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1 SUMMARY

The presented Final Performance Report summarizes all research conducted during the
CoCoDe project. The research associated with the project started in September 2017, and
initially was planned for 36 months with the ending date 31 August 2020. However, the COVID-
19 outbreak has a serious impact on the access to the university infrastructure and thus on
the final research phase conducted during the second and third quarter of 2020. Therefore,
the CoCoDe project, which has been initially planned for three years, received a ’No Cost
Extension’ for an additional six months. Accordingly to the updated version of the Grant
Agreement from 3rd August 2020, the new project end date is 28th February 2021.

The research team of the CoCoDe project consisted of five members, i.e.:

• Principal Investigator: Krzysztof Cabaj, DSc., PhD,

• co-Principal Investigator: Wojciech Mazurczyk DSc., PhD,

• PhD student Piotr Nowakowski, MSc,

• two Msc students: Piotr Żórawski and Maciej Purski.

There has been a change in Program Officer during the first year of the project. Former
Program Officer Lt Col Ryan W. Thomas was handed over to Lt Col Logan Mailloux.

During our work, we utilize a theoretical and experimental approach to conduct research
concerning network covert channels (network steganography). In the first phase of the project,
we focus on theoretical studies concerning the forming of stealthy channels using stegano-
graphic patterns and methods for its detection. Later, we focused on experimental studies
concerning the performance of covert channels and detection algorithms. Due to this fact, at
the beginning of the project we finalized the purchase of the dedicated server. The server was
delivered and installed in the beginning of 2019. Using it, we could deploy a very complicated
topology which contains various sending and receiving nodes. This allows testing various
aspects of DNCC (Distributed Network Covert Channels) in an experimental manner.

From the beginning of the project, we have tried to publish the most notable and recent
results. During the whole project, we have published six scientific papers – four in international
conferences and two in scientific journals. All details concerning the published papers are
presented in Section 4.

The additional result of the conducted research was the generation of the steganography
dataset, which contains network traces, JSON file which describes all packet changes, and
an interactive image showing in which DNCC connections changes associated with cover
transmission occurred. Sample dataset is freely available at our security team’s webpage using
the following URL: http://cssg.zoak.ii.pw.edu.pl/iot_dncc_data_set.html.

2 INTRODUCTION

Network covert channels define a way in which the covert sender and the covert receiver
exchange some secret data, i.e., both communicators must agree on a signaling technique
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in advance and create a so-called covert channel over which the hidden data is transmitted.
The term covert channel was initially introduced in operating system research by Lampson
as a channel not intended for communication, later the term was defined as policy-breaking
communication channel by the U.S. Department of Defense.

Currently, hundreds of techniques can be applied to create a covert channel; some of the
most common techniques are to place secret data into unused fields of network protocol
headers or to change the size of network packets. Moreover, it is common to manipulate
interpacket timing, i.e., the time between network packets or their order. Moreover, the order
of header elements (e.g., HTTP plaintext header lines) can be altered or artificial errors can be
introduced into a transmission.

The topic of network covert channels has been increasingly attracting attention of the secu-
rity community in the last decade. This is mainly caused by the raising interest of various types
of attackers in such techniques (e.g., for criminal purposes, cyberespionage, cyberwarfare,
etc.) to cloak their malicious activities. This includes, for instance, hiding communication with
the controlling server (C&C), exfiltration of confidential, sensitive data from the infected hosts,
or downloading further modules of malicious code in a covert manner As already mentioned,
the trend of utilization of various types of data hiding techniques is accelerating and we can
expect more sophisticated data hiding techniques to be found in a main stream malware (not
only in Advanced Persistent Threats) in the near future. Below we briefly review some of the
most notable examples of information hiding techniques utilization in real-life threats.

Advancements in security systems over the past 15 years have forced malware developers
to investigate new possibilities to make their “products” stealthier. Although it is difficult
to determine the origin of information hiding techniques, the first massive usage of these
techniques can be traced back to 2006, when Operation Shady RAT led to attacks against
numerous institutions worldwide and inflicted damage for months. Years later, security
experts agreed that the main program responsible for this attack was the phishing virus
Trojan.Downbot. This malware created a back door and then downloaded files appearing
as real HTML pages or JPEG images. These files were encoded with commands that would
allow remote servers to gain access to local files on the infected host computer. Other notable
examples of information hiding–capable malware include Regin and Linux.Fokirtor, which
use network traffic to covertly leak data, and Alureon, Duqu, Lurk, and Trojan.Zbot, which use
digital images as hidden data carriers. Even when rudimentary, new threats exploiting some
form of information hiding continue to be discovered, as seen in Soundcomber and AirHopper,
which modify the status of shared hardware/software resources to exfiltrate confidential data,
and in Feederbot, W32.Morto, and Smuggler, which manipulate the network traffic for this
purpose.

It must be also noted that originally, information-hiding techniques were implemented
only in advanced persistent threats (APTs) like Duqu, Regin, or Hammertoss – the most so-
phisticated types of malware created with the support of nationwide sponsors. However,
information-hiding techniques are slowly becoming the de facto standard for “ordinary” mal-
ware. For example, various types of popular threats like ransomware (TeslaCrypt, Cerber, and
SyncCrypt) or exploit kits (Stegano/Astrum, DNSChanger, and Sundown) also incorporate
some form of information hiding.

Furthermore, we can expect also that other, more complex forms of network covert channels
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will appear, which will be used by cybercriminals to provide improved undetectability or
steganographic bandwidth. This includes, for example, steganographic botnets where all
communication between bots is realized using some form of data hiding and especially using
network covert channels. In particular, the most suitable type of information hiding that can
be utilized for this purpose involves Distributed Network Covert Channels (DNCCs).

During the research that we have performed within the CoCoDe project, we have analyzed
DNCCs from a different perspective and in various scenarios. First of all, we analyzed the the-
ory of DNCCs by developing their classification and by characterizing their main performance
features. We have also developed and implemented several different flavors of DNCCs to
investigate various DNCC properties. They have taken advantage of different steganographic
methods, multiple senders, and multiple connections from each sender. We also assumed
different networking environments from typical IP-based networks to IoT-based ones. It must
be also noted that during the conducted research we used three steganographic methods
implemented during the previous part of the project: TTL Modulation, HTTP Header Reorder
and TCP Options Reorder. Finally, we have taken a significant amount of time to focus on
the detectability of the DNCCs. We have analyzed and proposed several data mining-based
approaches to determine how efficient DNCCs can really be when faced with a demanding
adversary aiming to spot covert communication.

All aspects that we investigated have been described in detail in the following subsections of
this report.

3 METHODS, ASSUMPTIONS AND PROCEDURES

From the beginning of the project, we have utilized two approaches for our research - theoreti-
cal and experimental. The theoretical studies were conducted mainly at the beginning of the
project. During this period, we mainly focused on the information hiding patterns approach
to identify these components of the network protocols which are most susceptible to data
hiding. Within the CoCoDe project, we analyzed the key aspects of the hiding patterns and
the current state of the taxonomy in the domain. Our main contribution to extending the
information hiding patterns concept includes modification of the pattern analysis process
and extending the current taxonomy with new patterns. In particular, in the improved form
we take into account more details on the hiding method’s inner workings, thus potentially
this can contribute to a better understanding of the nature of network covert channels. We
also introduced and described a pattern-based classification of distributed network covert
channels (DNCC). Moreover, we conducted theoretical research associated with applying data
mining approaches, more specifically the discovery of frequent patterns, for the detection
of covert channels. Both aspects of the theoretical research are later investigated during the
experimental part of the project.

Due to the extensive usage of the experimental approach during the conducted research,
a dedicated server was purchased. The server has been used to configure the experimental
testbed which allows performing experiments concerning the investigation of the DNCC
channel performance as well as of various covert channel detection techniques. The first
step in our research concerned the implementation of various basic steganography methods,
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which were later utilized for the construction of more stealthy DNCC channels. The main
reason for the implementation of our own network hiding techniques was associated with the
tuning flexibility of the steganographic transmitter. In the freely available tools, depending on
the author’s concept, a few and often various steganographic parameters can be changed, for
example, how many bits are transmitted in one PDU modification, how often steganographic
changes are introduced, etc. This causes various problems during experiments, when one
would like to compare different methods or their implementations. Moreover, available
steganographic tools often integrate within a single tool the overt traffic and the covert message
which is introduced by the packet modification. In such a case, when the two tools use
completely different overt traffic, their reliable comparison is practically impossible. In effect,
we decided that our research tool should not generate overt traffic but should rather add
steganographic data to the indicated traffic flows. To implement this approach, we utilized the
features introduced by the SDN paradigm, thus it was implemented as an SDN application
integrated within the POX SDN controller. During this part of our research, four steganographic
basic methods were implemented: ‘TTL Modulation’, ‘HTTP Header Reorder’, ‘TCP Options
Reorder’ and ’Inter-packet Timing Modulation’.

In the second part of our research, we used these methods to form various types of DNCC,
for example, changing the number of utilized flows, transmitters, receivers, and the number
of simultaneously utilized steganographic methods. Moreover, during our research we inves-
tigated various types of overt traffic. During the first phase of the conducted research, we
utilized web traffic – which is currently one of the most popular types of traffic in the Internet.
Due to this popularity, we assume that steganographic methods can be frequently utilized
to form covert communication channels. However, during our research conducted during
the last year, we utilized for this purpose IoT (Internet of Things) traffic. As we observe a
significant rise in the number of such devices, which is foreseen to continue in the future, this
brings new security challenges as well as new steganographic opportunities. In our opinion,
the network traffic generated by this kind of devices will most likely be the next choice for the
attackers/steganographers. Performed experiments proved that even periodically transmitted,
very short messages could be utilized to perform covert transmission. During performed
research tasks, we form the DNCC channel using simulated network traffic of the thermometer
of which measurements are periodically sent to the central server.

The last part of our research concerns the detection of DNCC channels. At first, we simply
utilized data mining frequent item-sets discovery using appropriately preprocessed network
traces. Later, to improve the detection accuracy, we constructed a custom tree, containing the
results of multiple frequent item-sets detections using various values of the minimal support
parameter. Obtained results proved that the analysis of leaves and nodes which appear in
such a tree can increase the covert channel detection accuracy. The last investigated approach
compared and combined previously described methods with Machine Learning techniques.
Obtained results prove that the highest detection accuracy is achieved in the case where we
combine both above-mentioned developed approaches, i.e., the item-set tree with Machine
Learning-based one.
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4 RESULTS AND DISCUSSION

During the project, the most important results from our experiments are described with details
in the scientific papers. During the project period, we published six scientific papers, four in
international conferences and two in scientific journals.

Below is the list of all published and presented articles:

1. Cabaj Krzysztof, Mazurczyk Wojciech, Nowakowski Piotr, Piotr Żórawski: Towards Dis-
tributed Network Covert Channels Detection Using Data Mining-based Approach, in:
ARES 2018 Proceedings of the 13th International Conference on Availability, Reliability
and Security / Doerr Christian, Schrittwieser Sebastian, Weippl Edgar ( red. ), 2018, ISBN
978-1-4503-6448-5, pp. 1-10, DOI:10.1145/3230833.3233264

2. Mazurczyk Wojciech, Wendzel Steffen, Cabaj Krzysztof: Towards Deriving Insights into
Data Hiding Methods Using Pattern-based Approach, in: ARES 2018 Proceedings of the
13th International Conference on Availability, Reliability and Security / Doerr Christian,
Schrittwieser Sebastian, Weippl Edgar ( red. ), 2018, ISBN 978-1-4503-6448-5, pp. 1-10,
DOI:10.1145/3230833.3233261

3. Cabaj Krzysztof, Mazurczyk Wojciech, Nowakowski Piotr, Piotr Żórawski: Fine-tuning of
Distributed Network Covert Channels Parameters and Their Impact on Undetectability,
in: Proceedings of the 14th International Conference on Availability, Reliability and Secu-
rity - Ares 2019, ICPS, 2019, ISBN 978-1-4503-7164-3, pp. 1-8, DOI:10.1145/3339252.3341489

4. Nowakowski Piotr, Żórawski Piotr, Cabaj Krzysztof, Mazurczyk Wojciech: Network
covert channels detection using data mining and hierarchical organisation of frequent
sets: an initial study, in: ARES ’20: Proceedings of the 15th International Confer-
ence on Availability, Reliability and Security, 2020, ISBN 978-1-4503-8833-7, pp. 1-10,
DOI:10.1145/3407023.3409217

5. Cabaj Krzysztof, Żórawski Piotr, Nowakowski Piotr, Mazurczyk Wojciech: Efficient dis-
tributed network covert channels for Internet of things environments, in: Journal of
Cybersecurity, vol. 6, nr 1, 2020, pp. 1-18, DOI:10.1093/cybsec/tyaa018

6. Nowakowski Piotr, Żórawski Piotr, Cabaj Krzysztof, Mazurczyk Wojciech: Detecting
Network Covert Channels using Machine Learning, Data Mining and Hierarchical
Organisation of Frequent Sets, in: Journal of Wireless Mobile Networks, Ubiquitous
Computing, and Dependable Applications (JoWUA), 2021, vol. 12, no. 1, pp.20-43.
DOI:10.22667/JOWUA.2021.03.31.020

The last two publications published in the journals are extended versions of the previously
presented and published conference papers. The article [5] is an extended version of [3] and
article [6] is an extended version of [4]. Furthermore, in this section the content of four papers
(excluding those two which are further extended) are presented.
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4.1 PAPER I

Cabaj Krzysztof, Mazurczyk Wojciech, Nowakowski Piotr, Piotr Żórawski: Towards Distributed
Network Covert Channels Detection Using Data Mining-based Approach, in: ARES 2018
Proceedings of the 13th International Conference on Availability, Reliability and Security /
Doerr Christian, Schrittwieser Sebastian, Weippl Edgar ( red. ), 2018, ISBN 978-1-4503-6448-5,
pp. 1-10, DOI:10.1145/3230833.3233264
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ABSTRACT
Currently, due to improvements in defensive systems network
covert channels are increasingly drawing attention of cybercrim-
inals and malware developers as they can provide stealthiness of
the malicious communication and thus to bypass existing security
solutions. On the other hand, the utilized data hiding methods are
getting increasingly sophisticated as the attackers, in order to stay
under the radar, distribute the covert data among many connec-
tions, protocols, etc. That is why, the detection of such threats
becomes a pressing issue. In this paper we make an initial step in
this direction by presenting a data mining-based detection of such
advanced threats which relies on pattern discovery technique. The
obtained, initial experimental results indicate that such solution
has potential and should be further investigated.

CCS CONCEPTS
•Security and privacy→Network security; Distributed systems
security; Information �ow control; Pseudonymity, anonymity and un-
traceability; •Social and professional topics→ Computer crime;

KEYWORDS
covert channels, data hiding, information hiding, data mining
ACM Reference format:
Krzysztof Cabaj, Wojciech Mazurczyk, Piotr Nowakowski, and Piotr Żórawski.
2018. Towards Distributed Network Covert Channels Detection Using Data
Mining-based Approach. In Proceedings of International Conference on Avail-
ability, Reliability and Security, Hamburg, Germany, August 27–30, 2018
(ARES 2018), 10 pages.
DOI: 10.1145/3230833.3233264

1 INTRODUCTION
During the last few years information-hiding-capable malware is
reported to be on the rise [7]. The main reason for this is that

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
ARES 2018, Hamburg, Germany
© 2018 ACM. 978-1-4503-6448-5/18/08. . . $15.00
DOI: 10.1145/3230833.3233264

the current defensive systems are being continuously improved
and thus the cybercriminals desire techniques that will provide
them stealthiness to allow them to stay under the radar for as long
as possible. In result, such modern malware possesses a serious
challenge for the security community [8], [9].

Moreover, currently the data hiding methods used in malware are
quite simple and naive, yet many more complex and sophisticated
techniques have been proposed in the research community during
the last decade for which there are no straightforward mitigation
solutions. What is worse, there is a plethora of opportunities to
create a network covert channel using various network steganogra-
phy techniques and there is no one-size-�ts-all detection solution
to counter them. On the contrary, practically for each new data
hiding method a dedicated mitigation solution must be devised,
and adjusted in case the original technique has changed its inner
workings.

Considering above a more �exible and scalable detection solu-
tions need to be designed and developed. That is why, in this paper
we make the �rst step toward a data mining-based detection. We
especially would like to evaluate whether pattern discovery can
be useful for this purpose. Moreover, we especially focus on the
case of distributed covert channels i.e. network covert channels that
spread the secret data among many �ows/protocols/hosts or use
multiple data hiding methods within the same �ow or within PDUs
in order to provide hidden data exchange.

Therefore the main contributions of this paper are to:

• assess feasibility of applying data mining pattern discovery
technique for the detection of network covert channels,

• present experimental detection results focused especially
on discovering distributed network covert channels.

The paper is structured as follows. Section 2 presents related
work on data mining threats detection. In Section 3 fundamental
on techniques allowing realization of distributed network covert
channels are presented. Next, Section 4 is devoted to data mining
methods, pre- and post-processing techniques and introduction of
the proposed data hiding detection approach which utilizes frequent
item sets. Section 5 contains all details related to the conducted
experiments. In the �rst part of this section description of the
experimental test-bed as well as of the proof-of-concept implemen-
tation of the detection system is presented. Later in this section
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all obtained experimental results and related discussions are pre-
sented. Finally, Section 6 concludes our work and present some
future research directions.

2 RELATEDWORK
In this section we �rst characterize the main types of countermea-
sures against network covert channels and then we follow with the
description of how data-mining techniques have been used so far
for cyber security purposes.

2.1 Countermeasures against network covert
channels

To counter a network covert channel it is necessary to identify
it, i.e., becoming aware that it exists [10]. Without knowing that
a channel exists, even a naive data hiding techniques are covert.
Alternatively network covert channels may be also discovered by
more general anomaly detection solutions, however, there has been
only limited research e�ort in this research area directed towards
network hiding techniques.

After the network covert channel has been identi�ed it can be
eliminated completely, its bandwidth can be signi�cantly limited,
it can be detected and audited. It may be possible to eliminate the
use of the resulting covert channel (typically with a help of tra�c
normalizer [12]). However, some hidden channels cannot be elim-
inated completely [11], but if their bandwidth is severely limited
then this will make them useless in practice [13]. Alternatively, if
the use of a covert channel is detected then it is possible to take
actions against covert senders and receivers. In order to collect
information on potential covert senders and receivers and their
hidden communication characteristics it is possible to continuously
audit the use of covert channels.

In this paper we focus on the detection of network covert chan-
nels as this allows to potentially pinpoint covert communication
parties and infer their motivation and sometimes also exchanged
secret data.

2.2 Data mining techniques for network covert
channels detection

In the existing literature the most commonly used data mining
approaches for anomaly detection utilize classi�cation methods. It
must be noted that typically the classi�cation is a two-step pro-
cess. First, the detection algorithm is trained using well-known
and labeled data and then new samples are classi�ed to the corre-
sponding classes. It must be noted that current works in order to
spot steganographic tra�c focus in majority only on this approach
when using data mining [1], [2]. However such an approach has
two serious disadvantages.

When the data that needs to be subjected to classi�cation changes,
for example, an attacker switches to another steganographic method
which was not previously present in the training data then the de-
tection process will most likely fail or it will achieve signi�cantly
lower results. The other disadvantage is associated with the prepa-
ration of the training data where all samples used for this purpose
must be appropriately labeled which is often a very tedious work.
But it must be noted that the classi�cation approach is not the only
data mining technique available. In the paper [2] authors apart

from describing classi�cation techniques which cover ca. 75% of
all used approaches also mention regression (12%) and clustering
(9%). However, in the remaining 4% other data mining methods
including pattern discovery have been mentioned which up till now
received signi�cantly less attention from the security community.
That is why in this paper we want to utilize this approach and test
its feasibility for network covert channel detection.

To authors’ best knowledge this is the �rst attempt to apply
pattern discovery technique for network covert channels’ detection
especially with regard to the more sophisticated i.e. distributed
ones.

3 DISTRIBUTED NETWORK COVERT
CHANNELS BASICS

Currently the majority of the data hiding methods utilizes only a
single communication session as a hidden data carrier i.e. secret
data is embedded into PDUs belonging to the same �ow/protocol
with only one hiding pattern in order to embed secret data.

One of the simplest way to improve the data hiding method
undetectability is utilization of pattern hopping which is de�ned in
the information hiding context in [3]. This is one of the techniques
to enable creation of the distributed covert channel. In general, the
distributed covert channel is de�ned as a network covert channel
that spreads the secret data among multiple �ows/protocols/hosts
or uses multiple patterns within the same �ow or PDU for the
hidden data exchange.

In [3] the authors introduce a classi�cation of network hiding
techniques into so-called patterns with the aim to potentially de-
velop countermeasures for these patterns. In this perspective, infor-
mation hiding patterns are de�ned as an abstract description of how
to solve a problem in a given context. Thus, information hiding
patterns provide an abstract description of a hiding technique and
are categorized in a hierarchy. What must be emphasized each
hiding pattern is a uni�ed and generic description of a particular
hiding method.

Considering above, pattern hopping is an enhancement of an
undistributed network covert channel where various patterns are
used (sequentially) within a single connection forming one stegano-
graphic session (Figure 1). In this �gure each symbol (a circle or
a triangle) represents a certain change in the protocol that carries
some secret data. In the remaining of this paper we call such an
event as information hiding pattern instance (IHPI).

Figure 1: Pattern hopping – the simplest enhancement to
the information hiding patterns i.e. various patterns used
within one connection (de�ned in [3])

The other technique which can increase stealthiness of stegano-
graphic method is related to utilization of multiple overt data
streams. In each connection used for steganographic purposes
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a part of the secret data is injected, which reduces number of IHPIs
per single connection. Figure 2 presents such situation (each circle
represents one IHPI).

However, it must be noted that further enhancements to the sce-
nario illustrated above can be performed by using several parallel
connections in which more than one information hiding patterns
are used (Figure 3). In result, in each connection fewer changes
(caused by the steganographic method functioning) are introduced
to the overt tra�c which makes detection of such a covert trans-
mission a challenging task.

Figure 2: Multi-�ow distribution for realizing a single (dis-
tributed) network covert channel.

Figure 3: Multi-�ow pattern hopping for realizing a single
(distributed) network covert channel.

Finally, another improvement can be applied if the covert sender
is able to utilize for data hiding purposes connections originated
from various overt tra�c senders and/or receivers. It must be noted
that in this case secret data is injected into the overt transmissions
of unaware overt senders i.e. hidden data is embedded in some
intermediate device and not on the user’s end device.

Obviously all improvements for the covert transmission pre-
sented above can be used at the same time. Figure 4 presents
injection of secret data which is based on only one pattern and
multiple connections. It must be noted that we investigate such
an approach in the conducted experiments, which are described in
details in the subsection 5.2. Such a data hiding method variant is a
bit more challenging to implement but still feasible (as some form
of man-in-the-middle attack is required for it to be successful). On
the other hand a signi�cant advantage of such an approach is that
modi�cations associated with the information hiding patterns are
distributed across many di�erent streams that use various machines
addresses. Thus the number of steganographic changes per single
connection decreases.

As presented above various enhancements to even simple data
hiding method are feasible. These improvements are quite easy to
be implemented and can potentially signi�cantly increase stealthi-
ness of the covert transmission (e.g. by spreading secret data among
many data �ows). Even the usage of relatively simple and well-
known method but distributed across various connections or even
various senders/receivers can improve its stealthiness and reduce

Figure 4: Injection of secret bits into the data streams of var-
ious overt tra�c senders.

the chance of detection. That is why, in this paper we will inves-
tigate the feasibility of the detection of such distributed network
covert channels realizations.

4 DATA MINING TECHNIQUES AND THE
PROPOSED DETECTION SYSTEM

As it was mentioned in the previous section in the distributed
network covert channel realization numerous information hiding
patterns instances depending on the utilized data hiding method can
occur within multiple data �ows. Moreover, these connections can
be sourced and/or destined to various machines that process overt
tra�c. A single anomaly, which can be detected as information
hiding pattern instance, may be also introduced by anomalous
network behavior (leading to false positives). However, if we are
able to discover more and more such events then it is possible that
some steganographic transmission occurs. In this paper we propose
that for detection of the distributed network covert channels data
mining techniques can be utilized.

