AFRL-AFOSR-UK-TR-2022-0037

ATHENA: Aero-Thermo-Elastic Nonlinear reduced order modeling for hypersonic Airframes

Tiso, Paolo Eidgenössische Technische Hochschule ETH Rämistrasse 101 Zurich, , 8092 CH

03/30/2022 Final Technical Report

DISTRIBUTION A: Distribution approved for public release.

Air Force Research Laboratory Air Force Office of Scientific Research European Office of Aerospace Research and Development Unit 4515 Box 14, APO AE 09421

REPORT DOCUMENTATION PAGE								
PLEASE DO NOT RETUR	N YOUR FORM TO THE A	BOVE ORGANIZATION.						
1. REPORT DATE	2. REPORT TYPE			3. DATES COVERED				
20220330	Final		START DATE 20180930			END DATE 20210929		
4. TITLE AND SUBTITLE ATHENA: Aero-Thermo-E	lastic Nonlinear reduced ord	er modeling for hypersonic Airfrar	mes	I				
5a. CONTRACT NUMBER		5b. GRANT NUMBER FA9550-18-1-0508		5c. PROGRAM EL		I ELEN	EMENT NUMBER	
5d. PROJECT NUMBER		5e. TASK NUMBER		5f.	5f. WORK UNIT NUMBER			
6. AUTHOR(S) Paolo Tiso		I						
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Eidgenössische Technische Hochschule ETH Rämistrasse 101 Zurich 8092 CH				8. PERFORMING ORGANIZATION REPORT NUMBER			FORMING ORGANIZATION IT NUMBER	
9. SPONSORING/MONIT EOARD UNIT 4515 APO AE 09421-4515	ORING AGENCY NAME(S)	ND ADDRESS(ES) ACRONYM(S AFRL/AFOSF		MONITOR	'S	11. SPONSOR/MONITOR'S REPORT NUMBER(S) AFRL-AFOSR-UK- TR-2022-0037		
12. DISTRIBUTION/AVAI A Distribution Unlimited: P	LABILITY STATEMENT B Public Release							
13. SUPPLEMENTARY N	OTES							
14. ABSTRACT See final report for details.								
15. SUBJECT TERMS								
16. SECURITY CLASSIFI		17. LIM	17. LIMITATION OF ABSTRACT			18. NUMBER OF PAGES		
a. REPORT U	b. ABSTRACT U	c. THIS PAGE U	SAR				19	
19a. NAME OF RESPONSIBLE PERSON DAVID SWANSON					19b. PHONE NUMBER (Include area code) 785-6565			
							Standard Form 298 (Rev 5/2020)	

Aero-THermo-Elastic Nonlinear reduced order modeling for hypersonic Airframes: ATHENA

Morteza Karamooz Mahdiabadi, Paolo Tiso

Final Report

Motivation

Assess the structural dynamics in presence of time-varying thermal and aerodynamic loads, for long times: fatigue analysis

AFOSR – Grant No. 1191404 – Reduced Order Modeling for Hypersonic Aeroelasticity: **ROMA** | Jan 2016-Dec 2018

AFOSR – Grant No. FA9550-18-1-0508 - Aero-THermo-Elastic Nonlinear reduced order modeling for hypersonic Airframes: **ATHENA** | Sept 2019-Sept 2021

Motivation – what model features we need?

- Arbitrary geometries: large FEM
- Temperature field space and time dependent
- Geometric nonlinearities to account for
 - bending stiffness reduction due to thermally induced compression loads
 - Buckling/snapthrough
 - Large deflections
 - Limit cycle oscillations
- Temperature dependent material properties degradation
- Aero loads via piston-theory + fluctuations due to turbulence
- Aero-thermo-mechanical coupling

Motivation – where is the bottleneck?

- Design/optimization require lots of analyses
- High Fidelity Models (HFMs) are unfeasible do to time and memory resources required (1 iteration might require hours/days)
- Current practice: neglect coupling/transient response, or resort to lumped models to trade for speed

Need for Reduced Order Models (ROMs)

Outcome: ROMs that enable design iterations at reasonable times (order of magnitude faster than HFMs), while **keeping all the essential features of the HFMs**, without requiring abstraction, simplification or lumping.

