
 

NAVAL 
POSTGRADUATE 

SCHOOL 

MONTEREY, CALIFORNIA 

THESIS 
 

QUANTUM KEY DISTRIBUTION LABORATORY 
DEMONSTRATION 

by 

Jack R. Brault 

December 2021 

Thesis Advisor: Frank A. Narducci 
Second Reader: Jihane Mimih 

 

Approved for public release. Distribution is unlimited. 



THIS PAGE INTENTIONALLY LEFT BLANK 



 REPORT DOCUMENTATION PAGE  Form Approved OMB 
No. 0704-0188 

 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing 
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of 
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions 
for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson 
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project 
(0704-0188) Washington, DC, 20503. 
 1. AGENCY USE ONLY 
(Leave blank)  2. REPORT DATE 

 December 2021  3. REPORT TYPE AND DATES COVERED 
 Master’s thesis 

 4. TITLE AND SUBTITLE 
QUANTUM KEY DISTRIBUTION LABORATORY DEMONSTRATION  5. FUNDING NUMBERS 

 
  

 6. AUTHOR(S) Jack R. Brault 

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Naval Postgraduate School 
Monterey, CA 93943-5000 

 8. PERFORMING 
ORGANIZATION REPORT 
NUMBER 

 9. SPONSORING / MONITORING AGENCY NAME(S) AND 
ADDRESS(ES) 
N/A 

 10. SPONSORING / 
MONITORING AGENCY 
REPORT NUMBER 

 11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the 
official policy or position of the Department of Defense or the U.S. Government. 
 12a. DISTRIBUTION / AVAILABILITY STATEMENT 
Approved for public release. Distribution is unlimited.  12b. DISTRIBUTION CODE 

 A 
13. ABSTRACT (maximum 200 words)     
 Quantum key distribution (QKD) is a method of secure key distribution which provides protection 
against the tampering and interception of information. 
 Following the Bennet-Brassard 1984 (BB84) protocol of QKD, we select randomly from a set of bases 
in which to produce polarized photons and send the photons to a receiver, who measures them in a basis 
randomly selected from the same set. The fact that quantum mechanics prohibits the exact copying of a 
photon ensures that any eavesdropper who intercepts, measures, and attempts to pass the photons on to the 
receiver will be unable to faithfully reproduce that signal. The presence of the eavesdropper can then be 
detected, prior to any exchange of information, by an examination of the error rate between portions of the 
keys generated by the sender and receiver. 
 Using a biphoton source, we have constructed a QKD system for use in research towards naval 
applications. 

 14. SUBJECT TERMS 
secure communication, quantum key distribution, QKD, entanglement, Bennet-Brassard 
1984 protocol, BB84, Eckert 

 15. NUMBER OF 
PAGES 
 123 
 16. PRICE CODE 

 17. SECURITY 
CLASSIFICATION OF 
REPORT 
Unclassified 

 18. SECURITY 
CLASSIFICATION OF THIS 
PAGE 
Unclassified 

 19. SECURITY 
CLASSIFICATION OF 
ABSTRACT 
Unclassified 

 20. LIMITATION OF 
ABSTRACT 
 
 UU 

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) 
Prescribed by ANSI Std. 239-18 

i 



THIS PAGE INTENTIONALLY LEFT BLANK 

ii 



Approved for public release. Distribution is unlimited. 

QUANTUM KEY DISTRIBUTION LABORATORY DEMONSTRATION 

Jack R. Brault 
Lieutenant, United States Navy 

BS, California State University - Bakersfield, 2013 

Submitted in partial fulfillment of the 
requirements for the degree of 

MASTER OF SCIENCE IN PHYSICS 

from the 

NAVAL POSTGRADUATE SCHOOL 
December 2021 

Approved by: Frank A. Narducci 
 Advisor 

 Jihane Mimih 
 Second Reader 

 Joseph P. Hooper 
 Chair, Department of Physics 

iii 



THIS PAGE INTENTIONALLY LEFT BLANK 

iv 



ABSTRACT 

 Quantum key distribution (QKD) is a method of secure key distribution which 

provides protection against the tampering and interception of information. 

 Following the Bennet-Brassard 1984 (BB84) protocol of QKD, we select 

randomly from a set of bases in which to produce polarized photons and send the photons 

to a receiver, who measures them in a basis randomly selected from the same set. The 

fact that quantum mechanics prohibits the exact copying of a photon ensures that any 

eavesdropper who intercepts, measures, and attempts to pass the photons on to the 

receiver will be unable to faithfully reproduce that signal. The presence of the 

eavesdropper can then be detected, prior to any exchange of information, by an 

examination of the error rate between portions of the keys generated by the sender and 

receiver. 

 Using a biphoton source, we have constructed a QKD system for use in research 

towards naval applications. 
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CHAPTER 1:

Introduction/Motivation

Quantum technologies have the potential to provide important capabilities to the U.S. military 
in the near future. The most mature quantum technology, quantum key distribution (QKD), is 
poised to deliver previously-impossible capabilities in relation to secure communications and 
Nuclear Command, Control, and Communications (NC3).

This chapter is intended to provide the reader with a brief overview of QKD and the types of 
capabilities it may provide to the U.S. military. A more technical exploration of QKD is provided 
in Chapter 2. A detailed description of a QKD demonstration assembled at the Naval Postgraduate 
School (NPS) in Monterey, CA is provided in Chapter 3.

Much of the discussion around QKD is steeped in the language of cryptology. Appendix A is 
intended to act as a handy reference for readers who may not yet be acquainted with cryptology, 
including vocabulary and introductory-level explanations of fundamental concepts.

1.1 Overview of QKD
QKD is a secure key distribution infrastructure which allows for the secure sharing of one-time 
pads between remote locations. It works by encoding keys in quantum states, typically the states 
of individual photons, and then applying a transmission protocol to share those states between 
intended parties. Quantum principles prevent access by unintended parties to the key, and also alert 
the intended parties to the presence of an intruder. Quantum theory provides a theoretically perfect 
security basis for QKD.

Implementations of QKD can be classified either as fiber-based or free space. Fiber-based QKD 
uses optical fibers to transport photons between stations, while free space QKD uses laser commu-

nications.

A 2020 article by Uppal [1] discusses the military utility of laser communications, also known 
as free space optical (FSO) communications, currently under exploration by various research 
arms of the U.S. military. The advantages of FSO over conventional RF communications include 
greater bandwidth and lower signature, while the disadvantages include sensitivity to atmospheric 
conditions and di�culties associated with line-of-sight communications.

As long as two parties are able to conduct fiber-based or FSO communications with one another,
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they can use QKD to constantly generate secure key material. Key material generated via QKD is

in theory perfectly secure, and information encrypted via QKD is secure forever, regardless of the

technological resources of any potential hacker or attacker1 which they can later use to facilitate

secure communications.

1.1.1 Capabilities
The pertinent capabilities of QKD include:

• Secure remote key sharing.

• Eavesdropper detection.

• Perfect security against eavesdroppers.

QKD is unique among key distribution infrastructures in its ability to provide all three of these

capabilities at once.

1.1.2 Development
Quantum theory has been mature for decades, and many exciting technologies have been proposed to

take advantage of various quantum principles. However, the di�culty associated with engineering,

maintaining, and manipulating quantum states has made it di�cult to develop these proposals into

useful quantum technologies. Recently, technological advancement has begun to catch up with

theory, and many quantum technologies are now tantalizingly close to realization. The simplicity

and utility of QKD have propelled it to the forefront of the nascent quantum technology revolution.

Beginnings (pre-2004)
The first idea for using quantum states to facilitate secure communications began circulating in

academia in the late 1960’s. Called conjugate coding, after its use of conjugate quantum states

for information exchange, it was originally conceived for the creation of unforgeable bank notes.

Conjugate coding could not be implemented at the time due to the fragility of quantum states,

and it remained only a conversation piece until further theoretical breakthroughs warranted its

publication over a decade later (Wiesner, 1983 [2]). Bennet and Brassard published the first paper

on QKD [3] in 1984. They were also the first to demonstrate QKD in a laboratory environment [4]

in late 1989. This demonstration ignited interest in several scientific communities, leading to an

alternate theoretical formulation by Ekert in 1991 [5] and laboratory demonstrations using various

protocols throughout the 1990s.

1This condition is also called “information-theoretical security” See Appendix A for more information.
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Development (2004–2017)
Christandl, Renner, and Ekert presented a generic security proof [6] for QKD in 2004. The first large-

scale test of QKD was then conducted at the Defense Advanced Research Projects Agency (DARPA)

Quantum Network Testbed (Elliot, 2007 [7]) in Massachusetts. The test ran from 2004 to 2007,

testing many features, protocols, and permutations of QKD. In the following years, a number of

QKD networks were built for academic use across the world (EU in 2008 [8]; China in 2009 [9];

Japan in 2010 [10]).

Application (2017–present)
In 2017, free space QKD was demonstrated between ground and satellite stations by a team of

Chinese researchers (Yin et al., 2017 [11]; Liao et al., 2018 [12]) and between ground stations and

moving aircraft by a team of Canadian researchers (Pugh et al., 2017 [13]). More recently, QKD has

found favor among institutions and businesses which manage large data centers. The 2019 Inside

Quantum Technology Report predicts that QKD will be a nearly billion-dollar industry by 2024

(Gasman, 2019 [14]). As of early 2021, the Indian Space Research Organization has announced

successful demonstrations of QKD and intentions to develop a satellite-based QKD network (Indian

Space Research Organization, 2021 [15].)

1.1.3 Challenges
The conversation around QKD implementation in the United States has been contentious. Its cost,

convenience, and ability to deliver on its promise of security have all been subject to debate and

scrutiny. The most conspicuous public discussion of QKD’s shortcomings came in a statement

released by the National Security Agency (NSA) in 2020 [16].

NSA statement on QKD
In the statement, the NSA o�cially advised against using QKD as a primary security strategy. The

statement warns that QKD is not yet a mature technology, and that its implementation might require

massive investment in infrastructure while only providing minimal short-term security benefits. The

NSA also warns about issues concerning user authentication and Denial of Service attacks.2

The NSA’s strongest case against QKD is that QKD requires the fielding of hardware which has not

yet been shown to be as secure as the equipment used in conventional key distribution. Until this

problem can be resolved, the NSA has chosen to work alongside the National Institute of Standards

and Technology to develop classical quantum-proof cryptography systems.

2These claims are contested by QKD industry representatives familiar with the technology (Prisco, 2020 [17]).
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This public stance from the NSA has set the tone for the U.S. national defense sector, leaving the

burden of QKD development to academic groups, government agencies, and industry.

Overcoming challenges
Despite the NSA’s stance, the U.S. Department of Energy has decided to invest millions in QKD

infrastructure and quantum technology research (Department of Energy, 2019 [18]). In addition,

tech companies, especially in the telecommunications industry, have already begun developing

QKD infrastructure in an e�ort to future-proof their networks (Verizon, 2020 [19]) (see Appendix

A for more information regarding future-proofing.)

Currently, the largest hurdle to widespread adoption of QKD is range. Quantum states are fragile, so

nodes in fiber-based QKD networks must be relatively close to one another (less than 1000km). To

address this issue, research and development e�orts are currently concentrated on the development

of a device known as a quantum repeater. A quantum repeater is a device which would enable one to

create long-range entanglement between two distinct and far locations by dividing the transmission

distance into short segments, creating entanglement between each of these segments, and expanding

entanglement distance between segments using entanglement swapping. Until such a device is

developed, fiber-based applications of QKD will be limited. Similarly, free space applications of

QKD are hampered by scintillation, the random optical power loss due to atmospheric turbulence.

However, the 2017 satellite-to-ground and ground-to-aircraft QKD demonstrations mentioned in

Section 1.1.2 show that free space QKD is capable of operating at ranges greater than 1000km,

which is su�cient for many military applications.

1.2 Potential Military Applications of QKD
Since the 2004-2007 DARPA QKD testing discussed in [7], investigations into military applications

of QKD in the U.S. have been carried out mostly by industry specialists (Russel, 2008 [20]). Recent

advances in QKD could increase reliability of military key distribution systems and provide critical

communication capabilities (Hall and Sands, 2020 [21]).

1.2.1 Continuity of Operations
A QKD-capable deployed unit (such as a satellite, submarine, high altitude aircraft, special opera-

tions team, etc.) would be able to recover from expiration, loss, battle damage, theft, sabotage, or

any other loss of its cryptological material, without ever leaving the field and without any transfer

of physical media. In addition, the small signature of FSO allows QKD to be conducted with a

very low risk of counter detection, so secure key material could be generated passively throughout
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a unit’s deployment as long as line of sight was maintained. Alternatively, line of sight communi-

cations could be established situationally in order to assist the deployed unit in recovering from an

unplanned loss of cryptological material.

1.2.2 Submarine Nuclear Command, Control, and Communications (NC3)
There are many possible military applications of QKD. The specific example of submarine NC3 is

discussed below.

Submarine NC3 background
Current U.S. submarine NC3 infrastructure involves the transmission of an Emergency Action

Message (EAM)—for example, an order to launch a nuclear missile at a specified target—from

decision makers to deployed Ballistic Missile Submarines (SSBNs) via VLF signals relayed from

ground-based transmission sites or deployed aircraft. EAMs are received onboard the SSBN in the

form of compact strings of typewritten phonetic-alphabet characters, which crewmembers must

error-correct and decipher with the assistance of an array of physical instruction manuals and

code books. EAM processing must be done by hand because current submarine key distribution

infrastructure is based on secret key infrastructure (SKI), which, as described in Appendix A, is

demonstrably secure but relies on physical media for key distribution. The system is designed to be

both robust and risk-averse .

Robust design
The VLF communication spectrum was chosen for submarine NC3 because it is the most robust of

the available methods of communication with a submarine in an alert posture (that is, a submarine

that is trying to remain hidden but still needs to be able to receive EAMs.) The drawback of VLF is

that EAM transmission via VLF takes a long time, on the order of minutes, which allows environ-

mental factors (such as wave action, or ionization of the atmosphere due to nuclear detonations) to

interfere with the communication link between the transmitting platform and the submarine during

EAM transmission. This can occasionally lead to high error rates and incomplete transmissions.

Even so, the system is designed so that a well-trained crew can process an EAM in a reasonable

amount of time even in an environment where communication systems are significantly degraded.

Risk-averse design
The probability that human error during EAM processing could lead a crew to take incorrect actions

with nuclear arms (such as launching a missile at an incorrect target) is minimal. However, there is

a very real chance that human error might cause a significant time delay in carrying out the orders
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contained in the EAM. Specifically, there is a phase of submarine NC3 where an encrypted EAM

is received onboard but its contents are not yet known to the crew. The processing-by-hand system

means that, depending on the readability of the message and the proficiency of the crew, this period

might last anywhere between a few seconds and a few minutes. In the event that human error is

present, this phase might last significantly longer. This possibility is problematic because there is

a specific planned time window between the time of receipt of an EAM and the execution of the

orders. If human error causes a delay in the onboard processing, this time window can be missed,

resulting in a failure to achieve critical mission objectives.

Application of QKD
QKD o�ers a way to reduce the probability of human error, and thus the risk of a significant time

delay, without sacrificing the robustness or risk-averse nature of submarine NC3. Instead of the

current SKI-based method of loading physical code books while in port, a QKD-capable submarine

could coordinate with another QKD-capable platform to generate secure key material.3 The keys

thus generated could later be used to encrypt EAMs transmitted to the submarine, and, since QKD

does not rely on physical media, onboard EAM processing could be conducted electronically.

This would allow the crew to begin taking action in accordance with the contents of an EAM

immediately, e�ectively bypassing the phase where human error might cause the most significant

delays.

3Note that this could be done in port with ground-based platforms, or at sea with airborne platforms such as an
aircraft, satellite, or High Altitude Platform (HAP), while the submarine was in a condition which allowed for active
communications.
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CHAPTER 2:

QKD Theory vs. Reality

Chapter 2 briefly acquaints the reader with the theory and mechanisms of QKD. Section 2.1 presents

the basic underlying theory, and Section 2.2 discusses feasibility and the di�culties associated

with real world implementation. This discussion is intended to be introductory in nature, with an

emphasis on the physics of QKD, as opposed to the complex cryptological aspects. For a more

thorough review of the current state of QKD theory, implementation challenges, practical security,

and feasibility, the reader is directed to Xu, et al.’s 2020 review article “Secure Quantum Key

Distribution with Realistic Devices” [22], published in the journal Reviews of Modern Physics.

2.1 Theory
As discussed in Chapter 1, the theory behind QKD was developed and published by Bennett and

Brassard. Their 1984 paper presents a novel (at the time) protocol for the distribution of information-

theoretic secure one-time pads (keys), at range and with security from man-in-the-middle attacks

guaranteed by quantum principles. This section describes the fundamentals of how to distribute

secure keys using quantum states.