As mentioned the most well-known and most often used type
of data mining methods is associated with classi�cation. In the
classi�cation problem user has some initial, training (labeled) data
assigned to the appropriate classes. If we consider the problem of
steganographic tra�c detection then it is important to posses some
network tra�c traces with and without covert tra�c and containing
information that this trace contains or does not contain secret data.
Using some data classi�cation algorithms it is possible to decide
if a new trace which represents previously unknown transmission
contains some covert messages. The serious disadvantage of such
an approach concerns preparation of the labeled, initial training
data. It must be noted that typically a process of preparing such data
or even marking them is very time-consuming and tedious. In the
case that preparation of such labeled data is impossible other data
mining methods can be used, for example pattern discovery. In this
class of data mining techniques, without any a priori information
about characteristics of the analyzed data some patterns can be
automatically discovered. The data mining pattern is de�ned as a
not trivial dependency in the analyzed data that has been previously
unknown. The well-known data mining patterns types that were
used so far in the literature include for example, frequent sets [4],
frequent sequences [5] or frequent episodes [6]. In this paper we
assume that the steganographic tra�c is detected, if the particular
number of patterns are discovered in the analyzed data set. This
could be considered as classi�cation method due to fact that this
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decision is based using very simple test – the number of detected
patterns. However, it must be noted that the most important part
of the introduced method concerns detection of patterns and not
a problem of classi�cation, which in conducted experiments is
reduced to the trivial comparison of the number of patterns with a
certain threshold.

However, the data mining patterns discovery is only one step
in the broader process of network steganography detection. The
other, even more important steps are:

• pre-processing which transforms initial data to the form
appropriate for data mining algorithms, and

• post-processing which using acquired data mining patterns
indicates in which transmissions or between which ma-
chines utilization of data hiding techniques was potentially
discovered.

Later in this paper we present obtained experimental results
concerning usage of frequent item sets for the detection of covert
tra�c. What should be emphasized is that the particular pattern
can be mined using one from various proposed algorithms. During
conducted experiments for purpose of frequent item sets mining we
utilize an a-priori algorithm. All algorithms used for the discovery
of such patterns treat all data as item sets, however our initial data
has di�erent form as it is stored in the network tra�c traces.

Figure 5: Exemplary packets’ trace for the ToS-based covert
channel and the steps of pre-processing from the detection
of IHPI to the coded item sets.

That it why, the �rst step of the detection process is associated
with pre-processing, which transforms our initial data to the ap-
propriate form. Figure 5 presents a sample network transmission
containing covert tra�c encoded into modulation of the Type of
Service (ToS) �eld from the IPv4 header (top of the �gure). Each
such change i.e. information hiding pattern instance is coded as
an item set. For further processing initial item set, which contains
only the name of used data mining techniques, is extended with
information concerning network connection in which it appears
(presented in the penultimate line). The content presented there is
in a human-readable format, however due to performance reasons
data mining algorithms work on the data optimized for pattern
discovery. Such an optimized form encodes all items into the item
sets as positive integers which can be e�ciently compared using
modern processor, in contrast to ine�ective comparisons of the

strings. The last line of Figure 5 shows data in the �nal form used
for further data mining patterns discovery. In the presented exam-
ple ToS change is coded as 11, IP address as 101 and port 5000 as
201. The data prepared in such a manner are used as an input for
data mining technique i.e. frequent item sets mining. As a result
of this process the detected frequent items sets are provided. The
frequent item set is a subset, which appears in the analyzed data
more than speci�c, prede�ned number of times. In the data mining
�eld this parameter is called minimal support and it is often denoted
as minSup. Moreover, it should be noted that the output data is in
the form similar as input data – all features are encoded as positive
integers and before they are passed to further human analysis they
should be subjected to post-processing. If we perform the discovery
of the frequent item sets in the data presented in the Figure 5, using
minSup parameter set to 2 we receive only one frequent item set i.e.
(11, 101, 201). After post-processing this item set can be presented
in the human-readable form such as (ToS change, IP_A, dst port
5000). The major advantage of the data mining patterns is that for
any network security specialist this information is quite clear i.e.
that information hiding pattern instances concerning ToS �eld are
detected in the stream that is originated from the machine with
IP_A address to the destination port 5000. Another advantage of
the data mining patterns is their generalization property. As we
prove in next sections, the same process can be used for the detec-
tion of a simple steganographic method i.e. which uses only one
communication stream, as well as some advanced i.e. distributed
covert channel techniques described in the Section 3.

Figure 6: Distributed covert channel realization using two
independent streams (multi-stream transmission), coded
item sets associated with IHPIs and detected frequent item
set.

The method illustrated in Figure 6 presents the data hiding
method which conceals messages in the changes of the ToS �eld and
distributes secret data into two communication sessions. Due to the
fact that both streams utilize the same steganographic method and
are sourced from the same IP address the �rst two elements of the
input item sets have the same values: 11 and 101. However, because
two separated streams are used then the last item in the item sets
which codes destination port is di�erent. Discovery of the frequent
item sets in such input data with minimal support set to 2 results
in only one frequent item set: (11, 101). In contrast to the previous
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example, the current frequent item set does not have an item cor-
responding to the TCP port, which uniquely identi�es particular
communication session. Lack of this information can be treated
as a sign that the detected patterns describe suspicious activities
related to numerous connections. This is the next bene�t of the data
mining-based patterns approach. A single method using the same
kind of input data can detect steganographic transmission both
in one particular communication session and in various sessions
sourced from a single IP address. However it must be noted that
this uncomplicated data hiding method can be potentially detected
also using simple counters of information hiding pattern instances.
However, it must be noted that in such a case the counters must
be dedicated to each connection and each IP address. If we only
detect one steganographic transmission, for example, using only
IPv4 TTL �eld, like in the experiments presented in this paper, we
could simply measure the frequency of the TTL �eld changes. How-
ever, if the steganographer introduces another, new data hiding
technique this will result in the need to introduce a new counter.
Using frequent item sets we have one detection method which is
able to discover any change in the observed �elds. Moreover, it
can detect that particular changes are introduced between given IP
addresses or even in one particular TCP connection.

Introduced in this section data mining method is therefore more
scalable – the same procedure can be used for the detection of vari-
ous simple and distributed steganographic methods. More detailed
description of the performed experiments is presented in the next
section.

5 EXPERIMENTAL EVALUATION
In the two previous sections the distributed network covert channel
techniques and methods for their detection were introduced. Here
we want to experimentally prove that the presented detection solu-
tion is feasible. All described experiments were conducted using
the dedicated experimental test-bed which is detailed below.

Moreover, due to problems with availability of fully functional
and con�gurable steganographic tools which should enable easy
con�guration and tuning we decided to implement our own SDN-
based covert senders and covert receivers. Additionally, experi-
mental software which allows discovery of the frequent item sets
associated with the covert tra�c in an o�-line manner has been
prepared.

5.1 Experimental test-bed and methodology
Figure 7 presents our dedicated experimental test-bed which uti-
lizes SDN application for insertion of covert tra�c used for experi-
mental evaluation. Overt tra�c is generated by dedicated scripts
which uses PythonJS. The same method is used for preparation
of background, benign tra�c destined to Alexa Top 5000 Global
Sites1. Within the test-bed we have created two LANs that are con-
nected to the Internet via NAT gateways (sdn_nat01 and sdn_nat02).
Packets in both networks are routed by SDN switches (sdn_sw01
and sdn_sw02). In the �rst network sdn_01 and sdn_02 machines
are connected which serve as the clients as they both have a web
browser installed. In the second network sdn_03 machine which
hosts a simple webpage is located. Visiting this webpage from the

1https://www.alexa.com/topsites

Figure 7: Experimental test-bed.

client machines (sdn_01 and sdn_02) generates HTTP tra�c within
which covert data is transfered between LANs.

In the considered scenario machine sdn_01 acts as a rogue device,
which utilizes PhantomJS headless web browser2 to periodically
visit a website hosted on the sdn_03 machine. This generates the
network tra�c between the two LANs. When the tra�c is passing
through the sdn_sw01 machine it is sent to the sdn_controller01,
where the steganographic data is injected into selected packets. On
the other hand when the tra�c passes through the second LAN it
is inspected by the SDN controller installed on the sdn_sw02 and
the secret data is extracted.

Additionally, the same test-bed is used for generating benign
tra�c. The sdn_02 machine utilizes a PhantomJS headless browser
to periodically visit the most popular websites listed on Alexa Top
5000 Global Sites.

The details on the both datasets (i.e. benign and steganographi-
cally modi�ed) generation are described further in subsection 5.5.

5.2 Utilized steganographic method
For our study, we have implemented a steganographic method
which relies on the modulation of the IPv4 Time-To-Live (TTL)
�eld values. This network covert channel works as follows.
When a new connection suitable for the covert data transfer (i.e.
between hosts in our SDN networks) is established the �rst few
packets are left unmodi�ed. This allows the covert receiver to
measure the expected value in the TTL �eld which depends on the
number of intermediate nodes that the packets need to traverse
before reaching their destination. This value can be seen as a
“hidden data carrier” — subtracting it from the actual TTL in all
consecutive packets within the connection reveals the di�erences
where the covert data is embedded. In our data hiding technique a
particular value of the di�erence that is mapped to a bit or a group
of bits which forms a symbol. We modify the TTL �eld value within
the connection by adding or subtracting a given symbol from its
current value. For example, with the expected TTL=64, a change of
+5 (i.e. TTL=69) denotes a binary 1 whereas a modi�cation of -5
(i.e. TTL=59) denotes binary 0. If the packet carries no secret data
then the TTL value is left unchanged. By providing 2n symbols
our method allows us insert to n bits of secret data per packet —
for example a list of symbols: -5, -10, +5, +10 would map to
the following TTL values: 59, 54, 69, 74 and secret data binary
values: 00, 01, 10, 11. We transmit the secret data by dividing

2http://phantomjs.org
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it into chunks of n bits and by mapping their binary values into
symbols. This allows us to potentially embed up to 8 bits of secret
data per packet (thus �lling the entire TTL �eld) but in practice a
too small TTL value may cause the packet to be dropped by the
routers before reaching its destination. Additionally, signi�cant
and frequent changes of the TTL �eld over a broad range of values
might raise suspicion and render the method easily detectable. By
observing the characteristics of the benign network tra�c, we
concluded that no more than 4 bits of data should be transmitted in a
single packet and the symbols should not exceed a di�erence of ±10
over an expected TTL value. However, in order to achieve increased
stealthiness we used only 1 bit of secret data per packet during the
experiments conducted in this paper. The bene�t of our SDN-based
approach for implementing covert communication is that we can
spread the secret data between multiple TCP connections for the
increased stealthiness without signi�cantly degrading covert data
transmission rate.

5.3 Packet sni�er and analyzer
One of the key components of the detection software is the packet
sni�er and analyzer which is installed on the sdn_nat01 machine.
Because sdn_nat01 machine acts as a network gateway, it has the
capability to intercept the tra�c crossing the LAN boundaries. We
have decided to utilize it as the network tra�c sni�er in order
to more accurately simulate the third party monitoring network
activity. To capture the tra�c, we have utilized tcpdump tool and
segmented the captured tra�c into multiple .pcap �les.

In order to analyze the collected tra�c we have developed a
packet analyzer software that compares pairs of consecutive packets
belonging to each �ow (e.g. sent within TCP connection generated
by the browser) and we note the di�erence between them to a JSON
�le. We compare the header values of Layer 3 (IPv4) and Layer 4
(TCP, UDP, ICMP) protocols. This step acts as a pre-processing �lter
– packets that do not contain any di�erence in the �elds’ values
are omitted and are not logged into the JSON �le. We wrote this
program in C++ using pcapp++ packet sni�er and parser library3

and Niel Lohmann’s JSON library4.

5.4 IHPI detection software
The above mentioned JSON �le which contains header values’ dif-
ferences is later used in an o�ine covert tra�c detection process
which utilizes py�m – a frequent item sets discovery library for
Python5.

Our software reads the JSON �le, analyzes each modi�ed packet’s
entry and extracts its basic characteristics such as IPv4 source and
destination addresses and/or TCP ports. In addition to the basic
description, it detects a prede�ned set of IHPI events, such as a TTL
change. If an IHPI event is not present, then this entry is discarded.
Otherwise, a new entry is added to the list of “suspicious” events
for further processing in py�m library.

Because the library e�ciently operates on the integer values,
we have developed a convenient way to map value ranges inside
of a 64-bit integer to represent IHPI entries (see Table 1). For

3https://github.com/seladb/PcapPlusPlus
4https://github.com/nlohmann/json
5http://www.borgelt.net/py�m.html

example, IHP instance type is represented by a number ranging
from 0x0000 to 0xFFFF, IPv4 source address by a number from
0x10000 to 0x10000FFFF, IPv4 destination address by a number
from 0x100010000 to 0x20000FFFF, etc.

Table 1: Numerical values mapping within a 64 bit integer.

Type Integer range Size Name

ICMP
0x400070600 - 0x4000805FF 216 Echo ID
0x400070500 - 0x4000705FF 28 Code
0x400070400 - 0x4000704FF 28 Type

UDP 0x400060400 - 0x4000703FF 216 Destination port
0x400050400 - 0x4000603FF 216 Source port

TCP

0x400050300 - 0x4000503FF 28 Flags
0x300050300 - 0x4000502FF 232 Acknowledgement
0x200050300 - 0x3000502FF 232 Sequence
0x200040300 - 0x2000502FF 216 Destination port
0x200030300 - 0x2000402FF 216 Source port

IPv4

0x200020300 - 0x2000302FF 216 Flags
0x200010300 - 0x2000202FF 216 ID
0x200010200 - 0x2000102FF 28 DSCP/TOS
0x200010100 - 0x2000101FF 28 Protocol
0x200010000 - 0x2000100FF 28 Time To Live (TTL)
0x100010000 - 0x20000FFFF 232 Destination address
0x000010000 - 0x10000FFFF 232 Source address

IHP 0x000000000 - 0x00000FFFF 216 IHP Instance Type

We have also developed an object-oriented software which al-
lows to easily convert back and forth between human-readable IHP
entries and their numerical representation.

The list of suspicious entries in the numerical form is then pro-
cessed by the py�m library to extract patterns that can be an indi-
cation of suspicious activity that has taken place during the exper-
iment. The results are then decoded back into a human-readable
form.

5.5 Experimental dataset generation and
considered scenarios

During the conducted experiments we wanted to investigate how
the proposed distributed network covert channel detection system
performs with the real-life data. As already mentioned for this
purpose we utilized our experimental test-bed in order to generate
benign background tra�c as well as covert transmissions with
various characteristics.

For both, background and steganographic carrier tra�c we used
HTTP protocol as currently it is the most popularly used in the
Internet and in most cases in the current communication networks
it can be send without any restrictions. This makes it a very good
candidate for the hidden data carrier.

The benign background tra�c has been prepared using dedicated
scripts which utilize PhantomJS browser to automatically visit most
popular websites from the Alexa database, i.e. the list of the most
popular websites worldwide, with 5 seconds delay between each
visit. We ran the script for ca. 1 hour, during which ca. 800 MB of
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data were captured. During this experiment, 1215 unique domains
were visited and 4947 HTTP Requests were sent. After careful
analysis of initial data we observed that rarely, however repetitively,
in the benign tra�c some changes in the TTL �eld even within a
single TCP connection appear. The recorded background tra�c
contains ca. 542 000 packets and within this dataset we observed
more than 300 packets with di�erent TTL �eld value than in the
preceding packet. This may be caused by some rerouting of tra�c
due to e.g. bottlenecks in the network. More details related to this
dataset are presented in the next section.

The malicious tra�c dataset containing covert communication
was generated in the same test-bed using dedicated SDN applica-
tion responsible for injecting secret data into the selected streams
of overt tra�c. The overt connections have been prepared using
PhantomJS and directed to the precon�gured web server. Depend-
ing on the requirements of the experiments web server hosts web
pages using keep-alive mechanism or without it. The keep-alive
mechanism allows transmission of multiple resources from the Web
server using a single connection, however, we noticed that for the
performance reasons browsers sometimes use a small number of
connections despite the activated keep-alive option.

In this paper we consider two experimental scenarios. In the
�rst scenario we simulate a simple steganographic method which
at any given moment utilizes a single data stream for covert com-
munication purposes (keep-alive option on). In the second scenario
the con�guration of the web server forces a script to download
each resource in a separate connection. This in e�ect allows the
distribution of the secret data over multiple TCP connections (keep-
alive option o�). We analyzed both scenarios in order to be able
to compare the results for the typical network covert channel case
with the distributed network covert channel realization.

5.6 Experimental results
The detection system introduced in Section 4 is capable of discover-
ing frequent item sets in the stream of information hiding pattern
instances which are detected within raw network tra�c. During
the pre-processing phase each detected IHPI is encoded as an item
set containing six attributes: source and destination IP addresses,
source and destination ports, protocol, type of detected IHPI.

After the pre-processing phase the frequent item sets are mined
using py�m library and the obtained results are post-processed.
At the end of the detection process discovered frequent item sets
are presented in the human-readable form with an additional in-
formation concerning its support i.e. the number of its occurrence.
Figure 8 presents an exemplary detected frequent sets in the human-
readable form after the �nal post-processing. It must be noted that
in this �gure the proposed detection system illustrates each detected
frequent item set in a separate line and 4 frequent item sets are
presented in total (due to the paper layout each itemset is presented
in the 5 lines).

To make further analysis of the detected frequent sets easier
the pre- and post- processing phases preserve not only the value
of the item but also its initial type. In result, in the presented
excerpt each item value is preceded by its type. The labels used
are so evident that practically any network engineer should be
able to understand them i.e., for example, the �rst 5 lines describe

Figure 8: An exemplary detected frequent sets

' IHP I n s t a n c e ' : TTL change
' IP Source a d d re s s ' : 1 9 2 . 1 6 8 . 1 7 1 . 1 0 0
' IP D e s t i n a t i o n a d d r e s s ' : 1 9 2 . 1 6 8 . 1 4 3 . 1 7 6
' P r o t o c o l ' : 6 ' TCP Source por t ' : 48162
' TCP D e s t i n a t i o n por t ' : 80 6
' IHP I n s t a n c e ' : TTL change
' IP Source a d d re s s ' : 1 9 2 . 1 6 8 . 1 7 1 . 1 0 0
' IP D e s t i n a t i o n a d d r e s s ' : 1 9 2 . 1 6 8 . 1 4 3 . 1 7 6
' P r o t o c o l ' : 6 ' TCP Source por t ' : 48130
' TCP D e s t i n a t i o n por t ' : 80 6
' IHP I n s t a n c e ' : TTL change
' IP Source a d d re s s ' : 1 9 2 . 1 6 8 . 1 7 1 . 1 0 0
' IP D e s t i n a t i o n a d d r e s s ' : 1 9 2 . 1 6 8 . 1 4 3 . 1 7 6
' P r o t o c o l ' : 6 ' TCP Source por t ' : 48076
' TCP D e s t i n a t i o n por t ' : 80 6
' IHP I n s t a n c e ' : TTL change
' IP Source a d d re s s ' : 1 9 2 . 1 6 8 . 1 7 1 . 1 0 0
' IP D e s t i n a t i o n a d d r e s s ' : 1 9 2 . 1 6 8 . 1 4 3 . 1 7 6
' P r o t o c o l ' : 6 ' TCP Source por t ' : 48104
' TCP D e s t i n a t i o n por t ' : 80 6

some anomaly in the TTL �eld within the TCP connection directed
from 192.168.171.100:48162 to 192.168.143.176:80. The last positive
integer number at the end of the line describes the support of the
given frequent item sets i.e. the number of all item sets in the
analyzed data which contains this subset. We can simply assume
that in this particular analyzed connection six anomalous packets
appeared.

Frequent item sets detection algorithms work on one input data
set, however, it must be noted that network tra�c in general can be
provided in an endless manner. Due to this fact and for performance
and usability of the detection system reasons we decided to discover
frequent item sets in 5 minute-long windows. The analysis of the
obtained results within a single window is then used by a simple
classi�er which utilizes the number of detected frequent sets to
decide whether covert communication has been discovered in the
inspected network tra�c trace or not.

5.6.1 Detection results for the network covert channel which uses
only one connection at any given moment. As already mentioned
during the �rst phase of the conducted experiments we utilize the
web server con�gured with activated keep-alive mechanism which
causes all IHPIs to be transmitted within a single data stream for
the whole duration of the covert data transfer. This is the simplest
version of the covert transmission and in result less stealthy. During
each experiment we transmitted 512 bytes of secret data and we
modi�ed the steganographic bandwidth i.e. the rate of how fast
the covert data can be transferred. In our proof-of-concept imple-
mentation the hidden data rate (i.e. the method aggressiveness) can
be modi�ed by de�ning the number of unchanged packets after
which a single IHPI (i.e. stegpacket with modi�ed TTL value) is
introduced – we call this rate stegpacket generation rate – SGR . For
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Table 2: Experimental results for the covert transmission with the secret data injected in the single connection (web server
con�gured with the activated keep-alive option).

Minimal support

Trans. 3 10 25 50 100 150

time [s] SGR FIS# Avg. Sup. FIS# Avg Sup. FIS# Avg. Sup. FIS# Avg. Sup. FIS# Avg. Sup. FIS# Avg. Sup.

228 10 435 6 341 6 143 6 1 5 (8235) 1 5 (8235) 1 5 (8235)
338 15 456 6 286 6 121 6 1 5 (7329) 1 5 (7329) 1 5 (7329)
456 20 552 6 293 6 1 5 (5398) 1 5 (5398) 1 5 (5398) 1 5 (5398)
567 25 620 6 78 6 1 5 (4362) 1 5 (4362) 1 5 (4362) 1 5 (4362)
680 30 241 6 134 6 41 6 1 5 (3686) 1 5 (3686) 1 5 (3686)
1134 50 362 6 3 6 1 5 (2209) 1 5 (2209) 1 5 (2209) 1 5 (2209)
1706 75 227 6 1 6 (10) 1 5 (1495) 1 5 (1495) 1 5 (1495) 1 5 (1495)
2251 100 114 6 1 5 (1104) 1 5 (1104) 1 5 (1104) 1 5 (1104) 1 5 (1104)
3501 150 103 6 1 5 (741) 1 5 (741) 1 5 (741) 1 5 (741) 1 5 (741)
4532 200 24 6 1 5 (555) 1 5 (555) 1 5 (555) 1 5 (555) 1 5 (555)
11360 500 1 6 (3) 1 5 (219) 1 5 (219) 1 5 (219) 1 5 (219) 1 5 (219)
16984 750 1 5 (147) 1 5 (147) 1 5 (147) 1 5 (147) 1 5 (147) 0
21747 1000 1 5 (111) 1 5 (111) 1 5 (111) 1 5 (111) 1 5 (111) 0
33985 1500 1 5 (72) 1 5 (72) 1 5 (72) 1 5 (72) 0 0
45313 2000 1 5 (55) 1 5 (55) 1 5 (55) 1 5 (55) 0 0
56642 2500 1 5 (46) 1 5 (46) 1 5 (46) 0 0 0
67970 3000 1 5 (38) 1 5 (38) 1 5 (38) 0 0 0
79299 3500 1 5 (32) 1 5 (32) 1 5 (32) 0 0 0
90627 4000 1 5 (27) 1 5 (27) 1 5 (27) 0 0 0
113284 5000 1 5 (23) 1 5 (23) 0 0 0 0
169927 7500 1 5 (14) 1 5 (14) 0 0 0 0
226569 10000 1 5 (12) 1 5 (12) 0 0 0 0
283212 12500 1 5 (8) 0 0 0 0 0
339854 15000 1 5 (8) 0 0 0 0 0

SGR : Stegpacket Generation Rate FIS#: The number of frequent item sets Avg: The average number of items Sup.: Support

example, if the stegpacket generation rate equals 10 then it means
that one packet is steganographically modi�ed every 10 transmitted
packets.

