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ABSTRACT 

In recent years, anonymization services such as Tor have become a popular 

resource for terrorist organizations and violent extremist groups. These adversaries use 

Tor to access the Dark Web to distribute video media as a way to recruit, train, and 

incite violence and acts of terrorism worldwide. This research strives to address this 

issue by examining and analyzing the use and development of video fingerprinting 

attacks using deep learning models. These high-performing deep learning models 

are called Deep Fingerprinting, which is used to predict video patterns with 

high accuracy in a closed-world setting. We pose ourselves as the adversary by 

passively observing raw network traffic as a user downloads a short video from 

YouTube. Based on traffic patterns, we can deduce what video the user was 

streaming with higher accuracy than previously obtained. In addition, our results 

include identifying the genre of the video. Our results suggest that an adversary may 

predict the video a user downloads over Tor with up to 83% accuracy, even when the 

user applies additional defenses to protect online privacy. By comparing different Deep 

Fingerprinting models with one another, we can better understand which models 

perform better from both the attacker and user’s perspective. 
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I. INTRODUCTION

A. INTRODUCTION

More than ever before, cybersecurity has escalated to the forefront of priorities for

national security, and for the protection of the country’s entire critical infrastructure. The 

Department of Defense (DOD) and other agencies have recognized the urgent need for 

robust cyber related knowledge, skills, resources, and firepower to defend against bad 

actors who exist across a whole spectrum of threat levels. Even worse, it is often extremely 

difficult to discern the origin of these cyberattacks and the actual capabilities of these 

malicious cyber actors.  

Many of these adversaries hide behind the walls of encrypted anonymous networks 

such as The Onion Router (Tor) Network. Tor is an anonymous communication system 

that has recently gained substantial popularity serving millions of users world-wide. In [1], 

Lewman states that Tor’s user base spans a wide range of demographics; a number of these 

users consist of journalists, political dissidents or “whistleblowers,” law enforcement 

agencies, and other regular users who simply desire for more privacy online. More 

importantly, today’s modern adversaries and terrorists are also utilizing the Tor network to 

access the Dark Web in order to facilitate their activities and evade monitoring and tracking 

online. According to Sabbah et al. [2], Tor’s unique internet architecture provides a quick, 

easy-access domain for extremist groups to preserve their anonymity. The Dark Web 

continues to be a valuable tool for numerous terrorist platforms to communicate, fundraise, 

spread propaganda, steal information and data, and more—all in complete secrecy. 

Recently, recruitment, instruction, and training videos have become a more prominent 

threat on the international stage by encouraging the proliferation and exposure of violent 

extremism. Salem et al. [3]. determined that the dissemination of these digital materials 

allows extremist groups to support their goals of spreading their ideologies and influencing 

potential recruits all around the world. 

An emerging area to improve automated capability to disrupt such terrorist 

recruitment efforts and related activities is via website fingerprinting (WF) attacks [4]. This 
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type of cyber-attack helps determine the subject of a website or other digital material a user 

is viewing based on collected network traffic. To perform a WF attack, an attacker will 

passively eavesdrop on a client’s web activity who is using low-latency anonymity 

networks such as proxies and virtual protected networks (VPN) [5]. The attacker will then 

leverage certain features of the network packet sequence such as time, direction, and size. 

Now, the attacker has the fingerprints of the webpage and can use various machine learning 

(ML) techniques to classify the packet sequence to determine the particular website the

client visited.

As Sirinam et al. [4]. point out, “state-of-the-art website fingerprinting attacks have 

been shown to be effective even against Tor.” Consequently, there is growing importance 

for the DOD and other federal agencies to shift towards developing and integrating new 

ML techniques and cyber defense strategies to combat terrorists who frequently utilize the 

Dark Web for threatening, harmful activities especially for information sharing and 

mobilizing resources via online avenues. By gaining a better understanding of these unique 

fingerprinting attack methods, we are better equipped to disrupt terrorist and malicious 

cyber activity in addition to devising new defense mechanisms to protect ourselves from 

these attacks.  

Similar to WF attacks, video fingerprinting (VF) attacks over Tor involves 

passively observing a victim’s network traffic packets without any modification to the 

client and server. However, rather than determining what web page was visited, VF allows 

the attacker to infer what video is being streamed by the client. As pointed out by Lu [6], 

VF has become “an essential and enabling tool adopted by the industry for video content 

identification and management in online video distribution.” However, in the current 

literature, there is an absence of research toward studying the effects of applying VF over 

the Tor Network. This research aims to utilize VF methods to address the growing 

popularity of video streaming amongst terrorist organizations and violent extremist groups 

over anonymous networks such as Tor. 

Following previous work from Sirinam et al. [4], Schuster et al. [7], and 

Campuzano [8], we will explore applying a deep learning (DL) classifier to predict the 

video a user watches over Tor as well as the genre of the video. Video genre refers to the 
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general category a video may be characterized as such as a movie trailer or music video. 

Our research utilizes a new type of attack called Deep Fingerprinting (DF) proposed by 

Sirinam et al. [4]. that will be used with DL models to produce high accuracy scores for 

predicting video streams based on raw network traffic. By impersonating an attacker, we 

eavesdrop on a client’s traffic transmission and collect datasets composed of these network 

traces to train the DL classifier. We attempt to discover the effectiveness of various attack 

models using these DL classifiers to determine which model achieves the highest video 

prediction accuracy score.  

B. PURPOSE AND SCOPE

This research serves to explore a simulated video fingerprinting (VF) attack model

in which we behave as the attacker who is passively observing Tor traffic in between the 

user and their first hop within the Tor network. We strive to achieve the highest video 

prediction accuracy by unmasking a user’s video download and accurately identifying the 

short video streams over an encrypted network to better understand our adversaries and 

their capabilities. Large quantities of video traffic traces that include packet time, direction, 

and size will be collected to train our deep learning classifier DF that used a similar concept 

that Sirinam et al. [4]. applied to their WF attack model. This research will further explore 

(DL) techniques proposed by Sirinam et al. and Campuzano [4], [8], who both use

convolutional neural network (CNN) models and VF data gathered from the video

streaming website, YouTube, to train the models to attain high classification accuracy

using raw traffic data. This process will allow these DL models to accurately detect unusual

frequency patterns of videos as well as correlate video traffic patterns in various attack

settings.

