results from the

prototype using the search “missile” and the hidden keywords are downloaded and

labeled with their rank and source (prototype). The labels are hidden and the results

are scrambled. The DCG calculations are the same as it was for use case 1, except

this time 3 normalized scores are obtained. The objective for use case 2 is met if

the prototype score exceeds the search without context and matches the search with

hidden intent. This process is repeated for 24 searches, 12 specific to military related

searches and 12 inspired by recent most common searches [33]. A complete list of the

use case 2 searches conducted can be found in Appendix E.

Constrained-term Search Missile
Added Hidden Keywords ICBM, Nuclear, Long Range, Global Strike

Hidden Intent Intercontinental Ballistic Missile

Table 2: Example use case 2 search

53

3.9 Summary

Supervised multi-class classification techniques such as Logistic Regression and

Multinomial Nav̈e Bayes were examined in this problem space and determined insuf-

ficient due to lack of scalability. Unsupervised techniques such as Latent Dirichlet

Allocation and topic modeling were examined and also deemed to require too much

human interaction to be a viable solution. Bag-of-Words feature extraction techniques

such as TF-IDF were considered and found to be inferior to dense vector embeddings.

Text pre-processing techniques were explored in order to transform document text

into quality model training features. Different embedding techniques were considered,

and improving existing embeddings is attempted. A Siamese network is utilized with

the triplet loss function to create document embeddings from the USE. The improved

embeddings are examined to determine their effectiveness at generating embeddings

for varying document lengths. The DNN is tested in the problem domain by creating

document embeddings and using them to rank search results based on relevancy of

a context file. Two use cases are identified for utilizing the DNN in a prototype.

Normalized discounted cumulative gain is used to evaluate the performance and de-

termine if objectives were met.

54

IV. Results and Analysis

4.1 Preamble

This chapter focuses on two different sets of results. The first set of results presents

the comparison of the Siamese network embeddings to that of the Universal Sentence

Encoder (USE) when used to cluster documents of different lengths. The first set

of results seeks to answer research question 4 (Section 1.3), exploring the perfor-

mance effects of applying a Siamese network to the USE. The second set of results

answers research questions 1-3 (Section 1.3) by analyzing the normalized Discounted

Cumulative Gain (DCG) (Section 2.3.1) of multiple searches.

4.2 Siamese Network Embedding Performance

Scoring the accuracy was performed as described in Section 3.7, utilizing the top

20, 50, and 75 rankings of the reserved test set on both the Siamese Deep Neural

Network (DNN) trained on the triplet loss function and the USE. The results are

shown in Figure 15. These results show that the overall scores for the DNN and the

USE decline as more rankings are considered. The data indicates that USE declines

more rapidly than the DNN when more rankings are considered. It also shows a

relationship between performance and document length, specifically with the USE.

Stable performance is observed across varying document length for the DNN, while the

USE experiences significant performance drops as longer documents are considered.

Further exploration of performance stability is conducted by examining the docu-

ment embeddings produced by different length inputs. As the input length increases,

there are more words being used to generate the fixed-width embedding. Thus, the

more words, the less each individual word contributes towards the overall embedding.

Therefore, it is expected that the embeddings produced for identical documents pre-

55

Figure 15: Accuracy scores of Siamese Network and USE across varying document
lengths. The top 20, 50, and 75 rankings are considered during scoring.

processed to different lengths will vary. This variance will play a part in the stability

of the performance as input length is changed, and can be quantified using cosine

similarity.

The cosine similarity between embeddings generated for identical documents, us-

ing an input length of 100, 500, and 1000 words are examined. A cosine similarity

score closer to one indicates an embedding that has not significantly diverged as input

56

length increased, whereas a cosine similarity score closer to zero indicates an embed-

ding that has vastly diverged as input length was increased. Two comparisons are

presented: 100 vs 500 word input lengths in Figure 16 and 100 vs 1000 word input

lengths in Figure 17. The interesting finding presented by these histograms is that

the Siamese network produces embeddings with a definitively higher cosine similar-

ity score between identical documents with varying input length than the USE does.

This metric further indicates added performance stability when the Siamese network

is leveraged over the USE alone, supporting the data shown in Figure 15.

Visualization of how these embeddings work is possible through t-distributed

stochastic neighbor embedding (TSNE). Figure 18 visualizes the placement of docu-

ment clusters using the embeddings created by both USE and the DNN. This visual

representation supports the findings that the DNN is more capable at generating

Figure 16: The cosine similarity score between the embeddings produced by USE and
Siamese DNN for the same document, but with different input lengths is compared.
The input lengths were 100 words and 500 words. The Siamese DNN is shown to
produce higher cosine similarity scores between the identical documents as input
length is increased.

57

Figure 17: The cosine similarity score between the embeddings produced by USE and
Siamese DNN for the same document, but with different input lengths is compared.
The input lengths were 100 words and 1000 words. The Siamese DNN is shown
to produce higher cosine similarity scores between the identical documents as input
length is increased.

quality document embeddings. It shows that as document length increases from 100

words, Figure 18a and Figure 18b, to 1000 words, Figure 18c and Figure 18d, the

USE clusters begin to space out, while the DNN embeddings manage to stay more

tightly packed. [8] Intra-cluster distance is defined as the distance between elements

within a cluster and inter-cluster distance is defined as the distance between clus-

ters. In the context of this experiment, a good intra-cluster distance means that

similar documents are close to each other and a good inter-cluster documents means

that dissimilar documents are spaced out. An example this can be seen by consid-

ering the green points in Figure 18a, these points represent documents belonging to

class C. Their intra-cluster distance is defined by the distance between green points

and their inter-cluster distance is defined as their distance between green points and

purple, blue, orange, or red points. Good embeddings are defined as those which

58

place green points close to each other and far away from purple, blue, orange, or red

points. Figure 18e and Figure 18f show this trend to continue—USE embeddings

intra-cluster distances increasing and inter-cluster distances decreasing with length

