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1.0 SUMMARY 
This report describes our technical approaches and results for System for CRoss-language 
Information Processing, Translation and Summarization (SCRIPTS) funded under the 
Intelligence Advanced Research Projects Activity (IARPA) Machine Translation for English 
Retrieval of Information in Any Language (MATERIAL) program. SCRIPTS consists of 
components for Automatic Speech Recognition (ASR) and Machine Translation (MT) in order to 
pre-process the text and speech corpora provided as part of the program. It also includes a text 
processing component that performs morphological analysis. In user­facing mode, given a query, 
SCRIPTS’ Cross-Language Information Retrieval (CLIR) returns relevant documents, while 
Summarization generates textual summaries of each document to help an analyst confirm which 
documents returned by CLIR are actually relevant. Over the course of program, we implemented 
models for nine different languages: Somali, Swahili and Tagalog in the Base Period (BP), 
Bulgarian, Lithuanian and Pashto in Option Period 1 (OP1), and Farsi, Kazakh and Georgian in 
Option Period 2 (OP2). 
To address the low resource scenario, our novel approach in SCRIPTS features implicit and 
explicit integration within and across components. We use a fail-soft approach where each 
component implements multiple, complementary approaches to the task; these components are 
then integrated using system combination. For ASR, we developed two approaches, one at 
Cambridge University (CUED) and one at the University of Edinburgh (EDIN); here, system 
combination yielded improvements in scores over individual systems. For MT, we developed 
two neural approaches, one at EDIN and another at the University of Maryland (UMD). UMD 
also implemented a statistical machine translation (SMT) approach. During evaluations, we ran 
all three MT systems on the evaluation corpora, and all three sets of results were saved and used 
by both CLIR and Summarization. CLIR used a large variety of technical approaches and system 
combination to merge the resulting rankings. While CLIR focused on finding relevant documents 
given the query, the task for Summarization was to find relevant sentences within the documents 
returned by CLIR. Like CLIR, Summarization also used multiple approaches for the problem, 
exploring both unsupervised and supervised methods. 
Other key features of our approach include tight interaction between different components. For 
example, CLIR relies on an interaction with ASR and MT in order to handle search over speech 
in low resource languages (LRL). Summarization also relies on results from CLIR as well as 
interaction with MT in order to ensure that at least one of its summary sentences contains the 
query word(s). 
The report is structured as follows. First, we provide a summary of major differences between 
components across the BP, OP1 and OP2. Then we provide detailed information on the technical 
approaches taken by each component followed by a section providing results, again segmented 
by system component. This is followed by a section providing transitionable software. Finally, 
we close with each team’s observations about their work within the MATERIAL program, as 
well as recommendations for future work based on their research and results. 
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2.0 INTRODUCTION 
The SCRIPTS development teams worked both in tandem and in parallel to develop, test, 
share and refine their respective components of the overall system across all phases of the 
work. Below we highlight the key approaches and results for each team during each 
major period of research, specifically, the BP, OP1 and OP2. Where possible, we have 
also identified the relevant program phase in the more detailed technical descriptions that 
begin in Section 3.0, Technical Approaches. 

2.1 ASR 
The principal function of the SCRIPTS ASR work was to process audio documents in order to 
make them sufficiently usable for MT and CLIR. In both the BP and OP1, the acoustic model 
(AM) parameters were augmented with multilingual bottleneck features, which are discussed in 
detail in Section 3.1.2, Multilingual AMs. A main distinction between the BP and OP1 for this 
work was the use of large quantities of untranscribed audio that had been scraped from the web. 
During OP2, more advanced approaches for using this data, in the form of the lattice-based 
semi-supervised training (SST) described in Section 3.1.3, Use of Web-Crawled Data and SST, 
were refined and deployed. From an integration perspective, the simple confidence scores from 
BP were extended to use full lattices in OP1. This approach was further extended in OP2 to 
include phrase-based lattice search. 

2.2 MT 
Each period increased adaptation of MT to program goals and integration with surrounding 
systems. In the BP, we developed MT systems specifically adapted to the LRL context of 
MATERIAL via back translation and other features. In OP1, we experimented with forms of 
n-best output, as detailed in Section 3.2.13, N-best Translation, to improve indexing and adapt to 
speech input. Because the languages in OP1 were also higher resource, we were able to improve 
the system by exploiting changes in neural machine translation (NMT) architectures. In OP2, we 
found that adding query­driven translation improved acceptance of summaries. At the same time, 
we found that Kazakh presented an interesting multilingual challenge, given that Russian- 
Kazakh data is more readily available than Kazakh-English data. 

2.3 Data and Language Identification 
Training SCRIPTS’ tasks on the LRL speech and text corpora for MATERIAL required large 
amounts of LRL data in both formats, including transcribed speech corpora for ASR, parallel 
corpora for MT and very large amounts of text data for every other component. During the BP, 
our group collected very large amounts of text and speech data from the web in three LRLs for 
this purpose: Swahili, Tagalog and Somali. We also developed new methods of language identi-
fication to filter both the data we collected and the language packs provided by IARPA. All of 
the corpora and tools we collected and created were across all teams to support speech recog-
nition, morphological analysis, language identification, MT, information retrieval (IR), and 
Summarization. This work concluded following the BP. 

2.4 Text Processing 
During the BP, we developed MorphAGram, a framework for the unsupervised morphological 
segmentation of a diverse set of languages, including the automatic tailoring of grammars for 
unseen languages. During OP1 and OP2, we enhanced MorphAGram to allow for the in- 



 

3 
Distribution A.  Approved for public release; distribution unlimited. 

AFRL-2022-1213; Cleared 11 Mar 2022  

corporation of linguistic priors, in the form of either grammar definition or linguist-provided 
affixes. MorphAGram is described in detail in Section 3.4, Text Processing.  During OP1, we 
also developed unsupervised part-of-speech (POS) taggers using cross­lingual projection using 
both an av- eraged perceptron model and a neural model. In OP2, this POS tagger was enhanced 
through  the addition of two key features. First, we developed support for learning from multiple 
source languages. Second, we made it possible for the system to use both words stems and 
morphemes as the unit of abstraction during the alignment process. 

2.5 CLIR 
In the BP, we developed the core capabilities for CLIR, including query analysis, ranking using 
both MT for 1-best translation and Probabilistic Structured Queries (PSQ) for n-best translation, 
rank-based late fusion for combining system results, cutoff tuning, and formative   evaluation. In 
OP1, we extended our n-best approaches both to n-best ASR using Keyword Spotting (KWS) 
and through n-best SMT and n-best NMT and a Neural Network Lexical Translation Model 
(NNLTM). In that period, we also built a broader range of rankers, we developed techniques for 
score-based late fusion and query­specific cutoff selec tion and we began experimenting with short 
duration evaluation sprints. Principal research foci in OP2 included development of neural 
ranking and document expansion techniques and  investigation of architectures for coupling early 
fusion, late fusion, and neural reranking. 

2.6 Summarization 
In the BP, the novel setting and absence of training data meant that our summarization work 
focused on using unsupervised methods derived from word embeddings to select relevant 
sentences from documents. During OP1, we began to overcome the training data limitation by 
generating synthetic training data and using it to train supervised query­sentence relevance 
models to perform the same task. During OP2, we augmented our approaches using retranslation 
to help ensure that in cases where we are highly confident that a given document is relevant to a 
query, the query itself appears in the document verbatim. This reflected   findings from our early 
work in BP that human end users often failed to mark a summary as  relevant unless the precise 
query terms were present - and visually highlighted - within the summary text presented. 

2.7 Integration 
During the BP, the decision was made to structure the integration pipeline as a fully 
configurable   system whose parameters could be manipulated solely through options set in an 
external configuration file. This design decision made it possible to script the execution of a 
large number of experiments, run small modifications of the experiments (e.g., different 
translation types), and to trivially apply a given configuration to another dataset. The use of a 
meaningful directory structure and unified naming convention also facilitated the process of 
selecting system component versions to test. While the overall pipeline was constant across all 
three periods during OP2, we added support for processing multiple query sets as well as the 
reranker component. We also began Dockerization of the executive component during OP2 in 
order to facilitate the transmission and reuse of the SCRIPTS pipeline and its individual elements. 
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3.0 TECHNICAL APPROACHES 
3.1 Speech Processing 
This section describes the approaches used by the SCRIPTS team to process the audio 
documents so that they can be processed for MT and CLIR. 

3.1.1 Baseline System and Diarization  
The baseline ASR systems used by both EDIN and CUED teams were hybrid hidden 
Markov/Deep Neural Network (HMM-DNN) models built using the Kaldi Toolkit [3]. All AMs 
developed by both teams were trained on language specific data following a standard lattice free 
maximum mutual information (LF-MMI) recipe [4] with a convolutional neural network/ 
time-delay neural network factorization (CNN-TDNNF) architecture that combined 
40-dimensional mel-frequency cepstral coefficient (MFCC) features with 100-dimensional 
I-vectors for speaker adaptation [5], [6]. This architecture was used for both narrow-band (NB) 
and wide-band (WD) data, as described in Section 3.1.3, Use of Web-Crawled Data and SST. 
The AMs were trained with natural gradient [7], and with Dropout [8] and SpecAugment [9] for 
regularization. We also investigated how using Grapheme-based AMs (models mapping from 
acoustic data to graphemes and utilizing a grapheme-based lexicon to arrive at words) impacted 
performance as compared to traditional Phoneme models as these approaches have been 
successfully applied in the Babel program. For each language, we also experimented with 
adding 100 hours of English data to the language-specific training data to increase the training 
data size and to improve the model’s generalization. These models relied on CNN-TDNNF 
networks with shared hidden layers but language-specific output   layers - and thus language- 
specific phonesets - and were trained in a multi-task fashion. 
For each language model (LM), we also experimented with data from the Commoncrawl data- 
set1 in addition to the Build data. Using the SRI language modeling toolkit (SRILM) [10], we 
trained three-gram LMs with Kneser-Ney smoothing and a maximum vocabulary size of 300k 
words, along with a pruning threshold of 1e-9. We also trained recursive neural  network language 
models (RNN-LM) for second pass rescoring [11]. 
For both the BP and OP1, the AM parameters already described were augmented   with 
multilingual bottleneck features, are discussed in detail in Section 3.1.2, Multilingual AMs. 
These hybrid   systems were constructed using n-gram and RNN-based LMs which were combined 
using standard linear interpolation, though the features used varied from language to language. 
At the start of OP2, the baseline hybrid systems were compared with so called end­to­end 
(E2E) systems, in this case the encode-decoder attention architecture from the ESPnet toolkit 
[12]. 
As these E2E systems are known to be “data hungry,” they were only evaluated on WB data 
using the web crawled data, as described in Section 3.1.3. 
 

 
 
 
 
 

 

1http://data.statmt.org/ngrams/raw/ 

http://data.statmt.org/ngrams/raw/
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Figure 1.  ASR Arc-level Confidence Score Approaches. 
Obtaining accurate confidence scores is a key challenge of using speech recognition systems in 
both low resource scenarios or across mismatched topic domains. In general, the baseline 
approach for obtaining confidence scores is to combine the arc posteriors from a word lattice 
with the posteriors from arcs associated with the same word and time instance together, in order 
to generate a word level posterior. Because this approach often overestimates word-level 
confidence scores, in Kaldi-based systems they are typically calibrated using decision trees.  
During BP and OP1, we investigated alternative approaches for generating more accurate 
confidence scores based on deep-learning (DL) approaches [13], [14], [15], specifically lattice 
RNNs (illustrated in Figure 1 (a)) and attention mechanisms (Figure 1(b)). Though not used for 
the final CLIR systems, the impact of these systems in terms of confidence scores is discussed in 
Section 4.1.1, Baseline Systems and Diarization. 

3.1.2 Multilingual AMs 
The MATERIAL program’s focus on LRL scenarios meant that the quantity of transcribed data 
available for training the ASR system was sharply limited. One method of addressing this 
problem was to use a multilingual configuration that incorporates training data from other 
languages; two standard approaches for accomplishing this are shown in Figure 2.  In the 
multilingual bottleneck approach shown in Figure 2 (a), key features are extracted from multiple 
higher resource languages and are then used to do feature extraction for the target language. The 
second approach is to use a common set of layers for all languages except for the final 
classification layer, where language-specific “hats” are applied, as shown in Figure 2(b). For the 
target language, this means that a new “hat” is only required in the final layer, while the 
underlying layers can remain the same or optionally be fine tuned to the target language. 
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Figure 2.  Multilingual Model Configuration: (a) Bottle-Neck Features; (b) “Hat-
Swapping.” 

3.1.3 Use of Web-Crawled Data and SST 
While the MATERIAL program provided only conversational telephone speech (CTS) style data 
for training the ASR systems, the target systems needed to operate in both CTS and WB signal 
environments, including news broadcasts (NB) and topical broadcasts (TB). To address this 
problem, we scraped audio data from the web, focusing on content we believed to be closely 
related to the target domain. In the BP, we explored using the limited transcriptions available for 
this web-scraped data to train our model, but found they were insufficient for building high 
performance ASR systems. In the subsequent OP1 and OP2 periods, we instead trained the ASR 
systems by using the limited transcription data as “seed” models in order to generate transcript-
tions for the web-scraped audio data. Accurate transcriptions were then selected to train a new 
system in the target domain. 
Note that in cases where only web-scraped data is available for a particular domain, there may 
not be any accurately transcribed data in the target domain to support system development and 
hyper-parameter tuning. To address this problem during BP and OP1, we examined the 
possibility of developing an “in the wild” ASR [16]. Rather than using word error rate (WER) 
based on accurate transcriptions to tune model configurations, this approach relies on systems 
developed by maximizing (approximately calibrated) confidence scores. This makes it possible 
to tune and configure ASR systems even on development sets that lack transcriptions entirely. 
Figure 3 shows the cumulative plots of confidence scores for the web-crawled audio data for 
Swahili and Somali. At CUED, a simple data selection scheme was adopted in which only data 
above a particular confidence threshold was used to train the ASR system. However, as one of 
the differences between the transcribed data and the target domain was the bandwidth (i.e., 8KHz 
for CTS, 16KHz for WB), once the WB training data had been selected new models were trained 
from scratch. This allowed features based on the full WB audio bandwidth to be used, and was 
found to be more effective than using NB features combined with the transcribed data. Depend-
ing on the available time, multiple iterations of data selection can be performed. Given the 
quantity of data that can be crawled from the web, iterative selection can be run on different 
batches of web-crawled data rather than iteratively improving the transcription on the same block 
of web-crawled data. No direct comparisons were run for this, and the implementation per 
language depended on the quantity of web­crawled data available for system build.    
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Figure 3.  Confidence-Based Web Data Selection. 
To build upon the seed/baseline models described in Section 3.1.1, the EDIN pipeline utilized 
lattice-based SST to improve the AM quality/robustness and directly tackle the domain­gap/ 
mismatch between the training and analysis/test data. Specifically, we used the baseline systems 
as seed models to provide pseudo-labels for additional, web-crawled, un-transcribed data, which 
we expect would exemplify a far broader range of domains than the telephone speech of the 
provided training data. In contrast to the CUED approach, we used pseudo labels in the form of 
lattices in order to explicitly model the uncertainty of the seed model. 
For each language, the EDIN system obtained this additional data by scraping YouTube videos, 
using the most common trigrams from the relevant LM as queries. Because this data is likely to 
be noisy - containing audio other than speech, and languages other than the target - we employed 
filtering at the video level. We first decoded the data using the seed AM and LM and discarded 
videos with resulting mean confidence falling below 0.7. We also discarded videos where 
average speaking rate identified by voice activity detection (VAD) fell below 1.25 words per 
second; this helped to filter out non-speech data such as music videos, where confidence levels 
could be erroneously high. The thresholds for both mean confidence and speaking rate were 
developed by comparing the distributions of these parameters’ values for the web-scraped data 
against their value for our development set ­ which we knew to be of good quality ­ and with an 
out-of language (OOL) dataset. These results are shown in Figure 4 
In a standard lattice-based SST approach using LF-MMI [17], all unlabeled data is decoded by 
the seed model in a single round, with one subsequent SST model then trained on this newly 
transcribed data. In our system, we instead employed an iSST setup in which we split the scraped 
data into n­equally sized chunks and decoded them iteratively. In practice, this means that a 
given chunk is processed using a model trained only on the previous chunk, so that the pseudo 
labels obtained when decoding the i-th chunk are the only ones used to train the model that will 
process the i+1-th chunk. Unlike other iSST approaches (e.g., [18]), this means we never trained 
twice on the same chunk, which can lead to over-fitting. 
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Figure 4.  Plotting Speaking Rate Against Mean Lattice Confidence for each Tagalog 

Utterance in: Raw Tagalog Youtube Data; Tagalog Analysis Dataset (‘Target Language’); 
and OOL Data (‘Other Languages’). 

To reconcile the newly scraped wide-band (16kHz) data and the NB (8kHz) telephone speech 
that had been used to train the seed models, we were required to down sample the first chunk of 
web-scraped data before the initial decoding (pseudo label/lattice generation) process. Facilitated 
by our incremental training setup, we subsequently opted to train all the remaining SST models 
using the complete WB features, which required using a randomly initialized seed model. An 
exponential decay training schedule [19] was also used for the continued training. Though this 
approach meant that we couldn’t incorporate any of the initial supervised data into our final 
models, we found that with correct tuning of our lattice-based SST recipe, trading incorporation 
of initial data for the ability to use the more informative WB features, was beneficial [20]. 
We also chose not to apply traditional confidence filtering [21], [22], [19] to the obtained pseudo 
labels before retraining, as we observed that while it can help to alleviate error propagation, such 
confidence filtering also filters out the most difficult - and thus useful - training examples 
derived from the web-scraped data. Instead, we strove to maximize the value of our SST data 
while still minimizing impact of erroneous labels through three intersecting approaches. Our 
subsequent investigations [23] revealed that SST for ASR works most effectively when the LM 
can be relied upon to guide and reduce the frame-level labelling uncertainty of the initial model 
by providing additional, external, reliable information to the system at the utterance-level. To 
achieve this, it is necessary to ensure the LM used during decoding was of highest quality 
possible. We relied on the LF-MMI training criterion to correctly calibrate the confidence levels 
between word-based lattices from decoding with the seed model, and state-based confidences 
from the seed AM. 
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3.1.4 Integration with Downstream Tasks  
The ASR work described above was incorporated into  the SCRIPTS project at a variety of 
levels, as described below: 

• Audio Document Language Verification (CUED): For the BP, performers 
were required to appropriately handle audio documents that were not in the 
target language of interest. Leveraging the confidence work described in 
Section 3.1.1, the SCRIPTS  team was able to adopt a simple ASR 
confidence-based approach. Word-level confidence scores were computed 
based on ASR lattices and decision tree normalization to calibrate scores as 
discussed in Section 3.1.1. These word-level confidence scores were then 
averaged for the complete documents to yield an overall document-level 
confidence score. 

• Integration with MT (EDIN): Our systems integrated with machine 
translation at the one-best hypothesis level, optionally after CUED/EDIN 
system combination. For this, ASR output was acoustically segmented into 
sentence-like    units with a maximum length of 40 words in order to optimize 
MT performance, though we elected to train the ASR-specific MT systems 
on text with casing and punctuation   removed. While we made a number of 
efforts to integrate our work more closely with  MT - for example, through 
the use of shared continuous representations and joint optimization - there 
were several obstacles to these efforts. Specifically, we were hampered by 
the lack of any translated speech data in the MATERIAL program, without 
which  E2E training is very challenging; we also lacked a common DL 
toolkit between the two disciplines. We are thus unable to report results on 
this aspect of the research. 

• Integration with CLIR (CUED): In the BP, the integration between ASR 
and CLIR  followed the same process that was used for text-based CLIR. 
ASR was used to generate text, the one best output, and the text used for 
CLIR. The only modification to this process was the use of ASR confidence 
scores, as discussed in Section 3.1.1. During OP1, this was approach was 
extended to handle word arcs within a lattice, and in   OP2 we further 
extended this to handle phrases. The general structure for this work is   shown 
in Figure 5. 

 
Figure 5.  Confidence-Based Language Verification. 

To make use of the lattices for CLIR, the HMM query generation model was used. Here the 
probability of generating query qe from audio document sf can be expressed as  
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where ge is a general English language model, and calLf is the (foreign) word lattice from the 
ASR decoding of the foreign audio document. 
Handling word or phrase-based CLIR differs in the decomposition for Specifically, 
word-based approaches simply split the processed query into individual words and the 
probabilities of the individual words are then combined to form the probability of the phrase. 
Alternatively, the phrase can be partitioned into all possible phrases, and the probabilities of the 
phrases are then combined. In practice, rather than considering all possible phrases, we applied a 
simple deterministic process in which the English search phrase was broken down by repeatedly 
splitting the longest phrases in the phrase translation table P (pe pf). Though finding all phrases in 
the lattice that occur with a minimum probability n in the translation table increased the size of 
the document index, the size of the increase was acceptable and made it possible to generate a 
single index that efficiently supports both word and phrase search. 

• Metadata (EDIN): We investigated approaches to automatically predicting 
speaker metadata. While this could conceivably improve CLIR metrics in 
some scenarios, it would be difficult to optimize given the lack of speaker 
metadata in the Analysis and Development sets. However, the ability to 
directly filter results according to speaker metadata could be useful in a 
practical system. 

We developed a framework for predicting speaker age and nationality from English language 
speech using only web-scraped data with noisy metadata labels [24]. We used a multi-task 
learning framework, which enabled training on multiple data sources, each with possibly disjoint 
sets of speaker metadata. We found that the use of a shared representation for all metadata 
prediction tasks improved the performance of speaker  diarization and verification. Work to 
investigate the potential to use these models in a cross-lingual setting for application on LRLs is 
at a preliminary stage. 

3.2 MT 
The key steps in developing MT systems include the data selection and cleaning process 
(discussed in Section 3.2.1), applying SMT by generating translations through the use of 
statistical models that analyze features  of bilingual texts; and a variety of E2E NMT approaches. 
In the following section, we discuss the MT portion of the SCRIPTS project, focusing on the 
approaches tested or used in developing our final system. 

3.2.1 Data Selection and Cleaning  
For each language in the MATERIAL BUILD corpus, both teams followed a data augmentation, 
selection and cleaning process that starts by incorporating both parallel and English monolingual 
corpora from Spinn3r [25] and Newscrawl.2 

2http://data.statmt.org/news-crawl/en/  

http://data.statmt.org/news-crawl/en/
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Additional training data - both monolingual and parallel - was gathered from the web. Building 
upon work from the European Union (EU) - funded ParaCrawl project,3 we trained a first pass 
MT system on MATERIAL and other readily available corpora - such as the Open Parallel 
Corpus (OPUS) - then translated all monolingual text in languages of interest to English. 
Documents were matched in English using term frequency­inverse document frequency 
(TF-IDF) then translated sentences were extracted using bleu align [26] and cleaned using 
BiCleaner [27]. 
These data sources are then cleaned and regularized using an initial data preprocessing pipeline 
outlined below: 

• Remove non-printing characters (e.g., page breaks) using the Moses4 scripts. 
• Normalize punctuation using the Moses scripts. 
• Remove duplicate sentence pairs. 
• Filter out sentence pairs with length ratio larger than three. 
• Normalize characters for each language using the normalization tool 

described in Section 3.4.3. 
• Tokenize and true case using the Moses scripts. 
• Apply byte-pair encoding (BPE) segmentation for neural translation [28] 

models—which combines commonly co­located character sequences - using 
the subword-nmt toolkit.5 

In OP1 and OP2, we add a filtering step using the language identification toolkit , and switch 
from subword-nmt5 to fastBPE6 to obtain faster BPE segmentation. We also incorporate new 
versions of the character normalization tool tailored to the character set of each of the new 
languages in each phase of the program. Table 1 shows the data statistics for each language pair 
after preprocessing. 
 
 
 
 
 
 
 
 
 
 
3The goal of ParaCrawl https://paracrawl.eu/ was to create parallel corpora for official European Union 
languages, including Bulgarian and Lithuanian. As a result, corpora for these languages had already been 
created at the time of their announcement. 
4http://www.statmt.org/moses/ 
5https://github.com/rsennrich/subword-nmt  
6https://github.com/glample/fastBPE  

https://paracrawl.eu/
http://www.statmt.org/moses/
https://github.com/rsennrich/subword-nmt
https://github.com/glample/fastBPE
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Table 1.  Number of Sentences (K) in the Parallel Corpora after Preprocessing. 
 
 
 
 
 
 

3.2.2 SMT 
The SMT models are all phrase-based MT models, based on the Moses SMT toolkit [29]. Given 
an input sentence f, translation hypotheses e are scored using a standard log linear model as 
follows: 

 
 

 
 
 

where hi are feature functions and λi are feature weights optimized on the development set using 
the minimum error rate training (MERT) algorithm [30]. 
Our phrase-based system uses a standard best practices combination of the phrase translation, 
lexical reordering, and LM feature functions - which capture the relationship between the source 
and target - as outlined below: 

• phrase translation model (four features) 
• distance-based reordering model (one feature) 
• lexicalized reordering model (six features) 
• LM (two features when translating into English, one when 

translating out of   English) 
• word penalty (one feature) 
• distortion (one feature) 
• unknown word penalty (one feature) 
• phrase penalty (one feature) 

  

 Tagalog Swahili Somali Lithuanian Bulgarian Pashto Farsi Kazakh Georgian 
MATERIAL BUILD 51 24 24 42 41 44 34 9 4 
GlobalVoices 1 28 0 0 0 0 8 0 0 
JW300 0 0 0 0 0 0 269 0 419 
Panlex, Corp.dict 107 190 0 0 0 7 0 12 147 
LORELEI 33 0 46 0 0 0 52 0 0 
OpenSubtitles, TED 0 0 0 0 0 0 4748 11 191 
Europarl 0 0 0 613 394 0 0 0 0 
Rapid2016 0 0 0 211 198 0 0 0 0 
Paracrawl 21 0 0 816 1015 84 177 0 0 
Commoncrawl 18 9 0 0 0 0 0 0 0 
BBNBitext 0 0 0 0 0 223    
Wikipedia, Wikimedia 0 0 0 0 0 0 77 0 15 
WikiMatrix 0 0 0 157 358 0 0 13 10 
WMT-News 0 0 0 0 0 0 0 4 0 
Kazakhcrawl, Kazakhtv 0 0 0 0 0 0 0 515 0 
MultiCCAligned 0 0 0 0 0 0 0 423 1029 
OPUS-tech 0 0 0 0 0 19 54 35 46 
OPUS-others 0 0 0 0 0 0 2581 5 6 
Total 232 252 70 1839 2005 377 8019 1028 1869 
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Phrases and lexical reordering features are extracted from the parallel training data, by ex- 
tracting phrase pairs that are consistent with an automatic word alignment of the corpus. Word 
alignments in each translation direction are obtained using a multi-threaded version of GIZA++ 
[31]. The bi-directional alignments are combined starting from the intersection of the two 
alignments, which are then combined with further alignment points according to a grow­diag­ 
final­and heuristic.7 We then use the msd­bidirectional­fe configuration8 for the reordering 
model. This approach relies on both backward and forward models, and is conditioned on both 
the source and target languages. It also considers the monotone, swap, discontinuous 
orientations. 
LM features are based on five-gram LM with Modified Kneser-Ney smoothing, as implemented 
in lmplz [32]. All systems include an LM trained on the target side of the parallel corpus. For 
systems with English as the target language, we train a second five-gram LM on the 1.3M 
sentences from the Spinn3r corpus. 
The decoder performs translation using a beam search [33], [34], and optionally outputs 
sentence-level n-best hypotheses. 

3.2.3 UMD NMT 
All the UMD NMT systems are implemented using the Sockeye toolkit [35]. We train 
bidirectional translation systems, in which a single model is trained for both directions of a 
language pair [36]. During training and inference, we also add an artificial token to the beginning 
of each source sentence to mark the   desired target language. This allows us to back-translate 
source or target monolingual data without requiring an auxiliary model. 
In the BP, we use a bidirectional Long Short-Term Memory (LSTM) architecture with embed- 
ding size of 512 for the LRL Swahili and Somali. In subsequent periods, we switched to the 
Transformer architecture to improve translation quality for higher resource languages such as 
Lithuanian and Bulgarian. Specifically, we use the base Transformer architecture [37] with six 
layers for both encoder and decoder, an embedding size of 512, a feed- forward network size of 
2048, eight attention heads, and residual connections. We adopt layer normalization [38] and 
label smoothing [39] to avoid overfitting.We also filter out sentences   with a length of more than 
80. Using an Adam optimizer [40] and a batch size of 2,048 words, we checkpoint models every 
1,000 updates. This configuration yields an initial learning rate of 0.0002, which is reduced by 
30% after the perplexity on the validation set stops decreasing for five checkpoints. Training 
stops after 20 checkpoints without improvement. During inference, the beam size is set to five. 
This reflects the process used in the final evaluation system. 

3.2.4 Other Experimental Approaches at UMD 
In OP2, we also experimented with a range of other NMT architectures that were not used in the 
final systems. Specifically, we introduced an Edit-Based Transformer with Repositioning 
(EDITOR) [41], which makes sequence generation flexible by seamlessly allowing users to 
specify preferences in output lexical choice. Building on recent models for non-autoregressive 
sequence generation [42], EDITOR generates new sequences by iteratively editing hypotheses.  
By using a novel reposition operation designed to disentangle lexical choice from word 
positioning decisions, it enables efficient oracles for imitation learning and parallel edits at 
7http://www.statmt.org/moses/?n=FactoredTraining.AlignWords 
8http://www.statmt.org/moses/?n=FactoredTraining.BuildReorderingModel

http://www.statmt.org/moses/?n=FactoredTraining.AlignWords
http://www.statmt.org/moses/?n=FactoredTraining.BuildReorderingModel


 

14 
Distribution A.  Approved for public release; distribution unlimited. 

AFRL-2022-1213; Cleared 11 Mar 2022  

decoding time. 

3.2.5 EDIN NMT  
The EDIN team focused on developing NMT systems based on the Marian [43] MT toolkit. 
Systems were generally trained for one direction at a time; the exception was Kazakh, where we 
experimented with multilingual Russian, Kazakh, and English systems. Comparing the 
Transformer architecture [37] with LSTM-based models revealed that Transformer models 
produced notably better results, so all evaluation systems and docker containers are based on the 
Transformer architecture. We used six decoder layers, six encoder layers, and eight of each type 
of head. 
For low resource MT, we follow our research group’s guidance [44] in setting a small 
vocabulary, avoiding overfitting through early-stopping on a validation set - even where this 
meant sacrificing some of the data - and by applying the methods described in Section 3.2.8, 
Shared NMT Adaptations. 
We applied multi-agent dual learning [45] over several rounds to make thorough use of avail- 
able monolingual data, as languages like Pashto had little monolingual text available, even on 
the web. Similarly, we performed two rounds of back-translation [46] for Pashto and other 
particularly LRL. 

3.2.6 Query-Guided Translation 
User ratings indicate a preference for summaries that contain query words directly, rather than 
those that contain synonyms of query words. As such, we created a query­guided system takes 
the input sentence along with a query (token n-gram) in target language and generates a fluent 
translation with the query in it. We accomplish this via a simple data manipulation at the source 
side of the training data. Specifically, for each training example we randomly choose an n-gram 
from the target side and append it on the source side with a special token indicating whether the 
input has a query in it. In our experiments, we restrict the system to using maximum of three 
tokens (0 token is equivalent to no­query) in a query, however, the model can generate 
translations with both longer queries and no queries. Because using this method means that query 
words will appear in the output even if the sentence is irrelevant, it was the responsibility of 
CLIR (see Section 3.5, CLIR) to determine when to force their presence. 

3.2.7 Fine Tuning Persian→English for Tweet Translation  
As we had only a small volume of parallel tweets for Persian-English, we relied mainly on back 
translation and the pre/post-processing of the source/target tweets for adapting the system to 
tweet translation. In the pre-processing stage, we first replaced the Twitter user names (handles) 
and Uniform Resource Locators (URL) with placeholders (e.g., HANDLE0, HANDLE1, so on, 
and URL0, URL1, so on). In the post-processing stage, we once again substituted the place-
holders with the original values. 
For fine tuning, we followed the pre-processing steps used in the baseline system on top of 
Twitter-specific pre-processing. To fine tune a model for tweets, we first initialized a baseline 
model and then we fine-tuned it in both directions to forward/back-translate the original tweets 
and use them as additional parallel tweets. We subsequently performed an additional round of 
fine tuning, and then shipped the ensemble of four such fine -tuned models.  
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3.2.8 Shared NMT Adaptations  
In addition to the methods listed individually above, UMD and EDIN shared techniques to adapt 
to the MATERIAL setting and improve quality, especially in low resource settings. Both systems 
used dropout of 0.1 to the encoder and decoder states. We also tie the output weight matrix with 
the source and target embeddings [47], which provides more opportunities to train word 
embeddings and increases copy performance. 

3.2.9 Improving NMT via Back Translation  
We further improve NMT performance through back translation [46]. UMD’s theoretical and 
empirical work [48] shows that iterative back- translation is more effective than dual learning 
[49] despite its relative simplicity. For example, for Kazakh to English translation, we first train 
a bidirectional NMT model on the parallel data, and then use it to back translate the English 
monolingual texts into Kazakh, thereby generating a pseudo-parallel corpus. Finally, we train a 
new NMT model on the 1:1 combination of the parallel and pseudo-parallel data. 

3.2.10   Improving NMT via Pivot-based Data Augmentation 
For LRLs that are closely related to high/medium resource languages, we can augment the 
training data via pivot translation. For instance, Russian is a high resource language related to 
Kazakh. Thus, we first train a Russian-English NMT model using the Workshop on Machine 
Translation (WMT) 2019 [50] parallel data, and then use it to translate the Russian side of the 
Kazakh-Russian parallel data into a pseudo Kazakh-English corpus. 

3.2.11  Stemmed English Systems 
To improve interaction with the IR system, we also provide NMT systems trained on a version of 
the training data where the English side is stemmed with the Porter stemmer from the Natural 
Language Toolkit (NLTK). 

3.2.12    Translating Speech   
To improve NMT for the ASR outputs, we train an additional NMT system for each translation 
direction on data that we process to be more “speech like” by lower casing all text and removing 
punctuation. 

3.2.13     N-best Translation  
In addition to generating 1-best translations using beam search, we also provide the IR system 
with token-level n-best translation options. During beam search for the 1-best translation output, 
we record the top n translation candidates at each time step, as well as their probability according 
to the NMT model (see the example in Figure 6). This is different from the typical n-best 
hypotheses protocol provided by the toolkit which operates on the sentence level. By doing this, 
the resulting CLIR system is more robust to severe errors made by the NMT model, as the IR 
model can discount the words or options for which the NMT model is low confidence. This also 
promotes higher recall by providing IR with a larger set of word translations. 
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Figure 6.  An Example of Token-Level n-best Translations with Probabilities. 
3.2.14   Improving NMT via Ensemble Decoding 
For all language pairs, we train four NMT models with different random seeds and use the 
ensemble model for decoding. 