Lastly, several different DL models will be compared to assess which model 

performs the best for accurately predicting a video that was watched over Tor. By 

collecting a high volume of video traffic packet data, we are able to apply DF methods to 

our research to determine the effectiveness of VF attacks in different attack settings and 

hyperparameters. 
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C. THESIS ORGANIZATION 

The remaining chapters are organized as follows. Chapter II provides background 

information on the Dark net or “Dark Web” and an overview of the Tor network. The 

chapter then explains the VF process and DL models used to achieve results and findings 

to include previous related work done in the same area of research. Chapter III describes 

the methodology used throughout the study to obtain data using a video crawler program 

as well as further computation and analysis of the datasets. Chapter IV describes the 

implemented DL models and their hyperparameters in further detail, the simulated closed-

world setting used to evaluate the effectiveness of each model, and their results. Lastly, 

Chapter V summarizes the contributions towards this area of research, possible 

recommendations for future work, and our conclusion. 
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II. BACKGROUND AND RELATED WORK 

This chapter provides both background and comprehensive review of the literature 

related to my research. The first and second sections provide general and detailed 

information of the Dark net or “Dark Web” and the Tor network as well as its application 

and framework. The third section discusses WF and its relevance and value as a common 

cyber tool used by adversaries to identify video streams viewed over an encrypted network 

such as Tor. The fourth section explains VF and its application throughout this research. 

The fifth section highlights the DL methods and how they may be employed to make 

similar human-like predictions and decisions to be used in a simulated VF attack. The sixth 

and seventh sections serve to provide more detail of the machine and DL models used 

throughout this research. The last section provides insight to previous work done in this 

area of study. 

A. DARK NET 

Dark net, or commonly known as the “Dark Web,” may be conceptualized as a 

collection of sites that utilize “special routing systems…designed to provide anonymity for 

both visitors to websites and publishers of these sites” [9]. In [9], Gehl favors a technical 

definition of the Dark Web describing it as “websites built with standard web technologies 

(HTML, CSS, server-side scripting languages, hosting software) that can be viewed with a 

standard web browser…which is routed through special routing software packages.” Thus, 

the important distinction between the regular internet and the Dark Web is the ability to 

achieve anonymity through the Dark Web medium. The Dark Web architecture uses 

anonymity or hidden service tools to conceal IP addresses and encrypt traffic data [10]. It 

is part of the internet that “is not a separate physical network but an application and protocol 

layer riding on existing networks” [10]. 

The Dark Web is notorious for being the hotbed of criminal, illicit activity while 

serving as the neural pathway into the deep recesses of the internet. As Samtani et al. [11] 

mentions in their research, malicious cyber actors are able to leverage the privacy afforded 

by the Dark Web to procure various attack tools such as malware, remote administration 
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tools (RATs), ransomware, botnets, spyware, and other emerging threats. However, the 

Dark Web is also frequented by journalists, political dissidents or “whistleblowers,” law 

enforcement agencies, and other regular users who also desire to achieve anonymity online. 

This obscure, complex domain is characterized as being a highly concealed portion of the 

internet that few users will ever interact with or view. In fact, “when performing a regular 

search on the internet, what is returned really only makes up less than one percent of all 

the information that is actually out there” [12]. 

Websites that are accessible through this medium are not conventionally indexed 

and can only be accessed via specialized web browsers. As a decentralized network of 

internet websites, the Dark Web allows users to become incognito by routing their online 

traffic through multiple servers and encrypting these communications from beginning to 

end [3]. Thus, the Dark Web often serves as an ideal hideaway for adversaries to evade 

attribution and detection. Although many major terrorist organizations utilize social media 

applications such as Facebook and Twitter [13] as a more public display of their strategies, 

they turn to the Dark Web to use its encrypted channels to communicate and secretly 

orchestrate their attacks. Amongst numerous extremist and terrorist organizations, Dark 

Web “online forums have also facilitated the ‘leaderless resistance’ movement, a 

decentralized and diffused tactic that has made it increasingly difficult for law enforcement 

officials to detect potentially violent extremists” [13]. 

By studying the Dark Web in greater detail, we are able to better understand its 

relevance to cyber security concerns as well as preventing attacks and malicious activity 

and services [14]. The rapid globalization and ubiquitous access to the internet continues 

to allow illegal online activities and acts of terrorism to become more prevalent especially 

through the Dark Web medium. Today, it has become apparent that terrorist and extremist 

groups continue to grow their knowledge base and proficiency with the Dark Web in order 

to find new ways to utilize anonymous networks while remaining undetected [14]. As we 

remember past catastrophic events such as 9/11, it becomes increasingly more essential to 

intercept terrorist communications and networks throughout these hidden channels to 

prevent future attacks and safeguard national security.  
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B. THE ONION ROUTER “TOR” 

Tor is an open-source software that enables access to the Dark Web and supports 

anonymous communications. It was originally developed by the United States Navy in the 

mid-1990s to enhance privacy and protect online communications and identities within the 

U.S. intelligence community [15]. Today, the Tor network is the most widely used 

anonymity system and comprises approximately “7,000 relays or proxies which together 

carry terabytes of traffic every day” [16]. Tor can essentially be understood as a browser 

that utilizes a virtual protected network (VPN) proxy connection with a default search 

engine similar to Google or Bing which can be used to access the Dark Web via randomly 

chosen proxies or relay points spread throughout the world. This allows for an encrypted 

circuit path to be established between the client and the destination. Tor can also be used 

to access any normal website; the majority of Tor’s bandwidth is devoted to users accessing 

normal websites through the Tor network. Our adversary model makes this assumption as 

the adversary is interested in users accessing YouTube videos over Tor. 

During the first step of the Tor process, the user makes a request to the Tor directory 

which consists of numerous relay nodes. By default, three random nodes are selected 

(guard “entry,” middle, and exit) in order to establish symmetric session keys and a circuit 

[17]. The user’s data is bundled into encrypted packets while being routed through the 

various relay nodes or onion routers (OR) on its way to the ultimate destination. The 

encrypted packets, or cells, form Tor’s multi-layered routing infrastructure in which each 

OR “maintains a TLS connection to every other onion router” [17]. As Dingledine et al. 

[17] explain, each cell consists of a header and payload in which the header “includes a 

circuit identifier (circID) that specifies which circuit the cell refers to (many circuits can 

be multiplexed over the single TLS connection) and a command to describe what to do 

with the cell’s payload.”  