2.1.1 Basic Theory
At its most basic, QKD is simply the act of encoding keys in quantum states and distributing them

as desired. By carefully controlling the method of distribution, one can exploit certain quantum

principles in order to provide security to the process, thereby guaranteeing that a key is known only

to the desired parties.

Basic protocol
Methods of key distribution are called protocols. A protocol typically consists of two phases: key
generation and key processing.

• Key Generation Phase. This phase consists of the actual distribution of the key from an

operator at point A, traditionally called Alice, to an operator at point B, called Bob. For free

space QKD, this phase is conducted via FSO.

• Key Processing Phase. In this phase, Alice and Bob take any necessary steps to ensure that

the key generation phase was successful, and that there were no eavesdroppers. This phase

may be conducted over any communication channel available to Alice and Bob regardless of
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the security of that channel, since the activities performed during key processing do not risk

the exposure of any secure information.

Key generation phase
Key generation requires Alice to prepare a quantum state and transmit it, and then for Bob to detect

and record the state. They repeat these steps until the desired key length is achieved. For example,

the quantum state used to encode a one-time pad could be the polarization angles of individual

photons. Alice and Bob might make an arrangement that when Alice transmits a single photon

with polarization angle qB8î=0; = U to Bob, he should record the event as a binary 0, and when she

transmits a photon with polarization angle qB8î=0; = U + c/2 he should record that event as a binary

1.

In order to prepare the quantum state, Alice first needs a device for generating single photons. Ideally,

she would have a source that could generate single photons on demand, but such a source does not

exist. More likely, she will have a source which produces single photons randomly according to

some known distribution, and she will utilize a fast shutter so that it is very unlikely that more than

one photon will be transmitted per cycle of the shutter. Once she has calibrated her shutter so that

she is reliably controlling her photon signal, Alice can rotate the polarization angles of the photons

and transmit them to Bob.

In order to measure the polarization angles of incident photons, Bob may install a polarizing

beam splitter (PBS), aligned to axis q%⌫( = V, so that incident light with a polarization angle

aligned along this axis will be transmitted to one output path and incident light polarized along an

orthogonal axis will be reflected to another. If incident photons are aligned to a polarization angle

qB8î=0; = U, then there is a probability cos2(U � V) that the PBS will transmit the incident photon,

and a probability sin2(U � V) the PBS will reflect it. Bob can thus determine the polarization angle

of an incident photon by placing detectors at each output of his properly aligned PBS and noting

which detector detects the photon. This method of polarization angle detection works only as long

as the PBS is aligned to the polarization basis of the incident photons, so that V = U + =c/2, where

= is a whole number. If the o�set between U and V is not a half-integer multiple of c, then any

transmitted photon will have some non-zero probability of ending up at the wrong detector.

After the key generation phase is complete, Alice has the list of states that she transmitted and Bob

has a list of what his detection apparatus detected for the transmission events corresponding to each

index on Alice’s list. These respective lists are known as their “raw” keys. The raw keys are the

final products of the key generation phase, and they are the inputs to the key processing phase.
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Key processing phase
The key processing phase can be subdivided into the sifting step and the checking step.

• Sifting step. The sifting phase consists of whatever actions Alice and Bob take to ensure that

their keys are as similar as possible. For example, during the sifting phase Bob will examine

his raw key and tell Alice the index of any event where he detected a total of either zero or

more than one photon, and they will both discard that bit index. After the sifting phase is

complete, their raw keys are known as “sifted” keys.

• Checking step. The sifted keys are then checked for security in the checking phase. The

checking phases consists of Alice and Bob choosing some subset of their sifted keys and

revealing them to one another over the chosen non-secure communication channel. As will

be discussed shortly, simply comparing a subset of their sifted keys and calculating the error

rate between the two is su�cient to reveal if the transmission was compromised.

After the processing phase, Alice and Bob each have possession of an information-theoretically

secure one-time pad, which can be used to exchange secure communications whenever they desire.

Ostensibly, Alice and Bob can use this simple procedure to generate key material as quickly as

Alice can generate and transmit the polarized photons.

2.1.2 "Man in the Middle" Attacks
Suppose then that an aspiring eavesdropper, Eve, decides to carry out an attack against such a

system by intercepting the photons en route from Alice to Bob (this is called a “man in the middle”

attack, despite its characterization in the literature as being perpetrated by Eve, who canonically

uses she/her pronouns.) Eve has two options for her attack:

• Passive eavesdropping. Eve might attempt to passively amplify the transmitted signal. That

is, she might try to put some kind of quantum cloning device in between Alice and Bob, and

allow it to clone each transmitted photon without disturbing its quantum state. The original

photon would then continue on its journey to have its polarization angle be measured by Bob,

while Eve could measure the polarization angle of only the cloned photon.

• Active eavesdropping. Assuming Eve knows the polarization angle basis which Alice is

using, Eve can simply measure the polarization angle of the transmitted photons, then make

a copy and send the copy on to Bob.

The strength of QKD is that it allows Alice and Bob to defend against both of these attacks by

leveraging quantum principles. The passive eavesdropping attack is addressed by the No Cloning

Theorem, which is discussed in Section 2.1.2, while the active attack is addressed by QKD protocols,
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which are discussed in Section 2.1.2.

Defense against passive eavesdropping: the No Cloning Theorem
The theoretical security of QKD systems against passive eavesdropping is based in the No Cloning

Theorem. The No Cloning Theorem is stated succinctly by Wootters and Zurek in the title of their

1982 paper, “A single quantum cannot be cloned” [23]. We now follow the logic of their proof and

determine the veracity of this statement.

The proof describes a gedanken experiment wherin an arbitrary quantum state B is subject to the

e�ects of an alleged quantum cloning device �̂. For demonstration purposes, it is assumed that B is

in the rectilinear basis, such that |Bi = U |Bi� + V |Bi+ , and therefore

�̂ |k8i |Bi |0i = |k 5 i |Bi |Bi
= |k 5 i [U2 |Bi� |Bi� + V2 |Bi+ |Bi+ + UV( |Bi� |Bi+ + |Bi+ |Bi�)] . (2.1)

We then examine the behavior of the cloning device on a state B oriented entirely along one of its

basis vectors, |Bi = |Bi� or |Bi = |Bi+ , and find that

�̂ |k�
8 i |Bi� |0i� = |k�

5 i |Bi� |Bi� (2.2)

or

�̂ |k+
8 i |Bi+ |0i+ = |k+

5 i |Bi+ |Bi+ . (2.3)

If, instead, B were a superposition of the basis vectors, |Bi = U |Bi� + V |Bi+ , then the final state

after interacting with the cloning device should simply be the superposition of the states described

in Equations 2.2 and 2.3, so that

�̂ |k8i |Bi = Uk�
5 |Bi� |Bi� + Vk+

5 |Bi+ |Bi+ . (2.4)
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Equation 2.4 contradicts Equation 2.1, and thus it is shown that the arbitrary quantum state B cannot

be cloned. Returning to the original hypothesis— “a single quantum cannot be cloned”—we find

it somewhat lacking: in the special case where one of the weighting factors, say U, were set equal

to unity, while V were set equal to zero, and imposing the condition that the cloning device must

be left in a pure state (|k�
5 i = |k+

5 i), there is no contradiction: the cloning device can theoretically

operate under these conditions; that is, it is theoretically possible to amplify a known quantum state.

The No Cloning Theorem can be revised to state, “an arbitrary quantum cannot be cloned.”

With this axiom in place, passive eavesdropping of a QKD system is theoretically defeated by

quantum principles. Revisiting the QKD system described in Section 2.1.1, where the quantum state

employed is the polarization angle of single photons, we find that if Eve calibrates her quantum

cloning device to clone photons with a polarization angle of U, then any time she intercepts a

photon with a polarization angle of U + c/2 the device will fail: both the original photon and the

cloned photon will be left in a superposition state, so that the polarization angle no longer holds any

information. When this happens, the detector at Bob’s station which ends up detecting the photon

will have no correlation to the state of the state of the photon originally prepared by Alice.

Thus, when measured by Bob, the cloned photons will have an equal chance of being measured

as a binary 0 or as a binary 1. During the key processing phase, specifically the checking phase,

Alice and Bob need only compare a portion of their key material and they will find that any time

Alice sent a 1 there is a 50% chance that Bob will have recorded a 0 (overall this corresponds to

an eavesdropper-induced error rate of 25%.) This will alert them to Eve’s presence. They will then

have a chance to address the attack on their communications and try again, and at no point will

their sensitive communications be compromised.

Defense against active eavesdropping: BB84 Protocol
Theoretical security against active eavesdropping requires an active QKD protocol. In 1984, Bennett

and Brassard published the first secure QKD protocol, aptly named Bennett-Brassard 1984 (BB84),

describing a straightforward method to thwart any man-in-the-middle attacks against QKD systems

by using some basic principles of photon polarization states. A handful of other protocols have

been proposed since, utilizing di�erent quantum states to optimize for various use cases—still, the

simplicity and generality of BB84 make it ideal for demonstration purposes, and thus it will be the

one discussed in this paper.

We begin by defining two polarization bases relative to some angle q = V: the rectilinear basis,

composed of the basis vectors (1, 0) and (0, 1) (q = V, q = V + c/2) and the diagonal basis,

composed of basis vectors (
p

2/2,
p

2/2) and (�
p

2/2,
p

2/2) (q = V+c/4, q = V+3c/4). Suppose
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that for each photon Alice transmits, she randomly chooses either the rectilinear or diagonal basis

in which to send it. In addition, suppose that for each photon transmission Bob randomly chooses

to align his PBS either to angle q%⌫( = V or q%⌫( = V + c/4. By these two actions, Alice and Bob

e�ectively randomize the basis in which the key material is being generated for each bit.

In order to intercept and successfully measure the polarization angle of the photons Alice transmits,

Eve must have her own PBS aligned to the correct basis—and, assuming that Alice and Bob’s

stations are secure (Eve only attacks the space in the middle), her e�orts are reduced to guesswork.

Each time she guesses wrong, her measurement (and thus her re-transmission) has a 50% chance of

being wrong, for a total eavesdropper-induced error rate of 25%. Again, Alice and Bob can easily

detect Eve during the key processing phase, and their sensitive communications will remain secure.

Note that Alice and Bob each choose their bases randomly and independently, and thus they will

choose di�erently half the time. BB84 protocol accounts for this during the sifting phase. The two

of them share which basis they chose for each bit index, and they discard any bit corresponding to

an instance where they chose di�erent bases.

2.2 Reality
The combination of the No Cloning Theorem and a secure protocol provides the theoretical basis

for the security of QKD. After the key processing phase, if no eavesdropper was detected, Alice

and Bob will both be in possession of an information-theoretic secure one time pad which is every

bit as secure as a key distributed using SKI but which requires no exchange of physical media, and

can be generated at range. It should come as no surprise, however, that when theory meets reality,

some of the nice theoretical results of QKD begin to tarnish.

Some major criticisms of QKD are that it generates key material too slowly in real world imple-

mentations, and that the perfect security promised by theory cannot actually be realized. Here,

we analyze the feasibility of free-space QKD in a real world environment. Sections 2.2.1 through

2.2.3 discuss various applicable system parameters, technological limitations, and environmental

variables, and explore their e�ects on the security and rate of generation of key material. Section

2.2.4 compares the results of these discussions to real-world needs and shows that QKD is capable

of performing necessary tasks using currently available technology.

The following analysis is written at an accessible level in order to demonstrate that free space

QKD can be conducted at useful speeds. For a more rigorous analysis of the theoretical speeds and

security levels achievable by real QKD systems, the reader is referred to [22].

12



2.2.1 Transmission Speed Overview
We begin our analysis by defining the relationship

⌫ = !:/) , (2.5)

where ⌫ is the rate of generation of secure key material, or the “bit rate” !: is the total number of

bits in a secure key, or “secure key length” and ) is the total time required to generate a secure key

of length !: .

Each “transmission event”—for example, a cycling of the fast shutter described in Section 2.1.1—

results in the generation of one raw key bit for each participant. The total number of raw key bits is

referred to as !A , the raw key length. Each raw key bit has a probability % of becoming a bit of the

final key held by the sender and receiver,

!: = !A ⇥ %. (2.6)

The total time ) required for key transmission is the product of the total number of transmission

events !A and the time required to transmit one raw key bit, C18C , so that

) = !A ⇥ C18C . (2.7)

Substituting Equations 2.6 and 2.7 into Equation 2.5, the key length cancels and the bit rate ⌫ is

expressed as

⌫ = %/C18C . (2.8)
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2.2.2 Transmission Probability P
The value of % is determined by the probabilities of the possible loss mechanisms for each raw key

bit, of which there are two: sifting and error rate checking. The probability that a raw key bit is not

discarded via sifting is %=B, and the probability that a raw key bit is not included in the error rate

checking procedure is %=2, so that

% = %=B ⇥ %=2 . (2.9)

Loss mechanism 1: Sifting factor %=B

The value of %=B is determined by the raw key bit loss mechanisms present in the sifting phase,

which include basis matching %1< and bit logic %1.

%=B = %1< ⇥ %1. (2.10)

Basis matching factor %1<

Basis matching refers to the probability %1< that the sending basis and receiving basis for any

given transmission event will match. The sender and receiver each choose from one of two bases

randomly for each event, so the probability of a basis match is one half:

%1< = 1/2. (2.11)

Bit logic factor %1

Bit logic refers to the probability %1 that a given transmission event will result in the detection

of exactly one photon by the receiver. If a given photon source follows a Poissonian distribution,

for example, %1 will also have a Poissonian distribution with a mean _34C = # ⇥ %=0, where #

represents the mean number of photons transmitted per transmission event and %=0 is the optical

non-attenuation factor. # is calculated from the rate of photon generation at the source, _BA2, and

the length of each transmission event g|, such that # = _BA2 ⇥ g| and therefore _34C = _BA2g|%=0.

Poissonian statistics dictate that the probability of any particular value = being realized is %= =
_=

=! exp (�_). Making all necessary substitutions, %1 is found to be

%1 = _34C exp (�_34C) (2.12)
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for a Poissonian source with a mean of

_34C = _BA2g|%=0 . (2.13)

Non-attenuation factor %=0

Non-attenuation factor %=0 is the probability that any individual photon transmitted by Station A

will be detected at Station B. The value of %=0 is highly dependent on individual applications.

Photon attenuation mechanisms can be subdivided into two broad categories: apparatus-specific

attenuation and environmental attenuation.

Apparatus-specific attenuation is attenuation due to optical components in the apparatus itself.

For well-aligned and calibrated optical systems operating in benign environmental conditions,

transmitting photons via currently available adaptive optics technology, the major loss mechanisms

will be the imperfect e�ciency of Bob’s detectors and the optical transmission signal telescopes

installed at both Station A and Station B.

Detector e�ciency varies widely by model. A Si-APD detector, suitable for free space optics

(500nm�900nm range), might have a maximum e�ciency of around 0.4 � 0.7 (Excelitas SPCM-

AQRH family data sheet [24]). An In-GaAs/InP detector, more suitable for fiberized telecommuni-

cations (1100nm-1700nm range), might have an e�ciency of around 0.1�0.25 (MPD In-GaAs/InP

single photon detector data sheet [25]). More advanced detectors which use superconducting ma-

terials might have an e�ciency of over 0.9 for a wide range of wavelengths, but the cost and

engineering requirements might be prohibitive (these detectors require sub-1K cryogenics) (Single

Quantum SNSPD data sheet [26]. For the purposes of this discussion, we will assume that Alice

is transmitting 810nm photons over free space, and that Bob is detecting them using a Si-APD

detector (e�ciency ⇠ 0.6 at 810nm).

Telescopes used for beam collimation also come with a variety of e�ciencies, but tend not to be

much worse than 0.9. Assuming that Alice and Bob each use a telescope with an e�ciency of 0.9,

the overall system non-attenuation factor can be estimated as

%=0 (B~B) ⇡ 0.6 ⇥ 0.9 ⇥ 0.9 ⇡ 0.5. (2.14)
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Environmental attenuation refers to attenuation caused by the medium through which Alice’s

signal is transmitted. For free space QKD, that medium is the atmosphere. Environmental attenu-

ation is negligible over short distances, such as distances within a lab, or in benign environmental

conditions. As the distance from Station A to Station B increases, attenuation due to atmospheric

turbulence and scintillation may increase rapidly, especially in adverse weather conditions. En-

vironmental attenuation is highly variable and di�cult to account for in general, but it does not

preclude long-range free space QKD—in fact, in 2017 Yin et al. demonstrated free space QKD from

a satellite in low-earth-orbit to ground [11]. For the remainder of this discussion, it will be assumed

that the key distribution is being performed under benign conditions, and so the environmental

attenuation factor is negligible.