3.3 Data Collection and Language Identification 
The goal of the IARPA MATERIAL program was to design and build software systems capable 
of finding content in text and speech documents relevant to an input query consisting of a 
domain and an English query string. The system output was an English summary of IR to the 
specified query and domain. However, the text and the speech documents from which the 
information was to be retrieved were in a variety of LRLs. Training SCRIPTS’ tasks on LRL 
speech and text corpora required large   amounts of LRL data in both formats, including 
transcribed speech corpora for speech processing (ASR), parallel corpora for MT and very large 
amounts of text data for every other component. 
However, the small size of the official LRL language packs released by IARPA for the project 
meant that procuring new data sources to train system modules on was essential. Our group 
collected very large amounts of text and speech data from the web in three LRLs for this 
purpose: Swahili, Tagalog and Somali. We also developed new methods of language identi- 
fication to filter both the data we collected and the language packs provided by IARPA. 
To do this collection, we developed a number of new data collection methods, including a 
pipeline to download audio, titles and captions from YouTube videos using keywords extracted 
from the target languages. We also built a tool to scrape top Swahili and Tagalog news texts using 
the Python programming language and the library BeautifulSoup.9 We also leveraged Babler 
[51], a tool created in our Speech Laboratory, which uses Microsoft Bing Search to query blog 
posts and first segment them into sentences, then normalize and tag them with a   language 
identifier. 
We cleaned the data by developing new tools and methods for both language identification and 
POS. We normalized the data by removing all non-language characters, tokenizing sentences 
using the NLTK Punkt tokenizer [52], and removing remaining punctuation.  We also developed 
9https://pypi.org/project/beautifulsoup4/  

https://pypi.org/project/beautifulsoup4/
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language identification tools at the document and sentence level using the majority vote of the 
confidence scores produced by three freely available tools: TextCat,10 Google’s Compact 
Language Detector (CLD),11 and LingPipe.12 We then used code­switching techniques to identify 
switches among two or more languages in text or speech conversation. These were applied to 
Tagalog, Swahili and English corpora to create   anchor words that are unique to a single language 
among a large pool of 134 other languages obtained from a Wikipedia corpus that we curated for 
this work. 
All of the corpora and tools we collected and created were across all teams to support speech 
recognition, morphological analysis, language identification, MT, IR, and summarization. 

3.4 Text Processing 
The focus of the text processing portion of the research is on developing morphological ana- 
lyzers. In this project, we have developed two main capabilities: 1) morphological segmenta- 
tion; 2) and POS tagging. In addition, we provided a text normalization component that does text 
cleanup, transliteration and a number of other operations to control numbers, punctuation marks, 
repetitions and foreign text. 

3.4.1 MorphAGram: Unsupervised Morphological Segmentation  
Throughout the course of the MATERIAL program, we developed MorphAGram, a state-of-the- 
art (SOTA) publicly available framework for unsupervised and minimally supervised morpho-
logical segmentation that is based on AGs [53]. AGs are nonparametric Bayesian models that 
generalize probabilistic context-free grammars (PCFG). An AG is composed of two main com-
ponents: a PCFG and an adaptor. In the case of morphological segmentation, the PCFG is a 
morphological grammar that specifies word structure, while the adaptor adapts the subtrees and 
their probabilities to the corpus they are generating and acts as a caching model. The adaptor 
used in MorphAGram is based on the Pitman-Yor process [54]. 
In MorphAGram, we define several language-independent grammars and introduce different 
learning settings that are either unsupervised or minimally supervised. MorphAGram also allows 
for the automatic tailoring of grammars for unseen languages and for the incorporation of 
linguistic priors, in the form of either grammar definition or linguist-provided affixes. We 
describe the different components and modules of the MorphAGram framework below.  

3.4.1.1 Grammars 
The first step in learning morphological segmentation using AGs is to define the grammars that 
will be used to model word structure. The definition of a grammar relies on three main 
dimensions: 

• Word Modeling: A word can be modeled as a sequence of generic 
morphemes/morphs or as a sequence of a prefix, a stem and a suffix, where 
any nonterminal may be recursively defined to allow for compounding. 

• Level of Abstraction: Basic elements can be combined into more complex 
nonterminals, e.g., Compound, or split into smaller ones, e.g., SubMorph. 

10https://github.com/wikimedia/textcat 
11https://github.com/google/cld3  
12http://www.alias-i.com/lingpipe/  

https://github.com/wikimedia/textcat
https://github.com/google/cld3
http://www.alias-i.com/lingpipe/
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• Segmentation Boundaries: This dimension defines the nonterminals that 
incur splits in the final segmentation output. For example, a word can be 
segmented into a complex prefix, a stem and a complex suffix (three-way 
segmentation), e.g., redis+cover+ing and irre+place+ables, or it can be split 
into a stem and simple affixes (multiway segmentation), e.g., 
re+dis+cover+ing and ir+re+place+able+s. 

Table 2 lists nine grammars and their characteristics. While Morph+SM and PrStSu2a+SM are 
baseline grammars first introduced by [55], the remaining grammars are novel derivations that 
we introduce and include in the MorphAGram framework. Choosing the proper grammar could 
depend on a combination of the target language and the downstream application: certain 
grammars perform better with certain languages, while specific non-terminals or degrees of 
granularity in a grammar may affect the induced segmentation in the down-stream application. 
Though we derived and experimented with grammar variations beyond those outlined in Table 2,  
we eliminated those that generally do not perform well across our development languages of 
English, German, Finnish, Estonian, Turkish and Zulu. Through experimentation, we found that 
the best-on-average grammar across development and test languages was PrStSu+SM. 
Word Modeling: With respect to word modeling, all the listed grammars model the word as a 
sequence of a prefix, a stem and a suffix, except the Morph+SM grammar, in which the word is 
modeled as a sequence of morphs. In addition, in all the grammars denoted by PrStSu, prefixes 
and suffixes are recursively defined as a sequence of affix morphs in order to allow for affix 
compounding. 
Level of Abstraction: The level of abstraction of all the grammars denoted by Co involve a 
high-level nonterminal, Compound that expands to a prefix, a stem or a suffix; those denoted by 
SM involve a low­level nonterminal, SubMorph, that expands to a sequence of characters. These 
nonterminals allow prefixes, stems and suffixes to share common information, which is efficient 
for languages of rich affixation. We use the labels 2a and 2b to denote binary high-level 
nonterminals that combine stems with suffixes (Stem-Suffix) and prefixes with stems 
(Prefix-Stem), respectively. 

Table 2. Grammar Definitions for Modeling Word Structure. Y=Applicable. 
Grammar Word Modeling Compound Morph SubMorph Segmentation Boundaries 
Morph+SM Morph  Y Y Morph 

Simple Prefix+Stem+Suffix    Prefix-Stem-Suffix 
Simple+SM Prefix+Stem+Suffix   Y Prefix-Stem-Suffix 

PrStSu Prefix+Stem+Suffix  Y  PrefixMorph-Stem-SuffixMorph 
PrStSu+SM Prefix+Stem+Suffix  Y Y PrefixMorph-Stem-SuffixMorph 

PrStSu+Co+SM Prefix+Stem+Suffix Y Y Y Prefix-Stem-Suffix 
PrStSu2a+SM Prefix+(Stem-Suffix)  Y Y PrefixMorph-Stem-SuffixMorph 
PrStSu2b+SM (Prefix-Stem)+Suffix  Y Y PrefixMorph-Stem-SuffixMorph 

PrStSu2b+Co+SM (Prefix-Stem)+Suffix Y Y Y Prefix-Stem-Suffix 

In addition to defining the main grammar, each production rule has to be associated with three 
parameters; θ, a and b, where θ is the probability of the rule in the generator, while a and b are 
the parameters of the Pitman-Yor process [56]. If not otherwise specified, the parameters    can 
either be sampled by the learner or set to default values prior to running it. Specifically, setting a 
= 1 means the underlying non-terminal is not adapted and is therefore sampled by the general 
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Pitman-Yor process; setting a = 0, meanwhile, indicates that the non-terminal adaptor is a 
Dirichlet process [57] with the concentration parameter b. When a non-terminal  is adapted, any 
sub-tree that can be generated using the initial rule of that non-terminal is considered a potential 
rule in the grammar. Otherwise, the non-terminal expands as in a regular PCFG, as outlined in 
[53] and [58]. 

3.4.1.2 Training 
The two main inputs to the learner are the grammar (including any adaptation information), and 
the vocabulary of the target language (represented as a list of unique, unsegmented words). If the 
size of the vocabulary is relatively large (e.g., more than 50,000 words), we recommend 
providing only the most frequent words in the target language, as the segmentation of the 
remaining words can be obtained through inductive learning. In the following section, we present 
the three types of learning settings used to train the model:  Standard, Scholar-Seeded and 
Cascaded. 
Standard Setting. In this setting, we train a morphological-segmentation model using a 
language-independent grammar. This type of model is not seeded with knowledge about the 
underlying language nor will it model language-specific characteristics. This setting is typically 
used when processing an unseen language or a language whose description is inadequate or 
lacking, as in the case of some low-resource and endangered languages. 
Scholar­Seeded Setting. In this setting, we seed the model with scholarly knowledge compiled 
from already existing language resources to create a more informed morphological- 
segmentation model. This scholar-seeding approach leverages the fact that for many languages, 
relatively extensive descriptions of their morphology - such as context-free listings of affixes—
are available through resources such as the Wiktionary13 and other online grammar references. 
AGs are a framework that is particularly well suited for applying scholar- seeded knowledge, as 
AGs take as input hand-crafted grammars. This allows us to insert affixes into these grammars in 
the positions where the affixes are generated, while still allowing the grammars to generate new 
affixes in order to compensate for the incomplete listing we expect to find in the scholarly 
resources. Such affixes can be incorporated as either adapted or unadapted nonterminals. With 
lower quality affixes in particular, it is advisable to use them as unadapted in order to prevent the 
sampler from spreading wrong information by generating multiple instances of the 
corresponding subtrees. 
Cascaded. The Cascaded setting approximates the effect of the Scholar-Seeded setting, but in 
language-independent manner through the use of self-training. The Cascaded setting relies on 
two rounds of learning. In the first round, we train a morphological-segmentation model using a 
high precision grammar as we did in the Standard setting, and extract the list of the most 
common affixes from the segmentation output. Next, we seed the list of extracted affixes into the 
grammar of interest as unadapted nonterminals, using a similar seeding approach to that used in 
the Scholar-Seeded setting. We then train another morphological-segmentation model using the 
augmented grammar in a second round of learning. The base grammar selected in our Cascaded 
setting is chosen independently of the language in order to derive a language-independent 
morphological segmentation. We do this by optimizing on precision (rather than high F1-score) 
so that we can be certain of having true affixes in the grammar, rather than having as many 
13https://en.wiktionary.org/wiki/Wiktionary:Main_Page 

https://en.wiktionary.org/wiki/Wiktionary:Main_Page
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affixes as possible (including some that are incorrect). Therefore, we choose the 
PrStSu2b+Co+SM grammar as it achieves the highest average precision when evaluated on our 
development languages. To determine the optimal number of affixes   for the Cascaded setting, 
we also ran experiments in which we extracted and seeded n affixes, where n  {10, 20, 30, 
40, 50, 100}leading to the discovery that n = 40 yields the best average performance across the 
development languages - specifically, English, German, Turkish, Finnish, Estonian and Zulu. 
Accordingly, we set n = 40 in all our Cascaded setups. Figure 7 illustrates the Cascaded learning 
setting, where the prefixes re, im and ex and the suffixes er and s are generated from a first round 
of learning using the PrStSu2b+Co+SM grammar and seeded into the PrStSu+SM grammar as 
PrefixMorph and SuffixMorph production rules, respectively, for a second round of learning. 

Figure 7.  An Example of the Cascaded Setting. 
Where some English Affixes are Extracted from an Initial Round of Learning Using the PrStSu2b+Co+SM 

Grammar and Seeded into the PrStSu+SM Grammar for a Second Round of Learning. 

3.4.1.3 Including Linguistic Priors 
MorphAGram allows the use of linguistic priors to enhance morphological segmentation in a 
minimally supervised manner. Below we introduce two methods of including linguistic priors, 
specifically grammar definition and linguist­provided  affixes. 

3.4.1.4 Grammar Definition 
A language specific grammar is tailored for the language of interest by modeling specific 
morphological phenomena. While the grammars described in Table 2 are intended to be generic 
and to describe word structure in any language, we hypothesize that imposing language specific 
constraints will be more efficient. Therefore, we investigate the incorporation of linguistic priors 
in the form of grammar definition, where we model   language specific morphological phenomena 
as part of the grammar. For example, we utilized the best on average performing grammar 
PrStSu+SM with Japanese as a case study using the following specifications: 1) A word has a 
maximum of one one-character or two-character prefix; 2) A stem is recursively defined as a 
sequence of morphs in order to allow for stem compounding; 3) Characters are separated into two 
groups, Kana (Japanese syllabaries)   and Kanji (adapted Chinese characters); SubMorph 
represents a sequence of characters that  is either in Kana or Kanji. 

3.4.1.5 Linguist-Provided Affixes 
In this approach, an expert in the underlying language compiles a list of carefully selected affixes 
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and seeds it into the grammars prior to training the morphological-segmentation model using the 
Scholar­Seeded learning setting. Because they are high quality, the affixes are seeded as adapted 
non-terminals to encourage the instantiation of the corresponding subtrees. Here we use 
Georgian and Arabic as two case studies for the use of linguist-provided affixes. In the case of 
Georgian, a linguist who is an expert in Georgian as a second language, compiles a list of 119 
affixes14 that are collected from the leading reference grammar book [59]. For Arabic, a compu-
tational linguist who is a native speaker of Arabic compiles a list of 33 affixes.15 

3.4.2 Unsupervised POS Tagging via Cross-lingual Projection  
Unsupervised cross-lingual POS tagging via annotation projection uses available POS tags from 
a source language to project onto a target language using word­level alignments. The projected 
tags then form the basis for training a POS model for the target language. The overall pipeline is 
illustrated in Figure 8 with the left hand illustration outlining the word-based alignment process 
and the right hand illustration showing the stem-based alignment process. 
 

Figure 8.  The Overall Pipeline for Unsupervised Cross-lingual POS Tagging via Alignment 
and Projection: Word-level Alignment (left); Stem-level Alignment (right). 

3.4.2.1 Cross-lingual Projection via Word/Stem Alignments 
We have developed a robust approach for standardizing the process of annotation projection by 
exploiting and expanding upon current best practices, in order to produce reliable annotations  
14https://github.com/rnd2110/MorphAGram/blob/master/data/georgian/data/elk.txt 
15https://github.com/rnd2110/MorphAGram/blob/master/data/arabic/data/elk.txt  

https://github.com/rnd2110/MorphAGram/blob/master/data/georgian/data/elk.txt
https://github.com/rnd2110/MorphAGram/blob/master/data/arabic/data/elk.txt
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that improve the quality of the training data for the target language POS tagger. Our approach 
includes: 1) the use of bidirectional alignments; 2) coupling token and type constraints on the 
target side; 3) scoring the  annotated sentences for the selection of reliable training instances 
and 4) use both word-based and stem-based alignments. Below we describe the steps for cross- 
lingual projection used to build the training data for the POS tagging model. 
White Space Tokenization.  Starting with a sentence-aligned parallel text, we first perform white 
space tokenization on both the source and the target sets by separating punctuation marks and 
symbols into standalone tokens. We use Stanza16 [60] to tokenize five of our six experimental 
source languages – specifically English, Spanish, French, German and Russian. For enhanced 
performance on Arabic white space tokenization, we use MADAMIRA17 [61]. In order to keep 
our approach fully unsupervised, we tokenize the target language by applying a large set of 
language independent (LI) regular expressions using built in features of the Python programming 
language that can help recognize punctuation marks and symbols. 
Word­Level Alignment. During OP1, we use the sentence-aligned parallel data to train bidi- 
rectional word-alignment models by aligning both the source and target texts at the word level in 
both directions. We experiment with two language-independent unsupervised word-level align-
ment systems, namely GIZA++18 [62] and Fast_Align19 [63]. As GIZA++ consistently yields 
better results, we use it to align all of our target-source language pairs. Though our aim is to 
generate high­quality, one­to­one word­level alignments to use as the basis for annotation 
projection, word­level alignments suffer from non­precise translations, and there is no one­to­ 
one correspondence between the words across parallel texts—this results in null, one-to-many 
and many-to-one alignments. To address this, we eliminate sentences of more than 80 tokens and 
only consider those instances where bidirectional word alignments (that is, one-to-one word 
alignments in both the source-to-target language and target-to-source language) exist. We also 
exclude alignments where the average of the bidirectional alignment probabilities is below a 
given threshold, α. 
Stem­level Alignment.  Word structures with many affixations increase the ratio of word types to 
word tokens, resulting in sparse alignment models and incomplete projections that form null 
assignments on the target side. These null assignments result in learning gaps for the POS model 
or scores too low for the underlying sentences to be used as training instances, reducing the 
overall quality of the POS model. As an example, we take Biblical verse Matthew 15:35, “He 
commanded the multitude to sit down on the ground,” and generate the word-alignment models 
for Arabic and Amharic trained on the New Testament. As shown in Figure 9, two Arabic- 
Amharic pairs are not aligned, resulting in null assignments. Using the stem instead of the word 
as the core unit of abstraction is more productive in such instances, as the stem is usually shared 
by all the members of a paradigm, minimizing misalignment. Figure 9b shows that stemming the 
Arabic and Amharic texts results in complete one­to­one alignments and projections.  Assuming 
that the source language is high resource and has an off-the-shelf stemmer available, we can use  
16https://github.com/stanfordnlp/Stanza  
17https://camel.abudhabi.nyu.edu/madamira 
18http://www.statmt.org/moses/giza/{\protect\protect\protect\edefTU{TU}\let\enc@update\relax\edefTimesNewRo
man(0){TimesNewRoman(0)}\edefm{m}\ edefn{n}\protect\xdef\TU/TimesNewRoman(0)/ m/n/7{\TU/TimesNew 
Roman(0)/m/n/ 10}\TU/TimesNewRoman(0)/m/n/7\size@update\ enc@update\itshapeGIZA++}.html 
19https://github.com/clab/fast_align 
  

https://github.com/stanfordnlp/Stanza
https://camel.abudhabi.nyu.edu/madamira
https://camel.abudhabi.nyu.edu/madamira
http://www.statmt.org/moses/giza/%7b/protect/protect/protect/edefTU%7bTU%7d/let/enc@update/relax/edefTimesNewRoman(0)%7bTimesNewRoman(0)%7d/edefm%7bm%7d/%20edefn%7bn%7d/protect/xdef/TU/TimesNewRoman(0)/%20m/n/7%7b/TU/TimesNew%20Roman(0)/m/n/%2010%7d/TU/TimesNewRoman(0)/m/n/7/size@update/%20enc@update/itshapeGIZA++%7d.html
http://www.statmt.org/moses/giza/%7b/protect/protect/protect/edefTU%7bTU%7d/let/enc@update/relax/edefTimesNewRoman(0)%7bTimesNewRoman(0)%7d/edefm%7bm%7d/%20edefn%7bn%7d/protect/xdef/TU/TimesNewRoman(0)/%20m/n/7%7b/TU/TimesNew%20Roman(0)/m/n/%2010%7d/TU/TimesNewRoman(0)/m/n/7/size@update/%20enc@update/itshapeGIZA++%7d.html
http://www.statmt.org/moses/giza/%7b/protect/protect/protect/edefTU%7bTU%7d/let/enc@update/relax/edefTimesNewRoman(0)%7bTimesNewRoman(0)%7d/edefm%7bm%7d/%20edefn%7bn%7d/protect/xdef/TU/TimesNewRoman(0)/%20m/n/7%7b/TU/TimesNew%20Roman(0)/m/n/%2010%7d/TU/TimesNewRoman(0)/m/n/7/size@update/%20enc@update/itshapeGIZA++%7d.html
https://github.com/clab/fast_align
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the Snowball Stemmer [64] as part of NLTK20 [65]—as we do MADAMIRA. At the same time, 
we run MorphAGram (see Section 3.4.1, MorphAGram: Unsupervised Morphological 
Segmentation) in the Cascaded setting using two rounds of learning - first training a segmenta-
tion model using the language- independent high precision grammar PrStSu2b+Co+SM to obtain 
a list of affixes, and then seeding these affixes into the best performing language independent 
grammar, PrStSu+SM, for the second round. As discussed in Section 3.4.1, MorphAGram: 
Unsupervised Morphological Segmentation, both PrStSu2b+Co+ SM and PrStSu+SM model the 
word as a sequence of prefixes, a stem and suffixes, where the prefixes and suffixes are 
recursively defined in order to model multiple consecutive items. This process is suitable   for 
morphologically complex languages. 

 
Figure 9.  An Example of Alignment and Projection from Arabic to Amharic. 

The alignment models are trained on the New Testament. Arabic reads right to left. 

Source Language POS Tagging.  Since cross­lingual projection requires a common POS tagset 
for all languages, we use the universal POS tagset of the Universal-Dependencies (UD) project,21 
which consists of 17 universal POS tags. After converting the output of the Penn Treebank 
(PTB)22 tags into their universal cognates, we once again use Stanza to tag the source-side text—
except in the case of Arabic, for which we apply MADAMIRA. However, since MADAMIRA 
was not designed to follow the UD guidelines, we correct the mapped Arabic analyses of the most 
frequent 2,500 POS-lemma pairs by manually selecting   the most likely analysis for each pair. 
POS Projection using Token and Type Constraints. Based on the mapping generated by the 
word-level alignments, we use token and type constraints first introduced by [66] to project the 
POS tags from the source onto the target language. Type constraints operate by defining the set 
of POS tags a word type can receive, which in a semi-supervised learning setup can be obtained 
from an annotated corpus [67] or from another resource that can serve as a POS lookup such as 
Wiktionary [68], [66]. To extract type constraints in an unsupervised fashion, we follow the 
approach proposed by [69], in which we accumulate the counts of the different source-side token 
POS tags that align with the target-side tokens of that word type, in order to define a tag  
20https://www.nltk.org  
21https://universaldependencies.org/u/pos  
22https://catalog.ldc.upenn.edu/LDC99T42 

https://www.nltk.org/
https://universaldependencies.org/u/pos
https://catalog.ldc.upenn.edu/LDC99T42
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distribution for each word type on the target side. The POS tags whose probabilities are equal to 
or greater than some threshold, β, then become the type constraints for  the underlying word type. 
For token constraints, every target-side token gets assigned the POS tag of its corresponding 
source-side token. 
In combining token and type constraints, we take a slightly different approach than [66] and [69]. 
Specifically, if a token is not aligned or its token constraint does not exist in the underlying type 
constraints, we give the token a NULL tag and it becomes unconstrained. Otherwise, the token 
constraint is applied and is used to represent the projected tags. In contrast to the previous work, 
we also do not use type constraints to impose restrictions while training the POS model, since 
this would restrict the performance of our neural architecture. Instead, we apply token and type 
constraints on the labeled stems on the target side when using stem-level alignments. Since we 
train the ultimate POS model on the word level, however, we ultimately replace each target stem 
with its corresponding word, and assign the word the stem-based POS tag. 
Selection of Training Instances.  In supervised learning, adding more training instances generally 
improves the performance of the system until saturation is reached. For unsupervised  learning, 
adding more training instances can introduce noise that actually limits the quality of the new 
model. As a result, we choose to score the target sentences based on their “anno tation” quality 
prior to training a POS tagger using the projected tags as labels, and exclude  the ones whose 
scores are below a threshold, γ. We define a sentence score as the harmonic  mean of its density 
Sd and alignment confidence Sa, where Sd is the percentage of tokens with projected tags, and Sa 
is the average alignment probability of those tokens. 

 
 
 

Filtering out sentences with low alignment confidence is crucial for training a high quality 
model, as demonstrated by previous research [70].  However, we add a density factor to this 
process in order to maximize the benefit our neural architecture derives from longer contiguous 
labeled sequences. 

3.4.2.2 POS Tagging Models 
We developed two POS tagging models: 1) an open-source, SOTA neural POS tagging model; 
2) a POS tagger based on Averaged Perceptron, which is part  of the SCRIPTS pipeline. 
Neural POS Tagging. The architecture of our POS tagger is a bidirectional long short-term 
memory (BiLSTM) neural network [71]. BiLSTMs have been widely used for POS tagging, 
[72], [73], [74], [75], [76] and other sequence­labeling tasks, such as named entity recognition [77]. 
The input to our BiLSTM model is a sentence that has been automatically labeled through 
alignment and projection. The word representation, meanwhile, is the concatenation of four types 
of embeddings: 

1. Pre-trained contextualized word embeddings 
2. Randomly initialized word embeddings 
3. Affix embeddings of 1, 2, 3, and 4 characters 
4. Word-cluster embeddings 

For the pre-trained contextualized word embeddings (1), we use the final layer of the 
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multilingual cross-lingual LM (XLM)­RoBERTa (XLM­R) LM [78], relying on the average of the 
embedding vectors of the first and last sub-tokens of each word to represent its pre-trained 
contextualized embeddings, which yields better performance than using only the embeddings of 
the first or longest one token. To apply our neural architecture to a test language not represented 
in the XLM­R model, it is possible to train a custom XLM transformer-based language model23 if 
monolingual texts and suitable computational resources (computing power and training time) are 
available—thus our architecture can be applied to languages beyond those present in the XLM­R 
model. The randomly initialized embeddings (2) rely on the target side of the parallel data and 
are learned as part of the training phase. Coupling randomly initialized and pre-trained 
embeddings is essential when the training data and the pre-trained embeddings are from different 
domains; in our learning setup, for example, we use the Bible text for training, while the XLM­R 
model is trained on texts from Wikipedia24 and the CommonCrawl corpus. For affix embeddings 
(3), we use randomly-initialized prefix and suffix n-gram character embeddings, where n is in 1, 
2, 3, 4.  Our experiments show that affix embeddings are more efficient for POS tagging than 
character embeddings across an entire word. For word cluster embeddings (4), we use 
hierarchical Brown clustering [79], producing clusters for each target language using Percy 
Liang’s implementation25 [80] on a monolingual text that combines the Wikipedia and Bible 
texts of the target language. Here, the Biblical text is white-space tokenized, while the Fairseq 
library26 is used to handle the scraping and cleaning of the Wikipedia data. For each word, we 
then concatenate the main cluster (that is, the binary representation of the corresponding leaf 
node) with all of its ancestors (the prefixes of the binary  representation) in order to generate the 
embedding vector that represents the clustering information for the underlying word. This allows 
us to use the hierarchical clustering information   without committing to a specific granularity 
level—a particular advantage where high level  clusters may be insufficient and lower ones may 
reflect over clustering. 
We compute the output using softmax activation on top of the BiLSTM encoding layer. Since 
some words receive null assignments, however, we set the value of the output neuron corre- 
sponding to the null tag to so that it does not contribute to the calculation of the softmax 
probabilities; this prohibits the model from decoding null values. Moreover, we mask those 
words with null assignments when computing the network loss. 
POS Tagging using Averaged Perceptron. An averaged perceptron is a basic version of a neural 
network, in which inputs are classified into several possible outputs based on a linear function. 
The outputs are then combined along with a set of weights derived from the feature vector that 
constitutes the “perceptron.” Because good weight values will not change often, however, 
tracking the average values of the weights instead of the actual weight values after each learning 
pass is a preferred strategy. Averaged-perceptron models are suited to learning linearly separable 
patterns and have proved successful for fast and efficient sequence­tagging tasks, such as POS 
tagging. We use the averaged-perceptron implementation by Mohammad Rasooli.27 We adapt 
beam search [33], [34] for the calculation of the best POS-tagging sequence, in which we 
produce a ranked list of the top POS tags for each word in the sequence. 
 

23
https://github.com/facebookresearch/XLM 

24https://wikipedia.org 
25https://github.com/percyliang/brown-cluster  
26https://github.com/pytorch/fairseq 
27https://github.com/rasoolims/SemiSupervisedPosTagger 

https://github.com/facebookresearch/XLM
https://wikipedia.org/
https://github.com/percyliang/brown-cluster
https://github.com/pytorch/fairseq
https://github.com/rasoolims/SemiSupervisedPosTagger
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3.4.2.3 Multi-Source Projection and Decoding 
The availability of parallel corpora that involve multiple languages encourages the use of 
multiple source languages for cross-lingual POS tagging via alignment and projection [81], [82], 
[83]. For example, the Bible [84] has complete translations in 484 languages and partial 
translation in 2,551 languages, which meets our low resource assumptions, as it is small in size 
and out-of-domain with respect to the evaluation sets. Here we introduce two multi-source 
approaches: 1) multi-source projection, where we combine tags projected from multiple source 
languages onto the target side prior to   training the POS model; and 2) multi-source decoding, 
where we combine the tags produced   by multiple single-source models to tag a given text in the 
target language. 
Multi­source Projection. In this approach, we draw on the work of [81] and [82] to generate  a 
projection from multiple source languages by using parallel corpora involving the target 
language and at least two others to derive multiple POS assignments on the target side. We begin 
by independently conducting alignment and projection—along with coupling token and type 
constraints - between each source language and the target one. This results in mul tiple POS 
assignments for the target text, where a token might receive one or more POS tags, including 
NULL. Then we apply a voting mechanism for each token in order to select the most likely 
correct POS tag out of those that have been assigned. The resulting annotations are then used to 
train a POS model, where the high scoring sentences are selected as training  instances. We 
develop two voting mechanisms for the selection of the final POS assignment:  1) maximum 
voting and 2) Bayesian inference. In maximum voting (1), we take each target token and assign 
the projected tag that receives the maximum voting across the source languages, weighted by the 
alignment probability that corresponds to the underlying {token,   source language} pair. We 
denote this voting setup by MPwmv. In the Bayesian inference setup (2), we construct confusion 
matrices to identify which sources to rely on for specific sets of tags (MPbys). We also conduct 
weighted Bayesian inference, where we combine both  mechanisms in hybrid setups (MPwbys). 
Multi­source Decoding. Since we develop multiple POS models that correspond to different 
source languages, we can create a classifier ensemble that votes among the outputs of the dif- 
ferent models on the token level. The main difference between this approach and multi-source 
projection is that, unlike the voting approach used in multi­source projection, the voting takes 
place as part of the decoding process after applying the models on some given text in the target 
language. Here we once again develop 1) maximum voting; and 2) Bayesian inference voting for 
the selection of the final POS assignment. For the former, we combine the tagging outputs of 
multiple POS models through weighted maximum voting that is similar to the MPwmv setup. 
Here, the weight is defined using two different techniques: alignment­based similarity (MDwmv_a) 
and decoding probability (MDwmv_d). Bayesian inference is similarly applied as for multilingual 
projection case, but instead of measuring the reliability of each source language for the 
assignment of each POS tag before training the POS model, we measure the reliability of each 
single-source model for the assignment of each POS tag after decoding the underlying text in the 
target language. We denote this setup by MDbys. We also conduct weighted Bayesian inference, 
where we combine both mechanisms in hybrid setups (MDwbysa|d ).  
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3.4.3 SCRIPTS Normalization 
SCRIPTS Normalization28 is a normalization system that does text cleanup, transliteration and 
anumber of other operations to control numbers, punctuation marks, repetitions and foreign text.  
The system currently supports the following set of languages: English, Swahili, Tagalog, Somali, 
Lithuanian, Bulgarian, Pashto, Farsi, Kazakh and Georgian. The details of the system can be 
found in Appendix B. 

3.5 CLIR 
CLIR is accomplished by combining a set of sequentially run components that carry out a 
number of steps in order to support search across foreign language documents of various 
formats. First, indexing is performed on the following types of source documents: text docu- 
ments in their original (“foreign”) language, ASR transcripts of spoken foreign content, and 
alternative foreign words and phrases recognized by KWS (indexing). English indexes for both 
stems and words are also created using translation results for 1- best MT of text and speech, and 
translation probabilities are also stored for use with probabilistic structured queries and the 
NNLTM (translation). Both queries and documents are further enhanced using some 
combination of stemming, stopword removal, and query or document expansion, and those 
results are also indexed (enhancement). Query processing is also performed as a pre-processing 
step (query processing). The results of these steps are then used as input to several ranking 
methods to rank order documents (ranking). Different choices across these components result in 
diverse ranked lists of documents; these can then be combined into a single ranked list (late 
fusion). 
During the BP (but not during OP1 or OP2), domain and language filtering were then applied 
(filtering). Finally, tuned cutoffs are applied to identify the most highly ranked documents, 
which are returned as the result set (cutoffs). Each of these components are discussed below. 

3.5.1 Translation  
We applied six techniques for crossing the language barrier. Query translation  uses one-best MT 
to substitute a foreign language query for the original En glish query. Document translation does 
the reverse, substituting an English translation for a foreign language document. We also tried 
three complementary techniques for generating  multiple alternative English translations of 
document terms: probabilistic structured queries,  contextual lexical translation, or n-best MT. 
Our sixth technique used multi lingual embeddings to represent queries and documents in a 
common feature space. 

3.5.1.1 Query MT 
Early experiments with dictionary­based query translation in the BP yielded low quality results, 
leading us to focus future query translation efforts on MT systems. In general, MATERIAL 
queries were not well­formed linguistic expressions, limiting the utility of the MT LMs we had 
available. Although we retained  the capability to generate MTs of queries in the final system, we 
rarely made  use of that approach in the submitted system combination results. 

3.5.1.2 Document MT 
By contrast, using MT approaches for document translation was quite successful. Both the  
28https://github.com/rnd2110/SCRIPTS_Normalization  

https://github.com/rnd2110/SCRIPTS_Normalization
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MATERIAL queries and the documents were available in English, a language for which very 
strong LM are available. We ultimately generated three translations for every document: one 
using SMT and two using NMT. In OP2, we generated specialized translation systems for 
spoken content that had been trained without punctuation in order to better match the output of 
the ASR system, which also lacked punctuation. Rather than combining the results of the three 
translation systems into a single translation, however, we used each one with a separate retrieval 
system, relying on late fusion to generate multiple translation benefits. One particular advantage 
of MT output over the other approaches we investigated is that word order is estimated; there-
fore, we always used MT when our query processing involved  phrase matching. 

3.5.1.3 N-best Document MT 
MT systems generate their best guess of what  word should be inserted at each point in a 
translation. At the same time, all modern MT systems - whether statistical or neural - maintain 
internal representations of uncertainty that   can be used to generate alternative translations. These 
alternatives can be generated either as  alternative term sequences or as alternative terms at each 
point in the 1­best term sequence.   Gaining benefit from alternative term sequences in an IR 
system is difficult, however, because the alternative sequences often have quite a small impact 
on meaning (e.g., substituting a for an in a 20-word sentence), while IR is concerned with 
possible substantive differences (e.g., substituting insect for travel when translating the word for 
fly).   A better approach, then, is to generate alternative terms at each point in the sequence. We 
initially implemented this as a beam search in our SMT system and in one of the N MT systems; 
the benefits proved so substantial that we subsequently implemented it in our second NMT 
system as well. To use these multiple translation alternatives, we simply estimate the expected 
frequency of each English term in a foreign language document as the sum over the document 
language term instances of the probability that document language term would translate to the 
English term of interest, as shown in Equation 5. 

 
 

 

where tf(t, d) is the expected value of the frequency of English term t in document d, tf (k, d) is 
the actual frequency of foreign term k in document d, T (t) is the set of known foreign terms that 
can be translated as t, and p(t k) is the probability that foreign term k would be translated to 
English as as t. Fortunately, this computation is fairly efficient because we can limit the beam 
width and use an index structure to focus the computation on cases that have a non-zero 
probability of translating to a query term. 

3.5.1.4 PSQ 
NMT systems rely on LM in both the source and target languages, whereas SMT systems require 
an LM for only the target language. While a strong LM generally improves the accuracy of the 
translation results, information retrieval’s focus on selection means that rare terms have an 
outsized influence on IR results.29  Of course, because rare terms appear infrequently in the 
training data, they tend to be the least well modeled by LM; as a result we also want translation 
models available that do not rely on LM. An SMT system is well suited to this task, especially  
29For example, an emphasis on rare terms have been hand-engineered into the BM25 and Query Likelihood ranking  

models that are described in Section 3.5.5, Ranking.  
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since we can leverage multilingual dictionaries (e.g., Panlex) to mitigate sparsity effects for at 
least some of the words that are rare in running text. The resulting computation is identical to the 
way in which n-best MT is used - that is, using the PSQ [85] upon which n-best MT is actually 
based. 

3.5.1.5 Contextual Lexical Translation 
Document context is an important feature leveraged by NMT systems when creating translations 
of document terms. In a typical sequence­to­sequence (S2S) model, for example, target words 
are generated in a sequential manner using the source document context and the previous target 
words. (NNLTMs) [2], however, produce word translations conditioned only on the source word 
context, which is then used to perform CLIR. The NNLTM is trained using aligned sentences 
from parallel text to generate the translation probability for each word in a way that models the 
context of that word on the source (foreign) but not the target (English) side. Specifically, for an 
aligned word pair , it uses a contextual window of k terms around the source word fi to 
predict the target word ej. NNLTM consists of an embedding layer that maps  the 2k + 1 source 
words to separate embeddings which are then concatenated and fed to a single feed-forward 
layer. The final layer then produces a softmax distribution of contextual probabilities P (ej 
fi−k..fi..fi+k) over the target vocabulary and the model is optimized using cross-entropy loss using 
one-hot representation for the target word ej. 