During the conducted experiments i.e. frequent item sets de-
tection we investigate how many frequent sets are discovered de-
pending on the stegpacket generation rate and utilized minimal
support. The �rst parameter improves the steganographic method
stealthiness i.e. the higher it is the lower the number of packets
that is covertly modi�ed. The second parameter helps to decide
how many IHPIs must be discovered in the analyzed time window
to detect at least one frequent item set. All results obtained for
this experimental phase are presented in Table 2 and concerns re-
sults achieved for the �rst 5-minute time window. Our research
shows that the obtained results are consistent throughout all time
windows, so we focus only on the �rst one. Due to the very long
duration of some experiments especially those with the very high
SGR the results are estimated based on the �rst 20 minutes of the
covert transmission (in Table 2 the estimated results are marked in
italic).

From the presented results we can observe that when we re-
duce the stegpacket generation rate then the duration of the covert
transmission increases (which is obvious). For the smaller values
of minimal support we are able to detect more than one frequent

item sets. In this case the detected frequent item sets consist of 6
items which means that full description of the TCP stream even
with source port is provided by the detection the system. However
when we increase the stegpacket generation rate or we set minimal
support to the higher value we can detect only a single frequent
set. In these cases the detected frequent set has only 5 items thus
this means that we do not have complete information about TCP
connection anymore.

What should be emphasized is that even for very high SGR values
e.g. 500 we are still able to detect at least one frequent item set
regardless of the minimal support used (in the Table 2 if only one
frequent item set is detected its support is presented in the brackets).
Such SGR value corresponds to the steganographic bandwidth of
around 0.3 bps. Moreover, when SGR is higher than 500 only for
the smaller minimal support values frequent item sets are detected.

To conclude we are always capable of detecting covert data
transfer, however, sometimes the minimal support needed for this
purpose is very low. It must be also noted that when the size of the
analyzed data set is huge then this can have negative impact on the
overall system performance.

5.6.2 Detection results for the distributed multi-flow network
covert channel. As already mentioned in the second phase of the
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Table 3: Experimental results for the covert transmission with the secret data injected in many concurrent HTTP streams
(web server con�gured without the keep-alive mechanism).

Minimal support

Trans. 3 10 25 50 100 150

time [s] SGR FIS# Avg. Sup. FIS# Avg. Sup. FIS# Avg. Sup. FIS# Avg. Sup. FIS# Avg. Sup. FIS# Avg. Sup.

280 10 50 6 1 5 (7442) 1 5 (7442) 1 5 (7442) 1 5 (7442) 1 5 (7442)
416 15 21 6 1 5 (5317) 1 5 (5317) 1 5 (5317) 1 5 (5317) 1 5 (5317)
554 20 13 6 1 5 (4051) 1 5 (4051) 1 5 (4051) 1 5 (4051) 1 5 (4051)
727 25 5 6 1 5 (3233) 1 5 (3233) 1 5 (3233) 1 5 (3233) 1 5 (3233)
842 30 3 6 1 5 (2697) 1 5 (2697) 1 5 (2697) 1 5 (2697) 1 5 (2697)
1407 50 1 5 (1632) 1 5 (1632) 1 5 (1632) 1 5 (1632) 1 5 (1632) 1 5 (1632)
2080 75 1 5 (1081) 1 5 (1081) 1 5 (1081) 1 5 (1081) 1 5 (1081) 1 5 (1081)
2780 100 1 5 (802) 1 5 (802) 1 5 (802) 1 5 (802) 1 5 (802) 1 5 (802)
4186 150 1 5 (535) 1 5 (535) 1 5 (535) 1 5 (535) 1 5 (535) 1 5 (535)
5601 200 1 5 (391) 1 5 (391) 1 5 (391) 1 5 (391) 1 5 (391) 1 5 (391)
14002 500 1 5 (166) 1 5 (166) 1 5 (166) 1 5 (166) 1 5 (166) 1 5 (166)
21012 750 1 5 (145) 1 5 (145) 1 5 (145) 1 5 (145) 1 5 (145) 0
28015 1000 1 5 (80) 1 5 (80) 1 5 (80) 1 5 (80) 0 0
42023 1500 1 5 (54) 1 5 (54) 1 5 (54) 1 5 (54) 0 0
56030 2000 1 5 (41) 1 5 (41) 1 5 (41) 0 0 0
70038 2500 1 5 (30) 1 5 (30) 1 5 (30) 0 0 0
84046 3000 1 5 (27) 1 5 (27) 1 5 (27) 0 0 0
98053 3500 1 5 (22) 1 5 (22) 0 0 0 0
112061 4000 1 5 (21) 1 5 (21) 0 0 0 0
140076 5000 1 5 (14) 1 5 (14) 0 0 0 0
210115 7500 1 5 (12) 1 5 (12) 0 0 0 0
280153 10000 1 5 (7) 0 0 0 0 0
350192 12500 1 5 (6) 0 0 0 0 0
420230 15000 1 5 (5) 0 0 0 0 0

SGR : Stegpacket Generation Rate FIS#: The number of frequent item sets Avg: The average number of items Sup.: Support

Table 4: Experimental results for the background tra�c, frequent items sets discovered in the tra�c destined to Alexa Top
5000 Global websites.

Minimal support

Probed 3 10 25 50 100 150

window # FIS# Avg Sup. FIS# Avg. Sup. FIS# Avg. Sup. FIS# Avg. Sup. FIS# Avg. Sup. FIS# Avg. Sup.

1 10 4.9 2 4.5 1 4 (65) 1 4 (65) 0 0
2 3 5 1 4 (22) 0 0 0 0
3 5 5 1 4 (43) 1 4 (43) 0 0 0
4 5 5 1 4 (30) 1 4 (30) 0 0 0
5 9 5 3 4.667 2 4 1 4 (54) 0 0
6 2 5 1 4 (19) 0 0 0 0
7 3 4 1 4 (10) 0 0 0 0
8 4 5 1 4 (32) 1 4 (32) 0 0 0

FIS#: The number of frequent item sets Avg: The average number of items Sup.: Support

conducted experiments the web server is con�gured without keep-
alive mechanism. In e�ect, we obtain distribution of the secret data
across many overt HTTP connections (cf. Figure 2).

Like in the previous case during each experiment 512 bytes of
secret data are transmitted using various stegpacket generation

rates. All obtained experimental results are presented in the Table
3. Similarly to the previous phase of experiments when the covert
transmission becomes more stealthy (i.e. with higher SGR values)
the duration of the hidden data transfer increases. However, in
contrast to the previous experiments in most cases we can detect
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only one frequent item set. It must be noted that in all cases where
we detect one frequent item set it consist of only 5 items. This is
caused by the fact that there are many connections in which IHPIs
are introduced which prevents detection of more speci�c frequent
item set.

Additionally, this proves that such distribution of steganographic
activity across many tra�c �ows leads to its increased stealthiness.
However, like in the previous phase of experiments we are always
able to determine the appropriate value of minimal support which
leads to detection of the covert data transfer.

5.6.3 Estimation of the potential false positives in the real-life
Internet tra�ic. In both previously described experimental phases
we were able to tune the proposed data mining-based detection
system thus in all cases the covert transmission has been discovered.
However, as mentioned earlier, when analyzing gathered benign
tra�c we identi�ed some anomalous changes in the TTL �elds and
to our best knowledge they are not associated with the covert data
exchange.

That is why, below we present results that, if included, will allow
to reduce possible false positives for our detection method. The data
set of the background tra�c is divided into 5-minute windows (the
same as when the steganographic tra�c was previously analyzed).
Based on the time needed to visit Alexa Top 5000 Global Websites
we obtained 8 such windows. In each window we were able to
detect frequent sets associated with the anomalous TTL activity
which were treated by the detection system as IHPIs.

Obtained results for the benign tra�c are presented in Table
4. What should be emphasized, in contrast to the previous phases
of the described experiments in this data set most of the detected
frequent item sets have only 4 items (thus there is no information
on the source and destination ports). Further analysis revealed that
this is caused by the streams destined to the 80 and 443 ports.

As it can be seen in Table 4 when we use a minimal support
value less or equal to 50, at least in two windows some frequent
item sets are discovered. Using a simple classi�er which treats
detection of the frequent item set as a sign of covert transmission
an alert associated with such activity will be generated. Therefore,
to reduce false positives rate of our detection system we should use
the minimal support set to at least 100.

However, as showed during two phases of the experiments with
covert tra�c presented in this paper if we use minimal support
not smaller than 100 then we are able to detect simple data hiding
method when it utilizes SGR not greater than 1000 (i.e. 1 packet out
of 1000 consecutive packets carries secret data) and the distributed
network covert channel when it utilize SGR not greater than 750
(i.e. 1 packet out of 750 consecutive packets carries secret data).
Thus, it may be concluded that the presented detection results
are promising as above mentioned SGR values corresponds to the
steganographic bandwidth of 0.19 and 0.24 bps, respectively. This
proves that even very slow and potentially less intrusive hidden
transmission can still be successfully detected.

6 CONCLUSION AND FUTUREWORK
In this paper we have evaluated whether data mining techniques
can be used for the purposes of the distributed network covert
channels detection. We have considered the typical state-of-the-art

network covert channel which is based on the IPv4 TTL �eld values
modulation and additionally the secret data is distributed among
several data �ows. The initial results that we obtained are promising
and thus the presented approach should be further investigated.
Despite the fact, that the conduced experiments concern only data
hiding method which relies on modi�cation of the IPv4 TTL �eld,
we are con�dent that it can be useful for other covert techniques
as well. In order to incorporate other steganographic methods we
would only have to provide appropriate pre-processing procedure
which introduces additional item sets for them. In situation when
only a single steganographic method is used we should discover
analogous frequent item sets, with the only change in item which
describes particular information hiding pattern. In the case when
many IHPs are used, we can discover frequent item sets without
an item which indicates utilized covert technique.

Our future work will be focused on performing a more thorough
investigation of the data mining-based detection by evaluating it
using more types of the distributed network covert channels realiza-
tion e.g. pattern hopping and/or pattern combination. Also for the
TTL-based covert channel utilized in this paper a more extensive
evaluation will be performed by e.g. considering di�erent window
sizes. Moreover, more in-depth investigation of the introduced
data mining-based detection system’s performance and limitations
would be pursued.
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ABSTRACT
In network information hiding, hiding patterns are used to describe
hiding methods and their taxonomy. In this paper, we analyze the
current state of hiding patterns and we further improve their taxon-
omy. In order to more thoroughly characterize and understand data
hiding methods applied to communication networks we propose to
distinguish between sender-side and receiver-side patterns. Addi-
tionally, we show how information hiding patterns can be utilized
to conveniently describe the realization of the distributed network
covert channels.
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1 INTRODUCTION
Network covert channels belong to the research domain of network
information hiding [15]. Network covert channels are stealthy, un-
foreseen communication channels in computer networks. These
channels are increasingly used by cybercriminals, e.g. to allow a
covert transfer of malware data. However, they can be also used
for legitimate purposes, such as communicating illicit information
under Internet censorship.
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Hiding patterns are descriptions of hiding methods for network
covert channels. Because of their abstract nature, each hiding pat-
tern serves an umbrella for numerous hiding methods. For instance,
hiding data in the least significant bit (LSB) of the Hop Limit field
in IPv6 can be represented by the same pattern as modifying the
LSB of the Time to Live field in IPv4. In addition to describing
hiding methods, patterns can also form taxonomies and have pre-
defined, searchable and comparable attributes, making them an
advantageous tool over existing taxonomy approaches.

Hiding patterns have originally been proposed by Wendzel et
al. in [22]. The authors also presented a novel taxonomy of hiding
patterns in their article. Later, the taxonomy and patterns were
updated and extended by Mazurczyk et al. in [15]. There are also
publications that discuss whether a new hiding method can repre-
sent a new or an existing pattern [20] and there is moreover work
that describes the way in which hiding methods should be described
(in the context of patterns) [19].

In this work, we analyze the key aspects of the hiding patterns
and the current state of the taxonomy in the domain. However,
the main contributions of this paper are that we show how this
concept can be further extended by modifying the pattern-analysis
process and extending the current taxonomy with new patterns.
By taking into account more details on the hiding method’s inner
workings we hope that the resulting pattern categorization will
contribute to a better understanding of the nature of network covert
channels. Moreover, we also introduce and describe a pattern-based
classification of distributed network covert channels.

The rest of this paper is structured as follows. Section 2 intro-
duces fundamentals and relatedwork on hiding patterns.We discuss
limitations of the current patterns approach in Section 3. Section 4
introduces our improved taxonomy, a process for pattern-analysis
as well as new patterns dedicated to the payload field and our
pattern-based categorization of distributed network covert chan-
nels. Finally, Section 5 concludes our work and provides an outlook
on future research directions.

2 FUNDAMENTALS
To aid the understanding of information hiding methods, an anal-
ysis of the existing network covert channels and corresponding
protocols should be performed. Patterns provide an abstract and
hierarchical view on these methods and their utilization in combi-
nation with network protocols.

As a starting point, we utilize the work by Wendzel et al. [22] on
network information hiding patterns. In this work, the authors in-
troduce a classification of network hiding techniques into so-called
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Figure 1: Information hiding patterns and their hierarchy introduced in [22] and updated in [15].

hiding patterns with the aim to potentially develop countermea-
sures for these patterns. In this perspective, information hiding
patterns are defined as abstract descriptions of how to solve a prob-
lem (data hiding) in a given context (communication protocols). As
patterns can be derived from other patterns, they can form hierar-
chies. Each hiding pattern is a unified and generic description of
a particular family of hiding methods. Patterns must be described
in a pre-defined format and require certain additional properties,
such as at least three known occurrences of a pattern – cf. [22] for
details. In [22] and [19], Wendzel et al. evaluated more than 130
existing network covert channel techniques from past decades and
extracted abstract patterns from these techniques. It turned out that
authors were able to represent all techniques by (only) 11 patterns,
which were arranged in a hierarchical catalog described using Pat-
tern Language Markup Language (PLML). While later work in [15]
modified and extended their patterns, the core part of the hierarchy
and several patterns remained (colored in white and light-gray in
Fig. 1). Later modifications and extensions by [15] are colored in
darker gray in Fig. 1. The latest description of all patterns shown
in this figure is presented briefly in Table 1.

As it can be seen in Table 1, a hiding pattern’s description is
written in an abstract manner so that one pattern can be used to
describe multiple hiding techniques at the same time. For instance,
“modulate the least significant bits of a protocol field” is a very brief
description of many published hiding methods which utilize the
least significant bits of fields in arbitrary network protocols.

The above-mentioned classification is carrier-oriented and a
“carrier” is defined as one or more overt traffic flows that pass
between the covert sender and the covert receiver, consisting of
protocol data units (PDUs, e.g. frames or packets). Typically, the
carrier can be multi-dimensional, i.e. it offers many opportunities
“places” or “events” for hiding data (called sub-carriers). As in other
network covert channel categorizations the two main groups of
methods are (Fig. 1):

• storage methods: a class of network steganography methods
that modify the “places” (sub-carriers) in a carrier to create
a storage covert channel. These techniques hide information

by modifying e.g. protocol fields, such as unused bits of a
header.
• timing methods: a class of network steganography methods
that modify the timing of “events” of a carrier to create a
covert channel. These techniques hide information, e.g. in
the timing of protocol messages or packets.

Some important changes have been introduced in [15] when
compared with original categorization from [22]. These include:

• defining 14 patterns (8 timing patterns and 6 storage pat-
terns), compared to 11 patterns (4 timing and 7 storage)
proposed originally. Note that the increased number of hid-
ing patterns is mainly caused due to adding new layer of
classification in [15] for timing patterns which have been
divided into “protocol agnostic” or “protocol aware” groups.
• the pattern ’PDUCorruption/Loss Pattern’ has been removed
from the storage patterns and instead the ’Artificial Loss’
pattern which full name is ’Artificial Message/Packet Loss’
and the ’Frame Collision’ pattern have been added to the list
of timing patterns.
• A few patterns have been slightly modified/renamed.

The paper [22] introduced also several other concepts which
explain suitably some network covert channels’ phenomena, i.e.
pattern variation, pattern combination, and pattern hopping.

First, pattern variation is a transformation-like approach for
covert channels. The utilized network protocol is defined as the pat-
tern’s context. Therefore, a pattern’s application can change from
one network protocol to another – without redesigning the most
important aspects and inner workings of the hiding technique itself.
Next, pattern combination allows the use of multiple patterns at the
same time (within the same carrier, e.g. by modifying many sub-
carriers at once). This is typically performed to increase available
steganographic bandwidth – thus in short it is a parallel utilization
of multiple network covert channels simultaneously. Finally, pattern
hopping varies the use of patterns over time – usually it is applied
in order to increase stealthiness. This can be briefly summarized as
a sequential utilization of various network covert channels in time
using different (sub-)carriers.
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Table 1: Information hiding patterns as introduced in [22] and updated in [15].

Pattern Name Pattern Description

Rate/Throughput The covert channel sender alters the data rate of traffic from itself or a third party to the covert channel receiver.
Inter-packet Times The covert channel alters timing intervals between network PDUs (interarrival times) to encode hidden data.
Message Timing Hidden data is encoded in the timing of message sequences, e.g. acknowledging every n’th received packet or

sending commandsm times.
Artificial Loss The covert channel signals hidden information via artificial loss of transmitted messages (PDUs).
Frame Collisions The sender causes artificial frame collisions to signal hidden information.
Temperature The sender influences a third-party node’s CPU temperature, e.g. using burst traffic. This influences the node’s

clock skew. The clock skew can then be interpreted by the covert receiver by interacting with the node.
Retransmission A covert channel retransmits previously sent or received PDUs.
Message Ordering The covert channel encodes data using a synthetic PDU order for a given number of PDUs flowing between

covert sender and receiver.
Size Modulation The covert channel uses the size of a header element or a PDU to encode a hidden message.
Sequence Modulation The covert channel alters the sequence of header/PDU elements to encode hidden information.

This pattern divides further into: P2.a. Position and P2.b. Number of Elements patterns.
Add Redundancy The covert channel creates new space within a given header element or within a PDU in which to hide data.
Random Value The covert channel embeds hidden data in a header element containing a (pseudo-)random value.
Value Modulation The covert channel selects one of the n values that a header element can contain to encode a hidden message.

This pattern divides further into: P6.a. Case Pattern and P6.b. Least Significant Bit (LSB) patterns.
Reserved/Unused The covert channel encodes hidden data into a reserved or unused header/PDU element.

It must be also noted that in the reminder of this paper we will
rely on the unified description for network information hiding
methods introduced in [19]. This paper has been the first attempt
to standardize the description of network covert channels which
is suitable, e.g. to assess their novelty and impact of the method
on the state-of-the-art. In [19], the proposed description of data
hiding methods is split into three categories: (i) general information
about the hiding method; (ii) description of the hiding process, and
(iii) potential or tested countermeasures. The first two categories
comprise sub-categories and each (sub-)category can be mandatory
or optional (Fig. 2).

The category “hiding method general information” consists of a
link to existing network hiding patterns. It also includes a discussion
of the application scenario and requirements of the carrier. From the
perspective of this paper the most important category, i.e. “hiding
method process”, is split into four parts: the sender-side and the
receiver-side description of the hiding method, the details of the
covert communication channel, and the description of an associated
covert channel control protocol (if applicable). The third category
discusses both, potential and evaluated countermeasures, including
those that detect, limit or prevent the particular hiding method’s
use. In the following we will reference to the fragments of this
unified description when it comes to the pattern categorization.

3 ANALYSIS OF THE EXISTING TAXONOMY
Our analysis has shown that the current information hiding patterns
approach can be further extended to include the following aspects:
• Incorporate More Details on Data Hiding Methods: The key
criterion of the current pattern taxonomy for deciding which
pattern an analyzed method represents is to determine how
the secret data is encoded. Thus, due to this it is omitting
some details on how the data hiding method works (from the

- Hiding Pattern [mandatory]

- Application Scenario [mandatory]

- Required Properties of the Carrier [mandatory]

- Sender-side Process [mandatory]

- Receiver-side Process [mandatory]

- Covert Channel Properties [mandatory]

- Covert Channel Control Protocol [optional]

Unified Description Method

Hiding Method General Information [mandatory]

Hiding Method Process [mandatory]

Potential or Tested Countermeasures [mandatory]

Figure 2: The unified description structure for data hiding
methods as introduced in [19].

sender-side and receiver-side process – this will be shown
further in the next sections). This “flattens” the description
of the inner workings of the data hiding methods and thus
may prevent that all details of a hiding method are con-
sidered. A more thorough patterns grouping is desired to
more accurately categorize existing network steganography
methods.
• Support Hybrid Patterns: For some cases it is difficult to assess
whether the analyzed method is storage, timing or hybrid
– a clearer distinction and unambiguous formula to deduce
this is desirable.
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• Multi-Packet and -Flow Characteristics Support: The current
categorization makes no clear distinction between hiding
methods that are focusing on a single packet or multiple
packets. Also, there is no clear distinction between single-
andmulti-flowmethods. For example, consider a covert chan-
nel that modulates IPv4 ToS values in such a way that the
sequence of ToS values from the consecutive packets is inter-
preted as a single secret data bit – currently such a method
does not match any hidden data pattern. Moreover, some
hiding methods such as [10] utilize multiple flows. It is thus
beneficial to make the original pattern descriptions more
generic, i.e. less dependent on specific units such as PDUs
or packets.
• Coverage of Sophisticated Hiding Methods: It is not exactly
clear whether recent, more advanced network steganogra-
phy concepts like inter-protocol steganography [9], protocol
switching covert channels [21], multilevel steganography [5],
adaptive covert communication [23], etc. can be accurately
expressed using current pattern categorization. Pattern com-
bination, pattern hopping and pattern variation are means
to represent them, but not to the full extent.
• Influence on Payload: In the original design decision of the
pattern-based approach, arbitrary content, e.g. digital files,
were considered as part of digital media steganography in-
stead of network information hiding. However, in some cases,
such as in VoIP steganography, where there are data hiding
methods that affect the payload field, it can be helpful to
have a taxonomy that covers also the transmitted payload.
In principle the patterns should be analogous as they too
adhere to the storage group.
• Distinction Between Secret Data Embedding and Transfer: It is
also worth to emphasize that from the pattern-based coun-
termeasures perspective it is more important to know which
pattern represents the covert technique within the commu-
nication channel. It must be noted that in particular the
information hiding patterns used at the sender-side process
to embed secret data may not exactly represent themselves
in the same while traversing within the hidden data carrier
through the communication network.
• Embrace PDU Corruption Pattern: As mentioned, in [22] 11
(4 timing and 7 storage) patterns have been defined while in
[15] there are 14 (8 timing and 6 storage) patterns. However,
the pattern ’PDU Corruption/Loss’ has been removed from
the storage patterns group by [15]. In fact, it is our belief
that it is beneficial that the ’Artificial Message/Packet Loss’
pattern has been added into timing patterns but still the
’PDU Corruption’ pattern should be considered in storage
scenarios.

Based on the above-mentioned points, we describe how we en-
vision enhancements to the current information hiding patterns
concept in the next section.

4 EXTENSION AND MODIFICATION OF THE
PATTERNS APPROACH

In this section, we present the proposed modification for the origi-
nal information hiding patterns concept which can help in deriving

further insights into understanding the nature of various types
of network covert channel techniques. More specifically, in sub-
section 4.1 we propose how the original pattern approach can be
extended in order to include the sender-side and receiver-side pro-
cesses which influences both pattern creation process and covert
techniques categorization. Next, in subsection 4.2 we propose new
patterns applicable to the payload field. Finally, in subsection 4.3
we discuss the distributed network covert channels and how the
information hiding patterns concept can be used to conveniently
describe them.

4.1 A New Process to Analyze the Details of
Pattern-Application

Considering the arguments from Section 3, we propose an approach
based on [20], which describes how to determine the novelty of a
new hiding technique and whether a hiding technique actually rep-
resents a new pattern, or not. Instead, our goal is to gain additional
insights into the inner-workings of the data hiding method, i.e. we
do not replace the original approach.

In the current categorization, authors of a new data hiding tech-
nique first describe their technique, e.g. informally or using [19].
Then, based on how the secret data is embedded one pattern is se-
lected that represents the hiding method. Therefore, authors first de-
cide whether the hiding method is storage or timing, then, whether
it is protocol-aware/agnostic (timing channel) or header structure
preserving/modifying (storage channel). If a hiding method does
not fit into the current pattern representation, it is considered a
new pattern which can be added to the taxonomy. The related
decision-making process can be found in [20].