Loss mechanism 2: Checking factor %=2

Each transmission event which does not get sifted out is recorded by the receiver as one bit of the

sifted key, which has a length !B = !A ⇥ %=B = !:/%=2. The total number of bits in the sifted key

which are subsequently used during the checking phase is given by !2 = !B ⇥ (1 � %=2), so that

!2 = !:
1�%=2
%=2

. Rearranging to solve for %=2,

%=2 =
1

1 + !2
!:

. (2.15)

The value of %=2 is chosen so that, in the absence of an eavesdropper, the error rate of the checked

bits should lie within the (1 � U)% confidence interval of the system error rate, or

(1 � U)%⇠� = [` ⇥ (1 ± U)] = ` ± IU/2
*B~Bp
!2

, (2.16)

where ` is the mean system error rate and IU/2 is the critical value for the chosen value of U.

Rearranging Equation 2.16 gives the minimum value of !2:

!2 = (⇠+B~B ⇥
IU/2
U

)2, (2.17)

where the coe�cient of variation ⇠+B~B = *B~B/` is a system constant which is typically small (for

the QKD demonstration apparatus described in Section 3.1,⇠+B~B was measured to be approximately
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one half). Assuming a restrictive value for U of 0.01, corresponding to a 99% confidence interval,

!2 is found to be a constant with a magnitude on the order of a few hundred bits. This number is

very small when compared to the length of a typical key, which can be many thousands of bits long.

Assuming a key length !: of at least ten thousand characters, the ratio !2/!: << 1 and Equation

2.15 can be approximated to zeroth order, so that

%=2 ⇡ 1. (2.18)

Combining the values obtained for %1<, %1, and %=2 in Equations 2.11, 2.12, and 2.15 into Equation

2.9 gives the value of %:

% ⇡ _34C
24_34C

. (2.19)

2.2.3 Single-bit Transmission Time C18C
Single bit transmission time C18C is the length of time required for the sender to transmit one bit

of the raw key. It is calculated as the sum of the time spent transmitting, g|, and the time spent

preparing to transmit, g?:

C18C = g? + g|. (2.20)

The length of g| and g? are determined by technological limitations. Figure 2.1 shows a represen-

tation of the construction of one time bin C18C .
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Figure 2.1. Representative time diagram of a single bit transmission. Trans-
mission window preparation time g? is indicated by the red-shaded area.
Transmission window g| is indicated by the blue-shaded area. The purple-
shaded area indicates g�, the desync factor between Stations A and B, which
ultimately sets the lower limit for the length of g|.

Transmission window preparation time g?

The transmission preparation time g? consists of the “dead” time in between transmissions. It

includes the time required for electronic commands to travel throughout the apparatus, the rise and

fall times of the HV signals applied to the electro-optic modulator (EOM)s, the opening and closing

of the transmission window, and any bu�ers put in place to account for jittering. As shown in Figure

2.1, the dominant term in g? is C�+ , the time required to switch the HV circuit. While the HV rise

time can be on the order of just a few tens of nanoseconds, the circuitry itself usually requires

more time to stabilize and prepare for another switch, and as such the best commercial/o�-the-shelf

(COTS) HV switching circuits are limited to about 100kHz for extended operations, corresponding

to a C�+ length of about 10µs. Because this term is so large compared to the other factors, g? ⇡ C�+ ,

and so

g? ⇡ 10µs. (2.21)

Transmission window g|

It is impossible to know exactly when a photon source will generate a single photon. Photon sources

generate a “signal” made up of randomly generated photons following a particular distribution.

Assuming a source whose distribution is Poissonian, a single photon can be picked out of a

randomly generated signal by employing a fast shutter, which opens for a set length of time g|.

During that time, an average of h#i = _BA2 ⇥ g| photons are transmitted, where _BA2 is the mean
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count rate of the source’s distribution.

Information Insecurity Factor I
Setting the length of g| so that # is greater than one opens up a loophole to QKD’s theoretical

security. If # is equal to one hundred, for example, so that an average of one hundred photons

were transmitted per event, Eve could choose to intercept only one of them. In that event, it is

unlikely that she would ever be detected. Since the probability that more than one photon will be

generated in a given transmission event can never be reduced to zero, this phenomenon introduces

an information insecurity factor, �, which must be accounted for by any real QKD system.

In order to determine the value of � for a given QKD system, we make the following assumptions

about Eve’s attack:

1. Eve executes a man-in-middle attack by intercepting a certain number #⇢ photons out of

the # transmitted photons per transmission event. Thus, for any transmission event attacked

by Eve and subsequently not discarded during key processing, the probability that the single

photon which is detected and retained by the receiver is actually a copy injected by Eve is the

ratio of intercepted photons to transmitted photons #⇢/# .

2. Eve executes the attack on a certain proportion of the total number of transmission events

(this proportion is equal to the information insecurity factor, �.) The ratio of intercepted bits

which make it into the final key to non-intercepted bits is then defined as � ⇥ #⇢/# .

3. When Eve intercepts a photon, she attempts to gain information from it utilizing either the

passive eavesdropping attack or active eavesdropping attack described in Section 2.1.1—that

is, she replaces any photon she intercepts.4 Thus, the eavesdropper-induced error rate in the

final key is the probability that any given intercepted photon will be left in an erroneous

state, %⇢ , multiplied by the proportion of the final key that represents intercepted bits:

⇢ = %⇢ �#⇢/# , where ⇢ is the eavesdropper-induced error rate.

4. The error rate ⇢ introduced by the attack is su�ciently small so that it is not detectable via

the checking algorithm described in Section 3.1.3, or ⇢  *B~B.

These assumptions lead to the following relationship between the system error rate uncertainty,

*B~B, and the maximum information insecurity factor, �<0G:

4This assumption might seem contrived at first, since it would be far easier for Eve to simply remove a photon
without replacement. However, any real QKD system will be calibrated so that Bob will not normally receive more than
one photon per transmission event: if he did, that bit index would be eliminated during the sifting phase. Therefore, if
Eve makes a habit of removing one photon from the transmission without replacing it, Bob will likely not receive any
photons for that event—again, the a�ected indices will be eliminated during the sifting phase. Eve only stands a good
chance of gaining useful information if she replaces the photons that she intercepts, even if her replacements have a
high error rate.
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*B~B = �<0G
%⇢#⇢

#
. (2.22)

The value of %⇢ is already known from Section 2.1 to be 1/4. For conciseness of notation, the

value of #⇢ is set to one (although it can be higher.) Substituting these values into Equation 2.22,

along with the definition # = _î4= ⇥ g|, we find a linear relationship between g| and �<0G ,

g| =
�<0G

4_BA2*B~B
. (2.23)

Therefore, information security is maximized by minimizing g|.

Photon source distribution
Before suggesting that g| should be set as small as possible, we should examine the possibility

that a very short transmission window will result in a large proportion of empty transmissions, or

“empty bins.” High proportions of empty bins means a low transmission e�ciency, which in turn

could hypothetically cause a slowdown in the rate of key material generation. This phenomenon

is visualized in Figure 2.2, which shows the average number of photons produced during a given

length of time g for a photon source which follows a Poissonian distribution with a mean of 106

photons per second.

20



Figure 2.2. Average number of photons produced during a given length of
time g for a photon source which follows a Poissonian distribution with mean
106 photons per second.

The probability of generating exactly one photon (the red line in Figure 2.2) is maximized when

g ⇡ 1µs. It can be seen in the figure that when g is less than 1µs, the rate at which the probability

of generating more than one photon (the yellow line) follows a charging exponential shape, while

the probability of generating less than one photon (the blue line) is approximately linear. In

other words, as the transmission window shortens, the probability that more than one photon

will be transmitted during the window—corresponding to information insecurity—decreases more

quickly than the probability that no photons will be transmitted—corresponding to “empty bin”

transmission ine�ciency—increases. Thus, as g| is made arbitrarily small, information security

improves faster than transmission e�ciency deteriorates, indicating that g| really should be set as

small as possible.
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Desync factor g�

For a real system, there is a technological limit to how short g| can be. Alice and Bob must be

able to synchronize their stations so that Bob’s detection window aligns with Alice’s transmission

window (see Figure 2.1). The degree to which the two stations are not synchronized, denoted by

the desync factor g�, determines the lower limit of g|. In order to maximize the probability that

Alice will transmit only while Bob’s detection window is open, it is necessary that g| � g� (the

power of the photon source should be tuned accordingly, so that the desired value of # is achieved

while keeping g| large compared to g�.)

For applications where Alice and Bob the synchronization must be done wirelessly, the level of

synchronization required for QKD can be di�cult to achieve. Recent work in the field of wireless

sub-microsecond synchronization by Zengen et al. [27] has resulted in the possibility of a g� of

0.19µs. Assuming this number is the current technological barrier, and imposing the condition

that g| must be greater by at least an order of magnitude, we can estimate the current minimum

transmission window length g| as

g| ⇡ 2µs. (2.24)

Substituting the values for g? and g| from Equations 2.21 and 2.24 into Equation 2.20, we arrive at

an approximate minimum value for C18C of 12µs. Accounting for the possibility that the actual value

of g� might vary, we can define C18C in terms of its relationship to g�:

C18C = 10µs + g�/0, (2.25)

where 0 is the ratio g�/g|.

Alternatively, Alice and Bob could choose not to synchronize their devices at all. In this case, Bob

would simply always leave his detector on, and Alice and Bob would build their key by time tagging

each photon transmission and detection. This method was not fully explored in the course of this

work because time tagging each detected photon would be too memory-intensive for the microchips

employed for the demonstration described in Chapter 3.
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2.2.4 Secure Key Material Generation Rate B
Equations 2.19 and 2.20 can now be substituted into Equation 2.8 to evaluate the key material

generation rate ⌫ as a function of the ratio 0 = g�/g|,

⌫ =
_34C/24_34C
g? + g|

=
_BA2%=0

2

2666664
exp

⇣
�_BA2%=0g�

0

⌘

0
⇣
g?
g�

⌘
+ 1

3777775
. (2.26)

In addition, Equation 2.23 can be used to determine the relationship between � and 0,

�<0G =
4_BA2*B~Bg�

0
. (2.27)

The relationships of ⌫ and � to the ratio 0 are visualized together in Figure 2.3, which shows predicted

results as g| increases (0 decreases) for a QKD apparatus which generates single photons via Type-

II SPDC (see Section 3.1.1). The system parameters displayed on the figure were intentionally

chosen to be overly conservative. Even so, the results show that when g| is approximately an

order of magnitude greater than g�, ⌫ reaches approximately 3kbps, which puts it just into the VLF

spectrum range (3-30kHz). This rate is comparable to current NC2 systems. At this value, � remains

between below 1%, meaning that any eavesdropper would only be able to gain that amount of the

final key without being discovered (with the added bonus that at least 25% of the eavesdropper’s

version of the key would be garbled nonsense.)
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Figure 2.3. Relationship between secure key material generation rate B and
information insecurity factor I to the ratio of the desync factor g� to the
transmission window length g| for a hypothetical QKD apparatus based on
Type-II SPDC. System parameters are chosen to be overly conservative.
Results show that the apparatus can operate in the VLF range, which is
comparable to current NC2 systems.

In short, Figure 2.3 shows that despite the di�culties associated with employing free space QKD,

even conservative estimates indicate that QKD can realistically be employed in NC3 systems using

currently available commercial/o�-the-shelf technology.
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CHAPTER 3:

QKD Demonstration Apparatus

The QKD demonstration apparatus was assembled in order to demonstrate the ease and a�ordability

with which BB84 protocol can be carried out, and to lay the foundation for QKD research at NPS.

The apparatus consists entirely of commercial, o� the shelf optical and electronic components.

This chapter presents a functional description of the demonstration apparatus, as well as calibration

procedures and testing results.

3.1 Functional Description
The demonstration apparatus is divided into Station A, the sending station (or Alice,) and Station

B, the receiving station (or Bob.)

A block diagram of the optical setup is shown in Figure 3.1. Pictures and screenshots of the QKD

apparatus can be found in Appendix C. Tables 3.1 and 3.2 give functional overviews of each station.

Figure 3.1. Block diagram of optical portion of QKD demonstration appa-
ratus at NPS in Monterey, CA. Polarization Rotation Block B is not yet
installed (see Section 4.1.)
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Station A:

Functional Block Name Function Input Output

Control Block A
Coordinate BB84
protocol

- Alice’s Message
- Bob’s receiving

bases and received
states

- Raw key length (N)
- Transmission state
- Sending basis
- Control pulses

Single-photon
Generation Block

Generate “Single
Photons on demand”

- Raw key length (N)
- Control pulses

Polarized Single
Photons

Polarization Rotation
Block A

Rotate photon
polarization states

- Polarized Single
Photons

- Transmission state
- Sending basis

Alice’s raw key bits

Table 3.1. Overview of Station A in the QKD Demonstration Apparatus.
Includes both Key Generation and Key Processing functions.
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Station B:

Functional Block Name Function Input Output

Control Block B

- Choose receiving
basis

- Collect data from
Station B

- Communicate basis
list and checking
key to Station A

- Raw key length (N)
- Measured states

- Measured state
- Receiving basis

Polarization Rotation
Block B

Place received
photons in [R] or [D]
polarization basis

- Polarized Single
Photons

- Receiving basis

Polarized Single
Photons

Single-photon
Detection Block

Measure received
polarization states

- Polarized Single
Photons

- Control pulses

Measured
polarization states

Table 3.2. Overview of Station B in the QKD Demonstration Apparatus.
Includes both Key Generation and Key Processing functions.

3.1.1 Station A
Alice inputs the messages she would like to securely transmit to Bob at Station A. After receiving

an input, Station A generates a raw key, which consists of randomly chosen 0’s and 1’s along with

randomly chosen bases, of su�cient length to encrypt the message and to conduct post-transmission

key processing and transmits that raw key to Station B. Station A then coordinates with Station B to

process the raw key to ensure it was transmitted accurately and securely. After processing, Station

A uses the final secure key to encrypt Alice’s message and pass it to Station B.

Control Block A
Control Block A consists of Computer A, microcontroller A, and a pulse generator. A block diagram

of Control Block A is shown in Figure 3.2.
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Figure 3.2. Control Block A. Consists of Computer A, Microcontroller A,
and a pulse generator. Microcontroller A generally coordinates the process of
generating a raw key. Once the raw key is generated, Computer A coordinates
with Computer B to conduct key processing (see Section 3.1.3.)

Computer A. Computer A runs a Python script which reads Alice’s message and then determines

the length of the raw key N which must be generated to securely transmit that message to Station

B. The script passes this length to microcontroller A through a USB port via Pyserial so that

microcontroller A can begin the key generation process. Later, the script has Computer A coordinate

with Computer B to conduct key processing .

Microcontroller A. Microcontroller A is an Arduino Nano BLE Sense microchip programmed in

C++. Microcontroller A generally coordinates the key generation process.

Once the length of the raw key (N) has been determined, Computer A transmits this information to

microcontroller A, which generates N secure bits. Bit generation proceeds as follows:

1. Microcontroller A generates a raw key bit (a random binary value, 0 or 1) and a random

polarization basis (rectilinear, [R], or diagonal, [D].)

2. Microcontroller A passes the bit and chosen basis to Polarization Rotation Block A, which

sets the polarization angle of transmitted photons.

3. Microcontroller A passes a Control Signal to the pulse generator.

4. The pulse generator passes a Control Pulse to the Single-photon Generation and Detection

blocks, resulting in the transmission of one raw key bit from Station A to Station B.

This process is repeated until the number of bits generated is equal to N, the required length of the

raw key. Once all of the required bits have been generated, microcontroller A passes Alice’s raw

key and the list of sending bases to Computer A for processing.

28



Pulse Generator. The Pulse Generator’s function is simple: it generates a short Control Pulse

whenever it receives a Control Signal. It passes the Control Pulse to an acousto-optic modulator

(AOM) driver in the Single-photon Generation Block and the field-programmable gate array (FPGA)

in the Single-photon Detection Block. While the pulse is active, the QKD apparatus is constantly

transmitting and detecting photons; when the pulse ends, it stops. The Control Pulse is calibrated

to be just long enough so that Station B detects exactly one photon approximately a third of the

time (see Section 3.2.)

Single-photon Generation Block
The Single-photon Generation Block consists of a laser, a biphoton generator, a free space coupler,

polarizing beam splitter (PBS) A, an AOM, a driver for the AOM, and a pulse generator. A block

diagram of the Single-photon Generation Block is shown in Figure 3.3.

Figure 3.3. The Single-photon Generation Block. The laser and biphoton
generator produce a steady stream of biphotons. When prompted by Control
Block A, the AOM picks out one biphoton to send to the rest of the setup
by deflecting the biphoton beam for a brief moment. The PBS picks one
photon out of the pair and passes it to Polarization Rotation Block A for
use in key generation.