3.5.1.6 Early Fusion 
Generating translation probabilities from SMT and NMT systems both with and without source 
and/or target language context produces a diverse list of translation alternatives which can be 
combined to produce an aggregated list of alternatives that can be fed into a CLIR system. We 
refer to this form of evidence combination, which involves combining the outputs of different 
systems before retrieval, as early fusion. To conduct early fusion, we make use of CombMNZ 
[86], a widely used data fusion method which utilizes the scores of the documents returned by 
two or more systems. As detailed in Section 3.5.6, Late Fusion, CombMNZ uses the sum of 
document scores produced by different retrieval systems and multiplies it by a parameter nd which 
denotes the number of systems that mark the document d as relevant to the query: 

 
 
 

As a result, CombMNZ promotes the documents which are returned by multiple systems and can 
be expected to be especially helpful in our setup. Unlike post-retrieval combination, in-retrieval 
system combination approach directly combines word translation probabilities at  query time. 
Implementing this is straightforward in our setup, because we have two transla tion approaches, 
each of which provides n-best translations with assigned probabilities. For  this, we use a variant 
of CombMNZ for the combination of context­dependent and context­ independent translation 
probabilities: 
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In the preceding equation, scsi (w) is the probability of the translation of the word w by the ith 
system, and nw is a count of translation evidence sources that include the word. This helps in 
augmenting the computed weight for a translation that occurs in multiple sources. The combined 
weights are then used in the retrieval model explained below. 

3.5.1.7 Multilingual Embeddings 
Like all embeddings, cross-lingual or multilingual embeddings provide a way to cross the 
language barrier through the use of shared vector space in which  the query and the document 
terms are mapped together such that terms with similar meanings  have a similar representation. 
Below we describe the methods for creating embeddings that   we experimented with in our 
ranking models: 

• fastText. fastText [87] models learn monolingual representations for 
character n-grams from large, unlabeled corpora. These monolingual 
embeddings are converted to cross- lingual embeddings using an alignment 
approach known as Procrustes [88]. The idea is to align the vector spaces of 
the two languages closely using a bilingual dictionary consisting of pairs of 
lexicons. The entries in the lexicons are the anchor points; the Procustes 
approach involves bringing the representations of terms in the dictionary 
close together in the shared vector space. The cross-lingual embeddings for 
each term,    however, does not depend on its context, so only one 
representation is generated. 

• mBERT.  mBERT is a multilingual extension of the BERT model [89] that 
generates a contextualized representation of terms learned from a large 
amounts of text in multiple languages. mBERT uses a shared encoder 
consisting of several layers of multi-head self attention, commonly known 
as a transformer. mBERT is trained in a self-supervised manner using two 
pre-training tasks: 1) masked language model (MLM) which involves 
randomly masking tokens in a sentence and using the unmasked tokens to 
predict the masked tokens, and 2) next sentence prediction (NSP), which 
involves predicting whether a given sentence follows the previous sentence 
or not. These two tasks help in generating a representation of terms that is 
context-dependent. 

• XLM-R.  XLM­R [78] is another BERT-style model that shares the same 
design prin ciple as mBERT. Two main differences between XLM­R and 
mBERT are 1) increased  amounts of training corpora, and 2) large 
vocabulary size. XLM­R is available in two variants, a base version 
consisting of 12 layers of transformers and large version consisting of 24 
layers of transformers. Similar to mBERT, XLM­R embeddings are 
generated using MLM as the pretraining task. 

• Aligning Word Embedding Spaces of Multilingual Encoders 
(awesome)-align.  awesome-align  proposed by Dou and Neubig [90] seeks 
to fine-tune mBERT and align the contextual embeddings, while also 
improving performance on the task of word-pair alignment in parallel 
sentences using these embeddings. We find that after performing this 
fine-tuning, the cosine similarity of synonyms is improved across language 
pairs.  
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3.5.2 Enhancement  
Query and document representations can be enhanced in several ways before perform-
ing ranking. Here we describe stopword removal, stemming, to techniques for query  
expansion and two techniques for document expansion. 

3.5.2.1 Stopword Removal 
In some cases, we removed stopwords prior to indexing for efficiency reasons. Because as 
expected we found little effect on retrieval effectiveness from different   stopword lists, we 
ultimately selected the Indri stopword list. 

3.5.2.2 Stemming 
English stemming of MT results generated both small improvements in average   ranking quality 
and resulted in greater diversity when results were obtained with and without  stemming. We also 
ran MT systems that were trained to generate stems directly; because these were less sparse in 
MT training, they helped contribute to diversity, but may have suffered more from ambiguity in 
LM. We also experimented with stemming in the foreign language using segmentation from the 
text processing team, but found the improvements it offered unreliable. We also trained a range 
of PSQ matrices, with stemming on both sides (foreign and English), one side (foreign or 
English) or neither side. Stemming on English alone proved to be the best option. 

3.5.2.3 Blind Relevance Feedback for Query Expansion 
We used blind relevance feedback to expand flattened versions of the original English query. For 
this process, we indexed The New York Times (NYT) from 1987-2007, which contains 1.9M 
documents and 1B terms in total [91].  In OP2, we augmented this with the CommonCrawl 
News collection for 2018-2019, which  yielded 5.3M documents and 3B terms in total. We 
indexed these collections using Indri, and the default Indri normalization, tokenization, and 
stopwords removal settings. A configurable number of terms were then selected from a configure-
able number of highly ranked documents and used to expand the queries. As expected, this 
approach worked well for conceptual queries. 

3.5.2.4 Embedding-based Query Expansion 
An alternate query expansion approach is to project them onto a vector space and find the 
neighboring terms that are the closest to the encoded query vector. We achieve this by using 
word-embedding models that generate a distributed representation for every term in the query 
into a low dimensional vector space. For a given MATERIAL query, we encode the individual 
query terms separately using the Word2Vec [92] embedding model and use the average of the 
query vectors to produce an aggregated vector. This aggregated vector is then used to find the top-k 
closest neighboring terms in terms of the  cosine similarity. These top-k terms are used to expand 
the query, with the cosine similarity  indicating the corresponding weight in the retrieval models 
for CLIR. 

3.5.2.5 Doc2query 
Doc2query [93] is a SOTA model added in OP2 that uses BERT as a generative model for 
document expansion. For each document in the collection, the BERT model first predicts a list of 
queries that might be used to search the document and then concatenates these queries with the 
document. These new concatenated documents are then indexed and we search inside of this 
newly built index. As the lengths of the documents in the collections are modified, we follow the 
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setup used in the original Doc2Query paper and use the collection with BM25 ranking, which we 
tune to optimally work with the lengths of the newly created documents. 

3.5.2.6 DeepCT 
Like Doc2query, DeepCT [94] is a SOTA model added in OP2 that alters  the document repre-
senttation prior to BM25 ranking; in this case, however, the BERT model   predicts the optimal 
frequency of each term in each document, and then alters the index to use that frequency. This is 
done by creating a new document in which each word is repeated  the optimal number of times. 
Unlike Doc2query, DeepCT doesn’t expand the document by any words which are not in the 
original document. These newly built documents are then indexed and used in a search. 

3.5.3 Indexing 
We construct indexes to enable efficient access to the term and document features  used in the 
ranking component. 

3.5.3.1 Indri 
Starting in the BP, we used Indri information retrieval system [95] both to index documents in 
the foreign language and after MT. The Indri index supports ranking using both the full Indri 
query language and provides an Application Programming Interface (API) for use with other 
ranking systems. Character normalization was typically performed prior to indexing, and the 
index was configured to support both stemming we did using the Porter stemmer and the sequen-
tial dependence model we created through positional indexing. 

3.5.3.2 Anserini 
In OP2, we also indexed documents using Anserini [96], an iIR system built on Apache 
Lucene.30  Using Anserini was convenient for specific purposes; notably for DeepCT and 
doc2query. For this, we relied on the default settings, which included stopword removal and 
stemming using the Porter stemmer. 

3.5.3.3 Specialized Indexes 
Starting in OP1, we designed and built additional indexes to support specific ranking models that 
are described in Section 3.5.5, Ranking - notably, PSQ-based HMM, Probability of Term Occur-
rence (PTO), and KWS. We built this indexing infrastructure from the ground up in Python and 
stored the pre-processed document collection   statistics as serialized (e.g., pickle or Hierarchical 
Data Format 5 [HDF5]) Python objects. 

3.5.4   Query Processing 
Because all queries are known at the start of experimentation, we generate all needed versions of 
the queries once, as a preprocessing step. 

3.5.4.1 Query Parsing 
Query parsing was performed by the Query Analyzer docker component. The off-the-shelf Java 
library called ANother Tool for Language Recognition (ANTLR)31 was used for query parsing 
and query validation utilizing the IARPA-provided Context Free  Grammar (CFG). The results of  
30

https://lucene.apache.org/ 
31https://www.antlr.org/about.html  

https://lucene.apache.org/
https://www.antlr.org/about.html
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query processing were formatted as a complex JavaScript Object Notation (JSON) object 
containing extensive information about a query, including: the list of query terms; which 
constraints are present; and whether it is a conjunctive, lexical or conceptual query, among many 
other such attributes. A separate JSON file was generated    for each query and used by both the 
CLIR and Summarization (Section 3.7.1, Unsupervised Approach) components. 

3.5.4.2 Flattening 
An important component of the JSON object generated by the Query Analyzer was the different 
versions of the query that might be used by various system components. We   referred to the process 
of creating these query versions as “flattening,” as these versions generally had fewer structural 
elements than the original query. These query variants included: 

• A bag of words query that included content terms from the full 
query, including any specified synonyms, hypernyms, event 
frames or example_of part constraints. We describe this version as 
“flat.” As an example, the source query "bracelet[hyp:accessory], 
occupation[syn:job]" would yield the flat query "bracelet 
accessory occupation job." 

• A bag of words query that included content words from the query other than those 
in synonym, hypernym, event frame or example_of constraints. We (somewhat 
arbitrarily) describe this version as “radically flat.” Here, the original query 
“bracelet [hyp:accessory], occupation [syn:job]" would yield the “radically flat” 
query "bracelet occupation." 

• Other versions included a bag of words query that included content terms and 
synonym constraints, but not words from hypernym, event frame or example_of 
constraints. In this case, the query "bracelet [hyp:accessory], occupation[syn:job]" 
would flatten to "bracelet occupation job." 

3.5.4.3 PSQ 
The query JSON object also included versions of the query that contained translations and their 
associated translation probabilities for use with PSQ. The translation probability matrix used in 
the PSQ matcher is fixed at indexing time, so these queries could be pre­compiled for efficient 
execution at ranking time. 

3.5.5 Ranking 
Ranking is at the heart of CLIR; its goal is to assign a score to each document (or, in one case, to 
each pair of documents) for each query that can then be used to sort the documents in a best first 
order for that query. 

3.5.5.1 BM25 
BM25 is a pointwise lexical ranking function [97] that was originally designed for conceptual 
queries. Pointwise functions operate by first independently computing a real valued retrieval 
status for each document; documents are then scored in descending order of retrieval status 
value. BM25 retrieval status values are based on four factors that are computed independently 
for each query term: 
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The aggregate retrieval status value is then the sum of the term-wise values, as shown in 
Equation 8. 
 
 
Applying BM25 effectively depends on the way the two aboutness measures are shaped and 
combined using two parameters, (k1 and b). On average, BM25 offers substantial improvements 
over earlier approaches (often referred to generically as TF-IDF) for using similar document 
information as a basis for point- wise ranking. In the BP and OP1, we used a hand-coded BM25 
implementation; in OP2 we also used the implementation in the Anserini IR system [96]. 

3.5.5.2 HMM 
We use a two-state HMM [98] to estimate the relevance of document given an input query. The 
first state θe, generates English words, while the second state, θd, generates foreign words. Each 
English query q may consist of N terms t1, ..., tN . 
The generation of query q can then be expressed as shown in Equation 9 where f is a foreign 
language word and ϵ enables basic document length normalization. 
 
 
 
 
The probability of generating foreign word f from state θd can be estimated from the counts 
shown in Equation 10. 
 
 
 
 
The probability of generating English word from state θe is similarly estimated from 
counts in a large corpus of English (specifically, the Google one billion word collection [99]). 
We chose α as 0.1, thereby assigning higher weights to the second state (θd) as compared to the 
first state (θe). We set ϵ to 0.2 as this allows us to mitigate the effect of document length on the 
retrieval. 
We only use words from the primary part of the query (that is, we exclude words in the syno-
nym, hypernym, event frame and example_of fields) and we compute the relevance score as 
defined in Equation 9. The translation probabilities are obtained from aligning the parallel corpus 
in the respective MATERIAL language. 
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3.5.5.3 Query Likelihood Model (QLM) 
An alternative approach to pointwise lexical ranking is to model both queries and documents as 
unigram LM and then to compute the probability that the query LM is generated from the docu-
ment LM [100]. Dirichlet smoothing [101] is used to prevent numerical problems resulting from 
zero counts, which relies on the number of times a query term appears in the collection - rather 
than the number to documents in which a query terms appears - as the evidence for term specifi-
city.  As a result, while this approach relies on the same evidence as BM25, the QLM can yield 
somewhat different document rankings. For this work, we used the QLM implementation in the 
Indri IR system [95] 

3.5.5.4 Sequential Dependence Model (SDM) 
To model term order for phrase-based MATERIAL queries, we leverage the Indri SDM [102], a 
variant of QLM that additionally rewards terms appearing in a similar order in the query and the 
document. This evidence is aggregated with weights assigned to each contribution to produce the 
final ranked list of documents. In some cases, we also used a simpler version of phrase process-
ing in which we required translations of query terms to be within two words of each other. 

3.5.5.5 PTO 
This model is identical to that defined by Equation 9, except that the foreign state model is 
switched by the probability of term occurrence [2], as shown in Equation 11. 
 
 
We once again exclude words except those from the primary part of the query and compute the 
relevance score for all the queries as defined in the Equation 11. The translation probabilities are 
obtained from aligning the parallel corpus in the respective MATERIAL language. 

3.5.5.6 Searching N-Best Speech 
In addition to 1-best hypotheses, ASR systems provide a set of alternative results that are 
compactly encoded in the form of lattices. Formally, lattices can be viewed as weighted finite 
state automata, which, though useful, are highly inefficient to search. To overcome this problem, 
the work in [103] introduced a procedure to convert automata into a weighted finite state 
transducer (WFST), which makes search faster. To generate the WFST, the lattices generated by 
an ASR system are first processed to create word indices for in-vocabulary (IV) search and 
phonetic indices for out-of-vocabulary (OOV) search. The output label for each arc in the lattice 
is then supplied with the timing information. As a result, when the input query is supplied to the 
system, it returns a list of arc sequences with the time spans that match the query with an 
associated score, where the scores are the posterior probabilities of the arc sequences. In the 
technique we refer to as KWS, we use the posterior probability of each term to compute the 
expected counts [104]. 
For word k and document d, the expected count is shown in Equation 12, where a is a lattice arc, 
l(a) is a term label associated with a, u is a segment of document audio and O(u) are associated 
observations used by an ASR system to yield posterior probabilities. 
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3.5.5.7 Neural Reranking 
In monolingual retrieval applications, the current SOTA approach involves building a retrieve- 
and-rerank pipeline. A typical pipeline consists of an initial candidate generation step where a 
fast retrieval system such as BM25 is used to produce the set of documents; these are then 
reranked by trained neural rerankers in one or more stages. The neural rerankers are initialized 
with contextualized LM that are pre- trained on large amounts of training data. Such pipelines 
have better performance than the traditional lexical/keyword based retrieval models such as 
BM25 and QLM. We built a similar pipeline for CLIR, using a strong lexical baseline model 
(e.g., PSQ) for the initial stage and a neural CLIR reranker initialized with a multilingual 
pretrained model (e.g., XLM­R). By translating documents from MATERIAL languages to 
English, we are also able to leverage applying existing monolingual pipelines in English. 

3.5.5.8 Zero-shot ColBERT-X 
Dense retrieval models are a type of neural ranking model that encode the queries and documents 
separately into a shared vector space. This process allows the document representations to be 
precomputed offline and stored in specialized data stores supporting fast retrieval at query time, 
such as Approximate Nearest Neighbor (ANN) indexes. ColBERT [105] is a multi-stage dense 
retrieval model that computes multiple representations for the query and the document (one for 
each term) independently. The first stage involves generating candidate document sets by 
querying the ANN index built from document term representations using the query term 
representation. In the second stage, these candidate documents are reranked using a MaxSim 
operation, which computes the dot product between every query and document term to compute 
a final relevance score for the document. 

3.5.5.9 Reranking with Position-Aware Convolutional Recurrent Relevance Matching 
(PACRR) and Pooled Similiarity (POSIT) 
We used deep bilingual query document representations to boost cross-lingual document 
retrieval performance. We match queries and documents in both query and document languages 
with four components. By including query likelihood scores as extra features, our model 
effectively learns to rerank the retrieved documents using a small number of relevance labels for 
each of the LRL pairs. As shown in Figure 10, our model outperforms the competitive transla-
tion-based baselines on English-Swahili, English-Tagalog, and English-Somali CLIR tasks. 
 
 
 
 
 
 

Figure 10.  Bilingual PACRR-Deep Relevance Matching Model (DRMM). 
Bilingual PACRR is the same except it uses a single Multilayer Perceptron (MLP) at the final 

stage. 
In CLIR, given a user query in the query language Q and a document in the document language 
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D, the system computes a relevance score s (Q, D). As shown in Figure 11, our model first 
translates the document as Dˆ or the query as Qˆ, and then it uses the four separate components 
to match: (1) query language query with document language document, (2) query language query 
with query language document, (3) document language query with query language document, (4) 
document language query with document language document. 
The final relevance score combines all components according to Equation 13, using un-weighted 
combination because we lacked sufficient training data to learn data specific component weights. 

s¯(Q, D) = s(Q, D) + s(Q, Dˆ) + s(Qˆ, Dˆ) + s(Qˆ, D) (13) 
To implement each component, we extended three SOTA term interaction models: PACRR as 
proposed in [106] along with POSIT-DRMM and PACRR-DRMM proposed in [107]. 
 
 
 
 
 
 
 
 

Figure 11.  Cross-lingual Relevance Ranking with Bilingual Query and Document 
Representation. 

In term interaction models, each query term is scored to a document’s terms from the inter­ 
action encodings, and scores for different query terms are aggregated to produce the query- 
document relevance score. 
The POSIT-DRMM model is illustrated in Figure 12.  We first use bidirectional LSTMs [71] to 
produce context sensitive encodings of each query and document term. We then add residual 
connections to combine the pre-trained term embedding and the LSTM hidden states. 
 

 
 
 
 
 

Figure 12.  Bilingual POSIT-DRMM. 
For the query language query and document term, we use the pre­trained word embedding in the 
query language. For the document language query and document term, we first align the pre­ 
trained embedding in the document language to the query language and then use this cross­ 
lingual word embedding as the input to the LSTM. Thereafter, we produce the document aware 
query term encoding by applying max pooling and k-max pooling over the cosine similarity 
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matrix of query and document terms. Finally, we then use an an MLP model to produce term 
scores. The relevance score is a weighted sum over all terms in the query with a term gating 
mechanism. More details about this approach can be found in [108]. 
The models that we used, Bilingual PACRR and Bilingual PACRR-DRMM, are illustrated in 
Figure 10.  In implementing these, we first align the word embeddings in the target language to 
the query language and then build a query document similarity matrix that encodes the similarity 
between the query and document term. Depending on the query language and document lan-
guage, we construct four matrices, SIMQ,D, SIMQ,Dˆ , SIMQˆ, Dˆ, SIMQˆ,D, one for each of the 
four components. Next, we apply CNNs over the similarity matrix to extract n-gram matching 
features, followed by max-pooling and k-max-pooling to produce the feature matrix where each 
row is a document­aware encoding of a query term. The final step computes the relevance score: 
Bilingual PACRR uses an MLP on the whole feature matrix to get the relevance score, while 
Bilingual PACRR-DRMM first uses an MLP on individual rows to get query term scores and 
then use a second layer to combine them. 

3.5.5.10    Aligning Multilingual Contextual Embeddings 
In a follow-up document reranking experiment during OP2, we used aligned multilingual con-
textualized embeddings, in which we used explicit cross­lingual alignment techniques to improve 
multilingual BERT representations. We compared the new, explicitly aligned rerankers with a 
baseline reranker on two MATERIAL datasets (Farsi and Kazakh) and on two datasets (Finnish 
and German) from the Conference and Labs of the Evaluation Forum (formerly known as Cross- 
Language Evaluation Forum [CLEF]). In all cases, we use English queries. The results showed 
that given a sufficient amount of parallel text, (1) these cross-lingual neural rerankers can out-
perform a PSQ baseline, and (2) that additionally leveraging cross-lingual alignments can lead to 
improved ad-hoc CLIR, compared to using baseline mBERT representations. 
To do this, we tried two recently proposed fine-tuning-based alignment methods for mBERT 
embeddings. We focused on fine tuning embedding alignment procedures as 1) they are faster 
than off-line embedding alignment procedures like orthogonal transformations that must be ap-
plied to each word representation 2) previous work has suggested that fine tuning based align-
ment is better suited for semantic tasks, and rotation-based alignment is more suited for struc-
tural tasks [109]. Since our task is an IR task, we opted for fine tuning alignment, which does not 
require any additional alignment computation after the completion of the fine tuning step. 
We worked with awesome-align [90] because their alignment objectives draw on LM techniques 
and include a sentential­level alignment objective. They use a combination of several objectives 
in order to perform fine tuning. The first is an MLM objective as shown in Equation 14. 
                                                                                    LMLM = log p(x|xmask) + log p(y|ymask).            (14) 

Just as in BERT’s pre-training step, in each of the parallel sentences, x and y, 15% of tokens are 
randomly masked by either a special [MASK] token, a random token, or are not replaced, and 
the model must fill the correct tokens back in. A translation language modeling (TLM) objective, 
as shown in Equation 15, is also used. 
                                                            LTLM = log p(x; y|xmask; ymask) + log p(y; x|ymask; xmask)            (15) 
By allowing the model to perform MLM on parallel data, this further pre-training allows the 
model to better align its representations of the two languages. A parallel sentence identification 
(PSI) loss is also employed, in which the model must properly label a randomly selected pair of 
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sentences from the corpus (x′, y′) as either true parallel sentences (l = 1) or not parallel sentences 
(l = 0), as shown in Equation 16. 

LP SI = l log(s(x′, y′)) + (1 − l) log(1 − s(x′, y′)) (16) 
The final fine­tuning objective used for pretraining mBERT for better aligned contextual embed-
dings is thus the combination of all these objectives summed over all sentences in the parallel 
corpus, as shown in Equation 17. 
 
 
 
While the first method from Cao et al. [110] is a relatively simple objective for alignment that 
can also be applied to static word embeddings, awesome-align employs several specialized LM 
objectives which are components of the pretraining process of mBERT. 
We use each of these objectives to fine-tune mBERT for each language pair, thereby more 
closely aligning the contextualized representations of the two languages in each language pair. 
We then pass these models into the Contextualized Embeddings for Document Ranking (CEDR) 
architecture [111] so that these fine-tuned contextualized embeddings can be employed for 
document and query representations to determine relevance. 

3.5.6 Late Fusion  
Different ranking methods, used with different translations, different query versions, and/or 
different enhancement techniques, help generate diverse lists of ranked documents. Using late 
fusion (i.e., fusion performed after ranking), allows us to benefit from this diversity. For each 
query, the System Combination module receives a set of lists of ranked documents on the input, 
along with scores for each document, and produces a single ranked list of documents. We have 
experimented over the course of the program with a range of methods for this purpose, some of 
which use only the ranks of the returned documents, and others of which also used the score 
associated with each document. A detailed description of these methods (apart from Hierarchical 
Reciprocal Rank Fusion) can be found in [112]. 

3.5.6.1 Rank-Based Fusion 
We used two approaches to rank-based fusion, one based on Borda counts [113] and the other 
based on reciprocal ranks. Borda-count fusion uses positional voting to assign a score to each 
document returned by the ranker as the number of returned documents - rank of the returned 
document. The scores for the document are then summed over all the rankers. In Reciprocal 
Rank Fusion (RRF) [114], the scores are calculated as 1 / rank of the returned document. The 
trec_tools [115] implementation of the reciprocal rank fusion uses an adjusted ratio of 1 / 60 + 
rank of the returned document which removes a disadvantage of the documents with very low 
ranks. Again, the scores are then summed over all the rankers. 

3.5.6.2 Unweighted Score-Based Fusion   
We used two approaches to unweighted score­based fusion, CombSUM and CombMNZ. The 
CombSUM method simply takes the scores of the document retrieved by all the rankers which 
are combined. CombMNZ is a refinement of this approach in which the summed score is then 
multiplied by the number of systems, ensuring that the documents returned by more systems are 
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promoted. In either case, the scores from different systems can be in very different ranges and so 
need to be normalized and put into a shared range. For this, we have used sum-to-one (STO) nor-
malization: the scores of all documents returned by particular systems were summed, and the 
score for a particular document is then divided by the sum. 

3.5.6.3 Weighted CombMNZ 
Weighted CombMNZ further modifies CombMNZ by assigning a weight to each system - the 
final score is then calculated as a weighted linear combination of the scores. We tuned the 
weights on development data, using the Maximum Query Weighted Value (MQWV) of each 
system on the DEV or DEV+ANALYSIS collection as its weight. 

3.5.7 Filtering 
In the BP, only documents in a specified domain and language were to be returned, which CLIR 
implemented by filtering the retrieved documents. This filtering was implemented as a part of the 
evidence combination component and was run after the combination of the documents, but be-
fore an application of the cutoff. 

3.5.7.1 Domain Filtering 
We build our own domain classifier to identify the domain of the document. This was a simple 
unigram Support Vector Machine (SVM) classifier built with the Weka ML toolkit, which used 
the Linguistic Data Consortium (LDC) NYT collection [91] for training. The categories of the 
articles were manually assigned domains (e.g., military, government and politics, law and order). 
All the articles in the selected categories were then used to train the classifier, which in turn was 
used to decide whether the document is in the domain; out-of-domain documents were simply 
not returned. As the NYT categories are relatively broad, the performance of the classifier was 
limited, which reduced the performance of CLIR with domain filtering. 

3.5.7.2 Language Filtering 
Documents for which the detected language did not correspond with the given language were 
filtered out. The language was recognized during the text pre-processing or during the speech 
recognition. Because speech recognition also provided a confidence level for each document’s 
language membership, only documents with classified as having a non-matching language with a 
confidence level above a certain cutoff level were filtered out. Compared to the domain 
classifier, the language identification worked very well - even achieving 100% accuracy in some 
cases. This was therefore very helpful for CLIR. 

3.5.8 Cutoffs 
Up to this stage, we have been working on producing the best possible ranked list of documents. 
By the probability ranking principle [116], selecting an appropriate cutoff in an optimal ranking 
(i.e., one ranked in decreasing order of probability or relevance) would result in optimizing a cost 
function with the structure of AQWV. Thus we can approximate the optimal set by approximat-
ing the optimal ranking (as we have done here), and then approximating the optimal cutoff given 
that ranking. 

3.5.8.1 Fixed Rank Threshold 
Using a fixed rank strategy, an optimal cutoff value is estimated for the selected combination on 
the development set—typically, DEV+ANALYSIS. There are two major downsides of this 
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approach: 1) the same number of documents will be returned for each query and 2) the observed 
density of relevant documents in the development set may differ from the actual (but unob-
served) density of relevant documents in the evaluation set and because of the (observable) 
difference in the number of documents in the two collections. When an estimate of the relative 
density of relevant documents is available, however, the fixed rank cutoff can be scaled linearly 
by both factors. 

3.5.8.2 STO Threshold 
The STO cutoff strategy can select a different number of documents based on the complexity of 
each query. STO refers to STO normalization that is applied to the document scores. To start, the 
optimal ranked threshold which results in the optimal AQWV on the development collection 
(e.g., DEV+ANALYSIS) is first determined. The STO cutoff score is then estimated on the 
scores of the returned documents by aiming for this target ranked threshold. STO scores on the 
EVAL collection will naturally be scaled differently, but it is possible to select an STO score 
cutoff on the EVAL collection that results in the desired ranked threshold, and that is the 
approach that we use. As with the fixed rank cutoff approach, when the density of relevant 
documents is expected to differ systematically between the development and EVAL set, an 
estimate can be generated and used as a linear scaling factor; in this case, it is applied to the 
ranked threshold. 

3.5.8.3 Query Specific Threshold (QST) 
If the score for each document is its probability of relevance, then QST could be analytically 
derived from the AQWV definition [117]. We thus rescale the scores in a manner that provides a 
reasonable estimate of the probabilities, learning the mappings on the development collection 
and then applying them on the EVAL collection. When these estimates are accurate, QST 
generates very accurate cutoffs. Because these estimates are sometimes poor, using QST alone is 
unsafe. 
Formally, this method tries to optimize the definition of the AQWV score shown in Equation 18, 
where pMiss is the average per­query miss rate, β is given in the MATERIAL program and set to 
20, respectively 40 in the later stages of the project, and pFA is the average pre­query false alarm 
rate [117]. 

AQWV  = 1 − pMiss − β ∗ pFA (18) 
Then, it is then possible to calculate an optimal threshold using Equation 19, in which C is the 
size of the collection and Ntrue(query) is the number of the documents that are truly relevant to 
the query [117]. As this true number is really unknown, it needs to be estimated. 
 
 

3.5.8.4 Average with Clipping 
In the BP, we used a fixed rank threshold. We added STO and QST threshold in OP1 and gen-
erally averaged two or three of these estimates when selecting the rank cutoff for each query. 
Because QST can occasionally produce very high cutoffs and false alarm control is important 
when optimizing for AQWV, in OP2 we imposed a hard limit on the cutoff for any query. We set 
this, somewhat arbitrarily, at three times the fixed rank cutoff. 
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3.5.9 Formative Evaluation 
The complexity and nuance of human language use makes IR largely an empirical discipline. 
Both traditional and neural ranking techniques benefit very substantially from training, with 
neural techniques benefiting from even a limited amount of task­specific fine tuning. In contrast 
to the summative evaluations conducted by the MATERIAL program, this dependence on tuning 
and training raises the question of how formative evaluation should best be conducted. 

3.5.9.1 Test Collections 
MATERIAL provided two types of test collections for use during system development, known as 
the ANALYSIS and DEV collections. In BP and OP1, the DEV and ANALYSIS collections 
were quite small, typically around 300 documents. Broadly speaking, the DEV collection was 
intended to be representative of the EVAL collection on which summative evaluation would later 
be conducted. The ANALYSIS collection, by contrast, was intended for exploring the effects of 
specific phenomena, and thus was not intended to be distributionally similar to the EVAL col-
lection. In general, the value of a test collection increases with the number of positive relevance 
judgments in the test collection, because positive judgments are the minority class. During the 
BP and OP1, combining the DEV and ANALYSIS collections roughly doubled the number of 
positive judgments in the combined collection compared to the DEV collection alone, although 
at the cost of some loss of distributional similarity to the EVAL collection. Our experience in the 
BP indicated that using DEV+ANALYSIS as a basis for formative evaluation was generally 
superior to the use of DEV alone, and thus we used DEV+ANALYSIS routinely for formative 
evaluation in OP1. In OP2, the program reallocated evaluation resources to very substantially 
increase the size of the DEV collection; therefore, we used the DEV collection as a basis for 
formative evaluation in OP2. This change may have also have improved comparability across 
research teams, as we believe that neither of the other two teams routinely been using 
DEV+ANALYSIS as a basis for formative evaluation. 

3.5.9.2 Evaluation Measures 
Because our approach relied on first ranking and then selecting a rank cutoff, we needed a 
suitable evaluation measure for optimizing ranking directly. We chose Mean Average Precision 
(MAP) for this purpose because the measure is strongly head-weighted (that is, influenced 
strongly by the top most rankings, which is where our selections will ultimately draw from) and 
because its design is well matched to the binary relevance judgments. MAP is the mean across 
the queries of the average across the relevant documents of the precision at the position in the 
ranked list of each relevant document. In that definition, precision is the fraction of the docu-
ments at or above the rank of a relevant document that are relevant. Relevant documents that are 
not found are modeled as being at infinite rank (i.e., as contributing 0 to the average of the pre-
cision values). As expected, we found that ranking systems with higher MAP also yielded higher 
AQWV given a suitable rank cutoff. MAP also has the desirable characteristics of being well 
normalized (it is bounded between 0 and 1) and of degrading gracefully as relevance judgments 
are ablated. Notably, if only a single relevant document were to exist for each query, MAP 
would be equivalent to the Mean of the Reciprocal of the Rank at which that one relevant 
document is found. 

3.5.9.3 Zero-Relevant Queries 
The EVAL collections used for summative evaluation were initially designed to intentionally 
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avoid queries for which there were no relevant documents, although the separation of summative 
evaluation into separate text and speech evaluations after the BP did result in some queries with 
no relevant documents in one collection or the other. Queries with no relevant documents were, 
however, quite common in the DEV and ANALYSIS collections, and even the DEV+ ANALY-
SIS collection had a considerable proportion of zero relevant queries. By convention, MAP treats 
the contribution of a query with no relevant documents as zero, so these zero relevant queries 
simply reduce the measured MAP for every system. In order to preserve the full dynamic range 
for MAP (i.e., where a MAP value of one indicates perfect retrieval), we removed any queries 
for which there were no relevant documents when computing MAP during formative evaluation. 
That decision did not affect the preference order between systems, but it did have the potential to 
affect ratio comparisons. In retrospect, this proved a problematic choice because we initially 
reported formative evaluation results over a different query set than was being reported by the 
other teams in the one- to two-week evaluation “sprints.” 

3.6 Real-Time Demo 
The system we have described was designed for flexible experimentation, and it proved very 
well suited for that purpose. However, when we first built a real time demonstration system, the 
query processing time was far too slow as systems optimized for speed need a different architect-
ture from those designed for flexible experimentation. We thus harvested some of our component 
designs and reimplemented them with low query latency as the goal. For this, the major compo-
nents we used are as follows: 

3.6.1 Query Analysis 
To improve response time, the Query Analysis component generated only two representations. 
For MT search, we used flat queries (a bag of words query including all query terms, including 
terms from synonyms, hypernyms, event frames and example_of constraints). For PSQ, we used 
radically flat queries (queries with all query terms, but not those in synonym, hypernym, event 
frame or example_of constraints). 

3.6.2 Query Expansion 
For conceptual and example_of queries, we used the embedding­based query expansion 
technique described in Section 3.5.2, Enhancement, to Expand the English queries. 

3.6.3 Matching 
To balance latency and effectiveness, we opted for two diverse systems: 1) PSQ, implemented 
with the Indri LM, and 2) BM25 implemented with ElasticSearch using the 1-best MT output 
from the Edinburgh MT system. 

3.6.4 Late Fusion 
The late fusion technique we used was the CombMNZ technique described in Section 3.5.6, Late 
Fusion. 

3.7 Summarization 
The role of summarization in this work is to create a short, compelling summary of a document 
selected by the upstream systems (i.e., CLIR) and assist an end user in determining quickly 
whether it is relevant to their given query. Ideally, the document is relevant, and the summary’s 
content will focus on the query; however, the summarizer must also faithfully represent 
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irrelevant documents as irrelevant. We use extractive summarization, which generates a 
summary by selecting sentences verbatim from the input document (as opposed to generating 
new sentences). 