5000, and the DNN maintaining tight intra-cluster distances and distinct inter-cluster

distances irrespective of document length. This means that the DNN is producing su-

perior embeddings, specifically on longer document lengths, because the inter-cluster

distance and intra-cluster distance indicate the ability to place relevant documents

close to each other and irrelevant documents further away from each other. These

results confirm those seen in Figure 15 and support the claim that the DNN generates

embeddings more suited to detecting document relevancy via cosine similarity.

59

(a) USE—100 word documents (b) DNN—100 word documents

(c) USE—1000 word documents (d) DNN—1000 word documents

(e) USE—5000 word documents (f) DNN—5000 word documents

Figure 18: USE vs DNN TSNE to display the intra-cluster and inter-cluster distances
on varying document lengths.

60

4.3 Performance and Utility Analysis of Search Tool

Now that the network has the ability to generate quality document embeddings,

it is implanted in a prototype and examined. The prototype utilizes a commercial

search engine, specifically Google US Servers, but it has the ability to be adapted to

work with any search engine, and even databases or hierarchical file systems. It takes

three parameters: the search query, which will be transmitted to the search engine,

the context, which will be hidden from the search engine, and the depth, the number

of search pages to examine. The context and each search return across the depth is

embedded using the trained DNN, and then the cosine similarity is calculated. The

higher the cosine similarity score is, the more relevant the result is likely to be, thus

the results are re-ranked in ascending order using this metric.

In Section 3.8, two use cases were identified. The first use case sought to answer

research questions 1-3 (Section 1.3) by implementing the “find more like it” function-

ality. Figure 19 shows an example of use case 1 where the constrained-term search

query is “Viper” and the context is a Wikipedia file discussing the F-16 fighter jet.

Qualitatively, it can be seen that the prototype was able to provide relevant results.

Some relevant results that can be observed are in position 1, 3, 5, and 6 in the newly

re-ranked results and were originally ranked in 103, 177, 84, and 101 respectively. A

user would have had to sift through hundreds of search returns to find these results

without using the prototype.

The effectiveness can be quantified following the methodology outlined in Sec-

tion 3.8. In total, 20 searches are conducted, 10 with respect to military and 10

inspired by common internet searches [33]. The scores are collected and displayed in

Figure 20. In this graphic, the normalized DCG score is compared between the pro-

totype’s search with a context file and the search without the context file (GWO). It

quantitatively shows the prototype outperforming the search engine without context.

61

Figure 19: Prototype Use Case 1 Search Example

The second use case identified in Section 3.8 seeks to answer research question 1

(Section 1.3) by implementing the “hidden intent” functionality. Figure 21 shows an

example of use case 2 where the constrained-term search query is “intelligence” and

the hidden keywords derive from a hidden intent of “artificial intelligence”. Similar

to the behavior shown with use case 1 in Figure 19, relevant results previously ranked

low are re-ranked much higher. The top 3 results seen in Figure 21 are particularly

62

Figure 20: Performance of the “find more like it” functionality of use case 1. This
figure compares the normalized DCG score of the search engine without context
(GWO) to the prototype. It shows the distribution of the scores across military and
generic search queries. The prototype’s distribution shows there is a high probability
that the prototype will outperform the search engine without context on a given
search query.

relevant to the hidden intent and were originally ranked 79, 62, and 147 respectively.

Thus, as in use case 1, it appears use case 2 qualitatively improves results over a

constrained-term search without the hidden intent.

Use case 2 can be quantitatively scored by using DCG. Figure 22 shows the nor-

malized DCG scores obtained utilizing the methodology as described in Section 3.8.

63

The figure displays the normalized DCG scores of 24 searches, 12 with respect to mil-

itary related queries and 12 inspired by [33] common internet searches. It compares

the performance of the search engine with the constrained-term search query (GWO)

and the performance of the search engine with the full search query (GW) to the

prototype with the constrained-term search query with hidden keywords.

The primary objective for the prototype is to exceed the performance of GWO.

The secondary objective is to match the performance of GW. Analyzing the DCG

scores from Figure 22 quantitatively shows that the prototype achieves the main ob-

jective by exceeding the performance of GWO—defined as having a higher overall

DCG score. Even the lowest DCG scores shown for the prototype exceed the highest

DCG scores for GWO. The secondary objective is not fully achieved. Figure 22 shows

that the prototype is not always able to match GW performance. The higher vari-

ability observed for the prototype makes it insufficient to conclude that the prototype

performs as well as GW.

The prototype offers a substantial privacy improvement over GW, so while it

may not always match the performance of GW, it may still be a better option for

a user. The performance reported for GW is generated by a search that relays the

entirety of the hidden intent, and so the search provider knows exactly what the user

is searching for. The prototype only relays the constrained-term search query, and

provides a locally stored list of returns. GW and GWO search would both allow the

search engine to track the user’s traffic, to see which links they click on and how long

they loiter. The prototype blocks this activity as well, masking not only the true

intent of the search, but the user’s traffic and their loiter time. The complete list of

searches that were used to generate this plot can be seen in Appendix E.