Cells are categorized as either control cells or relay cells serving different purposes 

[17]. Control cells consist of several different commands such as “padding (currently used 

for keepalive, but also usable for link padding); create or created (used to set up a new 

circuit); and destroy (to tear down a circuit)” [17]. Relay cells are used to “carry end-to-

end stream data” [17]. As Haraty and Zantout [18] describe, “each cell is encrypted/
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decrypted at every node and each node can only reveal a single encrypted layer in a cell” 

using the symmetric session key. Once the data that originated from the user is sent through 

the last node via cell encapsulation and the encryption key methodology, the ultimate 

destination is presented with the revealed data without the identity of the user [18]. The 

data will then transit backwards along the same path in which the last node “has to prepare 

the same encapsulated set of layers in an onion similar to the one the client has prepared 

earlier using the reverse order of layers originally sent by the client” [18]. Figure 1 is a 

graphical representation of the Tor network structure and its basic components. 

 
Figure 1. Tor network operation. Adapted from [19]. 

Despite Tor’s intricate layered or “onion” routing infrastructure, “the designers of 

Tor admit that the anonymous network does not prevent against the global adversaries that 

have exclusive network/resource access and are capable of monitoring traffic on all 

networks their users are connected to” [18]. Although the data packet in the final path does 

not include the identity of the client, numerous studies have been conducted to discover 

how an adversary can still use other information to uncover visited websites over a Tor 

connection. Gilad and Herzberg [20] mentioned that the low-latency nature of Tor makes 

it vulnerable to traffic correlation attacks by an eavesdropper who may passively observe 

traffic between client and guard, and simultaneously between her exit and destination 

server. Dingledine [17] adds, “because these designs typically involve many packets that 



9 

must be delivered quickly, it is difficult for them to prevent an attacker who can eavesdrop 

both ends of the communication from correlating the timing and volume of traffic entering 

the anonymity network with traffic leaving it”. 

C. WEBSITE FINGERPRINTING 

In recent years, “research shows that website fingerprinting (WF) is a growing 

threat to privacy-sensitive web users, especially when using machine learning techniques 

such as deep learning or machine learning (DL/ML) to attack website fingerprint, reducing 

the effectiveness of the previous defense strategies” [21]. WF attacks are passive traffic 

analysis attacks designed to recognize traffic patterns of specific websites by observing the 

TCP header information within the network traffic. Although encrypting tunnels are 

capable of hiding content and addresses between client and web server, packet information 

such as size, time, and direction can still be seen by outsiders [16]. The adversary can 

successfully carry out this attack by simply eavesdropping and extracting network traces 

from unsuspecting Tor users, then matching those traces to a collection of pre-recorded 

website fingerprints to identify which website the user visited [22].  

Several different approaches have been developed to advance WF attack techniques 

using ML and DL classifiers and algorithms. Certain features, or individual independent 

variables or characteristics are used to make predictions through pattern recognition and 

ML processes. Hermann et al. [23]. presented a novel WF technique based on a 

Multinomial Naïve-Bayes classifier in which text mining was used to normalize frequency 

distribution of observable IP packet sizes. By observing and conducting statistical analysis 

of packet sizes sent from client to server, they were able to correctly identify “up to 97% 

of requests on a sample of 775 sites and over 300,000 real-world traffic dumps recorded 

over a two-month period” [23].  

Other approaches utilized different classifiers, variables, and settings. Panchenko 

et al. [24]. specifically focused on traffic time, direction, and volume for features to be used 

in their WF attack models as well as using support vector machines. In addition, they 

introduced both closed and open-world settings where closed-world assumes that the 

attacker knows all the web pages in advance whereas the open-world scenario is the 
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opposite: the attacker is not privy to any information regarding which web pages are visited 

by the user ahead of time. This new approach resulted in improved recognition that 

increased from 3% to 55% using closed-world settings and achieved “a surprisingly high 

true positive rate of up to 73% for a false positive of 0.05%” [24] for the more complex 

open-world scenario. 

D. VIDEO FINGERPRINTING 

Due to the fast-growing popularity of video streaming on the internet, VF methods 

have become essential for video content identification, management, and distribution. 

According to Rao et al. [25], “recent studies have shown that video streaming is responsible 

for 25%-40% of all internet traffic.” Similar to WF, VF may also be used over an encrypted 

network where the same adversary can build his own database of video traffic to correlate 

with what he observes between client and Tor entry node. Despite video content being 

hidden using transport-layer encryption, network characteristics such as burst patterns can 

still be discerned and can be tell-tale indicators used to identify which video was streamed 

[7]. ML and DL classifiers can once again be trained and used to identify encrypted traffic 

patterns. If trained and tested properly, the adversary will be able to predict what sort of 

videos clients are watching over Tor with relatively high accuracy. For the purpose of this 

research, we focused on VF attacks on previously-known videos in order to address the 

main concern of terrorist/extremist’s frequent use of video content and media sharing 

within the Dark Web. 

Today, an internet user has a plethora of video streaming websites to choose from 

as video streaming has grown exponentially. In [25], Rao et al. mention that “the two 

dominant sources for video streaming… are Netflix and YouTube.” Sandevine [26] reports 

that video streaming is responsible for “58% of total downstream volume of traffic on the 

internet…Netflix is 15% of the total downstream volume of traffic across the entire 

internet” and YouTube reigns as the most highly used video streaming application on 

mobile devices and shares 11% of the global traffic share.  

As Sirinam et al.[4] implemented in their research, we also focused our research on 

collecting network traces from YouTube over the Tor network. By first extracting and 
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observing packet characteristics such as transmission time, raw packet sequence, and bursts 

of traffic, we were able to train our DL classifiers on these features to recognize the videos 

that the users viewed over their Tor connection. In contrast to WF attacks, where an 

adversary can only deduce the homepage or hosting site that a user visited, VF attacks have 

the potential to be significantly more invasive by allowing the adversary to recognize 

specific video content that is being watched, thus making VF a greater potential threat to 

user privacy [7].  

Following previous research from Sirinam and Juarez et al. [4],[22], our research 

focuses on closed-world results. A closed-world scenario assumes that the user can only 

view and download videos that the adversary will use to train his model. A total of three 

genre types are used in this research with each comprising 9 videos. The adversary is 

allowed to train on every video in each of the three genres. The user, or victim, is unable 

to download any other videos using Tor than these selected sets of videos. Recent research 

shows that DL-based classifiers that operate on raw packet information achieve the best 

results, with less than 2% error in a closed-world setting [4], [22]. 