We propose a similar but modified version of this approach. How-
ever, as mentioned, our approach targets a different goal, namely
to derive more insights related to the information hiding method
itself. It must be noted that we do not focus only on how the secret
data for a certain data hiding method is embedded (which is only a
part of the sender-side process) but instead we want to detail both
the complete sender- and receiver-side processes and represent
them with patterns (and for this purpose, we “borrow” the already
existing patterns.

In our proposed approach, the known hiding patterns of exist-
ing publications and websites, e.g. [15, 22] or https://ih-patterns.
blogspot.com, which are tagged as storage or timing patterns, are
taken into account. Then for the hiding method that needs to be de-
scribed using the network covert channel patterns approach, the cor-
responding patterns for both, sender- and receiver-side processes
are selected. Finally, based on the result and depending on what
types of patterns have been assigned to the method, the method
itself is concluded as a storage, a timing or a hybrid method – this
selection process is explained in the details below.

The described improved approach which aims to derive more in-
sights from the data hiding methods using pattern approach allows
to repaint the categorization from Fig. 1. However it must be noted
that in the modified approach we categorize network covert channel
patterns and not data hiding methods. Thus, we start the derived
classification from the network covert channel patterns which are
then divided into timing and storage ones (Fig. 3). Afterwards, each
of the methods that needs to be evaluated is assigned with at least
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Figure 3: Improved aspects of the existing pattern-based taxonomy.

one or more patterns to its sender- and receiver-side processes
separately (for each side at least one or alternatively more patterns
must be selected).

It must be also noted that using this approach it may be possible
to evaluate in greater detail which patterns are most often used
jointly only at the sender-side process (as more than one pattern can
be assigned) or only at the receiver-side process, or finally which
patterns typically coexist at the sender-side and the receiver-side
processes. This can be achieved by performing a thorough analysis
of network covert channels defined in the literature (however, due
to space limitation it will be not part of this paper). In result of
such an analysis this can lead to the identification of potential
relationships between defined patterns, i.e. whether for some of
them it is “easier” to coexist with other patterns within the data
hiding method (as in the case of the extended approach the sender
and the receiver processes can be investigated separately or jointly).

But more importantly, it is also possible to investigate whether
besides of joint patterns utilization (at the sender-side, receiver-side
or both sides), other pattern mixes are also possible. For example,
consider Method 4 in the Figure 3. It is characterized by the pat-
terns Retransmission and Size Modulation, which makes it a hybrid
method. However, the question arises whether is would be possible
to construct a data hiding method that apart from these two pat-
terns utilizes e.g.Message (PDU) Ordering pattern and how this will
impact its properties.

In result, new, previously unknown network information hiding
methods or improved versions of existing ones can be designed
and developed and relationships between the existing patterns can
be investigated and determined. It must be noted that using the
existing pattern classification it was possible to assign only a single
pattern for a certain hidingmethodwhich corresponds best with the
secret data embedding process. However, in the extended approach
(which is different when compared to the original concept) it is
possible to:

• assign more patterns to the sender-side process if it is re-
quired in order to express to a full extent how the sender-side
of the hiding method operates,

Hiding Method Process

Type of the method:

Covert Storage 

Pattern(s)

Covert Storage 

Pattern(s)

Network Storage

Covert Channel

Covert Timing 

Pattern(s)

Covert Timing 

Pattern(s)

Network Timing

Covert Channel

Covert Timing & 

Storage Pattern(s)

Covert Timing and/or 

Storage Pattern(s)

Network Hybrid

Covert Channel

Covert Timing 

Pattern(s)

Covert Storage 

Pattern(s)

Network Hybrid

Covert Channel

Sender-side Process Receiver-side Process

… … …

Figure 4: Improved process to decide on the network covert
channel type based on the assigned patterns.

• include also the receiver-side process and its corresponding
patterns.

Such an approach may not only help to better understand the
nature of the network covert channels and their creation process,
but it can also provide new insights into how to construct more
efficient and effective detection solutions. This can be achieved by
designing and developing detection methods, so they precisely will
be looking for the specific artifacts related to the representation of
the certain patterns in the communication channel (and/or e.g. the
presence of their coexistence).

Finally, each method based on the selected patterns for the
sender- and for the receiver-side processes is assigned to one ele-
ment of the group {storage, timing, hybrid}. This is done as illus-
trated in Fig. 4. In principle, if both the sender- and the receiver-side
processes are characterized with homogenic (only storage or only
timing) patterns then the method is concluded as storage or timing.
If there is heterogeneity across patterns that the method uses, i.e.
storage and timingmethods are mixed within the sender- and/or the
receiver-side processes then it is concluded as a hybrid technique.
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Figure 5: Classification of the exemplary network covert
channels based on the assigned patterns.

To present how the proposed extended patterns’ classification
approach is functioning for some of the existing network steganog-
raphy techniques, we have chosen seven different state-of-the-art
network covert channels to demonstrate how they fit into our cate-
gorization (Fig. 5). For example, for a simple network covert channel
which in order to conceal data utilizes Type of Service field from
the IPv4 header [7], the sender- as well as receiver-side processes
use the same pattern, i.e. Reserved/Unused, thus as both processes
are assigned with the storage pattern then the method is concluded
as storage. For the work related to modifying delays between the
consecutive packets within the data stream [2] for both sender- and
receiver-side processes the pattern Inter-arrival time is an obvious
choice thus this technique is deemed as timing method. However,
when we consider a more complex method like LACK (Lost Audio
Packets Steganography) [12] then the situation is a bit different. As
LACK operates by using intentionally delayed voice packets and
replacing the original payload of these packets with secret data
thus at the sender-side process two patterns must be selected – one
storage (Reserved/Unused) and one timing (PDU Order), whereas
when considering the receiver-side process the chosen pattern is
only storage one (Reserved/Unused) – as at the covert receiver every
incoming packet’s payload, regardless of its order, is probed for the
existence of the hash which will indicate presence of secret data.
Therefore, the method is concluded to be hybrid. It is worth empha-
sizing that if we consider the original pattern approach (which as
mentioned relied only on assigning pattern(s) based on how/where
secret data is embedded) then LACK method would be only char-
acterized by the storage Reserved/Unused pattern. This proves that
the extended pattern approach proposed in this paper allows to
characterize the data hiding methods in greater detail by including
more information on inner workings of the information hiding
technique.

User-data Agnostic User-data Aware
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[16], HideF0 [8] etc. LSB, DCT, DSSS, Echo 
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Figure 6: Classification of the network covert storage chan-
nels for the payload field and the corresponding patterns.

4.2 Introduction of Additional Patterns
As already mentioned, the current pattern-based categorization of
[15, 22] makes a distinction between patterns applied to user-data
(within the payload field) and protocol specific data (control in-
formation: headers, padding, etc.). In principle, all these patterns
adhere to the storage group, i.e. modification of the certain “lo-
cations” of the carrier. However, in the original publications on
hiding patterns, this distinction was made based on the idea of
Fisk et al. [3] to separate structured (machine-readable) content
from non-structured (human-readable) content, such as images.
This means that in several cases similar rules apply to modify these
fields (because structured data follows rules, e.g. protocol headers
are built similarly to formal grammar) and to the data that they
store. Obviously the most significant difference lays in the dissim-
ilarities between the control information carried within protocol
headers/padding and user-data transferred within the payload field.
Thus, to fill this gap and by considering current research efforts in
this area, we propose to extend the current taxonomy as shown in
Fig. 6.

Network covert channels that modify the payload field and its
content have been divided based on whether the characteristic of
user-data is taken into account into: (i) user-data agnostic and (ii)
user-data aware. In each of the two groups two patterns have been
identified, which we describe in the same way as the patterns were
originally described in [22] using a subset of the Pattern Language
Markup Language’s (PLML) attributes:

PS20. Payload Field Size Modulation
Illustration: This pattern uses a size of the payload field of a flow’s
PDUs/messages to encode the hidden message. This pattern is a
variant (child) of the pattern P1. Size Modulation of [22] which
has been already defined for the modification of the non-payload
branch of storage methods (confirm Fig. 1).
References: PS1. Size Modulation
Context: Network Covert Channel Patterns→ Covert Storage Chan-
nel Patterns→Modification of Payload→ User-data Agnostic
Evidence:
1. Modulate the size of the data block field in Ethernet frames [6].
2. Any other method that modulates the size of the payload field in
any network protocol.
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PS21. User-data Corruption
Illustration: This pattern is related to the cases when steganographic
methods do not take into account what kind of user-data is carried
within a payload field and/or what its characteristic is (blind modi-
fication). It can be applied to single PDUs or to multiple PDUs (a
flow). This typically happens if parts of (or the whole) user-data is
replaced with secret bits and thus the user-data is corrupted/lost.
This pattern is similar to the pattern PDU Corruption defined in the
original pattern categorization of [22].
Context: Network Covert Channel Patterns→ Covert Storage Chan-
nel Patterns→Modification of Payload→ User-data Agnostic
Evidence:
1. Replace the user-generated data in the payload field with secret
data in intentionally lost voice packets of the IP telephony call [12].
2. Replace the user-generated data in the payload field with secret
data in retransmitted TCP segments [13].
3. Replace the user-generated data in the payload field with secret
data in intentionally corrupted IEEE 802.11 frames [18].

PS30. Modify Redundancy
Illustration: This pattern is used when it is possible to exploit the
redundancy of the user-data by means of transforming them in
such a way that a free space for secret data is obtained (e.g. by
means of transcoding). This pattern is a bit similar to the pattern
Add Redundancy defined in [22] but can also decrease redundancy
and is applied to payload instead of meta-data.
Context: Network Covert Channel Patterns→ Covert Storage Chan-
nel Patterns→Modification of Payload→ User-data Aware
Evidence:
1. Compress existing user-data in order to make a space for secret
data [14].
2. Transform the VAD-enabled IP telephony voice stream into non-
VAD one and fill the gaps using artificially generated RTP packets
containing secret data [16].
3. Approximate the F0 parameter of the Speex codec which carries
information about the pitch of the speech signal and use the “saved”
space for secret data [8].

PS31. User-data Value Modulation and Reserved/Unused
Illustration: Characteristic features of user-data can be utilized to
store secret information. This includes applying methods like LSB
modification to speech samples or digital images carried within the
payload field. Compared with previous patterns this is a targeted
modification. This pattern is analogous to the combination of the
patterns Value Modulation and Reserved/Unused, but applied to pay-
load.
Context: Network Covert Channel Patterns→ Covert Storage Chan-
nel Patterns→Modification of Payload→ User-data Aware
Evidence:
1. Encode a stream of information by spreading the encoded data
across as much of the frequency spectrum as feasible (e.g. DSSS) [1].
2. Embeds secret data into a carrier audio signal by introducing an
echo (a.k.a. echo hiding) [1].
3. Replacing the least significant bit of e.g. each voice sample with
secret data (LSB) [1].

As it is visible above, the identified patterns have mostly a num-
ber of examples in the state-of-the-art publications (Fig. 6). Every
newly defined pattern corresponds to the patterns that have been
already defined in the non-payload branch of the original classifica-
tion.

Finally, the complete picture of the extended information hiding
patterns classification is illustrated in Fig. 7 and the corresponding
descriptions of all defined patterns which include also potential
multi-packet/multi-flow characteristics of some data hiding meth-
ods are enclosed in Tab. 2.

4.3 Distributed Covert Channel Realization
In [22], authors defined three concepts which can be used to explain
suitably some of the existing network covert channels’ phenomena,
i.e. pattern variation, pattern combination and pattern hopping.

The above-mentioned concepts are especially suitable and impor-
tant when trying to depict, explain, and analyze the realization of
distributed network covert channels. We define a distributed covert
channel as a network covert channel that spreads secret data among
multiple flows/protocols/hosts or uses multiple patterns within the
same flow or PDU for the hidden data exchange. In contrast, the
typical (undistributed) network covert channel is a storage or a
timing channel that uses PDUs of a single flow/protocol with only
one hiding pattern in order to embed secret data.

In Fig. 8 we have illustrated that these three pattern concepts
practically exhaust possibilities for distributed network covert chan-
nel realization. While explaining these concepts we apply the terms
of spatial, temporal, and transform domains which are “borrowed”
from the digital media steganography research area [17] and which
helps to described and define them better.

The first group i.e. pattern combination is related to the distri-
bution of secret data in a spatial domain. This means that many
patterns are utilized in parallel for the same hidden data carrier e.g.
by modifying many of its sub-carriers or using several carriers at
once. This includes the case when the hybrid data hiding methods
are used (cf. Fig. 1) as well as the case of simultaneous utilization
of multiple network covert channels at once. Consider an example
of HTTP traffic (e.g. web browsing) where three separate network
covert channels are used simultaneously: one is used for the IPv4
protocol, the next for the TCP protocol, and finally the third is ap-
plied to HTTP. Pattern combination applies also to the case when,
e.g. three separate connections are used for hidden data purposes
and in each connection a separate network hiding pattern is utilized
at the same time (e.g. IPv4-based in the first connection, TCP-based
in the second, and HTTP-based in the last one). Typically such an
approach is used in order to increase the overall steganographic
bandwidth.

The second group of distributed covert channels realization is
pattern hopping which allows to spread secret data in the temporal
domain (time). In a nutshell it means that different patterns’ uti-
lization varies over time and thus they are applied sequentially for
various (sub-)carriers. Usually, such an approach helps to improve
the stealthiness of the covert data exchange as in order to detect it
more “locations” must be monitored by the warden. An example of
pattern hopping is the tool PHCCT. PHCCT implements a so-called
protocol hopping covert channel that distributes data over different
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Figure 7: Classification of network covert channel patterns.

Table 2: Descriptions of hiding patterns in our improved and extended taxonomy.

Pattern Name Pattern Description

PT1. Inter-packet Times The covert channel alters timing intervals between network messages of a flow (interarrival times) to
encode hidden data.

PT2. Message Timing Hidden data is encoded in the timing of message sequences within a flow, e.g. acknowledging every
n’th received message or sending commandsm times.

PT3. Rate/Throughput The covert channel sender alters the data rate of a flow from itself or a third party to the covert receiver.
PT10. Artificial Loss The covert channel signals hidden information via artificial loss of a flow’s transmitted messages, e.g.

by frame-corruption or message drop.
PT11. Message Ordering The covert channel encodes data using a synthetic message order in a flow.
PT12. Retransmission A covert channel retransmits previously sent or received messages of a flow.
PT13. Frame Collisions The sender causes artificial frame collisions to signal hidden information.
PT14. Temperature The sender influences a third party node’s hardware temperature using traffic of a flow. There must be

a technique for the covert receive to measure the temperature (indirectly).
PS1. Size Modulation The covert channel uses the size of flow metadata (e.g. PDU size or size of a header element) to encode

hidden messages.
PS2. Sequence Modulation The covert channel alters the sequence of flow metadata to encode hidden information.

This pattern divides further into: P2.a. Position and P2.b. Number of Elements patterns.
PS3. Add Redundancy The covert channel embeds redundant metadata (e.g. by adding an unused IP option) in which data is

hidden into a flow. Note that in comparison to PS1, the data is hidden in the redundant data’s presence,
not in the size of an PDU or header element).

PS10. Random Value The covert channel embeds hidden data into flow metadata that contains a (pseudo-)random value.
PS11. Value Modulation The covert channel selects one of the n values that a flow’s metadata element can contain to encode a

hidden message.
This pattern divides further into: P11.a. Case Pattern and P11.b. Least Significant Bit (LSB) patterns.

PS12. Reserved/Unused The covert channel encodes hidden data into a flow’s reserved or unused metadata elements.
PS20. Payload Field The size of the payload in a flow is used to encode hidden information (this is a derivate of PS1 but for

Size Modulation the payload since it involves the modification of a PDU’s payload length field, i.e. PS1).
PS21. User-data Corruption The covert channel performs a (blind) insertion of covert data into a flow’s payload (similar PT10).
PS30. Modify Redundancy The covert channel compresses a flow’s payload and the resulting free space is used to hide data.
PS31. User-data Value The covert channel performs a modification of a flow’s payload in a way that is not reflected by PS30

Modulation and and that does not result in a significantly modified interpretation of the data, e.g. by modifying least
Reserved/Unused significant bits of digital images or hiding data in unused/reserved payload bits.

network protocols [15]. To this end, PHCCT utilizes more than
one pattern, namely Add Redundancy (embedded in HTTP) and
User-data Corruption (embedded in FTP-Data).

Finally, the last group of techniques which allows to realize a
distributed network covert channel is pattern variation. The original
idea of pattern variation is that each of the defined patterns is
considered in the certain context, i.e. the utilized hidden data carrier
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Figure 8: Classification of pattern-based distributed network
covert channel realization.

(e.g. a network protocol). In our case, we extend this view and define
pattern variation in different contexts. In particular, three contexts
can be distinguished: host-based scattering, flow-based scattering,
and protocol-based scattering which will be described in detail with
examples below. In all cases of pattern variation, the same pattern
is applied to different contexts, i.e. its essence does not change.

Host-based scattering requires the covert sender and/or the covert
receiver to control more than one physical host or other network-
ing devices. Parts of the secret data are hidden in the legitimate
traffic sent from or directed towards different hosts using the same
pattern. An example of this kind of distributed covert channel is
the SCTP multi-homing-based method (i.e. the host’s ability to be
visible in the network through more than one IP address) [4]. In
such a scenario, each IP address of the covert receiver can be used
to represent a single bit of secret data (or a sequence of bits). Then,
by modulating the way that packets are addressed and sent secret
data can be transferred in a distributed manner.

Next, Flow-based scattering takes advantage of the capability
to set up multiple flows between two hosts and using them to
signal secret data bits in a distributed way while utilizing the same
pattern. This can be realized, for example, by dividing secret data
into fragments and using a certain information hiding pattern (or
several) to send each fragment using one of the available flows.
An idea of using many flows for a distributed covert channel is
exemplified by the Cloak method [11], which is a timing data hiding
technique that encodes secret data bits by uniquely distributing N
packets over M TCP flows. Please note that while in the case of
pattern hopping a utilization of multiple flows is possible as well,
flow-based scattering serves under the umbrella of pattern variation,
i.e. it is required to apply the same pattern to different flows, and
pattern hopping must apply different patterns.

Finally, Protocol-based scattering applies a pattern to different
communication protocols instead of hosts or flows. In contrast to
flow-based scattering, it does not necessarily utilize flows of the
same protocol but changes the actual protocol (which can generate
multiple flows, too). This group is exemplified via protocol switching
covert channels (PSCC) [21]. These channels assign hidden informa-
tion to network protocols. For instance, one could link the HTTP
protocol to the hidden value “0” and the DNS protocol to the hidden
value “1”. Then, by sending the packet sequence HTTP, DNS, DNS,
HTTP, one would transfer the secret information “0110”.

Obviously, there are other possibilities to create distributed net-
work covert channels by developing mixed solutions so that it in-
volves the parallel use of, e.g. pattern hopping and pattern variation
or any other fusion of the concepts mentioned above.

5 CONCLUSIONS
We identified limitations of the existing pattern-based taxonomy,
most importantly a lack of payload-based hiding patterns and a
limited definition of distributed covert channels. For this reason,
we extended the list of existing hiding patterns for network covert
channels and their related taxonomy. We also extended the de-
scription of hybrid/distributed hiding methods and proposed an
extension and improvement of the related concepts (especially pat-
tern variation to handle multi-host, multi-flow and multi-protocol
techniques).

We hope this work will help to derive new insights into existing
and new data hiding techniques.

Future work will be devoted to analyzing relationships between
patterns with respect to their joint occurrence in existing methods
as well as we will investigate whether any new data hiding methods
can be deuced based on the less obvious pattern mixes.
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Abstract

Each day more and more Internet of Things (IoT) devices are being connected to the Internet. In

general, their applications are diverse but from the security perspective, it is evident that they are

increasingly targeted by cybercriminals and used for nefarious purposes. Network covert channels

form a subgroup of the information-hiding research area where secrets are sent over communica-

tion networks embedded within the network traffic. Such techniques can be used, among others,

by malware developers to enable confidential data exfiltration or stealth communications.

Recently, distributed network covert channels have raised the attention of security professionals as

they allow the cloaking of secret transmission by spreading the covert bits among many different

types of data-hiding techniques. However, although there are many works dealing with IoT secur-

ity, little effort so far has been devoted in determining how effective the covert channels threat can

be in the IoT henvironments. That is why, in this article, we present an extensive analysis on how

distributed network covert channels that utilize network traffic from IoT devices can be used to per-

form efficient secret communication. More importantly, we do not focus on developing novel data-

hiding techniques but, instead, considering the nature of IoT traffic, we investigate how to combine

existing covert channels so the resulting data transfer is less visible. Moreover, as another contri-

bution of our work, we prepare and share with the community the network traffic dataset that can

be used to develop effective countermeasures against such threats.

Key words: covert channels; network security; Internet of Things; information hiding

Introduction

Nowadays, many everyday appliances are empowered with net-

working functionality in order to allow monitoring of devices and

processes, remote management, etc. The phenomenon of the

Internet of Things (IoT) is growing rapidly, and the number of con-

nected devices is envisioned to increase from 13.4 billion in 2015 to

38.5 billion in 2020.1 The main benefits of the IoT include automa-

tion of processes, monitoring, increased intuitiveness of the

environment by offering a mixture of sensing, communication and

computing services, as well as access to these services on demand

[2]. Considering the above, currently the most popular IoT applica-

tions include smart home systems, wearables, smart grids, smart cit-

ies, connected cars and industrial IoT.

From the protocols perspective, the IoT has never reached a

widely accepted, common standard despite previous efforts, e.g.

from IEEE. Thus, the IoT is considered highly heterogeneous and

this is enabled due to the variety of different technologies. However,

†This is the extended version of the paper entitled ‘Fine-tuning of Distributed

Network Covert Channels Parameters and Their Impact on Undetectability’

[1] presented at the CUING Workshop held in conjunction with the 14th

International Conference on Availability, Reliability and Security

(Canterbury, UK, 2019).

1 https://www.juniperresearch.com/press/press-releases/iot-connected-devi

ces-to-triple-to-38-bn-by-2020
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it must be noted that the rapid development of this concept does not

go hand in hand with the proper adoption of security measures,

which might put users and their privacy in danger [3–6]. The lack of

standardization mentioned above, as well as limited resources when

it comes to the processing power and battery life, is (among others)

to blame and thus the current traditional security solutions are not

suitable for IoT systems. Moreover, due to the small volume of traf-

fic produced by these kinds of devices when compared to typical

users’ equipments such as desktops, laptops, or mobile phones, it is

commonly believed that this traffic may be not suitable for covert

transmission. For example, during the experiments conducted,

described in this article, we simulated the network traffic of a therm-

ometer currently available on the market. It sends about 400 bytes

and receives less than 3 kilobytes of data less often than once per se-

cond, which is a relatively small volume. However, if several such

IoT devices are utilized to orchestrate a ‘distributed’ network covert

channel, then the resulting throughput becomes reasonable.

During the last decade, various information-hiding techniques

have been used by cybercriminals for nefarious purposes [7]. Among

potential methods, the so-called ‘network covert channels’ [8–10]

are increasingly used by attackers to cloak their malicious activities,

e.g. to invisibly communicate with the Command and Control serv-

ers, exfiltrate confidential and sensitive data, or download further

malware modules [11]. Note that this trend is expected to continue

in the future and we will witness an increase in sophisticated covert

channel techniques utilized with malicious intentions [7], which will

be a real challenge for the digital forensics and security communities

[12].

Moreover, it is foreseen that even more complex forms of the

network covert channels will be utilized affecting novel services [13,

14], types of traffic [15–17], its characteristic features [18, 19], or

user behaviour [20] in response to the increasingly efficient and ef-

fective information-hiding countermeasures. Therefore, the aim of

the research in information hiding should be focused not only to im-

prove the defence systems but also to analyse other potential ‘con-

structions’ of data-hiding techniques, especially those that provide

improved undetectability and/or covert channel bandwidth. One

such example is information-hiding-based botnets [21–23], which

offer covert orchestration of the bots and confidential data

exfiltration.