One-way thermo-elastic coupling

1. S. Jain, <u>P. Tiso</u>, Journal of Sound and Vibration, (2020) [PDF]

Thermal problemStructural problem $\mathbf{M}_{T}\mathbf{T}' + \mathbf{f}_{T}(\mathbf{T}) = \mathbf{h}(\tau)$ $\mathbf{T}(\tau)$ $\mathbf{M}\ddot{\mathbf{u}} + \mathbf{C}\dot{\mathbf{u}} + \mathbf{f}(\mathbf{u}, \mathbf{T}) = \mathbf{g}(t)$

Solve the thermal problem first, then pass the $\mathbf{T}(\mathbf{x}, \tau)$ to the structural problem.

Non-existence of

- 1. equilibrium
- 2. invariant spaces for reduction

Standard techniques (hot modes, cold modes, etc),not well grounded

Temperature evolves slowly when compared to structural periods: **time scale dichotomy**.

Method of Multiple Scales

Solution depends on two different time scales

$$\mathbf{u} = \mathbf{u}(t,\tau)$$

Expansion in ϵ

$$\mathbf{u}(t,\tau) = \mathbf{u}_0(t,\tau) + \epsilon \mathbf{u}_1(t,\tau) + \epsilon^2 \mathbf{u}_2(t,\tau) + \dots$$

Leading order: nonlinear problem

$$\mathcal{O}(1): \mathbf{M} \frac{\partial^2 \mathbf{u}_0}{\partial t^2} + \mathbf{C} \frac{\partial \mathbf{u}_0}{\partial t} + \mathbf{f} (\mathbf{u}_0, \mathbf{T}(\tau)) = \mathbf{p} (t, 0)$$

Linear system with slow temperature variation: τ is a parameter
$$\mathbf{M} \frac{\partial^2 \mathbf{u}_0}{\partial t^2} + \mathbf{C} \frac{\partial \mathbf{u}_0}{\partial t} + \mathbf{K} (\mathbf{T}(\tau)) \mathbf{u} + \mathbf{b} (\mathbf{T}(\tau)) = \mathbf{p} (t, 0)$$

This justifies parametric equilibrium... and reduction basis. $\mathbf{u}_{eq}(\tau) = -\mathbf{K} \left(\mathbf{T}(\tau)\right)^{-1} \mathbf{b}(\mathbf{T}(\tau)) \qquad \left[\mathbf{K}(\mathbf{T}(\tau)) - \omega_i^2(\tau) \mathbf{M}\right] \boldsymbol{\phi}_i(\tau) = \mathbf{0}$

Modal basis variation

Modes might experience **veering** as temperature changes. This can be taken into account by the algorithm discussed in [4].

Galerkin projection

$$\boldsymbol{\Phi}(\tau)^{T} \mathbf{M} \boldsymbol{\Phi}(\tau) \frac{\partial^{2} \mathbf{q}_{0}}{\partial t^{2}} + \boldsymbol{\Phi}(\tau)^{T} \mathbf{C} \boldsymbol{\Phi}(\tau)^{T} \frac{\partial \mathbf{q}_{0}}{\partial t} + \boldsymbol{\Phi}(\tau)^{T} \mathbf{f} \left(\mathbf{q}_{eq}(\tau) + \boldsymbol{\Phi}(\tau) \mathbf{q}_{0}, \mathbf{T}(\tau) \right) = \boldsymbol{\Phi}(\tau)^{T} \mathbf{p} \left(t, 0 \right)$$

- \checkmark The ROM adapts to the underlying, slowly changing equilibrium;
- \checkmark No basis time derivatives present;

- Temp. profile traveling over the arch
- Mechanical load excites first 3 modes
- ROM: 5 modes, interpolated between 19 temperature configurations