E. MACHINE LEARNING 

Machine learning (ML) technology is found in virtually every industry with its 

numerous different applications. Modern society is constantly driven by an immense 

amount of data that demands fast computing and analysis to improve efficiency and 

decision-making. Continuous technological developments in ML have resulted in 

improved automated capabilities for a wide range of applications and fields of study.  

More importantly, recent advancements in ML have proven to be highly effective 

and useful with encrypted traffic characterizations and analysis [27]. Our research strives 

to effectively use these ML capabilities to conduct VF traffic analysis attacks to better 

predict the user’s activity. Following previous work from Sirinam et al. and Campuzano 

[4], [8], our research uses the same DF classifier algorithms and features extracted from 

raw traffic packet data such as packet direction, size and time to predict what video is being 

watched and the genre type of the video. The adversary trains a classifier on these features 

so that it can reliably identify the video being viewed over the Tor network.  
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F. DEEP LEARNING MODELS 

As an important subfield of ML [28], DL is comprised a multi-layer neural network 

architecture that is programmed to perform different kinds of transformations or 

predictions based on their inputs. Each layer considers an increasing level of complexity 

and abstraction where one layer’s output is fed as input to the next layer. As Rimmer [28] 

mentions, “Processing sufficient amounts of representative data enables the deep neural 

network to not only precisely reveal the identifying features but also generalize better to 

unseen test instances.” According to Sirinam et al. [4]., “while state-of-the art attacks use 

classifiers that are popular in many applications, deep learning (DL) has shown to 

outperform traditional machine learning techniques in many domains, such as speech 

recognition, visual object recognition, and object detection.” 

Moreover, Convolutional Neural Networks (CNNs) have been shown in recent 

literature and research to outperform other ML models for traffic analysis attacks [4]. 

Schuster et al. [7]. demonstrated that CNNs are especially useful for identifying patterns in 

video streams due to their distinguishable traffic burst patterns. Furthermore, DL models 

utilizing CNNs are able to achieve high accuracy scores on raw traffic with its high 

performing feature extractors and minimal preprocessing [28]. Unlike other ML models, 

CNNs do not require manually selecting and fine-tuning of features. Each layer in a CNN 

is comprised kernels or filters that serve as building blocks of the DL model. These layers 

are fully connected with one another and use multi-dimensional arrays with input data to 

produce feature maps as represented in Figure 2 [28]. 
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Figure 2. Convolutional Neural Network. Adapted from [28]. 

As Rimmer et al. explained in [28], “the kernel is applied spatially to small regions 

of the input, thus enabling sparse connectivity and reducing the actual parameter learning 

in comparison to fully-connected layers.” In our instance, the kernel strives to train on 

individual parts of a given feature set to yield a usable fingerprint from a video traffic trace. 

During convolutional operations, once each region of input is combined with a filter, 

intermediate values are produced which then becomes the input to an activation function 

[4]. As Sirinam et al. [4]. points out, “the output of the activation function is then fed into 

a pooling layer. The pooling layer progressively reduces the spatial size of the 

representation from the feature map to reduce the number of parameters and amount of 

computation.” In other words, pooling involves subsampling operations which is often 

used to identify distinguishable parts of a fingerprint in a given trace while disregarding 

surrounding traffic [28]. Lastly, the final layers will then output the predictions. In Rimmer 

et al.’s study, they show that “the network can include a whole series of convolution and 

pooling layers in order to extract more abstract features” [28]. 
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G. DEFENSE MODELS 

This research will also introduce lightweight fingerprinting defenses for Tor to 

degrade our simulated VF attacks using the CNN model: Website Traffic Fingerprinting 

Protection with Adaptive Defense (WTF-PAD) and Walkie-Talkie (W-T) defenses. We 

replicate the models that Sirinam and Juarez et al. [4], [22] used for WF attacks. These DF 

models comprise “more convolutional layers, better protections against overfitting, 

hyperparameters that vary with the depth of each layer, activation functions tailored to our 

input format, and a two-layer fully connected classification network” [4]. Both WTF-PAD 

and W-T were constructed to be low-overhead, flexible, and effective defenses against WF 

fingerprinting attacks. Our work compares results from these two defense models with the 

defenseless Tor traffic model called Non-Defended (NoDef).  

Following [4], the W-T defense ensures that, “the Tor browser communicate with 

the web server in half-duplex mode, in which the client sends a request (such as for an 

image file) only after the server has fulfilled all previous requests.” Consequently, 

communications from both the client and server sides become non-overlapping bursts in 

each direction [4]. As Wang and Goldberg [29] proposed in their research, W-T “is highly 

effective against all known attacks at overhead costs much lower than all known effective 

defenses.” Dummy packets are also used in W-T; they are fake packets that do not contain 

real information yet are indistinguishable from real packets to the attacker [4]. They act as 

cover traffic that “makes WF features less distinctive, thus increasing the rate of 

classification errors committed by the adversary” [4].  

Similar to the W-T defense, WTF-PAD is another countermeasure that alleviates 

low latency overhead. Juarez et al. [22]. proposed WTF-PAD to be “a system designed for 

deploying adaptive padding for WF defense in Tor.” Adaptive padding serves as a useful 

defense against timing analysis, and “saves bandwidth by adding the padding only upon 

low usage of the channel, thus masking traffic bursts and their corresponding features” [4]. 

Shmatikov and Wang [30] also explain that “the purpose of adaptive padding is to prevent 

the attacker from determining which of the multiple simultaneous connections is being 

carried on a given network link” as well as providing “significant protection against active 

attacks at a relatively low extra latency cost.”  
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In [4], Sirinam et al. achieved 98.3% accuracy for their DF WF attack in a closed-

world setting with no defenses. While using the lightweight website defense models, they 

achieved lower accuracy scores for each showing their effectiveness against WF attacks. 

WTF-PAD achieved 90.7% accuracy whereas W-T defense was as low as 49.7% [4].  
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III. METHODOLOGY 

This chapter discusses the data collection process of video traffic packet captures 

over the Tor network using a video crawler within a virtual machine (VM). There is also 

mention of some errors that were encountered while acquiring traffic packet captures which 

influenced the number of usable data points for training and testing the selected DL models. 