Pump laser. The pump laser produces 7mW of coherent, polarized, 405nm light. The light is

conducted via polarization-maintaining single mode fiber to the input port of a biphoton generator.

Biphoton Generator. The biphoton generator uses a periodically poled Potassium Titanyl Phos-

phate (PPKTP) crystal to convert 405nm light from the pump laser into 810nm light through a

process called Degenerate Type II Spontaneous Parametric Down Conversion (SPDC).
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Figure 3.4. The biphoton generator. Adapted from Quantum Mechanics
Laboratory Kit Experiment Manual, Revision 2.0, Qubitekk, Inc., Decem-
ber 2018. Incident 405nm light passes through a PPKTP crystal. Some of
the light is absorbed and converted to 810nm biphotons via Type-II SPDC.
The dichroic mirror blocks 405nm light and transmits 810nm light.

Degenerate Type II SPDC is a nonlinear process in which individual photons from a pump laser are

converted into two photons historically labelled the “signal” and “idler” such that l? = lB + l8,

where l? is the frequency of the pump photon, lB is the frequency of the signal photon, and l8 is

the frequency of the idler photon. Since it is degenerate, lB = l8, so that l? = 2lB.5 The signal and

idler photons are collectively called biphotons, and they have the following interesting properties:

• The photons are created at nearly the exact same moment, colocated and in phase.

• Each photon has half the energy (and thus twice the wavelength) of the photon that was

absorbed.

• The polarization state of the photons is a superposition of orthogonal states. When measured,

one of them will always be found to have the same polarization angle as the photon that was

originally absorbed, and the other will be found to have a polarization angle that is rotated

by c
2 radians relative to the original photon.

The SPDC process has an e�ciency of approximately 10�9, so the 7mW of 405nm light is converted

to 810nm biphotons with an output power on the order of hundreds of pW. A dichroic mirror at

the output of the crystal reflects the 405nm light which is not converted and allows the 810nm

biphotons to pass. The 810nm biphotons exit the biphoton generator through a single mode fiber.

The fiber ends in a free space coupler which directs the biphotons to an AOM.

5Most biphoton pairs created by the biphoton generator are not perfectly degenerate. The degree of degeneracy of the
biphotons is a function of the physical dimensions of the crystal, which are a�ected by the crystal temperature. In order
to maximize degeneracy, the crystal in the biphoton generator is mounted on a heating element which maintains the
crystal temperature within a narrow temperature range. Further discussion of the properties and degree of degeneracy
of the biphotons can be found in Section 3.2.
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AOM. The AOM functions as a fast shutter. It consists of a piezo-electric crystal whose index

of refraction changes when a radio frequency (RF) signal is applied to the crystal. The AOM is

oriented so that when no RF signal is applied, light from the free space coupler passes through it

into a beam dump. When a radio frequency (RF) signal is applied, the light is refracted to a PBS.

The RF signal is supplied by an AOM Driver and gated by Control Pulses from the Pulse Generator

in Control Block A.

PBS A. PBS A is a polarizing beamsplitter cube which transmits horizontally-polarized light and

reflects vertically-polarized light. When a degenerate biphoton pair encounters PBS A, one photon

is transmitted and the other is discarded. The output of PBS A is a single polarized photon, which

now exits the Single-photon Generation Block and enters Polarization Rotation Block A.

Polarization Rotation Block A
Polarization Rotation Block A consists of an EOM and High Voltage (HV) Circuit A. A block

diagram of Polarization Rotation Block A is shown in Figure 3.5.

Figure 3.5. Polarization Rotation Block A. HV Circuit A sums the binary
input signals from Control Block A and applies a DC voltage signal to the
EOM. Polarized 810nm single photons from the Single Photon Generation
Block pass through the EOM. The polarization angle of the incident photons
is rotated through an angle proportional to the applied voltage.

EOM. The EOM is a transparent crystal which rotates the polarization angle of incident light by

an amount proportional to the wavelength of the light and an applied DC voltage. Each EOM has a
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characteristic half-wave voltage (_2 voltage) where it rotates the polarization angle of incident light

of a given wavelength by exactly c
2 radians. The specific EOMs used in this demo are rubidium

titanyl phosphate (RTP) crystals with a nominal _
2 voltage of 715V for 633nm light.

HV Circuit A. HV Circuit A is a summing circuit which receives the two binary input signals from

Microcontroller A and subsequently outputs one of four voltages: voltage setting 0, 1, 2, or 3. Each

voltage setting is calibrated in relation to the EOM’s _
2 voltage. Voltage settings 0 and 2 correspond

to 0V and the _
2 voltage for 810nm light respectively. Voltage setting 0 allows incident light to pass

without any e�ect, while voltage setting 2 produces orthogonally polarized light for an input signal

which is aligned to the polarization axis of the EOM. Voltage setting 1 corresponds to one half of

the EOM’s _
2 voltage, and voltage setting 3 corresponds to three halves of the EOM’s _

2 voltage.

Voltage settings 1 and 3 produce orthogonally polarized light in the diagonal basis.

When light polarized along the axis of the EOM arrives from the Single-photon Generation

Block, the EOM rotates the polarization of the light based on the last instruction it received from

Microcontroller A. If the instruction was to send a 0 in the rectilinear basis, for example, voltage

setting 0 is chosen, and the single photon from the Single-photon Generation Block is left in

its initial polarization state. Voltage setting 1 corresponds to a 1 in the diagonal basis, and the

polarization angle of the photon is rotated through an angle of c
4 . Settings 2 and 3 correspond to a

1 and 0 in the rectilinear and diagonal bases, respectively, and the resulting polarization angles are
c
2 and 3c

4 .

The output of Polarization Rotation Block A is a single polarized photon. The polarization angle

of the photon relative to the axis of the EOM encodes one randomly generated bit in a randomly

selected polarization basis. The photon exits and enters the free space region in between Station A

and Station B.

3.1.2 Station B
Bob receives the transmitted raw key bits from Alice at Station B. Station B randomizes the basis of

received bits, detects the polarization state of transmitted photons, and performs the logic filtering

step of the key processing procedure.

Control Block B
Control Block B consists of Computer B and microcontroller B. A block diagram of Control Block

B is shown in Figure 3.6.
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Figure 3.6. Control Block B. Microcontroller B takes timing signals from
Control Block A and generally coordinates the actions of Station B during the
raw key generation process. After the raw key generation process is complete,
Computer B coordinates with Computer A to conduct key processing (see
Section 3.1.3.)

Computer B. Computer B receives the length of the key to be generated from Computer A, then

passes this length to microcontroller B. After key generation is complete, Computer B coordinates

with Computer A to conduct key processing.

Microcontroller B. Microcontroller B is electrically connected to microcontroller A in Station

A. Microcontroller A sends a signal along this connection when it is choosing a bit and sending

basis. Each time microcontroller B detects this signal, it randomly chooses a receiving basis ([R]

or [D]) and generates a corresponding binary signal which it passes to Polarization Rotation Block

B. After the subsequent transmission event, microcontroller B signals the Single-photon Detection

Block, prompting it to pass the number of detection events on each SPCM during that transmission

event back to microcontroller B. Microcontroller B stores this information until the end of the key

generation phase. Then, microcontroller B passes all the data to Computer B.

Polarization Rotation Block B
Polarization Rotation Block B sets the measurement basis for received photons. It consists of HV

Circuit B and an EOM. A block diagram of Polarization Rotation Block B is shown in Figure 3.7.
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Figure 3.7. Polarization Rotation Block B. HV circuit B receives one binary
signal from Control Block B. Otherwise, operation is the same as Polarization
Rotation Block A (see Section 3.1.1).

HV circuit B. HV circuit B receives a binary input signal from microcontroller B and subsequently

outputs one of two voltage settings, voltage setting a or b, respectively corresponding to 0V and

half of the _
2 voltage of the EOM. Voltage setting a corresponds to the rectilinear receiving basis,

while voltage setting b corresponds to the diagonal receiving basis.

As discussed in Section 3.1.1, each photon arriving from Station A will have one of four possible

polarization angles relative to the axis of the EOM in Polarization Rotation Block A: 0, c4 ,
c
2 , or

3c
4 . When voltage setting a is applied to the EOM in Polarization Rotation Block B, photons pass

through without their polarization angles being a�ected. When voltage setting b is applied, the

EOM rotates the polarization angle of incident photons through an addition c
4 radians. Table 3.3

lists the possible input and output polarization states of photons from Station A passing through

Polarization Rotation Block B.
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HV Circuit A
[Basis]

HV Circuit B
[Basis]

Angle
(rad)

Bit [Basis]

0 [R] a [R] 0 0 [R]
1 [D] a [R] c/4 -
2 [R] a [R] c/2 1 [R]
3 [D] a [R] 3c/4 -
0 [R] b [D] c/4 -
1 [D] b [D] c/2 1 [D]
2 [R] b [D] 3c/4 -
3 [D] b [D] 0 2c (0) [D]

Table 3.3. Tabulation of possible in/out states of the Polarization Modulation
Blocks. [R] and [D] respectively refer to the rectilinear and diagonal bases.
A “-” in the “Bit” column indicates that the sending and receiving bases do
not match, and this bit will be discarded during key processing.

The output of Polarization Rotation Block B is the same as that of Polarization Rotation Block

A: a single polarized photon, whose polarization angle relative to the axis of EOM A encodes a

bit of information in a particular basis. Photons exiting Polarization Rotation Block B enter the

Single-photon Detection Block.

Polarization Rotation Block B is not yet installed in the QKD demonstration apparatus due to a

delayed equipment order.6 Because this block is not yet installed, the apparatus cannot receive in

the diagonal basis, and therefore it cannot fully implement BB84 protocol. It is currently configured

to send and receive only in the rectilinear basis.

Single-photon Detection Block
The Single-photon Detection Block consists of a beam collimator, PBS B, SPCMs 0 and 1, and

a FPGA. A block diagram of the Single-photon Detection Block is shown in Figure 3.8. Photons

entering the Single-photon Detection Block are first collimated into a single mode optical fiber,

which directs the photons to a fiberized PBS.

6The material similarity between Polarization Rotation Blocks A and B means that the exclusion of Polarization
Rotation Block B does not significantly a�ect any of the quantitative analysis discussed in Section 3.2.

35



Figure 3.8. The Single Photon Detection Block. PBS B sorts incoming bits
to SPCM 1 or 0 depending on their polarization. The FPGA detects pulses
generated by the SPCMs as photons arrive, and sends this data along to
Control Block B for processing.

PBS B. PBS B is a fiberized polarizing beamsplitter cube. PBS B is oriented so that incident photons

with a polarization angle aligned with the axis of the pump laser (polarization angle \ = 0A03) are

transmitted to the input of SPCM 1. Orthogonally polarized photons (\ = c/2A03) are reflected to

SPCM 2. Photons of intermediate polarization angles are randomly distributed to either SPCM in

accordance with the value of weighting factor cos2(\).

SPCMs. The SPCMs are Silicon-based avalanche photodiode detectors (Si-APDs). When a photon

in a particular wavelength range is incident on the semiconducting material of the detector, it is

absorbed by an electron in the material’s lattice. The excited electron leaves its spot in the lattice,

creating a positively charged hole which attracts other nearby electrons, creating a small current. A

high reverse bias voltage magnifies this current and causes the moving electrons to generate even

more electrons via impact ionization. The resulting macroscopic current signals a photon detection.

FPGA. The electrical signals generated by the SPCMs travel via conducting wire to the input pins

of a Field Programmable Gate Array (FPGA), which is an Intel microcontroller programmed in the

HDL programming language Quartus II. It has a high clock speed, and thus is capable of detecting

and recording the individual 10ns pulses coming from the SPCMs. When the FPGA receives a

Control Pulse from the Pulse Generator in Control Block A, it begins recording the signals it

receives from each SPCM. It continues recording for the duration of the pulse, then stops when the

pulse ends. After the pulse ends, microcontroller B prompts the FPGA to send it the information it

recorded, then clear its memory in preparation for the next bit.

3.1.3 Key Processing
As discussed in Section 2.1.1, key processing is the process by which Computers A and B convert

the raw key generated by the optical setup into a secure key. Key processing starts when the length
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of the raw key reaches N, the required length initially calculated by Computer A. At this point,

the Python script which is running on Computer A prompts microcontroller A to pass Alice’s raw

key and list of sending bases to a file on Computer A. Microcontroller B also passes the SPCM

detections and list of receiving bases to a file on Computer B.

Sifting step
In the sifting step (see Section 2.1.1, Computer A shares Station A’s list of sending bases with

Computer B, and Computer B shares Station B’s list of receiving bases with Computer A. Because

the bases contain no information about the transmitted bits or the detected photon states, this phase

does not compromise any secure information.

Data usability. The first step in the sifting process is for Computer B to separate usable and unusable

data. Usable data is any index corresponding to a transmission event where exactly one photon was

received at either SPCM; unusable data is any index corresponding to a transmission event where

no photons were received or the sum of photons detected on both SPCMs is greater than one.

To determine data usability, Computer B scans the data file it received from microcontroller B. It

records any usable single detection on SPCM 0 as a zero, and any usable single detection on SPCM

1 as a one. Computer B stores the resulting list of zeroes and ones as Bob’s raw key. Computer B

then shares the indices of unusable data with Computer A, and both computers discard the data

associated with unusable indices.

Basis Matching. Table 3.3 shows that Station B can only receive useful information when the

sending basis and receiving basis match. If they do not match, the photon’s polarization angle will

be intermediate when it reaches PBS B in the Single-photon Detection Block. To ensure that none

of these basis-mismatched bits remain in the final key, Computer A and Computer B compare their

lists of bases and discard all of the raw key bits corresponding to indices where the bases did not

match. The remaining bits of each raw key, correlating to instances where the data received at

Station B was usable and the sending basis and the receiving basis matched, form the sifted keys.

Checking step
In the checking step, Alice and Bob determine whether or not an eavesdropper may have attempted

to intercept their communications. Computer A randomly chooses a set of bits from its sifted key

and shares those bits with Computer B. It then removes those bits from its sifted key. The remaining

bits form Alice’s final key, and the removed bits form Alice’s checking key. Computer B receives

the list of indices from Computer A and also removes the bits associated with those indices from

its sifted key, forming Bob’s final key and checking key. The computers then compare the checking

37



keys against one another.

Error rate calculation. The checking keys are compared bit by bit. Each index where the checking

key bits di�er (for example, Alice’s checking key has a 1 where Bob’s checking key has a 0) is

marked as an error. After the comparison is complete and the errors are tallied, the number of errors

is compared to the length of the checked keys to calculate the error rate. As discussed in Section

2.2.2, this calculated error rate should be representative of the error rate of the still-hidden final

keys.

Eavesdropper determination. As discussed in Sections 2.1.2 and 2.2.3, there is a characteristic

error rate ⇢ for any real QKD system, measured prior to employment of the system for key

generation, which will be used to alert the users to the presence of an eavesdropper. If the error

rate measured during the checking step is higher than ⇢ , the generated key is not secure and is

discarded. If the measured error rate is below ⇢ , the final keys are considered su�ciently secure

for use in secure communications.

3.2 Calibrations
The QKD demonstration apparatus required various calibrations during setup. The results of those

calibrations are described and documented here.

3.2.1 Circuit Timing
The first calibration was conducted to ensure that the control blocks were functioning as intended.

An oscilloscope was used to determine to calibrate the timing and sequence of control pulses (see

Figure 2.1 for the order of operation in a single bit transmission.)

Relative timing: control pulse and HV switching circuit
First, the output of the HV switching circuit’s low voltage monitoring circuit (see Section 3.2.6)

was attached to the oscilloscope in order to determine the switching time of the HV circuit. Then,

Microcontroller A was programmed to wait for this time to elapse before sending the Control Signal

to the pulse generator. Figure 3.9 shows the relative timing of the HV switching circuit (magenta)

and Control Signal (blue).
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Figure 3.9. Oscilloscope output showing that the transmission window con-
trol pulses occur only after the HV circuit has stabilized.

Figure 3.9 shows that the HV switching circuit’s rise time around is 7ms and its fall time is around a

quarter of a second. These rise and fall times can be made several orders of magnitude smaller with

commercially available equipment (see Table 4.1.) Because the voltage setting is chosen randomly

for each transmission, Microcontroller A had to be programmed to wait for the longer of the two

times. Microcontroller A was conservatively programmed to wait 270ms after sending the voltage

setting to the HV switching circuit before generating the Control Signal.

Relative timing: detection window and transmission window
After the timing of the Control Signal was calibrated, the Control Signal was sent to the pulse

generator, which was programmed to generate a single Control Pulse each time it received a

Control Signal. The Control Pulse was sent to the Single-photon Detection Block to open the

Detection Window and the Single-photon Generation Block to open the Transmission Window.
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Both of these windows closed when the pulse ended.