3.7.1 Unsupervised Approach  
Our summarization work in the BP relied on unsupervised methods because we did not have any 
training data. For each relevant document returned by CLIR, we ranked all sentences by their 
similarity to the query using three methods. First, we ranked them using cosine similarity 
between the English query embedding and an embedding for each of the document sentences. 
The second ranking relied on the cosine similarity of the English query after it had been 
translated into the source language, against an embedding of each document sentence in the 
source language. Finally, we expanded the English query using query expansion as described in 
Section 3.5.4, Query Processing, resulting in a bag of words and did a direct match against the 
bag of words corresponding to each document sentence. The ranks resulting from these three 
matches were then merged using the Borda count algorithm [118] and sentences were sorted into 
decreasing rank. For the summary, we display as many words from this ordering as will fit 
within the word budget. 
In the BP, teams were free to use their own highlighting method to display the summary. 
Through extensive experimentation with FigureEight32 workers, we found that unless high- 
lighting was used they often labeled summaries as “Not relevant” even when the query appears 
in the sentence. Thus, we chose to highlight each component of a compound query with a distinct 
color, using green font for the first and purple font for the second.  The top three most similar 
words for each component are printed in the corresponding font color, where similarity is 
determined by the cosine similarity of the embedding query and the word embedding. Exact 
query word matches are also highlighted in yellow, as shown in Figure 13. We augmented this 
by showing the top five most relevant topic words using a Latent Dirich Allocation (LDA) topic 
model to infer the topic of the query word from the document. We used this approach to help the 
Amazon Mechanical Turk (AMT) workers33 with determining the intended meaning of the query 
word in context. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13.  An Example Summary for a Compound Query. 
32Subsequent to this work, the company was acquired by Appen: https://appen.com/ 
33https://www.mturk.com/  

https://appen.com/
https://www.mturk.com/
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A complete example output from the BP summarizer is shown in Figure 13. The related words 
are printed at the top of the summary, which consists of sentences that have been translated into 
English and have a high similarity to the query, as determined by one of the three methods 
described. We also included a “Words Not Found” list of the query words that were not found in 
the translated document. 
In the BP, we also did experiments to identify the most significant problems for Turkers in 
determining relevance, with a focus on differences between text and speech documents, as well 
as the fluency of the translation. Our results suggested that in OP1 we should focus on improving 
the fluency of speech documents and of MT in the limited context of the summary. 

3.7.2 Speech Segmentation to Improve Fluency 
Typical ASR systems segment audio input into utterances using purely acoustic information 
such as pauses in speaking or other dips in the audio signal. These utterances, however, may not 
resemble the sentence-like units that are expected by conventional MT systems for spoken 
language translation (SLT) [119]. In some cases, longer utterances may span multiple sentences, 
while shorter utterances may be sentence fragments containing only a few words, as illustrated in 
Figure 14. Both of these scenarios can be problematic for downstream MT systems, so we 
developed a model for correcting the acoustic segmentation of an ASR model to improve 
performance on downstream tasks, focusing specifically on the SLT pipeline challenges for 
LRLs. 
To do this, we independently collected subtitle data and used it to train a speech segmentation 
model. While prior work has trained intermediate components to segment ASR output into 
sentence-like units [120], [121], these have primarily focused on highly resourced language pairs 
such as Arabic and Chinese. When working with an LRL, suitable training data may be limited 
to nonexistent. We therefore constructed proxy segmentation datasets using film and television  
subtitles, which typically contain segment boundary information like sentence-final punctuation.  
Though subtitles are not exact transcriptions of audio speech, they are nonetheless closer 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14.  Example Acoustic Segmentation Errors and their Corrections. 
■ indicates a segment boundary. 

to transcribed speech than many other large text corpora. Because subtitles still lack an existing 
acoustic segmentation for our model to correct, however, we generate synthetic acoustic segmen- 
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tation by explicitly modeling two common error modes of ASR acoustic segmentation: under- 
and over­segmentation. Our model is therefore able to take as input a sequence of tokens and 
segmentation boundaries produced by the acoustic segmentation of the ASR system and returns a 
corrected segmentation. 
Our approach makes the following contributions: 

• We propose the use of subtitles as a proxy dataset for correcting ASR 
acoustic segmentation. 

• We develop a method for adding synthetic acoustic utterance segmentations 
to a subtitle dataset. 

• We provide a simple neural tagging model for correcting ASR acoustic 
segmentation before its use in an MT pipeline. 

• We investigate whether this yields downstream performance increases on 
MT and  document-level CLIR tasks 

3.7.3 Supervised Approach - Query Relevance Sentence Selection  
In OP1, we moved to include a ranker using a supervised approach. By developing a simple 
cross-lingual embedding-based model that avoids translation entirely, our approach directly 
predicts the relevance of a cross­lingual query­sentence pair. 
For training, we treat a sentence as relevant to a query if there exists a translation equivalent of 
the query in the sentence. This definition of relevance is most similar to the lexical­based 
relevance used in [122] and [123], but in our case, the query and sentence are from different 
languages. 
Because we frame the task as a problem of finding sentences that are relevant to an input query, 
we need relevance judgments for query sentence pairs. As our focus is on LRLs, however, we 
lack the sentence level relevance judgments needed to train our query focused relevance model. 
To overcome this, we leverage noisy parallel sentence collections previously [124], [125], 
collected from the web. Using a simple data augmentation and negative sampling scheme, we 
generate a new labeled dataset of relevant and irrelevant pairs of queries and sentences from 
these noisy parallel corpora. We can then use this synthetic training data to learn a supervised 
cross-lingual embedding space. 
While our approach performs comparably with the pipelines of MT with IR, it is still sensitive to 
noise in the parallel sentence data. Inspired by previous work in text classification that supervises 
attention over rationales for classification decisions [126], we find we can mitigate the negative 
effects of this noise if we first train a phrase-based SMT model on the same parallel sentence 
corpus and use the extracted word alignments for additional supervision. With these alignment 
hints, our system demonstrates consistent and significant improvements over neural and statis-
tical MT+IR [127], [128], [129], as well as three strong cross-lingual embedding-based models 
(Bivec [130], Sentence Identification-Skip-grams with Negative Sampling (SID-SGNS) [131], 
Multilingual Unsupervised and Supervised Embeddings (MUSE) [132], a probabilistic occur-
rence model [133], and a multilingual pretrained model XLM­RoBERTa [78]. We refer to this 
secondary, alignment­based training objective as rationale training (RT). 
Our approach for the summarizer in OP1 features: 

• A data augmentation and negative sampling scheme to create a synthetic 
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training set of cross­lingual query­sentence pairs with binary relevance 
judgements. 

• A Supervised Embedding-based Cross-Lingual Relevance (SECLR) model 
trained on this data for low-resource sentence selection tasks on text and 
speech. 

• RT secondary objective to further improve SECLR performance, which we 
call SECLR-RT. 

• Training data ablation and hubness studies that illustrate our method’s applicability 
even to lower-resource settings and its ability to mitigate hubness issues [134], 
[135]. These findings are empirically validated by the results of our experiments in 
a low­ resource sentence selection task, using English queries with sentence 
collections of text and speech in Somali, Swahili, and Tagalog as described in 
Section 4.6.6, Supervised Approach - Query Relevance Sentence Selection. 

3.7.3.1 Training Set Generation 
In this section, we describe the methods we used to create synthetic training data in order to train 
a supervised query relevance classification model. We describe the creation of relevant (posi-
tive) query/sentence pairs, the creation of irrelevant (negative)   query/sentence pairs, the embed-
ding­based query relevance model we train (SECLR), and finally our use of rationale training 
(SECLR-RT) to better align the embedding space and improve the performance of SECLR. 

3.7.3.2 Relevant Query/Sentence Generation 
For a parallel corpus of bilingual sentence pairs equivalent in meaning, let (E, S) be a sentence pair 
where E is in the query language (e.g., English)  and S is in the source (e.g., LRL). For every uni-
gram q in E that is not a stopword, we construct a positive relevant sample by viewing q as a 
query and S as a relevant sentence. Because sentences E and S are approximately equivalent in 
meaning, we know that there likely exists a translation equivalent of q in the sentence S. Thus, 
we label the (q, S) pair as relevant (i.e., r = 1). 
An example of this can be seen with the English-Somali sentence pair: E=“true president gaas 
attend meeting copenhagen”, S=“ma runbaa madaxweyne gaas baaqday shirka copen­ hegan.”34 

By extracting unigrams from E as queries, we generate the following positive examples: 
(q=“true”, S, r = 1), (q=“president”, S, r = 1), (q=“gaas”, S, r = 1), …, (q=“copenhagen”, S, r = 
1). 
We generate the positive half of the training set by repeating the above process for every 
sentence pair in the parallel corpus. We limit model training to unigram queries, since higher­ 
order n­grams appear less frequently and treating them independently reduces the risk of 
over­fitting. Testing shows that our model is able to process multi­word queries. 

3.7.3.3 Irrelevant Query/Sentence Generation 
To improve learning, we opt to also create negative examples—that is, tuples (q, S, r = 0)—via 
negative sampling. For each positive sample (q, S, r = 1), we randomly select another sentence 
pair (E′, S′) from the parallel corpus. We then check whether S′ is relevant to q or not. Note that 
both the query q and sentence E′ are in the same language, so checking whether q or a synonym 
can be found in E′ is a monolingual task.  If we can verify there is no direct match or synonym 
equivalent of q in E′ then transitivity implies there is unlikely to be a translation equivalent in S′; 
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this makes the pair (q, S′) a negative example. To account for synonymy when we check for 
matches, we represent q and the words in E′ with pretrained word embeddings. For example, let  

be the embeddings associated with q and the words q′ E′. We judge the pair (q, S′) 
to be irrelevant (i.e., r = 0) according to Equation 20, where λ1 is a parameter. 
 
 
 
 

We manually tuned the relevance threshold λ1 on a small development set of query­sentence     
pairs randomly generated by the algorithm, and set λ1 = 0.4 to achieve highest label accuracy on 
the development set. If (q, S′) is not relevant, we add (q, S′, r = 0) to our synthetic training set. 
Otherwise, we resample (E′, S′) until a negative sample is found. We generate one negative 
sample for each positive sample in order to build a balanced dataset. 
Building on the previous example, if we want to generate a negative example for the positive 
example (q=“meeting,” S=“ma runbaa madaxweyne gaas baaqday shirka copenhegan,” r = 1), we 
randomly select another sentence pair, e.g., E′=“many candidates competing elections one hopes 
winner,” S′=“musharraxiin tiro badan sidoo u tartamaysa doorashada wuxuuna mid kasta rajo 
qabaa guusha inay dhinaciisa ahaato,” from the parallel corpus. To check whether q=“meeting” 
is relevant to S′, it suffices to check whether q=“meeting” or a synonym is present in E′, which is 
a simpler monolingual task. If q is irrelevant to S′, we add (q, S′, r = 0) as a negative example. 

3.4.3.4 Cross-Lingual Relevance Model 
SECLR is able to make direct relevance classification judg-ments for cross­lingual queries and 
sentences without relying on intermediate MT by learning a cross-lingual embedding space 
between the two languages. Not only should translation of equivalent words in either language 
be mapped to similar regions in the embedding space, but dot products between query and 
sentence words should be correlated with the probability of rele-vance.  
We assume the training set generation process provides us with a corpus of n query-sentence 
pairs along with their corresponding relevance judgements, i.e.                                . 
We then construct a bilingual vocabulary                      and associate with it a matrix                     
where                                     is the word embedding associated with word                                                                                                          
When the query is a unigram q - as in the case of our training data        - we model the 
probability of relevance to a sentence S as shown in Equation 21, where σ denotes the logistic 
sigmoid (σ(x) = 1/ (1 + exp(−x))). 
 
 
In our evaluation setting, the query is very often a phrase Q = [q1, . . . , q|Q|]. In this case, we 
require all query words to appear in a sentence in order for a sentence to be considered as 
relevant. Thus, we modify our relevance model to that shown in Equation 22. 
 

34Stopwords removed.  
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Our only model parameter is the embedding matrix W, which is initialized with pretrained 
monolingual word embeddings and learned via minimization of the cross entropy of the rel- 
evance classification task, as shown in Equation 23.  

 

3.7.3.5 Guided Alignment with Rationale Training 
As described in Section 3.7.3, Supervised Approach - Query Relevance Sentence Selection, we 
improve SECLR by incorporating additional alignment information as a secondary training 
objective, yielding SECLR­RT. Our intuition is that after training, the word 
should correspond to a translation of q. It is possible, however, that sˆ only co­occurs with the 
true translation, and the association is coincidental or irrelevant. To correct for this, we run two 
SMT word alignment models, GIZA++ [136] and Berkeley Aligner [137], on the original 
parallel sentence corpus. The two resulting alignments are concatenated, as in[2] , in order to 
estimate an unidirectional probabilistic word translation matrix, such that A 
maps each word in the query language vocabulary to a list of document language words with 
different probabilities. For example, Aq,s is the probability of translating q to s and  
For each relevant training sample, i.e., (q, S, r = 1), we create a rationale distribution ρ         
This is essentially a re­normalization of possible query translations found in S, and represents our 
intuitions about which words s ∈ S that q should be most similar to in the embedding space, as 
shown in Equation 24, for s ∈ S. 
 
 

We similarly create a distribution under our model, α ∈ [0, 1]|S|, as shown in Equation 25, for s 
∈ S. 

 
 
To encourage α to match ρ, we impose a Kullback–Leibler (KL) divergence penalty, to our 
overall loss function. This is denoted as shown in Equation 26. 
 
The total loss for a single positive sample then will be a weighted sum of the relevance clas- 
sification objective and the KL divergence penalty as shown in Equation 27, where λ2 is a 
relative weight between the classification loss and rationale similarity loss. 
 
 
Note that we do not consider rationale loss for the following three types of samples: negative 
samples, positive samples where the query word is not found in the translation matrix, and 
positive samples where none of the translations of the query in the matrix are present in the 
source sentence. 
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3.7.4 Use of Retranslation or Automatic Post-Editing (APE) 
An analysis of our prior evaluations through Farsi in OP1 showed that our biggest problem was 
in true detections to misses (TD-to-Miss) In other words, although CLIR identified relevant 
documents correctly, the summary was deemed irrelevant by AMT participants because the 
query word was often mistranslated, and thus did not appear in the summary. We thus looked for 
ways to re­translate relevant sentences that did not specifically include the query word. At the 
same time, we did not want to force the word to appear if it did not actually occur in the source. 
To address this, we experimented with constrained MT as well as constrained APE, and with 
manipulating the conditions under which the selected sentences should be re-translated. We use 
PSQ to identify the sentence in the generated summaries with the highest probability of 
corresponding to the given query. Our reasoning was that because we only need the query word 
to occur once in the summary, we only needed to retranslate a single sentence. 
We also found some false positive summaries, where it was not feasible for any sentence in the 
source to include the query word. In fact, most of our constrained MT and APE approaches were 
able to insert the query word into the translation even when not appropriate; this increased errors 
on false alarm to accept (FA-accept) We therefore developed several methods of selecting which 
summaries should even be considered for retranslation in  the first place. For this, we used a 
logistic regressor that had been trained to select ground-truth relevant documents from those that 
had been passed to the summarization system by CLIR. Because all summaries would be pre-
sented to the end user, but only the ones selected by this regressor would be retranslated, it was 
appropriate for this relevance classifier to be both separate from and more stringent than the one 
used by CLIR. For a given document, our logistic regressor includes the following features: 

• The final relevance score assigned to the document by the CLIR system 
(tuned for F1) 

• The maximum score assigned to sentences in the document by our neural 
sentence  relevance module 

• The maximum score assigned to sentences in the document by the PSQ system 
used by CLIR 

We trained this system on ANALYSIS (using K-Fold cross-validation) and then selected a 
threshold at which it would select a document to be retranslated. We tested several ways of 
selecting this threshold (including optimizing for F-beta with values of 0.5, 1, and 2; as well as 
optimizing for Receiver Operating Characteristic [ROC]); our results using AMT participants 
with DEV  that F1 was most appropriate. 
We used these results to augment the summarization approach we used for the Kazakh and 
Georgian evaluations in OP2. The summarization system for Kazakh and Georgian followed our 
approach in previous evaluations, but we added the ability to do constrained APE or an addi-
tional round of constrained MT of those sentences for which we found evidence of relevance in 
the source language. Specifically, we used constrained APE for Kazakh and constrained MT for 
Georgian. 
Thus, the summarization system for our two final evaluations in OP2 consists of multiple rankers 
that each use the query to look for evidence of relevance in the documents retrieved by CLIR. 
The rankers score each sentence with its degree of relevance, and the scores from the different 
rankers are then merged using the Borda counts algorithm. 
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For Kazakh and Georgian, we used the following rankers: 
1. SLT of the query matched against the source language document. Scores 

are determined using the number of PSQ matches and cosine similarity of 
source embeddings using Global Vectors for Word Representation (GloVe). 

2. English query matched against the English translation of the document.  
Here, scores are determined using exact matches, stem matches and cosine 
similarity using both GloVe and Roberta embeddings. The summarization 
system used two different document translations produced by UMD NMT and 
EDIN NMT. When selecting a sentence to include in the summary, it uses the 
translation with the highest ranker score. 

3. English query matched directly against the source language document. 
Scores are determined using a neural sentence relevance model [138], as 
described in Section 3.7.3. The neural sentence relevance model is our only 
supervised relevance system. It features three main components: 

(a) Synthetic data generation for training the system, producing English 
query, source sentence pairs, both positive and negative. Parallel data is 
drawn from Paracrawl, Wikipedia and Open Subtitles. 

(b) The model architecture, called SECLR, directly makes relevance 
classification judgments for queries and sentences of different 
languages without using MT as an intermediate step by learning a 
cross-lingual embedding space between the two languages. Not only 
should translation of equivalent words in either language be mapped to 
similar regions in the embedding space, but dot products between query 
and sentence words are correlated with the probability of relevance. 

(c) We augment the relevance model using additional alignment information as a 
secondary training objective, obtained through PSQ. We use KL­divergence 
between the two training objectives (relevance and alignment) when training 
the model. More details can be found in [138]. 

3.7.4.1 APE 
APE aims to improve the quality of the output of an arbitrary MT system by pruning systematic 
errors and adapting to a domain-specific style and vocabulary [139], [140]. Although previous work 
has shown the usefulness of APE to prune errors by focusing on improving the translation error 
rate (TER), few have studied the effect of incorporating lexical constraints. 
For the MATERIAL use case, lexically constrained APE is useful for CLIR. When displaying 
snippets from retrieved documents, the query term should appear in the translation output if it 
does in the source, in order to make relevance clear to the human end user. We note that such a 
system would also be beneficial in a range of other contexts; for example, content providers 
often meticulously curate lists of terminologies for their domains that indicate preferred 
translations for technical terms. 
While recent approaches support inference time adaptation of NMT systems using manually 
curated term lists, post-editing translations with a generic APE system may lead to dropped 
terms. A constraint-aware APE system would make it possible to fix systematic translation 
errors, while still keeping the terms intact. 
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We consider a range of representations that augment input sequences with constraint tokens and 
factors for use in an Autoregressive Transformer (AT) APE model. Using this approach, the 
constraints were explicitly represented in the encoder input sequence and the model learns to 
prefer translations that contain the supplied terms during decoding. We also explore the use of 
the Levenshtein Transformer (LevT), a Non-Autoregressive Transformer (NAT) model. The 
LevT model applies neatly to the APE task, since the decoder can be initialized with an income-
plete sequence. Additionally, multiple corrections can be made simultaneously, resulting in faster 
decoding than autoregressive models. 
We experiment extensively with variations of both AT and LevT models, testing on both phrase- 
based machine translation (PBMT) and NMT English to German WMT APE tasks [140]. Under 
all scenarios, the model performs post-editing while satisfying terminology constraints when 
supplied. 
Using constraints constructed with synonyms and antonyms, we also investigate whether our 
models learn to copy constraints systematically, and introduce a simple data augmentation 
strategy [141] to improve the preservation of unusual constraints. 
To summarize, our approach features: 

• AT and LevT model variants for incorporating lexical constraints. 
• An investigation into whether constrained APE is necessary to 

preserve terminology constraints in a MT to APE pipeline. 
• An analysis of the robustness of the constraint translation behavior 

and a simple data augmentation technique that improves translation 
quality and increases the number of correctly translated terms. 

3.7.5 Other Experimental Approaches 
Throughout this work, we explored a number of new approaches that were not adopted in the 
final system. For example, we observed that the fluency of a summary seemed to affect whether 
or not it was selected by AMT workers, and reasoned that we might be able to improve the flu-
ency of the summary translation using abstractive summarization. Because the summary is not 
the entire document, an abstractive approach could feasibly reword only those sentences needed 
for fluency, in contrast with an extractive method that would need to make a trade-off between 
conciseness and fluency. We first published our approach to generic abstractive cross-lingual 
summarization in the 2019 Annual Conference of the North American Chapter of the Associ-
ation for Computational Linguistics (NAACL) 2019 [142] and have since extended that work for 
the task of query­ focused abstractive summarization. We also experiment with methods to 
improve accuracy on conceptual queries; this work was concluded after the last evaluation. 

3.7.5.1 Abstractive Cross-lingual Summarization 
Cross-lingual summarization is a little explored task that combines the difficulties of automatic 
summarization with those of MT. The goal is to summarize in one language a document avail-
able only in another language. [143] describe two reciprocal approaches to this task: summarize 
then translate, and translate then summarize. They argue that summarize-then- translate is pre-
ferable, as it minimizes the computational expense of translating more sentences as well as the 
sentence extraction errors caused by incorrect translations. Summarize-then- translate is only 
effective for high resource languages, however, when working with LRL, no summarization 
corpora are available to support this approach. Language­independent techniques, such as 
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TextRank (Mihalcea) [144], might be used, but morphologically rich languages render such 
token-based similarity measures useless. In these instances, translate-then-summarize is the only 
possible approach. 
To address this problem, we develop a neural abstractive summarization system that fluently 
summarizes automatically-translated documents by generating short, simple phrases to replace 
any awkward input phrases. Our novel recombination of existing systems results in a summari-
zation solution that can be easily applied to new LRLs. In this approach, we use MT on the NYT 
annotated corpus of document/summary pairs [145] to create summarization corpora for docu-
ments automatically translated from three LRLs: Somali, Swahili, and Tagalog. We begin by 
translating the NYT documents to Somali, Swahili and Tagalog, and then re-translating them 
back to English. This yields the type of disfluent input documents we might expect from a 
translation system; then we pair these with the fluent English summaries from the original 
corpus. 
We use these corpora to train cross-lingual summarizers for these source languages, with English 
as the target. We also evaluate our systems on a fourth source language - Arabic. We investi-
gated whether our abstractive summarizers produced more fluent English summaries from 
automatically-translated documents and whether this improvement generalizes across source 
languages. 
Our approach features: 

• The creation of a summarization corpora for automatically translated Somali, 
Swahili,  and Tagalog documents 

• The creation of noisy English input documents paired with clean English 
reference summaries 

• A method for producing cross-lingual summarization systems for LRL 
where no summarization corpora currently exist, thereby providing a 
potential  summarization solution for thousands of such languages 

• Assessments of whether our novel approach outperforms a standard 
copy-attention abstractive summarizer on real-world LRL documents in 
Somali, Swahili, and Tagalog, as well as whether our approach generalizes 
to unseen languages, tested using a set of Arabic documents paired with 
English summaries created for an earlier Document Understanding 
Conference (DUC) evaluation. 

3.7.5.2 Conceptual Query Processing 
A crucial component of summarization is choosing the most relevant sentences to display. While 
it is easier to match sentences relevant to lexical queries by considering the occurrences of the 
query word in a sentence, retrieving correct sentences for conceptual queries requires semantic 
knowledge and more sophisticated methods. This work follows the success of SECLR-RT [146] 
in generating a synthetic similarity dataset using parallel corpora by learning a model that maps 
the embedding space of English lexical queries with sentences in the source language. While 
SECLR-RT shows promising results on lexical queries, the difficulty of finding relevant sen-
tences for conceptual queries was not addressed. Thus, we intend to leverage Transformer-based 
contextualized embeddings for their semantic understanding, along with multilingual training, to 
improve performance on languages with less training data. 
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To avoid errors of translation affecting our matching process, the model performs semantic 
matching directly on the source sentence and the English queries. Because suitable training data 
for such tasks does not exist, we create synthetic training data by using parallel data and then 
generate queries similar to those in evaluation by extracting phrases from the English sentence. 
Finally, we explore various training tasks to learn a mapping of sentences from multiple 
languages into the same embedding space. 

3.8 Integration 
Most components of the SCRIPTS systems are complete and self-contained, meaning they can 
be run selectively and independently of one another. This means that users of SCRIPTS can 
choose to run the individual components of the overall system (e.g., ASR, MT, morphological 
analyzer, matchers, etc.) manually with the option to validate, reformat or otherwise modify the 
outputs and/or inputs of each step. 
In order to streamline use of the overall system and increase efficiency, however, we have built 
an executive component in Java that automates the sequential, E2E SCRIPTS input/output pro-
cesses. This executive component allows a user to generate document matching, summarization, 
and all other intermediate SCRIPTS outputs without learning how to run individual sub 
components. 

 
Figure 15.   Overview of the SCRIPTS System as Implemented by the Executive 

Component. 
All SCRIPTS components - including the executive component - are provided as Docker images, 
and therefore require a Docker daemon to run. Once all of the component Docker images have 
been installed on the destination machine per the requirements and directions provided in the 
SCRIPTS pipeline documentation,35/36 and the system completeness is confirmed, it is available 
to process data. The required inputs include: 

• audio source documents (.wav files) 
• text source documents (.txt files) 
• a list of queries (.tsv file) 
• a set of configuration files (.xxx files) 

Once the executive component has been initiated, it will reformat and relocate the input as 
needed and will launch the dockerized sub-systems (e.g., ASR, MT, morphological analyzer, 
matchers, etc.) in the predefined order. Running on an AWS p3.8xlarge instance, the system  
35https://github.com/hl3436/material-scripts-pipeline 
 36https://github.com/hl3436/material-scripts-pipeline/tree/main/example/workspace-fa  

https://github.com/hl3436/material-scripts-pipeline
https://github.com/hl3436/material-scripts-pipeline/tree/main/example/workspace-fa
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currently needs approximately five days to completely process a typical data set of 3,000 audio 
files, 10,000 text files and 1,200 queries – though actual run time will also depend significantly 
on factors such as source language, query complexity, and the size of the input files. 
There are several design choices that were made for the executive component in order to make 
the system as efficient as possible. One of the design focuses was to make the system modular. 
The system takes in a configuration file where users can specify the versions of the components 
to be used by the system. The executive component also invokes other components via separate 
shell scripts instead of hard coding it into the Java application. This design allows the user to 
update docker components with a different version or component run scripts without recompiling 
the whole application. 
The executive component also saves intermediate outputs to disk, which allows the users to 
choose to run the system up until a specific point and then continue running the rest of the 
system later or the user could branch out from a point and try a new experiment with a different 
configuration easily. Files do not expire and access is shared across all users. If a component 
exists, it will not be re-processed. 
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4.0 PROGRAM RESULTS, FINDINGS AND TECHNICAL IN- SIGHTS 
4.1 Speech Processing 
4.1.1 Baseline Systems and Diarization 
Table 3 contains the final WERs achieved with the dockerised systems for all languages, each of 
which was built using a combination of the baseline pipeline described in Section 3.1.1 and the 
SST process detailed in Section 3.1.3 . 

Table 3.  WERs % for each Language of Dockerised Final Single Systems. 
 
 
 
 
 
 
 
 
Tables 4 and 5 illustrate how specific properties of, or augmentations made to, our baseline 
systems impacted performance for our Kazakh and Georgian system results in particular, though 
we note that the most successful methods/system features described here were also generally 
successful for the remaining languages. 

Table 4.  Comparing the WER % Achieved by Various EDIN Systems for Kazakh. 
 
 
 
 
 
 
 

Table 5.  Comparing the WER % Achieved by various EDIN Systems for Georgian. 
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4.1.1.1 Impact of Adding Web-Scraped Data on WERs 
In general, adding scraped, external data to the provided build sets improved performance in 
terms of WER. For acoustic data, adding the 100h Fisher English data set to the provided build 
CTS data led to marginal WER improvements for both languages, indicating the potential utility 
of OOL resources. Similarly, augmenting the build data with the scraped data improved the LM 
for both languages, leading to reduced WERs, especially for the analysis_wb set. Adding LM 
rescoring to the EDIN pipeline (using a neural RNN LM) enabled WER% to be reduced still 
further. 

4.1.1.2 Impact of Adding Grapheme-Based Models 
As mentioned in Section 3.1.1, the SCRIPTS team also evaluated phoneme versus grapheme- 
based models. As shown in Table 4 and Table 5, the grapheme-based models and lexicons 
proved superior for both the languages shown here and across the board. As a result, we chose to 
use grapheme­based models as seeds when conducting subsequent SST for all OP1 and OP2 
languages, as described in Section 4.1.3. 
The success of our grapheme-based modelling approach also allowed us to briefly experiment 
with LM at the sub word rather than word level, which hypothetically could help alleviate OOV 
or data sparsity issues - especially for languages with a more complex or agglutinative morphol-
ogy (e.g., Georgian). In practice, however, our limited experiments using this approach with the 
Pashto language proved inferior. The results of these explorations can be seen in Table 6, which 
compares Pashto systems using sub word level versus word level LMs. Still, it is possible that 
different sub word model configurations and/or hyper-parameter values might yield better results 
than those obtained here. 

4.1.1.3 Hybrid and E2E Systems 
Table 7 shows a contrast, using exactly the same training data, between “traditional” hybrid 
system and and encode-decoder attention-based model, so called E2E model. In terms of WER 
on Technology, Entertainment, Design (TED) ­ Laboratoire d’Informatique de l’Université du 
Maine (LIUM) and the Kazakh WB data the hybrid system outperforms the E2E system. It 
should be emphasized these systems were trained using the exactly same quantity of training 
data. E2E systems may be expected to benefit more from, for example, transfer learning but this 
has not been explored by the SCRIPTS team. 

Table 6.  Effect of Word vs Sub-word LM when Building an ASR System for Pashto (note: 
both systems here used common-crawl data for LM training); Time Delay Neural 

Networks (TDNN) Factored Form-(F) AMs; and Additional Backus Naur Form Notation 
(BNF). 
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Table 7.  Performance (% WER) Comparison (Kazakh) of Encoder-Decoder 
Attention-based (E2E) Models and Baseline Hybrid Models. 

 
 
 
 
 
4.1.1.4   Impact of DL Approaches for Confidence Score Estimation 
Table 8 shows the impact of using the rich information stored on each arc of a lattice, including 
acoustic and LM scores, arc posterior, duration, word embedding (identity), and (optionally) the 
phone or character sequence embedding from the word along with durations. 
Two standard confidence performance metrics were used to evaluate performance: Normalized 
Cross Entropy (NCE); and Area under the Curve (AUC) for precision and recall detecting incur-
rectly recognized words. The results of the baseline approach - which uses word posteriors and 
decision trees to calibrate the confidence scores - is shown in the first line. The performance 
improves as increasingly complex implementations of DL are used to combine the information 
associated with each of the arcs, with the best performance resulting from applying attention- 
based mechanisms using information from multiple lattices. For this multiple lattices system, the 
lattices were generated by using different LM scale factors. It is then possible to combine infor-
mation both from within, and between the lattices using attention mechanisms. The attention 
mechanism here uses the arc for which we require the confidence score as the key to compute the 
appropriate attention weights across the lattices. 

Table 8.  Impact of Confidence Score Approach Georgian CTS Task. 
 
 
 
 
 
Though these DL approaches yield performance gains in terms of the accuracy of the confidence 
scores obtained from the NCE score and the rank ordering from the AUC score, the relative 
improvement on CLIR performance in initial experiments was small compared to the baseline 
decision-tree based approach. We posit that this is due to the fact that current CLIR performance 
is dominated by the probabilities associated with the translation table, rather that the ASR 
confidence scores. 

4.1.2 Multilingual AMs 
For BP and OP1, we investigated the value of adding information from multiple languages for 
training the initial CTS NB AM. As shown in Table 9, adding multilingual information - both in 
the form of bottleneck multilingual features and the “hat-swapping” framework described in 
Section 3.1.2, yielded performance gains on both the CTS and WB data. Though neither a 

Task Hybrid E2E 

TED-LIUM 6.9 8.2 

Kazakh (WB) 17.5 18.7 
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feature-based nor a model-based approach was consistently better, combining the two generated 
performance gains for all languages. 

Table 9.  Performance (% WER) Comparison of Hybrid Multilingual Features and 
Multilingual AMs. 

 
 
 
 
These multilingual approaches were not used for the OP2 phase of the project, as the perfor­ 
mance gains for CLIR ­ especially when using large quantities of untranscribed WB audio data 
and text LM data that had been scraped from the web - made the multilingual optimizations less 
relevant. 

4.1.3 Use of Web-crawled Data and SST 
The standard approaches for developing ASR systems by optimizing performance on a develop-
ment set cannot be used if there are no transcribed data in the target domain. Because using WER 
as the performance metric also requires transcribed data, where no transcribed data are available, 
the average confidence score of untranscribed held out data can be used instead. Figure 16 shows 
the relationship between the average development set confidence score and actual WER on that 
data on WB and NB (CTS) data from the Babel and MATERIAL programs, illustrating the 
strong (negative) correlation between the WER and confidence score. These results highlight the 
possibility of doing system development without transcribed data. This approach was not 
ultimately used for the MATERIAL evaluation system, as suitable transcribed training data had 
been made available for the target domains. 
Web-scraped text data, and semi-supervised learning for AMs, was applied for all languages by 
the SCRIPTS team. Table 10 shows the performance of the baseline confidence-based data 
selection approach on a range of languages. Considering the Kazakh results, it is clear the 

Table 10.  BP Language Verification (Recognition) Results. 
 
 
 
 
 
 
addition of web-scrapped text data for the LM (+Web LM) gives considerable gains for the WB 
data, 53.9% to 27.5%, and only small gains for the CTS data. This is not surprising as the seed 
model was only trained on CTS style data. Additionally, building semi-supervised AMs on the 
YouTube scrapped data (+YouTube) gives further significant gains reducing the WER from 
27.5% to 20.0%. 
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Figure 16.  Confidence Scores and WER for Systems Evaluated on MATERIAL WB 
(MWB), Babel NB (BNB) and MATERIAL NB (MNB). 

Expanding on results from Table 4  and Table 5, Table 11 further elaborates the impact of adding 
SST to EDIN’s baseline ASR pipeline. While we once again constrain our detailed results to 
Kazakh and Georgian, the SST approach was successful across all languages. 
Both Kazakh and Georgian saw a significant (minimum 5% absolute) drop in the WER when 
comparing the seed model (which was trained on just the initial build and English data) and the 
revised model produced after just one iteration of SST using ‘pseudo­labelled’ YouTube data. 
These results highlight the remarkable usefulness of SST in low resource scenarios, where it 
enables large quantities of web­scraped, untranscribed audio data (when processed using 
appropriate audio filtering techniques) to be successfully integrated into training - despite the  

Table 11.  WER Before and After Applying SST (Using 800 Additional Hours of Scraped  
Data) to EDIN Systems (baseline+webLM+Fisher 100h English Data). 

Evaluation conducted on analysis_wb dataset. 