In addition, this chapter discusses the various DL models used in greater detail as well as 

the hyperparameters utilized for each model to better measure video prediction scores. 

A. DATA COLLECTION PROCESS 

The videos that were selected for our research aimed to possess similar 

characteristics as the recruitment and propaganda videos that terrorists and other extremist 

groups may potentially disseminate over the internet. YouTube was used as the source for 

video downloading under the assumption that these adversaries would likely use YouTube 

to post their videos to be viewed by regular users.  

Video data collection for this research consisted of downloading a variety of videos 

over Tor in separate batches to include 10 downloads per video from YouTube per batch. 

Videos are categorized by 3 different genres: The first genre consists of Disney movie 

trailers, second genre is music videos, and third genre is sports clips. Each genre includes 

9 videos of varying lengths (2-4 minutes). The videos are identified by their video ID 

number which we label in sequential order. Disney movie trailers comprise video IDs 0–8, 

music videos comprise video IDs 9–17, and sports clip videos comprise video IDs 18–26. 

Each video dataset batch consisted of 90 downloads total: 10 downloads for each of the 9 

videos. Thus, the total number of downloads is the same across all three video genres.  

The selection of video genre types for our work was based on assumed video 

characteristics of propaganda videos used by terrorist organizations. Such videos often 

include loud audio and fast-motion sequences – similar qualities seen in movie trailers, 

music videos, and sport highlight videos. In contrast, selecting video genres with dissimilar 

characteristics such as ambient meditation videos would not suit the type of videos we 

strive to predict on the Dark Web. Following Wang and Goldberg [31], they demonstrated 
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how added high-bandwidth or loud audio streaming noise can affect WF. In [31], they have 

shown that “the attacker can still classify packet sequences with high levels of noise by 

finding the noise packets from the client’s packet sequence and adding them to his data 

set….” Based on Wang and Goldberg’s [31] findings, we deduce that the high bandwidth 

rate of our selected videos would still allow us to identify these videos somewhat accurately 

while closely resembling our real-world videos of interest. 

1. Video Crawler 

Similar to the Tor browser crawler that Sirinam and Juarez applied in their WF 

attack models [4,20], we used a modified Tor browser crawler that read YouTube video 

IDs instead of website URLs. The video crawler developed by Mathews [32] was installed 

within a VM using Lubuntu version 20.04 operating system with 350 Megabytes of RAM 

[8]. A Home Wi-Fi connection was used to facilitate each VF attack scenario.  

Docker software is used to execute the video crawler inside an encapsulated 

package called tbcrawl within the container. To begin passively downloading the selected 

videos (this is synonymous to a user clicking play for a video) from the Tor network, the 

crawler uses Selenium to automate the Tor Browser Bundle (TBB) version 8.0.2 and the 

YouTube Data Application Programming Interface (API) to stop the video capture instance 

once complete [32]. In addition, we maintain YouTube’s automatic adjustment and default 

stream resolution settings to best simulate average user behavior. The crawler then uses 

tcpdump to collect and analyze the transmitted network packets. 

The default configuration file for Tor is set to automatically close its circuits after 

10 minutes. Following Wang and Goldberg [29], we set the circuit to close in 600000 

seconds to ensure each batch was completed before closing. We also set UseEntryGuards 

to 0 to disable the set of limited entry guards and allow for switching of the entry guard. It 

is important to note that the client does not generally make these changes, and these 

modifications were made to gather realistic data and eliminate unrealistic advantages for 

the attacker [29]. 
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2. Packet Capture (PCAP) Parser 

Wireshark, a commonly used network protocol analyzer, was used in conjunction 

with the video crawler to collect Packet Capture (PCAP) files to be used for analysis. The 

PCAP size limit that was configured in the video crawler was up to ~120 Megabytes per 

video [32]. Image screenshots are also captured periodically during collection so that the 

adversary can visually verify that data from the YouTube videos is being collected as 

shown in Figure 3. 

 
Figure 3. Screenshot capture on video crawler 

A parser program was used to separate the collected data to analyze its traffic more 

efficiently. Sirinam et al. [4]. mention that “the attacker is assumed to be able to parse all 

traffic…and isolate it from other traffic.” We used Scapy, a Python program interpreter, to 

first dissect the captures. Next, TShark (Wireshark’s terminal-oriented version) was then 

used to filter the traces by IP/MAC address. The parser program will then process IP-level 

capture PCAP files into a sequence of tuples containing packet time and direction, and 

recursively search through directories to find the PCAP files [8]. Figure 4 illustrates the 

time and direction output of a traffic capture after being fully parsed (left column is packet 

time and right column is packet direction). 
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Figure 4. PCAP parser program output 

Applying Wang and Goldberg’s approach [29], we represent each traffic instance 

as a sequence of positive and negative integers. From the client’s perspective, we later 

convert raw packet direction to positive (+1) for outgoing and negative (-1) for incoming 

to reduce and simplify the raw traffic traces as this allows for optimal performance of our 

DF models as demonstrated by Sirinam et al. [4].  

The parser program was also useful for removing flawed instances during data 

collection. Failed connections to the server or server-oriented messages that denied access 

to YouTube would result in the video crawler aborting its operation resulting in an 

incomplete video dataset batch. These batches were deleted and not used for analysis. 

Following Wang and Goldberg [29], “if the size of the video traffic instance was less than 
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20% of the median size for that video, it was removed.” In addition, samples that contained 

less than 100 packets of time and direction data were discarded. 

3. Dataset Computation and Storing 

Our research utilized computing and storage resources from the Naval Postgraduate 

School (NPS) Hamming supercomputer [33]. For our data processing, this allowed the use 

for one NVIDIA Quadro RTX 6000 graphics processing unit (GPU) with 24 gigabytes of 

memory, 4,608 CUDA parallel-processing cores, and 576 tensor cores [34].  

Using Wang and Goldberg’s methodology [29], “data was collected batch-by-batch 

with each corresponding to one circuit (one client).” Each batch of 90 videos took 

approximately 5–6 hours to download depending on home Wi-Fi network connectivity. 

The complete collection of one batch of videos with corresponding crawler log is shown 

in Figure 5. 