• Detection Window. The Detection Window consisted of the FPGA receiving the Control

Pulse and recording electrical signals from the SPCMs until the pulse ended. The FPGA’s

50MHz clock speed was su�ciently fast that the time between generation of the Control

Pulse and the opening of the Detection Window was negligible.

• Transmission Window. The Transmission Window consisted of the AOM Driver receiving

the Control Pulse and generating a RF signal. As discussed in Section 3.1.1, the RF signal

then traveled by wire from the AOM driver to the AOM and stimulated an acoustic wave. The

acoustic wave spread outwards from the point of contact between the wire and the crystal,

changing the crystal’s index of refraction as it went. When the volume a�ected by the acoustic

wave fully enclosed the region traversed by the biphotons from the Biphoton Generator, the

AOM would deflect incident biphotons towards the rest of the apparatus.

The Detection Window is gated by the rising and falling edges of the Control Pulse. The Transmis-

sion Window is gated by the AOM diverting photons toward PBS A. Thus, the opening and closing

of the Detection Window was observed by connecting the Control Pulse to an oscilloscope, and

the opening and closing of the Transmission Window was observed by placing a photodiode at the

output of the AOM and passing its DC signal to the oscilloscope as well. Figure 3.10 shows the

lag time between the Detection Window (red) and Transmission Window (cyan) introduced by the

relatively slow propagation of the acoustic wave through the AOM crystal.
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Figure 3.10. Oscilloscope output showing relative timing of the Control Pulse
(blue), the Detection Window (red), and the Transmission Window (cyan)

The lag time was found to be 2.3µs, with no noticeable jitter. This value was used to set the value

of the system’s Desync Factor g� (see Section 2.2.3) and was subsequently used to determine the

optimal Transmission Window length g|.

Note that the limits of wireless synchronization discussed in Section 2.2.3 do not apply to the

apparatus because Station A and Station B are electrically connected. As such, the magnitude of g�
could be significantly reduced by programming the FPGA to wait until a length of time equal to g�

elapses after receiving a Control Pulse before opening the Detection Window (see Table 4.1.)

3.2.2 Synchronization
Of course, in an ideal free space QKD system, Stations A and B would be electronically separated

and independent of one another. This would require e�cient wireless clock synchronization between
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Microcontrollers A and B in order to keep the transmission and detection windows synchronized.

To this end, two Arduino Nano BLE microcontrollers were obtained and their clock speeds were

compared under normal environmental conditions. Results are shown in Figure 3.11.

Figure 3.11. Comparing the clock speeds of two Arduino Nano BLE micro-
controllers. Desynchronization between the clocks was found to be too rapid
for use in the QKD demonstration apparatus.

The measured desynchronization speed between the two microcontrollers was approximately 1µs

per 100µs, which would require the clocks to re-synchronize between each transmission in order to

function properly. From this it was determined that the stations should be electronically connected

and run from the same clock, and that electronic separation could be established later when

microcontrollers with faster and more stable clocks could be obtained and programmed for the

purpose (see Table 4.1.)

3.2.3 Counting Modules
The detectors used in the demonstration are internally cooled Silicon-based avalanche style photo-

diodes (Si-APDs), model number SPCM-AQRH-10-FC from the manufacturer Excelitas.

Due to certain inherent properties of Si-APD detectors, the number of electrical pulses generated
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by the SPCMs may not reflect the number of photons transmitted by Alice with perfect accuracy.

These properties are:

• Detection ine�ciency: the SPCMs only detect approximately 60% of incident 810nm pho-

tons.

• Reset time: the electrical pulse generated by the avalanche has a 10ns duration, and the

SPCMs require 12ns to reset between counting events, so an SPCM can only detect one

photon arrival event every 22ns.

• Background counts: any light in the wavelength range of the SPCMs has a chance of being

detected, including broadband photons generated from ambient lighting.

• Dark counts: thermal e�ects in the detector itself may cause electrons to jump energy levels,

resulting in avalanche events which do not coincide with photon arrivals.

This section discusses how each of these e�ects is accounted for by the demonstration apparatus.

Missed counts
Detection Ine�ciency. Figure 3.12 shows the e�ciency curve from the specification sheet included

with the SPCMs [24], showing the detector e�ciency for 810nm light is approximately 60%. This

results in a number of “empty” bins, where Alice may transmit a photon but Bob may not detect

one. These empty bins are discarded during the sifting step, and thus they do not a�ect security,

but they do negatively impact transmission e�ciency.
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Figure 3.12. Detector efficiency curve for the SPCMs used in the demonstra-
tion apparatus.

Detector Reset Time. As will be discussed in Section 3.2.5, the photon source generates photons

according to a random Poissonian distribution. The exact distribution was determined by con-

necting the fiberized Biphoton Generator output directly to a single SPCM. Microcontroller A was

programmed to interface with the FPGA via the pulse generator and record pulses from each SPCM

in time bins of length 500µs (# = 106.) Results are shown in Figure 3.13.
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Figure 3.13. Histogram showing the number of counts per time bin of a
detector counting incident photons from a Poissonian-distributed photon
source transmitted via single mode fiber.

Figure 3.13 shows that the mean number of counts per second is _BA2 = 3.7⇥106, equating to a mean

time of almost 270ns between each detection—an order of magnitude greater than the detector reset

time of 22ns. Therefore, the e�ects of reset time on counting rate should be negligible.

Erroneous counts
Background Lighting. Background lighting was controlled by placing the detectors inside of a

cardboard box with only a small hole cut out for the transmitted photons to enter (see photos in

Appendix C.) The photon source was powered o� and data was collected as per Section 3.2.3 once

with the room lights on, once with the room lights dimmed, and once with the room lights o�.

Results are shown in Figures 3.14, 3.15, and 3.16 respectively.
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Figure 3.14. Histograms showing the number of counts per time bin of
shrouded detectors counting dark counts and background counts in a bright
room.

Figure 3.15. Histograms showing the number of counts per time bin of
shrouded detectors counting dark counts and background counts in a dim
room.
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Figure 3.16. Histograms showing the number of counts per time bin of
shrouded detectors counting dark counts and background counts in a dark
room.

Comparison of the histograms resulting from each lighting condition show very little di�erence

between “dark” and “dim” lighting conditions. Subsequently, background counts were minimized

by always keeping the room dark or dim when conducting any operation with the demonstration

apparatus.

Dark Counts. Nearly all of the counts displayed in Figures 3.15 and 3.16 are attributable to dark

counts. When the photon source is powered on, the number of detections that are attributable to

dark counts is very low compared to the number of detections that are attributable to the source

(for example, compare Figures 3.15 and 3.16 to Figure 3.17, which shows the same measurements

taken with the source powered on; the ratio _BA2/_30A: is very large.) Dark counts comprise only a

small fraction of the total counts during operation of the QKD demonstration apparatus.

In summary, the four counting module e�ects are accounted for in the following ways:

• Detector E�ciency. Cannot be mitigated. Missed photons are accounted via sifting.

• Reset time. Counts missed due to detector reset time was determined to be a negligible

portion of overall counts.

• Background lighting. Building a box around the SPCMs e�ectively blocked background

lighting.

• Dark counts. Cannot be mitigated, but dark counts were determined to contribute only a

small portion of the overall counts.

47



3.2.4 Optical Installation
The biphoton generator device used as the photon source in the demonstration was obtained by NPS

from Qubitekk in October of 2019 as part of Qubitekk’s Quantum Mechanics Lab Kit [28]. As shown

in Figure 3.13, the source generates photons randomly following a Poissonian distribution. This

distribution was checked at various stages while installing the optical portion of the QKD apparatus

to ensure that the distribution of detected photons remained proportional to the distribution of

photons generated at the source.

Free space, minimal equipment installed
After completion of the measurements described in Section 3.2.3, some components of the free

space optical portion of the demonstration apparatus were installed. Specifically, the free space

coupler and PBS A from the Single-photon Generation Block were installed, as well as the fiber

coupler and PBS B from the Single-photon Detection Block. Data was then collected as per Section

3.2.3. Results are shown in Figure 3.17. Note that because there was no polarization switching

(Polarization Rotation Block A had not been installed,) nearly all of the photons were detected by

the same SPCM, in this case SPCM 1 (channel 2).

Figure 3.17. Histograms showing the number of counts per time bin of a
shrouded detector counting incident photons from a Poissonian source trans-
mitted over free space.

The distribution of detected photons is clearly Poissonian, but comparison of Figure 3.17 to Figure

3.13 shows the free space transmission incurs significant losses. The losses are primarily attributable

to optical alignment and beam coupling/collimation: the photon source is too weak to be visible

even with the assistance of sensitive IR cards and viewers, and so collimation was conducted with

the help of a readily available 780nm laser. This method produced a beam collimation that was
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su�cient for installing and testing the apparatus, but a collimation that is optimal for a 780nm

beam is not necessarily optimal for a 810nm beam. This issue will be resolved upon the receipt and

installation of a dedicated 810nm alignment laser (see Table 4.1.)

Free space, all equipment installed
After verifying that the detected photons which had been transmitted via free space followed the

same statistical distribution as the source, the rest of the optical apparatus was installed and tested

the same way. Specifically, the AOM and Polarization Rotation Block A were installed. Data was

collected after installation, this time using a transmission window of 8.3µs and # = 1.75 ⇥ 106,

with Microcontroller A interfacing with both the FPGA and AOM via the pulse generator. Results

are shown in Figure 3.18.

Figure 3.18. Histogram showing the number of counts per time bin of a
detector receiving single photons from a Poissonian source through an optical
apparatus set up for QKD.

Figure 3.18 shows that with all the equipment installed, detected photons still follow a similar

statistical distribution to those found in Figures 3.13 and 3.17. Note that the mean value of the of

the distribution in Figure 3.18 is greater than the mean value of the distribution in Figure 3.17.

This increase was caused by some tweaking of the beam collimation of the free space couplers in

between these two measurements, leading to an increase in the overall transmission e�ciency of

the free space portion of the apparatus.

In summary, the statistical distribution of photons transmitted through the QKD demonstration

apparatus is linearly proportional to the Poissonian source distribution. Significant attenuation is

introduced due to current limitations in available equipment and software.
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3.2.5 Source Degeneracy
As discussed in Section 3.2.4, the Biphoton Generator generates a random Poissonian distribution

of biphotons via degenerate Type-II SPDC. The resulting biphotons consist of one “signal” photon,

whose polarization state is identical to the polarization state of the 405nm pump laser, and an “idler”

photon, whose polarization state is orthogonal to the signal photon. The sum of the frequencies lB

and l8 of the signal and idler photons is equal to the frequency l? of the pump photons from the

pump laser, such that l? = lB + l8. For a perfectly degenerate SPDC process, lB = l8 = l?/2.

Degeneracy calibration
The Biphoton Generator’s SPDC process is, in reality, only nominally degenerate. Actual values of

lB and l8 follow a random distribution, with a variance that is proportional to the SPDC process’

degree of degeneracy, X⇡ , where X⇡ = lB/l8.

X⇡ is a function of the geometry of the PPKTP crystal, which in turn is a�ected by the temperature

of the crystal, so that X⇡ = X⇡ () � )0), where X⇡ = 1 (the SPDC process is perfectly degenerate)

for some optimal crystal temperature )0. As depicted in Figure 3.4, the crystal temperature is

controlled by an internal heating element. Thus the degeneracy factor X⇡ , and thus the variance

in the frequencies lB and l8, is ultimately a function of the temperature setting of the Biphoton

Generator’s heating element.

As will be discussed in Section 3.2.6, the Polarization Rotation blocks operate best on light that is

homogeneous and of a known wavelength; uncertainty in the wavelength of incident photons can

result in errors. Therefore, it is important to ensure that X⇡ is as close to unity as possible. In order to

calibrate the Biphoton Generator for maximum degeneracy, the temperature of the heating element

was varied and the resulting degeneracy factor X⇡ was measured via a HOM experiment [29].

HOM experiment
The HOM experiment measures the degree of indistinguishability of photons, which in this case

is identical to measuring the degeneracy factor. Figure 3.19 shows a diagram of the experimental

setup. The HOM apparatus works by taking a biphoton pair from the output of the biphoton

generator and sending the signal and idler photons down di�erent optical paths, then recombining

them at the input to a 2 ⇥ 2 50:50 beamsplitter at the end of the paths. The output of a 50/50

beamsplitter is random—a photon incident on either input port has an equal probability of exiting

via either output port—but the HOM experiment shows that, if the beamsplitter cannot distinguish

between two incident photons, both of the photons will follow the same random statistics. That

is, indistinguishable photons incident on input ports 1 and 2 will both exit via the same output
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port [29].

Indistinguishability factor X� . In order for two photons to be indistinguishable, they must be in

exactly the same state. For the biphotons generated by the Biphoton Generator, there are three

variables which must be controlled in order to ensure that the signal and idler photons are identical

when they reach the 50/50 beamsplitter: they must have the same polarization state, they must be

colocated, and they must have the same wavelength. These three factors are controlled as follows:

• Polarization State. Recall that Degenerate Type II SPDC creates two photons in orthogonal

polarization states. In our HOM setup, the single mode optical fiber which transports the

signal photons has a built-in c/2 rotation, leaving the signal photons in the same polarization

state as the idler photons when they reach the beamsplitter.

• Colocation. The optical path which transports the idler photons has a built-in free space

portion. The lens at one end is mounted on a motor which can move the lens back and forth

along a 25mm track. The travel time of the idler photons can be tuned by adjusting the length

of the free space portion. For some particular free space travel distance, the signal and idler

photons can be made to arrive at the beamsplitter at exactly the same time.

• Wavelength. As discussed previously, the variance of the wavelengths of the signal and idler

photons is a function of the degree of degeneracy of the SPDC process, which in turn is

controlled by the temperature setting of the heating element in the Biphoton Generator. The

ultimate goal of this calibration was to find the temperature setting which would minimize

the variance in the biphoton wavelengths.

The HOM apparatus shown in figure 3.19 shows how these factors were accounted for in order to

measure the indistinguishability factor X� .
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Figure 3.19. HOM apparatus built to calibrate the Biphoton Generator’s
internal heating element temperature setting for maximum biphoton degen-
eracy.

Method. We set up the HOM apparatus in accordance with Figure 3.19. We initially left the Biphoton

Generator’s internal heating element at its manufacturer-recommended default setting of 45.42�C,

then adjusted the free space portion of the idler photon path length so that indistinguishability factor

X� would be very low.

Preliminary data. We collected preliminary data from SPCM 0 and 1 as follows: SPCM output

pulses were observed ten times in increments of 100ms each. A “coincidence count” was recorded

whenever both SPCMs recorded a detection event within the same brief “coincidence window”

(3ns.)

Coincidence counts correspond to events where signal and idler photons from the same biphoton

pair arrive at the input of the 50/50 beamsplitter and subsequently exit via separate output ports. This

happens when the photons in the biphoton pair are distinguishable. For the preliminary data run, the

photons were distinguishable because their travel times were di�erent, meaning that they were not

colocated when they arrived at the input to the beamsplitter. Therefore, they each followed their own

random statistics: half the time, they each went to the same output (and no coincidence count was

recorded), and half the time they each went to di�erent outputs (resulting in a coincidence count.)

Note that the coincidence count rate is maximized when the biphotons are very distinguishable,

and minimized when the biphotons are indistinguishable.

The preliminary data was used to set the baseline coincidence count rate ⇠0. Once the baseline

rate was established, we began moving the motor-mounted lens in increments of 0.05mm. For each

increment, we recorded coincidence counts for 100ms and calculated the coincidence count rate ⇠.
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The indistinguishability factor X� for each position was calculated as

X� =
⇠0 � ⇠

⇠0
(3.1)

and plotted against the position of the motor on its track. Results are shown in Figure 3.20.

Figure 3.20. HOM experiment results showing the optimal path length set-
ting for source degeneracy using manufacturer’s recommended settings.

Figure 3.20 shows that, using the manufacturer’s default temperature setting, the maximum achiev-

able value of X� was around 0.67.

Optimal temperature determination. In order to find the optimal temperature setting for maximum

degeneracy, we ran the HOM experiment many times, varying the heating element temperature

setting between each run. Figure 3.21 shows the maximum value of X� recorded for each temperature
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setting.

Figure 3.21. HOM experiment results showing the optimal PPKTP crystal
temperature setting for source degeneracy.

The results of Figure 3.21 were used to determine the optimal internal heating element temperature

setting corresponding to maximum degeneracy factor X⇡ of the SPDC process in the Biphoton

Generator. Note that even when the position and temperature were both optimized for maximum

indistinguishability, X� did not approach unity. We believe this could be attributable to ine�ciencies

in the optical alignment and fiber couplings, inaccuracies in the polarization-rotating fiber used to

match the polarization states of the biphotons, or the bandwidth of generated photons.