There were interesting findings that arose from evaluating the performance of

the prototpye in both use cases. Firstly, both Figure 20 and Figure 22 show wide

64

Figure 21: Prototype Use Case 2 Search Example

variability in performance for GWO. Analysis of the searches that generate the data,

presented in Appendix E, yield some insight on what may be contributing to this.

Often the constrained-term query has multiple use cases, for example the search

“Fighter Jet”. If that query is presented to a search engine when the intent was F-15

it performs worse than if that same search were entered with an intent of F-35. With

GWO, context is not considered and the constrained-term search is highly dependent

65

Figure 22: Performance of the “hidden intent” functionality of use case 2. This figure
compares the performance distribution of the search engine without context (GWO),
the prototype, and the search engine with context (GW) across a series of military
and generic search queries. The prototype is shown to provide performance better
than GWO, and slightly less performance than GW.

on hot searches at the moment the query is entered. A hot search is a popular search

query that has gained popularity from a temporarily higher frequency of user requests

for a specific search as compared to alternative searches. If F-35 is more popular or

trending on the search engine at the time this experiment is conducted, it makes

sense that GWO score for this search with a hidden intent of F-35 is relatively high

while that same search with a hidden intent of F-15 is low. There is low set overlap

between identical searches with differing intent: if GWO performs reasonably well for

one context, it must perform worse for the other. There is some set overlap because

66

the possibility exists that a search result could equally discuss F-15 and F-35, making

that result relevant to both intents. This is more than likely the primary driver to

the variability of the GWO scores shown in both of these figures.

Another interesting finding arose from further consideration of a specific search

found in Appendix E. The constrained-term search query of “Vaccine” with the hidden

intent of COVID has excellent GWO performance. The cause of this is the popularity

of COVID and COVID vaccinations during the time at which these experiments

are conducted. In order to find any other context of the constrained-term search

“Vaccine” a user would have to search an extensive amount of results because the

search tool depends on the underlying search engine for results. If the underlying

search engine only provides results of a singular context, such as COVID, then the

prototype is unable to re-rank relevant results to a different context, such as Polio,

because it has no relevant results to choose from. This uncovers a limitation of the

tool, as there is a computational limit on how many pages can be searched. While it

is possible that given hundreds or thousands of pages to consider the prototype could

find relevancy to alternate contexts, it is not always feasible to scrape that many

pages. This same limitation can also be considered for use case 1, if insufficient page

depth is examined, it is possible there are no relevant results from the underlying

search engine for the prototype to choose.

4.4 Summary

The DNN embeddings were compared to USE embeddings to quantify the differ-

ence in performance, specifically when used for document embeddding in Section 4.2.

The DNN produced document embeddings superior to those produced by the USE be-

cause the DNN had stable performance across a variety of document lengths, whereas

the USE performance declined with longer documents. Next, Section 4.3 conducts

67

qualitative and quantitative evaluations of the usefulness and the performance of us-

ing the DNN document embeddings in a search tool. The search tool is shown to

provide promising performance in multiple use cases, and has the added benefit of

increased user privacy. The results presented in this chapter provide sufficient insight

to answer the research questions initially posed in Chapter I.

68

V. Conclusions

This chapter seeks to answer each research question from Section 1.3 based on

the data presented in Chapter IV. Section 5.5 covers generalized conclusions that

arose during the research. Lastly, Section 5.6 presents potential future work to be

conducted in this domain, and completes the chapter.

5.1 How can major search engine results be reorganized in a way that is

useful to the user while limiting data transmission?

Section 4.2 shows that a Siamese Deep Neural Network (DNN) is capable of gen-

erating quality document embeddings independent of document length. The DNN is

able to determine similarities between two documents, even if the documents are of

a topic not encountered during training. This allows for a user to provide a context

file and the DNN can determine similarity between this context and other files. The

ability of the DNN to produce quality document embeddings irrespective of document

length is important, because the context file could be any length, as could the docu-

ments with which it is being compared. This technique is applied to a search prototype

in Section 4.3. The context file used is stored locally and the results are provided by

an underlying search engine. This allows the prototypes to re-rank the major search

engine’s returns without transmitting the information provided as context. Leverag-

ing these techniques allows major search engine results to be reorganized, in a useful

way, while also preventing unnecessary data transmission.

69

5.2 How can a technique be scaled to handle new search queries without

requiring retraining?

An important research goal is to provide a solution that is capable of handling

newly encountered search queries without retraining a model. Supervised machine

learning using Nav̈e Bayes/logistic regression (Section 3.4.1) and unsupervised learn-

ing using latent Dirichlet allocation (Section 3.4.2) displayed classification solutions

that cannot be scaled. The application of a Siamese network to produce document

embeddings proved to be a promising solution that is capable of scaling. This is

because the Siamese network works on similarity detection instead of classification.

This can be adapted from existing machine learning solution such as facial recognition

software.

Facial recognition software is able to detect if two images are of the same person,

even if it has never encountered that person. One of the techniques used to do this is

one-shot learning using a Siamese Deep Neural Network and a triplet loss function.

This technique can be modified to work with Natural Language Processing (NLP).

This research focuses on developing a way to implement these algorithms in a new

domain. Instead of detecting if two photos are of the same person, it detects the

relevancy between two documents it has never encountered. These techniques allow

the machine learning prototype developed in Section 4.3 to scale to new search queries

without the need of retraining. The data the model was trained on was from search

queries and documents provided by the TREC 2020 data set. Whereas the search

queries presented to the tool during testing were hand crafted based on military

interests and the most common internet searches, none of which were used during

training.