 
 
 
 
large amounts of noise such data is likely to contain. In the case of Kazakh, an additional round 
of incremental SST lowered the WER further still, leading to an overall WER reduction of 
10.1% as compared to the baseline seed model for this language. 
The success of the SST approach led us to conduct further experiments in order to more precisely 
define the learning dynamics of SST for low resource/out-of- domain ASR. Specifically, we 
investigated two independent possibilities: how SST success is affected by the quality of the seed 
AM and how the quality of the LM utilized for decoding the semi-supervised data impacted the 
results. The intuition behind selecting these approaches was that a good quality LM may prove to 
be the more important of the two, because it is LM which provides external information to the 
system (see discussion in Section 3.1.3) [23]. 
Given EDIN’s hybrid-based setup (described in Section 3.1.1), it was possible to isolate the AM 
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and LM components and thus independently switch each one out for artificially degraded 
variants trained on less data, while still keeping the other constant. This allowed us to chart how 
any given AM/LM combination affected the ‘gains’ provided by SST. Figure 17 plots the initial 
WER achieved by the seed system against that achieved after pseudo-labelling/retraining using 
extra data from one such experiment conducted on Tagalog [23]. 
The blue series in Figure 17 demonstrates the gains that are made (illustrated by the points lying 
below y = x) when a high quality LM is combined even with progressively weaker AMs (which 
have increasingly high initial WERs) and applied to the semi-supervised data. Not only are such 
gains were made across the board, they can be observed even when the initial system’s WER 
was over 80%. By contrast, the orange series illustrates that even a good quality AM cannot 
similarly compensate for successively weaker LM variants. Though improving LM quality led to 
increased the SST pay­off, a poor LM could not be salvaged by a high quality AM. 
These findings further demonstrate the value of SST for low resource ASR, as it supports 
significant WER gains even when acoustic data is extremely limited - as long as there is 
sufficient text data available to train a good quality LM. 
 
 
 
 
 
 
 
 
 
 

Figure 17.  How Varying the Seed AM (purple) and LM (orange) Affects WER Gains  
Made during SST in Tagalog. 

4.1.4 Integration with Downstream Tasks - Audio Document Language Verification 
During the BP, the teams were required to ensure no hits were returned for audio documents that 
were not in the target language. To achieve this, SCRIPTS relied on document-level confidence 
scores to identify these OOL documents. Figure 18 shows the performance of document (speaker 
level) confidence scores for the target language Swahili, meaning that all confidence scores are 
derived from a Swahili ASR system. In both plots, the cumulative  plots of documents (speakers) 
against confidence scores shows that the confidence scores for Swahili are significantly higher 
than those for both geographically close languages (left hand plot) and a broader range (right 
hand plot) of languages. 
For the BP evaluation of language identification, a threshold was applied to the confidence 
scores (the equivalent of applying a vertical line in Figure 18). Documents to the right of that line 
are labeled as being in the target language, those to the left as not in the target language. The 
performance of this classifier on the evaluation target language of Somali is shown in Figure 12.  
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As expected from the confidence distribution plots, the performance is very high. 

4.1.4.1 Integration with CLIR 
The simplest method of integrating ASR with CLIR is to pass the one best output to CLIR, 
which can then treat the audio document as a text document. For low resource speech recog-
nition, however, here will be errors in the ASR transcriptions that will degrade CLIR perfor-
mance, especially for phrases. While including confidence scores in the CLIR process is both 
simple and effective, however, it does not make maximum use of the output of the ASR system. 
 
 
 
 
 
 
 

Figure 18.  Confidence-Based Language Verification for Swahili: Percentage of Documents 
(Speakers) below a Confidence Threshold. 

Table 12.   BP Language Verification (Recognition) Results. 
 
 
 
By using using lattices, rather than the one best output (including confidence scores), the MAP 
performance can be improved significantly. For example, Table 13 shows the impact for Kazakh, 
where the MAP performance improves from 0.630 to 0.662. As discussed in Section 3.1.4, it is 
possible to use both phrase and word indices. Implementing this directly - and only considering 
the longest phrases from the phrase table in the English query phrase - the performance was 
degraded slightly to 0.620. We believe this degradation was due to a combination of less 
accurate translation table probabilities for phrases, and phrases being missed from the lattices. 

Table 13.  Performance (MAP) for Different CLIR Search Strategies on Kazakh. 
 
 
 
 
As discussed in Section 3.1.4, it is possible to generate a single index that supports both word 
and phrase search by combining the results of both the word and phrase decompositions. Rather 
than directly combining all the probabilities, however, a weighted combination was used. Figure 
19 shows the impact of different weights on the MAP performance. As expected, the weights for 
the word-based decomposition is higher, reflecting the more accurate translation table proba-
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bilities and higher chance of occurring in the ASR lattice. This provided an additional perfor-
mance gain over the word lattice search. 
 
 
 
 
 
 
 
 
 

Figure 19.  Word and Phrase Based CLIR Interpolation MAP Performance Kazakh,   
Weight Indicates the Weight Given to the Word Probabilities. 

4.1.5 Technical Insights 
Our results from this work indicate some clear insights with respect to low resource speech 
recognition: 

• Web-scraped data, both audio and text, is very effective in building high 
performance ASR systems. 

• Appropriately handling errors in the transcriptions of untranscribed 
web-crawled data is important. Approaches examined here included the use 
of confidence scores, incremental transcription, and lattices. 

• Cross-domain porting—for example, CTS data to broadcast-style data - can 
be made possible with the use of untranscribed web-scraped data. 

• If resources are not highly constrained, confidence scores from an ASR 
system are a simple and effective way of detecting whether the audio 
document was in the target language of interest. 

• Appropriate filtering of untranscribed audio data at the video level (e.g., via 
speaking rate and first pass confidence scores, as discussed in Section 3.1.3) 
is also important when trying to utilize SST successfully. 

• It is important to deal with error propagation from the ASR system to CLIR. 
Here we used approaches based on confidence scores and lattices for tighter 
integration. 

• SST techniques can be used to greatly improve performance, even when 
there is very little supervised acoustic data initially available - as long as 
enough text data can be sourced to train a sufficiently high quality LM. 

4.2 MT 
Intrinsic evaluation of MT quality shows that NMT systems outperform SMT systems for all 
languages of the program, including in the lowest resource settings. However, downstream paths 
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benefit from access to a diverse set of translation approaches. In particular, SMT systems are 
sometimes more useful for CLIR than neural systems. We also show that novel neural architect-
tures can successfully incorporate terminology constraints in translation, which is useful to 
encourage MT systems to use query words when translating relevant documents. 

4.2.1 Results and Findings - EDINMT  
In addition to the other languages in the program, the provided EDINMT docker container 
supports translation between Kazakh-English (kk-en) and Georgian-English (ka-en) language 
pairs. 
For each kk-en and ka-en, three models are provided:37 (1) a text translation model; (2) a text 
translation model that incorporates query terms; and (3) a translation model that has been 
optimized for use with ASR outputs through lowercasing and removal of punctuation on the 
source side. Each model can be run in two modes: “accurate,” which uses an ensemble of four 
separately trained models for the language direction, and a “fast” mode which uses only the best 
model. 
Translation can be performed in 1-best mode, n-best mode or in n-best-words mode. In 1-best 
mode, the system outputs the top hypothesis based on beam search; in n-best mode, it outputs the 
top n sentence hypotheses. In n-best-words mode, the system outputs n tokens for each position 
in the top beam search hypothesis. 
The MT system for Kazakh in OP2 follows the approach in previous evaluations, with the 
addition of a model trained specifically to incorporate query terms into the MT output that are 
relevant in the source language. 
When training the query system, we augment our parallel data with target query terms. Spans of 
target text between one and three words in length are extracted from the target side parallel 
sentences and appended to the source side with the delimiter character |||. We append a term with 
75% probability. With 25% probability, we use no augmentation in order to ensure that the 
model is still capable of making translations when a query term is not provided. The model is 
otherwise trained as per the normal method. 
During inference, a user can select either the query model or the normal model, both of which 
were available in the final system. When using the query model, the user can optionally provide 
the system with a source sentence and a target term, which is then appended to the source side, in 
order to guide the model into incorporating that term in its output.38 During development, the 
Kazakh systems were evaluated on the WMT2019 newstest set for kk-en using SacreBLEU 
score. 
The MT system for Georgian follows our approach in previous evaluations, with two changes. 
First, we use SentencePiece39 on its own for preprocessing our data with BPE. We set the 
vocabulary to 32k tokens, and included the numerals 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 in the set of 
user-defined symbols. This ensures that numerals are always segmented into their own tokens, 
which aids the translation of numbers. Second, we add an additional step for handling artifacts 
such as URLs, emails, and Extensible Markup Language (XML) tags in the text. For training the  
37For English to Kazakh/Georgian we provided only the text translation model 
38Note that a query system was trained only for the Kazakh to English direction. 
39https://github.com/google/sentencepiece  

https://github.com/google/sentencepiece
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system, a regular expression is run over the data to extract these artifacts and replace them with a 
special numbered token, such as [URL], [URL1], [URL2], etc.; these are also added to the 
SentencePiece BPE model as user defined symbols. In the translation data, artifacts are replaced 
by a token with 80% probability, while with 20% probability, the artifact is not replaced, so that 
the model can still learn to translate in case these artifacts exist in the text. The number of the 
token to insert is incremented from 1 to 10 (and then starts over again at number 1). This is done 
to allow the model to see tokens of higher numbers more often than it otherwise would. Thus, for 
sentences where there is only one artifact, the model won’t always be exposed to only [URL1], 
but will also occasionally see [URL2], [URL3], etc., up to [URL10]. 
During inference, the data are similarly preprocessed except that the extracted artifacts are 
temporarily stored and then reinserted on the output side. In case the MT model fails to output 
the required token, the artifact is simply appended to the end of the sentence. During  develop-
ment, the Georgian systems were evaluated using Bilingual Evaluation Understudy Score 
(BLEU) on held out ANALYSIS data. 
We have shown the final results of EDINMT systems in Table 14 and 15. Note that the Farsi- 
English systems were evaluated on International Workshop on Spoken Language Translation 
(IWSLT) test sets. For the Kazakh-English pair, we  didn’t have enough direct parallel data. So 
we used additional parallel data through a pivot   language, Russian. We explored different tech-
niques such as pivot­based NMT, multilingual training, and back-translation. The results are 
shown in Table 15. 

4.2.2 Results and Findings - UMD NMT 
We measure translation quality using case insensitive   BLEU computed by SacreBLEU [147].40 
Figure 20 shows the ablation study on the impact of different components on English↔Kazakh 

Table 14.  BLEU Scores of the Final EDINMT Systems. 
 
 
 
 
 

Table 15.  BLEU Scores of Different Systems for Kazakh-English Pair on WMT2019 
Newstest Set. 

 
 
 
 
 
 

40Version string: BLEU+case.lc+numrefs.1+smooth.exp+tok.13a+version.1.2.11 
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• Transformer vs. LSTM: Transformer outperforms LSTM by +4.2 and 
+3.8 BLEU   on English Kazakh and Kazakh English, respectively. 

• Impact of Back Translation: Incorporating English monolingual data via 
back translation  improves BLEU by +1.7 on Kazakh English. 

• Impact of Pivot-based Data Augmentation: Pivot-based data 
augmentation further improves BLEU by +1.2-1.4. 

• Impact of Ensemble Decoding: Ensembling four models further improves 
over single models by +0.8-0.9 BLEU. 

4.2.3 Results and Findings – SMT vs NMT 
SMT vs. NMT Table 16 shows a comparison between NMT and SMT based on BLEU and 
CLIR performance measured by MQWV on Farsi-English. Results suggest that, although NMT 
achieves substantially higher BLEU than SMT, SMT is still useful for CLIR as it leads to better 
CLIR performance. 

Table 16.  SMT vs NMT: BLEU and CLIR Performance Measured by MQWV on 
Farsi-English. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 20.   BLEU Scores on English↔Kazakh ANALYSIS Test Set. 
4.2.4 Overall Results 
Table 17 shows the BLEU scores of the final NMT and SMT systems on ANALYSIS test set. 
 
 
  

 BLEU MQWV 
NMT 23.59 0.227 
SMT 16.74 0.386 
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Table 17.  BLEU Scores of the Final UMD NMT and SMT Systems on ANALYSIS Test 
Set. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.2.5 Other Experimental Results 
Although it was not incorporated into the evaluation system,  we assessed EDITOR’s ability to 
incorporate lexical constraints into its outputs. This is motivated by the need to encourage MT 
systems to use terms that are consistent with the query when translating documents that have 
been found to be relevant. We evaluate on three translation tasks: Romanian-English, English- 
German, and English-Japanese translation with provided terminology constraints [41]. As 
shown in Table 18, we compare EDITOR with an autoregressive (AR) NMT model with con-
strained beam search (AR+DBA) [148] and LevT [42], which is the SOTA non- auto-regres-
sive (NAR) NMT model. For each metric, we underline the top scores among all models and 
boldface the top scores among NAR models based on the paired bootstrap test with p < 0.05 
[149]. EDITOR decodes 6–7% faster than LevT on Ro-En and En-De, and 33% faster on En-Ja, 
while  achieving comparable or higher BLEU and Rank-based Intuitive Bilingual Evaluation 
Score  (RIBES). As in [42], we evaluate translation quality via case-sensitive tokenized BLEU 
and  RIBES [150], which is more sensitive to word order differences. For lexically-constrained 
decoding, we report the constraint preservation rate (CPR) in the translation outputs. We 
quantify decoding speed using latency per sentence. This is computed as the average time41   (in 
milliseconds) required to translate the test set using a batch size of one divided by the number of 
sentences in the test set. 
Results show that EDITOR exploits soft lexical constraints more effectively than the LevT 
while also speeding up decoding as compared to the constrained beam search implementation 
used. 
 

 
41Excluding the model loading time. 

Table 18.  Performance of EDITOR Compared with AR and NAR Translation Baselines on 
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Lexically Constrained MT. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.2.6 Technical Insights  
Four main technical insights were generated as a result of this work, which reflect both 
contributions to the evaluation systems and additional research conducted  in this area. 
Specifically, we find that: 

1. Many of the tasks in the program were not truly low resource after collecting 
or crawling publicly available data. Translation quality is also improved 
through the creation of synthetic training data generated by back translation 
or pivoting. 

2. Data pre-processing is key to building high quality systems. Data filtering and 
normalization, as well as dedicated handling of URLs and Twitter handles 
had a large impact on translation quality. 

3. The needs of the end user (e.g., a CLIR system versus a human reader) 
dictate what makes an MT system useful, and this implies the need for 
distinct MT systems to meet specific needs. For example, SMT systems can 
help CLIR even when their BLEU scores are lower than NMT. But their 
ability to pass OOV words through can be distracting when presenting 
output to human users. 

4. Tailoring MT to the upstream and downstream components (e.g., ASR, 
n-best outputs)  proved useful. E2E training data would support 
investigations into the possible   benefits of additional task integration 
techniques. 

4.3 Data Collection and Language Identification 
4.3.1    Text Data Collection 
To support the other modules in SCRIPTS, we collected and shared  a very large number of news 
articles scraped from a list of broadsheets, tabloids and local newspapers published online. The 
initial list of sources was extracted from the Wikipedia page “List of newspapers in the   
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Philippines”42 and we subsequently collected data for Swahili and Somali. The list of news 
websites and their URLs is shown in Appendix A. 

For each news website, we scraped text, audio and subtitles if present. Text was segmented  into 
sentences, normalized, and labeled with language tags. 
We also collected text data from the NYT43 and Reddit Summarization44 datasets along with 
Global Voices’45 multilingual blogs and articles. In total, we collected 30.5K Swahili posts and 
2.5K for Tagalog. 
Using our Speech Laboratory’s Babler system [51], we also constructed a large corpus of blog 
posts scraped from blogger.com written in Swahili and Tagalog. We did this by seeding Babler 
with Swahili and Tagalog words extracted from the Leipzig corpus [151] , and identifying the top 
scoring terms using a version of TF-IDF run on Microsoft BING web documents. The collection 
was also normalized and labeled with language tags. 

Table 19.  News Text Data for Swahili 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
For Tagalog, we obtained a total of 2,940,869 sentences of which 2,296,582 were tagged as 
Tagalog. For Swahili, we found 896,103 sentences, of which 828,534 were tagged as Swahili, as 
shown in Table 21. 
We obtained additional text data from bilingual Tagalog/English and Swahili/English dictio- 
naries. Tagalog was scraped from Glosbe,46 including POS tags and morphology information 
where available. This produced a total of 26,864 Tagalog entries. The Swahili/ English 
dictionary was scraped from,47 with POS tags and morphology information also scraped when 
 
42https://en.wikipedia.org/wiki/List_of_newspapers_in_the_Philippines  
43https://github.com/outerproduct/nyt-sum 
44https://github.com/webis-de/webis-tldr-17-corpus 
45https://globalvoices.org 
46https://glosbe.com/tl/en  
47http://africanlanguages.com/swahili/ 

https://en.wikipedia.org/wiki/List_of_newspapers_in_the_Philippines
https://github.com/outerproduct/nyt-sum
https://github.com/webis-de/webis-tldr-17-corpus
https://globalvoices.org/
https://glosbe.com/tl/en
http://africanlanguages.com/swahili
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available, for a total of 14,681 Swahili entries. We also found relevant Wiktionary Bilingual 
Dictionaries for both languages and extracted data for each in two formats. The first type of 
dictionary was extracted from the translation pages of Wiktionary (e.g., en.wiktionary.org, 
tl.wiktionary.org and sw.wiktionary.org). These contained 8,132 Swahili entries and 10,886 
Tagalog entries. The second type of dictionary was extracted using triangulation across the two 
target languages and a third one using wikt2dict.48 These dictionaries generated 2,381 entries for 
Swahili and 2,275 for Tagalog. 

Table 20.  News Text Data for Tagalog. 

Corpus # Tokens # Sentences # Documents 

abante-tonite 4,599,322 277,633 26,790 
balita 15,668,728 794,073 125,223 
bandera 23,686,772 1,442,994 84,558 
gmanetwork 3,030,967 119,261 51,742 
hataw 42,821 2,826 148 
philstar 19,853,063 1,180,321 48,438 
pinoyparazzi 12,266,823 902,174 57,987 
pinoyweekly 1,936,271 107,200 5,949 
remate 59,767,005 221,510 293,347 

Table 21.  Bing-scraped Text Data. 

Language Swahili Tagalog 

# Documents 91,305 51,630 
# Documents in-target 90,171 49,175 
# Sentences 10,948,666 13,735,047 
# Sentences in-target 8,967,646 8,586,904 

We also tagged Swahili and Tagalog CommonCrawl corpora with language tags, as detailed in 
Table 22. 

Table 22.  Number of Documents and Sentences in the CommonCrawl Collection. 

Language # Documents # Sentences 

Swahili 2.8 M 127.5 M 
Tagalog 8.6 M 270 M 

Finally, we used a 100-language corpus of parallel Biblical text49 aligned at the verse level to 
collect 62,195 verses from complete Bibles available in Tagalog and 15,699 verses from the New 
Testament in Swahili. 
In subsequent work in the BP, we searched YouTube for additional Bibles in the languages of 
interest, using the alignment from the text Bibles on the videos. We also worked to build a more 
robust YouTube scraper in order to identify more Tagalog and Swahili audio with captions. 
To validate our collection processes, we ran a test of our web scraper’s “massive” version, which  

48https://github.com/juditacs/wikt2dict 
49http://christos-c.com/bible/ 

https://github.com/juditacs/wikt2dict
http://christos-c.com/bible/
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scrapes all available websites for specified languages. We tested this massive scraper on the 200 
top scored keywords for Tagalog and Swahili and requested from BING a maximum of 500 
URLs, expecting to obtain at most 10,000 documents per language. Our results are as follows: 

• Tagalog: 
o Total number of URLs found = 93037 
o Total number of docs found in-language (tgl) = 48099 (51.70%) 
o Total number of docs found in-language that were stored in this 

run = 23731 (25.51%) 
o Total number of docs found OOL (eng) = 30193 (32.45%) 

• Swahili: 
o Total number of urls found = 90270 
o Total number of docs found in-language (swa) = 63300 (70.12%) 
o TotalTotal number of docs found in-language that were stored in this 

run = 34928 (38.69%) 
o Total number of docs found OOL (eng) = 14907 (16.51%) 

Results using Language ID on these scraped documents were reasonably good: for 183,307 
documents collected, 111,399 (61%) were in the language sought and 58,659 (32%) were stored 
in the procedure. 

4.3.2 Audio Data Collection 
To support ASR, we also scraped large amounts of LRL audio data. We obtained numerous 
audio clips from our work scraping news sources as described in Section 4.3.1. We did encounter 
certain challenges in this process: First, the videos we collected did not always represent news- 
type text as they often included advertisements. News videos were also never tagged by lan-
guage. Finally, a majority of the captions we collected were automatically generated by You-
Tube, either by ASR (often for the wrong language) or MT. To address some of these issues, we 
also collected audio clips from the same sources we used for our text news collection. 
For each YouTube webpage described above, we scraped text, audio and subtitles if present.   For 
audio, the following information was logged: 

• Video identifier as assigned by the host website. 
• Extension of the audio file. 
• Language ID as assigned by the host website. 
• Title of the video 
• Language ID for the title assigned by CLD2. 
• URL of the website (news source) where the video was found. 
• URL of the website where the video is hosted. 

The audio files were then down-sampled to 16khz to save disk space. The subtitles are in the vtt 
format, which includes supplementary information such as subtitles, captions, descriptions, chap-
ter, and metadata. These were automatically generated.   Audio data collected in this manner for 
Swahili is shown in Table 23 and for Tagalog in Table 24.  
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Table 23.  Audio Clips from Swahili News Websites with Multimedia Data. 

Corpus # WAV Files Subtitles Duration (h:m:s) 
BBC Swahili 190 NO 23:39:35.46 
ippmedia 1214 YES 98:46:16.45 
itv 11 YES 00:49:03.96 
mtanzania 10 YES 00:47:17.72 
mwanahalisi 144 YES 14:30:27.19 
mwananchi 1 YES 00:04:18.72 
mwanaspoti 19 YES 01:13:02.96 
nifahamishe 2 NO 02:01:07.64 
RFI 21 YES 01:51:13.54 
shutilaki 234 NO 20:07:36.05 
spotistarehe 424 YES 52:52:09.92 
startv 4 YES 01:36:40.35 
UN Multimedia 28 YES 01:52:42.03 
VOA 4087 NO 1299:37:56.22 

We also employed Jenga50 to scrape YouTube videos in LRLs. Jenga was developed in our 
laboratory which used user­submitted subtitles to collect videos in a requested language. We 
used the Swahili and Tagalog keyword lists provided by the IARPA Babel program to search 
YouTube for user-submitted subtitles for up to 20 results per keyword. Results are shown in 
Table 25. 
We also scraped audio versions of the Bible from bible.com. For Tagalog, we obtained 99.5 
hours of audio divided into 1,190 chapters. For Swahili, we downloaded 25.28 hours of audio 
from 260 chapters. 

Table 24.  Audio Clips Obtained from Tagalog News Websites with Multimedia Data. 

Corpus # WAV Files Subtitles Duration 
abante-tonite 16 NO 00:15:06.91 
balita 6 NO 00:15:07.74 
bandera 36 NO 01:53:45.83 
gmanetwork 3688 YES 203:00:27.24 
philstar 45 YES 08:23:54.45 
pinoyparazzi 310 YES 18:52:16.65 
pinoyweekly 271 YES 26:39:32.61 

Table 25.   Metrics for the YouTube Corpus. 
 
 
 
 
 
 
 
 
 

50Referenced tool has since been removed from GitHub.com 

Metric Swahili Tagalog 
# Keywords 4,455 3,805 
# Videos Found 71,442 66,158 
# User-transcribed 
Videos 

1,458 546 

# Utts 520,397 150,354 
Utts Total Duration (h) 580.54 221.20 
Utts Avg. Duration (s) 4.02 5.30 
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4.3.3 Language ID  
We performed Language ID for our text corpora using the majority vote between three ad­hoc 
language taggers: CLD2 [152], Textcat [153], and Lingpipe [154]. Majority vote was preferred 
over a single classifier’s prediction because aggregate predictions work better for LRLs [51]. 
When majority vote ties to 1­1­1, we fell back to the single method with highest confidence 
score. Documents were tagged with language identifiers at both the document level and at the 
sentence level. 
To identify code-switched sentences, we developed a method that we termed anchoring. An 
anchor is a word that belongs to only one language among a large pool of languages, and are 
especially useful for detecting code-switching (switching between languages) in documents or 
sentences. For example, if a sentence contains anchors from two different languages, it can be 
concluded with a certain confidence that the sentence is code-switched. Similarly, if the sentence 
contains an anchor from language L1 but its language identifier is L2, it can also be concluded 
that the sentence is code-switched in L1+L2. For MATERIAL, we tagged word-level anchor 
annotations on all the scraped data in order to study the impact of code-switched data on the 
different NLP modules of our system pipeline. We computed weak anchors using the Leipzig 
corpus, which included a total of 2,758 Swahili words and 21,849 Tagalog words. 

4.3.4 Technical Insights  
Over all, our news and YouTube collected data supported major improvements in SCRIPTS 
program, particularly in ASR where it improved audio-based performance over the initial ASR 
error rate of 50%. Specifically, performance improved by 19% for Swahili and 12% for Somali. 
Text data we collected for ASR LM also was quite useful: in Swahili, for example, there were 
relative WER gains of 5% on NB and 28% on WB data types. LM for MT was also improved 
thanks to the significantly higher volume of training data we provided in the evaluation lan-
guages. The bilingual dictionaries we collected were also used for intrinsic evaluation of 
multilingual word embeddings. 
We also submitted several systems that made use of language ID-based text and speech filtering. 
The first one was for Swahili, where the baseline system with document filtering obtained 0.299 
AQWV score. The system that filtered out documents using both speech and text language 
identification, meanwhile, achieved a 0.302 AQWV score - equivalent to a 1% relative improve-
ment. For Somali, the baseline system achieved a 0.187 AQWV score, whereas the submission 
system submission that used document filtering with text language ID achieved 0.190 AQWV - a 
1.60% relative improvement - and one using speech language ID filtering achieved 0.191 
AQWV - a 2.14% relative improvement. Finally, a system using both forms of filtering achieved 
0.193 AQWV, for a total 3.21% relative improvement. 

4.4 Text Processing 
In this section, we present the experimental settings (e.g., the languages, data, metrics) and the 
results and findings for morphological segmentation (MorphAGram) and unsupervised POS 
tagging portions of this research. 

4.4.1 MorphAGram - Languages, Data, Evaluation Settings 
We consider 13 languages that are spread across the typology spectrum and for which morpho-
logically segmented datasets are available for evaluation. Six out of the 13 are development 
languages that we use to derive the main conclusions concerning our grammar definitions, 
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learning settings and the automatic tailoring of grammars for unseen languages. These languages 
are English, German, Finnish, Estonian, Turkish and Zulu. The remaining languages are the test 
ones, specifically: Japanese, Georgian, Arabic, Mexicanero, Nahuatl (Mexicano), Wixarika 
(Huichol) and Mayo (Yorem Nokki). Brief descriptions for the typologies of the languages, 
along with information about the datasets, are listed in Table 26. In addition, we provide the 
information about the data (unsegmented words) we used for training MorphA-Gram for 
MATERIAL languages (note that except for Georgian, we do not have gold segmented data for 
MATERIAL languages so we cannot make that evaluation). 

Table 26.  Typological and Data-related Information per Experimental Language for 
MorphAGram. 

 
 
 
 
 
 
 
 
 
 
For the Scholar­Seeded affixes described in Section 3.4.1, we mainly rely on the Wiktionary to 
collect the prefixes and suffixes of the language of interest, supplemented with additional ones 
from grammar pages on the Web if necessary. In order to preserve the low resource setting, 
however, we restrict the process of collecting the list of affixes less than two hours in length per 
language. For all the languages, we train our models using the training sets (TRAIN) without 
seeing gold standard segmentation. We conduct our experiments in a transductive learning 
scenario, where the unsegmented words in the evaluation set are included in the training set, 
which is common in the evaluation of unsupervised morphological segmentation [155], [55], 
[156]. Notably, we do not see significant gains in the performance when using an inductive 
approach in which the unsegmented words in the evaluation set are kept separate from the 
training set. For training, we run the sampler for 500 optimization iterations for all the languages. 
Annealing was found to have no positive impact and so was not used; all the hyperparameters of 
the model and the probabilities of the production rules are automatically inferred. Because the 
sampler is non-deterministic, we compute all the evaluation results as the average of five runs. 
We evaluate the performance of MorphAGram, our morphological-segmentation framework, 
using the classical evaluation method of Boundary Precision and Recall (BPR). BPR measures 
the ability of the system to detect segmentation boundaries by comparing the boundaries in the 
proposed segmentation to those in the reference. 
For MATERIAL languages, we used the Scholar­Seeded setting to train our morphological- 
segmentation models. We compiled the lists of seeded affixes from Wiktionary and trained our 
models using the 50,000 most frequent words seen in the BUILD and DEV data packages for 
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each language.  We chose the scholar-seeded learning setting as it shows best performance in 
general across a variety of language. We could not evaluate the performance for MATERIAL 
languages except Georgian as we did not have gold segmentation. 

4.4.2 MorphAGram - Results  
We compare the performance of MorphAGram with two strong baselines, Morfessor51 and 
MorphoChain.52  As shown in Table 27, our Scholar­Seeded setup (AG­SS), outperforms our 
fully unsupervised setup, AG­LI, in nine individual languages and on average, achieving an 
average relative error reduction of 5.1%. Comparing MorphAGram to the baselines, the AG­LI 
configuration outperforms both Morfessor and MorphoChain when evaluated on all the lan-
guages except English, with average relative error reductions of 22.8% and 40.7%, respectively. 
In the case of English, Morfessor outperforms AG­LI by an absolute 0.3%, while it comes second 
to AG­SS by an absolute 1.1%. The best overall result per language is in bold. The best lan-
guage-independent result per language is underlined. 
A notable capability of MorphAGram is its ability to handle polysynthetic languages (in which a 
word may contain several morphemes) even in low resource setups of only about 1,000 available 
words. Table 28 illustrates the performance of MorphAGram’s unsupervised system versus four 
supervised neural systems by [1] - namely S2S, CRF, BestMTT and BestDA, by evaluating on 
TEST using the BPR metric, in terms of F1-score. MorphAGram outperforms all of the super-
vised neural systems by [1] (including BestMTT, cur rently the best multi-task training system 
and BestDA, currently the best data augmentation system - when evaluated on Mayo using the 
same training and evaluation sets; we, however, do not use the gold segmentation for training. In 
the case of Nahuatl, AG-SS is only 0.5% behind the best supervised system, CRF. The perform-
ance gaps in Mexicanero and Wixarika are also relatively small, especially given the supervised 
nature of the baselines. The best result per language is in bold. 

Table 27.  MorphAGram vs. Morfessor and MorphoChain (BPR F1-score). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

51https://morfessor.readthedocs.io/en/latest/ 
52https://github.com/karthikncode/MorphoChain/blob/production2/README.md  

https://morfessor.readthedocs.io/en/latest/
https://github.com/karthikncode/MorphoChain/blob/production2/README.md
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Table 28.  MorphAGram vs. Kann et al. 2018 [1] (BPR F1-score). 
 
 
 
 
 
 
 
 
4.4.2.1 Incorporating Linguistic Priors 
Table 29 reports the morphological segmentation performance with the incorporation of 
linguistic priors into the PrStSu+SM grammar in the form of grammar definition (LS) for 
Japanese, and linguist-provided (Ling.) affixes for Georgian and Arabic (see Section 3.4.1 for 
details). The use of linguistic priors consistently improves the performance in all the settings, and 
all the improvements are statistically significant for p-value < 0.01. The best result per is in 
bold. 

Table 29.  The Performance for Japanese, Georgian and Arabic with and without the Use 
of Linguistic Priors within the PrStSu+SM Grammar. 

 
 
 
 
 
 
 
 
 
 
 
In the case of Japanese, the use of a language-specific grammar leads to the best performance   in 
terms of precision, recall and F1-score, achieving relative error reductions of 6.0%, 4.2%   and 
4.5% in BPR F1-score in the Standard, Cascaded and Scholar­Seeded settings, respec tively. In 
the case of Georgian, the use of linguist-provided affixes yields the best results, with relative 
error reductions of 33.2% in BPR F1-score over the regular, Scholar­Seeded setting, which relies 
on affixes of lower quality. A similar pattern is seen for Arabic, where the  use of linguist- 
provided affixes yields the best performance in terms of precision, recall and  F1-score, achieving 
an error reduction of 32.9% in BPR F1-score over the Scholar­Seeded  setting. In both Georgian 
and Arabic, the use of linguist-provided affixes impacts recall more  than precision, as the sampler 
knows about the most common affixes in the underlying language; these represent the majority 
of the affixes seen in the gold segmentation. However, precision also improves as the probability 
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of expanding to existing production rules that represent the seeded affixes is higher than the 
probability of expanding new subtrees representing unseen affixes. 
As shown in Table 30, we also conducted an analysis per POS for Georgian, as our  linguist 
provided (Ling.) annotation of word categories. While we see improvements across the board, we 
notice the highest improvements for verbs, because the linguist provided more  affixes relevant to 
verbal constructions. 

Table 30.  Category-wise Morphological-Segmentation Performance for Georgian Using 
the BPR. 

 
 
 
 
 

4.4.3 MorphAGram - Technical Insights 
The ability of AGs to include linguistic priors (either as grammar design or linguist-provided 
affixes) improves performance. MorphAGram - which is based on AGs - achieves the SOTA for 
unsupervised morphological segmentation results across a range of languages of diverse 
morphological complexity. 

4.4.4 POS Tagging - Languages, Data, Evaluations Settings 
We provide below description of our experimental settings for POS tagging including languages, 
data and evaluation metrics. 

4.4.4.1 Word-based Alignments Experiments 
We conduct our cross-lingual POS-tagging experiments on six high resource languages and 14 
simulated low resource target ones of diverse morphological typologies. Of these 14 target 
languages, five are MATERIAL languages for which we have POS tagged data for evaluation, 
generating a total of 84 target-source language pairs. We choose widely spoken high resource 
languages, because parallel texts for LRL are highly likely to include at least one of the high 
resource languages, especially when translating religious books, movie scripts and user manuals. 
These selected high resource languages are English (Indo-European (IE), Germanic), Spanish 
(IE, Romance), French (IE, Romance), German (IE, Germanic), Russian (IE, Slavic) and Arabic 
(Afro-Asiatic, Semitic). In the case of target languages that are in fact high resource, we simulate 
a low resource scenario where the POS tagging is performed in a fully unsupervised fashion. The 
target languages (MATERIAL languages appear in bold) are: Afrikaans (IE, Germanic), 
Amharic (Afro­Asiatic, Semitic), Basque (language isolate), Bulgarian (IE, Slavic), Finnish 
(Uralic, Finnic), Georgian (Kartvelian), Hindi (IE, Hindi), Indonesian (Austronesian, 
Malayo-Sumbawan), Kazakh (Turkic, Northwestern), Lithuanian (IE, Baltic), Farsi (IE, 
Iranian), Portuguese (IE, Romance), Telugu (Dravidian, South Central) and Turkish (Turkic,   
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Southwestern). We use the multilingual parallel Bible corpus53 by [157] as the source of our 
parallel data for all languages apart from Georgian and Kazakh, for which we collected the 
biblical texts from the MissingBibleVerses corpus.54  The full text of the Bible is available for all 
source and target languages except for Basque, Georgian and Kazakh, where only the New 
Testament is available. However, the small volume of data available in Basque and the fact that 
it is a language isolate make it an ideal case study of cross-lingual learning in a low resource 
scenario. 
The second column of Table 31 lists the average number of parallel sentences per target lan- 
guage across the source languages. The third column, meanwhile, contains the corresponding 
average number of training sentences after applying the sentence selection mechanism de- 
scribed in Section 3.4.2 for single source projection; the fourth column contains this average for 
multi­source projection. For single­source projection, Indonesian, Telugu and Amharic exper-
ience the maximum loss in the number of sentences selected as training instances, with relative 
reductions of 67.7%, 67.4% and 67.1%, respectively; the average relative reduction across the 
target languages is 38.8%. It is noteworthy to mention that we run the approach on verses as 
opposed to sentences, which are not equivalent in the rare cases where a verse contains multiple 
sentences or a sentence spans multiple verses. 

Table 31.  Average Number of Alignment and Training Sentences per Target Language 
Using the Bible Parallel Data Source (Single and Multi-Source Projection). 