Another example of sophisticated data-hiding schemes is

‘Distributed Network Covert Channels’ (DNCCs) [24, 25]. DNCCs

are defined as network covert channels that spread the secret data

among many flows/protocols/hosts or use multiple data-hiding

methods within the same flow or within Protocol Data Units (PDUs)

in order to provide hidden data exchange. In contrast, the typical

(undistributed) network covert channels are storage or timing chan-

nels, in order to embed secret data utilize PDUs of a single flow or

protocol.

DNCCs are nowadays receiving increased attention among the

security community as they provide the following benefits for the at-

tacker: (i) they can further improve the overall stealth and band-

width of the hidden communication as they can transmit smaller

parts of secret data using various covert channels and (ii) they can

be used to bypass existing defensive solutions, as due to the distrib-

uted nature, the modifications applied using a single data-hiding

technique can be limited, thus staying under the radar.

Note, however, that so far in the literature no systematic analy-

ses of the DNCCs both from the properties perspective and from the

detection angle have been presented. Our previous works contrib-

uted to the initial investigation of the distributed network covert

channels. In [24], we extended a network information-hiding

patterns concept so it is able to incorporate DNCCs and, additional-

ly, we introduced their novel taxonomy. Moreover, in [25], we have

evaluated whether data-mining techniques can be suitable for the de-

tection of distributed network covert channels. We have considered

the typical state-of-the-art network covert channel, which is based

on the IPv4 Time to live (TTL) field value modulation, and addition-

ally, the secret data are distributed among several data flows. The

initial results that we obtained were promising, and thus, we con-

cluded that such an approach should be further investigated. Finally,

in [1], we further investigated the DNCC concept by performing an

initial analysis of the DNCCs capabilities, and in particular, we pro-

vided more insights on how DNCCs should be constructed and used

in order to achieve increased undetectability.

This work is an extended version of the conference paper [1].

Note, that in this research, we significantly expanded the experimen-

tal evaluation. First of all, during the experiments we utilize simu-

lated IoT traffic, in contrast to the real web activity used previously.

This kind of traffic possesses completely different challenges as its

characteristics impact significantly the way in which steganographic

communication must be performed. Secondly, we use an enhanced

DNCC scheme where not only three distinct steganographic meth-

ods are used, but also multiple overt traffic senders (to better model

the IoT environment scenario). Thirdly, in this article, we introduce

a new method for tuning the parameters of each network covert

channel forming the DNCC. To sum up, the main differences and

contributions of this article are to:

• explore the DNCC in the IoT environments—this impacts the

characteristics of the analysed communication scenario as well as

the nature of the network traffic that can be utilized for data-

hiding purposes;
• we perform a thorough experimental evaluation of the DNCC

created and show how such covert channels should be created in

order to optimize their performance when it comes to their band-

width and undetectability; and
• we prepare and share with the community the network traffic

dataset that can be used to develop effective countermeasures

against DNCCs, e.g. based on machine learning techniques.

The rest of this article is structured as follows. In the next sec-

tion, we review the most relevant works related to the IoT security

and data hiding in this environment. In ‘Distributed network covert

channels’ section, a detailed analysis of the distributed network cov-

ert channels is presented. Then, the experimental methodology uti-

lized, as well as the testbed, is presented in ‘Experimental

methodology and testbed’ section followed by the results obtained

in ‘Experiments, results and discussion’ section. Finally,

‘Conclusions’ section concludes our research and outlines potential

future work.

Related work

In this section, we first review works on IoT security and then we

focus on describing relevant research related to IoT-based covert

channels.

IoT security
The security of IoT systems is an emergent and a rather well-studied

topic, see, e.g. [3–6] for surveys. In the remainder of this subsection,

we briefly summarize the main aspects of IoT security.

2 Journal of Cybersecurity, 2020, Vol. 00, No. 0
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Many IoT devices have their network interfaces exposed to the

public and due to their limited resources (like processing power or

battery), they are lacking proper security measures. As a result, they

can be easily exploited by attackers. This may potentially result not

only in serious security (i.e. the attacker is able to access user data),

but also safety threats for a user. Consider, for example, security

issues related to medical devices. In 2016, Muddy Water’s

Research2 revealed in their report that some implantable cardiac

devices possess serious security flaws. When exploited, they allowed

an attacker to access the devices and then deplete the battery or ad-

minister incorrect pacing or shocks.

As IoT devices are sometimes called the ‘internet’s least powerful

hosts’, it must be noted that they can be compromised and used to

become a part of the botnet and then take part in Distributed Denial

of Service attacks on other devices and services. One of the most re-

cent and large-scale attacks of this kind was launched by the Mirai

botnet, which reportedly infected up to 600 K devices to successfully

take down many online services [26].

Finally, Hron [27] from Avast presented how smart homes that

deploy popular IoT protocol—Message Queue Telemetry Transport

(MQTT) can be exploited. An attacker can connect to an open and

unprotected MQTT broker and receive all the messages of all the

registered topics. This means that the attacker is able to monitor the

status of window sensors, locks, heating/cooling systems, usage of

light switches, etc.

Covert channels in the IoT
The problem of covert channels in the IoT as a security and privacy

threat has been recently recognized, and it is starting to raise atten-

tion in the security community [28, 29], although this type of re-

search is still not significantly explored. The most relevant works

from the perspective of this article are described below.

Note that currently published papers mostly deploy data-hiding

techniques in some IoT protocols, such as several storage covert

channels in the Extensible Messaging and Presence Protocol [30],

two-storage and one timing covert channels in the Building

Automation and Control Networking Protocol [31], six-storage and

two timing covert channels in the Constrained Application Protocol

[32].

Moreover, Wendzel et al. [33] have shown that one can hide

data in a cyber-physical system (e.g. smart building) by slightly mod-

ifying some of its components, such as sensors, controllers, actua-

tors, as well as by storing secret data in unused registers.

Recently, in [34], a comprehensive analysis of the MQTT proto-

col has been performed from the information-hiding perspective. In

more detail, authors characterized seven direct and six indirect cov-

ert channels applicable for MQTT-based IoT environments, and for

the selected data-hiding methods, their experimental evaluation has

been presented.

Next, in [35], authors introduced three different sensor-based

covert channels that provide a trade-off between the achievable cov-

ert channel bandwidth and undetectability. They present covert

channels that require read- and write-access for sensor registers as

well as a covert channel that transfers data by just triggering sensor

readings so that the malicious behaviour cannot be distinguished

from typical, normal sensor usage.

In [36], various kinds of covert timing channels were analysed to

investigate their feasibility in the IoT environments. These data-

hiding techniques included packet-reordering-based, rate-switching-

based, packet-loss-based, retransmission-based and scheduling-

based covert timing channels.

Moskowitz et al. [37] proposed a method for covert communica-

tion that utilizes transmission timing to obscure symbols. The

authors also showed that IoT side channels are susceptible to net-

work covert channels and that it is possible to create a data-in-

motion data-hiding technique without network protocol

modifications.

Finally, in [38], Herzberg and Kfir introduced a provably-covert

channel for Cyber Physical Systems, which relies on a corrupt actu-

ator that is located in one zone and is able to send secrets to a sensor

in a different zone, breaking the isolation. The same authors

extended their work in [39] by exploring data-hiding possibilities

for indirect covert communication between a sensor and actuator

via a benign threshold-based controller. The covert information was

encoded within the output noise of the sensor in an indistinguishable

manner when compared to that of a benign sensor.

As already mentioned, so far in the literature, no comprehensive

research related to the distributed network covert channels has been

published. Our previous works presented in [24, 25] and [1] pro-

vided some initial insights into general classification of DNCCs,

their capabilities and potential detection opportunities. However, in

this article, we perform a thorough analysis of the distributed net-

work covert channels in IoT environments and we explore how they

should be constructed to be the most effective. Moreover, based on

our prototype implementation, we created and would like to share

with the scientific community a dataset that will help to further de-

velop effective countermeasures.

Distributed network covert channels

In general, network covert channels utilize the network traffic as a

hidden data carrier that is modified in order to conceal secret data.

Typically, two main groups of methods are distinguished: (i) those

that modulate the ‘timing’ behaviour of network traffic and (ii)

those that modulate ‘storage’ values of the network traffic. For in-

stance, timing channels can modify the timing between network

packets to encode secret data, whereas storage channels can modify

unused header bits of network packets (among several other meth-

ods). Such types of data-hiding techniques can then be utilized to

form distributed network covert channels. As already hinted,

DNCCs are covert channels that spread the secret data among many

flows/protocols/hosts or use multiple data-hiding methods within

the same flow or within PDUs in order to provide hidden data

exchange.

In this section, we first present the classification of the DNCCs

followed by their main communication scenarios and performance

metrics.

Distributed network covert channel classification
In [40], the authors introduced a classification of network-hiding

techniques into the so-called ‘information-hiding patterns’, i.e. ab-

stract descriptions of how data can be concealed in network trans-

missions. Each pattern presents one core idea of how secret data can

be represented through network traffic. Note that the originally pro-

posed classification has been extended a couple of times, with the

latest extension being the one of Mazurczyk et al. [24]. Note that in

[40], the authors also defined three concepts which can be used to

suitably explain some of the existing network covert channels’

2 http://d.muddywatersresearch.com/content/uploads/2016/08/MW_STJ_

08252016_2.pdf
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phenomena, i.e. pattern variation, pattern combination and pattern

hopping. The above-mentioned concepts are especially suitable and

important when trying to depict, explain and analyse the realization

of ‘distributed’ network covert channels.

In [24] as well as in Fig. 1, these three-pattern concepts have

been illustrated, which practically exhaust possibilities for distrib-

uted network covert channel realization. Below, we explain these

concepts in detail by applying the terms: ‘spatial’, ‘temporal’ and

‘transform domains’ which are ‘borrowed’ from the digital media

steganography research area [41] and which help to describe and de-

fine them better.

The first group, i.e. ‘pattern combination’, is related to the distri-

bution of secret data in a ‘spatial domain’ [see Fig. 2(a)]. This means

that many patterns are utilized in parallel for the same hidden data

carrier, e.g. by modifying many of its subcarriers or using several

carriers at once. This includes the case when hybrid data-hiding

methods are used, as well as the case of simultaneous utilization of

multiple network covert channels. Consider an example of HTTP

traffic (e.g. web browsing) where three separate network covert

channels are used simultaneously: one is used for the IPv4 protocol,

the next for the TCP protocol and finally the third is applied to

HTTP. Pattern combination also applies to the case when, e.g. three

separate connections are used for hidden data purposes and in each

connection, a separate network-hiding pattern is utilized at the same

time (e.g. IPv4-based in the first connection, TCP-based in the se-

cond and HTTP-based in the last one). Typically, such an approach

is used in order to increase the overall covert channel bandwidth.

The second group of distributed covert channels realization is

‘pattern hopping’ which allows the spreading of secret data in the

temporal domain (time) [see Fig. 2(b)]. In a nutshell, it means that

different patterns’ utilization varies over time and thus, they are

applied sequentially for various (sub)carriers. Usually, such an ap-

proach helps to improve the stealth of the covert data exchange as in

order to detect it, more ‘locations’ must be monitored by the war-

den. An example of pattern hopping is realized within the PHCCT

tool [7]. PHCCT tool implements the so-called ‘protocol hopping

covert channel’ that distributes data over different network proto-

cols. To this end, PHCCT utilizes more than one pattern, i.e. one

uses the HTTP and the other FTP data traffic.

Finally, the last group of techniques which allows the realization

of a distributed network covert channel is ‘pattern variation’ (see

Fig. 3). The original idea of pattern variation is that each of the

defined patterns is considered in a certain context, i.e. the utilized

hidden-data carrier (e.g. a network protocol). In our case, we extend

this view and define pattern variation in different contexts. In par-

ticular, three contexts can be distinguished: ‘host-based scattering’,

‘flow-based scattering’ and ‘protocol-based scattering’, which will

be described in detail with examples below. In all cases of pattern

variation, the ‘same’ pattern is applied to ‘different’ contexts, i.e. its

essence does not change.

‘Host-based’ scattering requires the covert sender (CS) and/or the

covert receiver (CR) to control more than one physical host or other net-

working devices [see Fig. 3(a)]. Parts of the secret data are hidden in the

legitimate traffic sent from or directed towards different hosts using the

same pattern. An example of this kind of distributed covert channel is

the Stream Control Transmission Protocol (SCTP) multi-homing-based

method (i.e. the host’s ability to be visible in the network through more

than one IP address) [42]. In such a scenario, each IP address of the CR

can be used to represent a single bit of secret data (or a sequence of bits).

Then, by modulating the way that packets are addressed and sent secret

data can be transferred in a distributed manner.

‘Flow-based’ scattering takes advantage of the capability to set

up multiple flows between two hosts and using them to signal secret

data bits in a distributed way while utilizing the same pattern [see

Fig. 3(b)]. This can be realized, for example, by dividing secret data

into fragments and using a certain information-hiding pattern (or

several) to send each fragment using one of the available flows. An

idea of using many flows for a distributed covert channel is exempli-

fied by the Cloak method [43], which is a timing data-hiding tech-

nique that encodes secret data bits by uniquely distributing N

packets over M TCP flows.

Note that while in the case of ‘pattern hopping’, a utilization of

multiple flows is possible as well, ‘flow-based scattering’ serves

under the umbrella of pattern variation, i.e. it is required to apply

the ‘same pattern’ to ‘different flows’, and pattern hopping must

apply ‘different patterns’.

Finally, ‘protocol-based’ scattering applies a pattern to different

communication protocols instead of hosts or flows [see Fig. 3(c)]. In

contrast to flow-based scattering, it does not necessarily utilize flows

of the same protocol but changes the actual protocol (which can

generate multiple flows, too). This group is exemplified via ‘protocol

switching covert channels’ [44]. These channels assign hidden infor-

mation to network protocols. For instance, one could link the HTTP

protocol to the hidden value ‘0’ and the DNS protocol to the hidden

value ‘1’. Then, by sending the packet sequence HTTP, DNS, DNS,

HTTP, one would transfer the secret information ‘0110’.

Obviously, there are other possibilities to create distributed net-

work covert channels by developing mixed solutions so that they in-

volve the parallel use of, e.g. pattern hopping and pattern variation

or any other fusion of the concepts mentioned above.

DNCC communication scenarios
Distributed network covert channels can be utilized to achieve

higher covert channel bandwidth or to send covert messages in a

Flows-based
Scattering

Pattern Variation
(transform domain 

distribution)

Host-based 
Scattering

Pattern Combination
(spatial domain 

distribution)

Pattern-based Distributed
Covert Channel Realization

Pattern Hopping
(temporal domain 

distribution)

Protocol-based 
Scattering

Figure 1: Classification of pattern-based distributed network covert channel realization [24].
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(a)

(b)

Figure 2: Illustration of the (a) pattern combination and (b) pattern hopping concepts.

(a)

(b)

(c)

Figure 3: Illustration of the pattern variation techniques (a) host-based scattering, (b) flow-based scattering and (c) protocol-based scattering.
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stealthier manner. In this case, the covert transmission of a single se-

cret message not only utilizes various data-hiding methods and mul-

tiple connections, but also various senders’ and/or recipients’

machines. Note that in principle, the overt traffic sender and the

overt receiver have no knowledge that their traffic is utilized for the

hidden data exchange purposes.

Considering the above, we can define three distinct configura-

tions for the DNCC referenced later in the text as follows: (i) one-

to-many (1: N); (ii) many-to-one (M: 1); and (iii) many-to-many (M:

N). In the first case, the traffic utilized for DNCC is coming from

one sender (a client) and it is destined to a number of recipients

(servers). In the second case, the traffic generated by various senders

is destined towards one recipient (a server). Finally, in the third

setup, the number of senders and receivers varies (but both numbers

are higher than one). All three configurations are presented in Fig. 4.

Due to properties of the IoT systems, during the experiments con-

ducted and described in this article, we only analyse the many-to-

one configuration scenario. In such a configuration, we utilize many

IoT sensors which transmit their measurements to a single central

server.

DNCC performance metrics
Generally, every network covert channel can be described by the fol-

lowing set of characteristics: its bandwidth, undetectability and ro-

bustness [7]. The term ‘bandwidth’ refers to the amount of secret

data that can be sent per time unit when using a particular data-

hiding technique. ‘Undetectability’ is defined as the inability to de-

tect secret data embedded within a certain carrier. The most com-

mon approach to detect the presence of hidden data is to analyse the

statistical properties of the captured traffic and compare them with

values typical for that carrier. The final characteristic is ‘robustness’,

which is defined as the amount of alteration (intentional or not) that

the hidden data carrier can withstand without destroying the

embedded secret data. Obviously, an ideal covert channel should be

as robust and as difficult to detect as possible while offering the

highest bandwidth. However, it must be noted that there is always a

fundamental trade-off necessary among these three measures.

Additionally, it is also useful to measure the data-hiding technique

‘cost’. This is a characteristic that belongs to the sphere of carrier fi-

delity and has a direct impact on undetectability. It describes the

degradation or distortion of the carrier caused by the application of

the data-hiding method. For example, in the case of VoIP covert

channels, this cost can be expressed as a measure of the conversation

quality degradation induced by applying a particular technique for

hiding information.

From this perspective, it is visible that the DNCC consists of util-

ization of many data-hiding techniques, which creates many net-

work covert channels that can be used simultaneously (or

interleaved as in case of pattern hopping). Therefore, for each of the

covert channels forming DNCC, it is possible to use the above four

performance metrics to characterize them. However, although they

are important when describing DNCC, it must be noted that:

• if we denote overall covert channel bandwidth of DNCC as BO,

then the resulting data rate of each of the covert channels

(B1;B2; . . . ;Bi) forming DNCC contributes to BO as follows:

BO ¼ B1 þ B2 þ � � � þ Bi. This means that the higher the number

of utilized NCCs forming DNCC, the higher its overall

bandwidth;
• from the DNCC undetectability perspective, two things must be

noted. On one hand, if a certain amount of secret data are to be

transferred covertly, then dividing them into smaller portions

and sending them using many separate covert channels may be

beneficial from the undetectability perspective. In this case, the

artefacts created due to network covert channels utilization may

be less ‘visible’ when compared with the scenario where only a

single data-hiding technique is used heavily. On the other hand,

the DNCC is as detectable as the weakest data-hiding technique

(a)

(b)

(c)

Figure 4: Comparison of the enhanced DNCC scenario: (a) one-to-many (1: N), (b) many-to-one (M : 1) and (c) many-to-many (M: N).
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it is utilizing which means that if one of them is easy to detect,

then the overall DNCC undetectability is jeopardized;
• robustness—the DNCC would be as robust as the NCC which

has the weakest robustness. Thus, when the (intentional or not)

modifications to the hidden data carrier make it impossible to ex-

tract secret data via even a single information-hiding method

which is a part of the DNCC, then the robustness of the whole

scheme (and thus part of the secret) is endangered, especially, if

no error correction codes are used;
• in the case of data-hiding methods’ cost, the number of affected

subcarriers is obviously related to the number of the data-hiding

techniques utilized to form DNCC. As already hinted when dis-

cussing undetectability of the DNCC, when we spread parts of

secret data across many subcarriers, then their modification can

be potentially less spottable when compared to the case when

only a single network covert channel is used. Therefore, the over-

all cost of the DNCC is also amalgamate of all costs related to

every data-hiding technique used to create DNCC. However, it is

worth noting that as these costs are associated with various

(often disjointed) subcarriers, then they cannot be just easily

combined (summed) as they pertain to ‘different dimensions’ of

the carrier.

As seen above, the ‘classic’ performance metrics for typical net-

work covert channels are able to cover some aspects of DNCCs

(even if they need to be slightly redefined, i.e. to, e.g. include overall

covert channel bandwidth or cost rather than focusing on the single

data-hiding technique). However, it is our opinion that more metrics

must be defined in order to have a complete picture of DNCCs.

That is why we now provide the definitions and description of

the additional performance metrics and mechanisms that allow the

characterization of the DNCC in a more accurate manner. Thus,

apart from the above-mentioned performance metrics, the addition-

al ones are required in order to fully characterize DNCCs:

• ‘synchronization’ between covert channels within the set of data-

hiding techniques that form the DNCC. This is required in order

to ensure that each chosen network covert channel functions in a

way which allows for the reliable secret data communication so

the fragments of hidden data are not corrupted or lost and they

can be extracted in the correct format and ordered to, in the end,

form a complete secret message at the CR and
• ‘secret data-scattering strategy’—the size of the fragments of se-

cret data at the CS side should be adjusted in order to fit network

covert channels characteristics especially from the bandwidth

perspective. If this is not taken into account, then this may lead

to the situation when the hidden data are received out of order

by the CR, with many fragments not fitting each other and as a

result, this can inflict significant delays (caused mostly by differ-

ent data rates of the covert channels utilized).

Moreover, in order to ensure that the above-mentioned mecha-

nisms are functioning correctly, it may be necessary to enable some

kind of more formal exchange of control information between the

CS and the CR. This may be achieved by enhancing DNCC with

lprotocols [45], which are typically used with the cost of lowering

usable available covert channel bandwidth to enable fundamental

features such as reliability, dynamic routing, proxy capabilities, sim-

ultaneous connections, or session management for network covert

channel features. For DNCC, the most important features that

lprotocols can provide are reliability, establishing, controlling and

management over simultaneous covert channel connections. It must

be also noted that it is crucial to construct lprotocol in such a way

that it does not make the DNCC more prone to detection [46].

The metrics mentioned above are then incorporated within the

DNCC creation process and they form the following requirements:

Requirement 1: When the DNCC is formed, the DNCC type

should be first established between the CS and the CR and the

network covert channel techniques it would involve. Without

this, the CS can embed secret data using some arbitrary data-

hiding techniques, but then it would be difficult for the CR to de-

tect and extract the hidden data.

Requirement 2: In the next step, the CS and the CR must also ex-

change information about the specific details related to the overt

transmission that they will be using to enable network covert

channels. This, depending on the DNCC type, may include infor-

mation on flows, hosts, protocols, etc., that are essential in the

DNCC-forming process.

Requirement 3: Another vital functionality that the CS and the

CR need to agree on is a synchronization for the various network

covert channels utilized as it allows them to establish the ‘sensi-

tivity’ of the hidden communication parties so that the CS is able

to correctly interpret the hidden data bits transmitted in each net-

work covert channel.

Requirement 4: Finally, it is essential that the efficient secret data

fragmentation/defragmentation mechanism is used, as without it,

it may be difficult to restore the parts of secret data received into

the complete secret message.

Experimental methodology and testbed

During the experiments, we analysed whether the utilization of

DNCC techniques used in the IoT environment could result in a rea-

sonable covert channel data rate. To verify this hypothesis, we

developed and deployed selected network covert channels in the

Software-Defined Networking (SDN) environment and experi-

mented with various DNCC configurations to find the best perform-

ing ones. In the remainder of this section, we detail the testbed used

and implemented network covert channels, as well as the network

traffic dataset created.

All experiments presented in the details in the remainder of this

section were performed using simulated IoT traffic. For simulation

purposes, we used custom Python scripts, but the traffic characteris-

tics are based on a real product available on the market (more

details are presented in Subsection ‘Created dataset’). However, the

scenario evaluated during our experimental evaluation could easily

be used in a real environment. Our initial research indicated that the

home-based IoT scenario could be the first choice for attackers. It

must be noted that it is often the case that home devices are config-

ured without proper security and sometimes such devices function

for years with default configuration (factory default). The user sim-

ply buys a device, takes it from the box and powers it up. In effect,

due to lack of monitoring of its status its infection could remain un-

detected for a long time. Moreover, an analysis performed by secur-

ity experts revealed that many vulnerabilities in home routers exist.

This makes it easier for the attacker to exploit such a device. To sum

up, for the DNCC presented in this article, the most important issue

is that the home device in most cases is the only a single point via

which all traffic goes to/from the Internet. Its infection gives access

to all the network traffic transmitted from sensors to the central ser-

ver and enables usage of DNCC. Moreover, we cannot forget how

valuable data can be captured from IoT devices installed in the

home environment, for example, those related to user presence, pri-

vate information. The lack of proper security measures and potential

Journal of Cybersecurity, 2020, Vol. 00, No. 0 7

D
ow

nloaded from
 https://academ

ic.oup.com
/cybersecurity/article/6/1/tyaa018/6032832 by guest on 16 D

ecem
ber 2020

 
DISTRIBUTION A: Distribution approved for public release. Distribution unlimited



sensitive data suggests better trade-off for the attacker than, e.g.

attacking smart grids, smart cities or the industrial IoT. The latter

systems are deployed by organizations; thus, in contrast to the pri-

vate home-based IoT, they typically possess better security configur-

ation and mechanisms and in most cases 24/7 monitoring by a

dedicated security operations centre (SOC).

