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Motivation

altitude (km)

0 "\(v)() IH‘(I() l;'()l)

time from re-entry interface (s)
Assess the structural dynamics in presence of time-varying thermal
and aerodynamic loads, for long times: fatigue analysis

AFOSR - Grant No. 1191404 — Reduced Order Modeling for Hypersonic Aeroelasticity:
ROMA | Jan 2016-Dec 2018

AFOSR — Grant No. FA9550-18-1-0508 - Aero-THermo-Elastic Nonlinear reduced order
modeling for hypersonic Airframes: ATHENA | Sept 2019-Sept 2021 |
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Motivation - what model features we need?

= Arbitrary geometries: large FEM
= Temperature field space and time dependent

= Geometric nonlinearities to account for
=  bending stiffness reduction due to thermally induced compression loads
= Buckling/snapthrough
= Large deflections
= Limit cycle oscillations

= Temperature dependent material properties — degradation

=  Aero loads via piston-theory + fluctuations due to turbulence

=  Aero-thermo-mechanical coupling
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Motivation — where is the bottleneck?

= Design/optimization require lots of analyses

= High Fidelity Models (HFMs) are unfeasible do to time and
memory resources required (1 iteration might require
hours/days)

= Current practice: neglect coupling/transient response, or resort
to lumped models to trade for speed

% Need for Reduced Order Models (ROM:s)

Ovutcome: ROMs that enable design iterations at reasonable times
(order of magnitude faster than HFMs), while keeping all the
essential features of the HFMs, without requiring abstraction,
simplification or lumping.
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One-way thermo-elastic coupling

1. S. Jain, P.Tiso, Journal of Sound and Vibration, (2020) [PDF]

Thermal problem Structural problem

M;T 4 £ (T) = h(r) T(T) sMi+ Cia+f(u,T)=g(t)

Solve the thermal problem first, then pass the T(x,z) to the structural problem.

Non-existence of
1. equilibrium
2. invariant spaces for reduction

Standard techniques (hot modes, cold
modes, etc),not well grounded

Temperature evolves slowly when compared to structural periods:

time scale dichotomy. , ,
“Thermal” time “mechantcal” time

@:e@ e < 1
dx dx*

During a characteristic time tnterval
for thermo problem, not much is

dt d7- happewmg to the structure
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https://www.sciencedirect.com/user/identity/landing?code=IpmYEn-kdE8vZpV8k1F_HjOX-Q5Ncin4js5R0QUV&state=retryCounter%3D0%26csrfToken%3Db600b063-f304-4262-888b-e2316cb6732c%26idpPolicy%3Durn%253Acom%253Aelsevier%253Aidp%253Apolicy%253Aproduct%253Ainst_assoc%26returnUrl%3D%252Fscience%252Farticle%252Fpii%252FS0022460X19305851%26prompt%3Dnone%26cid%3Darp-68762f5b-0f9f-44ef-9e8e-a44900125d3e

Method of Multiple Scales

Solution depends on two different time scales
u=u(t,7)
Expansion in €

u(t,7) =ug(t,7) + eui(t,7) + “ua(t,7) + . ..

Leading order: nonlinear problem

6’2u0 8u0
O(1) : M +C—+f(uyg, T(7)) =p(t,0
(1) 5+ CL + £ (w0, T(7)) = p (+,0)
Linear system with slow temperature variation: 7 is a parameter!
@2 a Parameter
u u
M—— + C—> + K (T(1)) u+b(T(7)) = p (t,0)
ot ot
This justifies parametric equilibrium... ...and reduction basis.

wy(r) = K (T()) ' b(T(r))  [K(T(r)) = w(r)M] () = 0
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Modal basis variation
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Modes might experience veering as temperature changes. This can
be taken into account by the algorithm discussed in [4].
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Galerkin projection

82q0

o2 +®(7) CB(r )T(‘?qo

®(1)'M®(7)

o T )'f (Aeq(T) + ®(7)q0, T(7))

®(7)"p(t,0)

v The ROM adapts to the underlying, slowly changing equilibrium;

v' No basis time derivatives present;

Example:
p(t,e) = lpsinw.t + €lya(t)

Uniform load shape
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Example: Curved Arch

x107°

= Full linear solution

8
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Parametric ROM

0? do0
Ot?

+ ‘I’(T)TC‘I’(T)T% + (1) £ (aeg(7) + @(7)a0, T(7)) = (1) " p (t,0)

®(7)"M®(7)

The highlighted terms need to be efficiently computed.