3.2.6 HV Circuit Settings
HV Circuit A consists of a tunable voltage source, a low voltage (LV) monitoring circuit, four

rheostats (each corresponding to a specific voltage setting—see Section 3.1.1), and a logic circuit.

The logic circuit receives input from Microcontroller A in the form of two binary signals, corre-

sponding to Alice’s choice of bit value and basis for each photon transmission event. Based on the
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input it receives, it selects the rheostat corresponding to voltage setting 0, 1, 2, or 3, each of which

is tuned to di�erent setting for the voltage source. Once the selection has been made, the voltage

source applies the chosen voltage to the attached EOM, which rotates the polarization angle of

incident light proportionally to the applied voltage.7

The EOM model used in the apparatus is a Rubidium Titanyl Phosphate (RTP) pockels cell from

the now-defunct New Jersey based laser equipment supplier Fastpulse Technology. In order to

determine the EOM’s calibration curve for 810nm light, we selected one voltage setting rheostat

from HV Circuit A and tuned it to vary the voltage applied to EOM A. While varying the voltage,

we collected data from SPCMs 0 and 1 (channels 1 and 2) in the manner described in Section 3.2.3

using a transmission window of 800µs (N = 5000). Figure 3.22 plots the results of this measurement

for each SPCM, as well as the ratio of the two average counts on each SPCM, against the output of

the LV monitoring circuit.

7That is, the output signal of the EOM has a polarization state which is a superposition the polarization state of the
incident light and the associated orthogonal states (circular polarization included) with weighting factors for each state
varying as a function of the magnitude of applied voltage. For these measurements, the only voltage settings of interest
were those corresponding to states where the weighting factor of the circular polarization state was zero, such that the
overall polarization state was a superposition only of rectilinear states.
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Figure 3.22. Results of the calibration measurements described in Section
3.2.6. Top: average counts per time bin for channels 1 and 2 (SPCMs 0
and 1) plotted against the output of a low voltage (LV) monitoring circuit
attached to HV Circuit A. Bottom: the ratio of the lower of the average
counts per time bin from SPCMs 0 and 1 to the higher. The local maxima
and minima on this plot give the LV circuit output corresponding to the
optimal HV Circuit A rheostat position for voltage settings 0, 1, 2, and 3
(see Section 3.1.1.)

The data collected via these measurements reveal the optimal rheostat positions for HV Circuit A

corresponding to voltage settings 0, 1, 2, and 3: the minimums on the plot correspond to voltage

settings 0 and 2 (the rectilinear sending basis), while the maximums correspond to voltage settings

1 and 3 (the diagonal sending basis).8 Similar calibrations are planned for HV Circuit B when a

second voltage source is obtained (see Table 4.1.)

8The exact HV circuit voltage settings were not measured precisely, due to the convenience and utility of simply
monitoring the LV circuit output. However, the HV settings are known from manufacturer specifications to range up to
1.2kV for the observed polarization angle rotations.
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3.3 Results
After all of the calibrations and installations described in Section 3.2 were complete, the apparatus

was tested to determine its functionality and system error rate.

3.3.1 Sample Output of Demonstration Apparatus
To test the apparatus, “Alice” entered a short message into Computer A, then used the demonstration

apparatus to conduct QKD and distribute the message to “Bob.” After the key generation and

key processing phases were complete, Alice’s version of the generated key was used to encrypt

the message, then Bob’s version of the key was used to decrypt the message.9 The total time,

transmission e�ciency, and true error rate of the transmission were also calculated. The results of

one trial are shown in Figure 3.23.

9The encryption algorithm implemented was fairly rudimentary: for each character of the message, three successive
digits of the generated key were treated as a binary number and added to the ASCII code of the character. For decryption,
Bob did the same process in reverse.
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Figure 3.23. Sample output of the QKD demonstration apparatus described
in Section 3.1.

Figure 3.23 shows that in order to send the message “Hello World!”, Alice generated 1000 raw key

bits. The final key was 180 characters long and took 4 minutes and 21 seconds to transmit. The

checking phase determined that the error rate was 2.93%, which was very close to the actual error

rate, and well below the 25% error rate threshold which might indicate a clumsy intercept-and-

replace attack from Eve. The final message as deciphered by Bob di�ered from Alice’s original

message by one character, but was still readable. The results of this test indicate that the apparatus

is capable of distributing information by encoding the information in quantum states, and that the

information it distributes is usable.
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3.3.2 Apparatus Statistics
Subsequently, the system error rate and transmission e�ciency were measured along with their

associated uncertainties. The measurement consisted of running the apparatus continuously for

several hours. In all, 350 di�erent keys were generated throughout the test, each consisting of 500

raw key bits. Figure 3.24 displays the error rate and transmission e�ciency results.

Figure 3.24. Experimental results of a long-duration error rate analysis of
the QKD demonstration apparatus described in Section 3.1. Left: error rate
plotted for each trial. Right: transmission efficiency plotted for each trial.

From the data collected, the system error rate and transmission e�ciency were calculated to be

2.36%±1.04 and 35.98%±2.63 respectively. Substituting*B~B = 0.0104 into Equation 2.27, along

with the values gl = 8.3µs and _BA2 = 3.7 ⇥ 106 from Sections 3.2.1 and 3.2.5, we calculated the

Information Insecurity factor � for the apparatus:

�<0G = 4_BA2gl*B~B = 1.3 (3.2)

The fact that � is greater than unity signifies that Eve may execute intercept-and-replace attacks

against any amount of the transmitted key and remain undetected. This is mostly because Alice

currently transmits over 30 photons per transmission event (3.7⇥106 photons
sec ⇥8.3⇥10�6 sec

transmission =

30.7 photons
transmission), thus giving Eve ample opportunity to intercept and replace one without being

detected.
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Transmission e�ciency
Alice must transmit so many photons because of the poor free space coupling of the apparatus.

Consider the averages of the count distributions shown in Figure 3.13 (_ ⇡ 1830) and Figure

3.18 (_ ⇡ 61). The only major di�erence between these two measurements was that the free

space portion was added in between. The optical attenuation factor of the free space portion is

thus 61/1830 = 0.034, and the average number of transmitted photons which are detected is

30.7 ⇥ 0.034 ⇡ 1.

If the apparatus were re-aligned using a dedicated 810nm alignment laser, instead of the current

780nm alignment laser, the optical attenuation factor of the free space portion of the apparatus

could be improved by an order of magnitude. This would allow Alice to significantly reduce the

number of photons transmitted per window: instead of over thirty, Alice could achieve a similar

transmission e�ciency by transmitting only 2 photons per transmission event. The Information

Insecurity factor under these conditions would be � = 0.08. From that point, security could be

further improved either by lowering the laser power (with a corresponding loss of e�ciency) or

by improving the optical alignment (which would allow Alice to transmit fewer photons without

sacrificing e�ciency.)
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CHAPTER 4:

Conclusion

In this thesis I have advocated for the inclusion of QKD in NC3 secure key distribution infrastructure.

I showed that it is within the scope of NPS’s capabilities and academic interests to investigate the

inclusion of QKD in national defense applications.

I first outlined the utility of QKD in Chapter 1 and described its development arc and the current

state of QKD technology. I concluded that it will be worthwhile to pursue the development of QKD

for national defense applications, and I outlined a case where QKD might o�er increased robustness

for submarine NC3 operations.

In Chapter 2, I developed a framework for information security in regards to QKD, first from

a theoretical standpoint and then from a practical standpoint. I showed that a QKD apparatus

capable of conducting free space secure key distribution at useful speeds can be assembled using

commercial, o� the shelf technology.

In Chapter 3, I described my e�orts to build a demonstration apparatus capable of conducting free

space QKD in laboratory conditions. I outlined the functions of the various pieces of the apparatus,

as well as the necessary calibrations required for its assembly, and displayed a sample of the output.

I also pointed out various spots where further modification could improve the operation of the

apparatus. Those modifications are summarized in Table 4.1.

4.1 Remaining Tasks
The QKD demonstration apparatus described in Section 3.1 was shown to be capable of encoding

keys in quantum states and transmitting them from Station A to Station B. However, the apparatus

is not yet ready for use in actual QKD research. Table 4.1 discusses several areas where the QKD

apparatus could be improved, outlines how those improvements might be achieved, and states the

status of implementing those improvements.
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Task Reason Required Equipment Status

Install Polarization
Rotation Block B

Until Polarization Rotation
Block B is installed, the
apparatus cannot measure
photons in the diagonal basis
and thus cannot implement
BB84 protocol.

HV switching chip
Part identified,
ordered

Improve HV circuit
switching time

Current HV switching times are
on the order of hundreds of
milliseconds. COTS HV
switching circuits can do that
same task in 10µs.

Dedicated Pockel
Cell driver

Part identified,
vendor
contacted

Improve Optical
Alignment

810nm biphoton generator
output is too weak to use for
proper optical alignment.
Current alignment is based on a
780nm beam. Because of this,
beam coupling to free space and
back to fiber is very ine�cient.

810nm laser
Part identified,
ordered

Electronically
separate Stations A
and B

Apparatus testing range is
currently limited due to the fact
that all of the control equipment
is colocated.

Microcontollers
with su�ciently
high clock speed for
wireless
synchronization

Parts on hand,
not
programmed

Eliminate the 4µs
o�set between
detection window
and transmission
window

The o�set time is very large
compared to the size of the
window. Due to this, the
insecurity factor of the
apparatus is currently greater
than 1 (and eavesdropper can
obtain the entire key without
risk of detection).

None

Need to
program the
FPGA in
Quartus to
wait 4µs
before
opening the
detection
window

Install a detector at
the idler beam
output of PBS A

This will increase security by
allowing Alice to tell how many
photons she sent to Bob in a
given transmission event (called
“heralding.”)

One additional
SPCM

Part identified,
not ordered

Table 4.1. Summary of the remaining tasks and required equipment to finish
the QKD apparatus described in Section 3.1.

62



4.2 Outlook
Discussions about defense applications of QKD sit at the intersection of national defense strategy,

quantum physics, cryptology, and communications engineering. One goal of this paper has been to

tie these disparate fields of study together so that interested parties may begin to form a common

framework in order to discuss and develop di�erent aspects of QKD for defense applications. As

such, an e�ort was made to treat each aspect of the discussion at a relatively introductory level.

Because of this, many aspects of the discussion around QKD detail have been left out.

For example, the only QKD protocol discussed in this paper is BB84. In reality, there are many QKD

protocols, tailored to suit various special use cases. Of particular interest is the Eckert 1991 (E91)

protocol [5], wherein the quantum states used in QKD are generated at a third point and distributed

to both Alice and Bob. If point C were, say, a satellite, this protocol could allow Alice and Bob to

conduct QKD without being in line of sight to one another.

In addition to protocols, there are various technological options for the production, transmission,

and detection of single photons. For example, instead of employing degenerate Type-II SPDC in a

PPKTP crystal for single photon production, photons could be produced by a very weak laser of

a wavelength which propagates more e�cienctly over free space. As for photon detection, instead

of Si-APD style detectors, Superconducting Nanowire Single Photon Detectors (SNSPDs) could

be used: these detectors are much more e�cient over a broader range of wavelengths, but require

cooling to below 1�K to operate.

These options and their relative strengths and weaknesses and optimal use cases, as well as others,

have been tested by other organizations, and are discussed at length in the literature (Gisin, 2002 [30];

Xu, 2020 [22]). It would be relatively straightforward for NPS to acquire di�erent pieces of QKD-

related equipment and to recreate those tests in defense-oriented contexts. Coordination has already

begun between NPS’s Quantum Sensing Lab and Space Systems lab to outfit the QKD demonstration

apparatus with adaptive optics in order to investigate the e�ects of range and environment on its

operation.

After the tasks listed in Table 4.1 are complete and the apparatus has been optimized for operation

at range, it could then be used to demonstrate the defense applications discussed in Chapter 1. For

example, the e�ectiveness of di�erent protocols and technological options could be demonstrated

through collaboration with NPS’s Center for Autonomous Vehicle Research (CAVR). Station A

could be mounted on an unmanned aerial vehicle (UAV) and Station B mounted on an unmanned

underwater vehicle (UUV), and the performance of the apparatus could be investigated under

various conditions of range, relative speed, and environmental factors. These assets already exist
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at NPS, and the equipment to be acquired and tested is all available commercially and is relatively

non-specialized (meaning that acquisition, installation, and testing would all be straightforward.)

Testing and demonstration of defense applications could be accomplished with a small price tag

($50-$500K) within one year of e�ort.
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APPENDIX A:

Introduction to Cryptology

This appendix is intended to act as a handy introductory reference on the topics of cryptology and

secure key distribution. It is intended to give the reader just enough background in these subjects

so that they can better understand the analysis of QKD presented in Chapter 2.

A.1 Overview
The central problem of cryptology is that a message originator wishes to transmit a message to

a certain intended receiver, while keeping the contents of the message secret from any potential

eavesdroppers. This section discusses various topics related to cryptology in order to set the stage

for the comparison of various cryptological infrastructures in Section A.2. Section A.1.1 provides

a quick reference for terms related to cryptology. Sections A.1.2 and A.1.3 discuss how the basic

concepts of cryptology fit together in the e�ort to conduct secure communications.

A.1.1 Vocabulary
• Cryptology. Cryptology is the overarching field of study which includes cryptography and

cryptoanalysis.

• Cryptography. Cryptography is the art of rendering messages unintelligible, or encryption.

• Cryptoanalysis. Cryptoanalysis is the art of breaking codes, or decryption.

• Key. A key is a string of characters representing some function which is applied to the char-

acters in a message: An enciphering key renders a message into an unintelligible cryptogram,

while a deciphering key translates a cryptogram back into the original message. The charac-

ters which compose a key are collectively called “key material.” In order for an enciphering

key to generate secure cryptograms, each character of the key must be generated individually

and randomly. In addition, the key must be at least as long as the message it encrypts.

• Information-theoretical Security. Security that is never compromised, regardless of the

technological or temporal resources of an attacker.

• Computational Security. Security that can be breached given su�cient technological and

temporal resources, but which cannot be breached within the span of time for which the

secure material is required to remain secure.

• One-time Pad. An information-theoretically secure key. An information-theoretically secure

key loses its secure status after the first time it is used to decrypt a message. For this
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reason, it is also called a one-time pad. The terms “one-time pad” and “secure key” are used

interchangeably in this paper.

• Cryptogram. A cryptogram is the string of characters resulting from the use of a key to

encrypt a message.

• Key distribution protocol. A key distribution protocol is the process by which parties

coordinate the encryption and decryption of secure communications by sharing a secure key.

A simple example of a key distribution protocol is a child’s toy decoder ring, used to decode

scrambled messages found on the side of a cereal box.

• Alice, Bob, and Eve. In cryptological literature, Alice is the canonical originator of messages.

Bob is the intended recipient of Alice’s messages, and Eve (the nefarious eavesdropper)

attempts to illicitly gain information about those messages. Unless otherwise noted, it is

assumed that Eve is technologically on par with Alice and Bob, and that she has all possible

equipment and capabilities required for cryptoanalysis.

A.1.2 Cryptographical knowledge
Cryptographical knowledge is the set of probabilities associated with possible keys and messages

which might be exchanged between Alice and Bob. An example of cryptographical knowledge is

the linguistic system of a transmission: if Bob and/or Eve know that a message will be written in

a certain language, then they have some amount of cryptological knowledge, because they know

that a particular set of possible messages (those in the language spoken by Alice and Bob) has a

relatively higher associated probability than those that are not.

Knowledge gained by meta-analysis and intelligence, such as in the example above, constitutes a

priori knowledge. The security of any key distribution protocol is defined in terms of how Eve’s a

priori knowledge compares with her a posteriori knowledge, where a posteriori knowledge refers

to the set of probabilities associated with particular keys and messages after some amount of

eavesdropping.

A.1.3 Unicity and security
If cryptoanalysis conducted by Bob or Eve causes the probability that a cryptogram corresponds

to a certain message to approach unity, that analysis is said to have achieved unicity. That is, the

holder of the cryptogram knows the precise contents of the message, and the code is “broken.”

Each key has a characteristic number, the unicity distance, which measures the amount of material

which must be received by Bob or intercepted by Eve before unicity can be achieved.

If a key’s unicity distance is infinite—i.e., Eve’s a posteriori knowledge always matches her a
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priori knowledge exactly, regardless of the volume of intercepted material and Eve’s temporal or

computational resources—then the cryptographic system is information-theoretically secure.10 If

the unicity distance is finite, but so large that Eve cannot achieve unicity while the secrecy of the

message is still important, the system is computationally secure.

A.2 Secure Key Distribution
Two common categories of secure key distribution are SKI and public key infrastructure (PKI).