 
Figure 5. Video batch collection with crawler log 

Following Campuzano’s research [8], we added to his previous Disney movie video 

data collection of 138 batches for a final total of 165 batches. During our research, we also 

added two extra genres totaling 165 batches each to ensure equal amounts of data across 

all three video genres. Data collection took place over the course of approximately eight 

months. In order to nearly triple the dataset size from prior work [8], two computers were 

required to run the video crawler and PCAP parser programs. Upon collecting an additional 
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27 batches to add to the first genre of videos utilizing both computers, one computer was 

then designated to collect all data for the second genre and the other computer collected all 

data for the third genre to ensure equal dataset size throughout collection. 

Our research is focused on the closed-world environment where the video ID and 

video genre are used as class labels in the training and test set in a manner similar to that 

used by Hermann et al. [23]. who used webpages as labels in their WF traffic analysis 

attack model. Using Hamming resources, the datasets were created and stored in a Pandas 

Data frame using Jupyter Notebook. The dataset was formatted into rows and columns; the 

rows corresponded to each video download, and the columns corresponded to video ID, 

video length, last packet time, individual packet times {t0, t1, t2, …tn}, and individual 

packet directions {d0, d1, d2, …dn}. Within the data frame, we decided to exclude packet 

times and lengths and only use packet directions as features for training the DF model 

based on Sirinam et al.’s [4] findings which showed that using other features such as packet 

timestamps do not provide a noticeable improvement in attack accuracy. In addition, 

according to Hermann et al.’s [23] research, relying on packet length frequencies was found 

to be rather unproductive and produced significantly lower accuracy results in their 

fingerprinting attacks. The total number of samples for our research was 19,831 video 

downloads. Figure 6 is a visual representation of the data collection framework for our 

research. 
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Figure 6. Data collection environment. Adapted from [8]. 

B. THREAT MODEL 

Using the same concept as demonstrated in Sirinam et al. [4] and Campuzano’s 

work [8], we assume that the adversary has the capability to compromise an internet service 

provider (ISP) or access the Wi-Fi network of the client to passively observe traffic. We, 

behaving as the adversary, passively observed and recorded traffic between the client and 

the first entry node to the Tor network. This approach included intercepting traffic traces 

without modifying or decrypting the transmission to predict information about the 

YouTube video the client is viewing over the Tor network [8].  

Within our closed-world environment, we also assume that the client can only 

download a small set of YouTube videos such as the 27 videos used in our work for the 

adversary to gather samples and train and test on. As pointed out by Juarez et al.[22] a 

closed-world WF attack model does not resemble real-world characteristics because such 

would require an adversary having to consider a sample size comprised of every single 

website that exists on the internet; a sample size that would be so enormous and dynamic 

due to the constant flux of websites being created and taken down on a daily basis. In 
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addition, the client would have free reign to visit any website of his choosing. Similarly, 

an adversary with even the most capable and advanced resources would be unable to collect 

every single traffic trace for all videos available on YouTube. Our DF model simplifies the 

threat model and allows the adversary to wield the necessary capabilities to know in 

advance which videos the client could have streamed to illustrate how a small training set 

could still be useful as an initial approach to build a reliable dataset and identify 

recognizable patterns and deviations [8]. 
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IV. TEST DESIGN AND IMPLEMENTATION 

This chapter discusses the data analysis and implementation of the DF models in 

greater detail. This process includes adjusting CNN hyperparameters using Python DL 

modules, Keras and Tensorflow, to further explore Tor’s lightweight defense models in 

comparison to the no defense VF attack scenario. Test results are examined and justified 

as we investigate the overall efficacy of defenses provided by DF in a VF attack closed-

world scenario. 

A. FEATURE SELECTION 

Upon completion of collecting all batches for all three video genres, the dataset was 

scaled, and raw traffic packet directions were converted to +1 and -1 values. Positive (+1) 

values indicate outgoing packets while negative (-1) values indicate incoming packets with 

respect to the client. Based on Sirinam et al.’s [4] work, we selected only packet directions 

to be used as features as they provided the best performance for all three of the DF models. 

Figure 7 is the Pandas Data Frame that was used to compute and store the incoming and 

outgoing packets. 

 
Figure 7. Scaled dataset representing only packet direction 

(+1 outgoing, -1 incoming) 

Following Wang and Goldberg [29], we used packet direction as independent x 

values to be used as input to three different DF models presented by Sirinam et al. [4]: 
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WTF-PAD, W-T, and NoDef. The corresponding y values, otherwise known as classes, are 

the YouTube video IDs and genre type.  

Using the Scikit-learn library [35] in Python, the train_test_split utility allowed us 

to divide up our data into train and test subsets. Amongst the total dataset of 19,381 video 

samples, the data was scaled and split into a train and test set where 70% of the data was 

used for training and 30% was used for testing. We also utilized a validation set that used 

50% of the test set. The validation set is used to “provide an unbiased evaluation of a model 

fit on the training dataset while tuning model hyperparameters” [36]. In other words, 

validating our data allows us to compare models that have different hyperparameters and 

select the ones that achieve the highest accuracy on the validation set. 

B. TRAINING 

Once our dataset was scaled, traffic packet directions were converted to simple 

positive and negative integers and split into training, validation, and test sets. Python DL 

libraries Keras and Tensorflow were used in conjunction with Hamming resources to train 

and evaluate our DF models. Keras was used as the front-end library and Tensorflow was 

used as the back-end for our DF evaluations. 

Training epochs were instrumental in achieving our results for our three DF attack 

models. Training epochs, otherwise known as iterations, refer to “the number of passes of 

the entire training dataset the machine learning algorithm has completed” [37]. Sirinam et 

al. [4]. utilized 30 training epochs in their research to achieve optimal training accuracy. 

Campuzano [8] in his work found that 60 training epochs achieved the highest accuracy 

levels. Initially, we implemented 60 training epochs to our dataset, but found that we did 

not achieve our highest accuracy score amongst all three DL models using this parameter. 

We proceeded to increase our training epochs to 120 which yielded the highest accuracy 

scores for all three models for both video ID and video genre predictions. As Sirinam et al. 

[4]. mentions, “the classifier gradually learns better with more training epochs”. 
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C. TEST RESULTS 

Our approach was to train the DF models with two classes of predictors: 1) to 

predict video ID, and 2) to predict video genre. For the closed-world setting, equal sample 

size and same number of training epochs were used for all three DF models to ensure 

consistency and validity of results. 

1. Video ID 

Video ID prediction for our DF models consisted of training and testing our 

classifiers on a total of 27 videos with each having its assigned unique numerical video ID 

ranging from 0–26 as shown in Table 1. 