70

5.3 What is the performance of the reorganized results when compared

to a major search engine?

Section 4.3 presents the performance of two use cases identified in Section 3.8. Use

case one simulates the case where a user has a context file and wants to find more

results like it. The performance for this use case is shown to provide better overall

results than if the user just input a search query without providing this context.

For use case two, two comparisons need to be made. In this use case, it is simulated

that the user is obscuring their search, by generating a constrained-term search query.

The user then provides a context that specifies what their intent is, while hiding it

from the underlying search engine. The performance of the prototype is compared to

the constrained-term search query without context and the search where the hidden

intent is not obscured and is fully transmitted to the search engine. The performance

for use case two is shown to be a definitive improvement over the case where the

search engine is just provided the constrained-term search. It does not always match

performance of the search without obscurity. This becomes a tradespace for the user

between privacy and performance. The prototype is shown to perform well while

providing added privacy.

The prototype presented in Section 4.3 has benefits over major search engines. It

can be adapted to be used with any search engine, whether it is online or offline. It

can even work with file structure or database searches. The prototype also prevents

the ability for search engines to follow user traffic by preventing the ability to detect

where the user clicks. It also prevents tracking of loiter time, which tells the search

engines how long a user spent on a specific site.

71

5.4 What is the effect of applying a scalable machine learning technique

in this problem domain?

Section 4.2 presents the results required to answer this question. Figure 15 shows

the accuracy score of the Siamese DNN embeddings versus the accuracy score of

an existing embedding technique, the Universal Sentence Encoder (USE). It shows

that the Siamese DNN is able to not only provide superior accuracy on documents

of longer length, but that it is able to achieve stable performance across multiple

document lengths. The USE shows substantially accuracy drops as document length

is increased. Additionally, the DNN shows superior performance when more rank-

ings are considered. The performance as the top 50, and 75 ranked documents are

considered is definitively higher than the USE, specifically as longer documents are

considered.

Figure 18 shows the inter-cluster and intra-cluster distances of both the USE and

the Siamese DNN. Five classes of documents are considered and the cluster distances

are compared side-by-side across varying document lengths. The Siamese DNN shows

superior intra-cluster and inter-cluster distance on documents of longer lengths. Thus

the data supports that applying a Siamese DNN with triplet loss function to the

existing embedding technique of USE provides superior embeddings for documents,

specifically when used to embed documents of varying lengths. While USE may

perform better when the documents are short, the Siamese DNN displayed stable

performance across document length. Therefore, in the case where document length

is unknown, may vary between documents, or is known to be lengthy (≥ 100 words),

the Siamese DNN provides superior embeddings.

72

5.5 General Conclusions

The goal of this research was to develop a model that could be integrated into a

search tool. This search tool would be used to provide improved search results while

providing added user privacy. A variety of techniques were explored to accomplish

this, and the best technique discovered was by adapting facial recognition algorithms

to work with text. While difficult to quantify usefulness, initial analysis of the search

tool by users in the intelligence community show the tool provided an increase in effi-

ciency over their existing techniques. This research resulted in a new search tool that

acts as a proof of concept showing that further research in this area, and improvement

of this tool would be a valuable contribution.

5.6 Future Work

This research sought to improve search relevancy while providing improved pri-

vacy for a user. While a proof of concept was created in the form of a prototype,

there is still much room for improvement. There are a multitude of areas within this

research that can benefit from further exploration including: model training, anchor

selection, performance comparisons, human studies, model application, and compu-

tation/performance tradeoffs. This section will explore some of these areas and how

they can be expanded on.

One potential area for improvement lies in model training. At the time of this

research, the document anchor, positive, and negative, collectively referred to as a

triplet, are selected randomly. There exist techniques that could be leveraged to

ensure the best possible triplets are chosen. The difficulty of this is glimpsed from

Equation (11d), where the number of possibilities is a combinatoric in the number of

3-tuples of each class, and grows even further if more training data is added. One

technique for choosing better triplets is using batch hard triplet loss [34].

73

Another area of future work would be to explore the possibility of using queries

as anchors in the triplet loss instead of documents. In Table 10, model 10 explored

this concept. When this was conducted the number of possible anchors dropped from

34500 to 345. This is because there were 100 documents per query and the model

was trained on 345 queries. If a query is used as an anchor there could only be 345

possible anchors. This is a limitation imposed by the amount of training data used,

specifically due to time constraints. If more data were processed and made available

for model training, then more queries would be available as possible anchors. It

would be meaningful to compare the performance of a Siamese network trained with

document anchors vs a Siamese network trained with query anchors on a larger scale.

number of possible anchors =

(
34500

1

)
= 34500 (11a)

number of possible positives =

(
99

1

)
= 99 (11b)

number of possible negatives =

(
34400

1

)
= 34400 (11c)

number of possible triplets = 34500 · 99 · 34400 = 117493200000 (11d)

An experiment that compares Doc2vec (Section 2.5.2) to the embeddings created

from the Siamese DNN would be meaningful future work. The experiment would use

the same methodology for ranking relevancy as seen in Chapter III, except it would

do so with two prototypes, one using the Siamese DNN embeddings and the other

using Doc2vec embeddings. Results similar to those seen in Section 4.3 would be

produced where DCG scores are used to evaluate the performance of each prototype.

The prototypes could then be directly compared to each other, to determine which

document embeddings yield higher performance. Another comparison that can be

conducted is by using alternate input embeddings (such as doc2vec, or BERT) instead

74

of USE to train the Siamese DNN and then comparing performance of the different

Siamese networks produced.