 
 
 
 
 
 
 
 
 
 
 
 
We also notice that doing multi­source projections increases the number of training instances for 
all languages. For testing, we use the test datasets of the UD project, UD­v2.5 [158] to evaluate 
our tagging models in terms of POS accuracy. The corpora are Afrikaans­AfriBooms, Amharic­ 
ATT, Basque­BDT, Bulgarian­BTB, Finnish­TDT, Hindi­HDTB, Indonesian­GSD, Kazakh­KTB, 
Lithuanian­ALKSNIS, Persian­Seraji, Portuguese­ Bosque, Telugu­MTG and Turkish­IMST. We 
also report our results on older versions of the UD project in order to compare to the SOTA 
systems, when needed. One exception is Georgian, where it is not part of UD. Therefore, we  
53http://christos-c.com/Bible 
54https://github.com/cysouw/MissingBibleVerses 

http://christos-c.com/Bible
https://github.com/cysouw/MissingBibleVerses
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developed a small POS-tagged dataset of 100 sentences for Georgian,55 following the UD- 
tagging schema. The sentences are taken from the Modern Georgian and Political texts sub- 
corpora of the Georgian National Corpus,56 and are hand tagged and carefully reviewed by a 
linguist who specializes in and speaks Georgian as a second language. Finally, we evaluate our 
approach for cross­lingual POS tagging via alignment and projection versus zero­shot model 
transfer on Japanese as a case study, where we use the Japanese test set from the 2017 Confer-
ence on Computational Natural Language Learning (CoNLL-2017) shared task [158] for 
evaluation. 

4.4.4.2 Stem-based Alignment Experiments 
We select eight morphologically complex target languages on which to evaluate our word-based 
approach: six that are largely agglutinative (Basque, Finnish, Georgian, Kazakh, Telugu, and 
Turkish), Amharic (where many morphological alterations rely on consonantal roots), and the 
less morphologically rich Indonesian. However, we use the same set of source languages, for a 
total of 48 language pairs.  
We also experiment with multi-source setups. Finally, we choose to use the New Testament 
instead of the entire Bible as the source of parallel data for alignment and projection in the 
stem-based approach for two reasons: first, three target languages only have the New Testament 
(Georgian, Basque and Kazakh); second, we wanted to demonstrate the efficiency of stem­based 
alignment and projection, where the use of the stem compensates for the lack of adequate amount 
of data. We however use the same evaluation datasets as before. 

4.4.5 POS Tagging (Neural Model) - Results  
We have conducted most of our experimentation with the Neural POS tagger, as that was 
superior to the Average Perceptron Model in our earlier experiments. Here we present the main 
results of the work; more results can be found in [159]. 

4.4.5.1   Word-based Alignment Experiments 
Table 32 reports the accuracy of our POS taggers for all the 84 language pairs, the average 
performance per source and target language, as well as the multi­source projection and 
multi-source decoding. For the latter two, we report the base settings, which are maximum 
voting for the multi­source projection and Bayesian Inference for multi­source decoding. The 
last column reports the upper bound supervised performance using Stanford’s Stanza 
(https://stanfordnlp. github.io/stanza/pos.html). The supervised performance is unavailable for 
Amharic and Georgian due to the unavailability of UD training data and for Kazakh. The best 
results per target language and per source language on average across the target languages is in 
bold. The last column reports the upper bound supervised performance using Stanza. 
 
 
 
 
 
 
 
55https://github.com/rnd2110/unsupervised-cross-lingual-POS-tagging/blob/main/data/KAT-eval.txt 
56http://gnc.gov.ge  

https://stanfordnlp/
https://github.com/rnd2110/unsupervised-cross-lingual-POS-tagging/blob/main/data/KAT-eval.txt
https://github.com/rnd2110/unsupervised-cross-lingual-POS-tagging/blob/main/data/KAT-eval.txt
http://gnc.gov.ge/
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Table 32.  The POS-tagging Performance (Accuracy) when Using the Bible as the Source of 
Parallel Data. 

MPwmv stands for multi­source projection using weighted maximum voting; MDbys stands for multi­source 
decoding using Bayesian inference. 

 
 
 
 
 
 
 
 
 
 
 
 
 
The overall approach achieves an average POS accuracy of 75.5% across all the language pairs. 
However, there is a noticeable variance in the performance of the different taggers. Specifically, 
languages that belong to the same family transfer best across each other. For instance, English 
and German yield the best results for Afrikaans (IE, Germanic), while Spanish and Portuguese 
are the best performing language pair (IE, Romance), and Russian is the best source for Bulgarian 
(IE, Slavic). One exception is the case of transferring from Arabic to Amharic (Afro-Asiatic, 
Semitic). One possible reason is that the Arabic analyzer does not follow the UD guidelines. 
Arabic also exhibits a high degree of morphological complexity, which affects the performance of 
all the taggers that use Arabic as the source. 
Since English is highest resourced language, transferring from English yields the best perfor- 
mance for the eight target languages where its morphological annotation guidelines were the basis 
for those languages, namely Afrikaans, Amharic, Basque, Finnish, Hindi, Indonesian, Kazakh 
and Telugu. English also gives the best performance on average, with an average relative error 
reduction of 9.2% over French, the second best on average performing source  language. How-
ever, while French only yields the best performance for Turkish, Russian is the best source lan-
guage for four target languages: Bulgarian, Georgian, Lithuanian and Persian. Arabic is the lowest 
performing source language because its morphological complexity involves inflection, fusion and 
affixation, and because its analyzer does not follow the UD guidelines. The performance of the 
target languages is mainly impacted by three factors: morphological complexity, source language 
similarity and data availability. 
We find that using multi-source languages via multi-source projection and multi­source decod-
ing improves the performance for all target languages except Kazakh, Lithuanian, Portuguese 
and Telugu. The improvement through multi-source projection is due to the significant decrease 
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in the percentage of OOVs and the significant increase in the number of training instances, along 
with the improved quality of the projected tags. On the other hand, the improvement by multi- 
source decoding is due to combining the  outputs of different models that each can perform best 
on different sets of tags, where the models are based on different training sets learned through 
different source languages. For cases where the multi-source setups improved over the best 
single source performance, the results are statistically significant for p-value < 0.01, except for 
Hindi. 
In Table 33, we also show that multi-source approaches outperform the SOTA unsupervised and 
semi-supervised cross-lingual POS taggers that rely on learning from a large   number of source 
languages. We first compare our best setup of multi­source projection, MPwmv, and our best setup 
of multi-source decoding, MDbys, to the unsupervised multi-source system by [82], denoted by 
Application Gateway Ingress Controller (AGIC). We evaluate the performance of our system 
versus AGIC  on the shared target languages, namely Bulgarian, Finnish, Hindi, Indonesian, 
Persian and Portuguese. Despite the use of fewer source languages and a less suitable source of 
parallel  data, our approach outperforms AGIC on all the target languages, with average relative 
error reductions of 51.5% and 52.0% in the MPwmv and MDbys setups, respectively. 

Table 33.  Comparison to SOTA Unsupervised System AGIC (POS Accuracy). 
 
 

 
 
 
 
 

Next, we compare our approach to the SOTA multi-source semi-supervised system by [83], 
denoted by DsDs. We evaluate our system versus DsDs on the shared target languages, namely 
Basque, Bulgarian, Finnish, Hindi, Persian, and Portuguese, using the development sets of 
UD­v2.1 (except for Basque, where, as in [83], the test set is used instead). Despite the use of 
fewer source languages, a less suitable source of parallel data and a fully unsupervised approach 
that does not make use of external language-dependent resources, our approach outperforms 
DsDs on all the target languages except Bulgarian and Portuguese, with average relative error 
reductions of 25.4% and 24.8% in the MPwmv and MDbys setups, respectively (Table 34). 

Table 34.  Comparison to SOTA Semi-Supervised System DsDs (POS Accuracy). 
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4.4.5.2 Stem-based Alignment Experiments 
Table 35 reports the accuracy of our POS taggers in the stem-based setups compared to the 
word-based setups in both single-source and multi- source configurations. The single-source 
stem-based approach outperforms the single-source word-based one in 44 out of 48 language 
pairs; the five language pairs that benefit more from word­based alignment and projection are 
{Georgian, German}, {Indonesian, Spanish}, {In- donesian, French} and {Turkish, English}. 
For multi-source setups, the stem-based approach always improves performance, except in the 
case of Indonesian, where the two methods perform quite similarly. The best result per target- 
source language pair is in bold. The highest relative error reduction in the stem-based approach 
per target language is marked by *. The improvements in the stem-based setups that are not 
statistically significant for p-value < 0.01 are underlined. 
In addition to the results presented here based on the Bible data, we conducted an experiment for 
Georgian where we added the MATERIAL Build data to the available New Testament Bible data 
when the source is English. The accuracy is 83.7, which is better than the single- source English 
model trained only on Bible data for word-based models (82.8), but worse than using multi- 
source projections or decoding using just Bible data (84.3) and worse than stem­based multi- 
source (85.4). 

4.4.6 POS Tagging - Technical Insights  
There are three key takeaways for our work on unsupervised cross-lingual POS tagging. First, 
building reliable training data via cross­lingual projection requires the use of bidirectional 
alignments, type and token constraints, alignment quality and density of projected tags. Second, 
using stem as the unit of abstraction instead of a word for cross­lingual projection is helpful, 
especially for morphologically complex languages. Third, learning from multiple source lan-
guages (either via projection or decoding) generates significant performance improvements 
across languages.  
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Table 35.  The POS-Tagging Accuracy of the Word-Based and Stem-Based Setups When 
Using the New Testament as the Source of Parallel Data. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.5 CLIR 
4.5.1 Results and Findings 
Tables 36 and 37 show representative results on the text and speech EVAL collections for eight 
of the program’s nine languages.57  The top five rows of data in each table show results using 
MQWV, while the bottom two rows show results using AQWV. The results under comparable 
conditions are shown in the first six rows of each table, with those submitted during the 
scheduled evaluation period for each language as our primary run in the last row of each table. 
Starting with Bulgarian: BG in OP1, our primary submitted run outperformed the four-system 
combination that we have reported here for comparative purposes, reflecting language-specific 
choices of system configurations that were used in those evaluations. On line five of each table, 
an increasing trend is evident in the four-system combination MQWV reflecting the increasing 
maturity of the ASR, MT, and ranking system components, though language and collection 
differences make this trend more suggestive than confirmatory. A similar pattern is seen in the 
primary runs. Notable outliers are Somali (SO) and Pashto (PT), which generally yielded 
somewhat lower component and four-system combination MQWV as well as lower submitted 
primary run AQWV than did other languages. This suggests somewhat greater difficulty in 
modeling those two languages, although again collection and differences are a confounding 
variable. 
 
57The EVAL collection is not available for post-hoc analysis on Tagalog 
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Table 36.  Comparing EVAL Text Systems. 
 
 
 
 
 
 

Table 37.  Comparing EVAL Speech Systems. 
 
 
 
 
 
 
4.5.1.1 Query Expansion 
Table 38 presents the MQWV scores of the CLIR system with query expansion using word2vec 
embeddings for the Swahili and Lithuanian EVAL text systems. For Swahili, we observe small 
gains in MQWV for UMDNMT and UMDSMT systems with query expansion when applied to 
the entire query set. This might be explained by the poor quality of MT systems for Swahili, 
which improved query expansion cannot overcome. For Lithuanian, we see larger improvements 
in MQWV across all three MT systems. 

Table 38.  Effect of Query Expansion Using word2vec Model on Swahili and Lithuanian 
EVAL Text Systems (MQWV). 

 
 
 
 
4.5.1.2 XLM-R Reranking 
Neural reranking has shown great potential when it comes to improving the retrieval in a typical 
retrieve-and-rerank pipeline. Here, we test the same hypothesis in the CLIR setting by construct-
ing a pipeline that uses a base CLIR ranking model followed by a neural reranking model initial-
ized with XLM­R embeddings. Our final CLIR submissions included a combination of several of 
these retrieve and rerank pipelines, each using a different base ranking model. Table 39 shows 
the effect of reranking on the Kazakh and Georgian text submissions (P denotes primary sub-
missions made during respective evaluation). For Kazakh, we observe significant improve-ments 
in our contrastive submission with reranking in comparison with our primary run (which did not 
have the reranking component). For parity, we use the same set of six base CLIR systems for 
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both the primary and contrastive submissions. Based on these results, we use reranking for our 
Georgian primary submission and saw that reranking also helped CLIR performance in that 
instance. 
We conduct per­query analysis to see the overall effect of reranking on the Kazakh text sub­ 
mission as shown in Figure 21.  In general, improvements from reranking are greater in 
magnitude compared to the cases (queries) in which we observe score degradation. This 
generates a positive net effect of reranking on CLIR effectiveness. 

Table 39.  Comparing EVAL Text Systems with and without Reranking (MQWV). 
 
 
 

Figure 21.  Per-query Comparison of Kazakh Text Primary (without reranking) vs. 
Contrastive (with Reranking) Systems. 

Histogram shows the difference for each query, with queries sorted in increasing order of that 
difference (positive values indicate a preference for the Contrastive system on that query). 

4.5.1.3 Reranking with Position-Aware Convolutional Recurrent Relevance Matching 
(PACRR) and Pooled SImilariTy (POSIT) 
We first use the Indri58 system which combines query likelihood with Dirichlet Smoothing [101] 
to pre-select documents from the collection. To build the training dataset, we randomly sample 
one negative example from the documents returned by Indri for each positive example in the 
returned list. The model is then trained with a binary cross-entropy loss. On the validation and 
testing sets, we then use our prediction scores to rerank the documents returned by Indri. 

4.5.1.4 Extra Features  
Following the work in [160], [161], [107], we compute the final relevance score using a linear 
model to combine the model output with the following set of extra features:  

• Indri score using the LM approach to IR 
• percentage of query terms with an exact match in the document, including both the 

regular percentage and Inverse Document Frequency (IDF) weighted percentage 
• percentage of query term bigrams matches in the document 

58www.lemurproject.org/indri.php   
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4.5.1.5 Cross-lingual Word Embeddings 
We apply the supervised iterative Procrustes approach [162], [163] to align two pretrained 
mono-lingual fastText [87] word embeddings using the MUSE implementation.59 To build the 
bilingual dictionary, we use the translation pages of Wiktionary.60 For Swahili, Tagalog and 
Somali, we build training and testing dictionaries as follows: Swahili - 5,301 training words/ 
1,326 testing words; Tagalog - 7,088 training words/1,773 testing words; Somali - 7,633 
training words/1909 testing words. We then learn the cross-lingual word embeddings from 
Swahili to English, from Tagalog to English, and from Somali to English, bringing all three 
languages into the same word embedding space. 

4.5.1.6 Baselines 
For traditional CLIR approaches, we use query translation and document translation with the 
Indri system. For query translation, we use Dictionary-Based Query Translation (DBQT) and 
PSQ. For document translation, we use SMT and NMT. Specifically, for SMT, we use the Moses 
system [128] with word alignments using mGiza and 5-gram KenLM LM [129]. For NMT, we 
use S2S model with attention [164], [165] implemented in Marian [43]. 
For deep relevance ranking baselines, we investigate recent SOTA models including PACRR, 
PACRR-DRMM, and POSIT-DRMM. These models and our methods all use an SMT-based 
document translation as input. 
Table 40 shows the result on EN->SW and EN->TL where we train and test on the same 
language pair. 

4.5.1.7   Performance of Baselines 
For query translation, PSQ performs better than DBQT thanks to its use of a weighted alternative 
to translate query terms. PSQ also does not limit results to the fixed translation from the 
dictionary as in DBQT. For document translation, we find that both SMT and NMT perform 
similarly to PSQ. The effectiveness of different approaches depends on the language pair (e.g., 
PSQ for EN->SW and SMT for EN->TL), which aligns with findings in [166] and [167]. In our 
experiments with deep relevance ranking models, we all use SMT and PSQ because they have 
strong performances in both language pairs. 

4.5.1.8 Zero-Shot Transfer Learning 
Table 41 shows the result for a zero-shot transfer learning setting where we train on EN->SW + 
EN->TL and directly test on EN->SO without using any Somali relevance labels. 
This transfer learning delivers a 1-3 MAP improvement over PSQ and SMT. This illustrates a 
promising approach for boosting performance through the use of relevance labels from other 
language pairs. 

4.5.1.9    Aligning Multilingual Contextual Embeddings 
We evaluate our methods on several CLIR collections, sourced from both the IARPA  
 
59http://github.com/facebookresearch/MUSE  
60https://www.wiktionary.org/ 
  

http://github.com/facebookresearch/MUSE
https://www.wiktionary.org/
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MATERIAL program [168] and the CLEF 2000 - 2003 ad-hoc retrieval collections [169]. In 
particular, we use English (EN) queries for all collections, Farsi (FA) and Kazakh (KK) docu-
ments from MATERIAL and German (DE) and Finnish (FI) documents from CLEF. 

Table 40.  Test Set Results on English to Swahili and English to Tagalog. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 41.  Zero-Shot Transfer Learning on English to Somali Test Set. 
 
 
 
 
We combine all DE or FI test collections from the 2000-2003 CLEF evaluations. For the English 
CLEF queries, we concatenate the title and description fields from each of the CLEF topics, as in 
[170], [171]. For both MATERIAL languages, we use their corresponding DEV sets as our docu-
ment collections, with queries for that language from MATERIAL QUERY PACK 1. The quer-
ies provided with the MATERIAL collections include a conjunctive combination of lexical and 
conceptual clauses, whereas the queries formed from the CLEF topics include only a single 
conceptual clause. To limit the effect of this difference on our processing, we flatten the 
MATERIAL queries by treating the words in each MATERIAL query as a single conceptual 
clause, thus rendering the MATERIAL and CLEF queries comparable. Results for our CLIR 
collections are in Table 42.  
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Table 42.  CLIR Collections Statistics. 
 
 
 
 
 
For training and evaluation, we split our query sets evenly into five (disjoint) folds for a five­fold 
cross-validation setup, where we train our rerankers on four folds, and then test on the fifth. For 
all of our experiments, we use the P@20, nDCG@20 [172] and MAP measures, following 
previous work on ad-hoc reranking. 
The two alignment methods use different heuristics for selecting word alignments and extract- 
ing embeddings: in the technique from [110] only the last sub-word in each word is retained and 
used to calculate loss, and word alignments used as input are generated using bitext tokenized 
with an mBERT tokenizer in which all sub-words in each word have been concatenated into a 
single token. However, awesome-align extracts word alignments in the training process as part of 
its objective, and two words are considered aligned if any of their sub-words are aligned. 
BERT has been shown to learn a classical NLP pipeline [173], [174], with semantic information 
concentrated closer to the top most layers [175]. As a result, awesome-align uses embeddings 
from the eighth layer of mBERT for calculating word alignments. By contrast, the technique 
from [110] aligns the 12th and final layer. This is most widely adopted as the “embeddings” 
extracted from these LMs. 
For both alignment methods, we use the same values for hyperparameters as the original papers 
use. We also keep the hyperparameters from the original CEDR paper and train each of our 
reranking models on an NVIDIA RTX 3090 graphic processing unit (GPU). 
Table 43 shows the results of our experiments with all of the CEDR models, using either Vanilla 
mBERT (VBERT) or fine tuning with one of the two alignment methods, along with our PSQ 
baseline without reranking. We use a two-tailed paired t-test (p < 0.05) for significance testing. 
Bold indicates the best result on each measure, * indicates significance between mBERT and the 
marked alignment. 
In the EN-DE language pair, we improve over the baseline by all measures in both zero-shot 
alignment and the awesome-align settings. In EN-FI, we improve only on P@20 for the zero- 
shot alignment setting, while for the EN-KK language pair, we report worse performance than 
the baseline across all measures. Meanwhile, we observe in EN-FA an improvement over the 
baseline via awesome-align in only one of our measures, P@20. This discrepancy between 
measures shows that our neural models achieve better precision by retrieving more of the rele-
vant documents in the collections (P@20), but this may place some other relevant documents 
lower in rank. 
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Table 43.  Results in German, Finnish, Kazakh, and Farsi. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Our results suggest that awesome-align is beneficial for our CLIR task. In both the EN-DE and 
EN-FI language pairs, alignment leads to improvements over mBERT across several types of 
rerankers and measures, and for Finnish the use of alignment results offers consistent improve-
ment over the baseline. By contrast, the reranker with Vanilla mBERT fails to rerank documents 
better than our first-stage PSQ retrieval. In the EN-FA language pair, the awesome-align setting 
improves over the Vanilla mBERT setting in the P@20 measure, but despite improvement in the 
other measures, they do not outperform the first-stage retrieval.  This means that the aligned 
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setting does not perform worse than our zero-shot aligned setting. 
The disparity in performance gains from alignment when compared to the PSQ baseline is to be 
expected as a result of the low-resource nature of Farsi and Kazakh: mBERT has been   shown to 
perform less well on LRLs for which less text for pretraining is available [176]. As such, the 
mBERT contextualized embeddings for these languages may be poorer in the zero-shot setting. 
Some of the other performance differences may also be explained by the selected languages’ 
linguistic distance from English. For example, German is the language most linguistically similar 
to English, and it achieves the best zero-shot performance. Kazakh and Farsi, meanwhile, both 
use different scripts than English and do not perform as well in this cross-lingual setting. 

4.5.1.10   N-best MT 
Translation ambiguity is a key challenge for cross-lingual CLIR systems. NMT systems are 
usually optimized to produce fluent output, but this affects the recall of the CLIR systems. This is 
particularly true while working with 1-best translation output produced by an NMT system, as it 
may lack the coverage of required query  terms. To avoid this, we make use of the n-best trans-
lation alternatives to provide better coverage. While we can produce these alternatives at the 
sentence-level or token-level, we opt for token-level as it promotes more diverse outputs. Table 
44 shows the effect on CLIR of using n-best translation alternatives as opposed to 1-best with 
UMDNMT base system. We observe that the n-best approach consistently outperforms 1-best in 
Pashto, Farsi and Kazakh  EVAL text systems. 

Table 44.  Comparing CLIR Systems using 1-best and N-best UMDNMT (MQWV on 
EVAL Text). 

 
 
 
 
 

4.5.1.11   NNLTM  
We experiment with changing several hyperparameters associated with the NNLTM that might 
affect the retrieval performance. The number of contextualized translations stored is increased 
from 10 to 50 (top 50). In addition to that, we remove samples from training that have either 
English stopwords as the target or occur less than five times (min_tf). 
We also employ a regularization technique called label smoothing [39] which prevents the model 
from becoming overconfident in its predictions. This technique involves smoothing the one hot 
target labels with a uniform distribution over the target vocabulary size. These smoothed target 
labels are then used to train the model. We use 0.1 as the value for label smoothing parameter 
based on [39]. Results from all of our changes in the original NNLTM  model are summarized in 
Table 45.  
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Table 45.  Results of NNLTM Models on Swahili EVAL used in Zbib et al.[2]. 
 
 
 
 
 
For ease of comparison, we ran these experiments on the same setup as the one used in [2] - 
specifically, the IARPA EVAL set, with query sets Q1 and Q3 for Swahili.61 The model in [2] is 
compared with our replicated model which uses the same configuration. The models do differ in 
the training data, however, which we believe causes the differences between the two. Specif-
ically, we do not have access to the LORELEI [177] Swahili data used to train the original 
model. As our replicated model outperforms the original, however, suggesting that our model 
would outperform the original on identical training data as well. 

4.5.1.12    Keyword Spotting 
This section details the effect of different retrieval methods for Swahili, using MAP as the 
evaluation measure. MAP is equivalent to Mean Reciprocal Rank any time only one relevant 
document exists, as is often the case for the DEV collection in which 64 of the 126 queries with 
any relevant documents have precisely one. 
The effect of the two retrieval methods, PSQ+ASR and PSQ+KWS, is shown by query type (for 
non­conjunctive queries) in Table 46. MAP for lexical queries increases significantly when using 
KWS over that of 1­best ASR. For conceptual queries, gains are apparent on the DEV set, but 
MAP is essentially unchanged on the larger EVAL set. We therefore conclude that PSQ+KWS is 
the preferred approach for both basic query types. 

Table 46.  MAP Scores of Different Query Types for Swahili Test Collection. 
 
 
 
 
Table 47 summarizes the overall improvements on the two Swahili test collections. We observe 
that switching from ASR to KWS yields a statistically significant improvement, and that also 
adding conjunction processing using the geometric mean (GeoMean) yields yet another statis-
tically significant improvement. Moreover, the net improvement from the combination of these 
two changes is substantial: 12% (relative) on the larger EVAL collection, and 21% on the small 
DEV collection. In the table, x, y and z denote statistical significant improvements over ASR, 
KWS and ASR+GeoMean, respectively, using a two-tailed Wilcoxon signed rank test with p < 
0.05. 

 
 
61We only use Swahili results as it is the only Eval set used in [2].  
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Table 47.  MAP for all Queries. 
 
 
 
 
 
 
 
 
 
 
 

We do not have separate DEV and EVAL sets for Tagalog, but as Table 47 shows, we can 
observe similar trends on the one relatively small Tagalog collection as we saw with Swahili. 
Statistically significant improvements result from each change, and the net improvement from 
the two together is 18% (relative). We therefore conclude that the choices made for Swahili are 
reasonable choices for Tagalog as well. About two-thirds (250) of the 387 Tagalog queries that 
have any relevant documents at all have only one relevant document. Our best Tagalog result (a 
MAP of 0.458) roughly corresponds to placing a single relevant document at rank 2 (the Mean 
Reciprocal Rank for a system that always placed the first relevant document at rank 2 would be 
0.5). This is credible performance for an LRL as is the comparable value for our similarly sized 
Swahili DEV set, which equates to roughly rank 3. We believe these values are likely good 
enough to be useful in practical applications. 
For the Tagalog test collection, we also have manual 1-best transcription and manual 1-best 
translation available. As Table 47 shows, using these 1-best manual processes yields a MAP of 
0.513 for Tagalog, which is only 12% (relative) above our best present Tagalog result. While we 
note that 1-best transcription and translation are not an upper bound on what can be achieved by 
systems with good modeling of translation ambiguity, we take this small gap as further confirm-
ation that our Tagalog system is yielding credible results. As Figure 22 shows, one possible 
source of the difference is that the expected term count underestimates the correct term count 
more often than it overestimates this count (as measured on the 1- best translation). Averaging 
over all terms in the collection, the mean absolute error of the expected counts is 1.727.  

Systems Swahili DEV Swahili EVAL Tagalog DEV 

PSQ+ASR 0.288 0.165 0.388 
PSQ+KWS 0.303x 0.168 0.406x 
PSQ+ASR+GeoMean 0.329x 0.181x 0.417x 
PSQ+KWS+GeoMean 0.349xyz 0.184xyz 0.458xyz 
PSQ+Manual Transcription   0.485 
Manual Translation & Transcription   0.512 
Manual Translation & 
Transcription+GeoMean 

  0.513 
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4.5.1.13    Early and Late Fusion 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 22. Difference between Expected and Actual Term Count. 
To test the performance of early and late fusion techniques, we combine the enhanced NNLTM 
model with the PSQ non-contextual translations using both the fusion approaches. The enhanced 
model that achieves a MAP of 0.266 in the Table 45 on the Q1+Q3 query sets achieves a MAP 
of 0.272 on our EVAL set with Q2+Q3 (that is, using the same documents, but some different 
queries). The results for the individual systems and their combinations are shown in Table 48. 
Bold indicates best results per column, * indicates statistically significant improvement over both 
single systems in the combination. Two-tailed Wilcoxon signed rank test with p<0.01 is applied. 

Table 48.  MAP of the NNLTM and PSQ Models on the ATERIAL DEV and EVAL 
Collections. 

 
 
 
 
 
We observe that the PSQ system outperforms the NNLTM model on Lithuanian, which is the 
language with the most available resources among the tested languages. NNLTM outperforms 
PSQ on Swahili and Somali, except on the very small Swahili DEV+ANALYSIS set. The late 
fusion combination on each EVAL collection significantly outperforms the individual underlying 
systems, with the largest differences achieved on the Lithuanian. In the case of the Lithuanian 
and Swahili DEV+ANALYSIS sets, early fusion combination further improves these results. 
The strong performance of both combination methods confirms our assumption that the noise 
resulting from working with the n-best possible translations can be effectively overcome by 



 

94 
Distribution A.  Approved for public release; distribution unlimited. 

AFRL-2022-1213; Cleared 11 Mar 2022  

combining multiple such systems. 

4.5.1.13.1 Late Fusion 
Combining several individual systems to improve performance has been successfully used in 
different research areas and applications, including ML [178], speech recognition [179], and IR 
[112]. For late fusion (i.e., combination of ranked lists) to be helpful, the combined systems need 
to be both well performing (although not necessarily best performing) and diverse. Late fusion 
proved beneficial in almost all of our experiments, but in building a large number of configure-
tions (for some languages, more than 1,000 different setups), we encountered new research prob-
lems. For example, which systems   should be combined to achieve the best performance? To 
assess this, we began with baselines of 1) the single best performing system, and 2) the combi-
nation of all available systems. In  the end, the best performance was achieved by combining a 
relatively small number of sufficiently diverse systems, each of which performed reasonably well 
in its own right. Manual   election of the systems, using these criteria and a human conceptual 
knowledge of the systems, was used to generate the primary run in OP1 and OP2. Though we 
also experimented with automatic clustering methods to identify systems returning similar results 
this strategy  can sometimes place many of the best performing systems in a single cluster, and 
those cases  lead to suboptimal results. 
Comparison of systems submitted during the Farsi evaluation on EVAL collections are shown 
in Table 49 for text and Table 50 for speech. Manual selection of six systems clearly outper- 
forms the system that was the single best performing system on the development collection,   and 
also outperforms a selection of four systems on text. On speech, similar results are seen, with 
manual selection of six systems also performing better than the single system that had per- 
formed best on the development collection, but also manually selected eight systems on speech. 
However, the overall best score on speech was achieved using 12 systems selected using au- 
tomatic clustering. In both tables, the blue line is the primary run submitted, and the best 
achieved results are in bold. The cutoff states the target cutoff value and also the cutoff approach 
used (’A’ stands for average of STO, QST and Fixed-rank cutoff, ’F’ stands for fixed-rank cutoff 
and ’Q’ stands for the average of QST and fixed-rank cutoff. 
In addition to the number of systems, we have also experimented with query specific strategies 
for text (see line 2 in Table 49). In this case, four systems were run on each query and combined, 
choosing the systems systematically by query type, with the goal of manually optimizing the 
selected systems for each query type. However, this strategy did not yield improvements’ 

4.5.1.13.2 Cutoffs 
We experimented with several strategies for selecting how many documents to return from the 
top of the ranked list for each query. For most of our primary runs in OP1 and OP2, we used an 
average of STO, QST and fixed-rank prediction; we also limited the maximum number of 
documents to be returned as a means of false alarm control. This method led to nearly 
optimal results on text, especially for the OP2 languages for which larger DEV collections 
were available. The sizes of the DEV and EVAL sets were nearly the same for text, which 
obviated the need for scaling of parameters. This was not the case for speech, however, where 
the size of the DEV collection was still considerably smaller than the size of the EVAL 
collection. The STO and fixed­rank cutoff parameters for speech thus needed to be adjusted, 
incurring a degree of estimation error. In OP1 and OP2, it was possible to use experience from 
previous languages to inform our parameter choices, allowing us to mitigate estimation errors 
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somewhat. These observations are visible in Table 49 and Table 50 for Farsi text and speech, 
respectively. The AQWV score for text is almost equal to the corresponding MQWV scores, 
indicating the cutoffs are close to optimal. However, the differences between AQWV and 
MQWV scores are considerably larger on speech. Examining the corresponding Detection Error 
Tradeoff (DET) curves (not shown), we see the number of returned documents was consistently 
too large in the case of speech. Comparing lines 3 and 4 in Tables 49 and 50 also provides a 
comparison between using a fixed-ranked cutoff and averaging cutoffs on a per­query  

Table 49.  Farsi Text Results Submitted during the Evaluation. 
The purple line is the primary run submitted.  

 
 
 
 
 
 
 
 
 

Table 50.  Farsi Speech Results Submitted during the Evaluation. 
 
 
 

 
 
 
 
 

basis over the three threshold selection methods. Line 4 uses a fixed-ranked cutoff, while the rest 
of the experiments use averages over two or three methods. In text, the average strategy simply 
leads to better results for both MQWV (0.829 vs. 0.805) and AQWV (0.828 vs. 0.801). 
Surprisingly, the results for the fixed-ranked cutoff for speech are almost the same as the 
averaging method for MQWV (0.713 vs. 0.717) and are actually better for AQWV (0.678 vs. 
0.687). This further illustrates the challenge of optimal parameter estimation for speech. 
The pattern for Kazakh is similar; using the average of three cutoff strategies for Kazakh and the 
MQWV for the primary run dropped from 0.807 to 0.800 AQWV in text and from 0.742 MQWV 
to 0.702 AQWV in speech. Moreover, in Kazakh, there was only as small difference between the 
MQWV values of the average of three systems and the fixed cutoff value—it dropped from 
0.807 MQWV for the average for text to 0.799 MQWV to fixed-ranked cutoff for text and from 
0.742 to 0.740 for speech. Due to the small performance difference between average cutoff and 
fixed-ranked cutoff, we used the average of only STO and KST cutoffs as the cutoff strategy for the 
primary run in Georgian. However, it achieved  similar results: 0.824 MQWV, 0.821 AQWV  
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results for the primary text system and 0.791 MQWV and 0.784 MQWV for speech.62  The same 
run achieved 0.820 MQWV score for text and 0.797 for speech. Though we don’t get much 
improvement using the averages of the three strategies (STO, QST and fixed-ranked cutoff) 
against the fixed-ranked cutoff, it outperforms it quite steadily and is quite robust. As a result, we 
believe that it is a good choice for the primary run. 

4.5.1.13.3    Sprints 
Figure 23 illustrates a typical case for a sprint, in which the goal was to build the best possible 
system in a highly constrained time period. In this case, the language was Pashto and the time 
period was a single week. Near-peak results were obtained for text on the second day, using   PSQ, 
with near-peak MT systems (as measured by their utility for CLIR) becoming available on the 
fourth day. Near-peak results for speech were also obtained on the fourth day, again using PSQ. 
The apparent decline in the best text results on the fifth day results from measurement limitations 
of the small DEV set; systems were being tuned on DEV+ANALYSIS, and the day five results are 
were obtained using system combination. It should be noted that the  EVAL collection was not 
available during these sprint exercises, so the small DEV collections were used both in training 
and for evaluation. While these results are useful as a measure of  relative improvements over 
time, the absolute MQWV values are not necessarily indicative  of the results on EVAL. For 
comparison, our primary run on Pashto EVAL, submitted months later, achieved an AQWV of 
0.509. Moreover, our principal focus during these sprint evaluations was on ranking (not cutoffs); 
this is why MQWV is reported rather than AQWV. Even with these caveats, our sprint results 
indicate that rapid development of reasonably effective systems is possible. 
Although sprints had not been an original design element of the program, we found them useful 
for getting started on a new language, as by the end of a sprint we had fairly complete systems 
that could then serve as a basis for subsequent component development. On the other hand, the 
program’s announcements of new languages had not been timed with sprints   in mind, so in the 
case of Pashto, we found ourselves conducting a sprint during the end-of- year holiday period, 
when only a minority of the research team was actually working from their usual locations. 

 
 
 
 
 
 
 
 
 
 
 
 
 

62We accidentally submitted the wrong run as the primary speech run during the evaluation, and 
calculated these values for the intended submission after the evaluation. 
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Figure 23.  Best MQWV per Day on DEV - Pashto Five-day Sprint. 
4.5.2 Technical Insights 
Here we draw out larger lessons from our work on CLIR in MATERIAL. 