They are described here in order to contrast them with QKD in terms of transmission security and

speed.11

A.2.1 Symmetrical/Secret Key Infrastructure (SKI)
SKI requires a secure line of communication from Alice to Bob, which Alice uses to transmit

key material. As long as Alice’s key material is randomly generated and of su�cient length—at

least equal to the length of the message—any cryptogram created from it can be shown to have

“information-theoretic” security, which simply means that there is no way for a codebreaker to

gain any information from it, regardless of temporal or computational resources. Therefore, after

generating a secure key and transmitting it to Bob via the secure channel, Alice can use the key to

create cryptograms and transmit them to Bob via whatever communication channel she chooses,

regardless of the security of the channel.

While Shannon was able to prove SKI to be unconditionally secure [31], the key length requirement

means that the speed of any information exchange is limited to the speed of the secure communica-

tion channel. High-volume lines of communication are typically vulnerable to infiltration by Eve,

forcing key distribution to be conducted via secure low-volume channels. Typically, this involves

the transfer of physical media, such as disks or codebooks. Thus, the security advantage of SKI is

gained at the expense of speed.

A.2.2 Asymmetrical/Public Key Infrastructure (PKI)
PKI utilizes two keys: a deciphering key created by and known only to Bob, and an enciphering

key which Bob calculates from his deciphering key via a “one-way function”—a function which

10In Shannon’s seminal 1949 paper on the subject of cryptology, Communication theory of secrecy systems [31],
Shannon introduced this same concept as “perfect secrecy.”

11Note that security and speed are qualitative descriptors, defined situationally in relation to the needs of Alice and
Bob. Unless explicitly defined, secure and fast should be understood to mean secure enough and fast enough to meet
the needs of Alice and Bob, commensurate to the urgency and sensitivity of the information they are attempting to
communicate.
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cannot be reversed in quadratic time. Bob then makes the enciphering key publicly available so that

Alice can access it use it to create a cryptogram. Alice can then transmit the cryptogram to Bob via

whatever line of communication is convenient, knowing that only Bob can decipher it.

The first published PKI protocol was suggested by Di�e and Hellman in 1976 in a paper titled

“New Directions in Cryptography” [32], but no one-way function was put forth at the time for its

implementation. In 1983, Rivest et al. published the Rivest-Shamir-Adleman key exchange (RSA)

protocol [33], suggesting prime factorization as a suitable one-way function: it is computationally

easy for Bob to choose a set of prime numbers to use as a deciphering key, and it is also easy for him

to calculate an enciphering key from that set of numbers (for example, the deciphering key could

be the product of Bob’s set of prime numbers.) At the time that RSA was first published, prime

factorization was a computationally hard problem. A numerical demonstration of this principle is

presented in Appendix B.

While not unconditionally secure, PKI is computationally secure, and it is significantly faster than

SKI because it completely sidesteps the need for a secure communication channel.12

A.2.3 Comparison to Quantum Key Distribution
In short: SKI is theoretically secure, but it relies on the movement of physical media and therefore

can be too slow or unwieldy for operational needs, while PKI is fast, but there is some uncertainty

surrounding the level of security it provides. In comparison, QKD is just as secure as SKI, but it

does not rely on physical media: as long as Alice and Bob have a line of sight to one another, they

can generate information-theoretically secure key material at a distance via QKD. It will be seen in

Chapter 2 that QKD is considerably slower than PKI, but its speed is adequate for the applications

discussed in Section 1.2.

12This is only true as long as Eve is restricted to classical computers in her attacks. PKI is potentially vulnerable to
attack by quantum computers using Shor’s Algorithm [34]. In fact, the existence of “one-way functions” is yet to be
proven, and as such any PKI protocol is potentially insecure.
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APPENDIX B:

Public Key Infrastructure Example

PKI was briefly introduced in section A.2. This section continues the discussion and clarifies the

idea of computational security by demonstrating how PKI, employed correctly, cannot be hacked

in any realistic length of time by classical computers.

Treasure hunt scenario
Suppose Bob and Eve are racing to recover a buried treasure. Alice knows the coordinates of

the treasure and decides to help Bob by telling him where to find it, but she knows that Eve

is eavesdropping so she must communicate securely. Bob decides to facilitate the information

exchange by creating an enciphering key 155 characters long in base 10 bits (equivalent to 512

binary bits). He chooses two prime numbers of su�cient length and multiplies them together to

obtain an enciphering key. Perhaps he chooses the following seventy-eight digit numbers:

102639592829741105772054196573991675900716567808038066803341933521790711307779

106603488380168454820927220360012878679207958575989291522270608237193062808643

He tells Alice the number he has chosen as his enciphering key, perhaps via a public tweet. Alice

then accesses the enciphering key and uses it along with an encryption alorigthm to turn the

coordinates of the treasure into a cryptogram. She then sends the cryptogram to Bob via a public

tweet. Now, both Bob and Eve have the cryptogram which contains the encoded coordinates of

the treasure, and they also both have the enciphering key. Bob, however, retains sole access to the

deciphering key.

Armed with these pieces of information, Bob and Eve both take out their smart phones. While

Bob is typing the deciphered coordinates into Google Maps, Eve navigates to Amazon’s cloud

computing service, Amazon EC2, and uses it to run Luke Valenta’s Factoring as a Service [35]

program, which she obtained from GitHub, in order to factor the enciphering key and obtain the

deciphering key. Approximately four hours (and seventy five dollars) later, the program produces

the deciphering key, and Eve quickly obtains the treasure’s coordinates. Of course, Bob had the

deciphering key already, and at this point he has a four hour head start on Eve.

69



Actual security of PKI
Bob’s encryption scheme, known as RSA-155 (after the 155 base 10 digits of the enciphering key)

was the standard for PKI until the late twentieth century. Using the factoring tools available at

its initial adoption, hacking RSA-155 would have required many millions of years of computing

time. But by 1999, computing power and factoring algorithms had advanced so far that a team was

able to link several hundred supercomputers around the world and factor RSA-155 over a period

of seven months [36].13 Subsequent advances in computing power have resulted in the factoring

of even larger numbers, the largest being RSA-768 which was factored in 2009 after two years of

calculations [37]. RSA-155 is now know to be insu�ciently secure for most applications.

Despite these successes, PKI can still be made computationally secure. For example, as demon-

strated above, RSA-155 might be considered su�ciently secure if a certain piece of information

needs to be secure for only a short period of time. Longer-term security can be achieved by using

longer keys. Barring the surprise creation of an e�cient factoring algorithm, PKI based on prime

factorization will likely remain secure and useful until the advent of quantum computing (when

this occurs, any feasible RSA protocol will be rendered insecure in a matter of minutes or hours by

the employment of Shor’s Algorithm [34]).

13This was done in response to a challenge issued by RSA Laboratories in 1991. A series of progressively larger
RSA numbers were announced, with cash prizes promised to the teams who could factor them. The numbers used in
the example above were the actual prime factors found by the team for the RSA-155 number given in the challenge.
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APPENDIX C:

QKD Demonstration Apparatus Miscellaneous Pictures

and Screenshots

Selected pictures and screenshots are included here to provide context to the explanations in Chapter

3.

C.1 QKD Demonstration Apparatus: Optical Portion
Photos of the optical portion of the QKD demonstration apparatus. Major components are labeled;

minor optical components such as mirrors and static waveplates are shown but not labeled.

C.1.1 QKD Demonstration Apparatus: All Components

Figure C.1. Picture of the full QKD demonstration apparatus described in
Section 3.1.

C.2 QKD Demonstration Apparatus: Single Photon Genera-
tion Block
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Figure C.2. Picture of the Single Photon Generation Block, described in
Section 3.1.1.

C.3 QKD Demonstration Apparatus: Polarization Rotation
Block
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Figure C.3. Picture of Polarization Rotation Block A, described in Section
3.1.1.
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C.4 QKD Demonstration Apparatus: Single Photon Detection
Block

Figure C.4. Picture of the Single Photon Detection Block, described in Sec-
tion 3.1.2.

C.5 QKD Demonstration Apparatus: Software Portion
The scripts controlling various aspects of the QKD demonstration apparatus, along with brief

descriptions of their functionality.

C.5.1 QKD Demonstration Apparatus: Computer A
The script on Computer A is written in Python 3. It communicates with Microcontroller A via

PySerial. User enters a message to be encrypted into a text file and enters the filepath of the message

in the “Retrieve message from text file” section. User enters desired transmission parameters into the

section labeled “User Inputs”. When run, the script coordinates with Microcontoller A to generate

lists of randomly generated raw key bits and polarization bases. When key generation is complete,

the script retrieves those lists and stores them in a new folder. User enters the desired filepath

of this new folder in the “Setup” section, under “Create data directory”. Subsequently, the script

processes the retrieved information in order to implement BB84 protocol and determine usability

of the generated key.
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# This script is for Computer A of the BB84 Quantum Key Distribution (QKD) demonstration

# apparatus.

# Alice records a message in a text file.

#

# This script reads that message and then generates a secure key by interacting with an

# optical setup via an Arduino plugged into the computer’s USB port.

#

# This script then processes the key and generates a version of the key for Alice and a

# version of the key for Bob.

#

# Then, the script calculates and displays the error rate between the two keys.

#

# Finally, it uses the keys to encrypt and then decrypt Alice’s message and displays the

# results.

# ==============================

# Libraries

# ==============================

import os

import math

import time

import serial

import random

import numpy as np

from datetime import datetime

# ==============================

# Retrieve message from text file

# ==============================

messageFile = open( ’messageToSend/messageToSend.txt’, ’r’ )

message = messageFile.read()

messageFile.close()

# message = "x" # Un-comment if no message is to be transmitted
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# ==============================

# User inputs

# ==============================

keyLength = 10 # Number of raw bits to generate per loop (don’t exceed 5000)

repLength = 10 # Artifact of previous editions of code - should be set equal to keyLength

n = 1 # Number of loops (total length of raw key = keyLength * n)

binSize = 20.0 # frequency as read on the pulse generator (kHz)

cryptNum = 3 # for cipher: how many bits to devote to scrambling each character

# ==============================

# Boring stuff

# ==============================

# Variable initialization

# ==============================

testing = []

lenCheck = []

Ch1 = []

Ch2 = []

TB = []

BA = []

BB = []

jitter = 300

# Conversion of pulse frequency to pulse length

# ==============================

bucketSize = ( 1 / binSize ) * 500 + jitter # Change Hz to microseconds and add a buffer

# for Arduino clock jitter

# Variables used for testing/debugging

# ==============================

# testing = 1 # un-comment to set Bob’s key equal to Alice’s for testing/debugging

lenCheck = 0 # Comment to turn on length check

# ==============================
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# Setup

# ==============================

# Create data directory

# ==============================

DTG = datetime.today().strftime( ’%Y_%m_%d_%H%M_%S’ )

path = ’keyGen/07Jul06/%s’ % DTG

os.mkdir( path )

print( ’***Data directory for this run:\n***%s’ % path )

dataFile = open( ’%s/counts.txt’ % path, ’a’ )

keyFile = open( ’%s/key.txt’ % path, ’a’ )

# Open serial port

# ==============================

ser = serial.Serial(

port = ’/dev/cu.usbmodem141101’,

baudrate = ’19200’

)

# ============================================================

# ============================================================

# Do the thing

# ============================================================

# ============================================================

# Start counting at the beginning of the next whole second

# ==============================

T = float( datetime.today().strftime( ’%S.%f’ )[:-6] )

while( T > 1 ):
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T = T - 1

# Main loop

# ==============================

t0 = datetime.now()

for g in range( 0, n ):

# Send the start command

ser.write( b’<%0d,%0d,%0d>\n’ % ( T, repLength, bucketSize ) )

ser.flush()

if( g == 0 ):

# Print the Arduino’s acknowledgement for the first loop

# ==============================

print( "\n" + str( ser.readline() ).lstrip( ’b\’’ ).rstrip( ’\\r\\n\’’ ) )

print( "\nStarting loop 1 of " + str( n ) )

else:

ser.readline() # Disregard the Arduino’s ready message on subsequent loops

# Retrieve counts for this loop

# ==============================

x = ( str( ser.readline() ).lstrip( ’b\’’ ).rstrip( ’\\r\\n\’’ ) )

countsCh1, countsCh2, trueBits, basisAlice, basisBob = x.split( ’;’ )

countsCh1 = countsCh1.rstrip( "," ).split( "," )

countsCh2 = countsCh2.rstrip( "," ).split( "," )

trueBits = trueBits.rstrip( "," ).split( "," )

basisAlice = basisAlice.rstrip( "," ).split( "," )

basisBob = basisBob.rstrip( "," ).split( "," )

# Store the counts in a data file

# ==============================

for i in range( 0, len( countsCh1 ) ):
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dataFile.write( ’%s, %s\n’ % ( countsCh1[ i ], countsCh2[ i ] ) )

keyFile.write( ’%s, %s, %s\n’ % ( trueBits[ i ], basisAlice[ i ], basisBob[ i ] ) )

# Save all retrieved info into variables for later use

# ==============================

Ch1 = Ch1 + countsCh1

Ch2 = Ch2 + countsCh2

TB = TB + trueBits

BA = BA + basisAlice

BB = BB + basisBob

timeLoop = datetime.now() - t0 # Loop end time

print( "Loops complete: " + str( g + 1 ) + " of " + str( n ) + "; elapsed time: "

+ str( timeLoop ) ) # Show completed loop index

if( g < n - 1 ):

ser.readline() # Disregard the Arduino’s end message when the key isn’t done

else:

tf = datetime.now() - t0

print("Done generating ray key. Elapsed time: " + str( tf ) )

print(str(ser.readline()).lstrip(’b\’’).rstrip(’\\r\\n\’’)) # Print end message

# Close out

# ==============================

dataFile.close()

keyFile.close()

# ============================================================

# ============================================================

# Processing

# ============================================================

# ============================================================
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# ==============================

# Boring stuff

# ==============================

countsCh1 = Ch1

countsCh2 = Ch2

trueBits = TB

basisAlice = BA

basisBob = BB

bobsKey = []

badBits = []

alisKey = []

checkBob = []

checkAli = []

bobsCheckedKey = []

alisCheckedKey = []

errorsFound = 0

errorsActual = 0

Akeydisp = []

Bkeydisp = []

# ==============================

# Sifting step

# ==============================

for i in range( 0, len( trueBits ) ):

if( int( basisBob[ i ] ) == int( basisAlice[ i ] ) and int( countsCh1[ i ] ) !=

int( countsCh2[ i ] ) and int( countsCh2[ i ] ) <= 1 and int( countsCh1[ i ] ) <= 1 ):

bobsKey.append( int( countsCh1[ i ] ) ) # Bob constructs his side of the key

badBits.append( 0 )

Bkeydisp.append( int(countsCh1[ i ]) )

Akeydisp.append( int(trueBits[ i ]) )
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else:

badBits.append( 2 ) # Bob tells Alice which bits to throw out

Bkeydisp.append( 2 )

Akeydisp.append( 2 )

for i in range( 0, len( trueBits) ):

if( badBits[ i ] == 0 ):

alisKey.append( int( trueBits[ i ] ) ) # Alice constructs her side of the key

# ==============================

# Comparison step

# ==============================

for i in range( 0, len( bobsKey ) ):

chooseBit = random.randrange( 2 )

if( chooseBit == 1 ):

checkBob.append( bobsKey[ i ] )

checkAli.append( alisKey[ i ] )

else:

bobsCheckedKey.append( bobsKey[ i ] )

alisCheckedKey.append( alisKey[ i ] )

for i in range( 0, len( checkBob ) ):

if( checkBob[ i ] != checkAli[ i ] ):

errorsFound = errorsFound + 1

for i in range( 0, len( bobsCheckedKey ) ):
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if( bobsCheckedKey[ i ] != alisCheckedKey[ i ] ):

errorsActual = errorsActual + 1

# ==============================

# If error rate is low enough, record the key and move on. If not, try again.

# ==============================

if( len( bobsCheckedKey ) >= len( message ) * 8 or lenCheck == 0 ):

errorRateCalculated = float( errorsFound )/len( checkBob )*100

errorRateActual = float( errorsActual )/len( bobsCheckedKey )*100

transmissionEfficiency = float( len( bobsCheckedKey ) ) / ( keyLength * n ) * 100

print( "\nRaw key length: " + str( len( countsCh1 ) ) )

print( "Generated key length: " + str( len( bobsCheckedKey ) ) )

print( "Transmission efficiency: %.2f%%" % transmissionEfficiency )

print( "\nBits checked: " + str( len( checkBob ) ) )

print( "Errors found: " + str( errorsFound ) )

print( "\nCalculated error rate: %.2f%%" % errorRateCalculated )

print( "Actual error rate: %.2f%%" % errorRateActual )

keyFacts = open(’%s/keyFacts.txt’ % path , ’a’ )

keyFacts.write( "\nRaw key length: %s\n" % str( len( countsCh1 ) ) )

keyFacts.write( "Generated key length: %s\n" % str( len( bobsCheckedKey ) ) )

keyFacts.write( "Transmission efficiency: %.2f%%\n" % transmissionEfficiency )

keyFacts.write( "\nBits checked: %s\n" % str( len( checkBob ) ) )

keyFacts.write( "Errors found: %s\n" % str( errorsFound ) )

keyFacts.write( "Calculated error rate: %.2f%%\n" % errorRateCalculated )

keyFacts.write( "\nActual error rate: %.2f%%" % errorRateActual )

keyFacts.close()

finalKeyBob = open( ’%s/bobsKey.txt’ % path, ’a’ )

finalKeyAli = open( ’%s/alisKey.txt’ % path, ’a’ )

for i in range( 0, len( bobsCheckedKey ) ):
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finalKeyBob.write( ’%s’ % str( bobsCheckedKey[ i ] ) )

finalKeyAli.write( ’%s’ % str( alisCheckedKey[ i ] ) )

finalKeyBob.close()

finalKeyAli.close()

else:

print("Your key was too short! You only generated " + str( len( bobsCheckedKey ) )

+ " characters (you needed " + str( len( message ) * 8 ) + "). Try again.")