A user study could further quantify the usefulness of the search tool. People in

various communities and backgrounds could be given a blind test to rank perceived

utility of the developed search tool versus a plain search. This blind test would

hide where the search results are coming from and the user would rate two sets of

results based on which they perceive as superior, one being the results provided by

the prototype and the other being the set of results from the search engine. This

data can be aggregated from all the people who participated in the test and the user

score’s can be averaged and used to directly compare perceived utility of the search

prototype to that of a plain search engine.

There exists future work to be conducted in the application of the model. The

search tool currently only works with online search engines, but has the potential to

be adapted to work with database searches, or hierarchical computer file structures.

The performance in this new domain can be quantified to further explore utility.

Another search tool improvement lies in how the cosine similarity is calculated.

There is tradeoff between search time and relevancy directly related to the amount of

text processed during calculations. Processing more text acquired from the search en-

gine results may yield improved re-ranking, but will cost more computationally—resulting

in longer search times. Adding a feature that allows a user to tune between optimizing

search time, optimizing search relevancy, or somewhere in between could be useful.

Lastly, experimentation could be conducted on integrating the tool into a portfolio

based solution, where context is provided by a locally stored user profile. Tracking

user clicks, loiter time, and feedback from users may lead to improved ranking and

the evolution of a user’s profile.

Lastly for future work, a feature could be added that expands on the “find more

75

like it” functionality presented in use case one of the prototype (Section 3.8). A user

would click a button when they find a search result considered high quality. Next, the

important information from that high quality result is automatically extracted and

used as a context. This context can be utilized in subsequent searches to continue to

provide more results that appeal to the user. Similarly, if the user does not like a link,

the extracted context could be used to preclude results similar to the disliked result

in future searches. This preclusion can be implemented using the same methodology

presented in Section 3.8 except instead of considering results with high cosine simi-

larity scores it would seek to find results with low cosine similarity scores. This low

score would represent documents that are far away from the context. A conjunction

of this could be implemented where the prototype searches for results that are close

to one context and far away from another.

76

Appendix A. Additional Results from Supervised
Classification Techniques

Figure 23 shows the logic behind how each model tested was optimized for the

following supervised techniques: Random Forest Classifier (RFC), Multinomial Naiv̈e

Bayes (NB), Support Vector Classifier (SVC), and Logistic Regression (LR). Table 3

shows the parameters searched across each model type. Table 4 presents the training

and validation scores of the different supervised classifiers, as well as the reduced fea-

ture count from the TF-IDF optimization. Figure 24 displays the confusion matrices

generated on the validation set for each supervised technique. In Figure 25 the val-

idation set confusion matrix for the multistage classifier, LR being fed forward into

NB. Lastly, Figure 26 presents the confusion matrix results on the validation set for

multiple ensemble types.

Model Parameters
RFC TF-IDF max features, number of estimators, RFC max features, max depth
NB TF-IDF max features, alpha (smoothing parameter)
SVC TF-IDF max features, kernel type, max iterations
LR TF-IDF max features, solve type, penalty type, max iteration

Table 3: Supervised model hyperparameters examined for each model type

RFC NB SVC LR
f-score (train) 0.924 0.879 0.927 0.938
f-score (validation) 0.921 0.903 0.933 0.939
Num Features 2515 7128 4821 4821

Table 4: Micro averaged f-scores and feature counts for supervised classification mod-
els

77

Figure 23: Pipeline logic for finding the optimal supervised classification model pa-
rameters

78

Figure 24: Confusion matrices for the supervised techniques on the validation set

79

Figure 25: Confusion matrices for the multistage classifier on the validation set

80

Figure 26: Confusion matrices for the supervised ensemble techniques on the valida-
tion set

81

Appendix B. Raw Training Data Handling

The raw data that was used to train the neural network consists of three files.

The first is shown in Table 5 which ties each QID to a DocID. The next file type

ties each QID to the search queries text, shown in Table 6. The final file type ties

each DocID to the document text, an example can be seen in Table 7. After this

raw data is processed, it will form the data structure seen in Figure 27. There are

three columns, DocID refers to the document’s identification number, values contains

the entire document text—not yet cleaned, and the y column contains a unique class

identifier that has a one-to-one mapping with the QID list. Next, each document goes

through the process discussed in Section 2.1. The end result can be seen in Table 8.

1185869 Q0 D59221 1 -4.80433 IndriQueryLikelihood
1185869 Q0 D59220 2 -4.92127 IndriQueryLikelihood
1185869 Q0 D2192591 3 -5.05215 IndriQueryLikelihood
...
1162849 Q0 D669890 98 -6.24166 IndriQueryLikelihood
1162849 Q0 D782042 99 -6.24259 IndriQueryLikelihood
1162849 Q0 D1537983 100 -6.24275 IndriQueryLikelihood

Table 5: QID tied to DocID

1185869)what was the immediate impact of the success of the manhattan project?
1185868 justice is designed to repair the harm to victim, the community and
the offender caused by the offender criminal act. question 19 options:
1183785 elegxo meaning
645590 what does physical medicine do