Threat model
In this article, we assume the Man-in-the-Middle covert communica-

tion scenario which is illustrated in Fig. 5. The covert traffic sender

and the covert traffic receiver utilize existing connections coming

from benign devices within the communication network in order to

enable secret data transfer. For the IoT case, it means that IoT devi-

ces (e.g. sensors) within the IoT LAN periodically transmit their

data that are then sent to the arbitrary server. This sever is respon-

sible for collecting these measurements and it is accessible via the

Internet.

Note, that in this scenario it is assumed that the CS and the CR

are both able to capture the whole traffic exchanged between the

IoT LAN and the overt traffic receiver. In this case, covert communi-

cation parties are able to modify the passing traffic using agreed

data-hiding techniques which form a DNCC.

Testbed
Our experiment scenario consists of two LANs that are separated

from each other (Fig. 6). In the production installation, these net-

works will be connected via a WAN or the Internet—the first one

consists of IoT devices and the second one contains a central server.

Due to fact that our research mainly focuses on DNCC and not on

detailed analysis of the particular data-hiding method used for its

creation, all experiments are performed in the virtual environment.

Moreover, for the sake of simplicity of the topology utilized, default

routers of both LANs are connected directly by a virtual link. In

such a scenario, the first network contains data that need to be se-

cretly transmitted to the second network by using data-hiding tech-

niques. In the testbed, covert transmission is inserted by a custom

SDN application running at the SDN controller. During our experi-

ments, we vary the number of clients, which represent IoT devices,

sending data to one central server.

Gateway machines are connected to the Internet, which allows

communication between LANs. The IoT sensors periodically trans-

mit measurements to the server machine, which creates a flow of

packets that passes through both SDN switches where the covert

messages are injected (at the first SDN switch) and extracted (at the

second SDN switch).

In our testbed, we use the following software:

• all virtual machines are running Centos 7.5.1804 (Core);
• open vSwitch v 2.10.1 on the SDN Switches;
• RYU Python SDN controller and
• apache HTTPD v 2.4.6 on the HTTP Server machine.

Devices sdn_cl1, sdn_cl2, sdn_cl3, sdn_cl4, sdn_cl5 act as smart

temperature sensor nodes. A Python script is used to push sensor

readings via HTTP POST messages to the central HTTP server run-

ning on sdn_srv01. Machine sdn_sw01 runs Open vSwitch network

switch which is managed by the sdn_controller01 machine running

RYU Controller. Machine sdn_gw01 acts as a router for this net-

work. A similar configuration is used on the receiving side of the

testbed, with sdn_sw02 running another Open vSwitch controlled

by RYU running on sdn_controller02 machine. Machine sdn_gw02

acts as a router for the receiver network.

Covert channels utilized for DNCC creation
During experiments conducted in this article, we utilize a DNCC

that combines various network covert channels. At first, we were

determined to experiment with the mix of storage and timing techni-

ques. However, the initial research performed showed that timing

methods require intensive buffering which needs more packets than

the simulated IoT system is able to produce. That is why we decided

that during the experimental evaluation only storage methods will

be used. Moreover, we have developed proprietary implementations

of the data-hiding methods for two main reasons. First of all, the

functionality provided in available, existing implementations was

limited as in most cases they did not allow fine-grained tuning of the

data-hiding technique’s parameters, e.g. the number of the inserted

covert bits or the frequency of overt traffic modification. Another

reason is the overt traffic used for steganographic purposes which is

typically closely associated with a given tool and cannot be easily

modified. Therefore, using our proprietary implementations we are

able to tune covert channels’ parameters exactly to our needs. The

following three subsections present functioning and implementation

details of the state-of-the-art information-hiding techniques utilized,

which we denote in the remainder of this article as: ‘TTL

Modulation’, ‘HTTP Header Reorder’ and ‘TCP Options Reorder’.

General details of all implemented methods are described in the

existing literature—TTL modulation technique was introduced in

[47], reorder of HTTP headers was described in [48, 49] and there

are many papers that proposed hiding information by TCP options

manipulations, for the summary of such methods see [9].

To be more specific, in the first method, we conceal information

by modulating the TTL field values within the IPv4 header, for the

second the order of the headers within the HTTP message is

IoT LAN

Overt traffic 
receiver

Internet

Overt traffic 
sender Covert traffic

sender
Covert traffic

receiver

Figure 5: Assumed threat model, i.e. DNCC in the IoT environment.
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influenced, whereas for the third covert channel we embed secret

data into the Options field of the TCP header. The motivation be-

hind selecting these data-hiding techniques is as follows: (i) based on

the analysed IoT traffic we concluded that often such devices rely on

HTTP protocol and (ii) we decided also to choose network covert

channels belonging to different layers of the TCP/IP stack to demon-

strate information-hiding potential at various levels.

TTL modulation

The first network covert channel utilizes which modify TTL values,

functions as follows. When a new connection suitable for the covert

data transfer is established, the first few packets are left unmodified.

This allows the CR to measure the expected value of the TTL field

which depends on the number of intermediate nodes that the packets

need to traverse before reaching their destination. This value can be

seen as a ‘hidden data carrier’—subtracting it from the actual TTL

in all consecutive packets within the connection reveals the differen-

ces where the covert data is embedded. In our data-hiding technique,

a particular value of the TTL difference is mapped to a bit or a

group of bits and thus it forms a symbol. We modify the TTL field

value within the connection by adding or subtracting a given symbol

from its current value. For example, with the expected TTL ¼ 64, a

change of þ5 (i.e. TTL ¼ 69) denotes a binary 1 whereas a modifica-

tion of –5 (i.e. TTL ¼ 59) denotes binary 0. If the packet carries no

secret data then the TTL value is left unchanged. By providing 2n

symbols our method allows the insertion of n bits of secret data per

packet. In the implemented module a list of symbols: þ1, þ2, þ3,

þ4 would be mapped to the following TTL values: 65, 66, 67, 68

and the secret data binary values: 00, 01, 10, 11. Note that we trans-

mit the secret data by dividing it into chunks of n bits and by map-

ping their binary values into symbols. This allows us to potentially

embed up to 8 bits of secret data per packet (thus filling the entire

TTL field). However, in practice a modification leading to a too-

small TTL value may cause the packet to be dropped by routers be-

fore reaching its destination. Additionally, significant and frequent

changes of the TTL field over a broad range of values may raise

suspicion and render the method easily detectable. In the approach

that we took in this article, i.e. by utilizing SDN concept for imple-

menting covert communication (for details see Subsection Testbed),

we are able to spread the secret data between multiple available

TCP connections for increased stealth without significantly degrad-

ing covert data transmission rate.

HTTP header reorder

The second data-hiding technique utilizes overt HTTP protocol mes-

sages as a hidden data carrier. Covert communication is imple-

mented by tampering with the HTTP protocol messages as follows.

We capture the HTTP requests and modify them on the fly by modi-

fying the order of the HTTP headers. By changing the sequence of

headers in the HTTP request and not the data contained within

headers, the request itself stays compliant with the HTTP standard.

The current HTTP/1.1 standard does not specify any requirements

for ordering the headers within requests and responses. In practice,

this means that the headers are sent in the order in which they are

stored in the client and server memory—usually a hashmap. During

our research, we have estimated the number of changes to the order

of the headers occurring within a normal HTTP traffic by browsing

‘Alexa’s Top 5000’ websites.3 It turned out, that in the typical user

traffic the order of headers changed quite frequently, i.e. in about

18% of all cases. Common HTTP request parsers store headers in a

hashmap; thus, they ignore the discrepancies in the header order and

cannot distinguish the difference between a normal HTTP request

and a modified one.

Our data-hiding algorithm assumes that repeating the HTTP

requests (sent by the same browser and on the same domain and

URL) preserves the same set and the order of the HTTP headers.

With such an assumption, we establish a baseline by recording the

original order of the headers sent on a given URL and compare the

subsequent requests with the original one. If there is any difference

in the order, then we can easily compare the expected and actual

order within the packet. The data are encoded by the header index

within the original HTTP request that is relocated into the first (0)

Figure 6: Utilized experimental testbed.

3 https://www.alexa.com/topsites

Journal of Cybersecurity, 2020, Vol. 00, No. 0 9

D
ow

nloaded from
 https://academ

ic.oup.com
/cybersecurity/article/6/1/tyaa018/6032832 by guest on 16 D

ecem
ber 2020

 
DISTRIBUTION A: Distribution approved for public release. Distribution unlimited



position. The index is treated as a symbol which represents a group

of bits. The number of headers present in the request determines

how many different symbols are possible, which in turn influences

how many bits a single symbol can represent. The symbol list can be

configured by the user (i.e. the user can work with fewer symbols

than the maximum available). The number of symbols must be a

power of 2, i.e. to send 1 bit of covert data you need to specify 2

symbols, for 2 bits you need 4 symbols, for 3 bits—8 symbols, etc.

For example, we can send 2 bits of secret data per request by specify-

ing 4 symbols: 1, 2, 3, 4, which map to 00, 01, 10, 11 bits. If we con-

sider, for example, the original HTTP request as follows:

and if we want to encode symbol ‘2’, the header with index 2

(Accept-Encoding) should be relocated to the beginning, resulting in

a request:

The server software treats the modified request as identical to

the original one. Additionally, this request still looks legitimate for a

human manually inspecting the network traffic. If there is no change

in the HTTP headers order, it simply means that there is no data

encoded within this message.

TCP options reorder

For this network covert channel, the secret communication is imple-

mented by tampering with the TCP segments that carry transmission

between the IoT sensor and central server. We capture this type of

network traffic and we modify the TCP header of these packets on

the fly by changing the order of TCP options.

Because the order of options (apart from option 0, i.e. END OF

OPTIONS, which terminates the list and has to be at the end) con-

tained in the non-mandatory TCP options field is not strictly

defined, it is possible to send hidden data by rearranging the entries

present in the packet without breaking or altering the content it car-

ries in any way.

Due to the existence of many different implementations of the

network stack on machines connected to the Internet, we suspect

that options rearrangement occurs with some frequency even in

benign user traffic. If this assumption is correct, this would mean

that our data transmission is harder to spot and thus more viable.

During our research, we have assessed the number of changes to

the order occurring within normal HTTP traffic by browsing the

‘Alexa’s Top 5000’ websites. It turned out that changes to the

order of options do, in fact, occur quite frequently (i.e. 2.5%

from 2 billion packets tracked) within user normal traffic, espe-

cially with the order of option no. 8 (TIMESTAMP) and no. 1

(NO OPERATION, i.e. a null option used for padding). That is

why, we have chosen the order of these two fields as a hidden-

data carrier for the secret data.

Our algorithm completely ignores packets that do not contain

both TCP option no. 8 and TCP option no. 1. If both are present,

the algorithm checks if these options follow the initial ‘default’

order which was used in the first packet in the flow observed by

the SDN controller. If not, these options are swapped. It should

be noted that only the order is checked and not the adjacency.

This is because there could be other TCP options present in the

list between the two that are used within our data-hiding method.

It is also possible that the options list contains more than one op-

tion no. 1 entry. That is why the algorithm works only on the

first option no. 1 entry found in the list. The order of these two

options is preserved until a bit transfer is requested. If this hap-

pens, the order is swapped to indicate that the bit transfer is

about to occur. If the transferred bit carries 0 value, the next

packet also has these options swapped (i.e. the same order as in

the ‘reference’ packet), which then becomes the ‘default’ order

until another bit transfer occurs. If the transferred bit is 1, the

next packet has the TCP options in the same order as the ‘default’

one and the ‘default’ order remains the same.

For example, for the sequence of packets like those presented

below, three secret bits would be transmitted:

1. order (1,8) – nothing

2. order (1,8) – nothing

3. order (8,1) – next packet contains secret data

4. order (8,1) – encoded bit: 0

5. order (8,1) – nothing (the default order has changed)

6. order (8,1) – nothing

7. order (1,8) – next packet contains secret data

8. order (8,1) – encoded bit: 1

9. order (8,1) – nothing (the default order has not changed)

10. order (1,8) – next packet contains secret data

11. order (1,8) – encoded bit: 0

12. order (1,8) – nothing (the default order has changed again)

13. order (1,8) – nothing

For the network covert channels presented in this section and in

the remainder of the article, we present our experimental DNCC

evaluation and the results obtained.

Created dataset
During the research, we simulated the DNCC which uses IoT sen-

sors traffic as overt traffic. Simulated traffic was based on an avail-

able thermometer with ethernet connectivity developed by Papouch

company.4 The product uses HTTP protocol to send sensor readings

POST / HTTP/1.1

(0) Host: srv1-on.sdn

(1) User-Agent: python-requests/2.22.0

(2) Accept-Encoding: gzip, deflate

(3) Accept: */*

(4) Connection: keep-alive

(5) Content-Type: application/xml

(6) Content-Length: 406

POST / HTTP/1.1

(0) Accept-Encoding: gzip, deflate

(1) Host: srv1-on.sdn

(2) User-Agent: python-requests/2.22.0

(3) Accept: */*

(4) Connection: keep-alive

(5) Content-Type: application/xml

(6) Content-Length: 406

4 https://cdn.en.papouch.com/data/user-content/old_eshop/files/TME_C_

EU/tme_en.pdf
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in the XML format. The frequency of the temperature measure-

ments and their transmission to the central server is configured in

the simulation parameters. Moreover, during experiments we use

various sensors which used traffic for the DNCC purposes.

Additionally, it must be noted that each experiment conducted

lasted five minutes.

All traffic generated during each experiment is captured and

archived in the.pcap format for later offline analysis. Moreover, to

simplify further analysis concerning DNCC parameter tuning, for

each test run we automatically generate a dedicated plot. Each plot

graphically presents for each sender, receiver and any connection

time instants when a particular packet is modified by insertion of

covert information. Such an exemplary plot is presented in Fig. 7. As

discussed earlier during the experiments conducted, we utilized three

covert channels for which packet modifications are presented in the

plot as red, green and blue ellipses. The top part of the plot com-

bines information concerning changes introduced by all methods for

a given source and destination. As can be easily observed, Fig. 7

illustrates the situation when five IoT sensors send data to the one

central server. In the bottom part of the plot, detailed information

concerning changes applied to each connection used by the data-

hiding methods forming DNCC is visualized. In the excerpt pre-

sented, we can see the detailed information concerning changes

introduced by the covert communication for the transmissions be-

tween a machine with source IP address 192.168.1.3 and a machine

with IP address 192.168.2.3. In the first connection during the

DNCC transmission two packets are modified, in the second two, in

the third three and so on. The figure presented shows only a part of

the entire plot which covers all five sending machines.

It must be also emphasized that an additional contribution of

this work is that we share the created dataset with the scientific com-

munity. We will make available practically all data gathered during

the experiments. The most important part of the data provided is

the packet traces with covert transmissions in the pcap format.

These files contain all packets used during a particular test-run and

they can be used by the security community to develop further detec-

tion methods. Moreover, to ease experiments concerning only classi-

fication of the pre-processed data we also provide all statistics

concerning suspicious packet behaviour in the JSON format.

Moreover, for each test-run automatically generated visualization of

the DNCC transmission in SVG format (with interactive features

allowing finding modified packets in provided pcap traces) is also

enclosed. At the URL: http://cssg.zoak.ii.pw.edu.pl/iot_dncc_data_

set.html sample DNCC configurations are freely available. All the

other data gathered will be provided to interested researchers upon

request.

Experiments, results and discussion

In general, the DNCC can be applied 2-fold. In the first case, when

maximizing covert data rate adding new steganographic methods

contributes to the overall DNCC steganographic data rate. In the se-

cond case, when higher undetectability is desired the overall covert

bandwidth is intentionally not increased and the usage of various

steganographic methods allows improvement of DNCC channel

stealt. Note that the research presented in this section concerns tun-

ing the DNCC channel in such a way that the steganographic meth-

ods used modify a similar number of packets. As the research

described in the [1] proved, without such a tuning a single stegano-

graphic method constituting the DNCC which modifies noticeably

more packets can compromise the entire covert transmission.

However, as presented previously in [1] in order to improve un-

detectability, all methods forming DNCC have to be tuned conveni-

ently. Note, that in the paper mentioned above, the approach

utilized to form DNCC relied on generating all possible combina-

tions of configurations and then identified which parameter sets

introduced a similar number of changes to overt network traffic. For

this purpose, a well-known statistics parameter, i.e. the coefficient

of variation (CV) metric was used.

The CV is defined as a ratio between the standard deviation and

a corresponding mean value. This metric is typically used to express

the extent of variability in relation to the mean and is also known as

relative standard deviation. The higher the coefficient of variation,

the greater the level of dispersion around the mean. During the

experiments, we calculate CV using the number of modified packets

by each steganographic method which forms the analysed DNCC.

Legend (click to show/hide specific modules)
TCP Options Reorder (Control bit) TCP Options Reorder (Data bit) TTL Modulation HTTP Header Reorder

Combined (all sources and destinations)

Combined (by source)
192.168.1.3

192.168.1.4

192.168.1.5

192.168.1.6

192.168.1.7

Combined (by destination)
192.168.2.3

Detailed (by source → destination pairs):

192.168.1.3 → 192.168.2.3

Figure 7: Automatically generated plot presenting particular packet modifications in connections used by DNCC (included in the dataset).
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In our case, the lower the CV for the certain configuration the more

balanced the approach is. So, for example, for the three covert tech-

niques utilized the number of modified packets is 115, 148 and 145,

then the standard deviation is equal to 14.9, the mean is 136, and

thus, the resulting CV is equivalent to 11%. The rationale for using

CV is that it allows, independently of the order of magnitude of the

resulting modified packets number for any specific method, to com-

pare different parameter sets. Therefore, in this article to present the

best DNCC configurations, only these parameter sets that result in

the smallest CV value were analysed.

However, it must be noted that the approach used in [1] was not

optimal. First, one had to execute all possible parameter sets in the

testbed. Then, only a small fraction of results which met the CV

metric threshold were presented to the user. That is why in this art-

icle, we introduce a different approach, which provides better results

with fewer computations.

The details of the proposed procedure are as follows. In the first

step, we execute each steganographic method used for DNCC cre-

ation separately with various parameter sets. As already mentioned,

each such experiment lasts for five minutes. During the experiments

conducted, we modify various parameters like (among others): the

number of clients, the delay between IoT device reports, the number

of secret bits included and the interval in which covert bits are

inserted.

For the three steganographic methods described in subsection

‘Covert channels utilized for DNCC creation’, this means that dur-

ing experiments we evaluate 1344 parameter sets for TTL

Modulation, 672 for HTTP Header Reorder and 336 for TCP

Options Reorder methods. The different numbers of experiments

indicated above are associated with the number of secret bits

inserted during the embedding process using a given steganographic

method, which are, respectively, 4, 2 and 1. Tables 1, 2 and 3 in-

clude the fraction of the obtained results. In particular, they present

the highest achieved steganographic throughput for each method

separately, top 25 results for the TTL Modulation method and top

10 for the remaining two. We present more results for the TTL

Modulation method because the insertion of four covert bits allows

us to achieve greater steganographic bandwidth and slower trans-

mission is used further in the text for comparison purposes. Note,

that in these tables the first two columns show IoT environment

parameters, i.e. the number of clients and the delay between con-

secutive measurements. Then, the next three columns represent

parameters describing formed DNCC. Further columns contain

detailed results concerning the covert channel data rate achieved

and statistics of steganographically modified packets. As it is visible,

the utilized methods have various steganographic bandwidths up to

225 bps for the TTL Modulation and up to 30 for the remaining

two data-hiding techniques.

During the second step of the introduced DNCC-forming pro-

cedure, it is determined which combinations of a single method’s

parameter sets introduce a comparable number of packet changes.

Therefore, the initial data obtained in the first step of this procedure

is utilized. In this article, similar to [1] CV metric is used to filter

only interesting parameter sets; however, we do not perform each

experiment, but we only point out which parameters’ sets are of

interest. In this step, CV metric defines the maximum percentage dif-

ference between the numbers of modified packets in all methods

used by the DNCC. For further evaluation, we use only parameters

sets for which CV values are below the threshold defined by the

user. Tables 4 and 5 present results for 15 highest data rates for the

DNCC formed from all three methods for two different CV thresh-

olds, i.e. 10 and 1%, respectively. The results are average values

from ten executions of each experiment having the same parameter

set. Note, that Tables 4 and 5 contain practically the same columns,

as in the case of previously presented results. The only exception is

the last column that contains CV values actually achieved, calcu-

lated based on the number of modified packets.

As already mentioned, we utilize the covert channels forming the

DNCC with the aim to increase the overall stealth. Note that for

such a scenario where the three covert channels are utilized, the

highest DNCC throughput achieved is around 20 bps and in total,

this requires applying modifications to fewer than 2850 packets. For

this configuration, each data-hiding method does not alternate more

than 1100 packets. In contrast, when we compare the number of

modifications required when each steganographic method is used

separately (for a comparable covert data rate), then we would need

to modify from 1600 to 3400 packets for the TTL Modulation,

more than 10,000 for the TCP Options Reorder and more than

3000 for the HTTP Header Reorder. Therefore, it is visible that

finding the proper DNCC configuration provides benefit with more

balanced packets modifications across the data-hiding techniques

used.

Note also that CV threshold utilized has a significant impact on

the results achieved, mainly on the resultant steganographic data

rate. For the 10% CV threshold, the covert bandwidth achieved is

around two-thirds of the slowest single method and exceeds 21 bps.

What should be emphasized is that in this situation the CV values

observed for the real data gathered during the experiments never

exceeds the 10% level. The results for CV with the 1% threshold are

poor. In this case, for all measured cases the real CV values are

worse than predicted. In the worst-case scenario, it reaches 7%.

Moreover, the steganographic bandwidth achieved is very low, and

only for the fastest parameter sets exceeds 1 bps.

We further investigated the impact of the CV threshold on the

two most important variables—the number of parameter sets that

fulfils these conditions and the predicted steganographic data rate.

Figure 8 illustrates how the number of parameter sets depends on

the CV. For the values larger than 10%, this relationship seems to

be linear. However, for the lower CV values the curve exhibits a

more exponential shape. This behaviour explains why the usage of

the 1% threshold has such an impact on the achieved covert data

rate.

Furthermore, Fig. 9 presents experimental results for the pre-

dicted and steganographic actually achieved bandwidth. Note that

the actually achieved values are calculated as an average from 10

repetitions of an experiment with a given parameter set. As it is vis-

ible, there are numerous saturation regions in which modifications

of the CV parameter do not cause any changes in the resultant cov-

ert data rate. This behaviour is associated with a finite number of

experiments in the first step of the proposed DNCC creation proced-

ure which utilizes separate steganographic methods. Due to this

fact, even if we slightly modify the CV threshold, then for this case

there are no matching parameter sets. It is also worth noting that

conducting more experiments in the first step should improve this

situation and in effect, this would allow a user to better tune pre-

dicted steganographic throughput for their needs. Note that this still

makes the current DNCC creation procedure superior when com-

pared to the one presented in [1].

From Fig. 9, it is also visible that for a low CV threshold the pre-

dicted and actually achieved steganographic bandwidth is almost

the same. For the moderate CV values (CV threshold higher than

15% and lower than 45%), the values actually achieved are slightly

lower than predicted. Analysis of the parameter sets used during

these experiments revealed that this situation was caused by one of
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the three steganographic methods used, which was supposed to

embed secret data in every incoming packet. In some cases, more

than one method competes to introduce modifications to the same

packet. Current implementation of our DNCC software does not

allow such a situation. In consequence, one method is not able to

embed covert data, which in effect reduces the overall stegano-

graphic bandwidth. It is also worth noting that for a CV threshold

>45%, all three methods should insert data in each consecutive

packet. This situation results in complete collisions, which in turn

dramatically reduces bandwidth achieved. Analysis of this data leads

to one more conclusion. If we would like to properly predict DNCC

steganographic bandwidth, we should reduce the possibilities of col-

lisions. We could ensure such behaviour by using parameter sets,

which do not require modifications of each packet.