# ============================================================

# ============================================================

# Cryptography

# ============================================================

# ============================================================

# ==============================

# Boring stuff

# ==============================

decipher = []

cryptogram = []

cryptogramAscii = []

cipher = []

messageAscii = []

decrypt = []

bobsMessage = []

asciiTableLength = 255

asciiMin = 32

# ==============================

# Retrieve the keys from the files they were just saved to

# ==============================
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alice = open( ’%s/alisKey.txt’ % path, ’r’ )

keyAli = alice.read()

alice.close()

bobby = open( ’%s/bobsKey.txt’ % path, ’r’ )

keyBob = bobby.read()

bobby.close()

# ==============================

# Make a cryptogram using Alice’s key

# ==============================

for j in range( 0, len( message ) ):

cipher.append( int( keyAli[ j * cryptNum : j * cryptNum + cryptNum ], base = 2 ) )

cryptogramAscii.append( ord( message[ j ] ) + cipher[ j ] + asciiMin )

if( cryptogramAscii[ j ] > asciiTableLength ):

cryptogramAscii[ j ] = cryptogramAscii[ j ] - asciiTableLength + asciiMin

cryptogram.append( chr( cryptogramAscii[ j ] ) )

# ==============================

# ==============================

# Transmit the cryptogram along a public channel (just pretending for now)

# ==============================

# ==============================

# ==============================

# Use Bob’s key to decipher the cryptogram

# ==============================

if( testing == 1 ):
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keyBob = keyAli

for j in range( 0, len( message ) ):

decipher.append( int( keyBob[ j * cryptNum : j * cryptNum + cryptNum ], base = 2 ) )

decrypt.append( ord( cryptogram[ j ] ) - decipher[ j ] - asciiMin)

if( decrypt[ j ] <= asciiMin ):

decrypt[ j ] = decrypt[ j ] + asciiTableLength - asciiMin

if( decrypt[ j ] >= asciiMin and decrypt[ j ] != 255 ):

bobsMessage.append( chr( decrypt[ j ] ) )

else:

bobsMessage.append( " " )

# ==============================

# See how you did!

# ==============================

print( "\nAlice’s original message: " + message )

print( "Cryptogram: " + "".join( cryptogram ) )

print( "Bob’s decrypted message: " + "".join( bobsMessage ) + "\n")

for i in range( 0, len( Ch1 ) ):

Ch1[ i ] = int( Ch1[ i ] )

Ch2[ i ] = int( Ch2[ i ] )

TB[ i ] = int( TB[ i ] )

BA[ i ] = int( BA[ i ] )

BB[ i ] = int( BB[ i ] )

# Uncomment below to see results in the terminal box

# ==============================

# print( Ch1 )
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# print( Ch2 )

# print( BA )

# print( BB )

# print( TB )

# print( Bkeydisp )

# print( Akeydisp )

# print( bobsCheckedKey )

# print( alisCheckedKey )

C.5.2 QKD Demonstration Apparatus: Microcontroller A
The script on Microcontroller A is written in C++. It interacts with Computer A via the Streaming

library, available through the free downloadable Arduino application. Upon power-up, the script

defines variables, establishes connection with Computer A, and sets TTL pin voltage levels. While

no input is available via serial USB input from Computer A, Microcontroller A continuously loops

the function getParameters(). When an input is available, the parseData() function reads it and

extracts commands. Parsed commands are then sent to the function doTheThing(), which generates

random raw key bits and polarization bases and coordinates with the optical apparatus to conduct

key transmission. When transmission is complete, the endTransmission() function sends the lists

of bits, bases, and transmitted data back to Computer A and resets variables and pins in order to

prepare for another transmission.

/*

This script is for Microcontroller A of the BB84 Quantum Key Distribution (QKD) demonstration apparatus.

It takes inputs from a controlling station via serial USB, then generates a raw key by

periodically pulsing a BB84 optical setup. It also generates and stores the transmitted

bits, the bases chosen by the sender and receiver (Alice and Bob), and the raw key

generated at the receiver end. When the raw key is complete, all of the stored data is

transferred to the controlling station and the Arduino resets itself.

updated by Jack Brault on 7 April 2021

*/

// ==============================
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// Libraries

// ==============================

#include<Streaming.h>

// ==============================

// Definitions

// ==============================

// Stuff for communicating with the PC

// ==============================

const byte buffSize = 40;

const char startMarker = ’<’;

const char endMarker = ’>’;

boolean readInProgress = false;

char inputBuffer[buffSize];

byte bytesRecvd = 0;

// Pin names

// ==============================

int pinCounts[] = { D2, D3, D4, D5, D6, D7, D8, D9 };

int pinOverflow = D10;

int pinClr = D11;

int pinGateEn = D12;

int pinGatePulse = D13;

int pinChannelChooser[] = { A0, A1 };

int pinWin[] = { A2, A3, A4 };

int pinBasisBob = A5;

int pinBitAlice = A6;

int pinBasisAlice = A7;

// Serial inputs

// ==============================

int keyLengthRequested = 5000;

int pulseWidth = 0;

// Stored info

// ==============================
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int countsIn [ 8 ];

int countsDeci [2][ 5000 ];

int trueBits [ 5000 ];

int basisAlice [ 5000 ];

int basisBob [ 5000 ];

int del = 260;

// Counting/loop indices

// ==============================

int i = 0;

int l = 0;

int keyLength = 0;

int pinSetting = 0;

// Time keeping

// ==============================

unsigned long timeRecv = 0;

unsigned long timeStart = 0;

unsigned long binTime = 0;

// Flags

// ==============================

boolean readyMessage = false; // Displays format for input entry

boolean countsOverflow = false; // Informs that an overflow has occurred

// ==============================

// Setup

// ==============================

void setup() {

serialBootup(); // Initializes serial communications

pinDefs(); // Initializes pins

}

// ==============================
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void serialBootup() {

Serial.begin( 19200 );

while ( !Serial ) {;}

}

// ==============================

// Assign all pins

// ==============================

void pinDefs() {

pinMode( pinCounts[ 0 ], INPUT );

pinMode( pinCounts[ 1 ], INPUT );

pinMode( pinCounts[ 2 ], INPUT );

pinMode( pinCounts[ 3 ], INPUT );

pinMode( pinCounts[ 4 ], INPUT );

pinMode( pinCounts[ 5 ], INPUT );

pinMode( pinCounts[ 6 ], INPUT );

pinMode( pinCounts[ 7 ], INPUT );

pinMode( pinOverflow, INPUT );

pinMode( pinClr, OUTPUT );

pinMode( pinGateEn, OUTPUT );

pinMode( pinGatePulse, OUTPUT );

pinMode( pinChannelChooser[ 0 ], OUTPUT );

pinMode( pinChannelChooser[ 1 ], OUTPUT );

pinMode( pinWin[ 0 ], OUTPUT );

pinMode( pinWin[ 1 ], OUTPUT );

pinMode( pinWin[ 2 ], OUTPUT );

pinMode( pinBasisBob, OUTPUT );

pinMode( pinBasisAlice, OUTPUT );

pinMode( pinBitAlice, OUTPUT );

digitalWrite( pinCounts[ 0 ], LOW );

digitalWrite( pinCounts[ 1 ], LOW );

digitalWrite( pinCounts[ 2 ], LOW );

digitalWrite( pinCounts[ 3 ], LOW );

digitalWrite( pinCounts[ 4 ], LOW );
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digitalWrite( pinCounts[ 5 ], LOW );

digitalWrite( pinCounts[ 6 ], LOW );

digitalWrite( pinCounts[ 7 ], LOW );

digitalWrite( pinOverflow, LOW );

digitalWrite( pinClr, LOW );

digitalWrite( pinGateEn, LOW );

digitalWrite( pinGatePulse, LOW );

digitalWrite( pinChannelChooser[ 0 ], LOW );

digitalWrite( pinChannelChooser[ 1 ], LOW );

digitalWrite( pinWin[ 0 ], LOW );

digitalWrite( pinWin[ 1 ], LOW );

digitalWrite( pinWin[ 2 ], LOW );

digitalWrite( pinBasisBob, LOW );

digitalWrite( pinBasisAlice, LOW );

digitalWrite( pinBitAlice, LOW );

}

// ==============================

// ==============================

// Main loop

// ==============================

// ==============================

// ==============================

void loop() { getParameters(); }

// ==============================

// ==============================

void doTheThing() {

digitalWrite( pinGateEn , HIGH ); // Enable key generation

for ( int i = 1 ; i <= keyLengthRequested ; i++) {
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clrFPGA();

gateOpenShut();

readCounts();

keyLength++;

readyMessage = false;

}

digitalWrite( pinGateEn, LOW );

endTransmission(); // Sends stored data via USB

// and resets the Arduino in preparation for another key

}

// ==============================

// ==============================

void parseData() {

char * strtokIndx;

strtokIndx = strtok( inputBuffer, "," );

timeStart = atoi( strtokIndx );

strtokIndx = strtok( NULL, "," );

keyLengthRequested = atoi( strtokIndx );

strtokIndx = strtok( NULL, "," );

pulseWidth = atoi( strtokIndx );

Serial << "Received instructions. Generating raw key of length " << keyLengthRequested

<< " using bin width of " << pulseWidth << " microseconds." << endl;

}

// ==============================

// ==============================
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void clrFPGA() {

digitalWrite( pinClr, HIGH );

digitalWrite( pinClr, LOW );

}

// ==============================

// ==============================

void gateOpenShut() {

// Comment/uncomment/tweak individual lines/blocks according to desired function.

/*

// If switching bases randomly

// ==============================

pinSetting = random( 2 );

basisBob[ keyLength ] = pinSetting;

if ( pinSetting == 0 ) { digitalWrite( pinBasisBob , LOW ); }

else { digitalWrite( pinBitAlice , HIGH ); }

pinSetting = random( 2 );

basisAlice[ keyLength ] = pinSetting;

if ( pinSetting == 0 ) { digitalWrite( pinBasisAlice , LOW ); }

else { digitalWrite( pinBasisAlice, HIGH ); }

pinSetting = digitalRead( pinBasisAlice );

basisAlice[ keyLength ] = pinSetting;

if( pinSetting == 0 ) { digitalWrite( pinBasisAlice, HIGH ); }

if( pinSetting == 1 ) { digitalWrite( pinBasisAlice, LOW ); }

pinSetting = digitalRead( pinBasisBob );

basisBob[ keyLength ] = pinSetting;

if( pinSetting == 0 ) { digitalWrite( pinBasisBob, HIGH ); }

if( pinSetting == 1 ) { digitalWrite( pinBasisBob, LOW ); }

*/
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// If no basis switching

// ==============================

basisBob[ keyLength ] = 0;

basisAlice[ keyLength ] = 0;

// Generate key bits

// ==============================

pinSetting = random( 2 ); // random key

// pinSetting = 0; // all zeros

if( pinSetting == 0 ) { trueBits[ keyLength ] = 1; }

if( pinSetting == 1 ) { trueBits[ keyLength ] = 0; }

if( pinSetting == 0 ) { digitalWrite( pinBitAlice , HIGH ); }

else { digitalWrite( pinBitAlice, LOW ); }

// Open and close the counting gate

// ==============================

delay( del ); // Wait for the HV circuit to set

binTime = micros(); // Open time bin

digitalWrite( pinGatePulse , HIGH ); // Open the gate

while ( micros() < binTime + pulseWidth ) ; // Wait until gate closes

digitalWrite( pinGatePulse , LOW ); // Close time bin

}

//==============================

//==============================

void readCounts() { for ( int i = 0 ; i <= 1 ; i++ ) {

if ( i == 0 ) { digitalWrite( pinChannelChooser[ 0 ] , HIGH ); }

else { digitalWrite( pinChannelChooser[ 1 ] , HIGH ); }

if ( digitalRead( pinOverflow ) == 1 ) { countsOverflow = true; }

if ( countsOverflow ) {

for ( int j = 0 ; j <= 7; j++ ) { countsIn[ j ] = 0; }
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Serial << "Overflow detected on bit " << keyLength+1 << " of channel " << i

<< ". Bit set to zero." << endl;

countsOverflow = false;

}

else { for ( int j = 0 ; j <= 7 ; j++ )

{ countsIn[ j ] = digitalRead( pinCounts[ j ] ); } }

if ( i == 0 ) { digitalWrite( pinChannelChooser[ 0 ] , LOW ); }

else { digitalWrite( pinChannelChooser[ 1 ] , LOW ); }

int l = 0;

for ( int k = 0 ; k <= 7 ; k++ ) { l = l + countsIn[ k ]*pow( 2, k ); }

countsDeci [ i ][ keyLength ] = l;

}

}

//==============================

//==============================

void endTransmission() {

for ( int i = 0 ; i <= keyLengthRequested - 1 ; i++ )

{ Serial.print( countsDeci[ 0 ][ i ] ); Serial.print( "," ); }

Serial.print( ";" );

for ( int i = 0 ; i <= keyLengthRequested - 1 ; i++ )

{ Serial.print( countsDeci[ 1 ][ i ] ); Serial.print( "," ); }

Serial.print( ";" );

for ( int i = 0 ; i <= keyLengthRequested - 1 ; i++ )

{ Serial.print( trueBits[ i ] ); Serial.print( "," ); }

Serial.print( ";" );

for ( int i = 0 ; i <= keyLengthRequested - 1 ; i++ )

{ Serial.print( basisAlice[ i ] ); Serial.print( "," ); }

Serial.print( ";" );

for ( int i = 0 ; i <= keyLengthRequested - 1 ; i++ )
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{ Serial.print( basisBob[ i ] ); Serial.print( "," ); }

Serial.println();

for ( int i = 0 ; i <= 5000 ; i++ ) {

countsDeci [ 0 ][ i ] = 0;

countsDeci [ 1 ][ i ] = 0;

trueBits [ i ] = 0;

basisAlice [ i ] = 0;

basisBob [ i ] = 0;

}

keyLength = 0;

}

//==============================

//==============================

void getParameters() {

if ( !readyMessage ) {

Serial << "Enter < Start time, Desired Raw Key Length, Pulsewidth > :" << endl;

readyMessage = true; }

while ( Serial.available() < 1 ) ; // Do nothing until a serial input is received

char x = Serial.read();

timeRecv = micros();

if ( x == endMarker ) {

readInProgress = false;

inputBuffer[bytesRecvd] = 0;

parseData();

while ( micros() < timeRecv + timeStart ) ; // Wait until prescribed start time
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doTheThing();

}

if ( readInProgress ) {

inputBuffer[bytesRecvd] = x;

bytesRecvd ++;

if ( bytesRecvd == buffSize ) { bytesRecvd = buffSize - 1; }

}

if ( x == startMarker ) {

bytesRecvd = 0;

readInProgress = true;

}

}

//==============================

//==============================

C.5.3 QKD Demonstration Apparatus: Field Programmable Gate Array
The FPGA is programmed in Quartus II, a Hardware Description Language (HDL) from Intel.

The bulk of the program was developed by Qubitekk for its CC1 Coincidence Counter, but was

tweaked for this application in order to make it loop more quickly. The program begins counting

pulses on its input pins when a gate signal is received, and stops when the gate signal is removed.

When counts exceed 255, an Overflow bit is recorded. After counts are recorded, Microcontroller

A prompts the FPGA to send its recorded data via TTL serial connection. Once Microcontroller A

receives the data, it prompts the FPGA to clear and reset in preparation for the next gate signal.
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Figure C.5. Snippet of the control script on the FPGA described in Section
3.1.2. This HDL script detects pulses from the SPCMs and passes informa-
tion to Microcontroller B. Written in Quartus II.
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