Table 6: QID tied to query text

82

D3513209

https://answers.yahoo.com/question/index?qid=20100208181857AABxq2z

What is the typical result when a diploid cell undergoes meiosis? (8.14) A)

two diploid cells B) two haploid? Science & Mathematics Biology What is the

typical result when a diploid cell undergoes meiosis? (8.14) A) two diploid

cells B) two haploid? What is the typical result when a diploid cell undergoes

meiosis? (8.14) A) two diploid cells B) two haploid cells C) four diploid

cells D) four haploid cells E) two haploid cells and two diploid cells Follow

1 answer Answers Best Answer: Meiosis is 2 cell divisions. The first reduces

the chromosomes number in half. The second is equal (mitosis) division. So

for humans: A diploid cell has 46 chromosomes. Before starting meiosis,

the chromosomes replicate (becoming double). So 46 double chromosomes

separate into 2 cells of 23 double chromosomes each. Since each cell contains

23 chromosomes, they are haploid. But the chromosomes are double, so each

cell divides, producing 4 cells, each with 23 single chromosomes. The answer

is D 4 haploid cells. Roland · 8 years ago1 0 Comment Maybe you would like

to learn more about one of these? Consolidate Your Student Loans Explore

Digital Home Security Want to build your own website? Look For an Accident

Attorney ”

Table 7: DocID tied to document text

83

Figure 27: Raw data after processing

[’unite’, ’state’, ’conduct’, ’first’, ’nuclear’, ’test’, ’series’, ’world’, ’war’, ’july’,
’appropriately’, ’name’, ’operation’, ’crossroads’, ’mankind’, ’indeed’, ’cross-
roadsone’, ’road’, ’leading’, ’international’, ’control’, ’atomic’, ’energy’, ’fright-
ening’, ’nuclear’, ’arms’, ’race’, ’operation’, ’crossroads’, ’bright’, ’idea’, ’lewis’,
’strauss’, ’aide’, ’secretary’, ’navy’, ’james’, ’forrestal’, ’later’, ’chairman’,
’atomic’, ’energy’, ’commission’, ’perhaps’, ’weapon’, ’past’, ’atomic’, ’bomb’,
’threaten’, ’instant’, ’absolescence’, ’navy’, ’american’, ’navy’, ’immediate’, ’re-
action’, ’hiroshima’, ’find’, ’impact’, ’new’, ’weapon’, ’future’, ’naval’, ’force’,
’bitterly’, ’resent’, ’air’, ’force’, ’monopoly’, ’means’, ’delivery’, ’weapon’, ’des-
perately’, ’want’, ’role’, ’future’, ’advocate’, ’air’, ’power’, ’however’, ’chal-
lenge’, ’view’, ’ship’, ’could’, ’survive’, ’atomic’, ’bombing’, ’strauss’, ’there-
fore’, ’recommend’, ’american’, ’navy’, ’test’, ’ability’, ’ship’, ’withstand’,
’force’, ’generate’, ’atomic’, ’bomb’... ”

Table 8: Example of a processed and tokenized document

84

Appendix C. Latent Dirichlet Allocation Visualization

Figure 28 visualizes the topic modeling which occurs when LDA creates a topic

for the query “What was the significance of the Manhattan Project”. The top 30

most relevent words of the topic cluster are shown on the right side of the graphic.

These words can be used to classify new documents as relevant to this topic.

Figure 28: LDA topic that emerged from a specific search query

85

Appendix D. Siamese Network Model Generation Results

The figures in this appendix compare the Siamese networks performance to the

Universal Sentence Encoder across varying paramaters and document lengths. The

goal is to find the top performing model and keep it. Due to long training time for

the network, parameters are first swept with reduced training, Table 9, the input

width is always 512 and cannot be changed as that is the size of Universal Sentence

Enconder’s (USE) output. The performance results across varying document lengths

is presented in Table 10. The top two models are highlighted yellow and these models

will be provided increased training and examined closer, Table 11. Finally, the best

model is used on the reserved test data, the scores are displayed in Table 12.

Model Doc Size (words) L1 Width L2 Width L3 Width Other Alterations
1 100 256 128 none normalization final layer
2 100 256 64 16
3 100 256 128 64 normalization final layer
4 500 512 256 none normalization final layer
5 500 448 384 320
6 1000 448 384 320
7 5000 448 384 320
8 10000 448 384 320
9 5000 448 384 320 softmax final layer
10 5000 448 384 320 query text used as anchors
Training Conditions: Batch Size: 64, Steps per Epoch:100, Num Training Epochs: 100

Table 9: Preliminary Siamese Network Setups

86

Document Length (words)
100 1000 5000

Name Model USE Model USE Model USE
1 0.8438 0.9508 0.63179 0.8629 0.6214 0.8428
2 0.8593 0.9508 0.8438 0.8629 0.813 0.8428
3 0.8705 0.9508 0.683 0.8629 0.655 0.8428
4 0.9041 0.9508 0.7918 0.8629 0.7784 0.8428
5 0.9171 0.9508 0.8839 0.8629 0.8696 0.8428
6 0.9066 0.9508 0.9115 0.8629 0.8928 0.8428
7 0.9205 0.9508 0.9079 0.8629 0.8896 0.8428
8 0.9097 0.9508 0.8903 0.8629 0.8839 0.8428
9 0.8816 0.9508 0.8265 0.8629 0.8106 0.8428
10 0.9284 0.9508 0.9197 0.8629 0.9098 0.8428

Table 10: Preliminary Siamese Network Results

Document Length (words)
100 1000 5000

Name Model USE Model USE Model USE
6 0.9105 0.9508 0.9117 0.8629 0.9056 0.8428
7 0.9183 0.9508 0.9216 0.8629 0.9205 0.8428
10 0.9196 0.9508 0.9179 0.8269 0.9043 0.8428

Num Training Epochs: 100 → 500

Table 11: Secondary Siamese Network Results

Document Length (words)
100 1000 5000

Name Model USE Model USE Model USE
7 0.9211 0.9508 0.9331 0.8629 0.9313 0.8428

Table 12: Final Siamese Network Results on Test Data

87

Appendix E. Prototype Use Case 2 Searches

This appendix presents all the searches conducted to generate Figure 22.