Conclusions

In this article, we have investigated the nature of distributed net-

work covert channels in IoT environments. In particular, we have

analysed how DNCCs should be created and configured for this

scenario in order to achieve the highest data rate while ensuring that

the secret data are fairly distributed across all available data-hiding

techniques to limit the chance of detection. The results obtained

show that although the volume of traffic generated by the IoT devi-

ces is not high, the DNCC can be constructed to maximize its per-

formance while not jeopardizing overall undetectability of the

scheme.

As our future work we will focus on performing a thorough in-

vestigation of the potential methods for DNCC detection while also

(a) (b)

Figure 8: The number of parameter sets which fulfil CV threshold: for CV from 1% to 50% (left); for CV from 1% to 10% (right).

Figure 9: Predicted and measured covert data rate depending on the CV value.
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observing how they need to be adapted depending on the selected

networking environment. The main goal of our future research

would be to develop a countermeasure that would be able to dis-

cover network traffic modifications in various layers of the TCP/IP

stack and correlate these events for successful DNCC detection.

Supplementary data

Supplementary data are available at CYBERS Journal online.
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Abstract

Due to continuing improvements in defensive systems, malware developers create increasingly so-
phisticated techniques to remain undetected on the infected machine for as long as possible. One
flavor of such methods are network covert channels, which, to transfer secret data, utilize subtle
modifications to the legitimate network traffic. As currently there is no one-size-fits-all approach
which would be effective in detecting covert communication in an efficient and scalable manner,
more research effort is needed to devise a suitable solution. That is why, in this paper we propose to
utilize machine learning and data mining accompanied by hierarchical organization of frequent sets
to detect network covert channels: both distributed and undistributed. The obtained experimental
results prove that the proposed approach is effective and efficient.

Keywords: Distributed Network Covert Channels (DNCCs), Network Security, Information Hid-
ing, Data mining, Machine Learning.

1 Introduction

Cybercriminals are continuously devising novel methods that would enable them to delay or thwart the
detection of their malicious activities on the infected device. The main reason for that is the constant
improvement of the existing defensive systems. The most popular techniques used to cloak the attackers
include [15]: multistage loading, fileless operation capabilities, encrypted and obfuscated payloads, anti-
analysis mechanisms, and recently also various types of information hiding techniques [5].

During the last years, many types of data hiding methods have been devised, but lately an increased
attention is brought towards techniques that, to transfer secrets, subtly modify network traffic. This
subgroup of information hiding is called network covert channels and due to their nature they serve well
purpose mostly due to their ephemeral nature. So far, in the literature a plethora of different techniques
utilizing different network protocols have been proposed [18], [9], [14]. It must be also noted that,
commonly, attackers use covert channels to cloak, e.g., communication with Command & Control (C&C)
servers, exfiltration of stolen data, or downloading of additional malware modules or configurations [1].

Moreover, it is predicted that the trend of using data hiding techniques by attackers is likely to prevail
in the near future [1] and soon we will experience a rise in the utilization of far more sophisticated
network covert channels than are currently deployed [8], [5]. A recent branch of such complex data
hiding methods that are increasingly gaining attention are called distributed network covert channels
(DNCCs) [2]. They are defined as channels that during covert communication spread the secret data
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among many flows/protocols/hosts or use multiple data hiding methods within the same flow or within
various Protocol Data Units (PDUs) [6]. It is worth noting that, in contrast, the typical (undistributed)
network covert channels are storage or timing channels that to embed secret data utilize PDUs of a single
flow or protocol [8]. Utilization of the DNCC for the attacker can be profitable because it may improve
the overall stealthiness and resulting data hiding capacity of the hidden communication. This is possible
as in the DNCC smaller parts of secret data are transmitted using several covert channels, flows, or hosts.

It must be emphasized that, up till now, in the existing literature only limited attempts have been
made to detect distributed network covert channels [2]. Moreover, the proposed detection solutions were
mostly focused on DNCCs that use many data hiding techniques simultaneously.

This work is aimed to improve this situation and it is an extended version of the previous conference
paper [10] where we proposed a novel approach for network covert channel detection which utilizes
multistep traffic processing combined with data mining and statistical techniques.

However, it must be noted that in this paper we significantly extend the initial concept and its evalu-
ation. In more detail, the novel contributions of this work are:

• We introduce a new steganographic communication error detection and correction scheme for the
DNCC,

• We add two more detection strategies which are based on machine learning (ML) – one utilizing
only raw data from our preprocessing software and the second where we apply ML to the raw data
enhanced by the metadata produced by our original concept,

• We conduct an extensive experimental evaluation where we determine the characteristics of all
detection variants.

The rest of the paper is organized as follows. Section 2 presents the most notable works related to the
detection of network covert channels. In section 3 the network covert channels we have selected for the
experimental evaluation are presented. Next, in section 4 the proposed network covert channel detection
strategy is introduced. Then, the methodology as well as the experimental testbed used are presented in
section 5, while the obtained results are enclosed in section 6. Finally, section 7 summarizes our work
and outlines potential future directions.

2 Related work

Nowadays, most of the research concerning the detection of information hiding techniques is devoted
to discovering data hiding in various types of image, audio, or video files. However, as network covert
channels become increasingly popular among attackers, this trend is slowly changing, especially that
such techniques are used not only by human beings but they start appearing even in malware [1], as a
technique, e.g., for protecting an attacker’s C&C channel.

The simplest method that can be utilized for the detection of a network covert channel is to use
the network warden [7]. Network warden can be treated as an Intrusion Detection System (IDS) which
contains rules allowing the detection of well-known covert channels. During warden activity, all network
traffic is subjected to inspection to find clues for network covert channel utilization. For example, we can
consider a situation when in the IP packet Don’t Fragment (DF) flag is set to ’1’, however the Fragment
Offset (FO) field is carrying data other than zeros. This can be treated as a clear indication of the covert
communication as under normal circumstances the FO field should contain nonzero values only if More
Fragments (MF) flag is set to ’1’. In this case, the network warden can normalize such disobeying fields
and thus remove any secret data that is stored there. Detection of such ’misuse’ of protocols’ header
fields is effective for well-known attacks and in the situation when security researchers provide rules.
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However, such an approach is unsuitable for the detection of new, completely unknown methods. For
such threats, behavioral analysis with anomaly detection should be used. In the literature, we can find
numerous approaches which rely on various techniques. A brief description of the most relevant ones is
presented below.

In [19] the authors utilize Markov model for the detection of anomalous traffic. Initially, they are
using network traffic without covert channels to generate a model for normal TCP/IP stack activity,
which they call TMM – TCP Markov Model. Furthermore, during the detection phase, unknown traffic,
potentially harmful containing hidden data is compared to the previously ’clean’ model using Kullback-
Leibler (KL) statistical test. If the calculated value is greater than the chosen threshold, the traffic is
marked as containing covert data.

Similar approach is described in [13], however, in this case the authors propose to use neural net-
works to learn the initial sequence number (ISN) generator. Such a model can be later used for the
detection of covert channels that encode data in ISN number – for example, NUSHU tool. The proposed
detection system observes the network traffic, predicts the next ISN number using the learned model,
and compares it with the observed ISN carried in TCP segments. Enhanced neural networks, more
specifically Recurrent Neural Network (RNN), are used in the [12]. What is interesting in this research,
network covert channels are detected by performing an analysis of system calls taken from the monitored
machine.

Other researchers propose to detect covert communication using machine learning-based approaches.
In [11] the authors utilize Support Vector Machine (SVM) classifier for the detection of timing covert
channels. As input data, various properties of inter-packet delay for the consequent 100 and 2000 packets
are used. In [16] authors introduce two-step solution which uses density-based clustering. In the first
step, the network data is clustered. Then, in the second step, the introduced classification algorithm can
analyze the clusters and check if any of them is characterized with different density. In this case, it can
be treated as outliers, i.e., as a sign of covert transmission.

When compared with existing works, the proposed detection method introduced in this paper uses
machine learning together with data mining frequent pattern discovery. Such an approach has not been
evaluated yet in the literature for network covert channel detection. The only work that deals with this
topic is our previous papers published in [2] and [10]. However, in [2] only one minimal support param-
eter was used, while the method proposed in [10] utilizes multiple discovery executions and automatic
analysis of the gathered results and is applicable to the DNCCs that rely on many data hiding techniques
which are scattering covert data into many flows and hosts.

As already mentioned, this paper is a significantly extended version of the conference paper [10]
where we improve several deficits of the initial approach as well as we apply machine learning techniques
to further improve its detection performance and perform extensive experimental evaluation.

3 Network covert channels selected for the DNCC creation

In this section, we first discuss our motivation behind using the three network covert channels that we
chose for the experimental evaluation. Then, we present their detailed inner workings. Note that we
deliberately selected network covert channels which rely on protocols that reside in three different layers
of the TCP/IP stack, i.e., network (IPv4), transport (TCP), and application (HTTP).

3.1 Rationale behind covert channel selection

From the network traffic perspective, it is commonly believed that the utilization of covert channels
would cause anomalies that should be easy to spot and that modern networks are no longer affected by
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(a) Sorted by AS with the most frequently occurring
anomalies. (b) Sorted by most popular AS.

Figure 1: Network anomalies by AS, detected within web traffic to Alexa top 10,000 most popular
websites (for the sake of readability, only top 20 positions are shown) [10].

routing or network protocol anomalies. A classical network anomaly example is a sudden change in
the Time To Live (TTL) value (in the IPv4 header) within the same network connection. TTL-based
mechanism is designed to prevent routing loops by limiting the number of network hops that a single
packet can traverse. Each router on the communication path decreases the packet’s TTL value and drops
it if it reaches zero. However, if the TTL value has suddenly changed, it may also mean that the routing
path has been changed, e.g., due to router failure and has been switched to the alternative routing path.
In other cases, the TTL field can be used by simple covert channels [17], thus its sudden change may
also indicate that the covert communication is taking place. If such an assumption is genuine, then each
detected traffic anomaly should be treated as a clear indicator of the intentional packet manipulation
performed either by the two hosts involved in network transmission or a malicious third party. In effect,
a naive approach for covert channel detection would simply rely on enumeration of all identified traffic
anomalies.

In this paper, we choose three covert channels that introduce anomalies to the normal overt network
traffic. To verify whether these anomalies are occurring naturally in benign traffic, we have performed a
very basic experiment. Specifically, we generated benign web traffic to the world’s most popular websites
and observed if any unexpected anomalies exist. The experiments were performed by launching an
automated headless Chromium browser1 to visit top 10,000 most popular websites listed by Alexa2. By
analyzing the captured web traffic and grouping the responses’ IPv4 source addresses by corresponding
Autonomous Systems (AS), we were able to identify communication networks that exhibited a significant
number of network anomalies. In the result, it was possible to establish a baseline using the most popular
and commonly trusted networks.

The results of the conducted traffic measurements are presented in Figure 1. It is visible that for
certain ASs up to 71% of the packets may contain an unexpected anomaly and even the most popular and
benign networks exhibit up to 5% anomaly rates. For the readability purpose, the figures contain only 20
AS entries from all of the 1536 ASs observed during the experiment. Note that the complete results for
the conducted measurements are presented in Table 1. Based on the obtained results, it can be observed
that the dominant anomaly is TCP Options Reorder, which is prevalent in nearly all observed traffic. TTL
changes are observed only with up to 15% of the traffic coming from examined ASs. Note that we were
not able to verify whether TTL changes are caused by routing instability, load balancing mechanisms,
or network traffic tampering. Unfortunately, based on the performed experiments, we were unable to
analyze anomalies in the Application Layer. This is because the vast majority of the modern web servers

1https://github.com/pyppeteer/pyppeteer
2https://www.alexa.com/topsites

23
 

DISTRIBUTION A: Distribution approved for public release. Distribution unlimited



Detecting Network Covert Channels... Nowakowski, et al.

communicate using encrypted HTTPS traffic with the help of Transport Layer Security (TLS) protocol.
Based on the traffic analysis presented above, it is evident that the naive detection methods will be

not effective as it will be difficult to differentiate between legitimate and covert traffic. Thus, a more
sophisticated approach is needed. Note that we used the knowledge of the discovered anomalies to
construct the network covert channels that we used during the performed experimental evaluation. We
described the chosen data hiding techniques in the following subsection.

Observed anomalies
[% of all pkts]

TTL
changes

TCP Options
reorder

Average value 0.789 4.685
Standard Deviation 4.131 6.029
Maximum value 71.154 40.000

Percentile

5th 0.000 0.037
25th 0.000 0.618
50th 0.000 2.146
75th 0.000 6.698
80th 0.000 8.491
85th 0.073 10.496
90th 0.555 13.158
95th 3.522 16.667

Table 1: Distribution of the observed anomalies in network traffic from all observed ASNs (Alexa’s top
10,000 websites) [10].
3.2 Network Covert Channels Functioning

During the research presented in this paper, we have developed and utilized three different steganographic
methods functioning across three layers of the TCP/IP stack:

• TTL field modulation within IPv4 packet header (Network Layer),

• TCP Options reorder within TCP segment header (Transport Layer),

• HTTP Headers reorder within HTTP 1.1 requests (Application Layer).

The first method conceals secrets within the TTL field of the IPv4 header by encoding data symbols
into deviations from the normal value of TTL field. This technique works as follows. When a new
suitable network connection is established, the first few packets within the connection are left unmodified
to establish a stable baseline value of TTL at the receiver’s side. Then, the secret data is transmitted by
incrementing or decrementing (i.e., modulating) the field’s value using a predefined offset (i.e., symbol)
which corresponds to a given data bit sequence. If there is no change to the TTL value, then it means that
no secret data was transmitted. For example, the TTL value of IPv4 packets originating from a Linux
host is set by default to 64. By passing through network routers, the TTL value is decreased by 1 for
each network hop. At the covert receiver, the TTL value is observed with a smaller value (for example,
62) that should remain constant throughout the connection. If the TTL value changes unexpectedly from
62 to 60, then the symbol ’-2’ is transmitted, which can be mapped to a predefined data bit sequence.

Covert channel that relies on TCP Options reorder has been implemented by tampering with the
order of ’Options’ field within TCP segment’s header. This field is an array which can carry variable
values of optional parameters. Such an order is not strictly defined within the TCP standard aside from
the terminating symbol 0, i.e., END OF OPTIONS and the array’s size must be divisible by 32 bits. In our
research, we have noticed that TCP segments usually contain a symbol 8 option, i.e., TIMESTAMP and
multiple instances of symbol 1, i.e., NO OPERATION used to align the array length to 32-bit boundaries.
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Because the order of options is ignored by the TCP/IP stack, it is possible to manipulate it to conceal
secret information. In our implementation, we are swapping the position of the TIMESTAMP option with
the first occurrence of the NO OPERATION to transmit a symbol or leave the order intact to send no data.
This method is capable of sending only 1 symbol per TCP segment, so to transfer arbitrary binary data
a specific signaling protocol is required. To transmit data, a two-step process is utilized. If there is no
change to the options order, there is no hidden transmission. When the two options are swapped, we are
signaling a control bit indicating that the next TCP segment will contain hidden data. If the following
segment has also swapped the order of options, it means that bit ’1’ was transmitted, otherwise if no
change is observed ’0’.

Finally, HTTP header reorder covert channel utilizes HTTP protocol to transmit secret data by ma-
nipulating the order of headers contained within the request. The order of headers within the HTTP
request is not strictly defined, thus it can be used to transfer covert data. The implemented technique
works as follows. We assume that the repeated HTTP requests (sent by the same browser and with the
same domain and URL) preserve the order of HTTP headers. If this is the case, then the first request is
used by the covert communication parties to store the initial header order. Then, the difference in the
header order in subsequent requests can be used to encode the covert data. Our algorithm uses index-
based encoding. To transfer data, one of the headers is shifted to the beginning of the request. The index
of this header in the original request is the symbol transferred (which corresponds to a group of bits). For
example, we can send 2 bits of secret data per request by using four indexes: 1, 2, 3, 4 which map to 00,
01, 10, 11 secret data bits. If we consider, for example, the original HTTP request as:

POST / HTTP /1.1

(0) Host: srv1 -on.sdn

(1) User -Agent: python -requests /2.22.0

(2) Accept -Encoding: gzip , deflate

(3) Accept: */*

(4) Connection: keep -alive

(5) Content -Type: application/xml

(6) Content -Length: 406

and if we want to encode the symbol ’2’, the header with index 2 (Accept-Encoding) should be relocated
to the beginning, resulting in a request:

POST / HTTP /1.1

(0) Accept -Encoding: gzip , deflate

(1) Host: srv1 -on.sdn

(2) User -Agent: python -requests /2.22.0

(3) Accept: */*

(4) Connection: keep -alive

(5) Content -Type: application/xml

(6) Content -Length: 406

3.3 Introduced error detection and correction scheme

In our previous work [10] the utilized covert transmission method used serial access to the bitstream of
the linked input/output data file and the secret data bits were sent sequentially in the same order as they
appeared in the data file. Such an approach was successful in cases where the covert transmission was
not interrupted or altered. However, if a single secret bit was lost or erroneously inserted, then all secret
data received later became shifted and unusable. This means that when the secret was transferred in the
form of the ASCII content and only one bit was transmitted in the wrong order, then, in result, the whole
extracted text at the receiving side was unreadable.

To summarize, the originally used serial method of transmitting secret data used in [10] has the
following disadvantages:
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Figure 2: Simplified diagram of chunked data filtering, positioning, and data carriers. Selected IPv4 and
TCP header fields are hashed with the MD5 algorithm to determine whether a packet should contain
hidden data and the bit index. Modifications of the TTL value, TCP Options or HTTP Headers carry data
bit.

• There was no indication of which packet contains steganographic data (it was achieved internally
within the sender software), so the covert receiver had to closely monitor the whole incoming
traffic for specific changes in packet fields,

• Due to the lack of synchronization and error correction mechanisms the resulting DNCC was
highly sensitive to packet losses, reordering, or unexpected changes in the packet content which
caused secret data corruptions. However, if a single secret bit was lost or erroneously inserted, the
received secret data became altered,

• It required monitoring and modification of the order of options in all TCP packets to avoid data
corruption in the TCP Options reorder module.

Considering the above, in this paper, we develop an upgraded transmission method which addresses
all above-mentioned issues by introducing two improvements: (i) packet hashing to filter out packets that
do not carry steganographic data and (ii) index data bit position within the data chunk regardless of the
packet order sequence. Figure 2 visually explains the logic behind these improvements – both introduced
mechanisms are described in detail below.
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3.3.1 Mechanism for selecting packets to carry secret data

As already mentioned, in this mechanism we decided to use a hash-based solution. A group of fields
(such as IP ID, TCP ACK, TCP SYN) is unlikely to be modified during the transmission. These values
along with the chosen salt value are combined into a text string and then hashed using MD5 algorithm.
The resulting hash can be then treated as a random value which allows to verify at the receiving side
whether the packet carries the secret data bits or not. To have more control over the frequency of the
secret data embedding, we evaluate if N lower bits of the hash, interpreted as a single integer, are less
or equal to M. The N and M are selected to match as closely as possible the desired data frequency.
For example, if N = 3, the possible values for the hash fragment are 0, 1, 2, 3, 4, 5, 6, 7. If M = 5,
out of 8 possible values 6 will trigger packet modification, so the probability is 6/8 = 75%. In the
experimental runs, N and M are set to match the desired packet modification probability (which is one
of the considered parameters) as closely as possible. To determine if a packet contains secret data, the
receiver has to follow the same procedure of generating the hash values as the covert sender.

3.3.2 Position-independent data transmission protocol

Instead of the raw serial transmission as used in [10], in this paper, the secret data is split into K-bit
chunks which are transmitted sequentially (K is one of the tunable transmission parameters). The covert
sender and the covert receiver spend a predefined amount of time on each chunk (a ’chunk time’ interval)
and then move on to the next one. The chunks themselves are transmitted using a technique similar to
the hashmap implementation mentioned in the previous subsection. Just like for the packet selection
mechanism, a group of fields from the packet are used to generate a hash value. The hash is used to select
which bit of the chunk will be transmitted. The covert sender transmits bits until each bit is transmitted at
least X times (1 is the minimum and a higher value can be set for increased reliability but at a cost of the
lower ’usable’ covert transmission speed). It should be also noted that, due to the randomness, some bits
(i.e., positions in the current chunk) will be transmitted more often than the requested minimum. Thus,
it is important to adjust the ’chunk time’ interval (reflecting the throughput capability of the modules’
configuration) to guarantee the transmission of the minimal acceptable number of bit repetitions for a
chunk.

For modules which can transmit more than one secret bit per modified packet, the hash is used to
place the first bit in the chunk normally, then it is used (again) as a seed for a pseudo-random num-
ber generator (a simple Linear Congruential Generator) to determine the positions for the rest of the
bits. Similarly to the packet selection method described above, the covert receiver can calculate the bit
positions by following the same algorithm as the covert sender. The value of each bit position is deter-
mined by the majority of the transmitted contents at this position (thus a simple error correction code is
used). Note that the proposed algorithm is completely immune to packet reordering and offers adjustable
protection against packet loss via duplication of the transmitted bits.

4 Frequent sets tree-based detection approach

In our previous work [10] we introduced a steganography detection method which is based on a specially
constructed tree which stores the detected frequent sets for various values of minimal support. In the
following sections, we briefly review the most important steps concerning raw data preprocessing, tree
construction, and outlier finding. During the detailed presentation and discussion of the obtained results
in section 6, we refer to this type detection strategy as ’Tree-based’.
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4.1 Extraction of packet anomalies from traffic traces

The first step of the traffic analysis is performed directly on packet capture dumps, where each transmitted
packet is simultaneously tracked as Layer 3, Layer 4, and Layer 7 connections. By grouping packets into
individual multilayer connections, we can compare all subsequent pairs of neighboring packets within
the connection. The values of all header fields are compared between packets and any differences are
listed in a JSON log file. If the protocol specification allows a given field to have a variable list of values,
then we compare the order of specified values to determine whether any value pairs were reordered. The
resulting JSON file contains all discovered differences between packets within network connections.
However, it must be noted that such an anomaly detection technique is viable only for the header fields
that are relatively constant within network connections, e.g., TTL value in the IPv4 header. Values
that are completely changed with each passing packet (for instance, TCP Sequence number) are out of
the scope of this work. The resulting JSON file contains only these packets which exhibit unexpected
changes in the header fields. Figure 3 graphically illustrates the preprocessing steps described in this
section.

Figure 3: Shared pipeline scheme – from the logs of SDN controllers and network traces gathered during
an experiment the item set collection and the associated ground truth (steganograhic/not steganographic
traffic) are generated.

4.2 Frequent set-based detection of traffic anomalies

The obtained file contains only information concerning changes between consecutive packet pairs. Even
for benign traffic, this file may contain a significant amount of data. On top of that, the obtained infor-
mation cannot be processed directly by statistical techniques because the detected anomalies are context-
specific and thus applying such means will remove any context from the results.

In our previous research, we utilized the frequent set mining technique to identify network connec-
tions with recurring anomalies (to which we refer as ’FIM’ later in this paper). The discovery process
takes as an input a JSON file obtained during the previously described step and uses the implementation
from the PyFIM library3. Each detected header change is supplied with the layer-specific connection
metadata as a single transaction in the dataset and the resulting frequent sets were analyzed. In our pre-
vious approach [2], we tried to apply the FIM algorithm directly as a detection method. The rationale

3http://www.borgelt.net/pyfim.html
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behind such an approach was that with the proper parameters’ tuning, the algorithm should return no re-
sults if there was no covert communication in the dataset, otherwise it should return one or more frequent
item sets corresponding to the type of covert channels present in the dataset.

However, in this paper, we propose a different approach, where the FIM algorithm is executed mul-
tiple times with various minimal support parameters which control the minimum acceptable support of
the discovered item sets. This changes the output significantly – with the higher minimal support dis-
covered item sets are more general and correspond to a larger portion of the initial data (per item set).
This ’cross-section’ view is beneficial as some anomaly traits may not be evident at the lower level while
obvious when using higher-level representation.