4.5.2.1  The Importance of Regular Orthography 
Perhaps the most surprising challenge in the MATERIAL program was our inability to model 
the way Somali is written. Looking back, it’s clear this was a blind spot resulting directly from 
our experience with predominantly high resource, well standardized languages. Broadly speak-
ing, high resource languages are naturally well standardized because they must be - the cultural, 
commercial and political factors that resulted in those resources being produced are the same 
factors that resulted in the written forms of those languages being well standardized. Somali is 
neither high resource nor well standardized, and it may be emblematic of a class of challenges 
we are likely to encounter in other languages. Of course, variation is not unique to written 
language, and in deed the problem of regional and dialectal variation is better studied in speech 
than in text at present, at least among those building language technologies. In speech, a classic 
approach to deal with variation is to build on mixture models and that precedent may offer a 
useful starting point for text as well. Highlighting this challenge is a contribution of the 
MATERIAL program and knowing of the challenge will help us all to properly prioritize the 
effort that will be needed to address it. 

4.5.2.2   The Value of a Configurable Pipeline 
To support experimentation, we opted to use a fully configurable pipeline, meaning that each of 
the setups described in the technical description can be modified via the configuration file. Some 
of the configurations were set directly using an option (e.g., the cutoff or combination type) or 
through the path to the file in the directory structure. Unique identification of the directory 
structure then enables using different text and speech pre-processing setups, speech processing 
and MT systems, or indexing parameters (e.g., using stemming). Our fully configurable pipeline 
allowed us to script the execution of a large number of experiments, run small modifications of 
the experiments (e.g., different translation types), and to trivially apply a given configuration to 
another dataset. We gained even more from this approach by using unified names that uniquely 
defined the experiments, but were still short enough to be readable. This helped us more easily 
visualize the experiments and setup, allowing for crucial improvements in the process for select-
ing the systems for combination. Our pipeline was designed to support experimentation - and 
especially reproducibility. We also designed the system to actively avoid possible errors and 
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support error trace-back. A concrete outcome of this choice was the intermediate results (e.g., the 
output of the query analyzer or the output of the rankers) were saved. This proved to be a strong 
choice for enhancing flexibility. Though efficiency was not a main objective of the MATERIAL 
program, this design had costs in both processing time and storage requirements. These chal-
lenges were exacerbated as the pipeline became more complex, and this led to periodic refac-
toring. This also led us to prepare a completely separate pipeline for the demo. 

4.5.2.3   The Centrality of IR Training Data 
At the outset of the MATERIAL program, it was already well recognized that training data was 
essential for ASR and for MT. Today, we think of IR in the same way; neural transformer 
models - pre-trained on large text collections and fine- tuned on large IR collections such as MS 
MARCO63 [180] - now routinely achieve results far better than those of the best IR systems from 
just a few years ago. MATERIAL adapted to this emerging opportunity, reconceptualizing the 
role of IR training data and reallocating resources in response. But, the centrality of relevance 
judgments to training IR systems restricted what could be accomplished because by the time the 
need had become clear, the relevance judgements had already been bought and paid for. This 
limitation is also an opportunity, however, as it illustrates what will be needed to take the next 
step. As we cannot reasonably make an MS MARCO collection for each of the world’s lan-
guages, we will need to rely on transfer learning that we can fine-tune to the task, context, and 
peculiarities of specific languages. The question now is how we focus the data on which we will 
fine-tune. In MATERIAL, the language-specific training data we had was distributionally similar 
to the EVAL collection on which the summative evaluation was performed. Given a budget and 
a timeframe, however, is that the data we would want? Not necessarily. That is the next question 
to be answered. 

4.5.2.4    The Limits of Small Training Collections 
The early 300-document DEV collections were simply not large enough to reliably predict 
performance of IR techniques on the EVAL collection, due to the limited number (1̃50) of 
positive relevance judgments. Larger test collections were needed for formative evaluation, but 
larger test collections are expensive, and curating them could take longer than allowable in some 
actual deployment scenarios. In addressing this challenge, we might take a page from our MT 
and ASR colleagues who also require larger training sets. For IR, we might assemble some large 
and diverse set of training data by instrumenting a live application (e.g., a Web search engine) 
for which click streams provide useful implicit feedback, and then use our DEV collection as a 
probe into that space to find suitable content. Though it might be effective, this might generate 
rights management issues given the commercial value of such a collection, as well as its potential 
privacy risks. Some of these could potentially be mitigated by sharing only the relevant data 
features rather than the entire dataset; some distortion to protect privacy and commercial 
interests might also be possible. Employing differential privacy might also be a way forward, 
although high dimensionality and the importance of rare phenomena for IR might pose 
significant challenges for this approach. Regardless, developing effective methods for generating 
larger IR training sets is clearly an important research problem going forward, as mining very 
small DEV collections proved a significant limitation in this research. 

4.5.2.5    Leveraging the IR Research Community 
The many types of research that were a part of MATERIAL produced quite a complex task and  
63https://microsoft.github.io/msmarco/  

https://microsoft.github.io/msmarco
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we are now well positioned to consider what the IR community should focus on next. To do that, 
we also need to identify the best venue through which to organize and how can we shape the task 
to attract the expertise and investment required while also maximizing the chances of success. 
One possible focus solution is Text Retrieval Conference (TREC), Neural CLIR, and a new test 
collection—and indeed such a NeuCLIR track is being proposed to TREC 2020 with just that 
structure. Alternatively, MediaEVal64 would be an excellent venue to push on speech retrieval 
research. The Forum for Information Retrieval Evaluation65 (FIRE) in India would also be an 
excellent place to push on LRLs. 

4.5.2.6 Modeling Ambiguity 
The representation of uncertainty is central to all of IR because our interpretation of human 
language - both in the query and in the documents - is necessarily imperfect. This limitation is 
ultimately unavoidable, because ambiguity is inherent in human language. CLIR and to an even 
greater extent Cross-Language Speech Retrieval (CL-SR), stresses our ability to model meaning 
in computationally useful ways, but we have advanced our understandings through MATERIAL. 
First, we now have an elegant unification of perspectives on accommodating translation and 
recognition ambiguity; we used alternate recognition hypotheses in the same way that we use 
alternative translation hypotheses. Said another way, what we first called PSQ back in 2003 is 
the Swiss army knife of cross-modal and CLIR. This perspective is elegant in both its relative 
computational simplicity and the opportunity it provides for early fusion. The cost of this 
elegance, however, is that we lose the ability to model the sequential aspects of human language. 
We clearly see from our work with phrase search, the sequential dependence model, and the neu- 
ral transformer models that the sequence of terms encodes meaning that cannot be obtained  from 
isolated terms. We are, however, still early in our thinking about how best to model this sequen-
tial evidence. In 2002, Federico proposed a very limited version of this when he suggested that 
term pairs be modeled, but (because of translation divergences) as unordered rather than ordered 
sequences [181]. The self-attention in transformers gives us an alternative starting point for 
modeling sequences, but that is one in which both association and order are encoded. With enough 
training data, transformers could learn what is important for CLIR, but sufficient training data for 
this approach is currently out of reach. In the meantime, we need  new models that better reflect 
the structure of the problem; something between Federico’s approach and today’s transformers, 
designed from our understanding of what matters in the  CLIR realm. 

4.6 Summarization 
Below, we provide E2E results for every language in the MATERIAL program, as well as 
experimental results for the components as they were developed.66 Component subsections  are 
ordered by time period, with each subsection including experimental results correspond ing to the 
development of that component. E2E results for each language can be found within  their own 
subsections. 

4.6.1 Unsupervised Approach  
Results from our unsupervised approach are reflected in our E2E evaluation scores for the BP 
languages. We do not include experimental results obtained during development of the unsuper-
vised system. 
64https://multimediaeval.github.io/ 
65http://fire.irsi.res.in 
66These sometimes include results on other corpora, to show the performance of our models as they were trained   

https://multimediaeval.github.io/
http://fire.irsi.res.in/
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4.6.2 E2E Evaluation Scores and Reclassification Rates for BP - Languages 1A, 1B and 
1S 
The summarization system for Swahili (1A), Tagalog (1B), and Somali (1S) relied only on the 
unsupervised approach. The embeddings used were Glove6B and Glove42B (300 dimensional) 
[182] for English embeddings and FastText (300 dimensional) [183] for foreign  language 
embeddings. We show the E2E evaluation results and reclassification rates in Tables 51, 52, and 
53. In these tables, we provide the breakdown of documents whose labels were changed (or not 
changed) from the CLIR prediction to the human-assisted prediction using the summary; for 
example, ”fa-to-tn” refers to documents that were incorrectly predicted  as relevant by CLIR (a 
“false alarm”) but were correctly identified as irrelevant by human workers upon seeing the 
summary (a “true negative”). A “td” refers to a document that is correctly predicted as relevant, 
and a “miss” is incorrectly considered irrelevant by human workers. Finally, we also present the 
AQWV, as in CLIR, after our summaries have been provided to a user (i.e., AQWV for the E2E 
system).  

Table 51.  E2E Evaluation Results and Reclassification Rates for Swahili EVAL. 
 
 
 
 
 
 
4.6.3 Speech Segmentation to Improve Fluency 
In this section, we discuss the training and test data we used while developing the speech seg-
mentation models. We also present the experimental results that led us to include the model in 
our OP1 systems for Lithuanian (2B) and Bulgarian (2S). More detailed experimental results can 
be found in [184]. 

Table 52.  E2E Evaluation Results and Reclassification Rates for Tagalog EVAL. 
 
 
 
 
 
 

Table 53.  E2E Evaluation Results and Reclassification Rates for Somali EVAL. 
 
 
 
 
 
 
 
 

query type fa-to-tn % fa-to-fa % td-to-miss % td-to-td % AQWV 
All 91.91% 8.09% 67.68% 32.32% 0.085 
Lex 90.85% 9.15% 63.71% 36.29% 0.073 
Lex:Lex 92.69% 7.31% 71.73% 28.27% 0.067 
Concept 90.35% 9.65% 58.62% 41.38% 0.170 

query type fa-to-tn % fa-to-fa % td-to-miss % td-to-td % AQWV 
All 94.35% 5.65% 58.25% 41.75% 0.216 
Lex 92.35% 7.65% 53.19% 46.81% 0.240 
Lex:Lex 97.06% 2.94% 65.58% 34.42% 0.201 
Concept 94.48% 5.52% 54.94% 45.06% 0.209 

query type fa-to-tn % fa-to-fa % td-to-miss % td-to-td % AQWV 
All 85.57% 14.43% 48.12% 51.88% 0.100 
Lex 81.30% 18.70% 37.79% 62.21% 0.081 
Lex:Lex 84.40% 15.60% 43.47% 56.53% 0.095 
Concept 83.75% 16.25% 60.87% 39.13% 0.109 
All Speech 85.70% 14.30% 52.45% 47.55% 0.073 
All Text 85.33% 14.67% 47.13% 52.87% 0.106 
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Training data was obtained from Open Subtitles [185] for both Bulgarian (BG) and Lithuanian 
(LT). To perform extrinsic evaluation of an STTT pipeline, the ANALYSIS speech collection 
was used to evaluate performance on downstream tasks (e.g., segmentation quality, MT, and IR). 
DEV was used to evaluate downstream performance only on IR. We experiment using the ASR 
component from UMD and EDIN and three MT components - UMD-NMT and UMD-SMT from 
UMD, and EDI­NMT from EDIN. The IR model is a bag­of­words query model. 
For intrinsic evaluation, the models are evaluated on the F-measure of the boundary prediction 
labels, as well as WindowDiff [186], a metric that penalizes difference in the number of 
boundaries between the reference and predicted segmentation over a fixed window. Our models 
are depicted as Sub and Sub+S where Sub+S utilizes syntactic features like POS tags and 
dependency labels. Results are shown in Table 54, where +S indicates syntactic features and * 
indicates statistical significance. 

Table 54.  Results for Intrinsic Evaluation of Speech Segmentation Models, F1 and 
windowdiff (WD) on ANALYSIS. 

 

 
 

 
For extrinsic evaluation, Table 55 shows the results of document level BLEU score of the MT 
output on ANALYSIS. Note that in Tables 55, 56, and 57, “Acous.” denotes the baseline 
performance of the AM of the ASR system. Tables 56 and 57 show results from evaluating the 
performance of CLIR using AQWV, where +S indicates syntactic features and * indicates 
statistical significance. In all three tables, NB denotes “news broadcast,” TB denotes “topical 
broadcast,” and CS denotes “conversational speech.” 

Table 55.  Experimental Results for Speech Segmentation Usage for Document Level 
BLEU Scores on ANALYSIS Set. 

 
 
 
 
 
 
 
 

Table 56.  Results on ANALYSIS for Speech Segmentation, AQWV for NB, TB, and CS. 
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Table 57.  Results on DEV for Speech Segmentation, AQWV for NB, TB, and CS. 

 
We also conducted human evaluation to compare this segmentation with acoustically-based 
segmentation in order to determine the effect on annotators who attempt to determine MT 
fluency and query relevance. We use YAKE![187] to extract keywords from ANALYSIS 
documents and present annotators with a keyword and a three-segment passage from a document 
containing that keyword. These results are in Table 58. 
 

Table 58.  Results for Speech Segmentation Usage, Passage-Level Evaluation Comparing 
Relevance (Sub+S Model (M) and the Acoustic Baseline (A). 

 
 
 
 
 
 
 
 
Generally, higher volumes of subtitle data generate consistent improvements on MT and CLIR 
tasks. Even for LT, which does not have a lot of data, there is still improvement in the 
document-level CLIR task–this is most visible in the CS genre, which most resembles our subtitle 
training data. We see improvement (for those conditions  where we have appropriate training 
data) under all neural systems on CS. 

4.6.4 E2E Evaluation Scores and Reclassification Rates for 2B and 2S 
For Lithuanian (2B) and Bulgarian (2S), the final system used the unsupervised approach and 
speech segmentation. The embeddings used were Glove6B and Glove42B (300 dimensional) for 
English embeddings and FastText (300 dimensional) for foreign language embeddings. Tables 
59 and 60 contain E2E evaluation results for Lithuanian and Bulgarian respectively; we note that 
at this time, the E2E evaluation process was experimenting with allowing human annotators the 
freedom to rate the generated summaries on a scale of relevance, rather than simple binary 
judgments. Here, we were provided (and we provide) AQWV E2E scores based on what rating 
(from 1-5) is used as the threshold for “relevant,” where 1 is definitely irrelevant and 5 is 
definitely relevant (in the remaining evaluations through this paper, it is 3). We see a spread of 
confidence in the relevance of our summaries, with neutrally more documents considered 
“relevant” if the cutoff is at 2 on a 1-5 scale than if it is at 5. 

4.6.5 E2E Evaluation Scores and Reclassification Rates for 2C 
For Pashto, the final system used the unsupervised approach only. The embeddings used were 
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Glove6B, Glove42B (300  dimensional), and RoBERTa [188] for English embeddings and 
FastText (300 dimensional)  for foreign language embeddings.  We did not have enough train-
ing data from Open Subtitles for Pashto to be able to develop and use the speech segmen-tation 
component. Table 61 contains E2E evaluation results. Table 62 contains reclassification rates. 
Note that in these tables we report the proportion of times our final E2E system produced a 
summary that convinced human workers a ground truth (GT) relevant document was irrelevant 
(Pmiss rel); the same for a GT irrelevant document being marked relevant (Pfa), and the reclassi-
fycation rates (i.e., our summaries yielded an irrelevant judgment when CLIR predicted the 
document was relevant) of GT relevant (TD reclass) and irrelevant (FA reclass) documents. 

Table 59.  E2E AQWV Results for Lithuanian EVAL. 
 
 
 
 
 
 
 
 
 
 

Table 60.  E2E AQWV results for Bulgarian EVAL. 
 
 
 
 
 
 
 
 
 
 
 

Table 61.  E2E Results for Pashto EVAL. 
 
 

 
 
 
  

 Speec
h 

Text 

Level 2 
AMT-E2E 

0.587 0.621 

Level 3 
AMT-E2E 

0.560 0.593 

Level 4 
AMT-E2E 

0.547 0.579 

Level 5 
AMT-E2E 

0.438 0.450 

 Speech Text 
Level 2 
AMT-E2E 

0.622 0.678 

Level 3 
AMT-E2E 

0.596 0.656 

Level 4 
AMT-E2E 

0.587 0.632 

Level 5 
AMT-E2E 

0.432 0.491 
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Table 62.  Reclassification Rates for Pashto EVAL. 

 
4.6.6 Supervised Approach - Query Relevance Sentence Selection 
In this section, we discuss  the training and test data we used while developing the query rele-
vance sentence selection model and present experimental results which led us to include this 
component in our submitted system for all OP2 languages (Farsi/3S, Kazakh/3C, and 
Georgian/3B). 
The parallel sentence data for training and baselines comes from the BUILD collections of the 
MATERIAL and LORELEI [177] programs for Somali (SO), Swahili (SW), and Tagalog (TL). 
Publicly available resources from OPUS [124] and lexicons mined from Panlex [189] and 
Wiktionary are also used in the parallel corpus. 
Experiments are evaluated on all partitions of MATERIAL (ANALYSIS, DEV, and EVAL), 
apart from Tagalog EVAL since GT judgments had not been released at the time. In order to 
compare the document­level relevance judgments, the sentence­level relevance scores from 
SECLR are aggregated to obtain document level scores. 
The SECLR model and the SECLR model with rationale training (SECLR-RT) are compared to 
other cross-lingual embedding methods as follows: (1) Bivec [130] trained on parallel sentences; 
(2) MUSE [132] trained using bilingual dictionary from Wiktionary, and (3) SID-SGNS [131] 
trained on parallel sentences. We also compare our models to a pipeline of NMT [127] with 
monolingual IR (NMT+IR) and a pipeline of SMT, using Moses [190] and KenLM for LM 
[129], with monolingual IR (SMT+IR). We also compare our work with the PSQ model of [85] 
and the cross-lingual model XLM-R [78]. 
MAP is presented in Tables 63 and Table 64, which demonstrate that overall, SECLR-RT or 
SECLR are able to outperform the other baselines, where † indicates significance at the p = 0.01 
level between SECLR-RT and the best baseline. To simulate data scarcity, we subsample the 
parallel corpus and present MAP scores of four models as a percentage of data sampled in Figure 
24. Here, SECLR-RT is able to outperform the other baselines in most cases. In general, 
SECLR-RT is able to outperform SECLR, indicating that rationale training improves the 
robustness of the model.  
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Table 63.  Experimental Results Comparing SECLR and SECLR-RT to Other Baselines  by 
Document-Level MAP Scores for Text (T) and Speech (S) for Somali and Swahili. 

  Somali   Swahili  
Analysis Dev Eval Analysis Dev Eval 

Method T S T S T S T S T S T S 
Bivec 19.6 16.2 15.0 12.0 4.2 4.5 23.9 22.7 21.9 21.6 6.2 4.8 
SID-SGNS 25.5 24.3 22.2 16.0 10.2 9.1 38.8 36.3 33.7 30.3 16.2 13.6 
MUSE 9.9 9.9 10.3 16.5 1.9 2.0 27.8 24.5 27.3 28.8 9.5 8.1 
NMT+IR 18.8 12.5 21.1 13.4 9.4 8.4 23.7 24.9 26.8 26.7 15.3 11.4 
SMT+IR 17.4 11.2 19.1 16.8 9.1 8.3 25.5 28.6 27.1 25.2 15.4 13.3 
PSQ 27.0 16.6 25.0 20.7 11.1 8.6 39.0 36.6 38.0 38.6 20.4 13.8 
XLM­R 13.9 11.0 10.7 12.4 2.3 2.9 23.3 29.0 20.0 29.7 6.2 7.5 
SECLR 27.8 24.4 23.0 17.4 7.7 7.4 43.8 37.9 40.3 38.1 16.0 13.1 
SECLR-RT 35.4† 28.4 29.5 22.0 13.1† 11.2

† 
48.3† 48.1† 39.6 45.4 22.7† 17.7† 

Table 64.  Experimental Results Comparing SECLR and SECLR-RT to Other Baselines   by 
Document-Level MAP Scores for Text (T) and Speech (S) for Tagalog. 

 

 
 
 
 
 
 
SECLR-RT is also able to alleviate the hubness problem, where there exist a few vectors that are 
neighbors of many other vectors in the cross-lingual word embedding space. Table 65 shows SN10  

scores that measure the skewness of the distribution of N10, which indicates the size of the neigh-
borhood around a vector in the sentence collection language embedding  space. More details on 
this method can be found in [146]. 

Table 65.  Experimental Results for SN10 scores of SECLR and SECLR-RT. 
 

 
Model Somali Swahili Tagalog 
SECLR 29.36 54.98 43.29 
SECLR-RT 6.78 14.73 11.73 
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Figure 24.  Ablation Study Results of SECLR and SECLR-RT Model Performances as a 
Function of Sub-Sampling Percentages.  

X­Coordinate uses the Log Scale. 
4.6.7 E2E Evaluation Scores and Reclassification Rates for 3S  
For Farsi (3S), the final system used the core unsupervised system along with the supervised 
approach. The embeddings used were Glove6B, Glove42B (300 dimensional), and RoBERTa for 
English embeddings and FastText (300 dimensional) for foreign language embeddings. Although 
the speech segmentation system was available, there were insufficient data to improve perfor-
mance, so speech segmentation was not used. Table 66 contains E2E evaluation results and 
Table 67 contains evaluation reclassification rates. 

Table 66.  E2E Results for Farsi EVAL. 
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Table 67.  Reclassification Rates for Farsi EVAL. 
 
 
 
 
 
 
 
4.6.8 Use of Retranslation or APE 
We also implemented re-translation or APE after the summaries were generated to re-insert 
query terms into the summary when we found evidence that the query term should have appeared 
in the translation. We ran these experiments on Farsi after the Farsi EVAL to investigate the 
usefulness of retranslation. We also implemented this component for Kazakh and Georgian. 
Our initial retranslation experiments were run after the Farsi evaluation period in OP2 on a 
sample of 1,000 Farsi EVAL query­document pairs, equally split between text and audio and 
between irrelevant and relevant documents. These query­document pairs were selected such that 
the summaries we produced did not contain the query word. We experimented with several 
retranslation strategies (UMD constrained MT, APE, and a baseline string replacement approach 
based on finding the query string in UMDNMT’s n-best translation lattices), as well as several 
strategies for selecting which sentence in the summary should be retranslated (making use of 
CLIR’s PSQ evidence as well as the n-best translation lattices from UMDNMT). However, since 
sentence selection strategies often agreed and did not impact results significantly, they were 
omitted from the following results. Both APE and constrained MT increased FA-accept signify-
cantly even as they decreased TD-to-miss rate as compared to results without retranslation. This 
indicates that further work was needed to select which summaries were retranslated. 
In Table 68 and Table 69, we evaluate several metrics: the percentage of relevant summaries 
marked irrelevant by AMT workers (TD-to-Miss Rate), the percentage of irrelevant sum- maries 
marked relevant (FA-Accept Rate), and the average AMT worker score of ground-truth relevant 
(GT Rel) and irrelevant (GT Irrel) summaries on a scale of 0 to 4, where 0 is definitely irrelevant, 
2 is unsure, and 4 is definitely relevant. We also include the F1 score of the positive (relevant 
summary) class. 
Initial experiments in Kazakh were done on a sample of 1,000 DEV query­document pairs for 
which our summaries did not contain query words. We also additionally experimented with the 
constrained MT system developed by UMD. Results in Table 69 similarly show that any 
decrease in TD-to-Miss was accompanied by an increase in recall. 
Further experiments in Kazakh were done using the document selection strategy described in 
Section 2.7.4 where we use a logistic regressor to select GT relevant documents and then use 
different ways of selecting the threshold. A sample of 2,000 DEV summaries was built from 
collections of documents selected via different strategies so that we could compare their  

  Speech   Text  

query_type TD_accep
t 

FA_reject H1 TD_accep
t 

FA_reject H1 

All 0.766 0.836 0.799 0.746 0.795 0.770 
Lex 0.778 0.817 0.797 0.771 0.792 0.781 
Lex:Lex 0.767 0.819 0.792 0.782 0.763 0.772 
Concept 0.729 0.886 0.800 0.641 0.842 0.728 
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Table 68.  Experimental Results Demonstrating Impact of Retranslation on TD-to-Miss 
Rate, FA Accept Rate, and F1 Score for Farsi EVAL Sample. 

 
 
 
 
 
 
Table 69.  Results Showing Impact of Retranslation on TD-to-Miss Rate, FA Accept Rate, 

and F1 Score for Kazakh DEV Sample without Document Selection Strategies. 
 
 
 
 
 
 
 
 
 
impact. Different thresholds were simulated afterwards and are shown in Table 70 and   Table 71. 
Based on these results, we selected an F1-based cutoff threshold as our document  selection 
strategy and used APE for retranslation since that had the highest F1. 

Table 70.  Results Showing Impact of Retranslation on TD-to-Miss Rate, FA Accept Rate, 
and F1 Score for Kazakh DEV Sample Using CLIR F1 Threshold. 

 
 
 
 
 
 
 
 
 
 
 
  

 Original APE Edi constrained MT UMD constrained MT 

TD-to-miss 0.363 0.190 0.130 0.222 
FA-accept 0.344 0.617 0.802 0.620 
Turkers (Rel) 2.47 2.93 3.18 2.90 
Turkers (Irrel) 1.69 2.48 3.00 2.48 
Precision 0.442 0.384 0.339 0.373 
Recall 0.637 0.810 0.870 0.778 
F1 0.522 0.521 0.488 0.504 

 Original APE Edi constrained 
MT 

UMD constrained 
MT 

TD-to-miss 0.391 0.250 0.191 0.293 
FA-accept 0.365 0.531 0.631 0.540 
Turkers (Rel) 2.37 2.83 3.08 2.69 
Turkers (Irrel) 1.72 2.23 2.53 2.24 
Precision 0.344 0.311 0.290 0.294 
Recall 0.609 0.750 0.809 0.707 
F1 0.440 0.439 0.427 0.416 
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Table 71.  Results Showing Impact of Retranslation on TD-to-Miss Rate, FA Accept Rate, 
and F1 Score for Kazakh DEV Sample Using F1 Threshold. 

 
 
 
 
 
 
 
We did similar experiments with Georgian DEV+ANALYSIS and achieved the results shown 
in Tables 72, 73, and 74. For Georgian, we omitted UMD constrained MT but added APE on the 
Edinburgh constrained MT output. Due to these results, we chose  EDIN constrained MT with F1 
threshold to maximize F1-score. 

Table 72.  Results Showing Impact of Retranslation on TD-to-Miss Rate, FA Accept Rate, 
and F1 Score for Georgian DEV+ANALYSIS Sample Using CLIR F1 Threshold. 

 

Table 73.  Results Showing Impact of Retranslation on TD-to-Miss Rate, FA Accept Rate, 
and F1 Score for Georgian DEV+ANALYSIS Sample Using ROC Threshold. 

 
 
 
 
 
 
 
 
 
 
 
 

  

 Original APE Edi constrained 
MT 

UMD constrained 
MT 

TD-to-miss 0.391 0.272 0.229 0.318 
FA-accept 0.365 0.450 0.477 0.439 
Turkers (Rel) 2.37 2.77 2.93 2.61 
Turkers (Irrel) 1.72 1.98 2.06 1.94 
Precision 0.344 0.340 0.340 0.331 
Recall 0.609 0.728 0.771 0.682 
F1 0.440 0.464 0.472 0.446 

 Original APE Edi constrained 
MT 

APE on Edi constrained 
MT 

TD-to-miss 0.440 0.397 0.272 0.289 
FA-accept 0.420 0.432 0.584 0.543 
Turkers (Rel) 2.34 2.36 2.80 2.75 
Turkers (Irrel) 1.88 1.92 2.36 2.26 
Precision 0.245 0.252 0.232 0.241 
Recall 0.560 0.603 0.728 0.711 
F1 0.341 0.355 0.351 0.359 

 Original APE Edi constrained 
MT 

APE on Edi constrained 
MT 

TD-to-miss 0.440 0.399 0.209 0.235 
FA-accept 0.420 0.435 0.669 0.620 
Turkers (Rel) 2.34 2.36 2.96 2.89 
Turkers (Irrel) 1.88 1.91 2.58 2.47 
Precision 0.245 0.251 0.223 0.230 
Recall 0.560 0.601 0.791 0.765 
F1 0.341 0.354 0.347 0.354 
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Table 74.  Results Showing Impact of Retranslation on TD-to-Miss Rate, FA Accept Rate, 
and F1 Score for Georgian DEV+ANALYSIS Sample Using F1 Threshold. 

 
 
 
 
 
 
 
 
 
 

4.6.8.1 APE 
Below we have experimental results specific to the development of the APE model. 
While developing the APE model, we considered the use of the Multi-source Transformer 
instantiation (MST) model [191] based on the AT APE model, and the non-autoregressive LevT 
[192]. For decoding, we exper imented with the AT and LevT decoders. 
For encoding, we experimented with several techniques to incorporate constraints as input to the 
APE encoder. There are two main ways constraints were incorporated into the source   sequence: 

• Append: Adding the target language constraint terms after their source 
language constraint terms within the source sequence. 

• Replace: Replacing the source language constraint terms with their 
corresponding target language constraint terms. 

In both cases, a source factor is associated with each token in the input sequence to indicate 
whether it is a source or target side terminology constraint, or if it is an unconstrained source 
token. 
Methods of incorporating these modified input sequences with the MST and LevT models are 
described in more detail in [193]. In total, we experimented with three variants of MST: 

• unconstrained baseline (MST) 
• constrained version using append (MST append) 
• constrained version using replace (MST replace)   

And four variants of LevT: 

1. unconstrained model (LevT) 
2. constrained variant incorporating constraint using append (LevT append) 
3. constrained variant incorporating constraint using replace (LevT replace) 
4. variant where the source input and MT input to correct are passed into 

separate encoders where decoder is initialized with target sequence of 
terminology constraints (MS LevT). 

We test on both PBMT and NMT English to German WMT APE tasks [140]. Results for PBMT 

 Original APE Edi constrained 
MT 

APE on Edi constrained 
MT 

TD-to-miss 0.440 0.403 0.287 0.305 
FA-accept 0.420 0.427 0.496 0.481 
Turkers (Rel) 2.34 2.37 2.75 2.71 
Turkers (Irrel) 1.88 1.90 2.10 2.07 
Precision 0.245 0.253 0.258 0.259 
Recall 0.560 0.597 0.713 0.695 
F1 0.341 0.355 0.379 0.377 
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2018 are shown in Table 75 and results for NMT 2019 are shown in Table 76. Generally, models 
are able to increase Term% with variants having different impacts on BLEU and TER. 

Table 75.  Experimental Results of APE Model Variants on PBMT 2018. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 76.  Experimental Results of APE Model Variants on NMT 2019. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Our results also indicate that constrained APE improves translation quality and term preser- 
vation on both unconstrained and constrained MT. While constrained APE and unconstrained 
APE have similar results on systemic errors in MT output, constrained APE is able to preserve 
term constraints. For these experiments, MST is used for the unconstrained APE and MST 
append is used for constrained APE. A constrained and unconstrained AT MT model is used for 
unconstrained and constrained MT respectively. Results for different combinations  of APE and 
MT systems are shown in Table 77.  

Models Term%↑ TER
↓ 

BLEU↑ 

Do-nothing 88.48 24.25 62.99 
MS_UEdin 88.70 18.01 72.52 
MST 90.11 19.34 70.44 
MST Append 95.54 18.97 70.63 
MST Replace 95.43 19.17 70.34 
LevT 90.76 24.21 63.47 
LevT Append 90.98 23.88 64.97 
LevT Replace 91.41 23.94 64.96 
MS LevT 97.50 20.39 68.57 

Models Term%↑ TER
↓ 

BLEU↑ 

Do-nothing 90.22 16.84 74.73 
Unbabel_BERT 89.98 16.06 75.96 
MST 90.66 16.46 75.61 
MST Append 94.08 16.62 75.16 
MST Replace 94.08 16.56 75.39 
LevT 90.41 17.28 74.17 
LevT Append 91.59 17.32 74.25 
LevT Replace 90.61 17.14 74.46 
MS LevT 98.04 17.71 73.64 
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Table 77.  Experimental Results of Different Combinations of MT and APE Systems. 
Constrained MT and APE are Indicated as cMT and cAPE Respectively. 

 
 
 
 
 
 
 
 
 
After analyzing translation behavior, we found that rare or unusual terminology constraints that 
are in conflict with the decoder LM will give higher probabilities to frequently occurring term 
translations. In order to allow for systemic copying - where the model enforces term constraints 
even when they strongly disagree with the decoder LM - we experimented with data 
augmentation. We created novel instances in our training set by replacing the target language 
term with either a synonym or antonym and also replacing its occurrence in the post edited target 
translation. Table 78 shows the results with data augmentation, where we experimented with 
using the augmented corpus for both the pre-training and the fine-tuning process. 

Table 78.  Results for APE with Data Augmentation on the Official APE Data, and the 
Augmented Dataset of Synonyms and Antonyms Generated from Wiktionary. 

WMT’19 APE Augmentation 
 Term%

↑ 
TER↓ BLEU

↑ 
Term%
↑ 

TER
↓ 

BLEU
↑ 

Do-nothing 90.22 16.84 74.73 1.66 24.77 62.56 
MST Append 94.08 16.62 75.16 7.47 24.92 61.80 
MST Append + pretrain 94.08 16.46 75.25 18.67 23.70 64.38 
MST Append + pretrain + 
ft 

93.85 16.29 75.38 43.15 21.85 67.41 

MS LevT 98.04 17.71 73.64 43.57 33.07 54.33 
MS LevT + pretrain 99.09 17.18 74.22 52.70 29.79 60.24 
MS LevT + pretrain + ft 98.41 17.00 74.66 63.07 29.66 60.47 

4.6.9 E2E Evaluation Scores and Reclassification Rates for 3C and 3B 
For Kazakh (3C) and Georgian (3B) in OP2, the final systems used the unsupervised approach, 
supervised approach, and retranslation. The embeddings used were the same as the final Farsi 
system. For Kazakh, we utilized APE as the retranslation strategy while for Georgian, we chose 
EDIN constrained MT. Table 79 contains Kazakh E2E evaluation results and Table 80 contains 
Kazakh reclassification rates. Table 81 contains Georgian E2E evaluation results and Table 82 
contains Georgian reclassification rates. 
 
 

  

Pipeline Term%↑ TER
↓ 

BLEU↑ 

MT 45.33 70.78 15.28 
cMT 86.33 70.24 15.47 
MT → APE 55.35 59.56 22.87 
cMT → APE 77.22 59.78 23.03 
MT → cAPE 80.18 58.70 23.95 
cMT → cAPE 88.38 59.77 23.08 
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Table 79.  E2E Results for Kazakh EVAL. 
 Speech   Text  

query_type AQWV@4
0 

AQWV@60 F1 AQWV@40 AQWV@60 F1 

All 0.721 -0.135 0.453 0.800 0.432 0.455 
Lex 0.693 -0.287 0.460 0.751 0.326 0.468 
Lex:Lex 0.749 -0.440 0.428 0.792 0.378 0.462 
Concept 0.706 0.263 0.477 0.852 0.575 0.437 

Table 80.  Reclassification Rates for Kazakh EVAL. 
 Speech   Text  

query_type TD_accept FA_reject H1 TD_accept FA_reject H1 
All 0.909 0.671 0.772 0.865 0.728 0.791 
Lex 0.935 0.565 0.704 0.880 0.634 0.737 
Lex:Lex 0.943 0.594 0.728 0.895 0.705 0.789 
Concept 0.792 0.82 0.810 0.813 0.828 0.820 

Table 81.  E2E Results for Georgian EVAL. 
 

 

 

 

Table 82.  Reclassification Rates for Georgian EVAL. 
 
 
 
 
 
 
 
We also conducted additional performance analysis and analysis of inter-annotator agreement 
on Kazakh and Georgian evaluation results. 