Vague Search Query Hidden Intent Category
War World War 2 Military
War Russia Military

Military Tank American Military
Military Tank Russian Military

Missile Anti-Aircraft Military
Missile ICBM Military
Missile Defense Military

Fighter Jet F-16 Military
Fighter Jet F-35 Military
Fighter Jet F-15 Military

Gun Violence/Law/Policy Military
Gun Purchase/Store Military
Game Videogame Common Searches
Game Board/Tabletop Common Searches

Computer Science/School Common Searches
Computer Store/Purchase Common Searches
Restaurants Fine Dining Common Searches
Restaurants Delivery Common Searches
Vaccine COVID Common Searches
Sick Cold Common Searches
Sick Company Common Searches

Printer Ink Common Searches
Printer 3d Common Searches

Intelligence Artificial/AI/ML Common Searches

Table 13: Prototype Use Case 2 Searches

88

Bibliography

1. M. Speretta and S. Gauch. Personalized search based on user search histories.

In The 2005 IEEE/WIC/ACM International Conference on Web Intelligence

(WI’05), pages 622–628, 2005.

2. Walaa Medhat, Ahmed Hassan, and Hoda Korashy. Sentiment analysis algo-

rithms and applications: A survey. Ain Shams Engineering Journal, 5(4):1093–

1113, 2014.

3. Yash Alpeshbhai Patel. Sentiment analysis on imdb movie review, Oct 2021.

4. Niko A Petrocelli. CSCE 699: Natural Language Processing Project Report,

2021.

5. Michel Verleysen and Damien François. The curse of dimensionality in data

mining and time series prediction. In International work-conference on artificial

neural networks, pages 758–770. Springer, 2005.

6. Niko A Petrocelli. CSCE 623: Machine Learning Project Report, 2021.

7. Juan Ramos. Using TF-IDF to Determine Word Relevance in Document Queries.

Proceedings of the first instructional conference on machine learning, 242(1):29–

48, 2003.

8. Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An Intro-

duction to Statistical Learning: with Applications in R. Springer, 2013.

9. Dastan Maulud and Adnan M. Abdulazeez. A Review on Linear Regression

Comprehensive in Machine Learning. Journal of Applied Science and Technology

Trends, 1(4):140–147, 2020.

89

10. H. Liu and H. Motoda. Feature transformation and subset selection. IEEE

Intelligent Systems and their Applications, 13(2):26–28, 1998.

11. Armin Askari, Alexandre D’Aspremont, and Laurent El Ghaoui. Naive Feature

Selection: Sparsity in Naive Bayes. 108, 2019.

12. Daniel Cer, Yinfei Yang, Sheng yi Kong, Nan Hua, Nicole Limtiaco, Rhomni

St. John, Noah Constant, Mario Guajardo-Céspedes, Steve Yuan, Chris Tar,

Yun Hsuan Sung, Brian Strope, and Ray Kurzweil. Universal sentence encoder for

English. EMNLP 2018 - Conference on Empirical Methods in Natural Language

Processing: System Demonstrations, Proceedings, pages 169–174, 2018.

13. Aylin Caliskan, Joanna J Bryson, and Arvind Narayanan. Semantics de-

rived automatically from language corpora contain human-like biases. Science,

356(6334):183–186, 2017.

14. Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation

of word representations in vector space. 1st International Conference on Learning

Representations, ICLR 2013 - Workshop Track Proceedings, pages 1–12, 2013.

15. Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-

training of deep bidirectional transformers for language understanding. 10 2018.

16. Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using

siamese bert-networks. 8 2019.

17. Faisal Rahutomo, Teruaki Kitasuka, and Masayoshi Aritsugi. Semantic Cosine

Similarity. Semantic Scholar, 2(4):4–5, 2012.

18. Berhane, Fisseha. Operations on word vectors. https://datascience-

enthusiast.com/DL/Operations_on_word_vectors.html, 2021. Accessed:

2022-02-23.

90

https://datascience-enthusiast.com/DL/Operations_on_word_vectors.html
https://datascience-enthusiast.com/DL/Operations_on_word_vectors.html

19. Georges Dupret. Discounted cumulative gain and user decision models. In

Roberto Grossi, Fabrizio Sebastiani, and Fabrizio Silvestri, editors, String Pro-

cessing and Information Retrieval, pages 2–13, Berlin, Heidelberg, 2011. Springer

Berlin Heidelberg.

20. Andrew Mccallum and Kamal Nigam. A comparison of event models for naive

bayes text classification. Work Learn Text Categ, 752, 05 2001.

21. Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,

Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron

Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning in python. Journal

of machine learning research, 12(Oct):108–122, 2011.

22. Aurélien Géron. Hands-on machine learning with Scikit-Learn and TensorFlow

: concepts, tools, and techniques to build intelligent systems. O’Reilly Media,

Sebastopol, CA, 2017.

23. David M. Blei and Jon D. McAuliffe. Supervised topic models. Advances in

Neural Information Processing Systems 20 - Proceedings of the 2007 Conference,

pages 1–22, 2009.

24. Gregory Koch, Richard Zemel, Ruslan Salakhutdinov, et al. Siamese neural net-

works for one-shot image recognition. In ICML deep learning workshop, volume 2,

page 0. Lille, 2015.