The obtained frequent sets from multiple runs of the PyFIM library are grouped by the minimal sup-
port parameter and stored in a JSON file. Exemplary detected frequent item sets are presented in Listing
1. Each detected item set contains the field names and values which provide metadata describing the net-
work connection and the detected anomaly. As an example, set A describes the detected anomaly where
the TCP Options order was changed unexpectedly within TCP connection from 192.168.1.30:36824

to 192.168.2.3:80. In addition, the support field denotes the detected item set support.

A = {"IP_Addr_Dst": "192.168.2.3",

"IP_Addr_Src": "192.168.1.30",

"TCP_Port_Dst": 80, "TCP_Port_Src": 36824,

"IHP:TCP_OPTIONS_REORDER": "TCP_OPTIONS_REORDER",

"IP_Protocol": 6,

"support": 1},

B = {"IP_Addr_Dst": "192.168.2.5",

"IP_Addr_Src": "192.168.1.50",

"TCP_Port_Dst": 80, "TCP_Port_Src": 48536,

"IHP:TCP_OPTIONS_REORDER": "TCP_OPTIONS_REORDER",

"IP_Protocol": 6,

"support": 1},

C = {"IHP:HTTP_HEADER_REORDER": "HTTP_HEADER_REORDER",

"IP_Addr_Dst": "192.168.2.3",

"IP_Addr_Src": "192.168.1.30",

"TCP_Port_Dst": 80, "TCP_Port_Src": 53796,

"IP_Protocol": 6,

"support": 1},

D = {"IP_Addr_Dst": "192.168.2.3",

"IP_Addr_Src": "192.168.1.30",

"TCP_Port_Dst": 80,

"IHP:TCP_OPTIONS_REORDER": "TCP_OPTIONS_REORDER",

"IP_Protocol": 6,

"support": 305},

E = {"IP_Addr_Dst": "192.168.2.3",

"IP_Addr_Src": "192.168.1.30",

"TCP_Port_Dst": 80,

"IP_Protocol": 6,

"support": 1050},

Listing 1: Exemplary detected frequent item sets [10].

4.3 Grouping the detected frequent sets into a hierarchical tree

Because with the increasing minimal support parameter sets discovered by the PyFIM library tend to be
less specific, it is reasonable to organize them into hierarchical tree with the least specific set as the root
node of the tree and the most specific nodes as leaves. By organizing sets into a hierarchical tree, an
additional relationship context is introduced into the dataset, which helps with data analysis. Figure 4
showcases all steps performed during frequent item sets discovery and tree construction.
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Figure 4: Tree-based approach pipeline: the individual item sets are grouped by the Frequent Itemsets
algorithm and this grouping is performed in multiple attempts with different minimal support parameter.

To build a hierarchical tree, it is required to introduce relationship operators to compare frequent sets.
The tree nodes are organized into parent-child node relationships when the following criteria are met:

• The parent node has a greater support value,

• The parent node key set is a subset of the child key set,

• The overlapping key values are equal in both parent and child (excluding support value).

The hierarchical tree building algorithm is executed using top-down approach from the highest min-
imal support and all discovered frequent item sets are attempted to fit into the tree. If a frequent set does
not match the criteria for any node in the tree, it is withheld for later iterations. If all possibilities of
fitting withheld nodes are exceeded, the node is attached to a new tree root.

By following the criteria and the algorithm provided above, the exemplary sets A, B, C, D, and E
presented in the Listing 1 can be organized into the tree structure presented in Figure 5.

E

D

A

C

B

Figure 5: Tree structure constructed from the exemplary frequent sets [10].

The most important benefit of organizing the frequent item sets into a hierarchical structure is the
possibility to quickly summarize the type of traffic by briefly examining root nodes, and when further
details are required, the tree can be followed to more specific nodes.
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Figure 6: Exemplary hierarchical tree with classified nodes for the scenario with the DNCC using TCP
Options Reorder covert channel between 5 clients and 1 server (red color denotes nodes classified as
outliers, blue color denotes compound outlier nodes) [10].

4.4 Finding outliers within the tree structure

Independently of the tree building, the frequent item sets can be sorted into collections based on the types
of features inside them. For example, all frequent sets which contain items associated with the source
IP address, destination IP address, source port, and destination port can be treated as one collection,
regardless of the actual values of these fields. As an example, both sets A and B from the previous
subsection belong to the same collection because they feature the same keys, despite their values being
different.

To find the outliers, firstly the median of frequent sets supports for each collection is calculated.
Then, a frequent set can be classified as an outlier based on the deviation of the discovered frequent set
support from the collection’s median (with an adjustable threshold). More precisely, a frequent set is
considered normal if it satisfies the following equation:

1.0−T <
S
M
≤ 1.0+T

where S is the frequent set support, M is the median support for the collection, and T is the adjustable
threshold. Otherwise, it is considered as an outlier.

The introduced method generally marks frequent sets of high specificity. This is understandable, as
naturally the number of frequent sets decreases if the specificity decreases – there is just not enough data
to generate statistics for their proper classification. Thus, a second step of the algorithm is needed to mark
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less specific frequent sets and it works as follows. After the initial outlier marking, each node of the tree
is recursively checked if it can become a compound outlier. A node is considered as compound outlier
if more than X% (a configurable parameter) of its children are outliers, either normal or compound. This
action marks additional nodes closer to the root of the tree as outliers which were missed during the
previous step.

Finally, the steganographic classification can be performed. For each leaf (which represents the
most specific frequent sets describing TCP connections), we recursively go up through the tree, looking
for a parent node which was marked as either a compound or a normal outlier. If no such node was
found when the root was reached, the leaf (the TCP connection) is considered as negative, i.e., no covert
communication was found. Otherwise, as soon as such a node is discovered, the leaf is marked as
positive, i.e., steganographic modifications were present and the classification process for this leaf ends.

The result of such a detection algorithm is a hierarchical tree with annotated outlier nodes. Each node
within the tree contains an instance of frequent set alongside the support and metadata regarding the set
collection it belongs to. The tree can be traversed top-down to list nodes classified as steganographic —
each frequent set node describes a portion of the network traffic.

An exemplary tree has been depicted in Figure 6. In this scenario, the DNCC is using TCP Options
Reorder data hiding method between 5 clients and 1 server. Red color denotes nodes classified as out-
liers, blue color denotes compound outliers. By following the tree structure from the root node, it is
evident that the traffic has been grouped with the leading TCP Options Reorder the root node, which at
the next level was evenly divided by TCP source and destination ports – HTTP requests (Destination port
= 80) and responses (Source port = 80). At the lower level, the destination port was divided into source
and destination addresses. Here nodes related to IPv4 source addresses 192.168.1.30, 192.168.1.40,
192.168.1.50, 192.168.1.60, 192.168.1.70 were classified as compound outliers and further down, des-
tination address 192.168.2.3 and individual TCP connections were marked as outliers. This shows that
the proposed classification approach was able to perfectly identify the DNCC scheme utilized in this
scenario.

5 Experimental methodology and testbed

During the conducted experiments, we want to evaluate and compare the performances of various steganog-
raphy detection approaches proposed in this paper. In more detail, we present our results, findings, and
conclusions concerning three detection strategies:

• Tree-based: this is our previous strategy originally proposed in [10] which uses only the tree of
item sets (Figure 4),

• Basic ML: it is a Machine Learning approach which relies only on the preprocessed data of the
network traffic (Figure 7),

• Hybrid: this is also a Machine Learning approach, however, in this case it operates on the prepro-
cessed data and additionally on the information obtained from the tree of item sets (Figure 7) – so
it combines both detection methods mentioned previously above.

Note that the two detection methods which utilize ML techniques (i.e., ’ML Basic’ and ’Hybrid’) use
the trained Machine Learning model obtained via the Driverless AI (DAI)4. DAI is an automatic machine
learning platform which can handle automatic feature engineering, model selection, tuning, validation,
and deployment. We have decided to use it during the experimental evaluation as it has been previously
successfully deployed in a similar cybersecurity scenario [4].
4https://www.h2o.ai/products/h2o-driverless-ai
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Figure 7: CSV pipeline scheme – two AI models are trained on the data: the first one only with the
information from the pcap item set (’ML Basic’ approach), the second one with the information from the
pcap item set and from the tree node relationship (’Hybrid’ method).

All three above-mentioned detection strategies are evaluated using raw network traffic as an input,
which simulates various types of DNCC channels in the IoT environment consisting of temperature sen-
sors. During the conducted experiments, we compare decisions of the detection algorithms (i.e., whether
the traffic is considered as containing or not steganographic data embedded) – with the ground truth taken
from the configuration of the recorded network traffic. The ground truth contains the information which
connections, in this particular test run had the steganographic transmission enabled. In effect, for each
of the three strategies mentioned above, we are able to calculate true positives and false positives. Using
these results, we can prepare ROC (Receiver Operating Characteristic) curves and calculate AUC (Area
Under Curve) parameter used in the final comparison of detection methods.

Experimental traffic was generated during our research in the testbed, which is described in detail in
subsection 5.1. During the conducted experiments, we introduce various network anomalies, which are
described in section 5.2. This part of the experiment evaluates how well our coding scheme (see section
3.3.2) performs as well as what impact on the detection rate such network conditions have. Moreover,
during the conducted experiments we examine various configurations of the DNCC, which in effect
produce a test set containing more than 7600 test runs. All details concerning the generated test set
which is used later in the evaluation process are enclosed in subsection 5.3.

5.1 Test-bed

Our experiment scenario consists of two separated LANs (Figure 8). The first one consists of machines
that mimic IoT devices and the second one which contains a central HTTP server. This emulates the
real-world setup, where such LANs would be connected via a WAN or Internet. Due to the fact that our
research mainly focuses on DNCC and not on the detailed analysis of the particular data hiding method
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used for its creation, all experiments are performed in the virtual environment. Moreover, for the sake of
simplicity of the utilized topology, the default routers of both LANs are connected directly by a virtual
link. In such scenario, the clients in the first network have data that needs to be secretly transmitted to
the second network using data hiding techniques. In this testbed, covert transmission is performed by
a custom SDN application running on a SDN controller host. During our experiments, we change the
number of clients which represent IoT devices, sending data to one or multiple central servers.

Figure 8: Utilized experimental test-bed [10].

Gateway machines are connected to the Internet, which allows communication between LANs. The
IoT sensors periodically transmit measurements to the server machine, which create a flow of packets
that passes through both SDN switches, where the covert messages are injected (at the first SDN switch)
and extracted (at the second SDN switch).

In our testbed we used the following software:

• All Virtual Machines are running Centos 7.5.1804 (Core),

• Open vSwitch v 2.10.1 on the SDN Switches,

• RYU Python SDN controller,

• Apache HTTPD v 2.4.6 on the HTTP Server machine.

Devices sdn cl1, sdn cl2, sdn cl3, sdn cl4, sdn cl5 act as the smart temperature sensor nodes.
A Python script is used to push sensor readings via HTTP POST messages to the central HTTP server
running on sdn srv01. Machine sdn sw01 runs Open vSwitch network switch which is managed by the
sdn controller01 machine running RYU Controller and the device sdn gw01 acts as a router for this
network. A similar configuration is used on the receiving side of the test-bed, with sdn sw02 running
another Open vSwitch controlled by RYU running on sdn controller02 machine. Machine sdn gw02

acts as a router for the receiver network.
As the ML-based platform, as already mentioned, we chose Driveless AI dai-1.8.0 which is an au-

tomatic Machine Learning platform and CUDA 10.2, i.e., the parallel computing platform and program-
ming model developed by NVIDIA for general computing on graphical processing units (GPUs)5. One

5https://developer.nvidia.com/cuda-zone
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of the most important features of DAI we utilize is the auto-tuning of the ML algorithms, which al-
lows a focus on the main problem, i.e., the covert transmission detection and not on the tuning of ML
parameters.

5.2 Introducing anomalies to the network traffic

In modern computer networks, network anomalies occur sporadically and are typically introduced by
differences in network stack implementations, network routing issues, or undefined behavior of network
protocols. In general, network anomalies are introduced along the routing path and longer paths are
more likely to contain anomalies. As already mentioned, the testbed utilized in this research consists
of two Local Area Networks directly connected to each other through a short routing path. This makes
the traffic exchanged using the above-mentioned testbed very unlikely to contain any sporadic network
anomalies (which, as stated above, occur typically in communication networks). On the other hand,
the steganographic methods utilized in this testbed intentionally introduce network anomalies as a data
carrier for covert channel transmission. In result, the vast majority of anomalies within the test-bed traffic
are introduced by steganography, thus the classification process could be greatly simplified.

To make the classification process nontrivial, we have decided to introduce benign network anomalies
into our testbed to replicate the anomaly distribution typical to what we discovered in WAN traffic.
The introduction of benign anomalies makes the steganographic data transmission more prone to data
corruption and in more aggressive cases, the covert transmission is impossible to continue due to the large
amount of errors. Thus, to make the steganographic data transmission more resilient to data corruption,
we developed a dedicated error detection and correction scheme which was described in detail in section
3.3. With the utilization of such mechanism, we are able to introduce an arbitrary number of benign
network anomalies while maintaining high steganographic transmission accuracy. In effect, the covert
channel detection algorithms can be validated in our testbed in an environment close to the real-world
case.

To simulate various network anomalies, we utilize existing steganography modules to introduce ran-
dom data corruption in the covert transmission layer, namely, random data bits:

• insertion: non-steganographic packets are randomly modified during transmission to introduce a
random steganographic value that can be read by the receiver,

• deletion: steganographic packets are randomly deleted during transmission to simulate data loss,

• flipping: steganographic packets are randomly modified to invert the data bits carried in the mes-
sage.

The chosen data corruption methods make it difficult to synchronize the covert data stream, thus
classic error correction codes cannot be directly applied to the transmission, as the stream can be shifted
and the meaning of the individual data and parity bits may be lost after random bit insertion, deletion,
or flipping. Considering the above, to ensure the correct data transmission, we have designed and imple-
mented solutions to achieve reliable covert data transmission in a channel with high network anomaly
noise. In more detail, we use: (i) false network anomaly filtering, (ii) data bit indexing within continuous
network stream, and (iii) error correction through redundancy. These solutions have been explained in
detail in subsection 3.3.

5.3 Test set

During preparation of the test set, we have evaluated different DNCC configurations as well as various
conditions of the network by introducing traffic anomalies which are similar to these observed in real-
world communication networks (see section 5.2). As a result, we have produced a test set which contains
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7657 test runs. The following summarizes the details of the test set configuration. Each experiment
lasted 60 seconds and during experiments the simulated data corruption was set to 2, 5, 6.6, 10, and 20%,
respectively. Moreover, the experiments have been recorded with 1, 2, or 3 steganographic modules
enabled and they were instructed to modify roughly every second (50% transmission rates) or fifth (20%
transmission rate) packet.

The experimental scenario involved client-server communication 1-to-1, 1-to-5, 5-to-1, and 5-to-5.
In 5-to-1 and 5-to-5 scenarios, the number of actual steganographic clients can be 1, 2, or 5 (i.e., there
could be 4, 3 or 0 clients which never had their packets modified). Similarly, in the 1-to-5 and 5-to-
5 scenarios, the number of steganographic servers could be 1, 2, or 5 (i.e., there could be 4, 3 or 0
servers which never received modified packets). Only the network traffic from a steganographic client to
a steganographic server is considered by the algorithm for packet modification. Moreover, clients were
generating network traffic to the servers via HTTP requests sent with varying frequency, i.e., every 1,
5, or 10 seconds. Finally, some scenarios intentionally had the steganography disabled (the number of
covert communication clients equals 0).

6 Results

During the first part of the conducted research, we measure the overall accuracy of each of the detection
strategies, i.e., without differentiation of any specific type of DNCC traffic. Figure 9 presents ROC
curves for the various variants of the Tree-based detection approach. During the performed experiments,
we explore how the results change for various ratios of suspicious children in the tree necessary to mark
a parent node as suspicious and, thus, in effect decide that the steganographic traffic appears in this test
run. In Figure 9 we present the results when this parameter changes in the range from 0.1 to 0.9. As
it can be seen, practically for all values, the resulting AUC is greater than 0.8 and the best results are
achieved for 0.5 (AUC=0.845).

Figure 9: ROC plots for the Tree-based detection method for various ratios of suspicious children in the
tree.

Next, Figure 10 illustrates ROC curves for detection strategies which utilize Machine Learning im-
plemented in the DAI software. The subfigure (a) presents detection results for the ’Basic ML’ approach
where only preprocessed data are used for training and classification. On the other hand, the subfig-
ure (b) showcases results of the ’Hybrid’ method when the ML algorithm utilizes data enhanced with
meta-data derived from the Tree-based solution (thus it can be considered as a combined concept). In
both ML-based approaches (i.e., ’Basic ML’ and ’Hybrid’) the DAI software automatically tests various
classification algorithms from the presented list: XGBoost GBM, LightGBM Random Forest, XGBoost
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(a) ’ML Basic’ approach utilizing only the
pre-processed data.

(b) ’Hybrid’ method using pre-processed data
enhanced by the information from the tree of
item-sets.

Figure 10: ROC plots presenting detection results for the ML-based detection strategies.

Dart, GLM, RuleFit, LightGBM, and FRTL. Results from the reports generated via DAI experiments
show that for the final evaluation XGBoost GBM model has been chosen as the best performing one [3].
The measured performances of these models on the training data set are presented in Tables 2 and 3.

Table 2: Detection results for the ’ML Basic’ method.

Scorer
Final ensemble scores

on validation
Final ensemble standard
deviation on validation

Final test
scores

Final test standard
deviation

ACCURACY 0.6828 0.0014 0.6833 0.0026
AUC 0.9399 0.0005 0.9404 0.0009
F1 0.6828 0.0014 0.6833 0.0026
F2 0.6828 0.0014 0.6833 0.0026
GINI 0.8799 0.0011 0.8809 0.0019
MCC 0.6375 0.0016 0.6381 0.0029

Table 3: Detection results for the ’Hybrid’ approach.

Scorer
Final ensemble scores

on validation
Final ensemble standard
deviation on validation

Final test
scores

Final test standard
deviation

ACCURACY 0.7681 0.0018 0.7739 0.0018
AUC 0.9741 0.0003 0.9754 0.0003
F1 0.7689 0.0018 0.7739 0.0018
F2 0.7689 0.0018 0.7739 0.0018
GINI 0.9481 0.0007 0.9508 0.0007
MCC 0.7349 0.0021 0.7416 0.0021

The results presented above prove that the best detection method is the ’Hybrid’ approach. This
variant achieved AUC=0.993 and it outperformed ’Basic ML’ scenario (AUC=0.955) and the previously
proposed Tree-based scheme (AUC=0.845).

The next investigated issue concerns the detection accuracy for various steganographic transmission
rates. Figure 11 showcases the accuracy results depending on the number of steganographically modified
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packets. In this figure, we present data gathered from all conducted experiments (background plot). Be-
cause the most interesting features are presented for lower values on the X-axis, in the small (foreground
plot), we demonstrate also the magnified part of the plot for this area. The same approach will be used
for other plots presented in this section as well. Due to the fact that during the presented research we
utilized an additional error detection and correction scheme (see section 3.3 for a detailed description)
on the X axis we indicate the number of modified packets and not the effective steganographic data rate.
However, these two features are correlated as the more network packets contain secret data the higher
resulting overall covert channel bandwidth.

Figure 11: Accuracy of the detection depending on the number of the steganographically modified pack-
ets.

The presented results clearly show that higher steganographic rates are detected almost in all cases.
However, it must be noted that reducing the steganographic rate allows the steganographer to ’stay under
the radar’ and remain undetected. Like in the first part of the conducted experiments, the best results
have been obtained for the ’Hybrid’ detection method.

The red solid curve in Figure 11 represents the results of the Tree-based detection method. We can
observe that this approach has some instabilities which are associated with the detection of new frequent
sets and reorganization of the tree. However, what is interesting to note is that such behavior is not
transferred when using the same data for the ’Hybrid’ detection strategy.

The last investigated issue concerns the detection accuracy for various numbers of steganographic
clients depending on the number of modified packets. Figures 12-14 demonstrate the accuracy of differ-
ent detection strategies for the varied number of steganographic clients (1, 2, or 5). In the next three plots,
we present the results separately for each detection method, i.e., ’Tree-based’, ’Basic ML’, and ’Hybrid’.
In the first plot, due to the high instability of the introduced Tree-based method, we cannot easily deter-
mine if this detection strategy performs better for a smaller or greater number of steganographic clients.
However, as our previous research shows, the easiest to detect should be the DNCC configuration only
with one client. In fact, such a situation is illustrated in Figure 12, only in the range from around 5 to 20
packet modifications per second, where this method achieves the best detection accuracy.

For the remaining two approaches, i.e., ’Basic ML’ and ’Hybrid’ results are much more stable and
it can be easily observed that the resulting detection accuracy for five clients (blue curve in all three
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Figure 12: Accuracy of the detection depending on the number of the steganographically modified pack-
ets (’Tree-based’ method).

Figure 13: Accuracy of the detection depending on the number of the steganographically modified pack-
ets (’Basic ML’ method).

plots) is the worst. As it was discussed earlier in this section, despite the high instability of the Tree-
based method, the ’Hybrid’ approach is one with almost invisible instability. These results confirm our
previous research predictions that the utilization of the DNCC with a higher number of steganographic
clients is harder to detect.
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Figure 14: Accuracy of the detection depending on the number of the steganographically modified pack-
ets (’Hybrid’ method).

7 Conclusions

In this paper, we present our extended research concerning the detection of steganographic transmissions.
The proposed method can be used for the detection of simple covert communication attempts, i.e., where
only one data hiding method in one network stream is used, as well as for more stealthy solutions, e.g.,
DNCC channels. To improve the detection accuracy after preprocessing phase data mining frequent sets
are mined multiple times with various values of the minimal support parameters. Using the obtained
results, a special tree structure which contains the discovered frequent item sets is constructed. In this
paper, we introduced and described the detection method which is based on the analysis of such item sets
tree. During the conducted experiments, we evaluated the proposed approach using steganographic traf-
fic which was generated in the simulated IoT environment. In more detail, we proposed three detection
strategies – one as described above and two others which utilize machine learning algorithms imple-
mented in the DAI software. During these experiments, we compared ML algorithms – one which uses
only preprocessed data and the second one which utilizes preprocessed data enhanced with the metadata
obtained from the previously introduced tree-based method. Obtained research results proved that both
ML-based approaches outperformed the original solution. However, it must be noted that the addition
of the metadata generated by our original approach increases the resulting detection rate of ML-based
detection. The measured AUC parameter for such a combined (’Hybrid’) approach increased from 0.845
to 0.993. This results in a rise in performance by almost 15%. Our future work involves a more extensive
study of both ML-based and hybrid solutions for steganographic transmission detection. First of all, we
plan to investigate the accuracy and performance of other classes of ML algorithms. Secondly, we would
like to utilize other data mining pattern discovery algorithms, which could produce more meta-data fur-
ther used by ML solutions.
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5 CONCLUSIONS

During the CoCoDe project, we have conducted research related to the distributed network
covert channels and we investigated their nature from different perspectives. First of all, we
developed the classification of DNCCs and analyzed theoretically their performance features.
Then, using the developed testbed, we were able to create several different networking sce-
narios from a common IP-based network to one IoT-specific environment. This allowed us to
perform extensive experimental evaluations of different configurations of DNCCs to investi-
gate their characteristics and, moreover, to determine how undetectable they really are. In
particular, we analyzed how the tuning of the parameters used by each single steganographic
method forming DNCC could lead to the more stealth DNCC, which is in turn makes it much
harder to be disclosed. On the other hand, we have also developed several detection meth-
ods that are based on data mining as well as machine learning. The obtained results prove
that when used naively, DNCC can be quite easily detected, however, when the parameters
of DNCC are conveniently depicted and proper data hiding methods are used, then covert
communication is limited but still possible. This urges for more research efforts in this area.

The most important results from the conducted experiments are covered in the six reviewed
research papers: four of them were published at the ARES conference while the remaining two
in the prestigious scientific journals. We have also prepared and shared a dataset of network
traffic containing captures of DNCC, which can be further used by the security community for
further research purposes.
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