Example: Curved Arch

Parametric ROM

$$\boldsymbol{\Phi}(\tau)^{T} \mathbf{M} \boldsymbol{\Phi}(\tau) \frac{\partial^{2} \mathbf{q}_{0}}{\partial t^{2}} + \boldsymbol{\Phi}(\tau)^{T} \mathbf{C} \boldsymbol{\Phi}(\tau)^{T} \frac{\partial \mathbf{q}_{0}}{\partial t} + \boldsymbol{\Phi}(\tau)^{T} \mathbf{f} \left(\mathbf{q}_{eq}(\tau) + \boldsymbol{\Phi}(\tau) \mathbf{q}_{0}, \mathbf{T}(\tau) \right) = \boldsymbol{\Phi}(\tau)^{T} \mathbf{p} \left(t, 0 \right)$$

The highlighted terms need to be efficiently computed.

How to make the ROM efficient online?

- 1. Non-intrusive computation of ROM terms
- 2. Efficient interpolation

Non-intrusive methods

$$\begin{split} \tilde{\mathbf{M}} \ddot{\mathbf{q}} + \tilde{\mathbf{C}} \dot{\mathbf{q}} + \tilde{\mathbf{K}} \mathbf{q} + \tilde{\mathbf{f}}_{nl}(\mathbf{V}\mathbf{q}) &= \tilde{\mathbf{g}} \\ \\ & \mathbf{F} \text{unction of modal coordinates only!} \\ \mathbf{V}^T \mathbf{f}_{nl}(\mathbf{V}\mathbf{q}) \stackrel{\Rightarrow}{=} (\tilde{\mathbf{f}}_{nl})_I &= \sum_{i}^{m} \sum_{j}^{m} \alpha_{ijI} q_i q_j + \sum_{i}^{m} \sum_{j}^{m} \sum_{k}^{m} \beta_{ijkI} q_i q_j q_k \end{split}$$

Coefficients of **assumed nonlinear force** obtained by **fitting** with nonlin. forces necessary to hold structure into the shape of dominant modes, **at chosen amplitudes**.

Done conveniently with off-the shelf FE programs (Abaqus, Ansys, ...): "non-intrusive".

Implicit Condensation and Expansion (ICE)

M. I. McEwan, J. R. Wright, J. E. Cooper, and A. Y. T. Leung, "A combined modal/finite element analysis technique for the dynamic response of a non-linear beam to harmonic excitation," Journal of Sound and Vibration, vol. 243, pp. 601-624, 2001.

Enforced Displacements (ED)

A. A. Muravyov and S. A. Rizzi, "Determination of nonlinear stiffness with application to random vibration of geometrically nonlinear structures," Computers & Structures, vol. 81, pp. 1513-1523, 2003

Non-intrusive methods

State of the art:

- 1. They require lots of static solutions/evaluations
- 2. The modes necessary to capture the geometric nonlinearity (**Dual modes**) in the reduction basis also require extensive computations

2500

Our contribution:

Non-intrusive Modal derivatives appended to the linear modes basis M.K. Mahdiabadi, <u>P. Tiso</u>, A. Brandt, DJ Rixen, **MSSP** (2020) [PDF]

$$\mathbf{K}_{t}\left(\mathbf{u}_{eq}(\tau),\mathbf{T}(\tau)\right)\boldsymbol{\theta}_{ij}=-\left[\frac{\partial^{2}\mathbf{f}}{\partial\mathbf{u}\partial\mathbf{u}}\left(\mathbf{u}_{eq},\mathbf{T}(\tau)\right)\cdot\boldsymbol{\phi}_{j}\right]\boldsymbol{\phi}_{i}$$

Modal derivatives automatically account for geometrically nonlinear deformation induced by vibration modes. Their computation is systematic, as compared to Dual Modes, and lead to generally more consistent results.

Non-intrusive methods

Our contribution (cont'd): $\mathbf{u} = \mathbf{\Xi}(\mathbf{q}) = \mathbf{\Phi}\mathbf{q} + \frac{1}{2}\mathbf{\Theta}\mathbf{q}\mathbf{q}, \ \mathbf{\Xi}: \mathbb{R}^m \to \mathbb{R}^n$

Usage of **quadratic manifold** (built with VMs and MDs) to significantly reduce the offline cost of training cases.