25. Li Fei-Fei, R. Fergus, and P. Perona. One-shot learning of object categories. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 28(4):594–611, 2006.

26. Alexander Hermans, Lucas Beyer, and Bastian Leibe. In defense of the triplet

loss for person re-identification. CoRR, abs/1703.07737, 2017.

91

27. David M. Blei, Andrew Y. Ng, and Michael T. Jordan. Latent dirichlet allocation.

Advances in Neural Information Processing Systems, 3:993–1022, 2002.

28. Quoc Le and Tomas Mikolov. Distributed representations of sentences and doc-

uments. In 31st International Conference on Machine Learning, ICML 2014,

volume 4, pages 2931–2939, 2014.

29. Dimo Angelov. Top2vec: Distributed representations of topics. arXiv preprint

arXiv:2008.09470, 2020.

30. Minghui Huang, Yanghui Rao, Yuwei Liu, Haoran Xie, and Fu Lee Wang. Siamese

network-based supervised topic modeling. In Proceedings of the 2018 Conference

on Empirical Methods in Natural Language Processing, pages 4652–4662, 2018.

31. Arpita Das, Harish Yenala, Manoj Chinnakotla, and Manish Shrivastava. To-

gether we stand: Siamese networks for similar question retrieval. In Proceedings

of the 54th Annual Meeting of the Association for Computational Linguistics (Vol-

ume 1: Long Papers), pages 378–387, Berlin, Germany, August 2016. Association

for Computational Linguistics.

32. Martin Gleize, Eyal Shnarch, Leshem Choshen, Lena Dankin, Guy Moshkowich,

Ranit Aharonov, and Noam Slonim. Are you convinced? choosing the more

convincing evidence with a siamese network, 2019.

33. Voitsekhovskaia, Valeria. Top trending google searches. https://www.semrush.

com/blog/most-searched-keywords-google/, 2021. Accessed: 2022-02-23.

34. Alexander Hermans, Lucas Beyer, and Bastian Leibe. In defense of the triplet

loss for person re-identification. arXiv preprint arXiv:1703.07737, 2017.

92

https://www.semrush.com/blog/most-searched-keywords-google/
https://www.semrush.com/blog/most-searched-keywords-google/

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

24-03-2022 Master’s Thesis Sept 2020 - Mar 2022

Improving Anonymized Search Relevance with Natural Language
Processing and Machine Learning

Petrocelli, Niko A. Capt, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENG-MS-22-M-055

Intentionally Left Blank

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

Users often sacrifice personal data for more relevant search results, presenting a problem to communities that desire both
search anonymity and relevant results. To balance these priorities, this research examines the impact of using Siamese
networks to extend word embeddings into document embeddings and detect similarities between documents. The
predicted similarity can locally re-rank search results provided from various sources. This technique is leveraged to limit
the amount of information collected from a user by a search engine. A prototype is produced by applying the
methodology in a real-world search environment. The prototype yielded an additional function of finding new documents
related to a provided sample document. The prototype is evaluated using real-world search examples. Results indicate
that the Siamese network can produce document embeddings superior to current encoders like the Universal Sentence
Encoder. Results also show the promising performance of the prototype in improving search relevancy while limiting user
data transmission.

Natural Language Processing, Search Relevance, Machine Learning, Siamese Networks

U U U UU 104

Dr. Brett J. Borghetti, AFIT/ENG

(937) 255-3636; brett.borghetti@afit.edu

	Abstract
	List of Figures
	List of Tables
	Introduction
	Attributes and Challenges of Desired System
	Assumptions, Limitations, and Constraints
	Research Questions
	Impact
	Document Overview

	Background and Literature Review
	Text Pre-Processing
	Feature Extraction for NLP
	Bag-of-Words
	TF-IDF
	Word Embeddings
	Universal Sentence Encoder
	Word2Vec
	Bidirectional Encoder Representations from Transformers

	Techniques for Determining Similarity
	Techniques for Scoring Search Relevancy

	Applying Supervised Machine Learning to NLP
	Text Classification Using Multinomial Naïve Bayes
	Text Classification Using Logistic Regression
	Partially Supervised/Supervised Latent Dirichlet Allocation
	Artificial Neural Networks
	Siamese Networks for Image Analysis and One-Shot learning
	Triplet Loss Function

	Unsupervised Machine Learning
	Topic Modeling/Latent Dirichlet Allocation
	Paragraph Vector and Doc2Vec
	Topic2Vec

	Related Works
	Summary

	Methodology
	Preamble
	Training Data
	Text Pre-Processing
	Analysis of Existing Techniques
	Logistic Regression and Multinomial Naïve Bayes for Multiclass Classification
	Latent Dirichlet Allocation and Topic Modeling for Relevancy Prediction

	Generating Document Embeddings
	Improving Embeddings Through Siamese Network with Triplet Loss Function
	Randomly Select Document
	Input Embedding Layer
	Fully Connected Deep Neural Network
	Triplet Loss Layer

	Using Document Embeddings to Determine Document Relevancy
	Applying the Trained DNN into a Prototype
	Summary

	Results and Analysis
	Preamble
	Siamese Network Embedding Performance
	Performance and Utility Analysis of Search Tool
	Summary

	Conclusions
	Re-ranking Search Results
	Scalability
	Performance Comparison
	Problem Domain Exploration
	General Conclusions
	Future Work

	Additional Results from Supervised Classification Techniques
	Raw Training Data Handling
	Latent Dirichlet Allocation Visualization
	Siamese Network Model Generation Results
	Prototype Use Case 2 Searches
	Bibliography