4.6.9.1 Performance Analysis 
We used AMT summary evaluation results to conduct performance   analysis on Kazakh and 
Georgian languages. More specifically, we used AMT judge triplets to assign relevance labels to 
query­document pairs using majority rule based on the AMT judge labels of “relevant” and “not 
relevant” regardless of qualifier. For example, if two out of the three judge labels were either 
“probably” or “definitely” not relevant, we would label the  query-document pair irrelevant. In 
our analysis, we focused on query­document pairs where:  (1) the document GT was relevant and 
the AMT label is irrelevant (R/NR), and (2) the document GT was irrelevant and the AMT label 
is relevant (NR/R). We did the analysis across both lexical (Lex.) and conceptual (Con.) queries 
on each of the two document source modalities: text (NT, BT) and speech (CS, NB, TB). Table 
83 shows the results across both languages, where the percentage of query­document pairs 
labeled as GT relevant and AMT irrelevant are labeled (R/NR) and those labeled GT irrelevant 
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and AMT relevant are labeled (NR/R). Each number represents the percentage of query­ 
document pairs for the given document source type. For example, out of all the query­ document 
pairs in Georgian where the document was speech based and the query was lexical 37.53% of the 
pairs had non-relevant GT documents assigned as AMT relevant. 

Table 83.  AMT Results - Georgian and Kazakh 
 
 
 
 
 
 

Across both languages and document source modalities (text and speech), we observe a higher 
percentage of GT relevant documents labeled as irrelevant by AMT judges (R/NR)   with 
conceptual queries as compared to lexical queries. On the other hand, for GT  irrelevant 
documents labeled as relevant by AMT judges (NR/R), we observe the opposite; in this case, the 
percentage is higher for lexical queries. 
Across most of the document source and query type tuples (e.g., Speech-Lex.), we see that NR/R 
document labels are more dominant than R/NR, except for the case of the Georgian Text-Con. 
where R/NR labels are slightly higher. Across both languages and document label types (i.e., 
R/NR and NR/R), we observe best summarization performance on instances   where the document 
source type is speech and the query is lexical, with 2.01% and 1.00% respectively. 
Table 84 provides the breakdown of the above percentages for documents whose source is text. 
We provide the breakdown across the two text types: News text (NT) and blog text (BT). 
Relevant BT documents are labeled irrelevant by AMT judgements (R/NR) more frequently than 
NT documents, with the exception of lexical queries on Georgian language documents.  A similar 
pattern can be observed across NR/R labeled documents. 

Table 84.  AMT Results - Georgian and Kazakh (Text Only). 
 
 
 
 

 
We perform similar breakdown for documents whose source is speech.  In Tables 85 and 86 for 
each language we provide the breakdown across the three speech types: CS, NB, and TB.  The 
percentage of query­document pairs labeled as GT relevant and AMT irrelevant are labeled 
(R/NR) and  those labeled GT irrelevant and AMT relevant are labeled (NR/R).  
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Table 85.  AMT Results for Georgian (Speech Only). 
 
 

 
 
 

Table 86.  AMT Results for Kazakh (Speech Only). 
 

 
 
 
 
Across both languages, document label (R/NR and NR/R) and query types for most of the 
documents originate from TB. The fewest originate from conversational speech. In case of the 
Kazakh language, none of the documents labeled R/NR originate from conversational speech. 

4.6.9.2 Inter-annotator Agreement Analysis 
We also analyzed agreements across AMT annotators. Annotator agreements were analyzed 
using two measures: inter-annotator variance, and proportion of inter-annotator agreements. 
These results are shown in Table 87 across the two languages, document source and query types. 
In the last two columns of Table 87, we present the average inter-agreement variance and 
agreement proportion for text and speech document source modalities across both languages  and 
query types. From the average values, we observe that inter-annotator agreement for text is 
slightly lower than speech document types. This is also related to higher average inter-annotator 

Table 87.  Inter-Annotator Agreement Analysis: Inter-Annotator Agreement Variance and 
Agreement Proportion across Georgian and Kazakh Languages over Different Document 

Source and Query Types. 
 
 
 
 
variance on text documents versus speech. To understand whether most documents with high 
variance are indeed text documents, we performed a more fine-grained analysis where we sorted 
documents in both languages in descending order based on their variance values. By focusing on 
the top 20% highest-variance documents, we discovered that 85.2% of the Georgian and 77.6% 
of Kazakh documents are text based. 
From Table 87, we also observe that the level of agreement across both languages and docu- 
ment source modalities is lower for conceptual versus lexical queries. Inter­annotator variance 
across both languages and document source modalities is also higher for conceptual queries 
versus lexical. To understand whether most queries with high inter-annotator agreement variance 

 
GT/AMT 
Label 

  
Lex. 

Kazakh  
Con. 

 

 CS NB TB CS NB TB 
R/NR 0.00 0.36 0.64 0.00 0.80 2.00 
NR/R 0.45 14.53 29.00 0.00 5.08 10.17 
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are indeed conceptual, we sorted queries in both languages in descending order based on their 
variance values. By once again focusing on the top 20% of highest variance queries, we 
discovered that 75.6% of the Georgian and 80.9% of Kazakh queries are conceptual. In Table 88, 
we provide examples of conceptual queries with large variance values; although this is a small 
sample size, we note that they focus on specific global events with which an average annotator 
may or may not be familiar. 

Table 88.  Inter-Annotator Agreement Analysis: Example Conceptual Queries with Large 
Inter-Annotator Agreement Variance. 

 
In Table 89 we provide analysis of inter-annotator agreements across GT irrelevant (NR) and 
relevant (R) documents. 
Inter-annotator agreement is lower for GT irrelevant documents (NR) compared to GT relevant 
documents (R). Given that AMT judges only annotate CLIR relevant documents, this suggests 
that annotators are more likely to disagree on summaries of the GT irrelevant documents that 
CLIR returned as relevant. 

Table 89.  Inter-Annotator Agreement Analysis: Inter-Annotator Agreement Variance   and 
Agreement Proportion across GT Relevant (R) and Irrelevant (NR) Documents. 

In Table 90, we provide a breakdown of inter-annotator agreement variance across the four 
different combinations of GT and AMT relevance labels: (1) GT and AMT irrelevant (NR/NR), 
(2) GT irrelevant and AMT relevant (Table 87), (3) GT relevant and AMT irrelevant (Table 87), 
and (4) GT and AMT relevant (Table 87).  
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Table 90.  Inter-Annotator Agreement Analysis: Inter-Annotator Agreement Variance for 
Georgian and Kazakh by Document Source and Query Type.  

Agreement variance is presented over all possible combinations of ground truth and AMT 
relevance labels. 

 

 
 
 
 
 
Across each document source and query type, we see the highest inter­annotator agreement 
variance for NR/R and R/NR labels. Given that these are averages of the inter-annotator 
agreement variances across all documents in that label category, if the inter-annotator agreement 
variance is high for the given document source and query type, the AMT label should  not be 
trusted. 

4.6.10  Other Experimental Approaches  
Experimental results for the new approaches that did not become part of the submitted system 
are included below. 

4.6.10.1 Abstractive Cross-lingual Summarization 
The data used to train the abstractive summarization model is the NYT summarization 
corpus [91], which consists of articles and their human written abstractive summaries. 
Articles are translated into three LRLs (Somali, Swahili and Tagalog) and then trans-
lated back into noisy English in order to form noisy article and clean English reference 
summary pairs. More detail and experimental results can be found in [142]. 
The baseline system is pre-trained on the unmodified NYT corpus. The three noisy English 
corpora are each used to train the baseline system for another eight epochs, resulting in two 
language-specific abstractors. A fourth abstractor is trained using articles randomly selected from 
the three noisy corpora. Table 91 shows the performance of the abstractors on the Somali, 
Swahili and Tagalog NYT test sets as measured by various variants of the Recall-Oriented 
Understudy for Gisting Evaluation (ROUGE) metric.  
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Table 91.  Experimental Results of Abstractive Cross-Lingual Summarization Systems on 
the NYT Test Sets.  

Abs­so, ­sw and ­tl are the Somali, Swahili, and Tagalog systems, respectively. * indicates 
significant improvement over NYT­base (p < 0.01). 

 

 
 
 
 
 
 
 
 
 
 
 

The mixed model, which uses articles from all three corpora, achieved the best scores. The 
perplexity of the abstractors’ output was used as a proxy for fluency and measured; the results 
are shown in Table 92. All models produce more fluent English across source languages than the 
base model. Similar human evaluations were done on Somali, Swahili and Tagalog weblogs to 
compare the content and fluency of the summaries and saw that models were able to improve in 
fluency over the base model. See Table 93 for these results. 

Table 92.  LM Perplexity of Summaries Generated by Abstractive Cross-Lingual 
Summarization Systems on Noisy Somali, Swahili, and Tagalog NYT. 

 
 
 
 
 
 
 
 
 
  

  Perplexity  
Model Somali 

NYT 
Swahili 
NYT 

Tagalog 
NYT 

NYT-base 4986 4428 4707 
Abs-so 3357 3429 3528 
Abs-sw 3384 3247 3312 
Abs-tl 3501 3476 3457 
Abs-mix 3464 3285 3402 
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Table 93.  Experimental Results with Human Annotators on Output from Abstractive 
Cross-lingual Summarization Systems.  

Average human­rated content and fluency scores on Somali, Swahili and Tagalog weblog entries. 

 

 
 
 
The system was subsequently evaluated on Arabic using the DUC 2004 Task 4 test set [194].   The 
performance of the abstractors are shown in Table 94 (evaluated on the DUC corpus with 
translations provided by systems from the Information Sciences Institute at the University of 
Southern California), where * indicates significant improvement over NYT-base (p < 0.01); † 
indicates significant difference between systems (p < 0.05). The results show that there  is a 
significant improvement in ROUGE [195] as compared to past task systems, and show that the 
abstractors are able to generalize and improve fluency of summaries in a previously  unseen 
language. 

Table 94.  Experimental Results of Abstractive Cross-Lingual Summarization Systems 
Evaluated on DUC 2004 with Information Sciences Institute (ISI) Translations. 

 
 
 
 
 
 
 
 
 

4.6.10.2 Conceptual Query Processing 
In order to generate training data, parallel sentences were  used and the query was formed by 
using dependency parsing to randomly select noun phrases from the English sentence. Training 
data were generated using parallel data for source languages and English pairs available in OPUS 
[124], a large collection of parallel corpora. Results of the model are evaluated on the DEV 
collection of MATERIAL. 
We experiment with several training objectives to learn semantic similarity and minimize the 
distance between similar embeddings: distillation training, contrastive training, and distilla tion 
training as a pre-training step before contrastive training. Results training monolingual  models 
are shown in Table 95 - where we report MAP on the DEV collection. T and S stands for text 
and speech, respectively - while the results shown for multilingual training - where  the model is 
trained on concatenations of datasets of related languages - are shown in Table 96, where we 
report MAP on DEV. We present our results using contrastive learning with only the 
corresponding language (Single), languages related to the source language (Related), and the 
concatenation of all the languages (All). SECLR-RT is discussed in Section 3.7.3 and 
XLM­R­Distill, introduced in [196], is the fine-tuned XLM­RoBERTa model trained on 
distillation. More detail about this approach and the results can be found in [197]. From these 
tables, we note our approach using distillation and contrastive learning works best for Pashto; the 

Model ROUGE-
1 

ROUGE-
2 

ROUGE-
L 

NYT-base 26.56 5.86 15.76 
Abs-so* 28.64 6.66 19.62 
Abs-sw*† 28.08 6.39 18.36 
Abs-tl*† 29.43 7.02 19.89 
Abs-mix 28.79 6.74 19.79 
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results are mixed for other languages, with speech performance increasing in Bulgarian and 
Lithuanian, and text performance improving on Bulgarian (with the contrastive approach alone) 
but not Lithuanian. However, augmenting the data with related languages for multilingual 
training performs best across the board for all conditions. 

Table 95.  Experimental Training MAP Results for the Training Objective Experiment on   
the Conceptual Query Relevance Model. 

 
 
 
 
 
 
 
 

Table 96.  Experimental Results for Multilingual Training of our Conceptual Query 
Relevance Model. 

 
 
 
 
 
 

4.6.11 Technical Insights  
Here we draw larger lessons from our work on summarization in MATERIAL. 

4.6.11.1    Importance of Effective Methods for Synthetic Dataset Creation 
In the base period of MATERIAL, we had little information to inform us about whether the 
approach we were   developing was effective; there were no training or test data available 
whatsoever. While we carried out multiple AMT tests in this phase, their scope was necessarily 
limited. In most query­focused summarization scenarios, this is also the case: it is rare to have a 
large volume  of data for a query­focused task. In fact, in DUC evaluations from 2004 onward, 
hand anno tated query­focused datasets are usually limited to 100 or fewer query/document/ 
summary instances and query­focused multilingual datasets are non-existent. Thus, our work 
developing methods to create synthetic data for training could benefit many research programs 
in this area. We began with methods to create cross­lingual query/sentence relevance pairs using 
parallel data and creating queries from the English side of an English/foreign sentence  pair simply 
by extracting words from the sentence. This allowed us, for the first time, to generate supervised 
methods for the lexical query task. Once we discovered the effectiveness of this method, we 
began to extend it to other tasks but there is still work to be done creating synthetic data for 
conceptual queries and for query­focused abstractive summarization  methods.  
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4.6.11.2    Rationale Training Boosts Results 
In our work on supervised summarization, we saw that adding rationales from phrase-based SMT 
enhanced the system effectiveness in selecting sentences relevant to a given query. Exploring 
other forms of rationale training for other aspects of the query­focused tasks (e.g., conceptual 
queries, abstractive methods) could yield additional improvements in performance. 

4.6.11.3    Fluency Matters for Summary Effectiveness 
We saw early on that when summaries were   not fluent, AMT workers were often unable to 
correctly identify relevant documents even when the summary contained the query word; they 
either missed the query word or were unsure whether it had the appropriate meaning given the 
disfluent context. We experimented with a variety of approaches to improve fluency problems, 
which were especially prevalent  in spoken language dialogues generated by both ASR and MT. 
We experimented with speech segmentation and saw some gains from this approach, but its 
applicability is limited to cases  where there is adequate subtitle data to train systems. We also 
experimented with abstractive methods of summarization, hypothesizing that it may be easier for 
summarization to rewrite small segments of the input translations since the entire document was 
not needed. Our work  on abstractive summarization did not make it into the final system in large 
part due to lack of training data, though we did develop methods for generating synthetic data for 
this task near  the end of the program. As a result, there is ample room to explore how summary 
fluency can be improved. More research on summarizing informal language such as conversations 
to   produce a meaningful, fluent summary is needed. Methods for producing fluent summarized 
text may be within closer reach, but still should be explored. 

4.6.11.4    MT Quality has a Dramatic Impact on Summarization Effectiveness 
In the BP and OP1,   we noticed that our main problem was in TD-to-Miss. That is, we were 
unable to effectively demonstrate true document relevance to end users through a summary. We 
hypothesized this was because our summary methods couldn’t locate the sentences that 
contained the query term or its synonyms. Towards the end of OP1, we discovered that our 
methods actually were finding the relevant sentences, but the query word simply did not appear 
in the translations.   This led to our focus on automatic post editing and constrained decoding in 
MT. Further exploration of how MT and summarization could be jointly learned and performed 
could yield further improvements in this area. 

4.6.11.5 Relaxing Metrics and Constraints on the Task 
The summarization task as defined for MATERIAL was governed by the use of very specific 
query­types and constraints on the definition of what counted as correct. Summarization was also 
very driven by the metrics used.    This led to a focus on methods that used various forms of 
extraction, pulling either snippets  or full sentences from the input document. A less rigid 
approach to the task could enable more creativity on the part of performers in coming up with 
solutions that truly support hu man end users in finding the LRL documents they need. Allowing 
multiple ways of expressing information needs in tandem with a new evaluation design could 
lead to  larger advances in summarization efficacy for human end users. We think abstractive 
summarization could play a larger role in presenting summaries that an end user can understand, 
but the current evaluation framework did not reward performers in this direction. We recom- 
mend experimenting with different task settings, evaluation design, and metrics to encourage 
further creativity in solutions and a more varied approaches to satisfying end user needs.  
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5.0 TRANSITION 
5.1 SCRIPTS Full System Demo 
This is an interactive cross­lingual query and summarization demo, allowing any query 
in the IARPA format as input and operating on EVAL data packs. 

5.2 Morphagram 
This is an unsupervised morphological segmentation framework that is language 
independent. The input to the framework is an unlabeled list of words and the output is 
the morphological segmentation of the input words and a grammar that parses unseen 
words. Adding linguistic knowledge (in terms of prefixes and suffixes) is an option. 
The framework is also available at: https://github.com/rnd2110/MorphAGram. 

5.3 SCRIPTS Morphological Analyzer 
This is described as a morphological-analysis system that does morphological segmen-
tation and morphological tagging for all MATERIAL languages. The analyzer can be 
executed through a runnable Java Archive (JAR) or as a Docker image, in either a 
standalone mode or a client-server one. For each word in a given context, the analyzer 
produces the following information: 

• Word POS (universal POS tagset) 
• Word segmentation (prefixes, stem and suffixes) 
• Word Tense (past/present) 
• Word Number (singular/plural) 

The latest neural version of the analyzer is also available at: 
https://github.com/rnd2110/unsupervised-cross-lingual-POS-tagging.  The tagger is 
also available in a non-neural version that is based on Averaged Perceptron. 

5.4 SCRIPTS Text Normalization 
This is described as anormalization system that does text cleanup, transliteration and a 
bunch of other operations to control numbers, punctuation marks, repetitions and 
foreign text. https://github.com/rnd2110/SCRIPTS_Normalization. 

5.5 SCRIPTS Summarizer 
This component takes as input a query and a set of foreign language documents (and their 
translations) for any one of the MATERIAL languages that have been  determined by CLIR to be 
relevant to the query. The summarizer produces a 100-word English word summary of the 
document for each component of the query. The github for the summarizer is here: 
https://github.com/kedz/scripts/. It must be called from within the SCRIPTS CLIR component. 

5.6 SCRIPTS CLIR: 
There are two components: 

• A system to score documents with respect to a MATERIAL-format query for 
any one MATERIAL language 

• A set of docker components that can be configured to score a 
MATERIAL­format query for a novel language given a character 

https://github.com/rnd2110/MorphAGram
https://github.com/rnd2110/unsupervised-cross-lingual-POS-tagging
https://github.com/rnd2110/SCRIPTS_Normalization
https://github.com/kedz/scripts/
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normalization mapping table and a translation probability table for 
translation from that language to English 

5.7 MARIAN NMT (https://marian-nmt.github.io/) 
Described as a fast NMT system originally developed at EDIN. The software is free and open- 
source under the MIT license. Models have been trained for all the MATERIAL languages and 
can be trained using the toolkit. AFRL already uses the software. 

5.8 ParaCrawl Code (https://github.com/paracrawl/) 
This is an open-source code used to mine parallel corpora from the web (https://paracrawl.eu/). 
The pipeline uses a swappable tokenizer, sentence splitter, and baseline MT system so it can be 
extended to other languages. National Institute of Information and Communications Technology 
(NICT) ran our software to create a Japanese-English corpus: http://www.kecl. 
ntt.co.jp/icl/lirg/jparacrawl/. This project also received funding from the EU. 

5.9 EDIN MT 
We have docker images for NMT using Marian-NMT. Each docker image includes our trained 
models and all the necessary tools to create translations using the models. Necessary tools 
include data preprocessing, using Moses (http://statmt.org/moses/), Subword-NMT 
(https://github.com/rsennrich/subword-nmt), SentencePiece 
(https://github.com/google/sentencepiece), and python3.7(https://www. python.org/downloads/). 

5.10 UMD MT 
We have docker images for (a) Moses-based SMT systems, and (b) Sockeye-based NMT 
systems. Each of them can take as  input text files in any of the project languages, preprocess 
them using Moses, Subword-NMT, and SentencePiece, and translate them into English (or vice 
versa). 

5.11 ASR 
We have separate ASR docker images for each of the project languages. Each of them can take 
WAV files as input and create output CTM files. There is another script that converts the CTM 
files to a normal .txt file. Furthermore, the ASR docker images can output n-best lists for each 
utterance. 

5.12 KWS 
We have a language-independent KWS docker image that allows us to search for phrases in the 
recordings processed by the ASR docker images. The phrases must consist only of words in the 
ASR dictionary. 

5.13 Audio Segmentation into Sentential Units 
A component that has been trained using syntactic information to segment the output of ASR to 
produce sentence-like units. These are close in structure to what MT expects as input and thus, 
the component enables better translation of ASR output. 

5.14 Morphological Analysis 
We use the Adaptor Grammar framework (http://web.science. 
mq.edu.au/~mjohnson/code/naacl09.tgz) to train our segmentation models. We use GIZA++ to 
(http://www.statmt.org/moses/giza/GIZA++.html) train alignment models. We use Stanza 

https://marian-nmt.github.io/
https://github.com/paracrawl
https://paracrawl.eu/
http://www.kecl.ntt.co.jp/icl/lirg/jparacrawl/
http://www.kecl.ntt.co.jp/icl/lirg/jparacrawl/
http://statmt.org/moses/
http://statmt.org/moses/
https://github.com/rsennrich/subword-nmt
https://github.com/google/sentencepiece
https://www.python.org/downloads/
https://www.python.org/downloads/
http://web.science.mq.edu.au/%7Emjohnson/code/naacl09.tgz
http://web.science.mq.edu.au/%7Emjohnson/code/naacl09.tgz
http://www.statmt.org/moses/giza/GIZA%2B%2B.html
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(https://github.com/stanfordnlp/stanza) to analyze the source languages for unsupervised 
cross-lingual training. We use the Percy Liang implementation of Brown Clusters 
(https://github.com/percyliang/brown-cluster) to train word-clustering models (optional). For the 
neural tagger, we use the Multilingual Roberta (XLM) 
(https://huggingface.co/transformers/model_doc/xlmroberta.html) to obtain contextual 
embeddings (optional). 

5.15 Component for Determining Cross-Lingual Query-Relevance of Sentences 
We can provide this component for all MATERIAL languages except Pashto. The component is 
trainable for new languages if parallel data, aligned at the sentence level, is available. 
Performance of the component is improved with word alignments from phrase-based MT, but 
can operate with or without them. 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

https://github.com/stanfordnlp/stanza
https://github.com/percyliang/brown-cluster
https://huggingface.co/transformers/model_doc/xlmroberta.html
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6.0 CONCLUSIONS AND RECOMMENDATIONS 
Here we present the reflections and recommendations of each team whose work was part 
of the SCRIPTS development process. 

6.1 Speech Processing 
The SCRIPTS ASR research findings highlighted that porting systems across domains is 
possible even for LRLs, as long as sufficient data for the language and approximate domain is 
available. Notably, however, we find that even untranscribed audio data can fill this data role, 
which helps transform the ASR possibilities for LRLs thanks to the ability to scrape audio from 
the web. At the same time, it is still important to address the impact of errors from the ASR 
system when using its outputs with downstream components. 
A key area of future investigation for ASR on LRLs is to explore the degree  of domain task 
porting that is possible when the availability of either text or audio data in the   target language is 
limited. Our work indicates that the use of large volumes of untranscribed   audio data is essential 
for ASR system development in the LRL context. Yet while unsupervised pre-training with such 
systems is a starting point for this approach, additional research is required to improve this type 
of ASR system development. Likewise, exploring how to link these large pre-trained systems 
with the particular needs of downstream systems will help yield more robust results. 

6.2 MT 
The MT work in this project reinforced the importance of robust data collection methods and 
pre­processing pipelines in order to quickly develop systems for new language pairs. It also 
demonstrated that neural models can provide useful translations even in  LRL settings, as well as 
the benefits of tailoring MT systems to the distinct  needs of upstream and downstream 
components. In the MATERIAL program, we confirmed   this by improving results for other 
SCRIPTS component systems through techniques including dedicated data processing, providing 
alternative translation options, and incorporating query­specific constraints in translation. 
A key area for future exploration is how to effectively measure the impact of MT errors   on 
downstream components and users, which cannot always be reliably estimated at present. 
Investigating how to support closer cooperation and tighter integration between MT and other 
components - even with minimal E2E training data available - would also enhance the efficacy 
and applicability of future MT work in this area. 

6.3 Data Collection 
Building software systems designed to locate answers to questions in LRLs requires collecting 
extremely large amounts of both speech and text data in each one. While  this data can often be 
collected from the web, this approach first requires successfully building models to identify 
particular languages through training on true samples of the language  desired. Likewise, systems 
that can successfully transcribe speech data from LRLs must also be developed. Finally, creating 
parallel language corpora for training MT models is also necessary. Building tools to collect and 
triage all of the described resources is important for any future work of this nature that focuses on 
LRLs. 

6.4 Text Processing 
The results of the SCRIPTS morphological analysis work illustrate that unsupervised 
approaches— especially when guided by some form of linguistic priors - can obtain 
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good performance for LRLs of diverse linguistic typology, from agglutinative to 
polysynthetic. 
For morphological segmentation, the use of AGs allows the incorporation of  linguistic priors in 
the form of either grammar definition or linguist-provided affixes. Moreover, for POS tagging, 
learning from multiple source languages via either decoding or projection had a positive impact. 
We also found that considering the stem as the unit of abstraction for alignments is powerful—
particularly for morphologically complex languages. 
A primary recommendation for future work in this area is to develop mechanisms for more 
robustly evaluating the impact of morphological analysis on downstream tasks like MT. 

6.5 CLIR 
From the perspective of CLIR, the timing of the MATERIAL program was exquisite. Prior   to 
MATERIAL, a solid foundation of “traditional” approaches to CLIR - approaches built on sparse 
term representations - had already been developed. The concurrent turn toward neural DL across 
speech recognition, MT, and IR made the MATERIAL program an unprecedented opportunity to 
advance not just those individual technologies, but their integration and application to the CLIR 
task. 
Our most important recommendation for CLIR would be to consider how to best capture and 
share the training data required by data hungry neural methods. While such training data need 
not be fully integrated across speech, translation, and retrieval, given the outsize impact that 
training data has on these systems’ effectiveness, some consideration of those requirements will 
be both possible and necessary. Our work on the MATERIAL program leads us to suspect that 
there will be benefits to thinking of these data needs as closely coupled, just like the resulting 
systems. As a simple example, training IR systems can benefit from active learning; but the 
benefit for CLIR might be that much greater if the learning were to be performed on parallel 
rather than monolingual sources. 

6.6 Summarization 
Summarization research showed that an effective summarization model can be developed even 
when there is a total absence of annotated data for the query­focused task, thanks to synthetic 
data generation. Our work in the MATERIAL program demonstrated the benefit of synthetic 
data generation, especially when combined with rationale training for lexical queries; therefore, 
we extended this approach to conceptual queries. We were also able to develop abstractive 
cross-lingual summarization models by adapting our generation of synthetic data, through a 
process of adding “noise” to English input articles from an existing summarization dataset using 
back translation. We also showed how the generation of effective summaries in the LRL scenario 
depends on close integration with both  ASR and MT. 
Our primary recommendation going forward is to explore new task and evaluation designs that 
could encourage more creative solutions to summarization in order to maximize the utility of the 
summarization process for human end users. Based on our findings, it is clear that  abstractive 
summarization could play a larger role in presenting more comprehensible summaries to a 
human end user, but the current evaluation framework did not reward solutions taking this 
approach. 
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AFRL  Air Force Research Laboratory 
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AG-LI Adaptor Grammar Language Independent 
AG-SS Adapted Grammars Scholar-Seeded 
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AMT Amazon Mechanical Turk 
ANN Approximate Nearest Neighbor 
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APE Automatic Post-Editing 
API Application Programming Interface 
AQWV Average Query Weighted Value 
AR Autoregressive 
ASR Automatic Speech Recognition  
AT Autoregressive Transformer 
AUC Area Under the Curve 
AWS Amazon Web Service 
AWESOME Aligning Word Embedding Spaces of Multilingual Encoders 
BestDA Best Data-Augmentation  
BestMTT Best Multi-Task Training 
BNB Babel Narrow Band 
BNF Backus Naur Form Notation 
BP Base Period 
BiLSTM Bidirectional Long Short-Term Memory  
BLEU Bilingual Evaluation Understudy Score 
BPE Byte-Pair Encoding 
BPR Boundary Precision and Recall 
BT  Blog Text 
CFG Context Free Grammar 
CLD Compact Language Detector 
CEDR Contextualized Embeddings for Document Ranking 
CLEF Cross-Language Evaluation Forum 



 

146 
Distribution A.  Approved for public release; distribution unlimited. 

AFRL-2022-1213; Cleared 11 Mar 2022  

CLIR Cross-Language Information Retrieval 
CL-SR Cross Language Speech Retrieval 
CNN-TDNNF Convolutional Neural Network/ Time-Delay Neural Network  

                                      Factorization  
CoNLL Computational Natural Language Learning 
CPR Constraint Preservation Rate 
CRF Conditional-Random Fields 
CS Conversational Speech 
CTM Compressed Triangle Mesh 
CTS Conversational Telephone Speech 
CUED Cambridge 
DBA Dynamic Beam Allocation 
DBQT Dictionary-Based Query Translation 
DET Detection Error Tradeoff 
DL Deep Learning 
DRMM Deep Relevance Matching Model  
DUC Document Understanding Conference 
E2E End-To-End 
EDIN Edinburgh 
EDINMT Edinburgh Machine Translation 
EDITOR Edit-Based Transformer with Repositing 
ESPnet Efficient Spatial Pyramid Network 
EU European Union 
FA-Accept False Alarm to Accept 
FIRE Forum for Information Retrieval Evaluation 
GloVe Global Vectors for Word Representation 
GPU Graphic Processing Unit 
GT Ground Truth 
GT Irrel Ground Truth Irrelevant 
GR Rel Ground-Truth Relevant 
HDF5 Hierarchical Data Format 5 
HMM hidden Markov model 
HMM-DNN Hybrid Hidden Markov/Deep Neural Network  
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IARPA Intelligence Advanced Research Projects Activity 
IDF Inverse Document Frequency 
IR Information Retrieval 
ISI Information Sciences Institute 
iSST Incremental Semi-Supervised Training 
IV In-Vocabulary 
IWSLT International Workshop on Spoken Language Translation 
JAR Java Archive 
JSON JavaScript Object Notation 
KL Kullback-Leibler 
KWS Keyword Spotting 
LF-MMI Lattice-Free Maximum Mutual Information  
LDA Latent Dirichlet Allocation 
LDC Linguistic Data Consortium 
LevT Levenshtein Transformer 
LI Language Independent 
LRL Low Resource Language 
LM Language Model 
LS Language Specific 
LSTM Long Short-Term Memory 
LT Lithuanian 
MAP Mean Average Precision 
MATERIAL Machine Translation for English Retrieval of Information in Any Language 

  Multilingual BERT 
MERT Minimum Error Rate Training 
MFCC Mel­Frequency Cepstral Coefficient 
MIT Massachusetts Institute of Technology 
MLM Masked Language Modeling 
MLP Multilayer Perceptron 
MNB MATERIAL Narrow Band 
MQWV Maximum Query Weighted Value 
MS MARCO Microsoft Machine Reading Comprehension  
MST Multi-Source Transformer Instantiation 
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MT Machine Translation 
MUSE Multilingual Unsupervised and Supervised Embeddings 
MWB MATERIAL Wideband 
NAACL North American Chapter of the Association for Computational Linguistics 
NAR Non-Autoregressive 
NAT Non-Autoregressive Transformer 
NB Narrow Band 
NB News Broadcast 
NCE  Normalized Cross Entropy 
NICT National Institute of Information and Communications Technology 
NLTK Natural Language Toolkit 
NMT Neural Machine Translation 
NNLTM Neural-Network Lexical Translation Model 
NSP Next Sentence Prediction 
NT  Text Types 
NYT New York Times 
OOL Out-of-Language 
OOV Out-of-Vocabulary 
OP1 Option Period 1 
OP2 Option Period 2 
OPUS Open Parallel Corpus 
PACRR Position-Aware Convolutional Recurrent Relevance Matching 
PBMT Phrase-Based Machine Translation 
PCFG Probabilistic Context-Free Grammar 
POS Part-of-Speech 
POSIT POoled SImilariTy  
PSI Parallel Sentence Identification 
PSQ Probabilistic Structured Queries 
PTB Penn Treebank 
PTO Probability of Term Occurrence 
QFS Query-focused summarization 
QLM Query Likelihood Model 
QST Query-Specific Thresholds 
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RIBES Rank-based Intuitive Bilingual Evaluation Score 
RNN-LM Recurrent Neural Network-Based Language Model  
ROC Receiver Operating Characteristic 
ROUGE Recall-Oriented Understudy for Gisting Evaluation 
RRF Reciprocal Rank Fusion 
RT Rationale Training 
S2S Sequence to Sequence 
SCRIPTS System for CRoss-language Information Processing, Translation and 

Summarization 
SDM Sequential Dependence Model 
SECLR Supervised Embedding-based Cross-Lingual Relevance 
SECLR-RT Supervised Embedding-based Cross-Lingual Relevance with Rationale Training  
SID-SGNS Sentence Identification-Skip-Grams with Negative Sampling 
SLT Spoken Language Translation 
SMT Statistical Machine Translation 
SOTA State-of-The-Art 
SRILM SRI Language Modeling 
SST Semi-Supervised Training 
STO Sum-To-One 
STTT Speech-to-Text Translation 
SVM Support Vector Machine 
TB Topical Broadcast 
TD-to-Miss True Detections to Miss 
TDNN Time Delay Neural Network 
TED-LIUM Technology, Entertainment, Design- Laboratoire d’Informatique de 

l’Université du Maine 
TER Translation Error Rate 
TF-IDF Term Frequency-Inverse Document Frequency 
TREC Text Retrieval Conference 
TLM Translation Language Modeling 
UD Universal Dependencies 
UMD University of Maryland 
URL Uniform Resource Locators 
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VAD Voice Activity Detection 
VBERT Vanilla mBERT 
Vtt Video Text Tracks 
WB Wide-Band 
WD Windowdiff 
WER Word-Error Rate 
WFST Weighted Finite State Transducer 
WMT Workshop on Machine Translation 
XLM Cross-Lingual LM 
XLM-R XLM RoBERTa 
XML Extensible Markup Language 
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APPENDIX A - LIST OF NEWS SITES 

List of Swahili and Tagalog News Websites 
 

Table A1.   Swahili News Sites 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table A2.  Tagalog News Sites 
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APPENDIX B - SCRIPTS NORMALIZATION PARAMETERS 

SCRIPTS Normalization Parameters 
The SCRIPTS Normalization system67 accepts a set of parameters that control the 
normalization process. The parameters are as follows: 

• language:string (case-insensitive): Material codes (e.g., 1A), ISO codes 
(e.g., SWA) and full language names (e.g., Swahili) are all accepted 
inputs. 

• text:string 
• letters_to_keep:string (case-sensitive): Letters needed to be kept, 

overwrites the re- moval of vowels, diacritics, non-alphabet characters and 
built-in language mappings – “” means do not use this feature. 

• letters_to_remove:string (case-sensitive): Letters needed to be removed – 
“” means do not use this feature. 

• lowercase:boolean 
• remove_repetitions_count:int: The maximum number of allowed character 

repetitions (in a sequence), e.g., when set to 2, “mannner” changes to 
“manner” – 0 means do not use this feature (after the built-in mapping, 
lower-casing and removal of extras (e.g., non-zero width joiners) and 
before any other operations). 

• remove_punct:boolean: Covers both punctuation marks and symbols 
• remove_digits:boolean 
• remove_vowels:boolean: Does not cover the short-vowel diacritics in 

Pashto and Farsi, and does not affect non-alphabet characters of the 
underling languages 

• remove_diacritics:boolean 
• remove_spaces:boolean 
• remove_apostrophe:boolean 
• copy_through:boolean: When set to True, none of the foreign letters gets omitted. 
• keep_romanized_text:boolean: This argument works when the language has 

a non- Latin script (Bulgarian and Pashto). When set to True, none of the 
letters of the Ro- manized Bulgarian script), in the case of Bulgarian, and the 
Romanized Pashto script, in the case of Pashto) gets omitted. When set to 
False, the Romanized Bulgarian letters   are transliterated into the Cyrillic 
script, in the case of Bulgarian, and the romanized Pashto letters are omitted 
(Notice that transliteration in Pashto is not supported). 

 
 
 
 
67https://github.com/rnd2110/SCRIPTS_Normalization 

https://github.com/rnd2110/SCRIPTS_Normalization
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