Example: flat beam

Frequency [Hz] DISTRIBUTION A: Distribution approved for public release. Distribution unlimited

Interpolated ROM

Each support point generates a **non-intrusive nonlinear** ROM t

$$\dot{ ilde{\mathbf{z}}} = \mathbf{A}_i (ilde{\mathbf{z}} - ilde{\mathbf{z}}_i) + \widetilde{\mathbf{f}}_i (ilde{\mathbf{z}} - ilde{\mathbf{z}}_i) + \widetilde{\mathbf{p}}$$

 $\mathbf{\hat{M}}\mathbf{\ddot{q}}(t) + \mathbf{\hat{K}}^{(1)}\mathbf{q}(t) = \mathbf{\hat{f}}(t)$

 $W_{ij} = \int_0^T \left| q_i(t) q_j(t) \right| dt$

ROMs are weighted online by radial basis functions

$$\dot{\tilde{\mathbf{z}}} = \sum_{i} w_i (\tilde{\mathbf{z}} - \tilde{\mathbf{z}}_i) \left[\mathbf{A}_i (\tilde{\mathbf{z}} - \tilde{\mathbf{z}}_i) + \tilde{\mathbf{f}}_i (\tilde{\mathbf{z}} - \tilde{\mathbf{z}}_i) + \tilde{\mathbf{p}} \right]$$

Example: curved shell

Temperature distribution: uniform in space, increasing in time

ROM: 9 modes, interpolated between
25 temperature configurations

DISTRIBUTION A: Distribution approved for public release. Distribution unlimited

Example: curved shell

1. MK Mahdiabadi, P. Tiso, under preparation

Summary

- Slow variation in temperature is not only physically relevant but also essential to justify model reduction using an adaptive reduction basis.
- Use of multiple scales method to exploit the time scale dichotomy.
- Order epsilon correction important in presence of small mechanical loads.
- In the geometrically nonlinear setting, the basis is enriched using the modal derivatives corresponding to significant vibration modes.
- Non-intrusive construction of ROM using modal derivatives and quadratic manifolds for increased offline efficiency
- For hyper-reduction of nonlinear terms, it is possible to avoid HFM based training by lifting modal solutions on quadratic manifolds.
- Online ROM interpolation for efficiency once precomputed equilibria and basis at support points are available.

Remaining Technical Challenges

- Inclusion of aerodynamic and turbulence
 - Prof. Dimitris Drikakis (un. Cyprus) will develop an acoustic model which will be validated against high-fidelity numerical simulations and experiments, and will offer the model to ETH for inclusion into the acoustic-thermo-elastic analysis framework for hypersonic airframes.
 - Thermal buckling/snap-through?
- Parametrization
 - Recently developed a ROM that includes geometric uncertanties (J. Marconi, P. Tiso, F. Braghin, CMAME, 2019)
 - An idea for slightly curved structures?
- Efficient online interpolation for reduced operators
 - Trajectory Piecewise weighted Linearization

Publications

- 1. MK Mahdiabadi, P. Tiso, under preparation
- 2. MK Mahdiabadi, P. Tiso, A. Brandt, DJ Rixen, MSSP (2020)
- 3. MK Mahdiabadi, A Bartl, D Xu, P Tiso, DJ Rixen, Journal of Sound and Vibration (2019)
- 4. S. Jain, P. Tiso, Journal of Sound and Vibration, (2020)
- 5. S. Jain, P. Tiso, ASME Journal of Computational and Nonlinear Dynamics (2019)
- 6. S. Jain, P. Tiso, G. Haller, Journal of Sound and Vibration (2018)
- 7. S. Jain, P. Tiso, ASME Journal of Computational and Nonlinear Dynamics (2018)
- 8. J.B. Rutzmoser, D.J. Rixen, S. Jain, P. Tiso, Computers & Structures (2017)
- 9. S. Jain, P. Tiso, J.B. Rutzmoser, D.J. Rixen, Computers & Structures (2017)