Table 1. YouTube video ID list 

0 Frozen 2  9 Demi Lovato Dancing 18 Baseball: Best Catches 

1 Toy Story 4 10 Lil Nas X: Montero 19 Tennis: AUS Open 2012 

2 Dark Phoenix 11 Gwen Stefani: Slow Clap 20 NFL: Best Tackle Moments 

3 The Lion King 12 Cardi B: Up 21 Ice-skating: Olympics 2016 

4 Dora and the Lost City of 
Gold 

13 Lil Nas X: Rodeo 22 Gymnastics: Olympics 2016 

5 Rambo: Last Blood 14 Ariana Grande: Positions 23 Swim: Michael Phelps 200m 

6 Aladdin 15 Kenia Os: Tu Peor Pesadilla 24 Highest Olympic Jumps 

7 Joker 16 Polo G: Rapstar 25 Snowboarding: Shaun White 

8 Terminator 6: Dark Fate 17 Machine Gun Kelly: Daywalk 26 Soccer: 10 Best Goals 

Note. Video ID numbers are highlighted in yellow. Video titles are in blue-shaded cells. 

 

Evaluations of each DF model took approximately 2–3 hours to complete 120 

training epochs using one GPU from NPS Hamming resources. Without using a GPU, each 



28 

model would take approximately 24 hours to complete. Figure 8 is a graphical 

representation of our results for video ID prediction for all three DF models.  

 
Figure 8. Attack accuracy on predicting YouTube video ID 

For the defenseless NoDef model, the attack accuracy was 63.3%. For WTF-PAD 

and W-T defenses, the scores were 63.9% and 62.2% respectively. As for Top-2 accuracies, 

W-T had the lowest attack accuracy at 73.5% indicating that the true class matched with 

any two of the most probable classes in the predicted model. For WTF-PAD and NoDef, 

the Top-2 scores were 74.6% and 74.7% respectively. In Campuzano’s [8] work, he 

achieved a score of 84% for NoDef. For WTF-PAD and W-T defenses, he scored 84% and 

83%, respectively. Although his accuracy scores may appear relatively higher than ours, 

our research introduced a 27-class problem versus the 9-class problem used in his work. 

Therefore, our DF classifier performed strongly for our VF attack scenarios especially as 

the number of video ID classes used in our research was three times larger than that in [8]. 
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2. Video Genre

Video genre prediction for our DF models consisted of training and testing our 

classifiers in the same manner as video ID except for using video genre type as the class 

label instead of video ID. As shown in Table 2, the three video genre classes are labeled 0, 

1, and 2 for Disney Movie Trailers, Music Videos, and Sports Clips, respectively. 

Table 2. YouTube video genre list 

Genre 0 Disney Movie Trailers Genre 1 Music Videos Genre 2 Sports Clips 

0 Frozen 2 9 Demi Lovato Dancing 18 Baseball: Best Catches 

1 Toy Story 4 10 Lil Nas X: Montero 19 Tennis: AUS Open 2012 

2 Dark Phoenix 11 Gwen Stefani: Slow Clap 20 NFL: Best Tackle Moments 

3 The Lion King 12 Cardi B: Up 21 Ice-skating: Olympics 2016 

4 Dora and the Lost City of Gold 13 Lil Nas X: Rodeo 22 Gymnastics: Olympics 2016 

5 Rambo: Last Blood 14 Ariana Grande: Positions 23 Swim: Michael Phelps 200m 

6 Aladdin 15 Kenia Os: Tu Peor Pesadilla 24 Highest Olympic Jumps 

7 Joker 16 Polo G: Rapstar 25 Snowboarding: Shaun White 

8 Terminator 6: Dark Fate 17 Machine Gun Kelly: Daywalk 26 Soccer: 10 Best Goals 

Note. Video genres are highlighted in yellow. Video ID and titles are in blue-shaded cells. 

Evaluation for each DF model took roughly the same amount of time to complete 

120 training epochs as video ID prediction. The highest level of accuracy was also 

achieved using 120 training epochs. Figure 9 is a graphical representation of our results 

for video genre prediction for all three DF models.  



30 

 
Figure 9. Attack accuracy on predicting YouTube video genre 

Overall, video genre prediction was successful in achieving significantly higher 

accuracy scores than those from the video ID attacks. For the defenseless NoDef model, 

the attack accuracy was 82.2% with a Top-2 accuracy of 97.4%. For WTF-PAD, the attack 

accuracy was 83.1% with a Top-2 accuracy of 97.5%. Lastly, W-T achieved an accuracy 

score of 82.2% as well as the highest Top-2 score of 97.7%. When comparing the video ID 

attack versus video genre attack, the higher scores were somewhat expected as the number 

of classes reduced from 27 (video IDs) to 3 (genres) for the models to train and test on. 

Since Campuzano’s [8] research consisted of only one genre type of YouTube 

videos and focused only on video ID prediction, we could not do a direct comparison of 

his results with ours for this particular attack scenario. However, it is interesting to see how 

our results for the VF attack with video genre type predictions closely resemble his results, 

and in fact, achieved higher accuracy for two out of the three models: W-T and WTF-PAD. 

3. Experimental Findings  

Once all DF models have been trained and evaluated, we are able to analyze the 

significance of our results for both Tor users and the adversaries who execute similar VF 
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attacks. For both video ID and genre prediction, our VF attacks were quite successful by 

achieving approximately 64% and 83% accuracy, respectively. Our results also show that 

neither WTF-PAD nor W-T are effective defenses as they do not appear to influence 

accuracy scores significantly or consistently. 

Such outcomes may appear shocking to an average Tor user who believes he 

achieves complete privacy and anonymization using Tor services. Moreover, adversaries 

are taking advantage of these loopholes that exist on Tor to degrade overall security on the 

network by intruding into user privacy and developing more advanced techniques to reveal 

video content being streamed online by unknowing users. We conclude that all three DF 

models exemplify the same important concept of privacy concern for Tor users and the 

high effectiveness of VF attacks. 