How to make the ROM efficient online¢

. Non-intrusive computation of ROM terms

2. Efficient interpolation
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Non-intrusive methods

Mg+ Cq+Kq+f,(Vq) =g

Function of modal coordinates only!
V\ m m m

VTfnl (V(l) = (f Z Z 5144 + S‘ S‘ S‘ B’ijIQZQJ dk

Coefficients of assumed nonlmear force ob’ralned by flﬂlng with nonlin. forces

necessary to hold structure into the shape of dominant modes, at chosen
amplitudes.

Done conveniently with off-the shelf FE programs (Abaqus, Ansys, ...): “non-
intrusive”.
Implicit Condensation and Expansion (ICE)
M. I. McEwan, J. R. Wright, J. E. Cooper, and A. Y. T. Leung, "A combined modail/finite element analysis

technique for the dynamic response of a non-linear beam to harmonic excitation,” Journal of Sound and
Vibration, vol. 243, pp. 601-624, 2001.

Enforced Displacements (ED)

A. A. Muravyov and S. A. Rizzi, "Determination of nonlinear stiffness with application to random vibration of
geometrically nonlinear structures,” Computers & Structures, vol. 81, pp. 1513-1523, 2003
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Non-intrusive methods

State of the art: ot D T ——

Enforced Displacement (ED)

— Enforced Displ: it (EED)

2000

1. They require lots of static solutions/evaluations

2. The modes necessary to capfture the
geometric nonlinearity (Dual modes) in the
reduction basis also require extensive
computations

1500

1000

Number of static solutions

500

—

O Ur Con Trib U fion: ’ b b ° NumthZr of Moj?es 3‘5

Non-intrusive Modal derivatives appended to the linear modes basis
M K. Mahdiabadi, P. Tiso, A. Brandt, DJ Rixen, MSSP (2020) [PDF]

2f
I e T(0) - 6| &,

Ky (ueq(7), T(7)) 055 = — | 5 -~

Modal derivatives automatically account for

40 45 50

geometrically nonlinear deformation

induced by vibration modes. Their

computation is systematic, as compared to
Dual Modes, and lead to generally more
consistent results.
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https://www.sciencedirect.com/science/article/pii/S0888327020305124

Non-intrusive methods

Our confribution (cont’d):
1
u—=2=(q) = ¢q + §®qq, E:R™ - R"
Usage of quadratic manifold (built with

VMs and MDs) to significantly reduce the
offline cost of training cases.

Example: flat beam

Transvers DOF-mid point, 150dB; PSD
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Interpolated ROM

,ll,i , , s f(ue, (7)), T(1)) =0
a-prioril Basts selection criterton -

% o
- -
-

Actual trajectorgj

Max. modal interaction

rRadial basts wetghts w; (z) 7 = [u]

t M(r) + K‘“q(r) f(r)

Each support point generates a non-intrusive nonlinear ROM
Wi = fo |gi(0) q(0)| dr

z=A;(z—12;)+f(z—2)+D
ROMs are weigh’red online by radial basis functions

Z — sz 7 — Zz) [Az(i — 22) +E(i — Zz) ‘|‘13]
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Example: curved shell

Temperature distribution: uniform in space, increasing in time
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Displacement PSD (m2/Hz)

Example: curved shell

1. MK Mahdiabadi, P. Tiso, under preparation

« 2.1 response non present in the linear case
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Summary

Slow variation in temperature is not only physically relevant but also
essential to justify model reduction using an adaptive reduction basis.

Use of multiple scales method to exploit the time scale dichotomy.

Order epsilon correction important in presence of small mechanical loads.

In the geometrically nonlinear setting, the basis is enriched using the
modal derivatives corresponding to significant vibration modes.

Non-intrusive construction of ROM using modal derivatives and quadratic
manifolds for increased offline efficiency

For hyper-reduction of nonlinear terms, it is possible to avoid HFM based
training by lifting modal solutions on quadratic manifolds.

Online ROM interpolation for efficiency once precomputed equilibria and
basis at support points are available.
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Remaining Technical Challenges

= |nclusion of aerodynamic and turbulence

= Prof. Dimitris Drikakis (un. Cyprus) will develop an acoustic
model which will be validated against high-fidelity numerical
simulations and experiments, and will offer the model to ETH
for inclusion into the acoustic-thermo-elastic analysis
framework for hypersonic airframes.

= Thermal buckling/snap-through?

= Parametrization

= Recently developed a ROM that includes geometric
uncertanties (J. Marconi, P. Tiso, F. Braghin, CMAME, 2019)
= Anidea for slightly curved structures?

= Efficient online intferpolation for reduced operators
= Trajectory Piecewise weighted Linearization
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