Our research yielded results that showed that greater attack accuracy was 

surprisingly achieved with defenses added for our DF VF attacks. This is counterintuitive 

because clients reinforced with defenses should theoretically make fingerprinting attacks 

more challenging for the adversary thereby resulting in lower attack accuracy. For both 

video ID and video genre classification, the VF attack against the NoDef client resulted in 

the lowest accuracy scores thereby revealing the least amount of information to the 

attacker.1 For predicting video genre, the W-T defense client’s Top-2 accuracy resulted in 

the highest score at 97.7%. Campuzano [8] observed similar results indicating that the 

lightweight defenses did not provide a significant reduction in accuracy compared to 

NoDef, though his work utilized only one genre of videos consisting of 138 video batches 

and 3,810 training samples. His NoDef client achieved the highest score of 84% accuracy, 

and 82% and 81% for WTF-PAD and W-T, respectively [8] for video ID prediction. 

A possible explanation for these results may be related to sample size gathered in 

our research. According to Bhat et al. [38], “one significant drawback of deep learning, 

however, is that it generally requires a large amount of training data…performance issues 

in low-data scenarios can be a serious issue for WF attacks: since website traces change 

 
1 With the exception of NoDef vs. W-T for video ID prediction in which NoDef scored 0.012% higher 

– a relatively negligible margin. 
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quickly.” In Sirinam et al.’s [4] work, they collected 1,000 traces for each of 95 websites; 

a dataset that was considerably larger than ours. Similar to website traces, there is a 

possibility for a significant amount of variability of video traces which is especially 

common with YouTube when presented with server-error messages or CAPTCHA pop-

ups that require user intervention to resolve challenge-response authentication. 

Another possible explanation could be that the adaptive padding and dummy 

packets used for WTF-PAD and W-T defenses are less effective on traffic bursts from 

video traffic traces in comparison to website traces. As Sirinam et al. [4] mentions, the 

adaptive padding algorithm is used to make time gaps between traffic bursts less apparent 

thereby making it more difficult for the adversary’s classifier to identify features of the 

websites. In [7], Schuster et al. discusses how “video streams are known to be bursty” due 

to its “initial short period of buffering followed by the steady state of alternating ‘On’ (short 

bursts of packets) and ‘Off’ periods.” Assuming our training data was sufficient for our DF 

algorithms, this could potentially point to the idea that adding extra padding or dummy 

packets interestingly aids the attacker’s classifier in extracting features from video traces 

to make accurate predictions. 

Lastly, the DF models Sirinam et al. [4]. used were “specifically designed to 

effectively perform WF attacks by leveraging the state-of-the-art techniques from 

computer vision research.” Our research closely resembled Sirinam et al.’s [4] work in 

terms of using the same DF models, hyperparameters, dataset format, and selection of 

features. There is a strong possibility that greater modifications were required to better fit 

our VF attack scenarios since they involved video streaming vice webpages along with 

evaluating accuracy on different class labels. 
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V. CONCLUSION AND FUTURE WORK 

This research expanded upon previous work involving VF attacks using DL models 

over Tor. Specifically, our VF attack was constructed using a new fingerprinting attack 

method called DF proposed by Sirinam and Juarez et al. [4], [22] for use in a closed-world 

setting. DF utilizes CNN architectural design to determine which videos a Tor user may be 

streaming over an encrypted connection based on selected features from raw traffic 

captures.  

A. RECOMMENDATIONS FOR FUTURE WORK 

We believe that the validity and effectiveness of these DF models depend on 

understanding the appropriate hyperparameters, sample size, and network configurations 

that are required to produce reliable, consistent results. Further research may be conducted 

to train and test on much larger sample sizes that include a greater variety of video types, 

lengths, and streaming sources. Following Campuzano’s [8] work, we successfully added 

two more video genres to evaluate how well the classifier can predict video genre in 

addition to video ID. One idea would be to continue adding more video batches and genres 

and include videos from other video streaming sources such as Dailymotion and Vimeo 

that are growing in popularity around the world.  

As Campuzano [8] and our research have shown, the defense models proposed by 

Sirinam and Juarez et al. [4], [22] did not perform as well for our VF-designed attacks. Our 

research showed that attack accuracy increased with the use of defensive measures. 

Sirinam and Juarez et al.’s [4], [22] research (which involved webpages and WF attacks) 

showed the opposite, that the defenses decreased attack accuracy. These contradicting 

results indicate that further work dedicated to VF attack scenarios using defense models is 

needed. Supplemental research into how dummy packets, low latency overhead structures, 

and operating in half duplex modes could be beneficial to discovering possible adverse 

effects on these defense models thereby making it easier for an adversary to conduct more 

effective VF attacks. It would be interesting to see whether the results we obtained are 

replicated in a WF attack scenario. Conversely, one may attempt to further improve 
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defenses, such as WTF-PAD and W-T, against VF attacks to make it more difficult for an 

attacker to obtain higher video prediction accuracy. This could prove to be invaluable to 

those on the user-side who wish to better protect their privacy and enhance defensive 

measures against attackers. 

Finally, future work including an open-world scenario could provide a more 

realistic environment that would involve the attacker not being able to download all the 

videos the user has downloaded. Thus, the attacker must increase his collection of traces 

by a substantially larger amount than what is collected in a closed-world scenario. In 

addition, the attacker must select particular class labels that are better suited for training 

and testing the DF models in an open-world setting. By acquiring and using more 

computers and other capable network resources, larger sample sizes may be obtained 

thereby optimizing DF model performance and results. 

B. CONCLUSION 

The main benefit that most seek from using Tor is to remain anonymous online. As 

our research and that of several others has shown, Tor is vulnerable to fingerprinting attacks 

that unmask the digital content that a user is visiting or viewing while an adversary 

passively observes communications between the user and entry node. Raw traffic packets 

and patterns can surprisingly reveal enough data and information that allow an outsider to 

make accurate attack predictions and circumvent the protective layers of an encrypted 

channel. 

For regular Tor users, our research may serve as a reminder that using 

anonymization services cannot fully conceal one’s online activities. Attackers are 

developing new and more advanced attack vectors that threaten online user privacy. These 

may be deployed in the network, transport, and application layers. Not to mention, how 

common it is for an average person to connect to insecure Wi-Fi networks and for ISPs to 

be compromised thereby heightening users’ vulnerability. To address these problems, it is 

our hope that our findings and techniques may be used to formulate more advanced means 

to understand the distribution of video material via the Dark Web in order to prevent the 

spread of terrorism and malicious activities. 
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Although our research solely focused on a controlled closed-world environment 

where fewer dynamic variables are considered, one should not underestimate the growing 

complexity and effectiveness of attacks that are being continuously developed, and the lack 

of additional defensive measures a typical user could initiate on his own behalf when using 

Tor services.  
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