

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

A MACHINE LEARNING APPROACH TO NETWORK
SECURITY CLASSIFICATION USING NETFLOW DATA

by

John R. Watkins

September 2021

Thesis Advisor: Murali Tummala
Co-Advisor: John C. McEachen

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions
for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington, DC, 20503.
 1. AGENCY USE ONLY
(Leave blank) 2. REPORT DATE

 September 2021 3. REPORT TYPE AND DATES COVERED
 Master’s thesis

 4. TITLE AND SUBTITLE
A MACHINE LEARNING APPROACH TO NETWORK SECURITY
CLASSIFICATION USING NETFLOW DATA

 5. FUNDING NUMBERS

 REPJH

 6. AUTHOR(S) John R. Watkins

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

 8. PERFORMING
ORGANIZATION REPORT
NUMBER

 9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)
NSA

 10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

 11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.
 12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited. 12b. DISTRIBUTION CODE

 A
13. ABSTRACT (maximum 200 words)
 All computer network traffic can be associated with a specific signature based on a feature set within its
metadata. There has been a significant effort in preprocessing data for machine learning for the purposes of
transforming raw data into features that represent a large dataset and improve the accuracy of predictive
models. This thesis develops a machine learning approach that can analyze and classify network traffic to
determine the level and degree of secure practices within specific network identifiers. We propose a novel
continuous learning methodology in which a clustering technique was utilized to identify labels to a
previously unlabeled dataset. A neural network algorithm was then trained on the labeled flows and tested
on an unknown dataset to determine the network security classification. This previously unknown dataset
was then used to retrain the neural network, thus continuously expanding the database of feature sets for
training in order to increase the security classification accuracy. By implementing the proposed
methodology on a widely known dataset, we achieved an increase in security classification performance as
compared to traditional classification techniques.

 14. SUBJECT TERMS
machine learning, deep learning, concept drift, intrusion detection, computer network
security

 15. NUMBER OF
PAGES
 67
 16. PRICE CODE

 17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

 18. SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

 19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

 20. LIMITATION OF
ABSTRACT

 UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited.

A MACHINE LEARNING APPROACH TO NETWORK SECURITY
CLASSIFICATION USING NETFLOW DATA

John R. Watkins
Major, United States Marine Corps

BSE, Northern Arizona University, 2007

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
September 2021

Approved by: Murali Tummala
 Advisor

 John C. McEachen
 Co-Advisor

 Douglas J. Fouts
 Chair, Department of Electrical and Computer Engineering

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

 All computer network traffic can be associated with a specific signature based on

a feature set within its metadata. There has been a significant effort in preprocessing data

for machine learning for the purposes of transforming raw data into features that

represent a large dataset and improve the accuracy of predictive models. This thesis

develops a machine learning approach that can analyze and classify network traffic to

determine the level and degree of secure practices within specific network identifiers. We

propose a novel continuous learning methodology in which a clustering technique was

utilized to identify labels to a previously unlabeled dataset. A neural network algorithm

was then trained on the labeled flows and tested on an unknown dataset to determine the

network security classification. This previously unknown dataset was then used to retrain

the neural network, thus continuously expanding the database of feature sets for training

in order to increase the security classification accuracy. By implementing the proposed

methodology on a widely known dataset, we achieved an increase in security

classification performance as compared to traditional classification techniques.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. OBJECTIVE ..1
B. RELATED WORK ..2
C. ORGANIZATION ...3

II. NETWORK TRAFFIC INFORMATION AND MACHINE
LEARNING MODELS ..5
A. NETWORK TRAFFIC INFORMATION ...5

1. Well Known Ports ..6
2. Secure Ports ..7

B. DEEP LEARNING: SUPERVISED VERSUS UNSUPERVISED8
1. k-means Clustering ..8
2. Gaussian Mixture Models ...9
3. Density-Based Spatial Clustering of Applications with

Noise (DBSCAN) ..10
4. Agglomerative Hierarchical Clustering Using

Dendrograms ..11
C. CLASSIFICATION ...12

III. CONTINUOUS TRAINING METHODOLOGY ...15
A. PROPOSED METHODOLOGY ..15
B. DATA PREPROCESSING ...16
C. MACHINE LEARNING ALGORITHMS ..17

IV. SIMULATION RESULTS AND ANALYSIS ...19
A. SETUP OF THE SIMULATION ENVIRONMENT19
B. SECURE NETWORK AND MAWI DATA PREPROCESSING19
C. CLUSTERING RESULTS ..22

1. Secure Network Dataset ..22
2. MAWI Dataset ...27

D. KNN AND DEEP NEURAL NETWORK RESULTS28
1. Classes of Secure Networks ...28
2. KNN Results on Secure Network Data28
3. Neural Network Results on Secure Network Data....................28
4. Expanded Dataset Results ...32
5. Grid Search Model Results ...32
6. Continuous Training Method Results ..34

viii

7. Expanding the Dataset ...37

V. CONCLUSIONS AND RECOMMENDATIONS ...41
A. SUMMARY OF WORK..41
B. SIGNIFICANT CONTRIBUTIONS ..42
C. FUTURE WORK ...42

APPENDIX. PYTHON CODE ..45
A. PYTHON CODE FOR USING GRIDSEARCH TO OPTIMIZE

THE HYPERPARAMETERS OF THE NEURAL NETWORK45
B. PYTHON CODE FOR CREATING THE NEURAL

NETWORK MODEL WITH OPTIMIZED GRIDSEARCH
HYPERPARAMETERS ...46

LIST OF REFERENCES ..49

INITIAL DISTRIBUTION LIST ...51

ix

LIST OF FIGURES

Figure 1. Netflow collection diagram. Source: [5]. ...6

Figure 2. Example of k-means clustering with five clusters. Adapted from [9].9

Figure 3. Example of GMM clustering methodology with three clusters.
Adapted from [10]..10

Figure 4. Example of DBSCAN clustering with outliers. Adapted from [11].11

Figure 5. Example of hierarchical clustering dendrogram. Adapted from [12].12

Figure 6. Example of fully connected neural network with two hidden layers.........14

Figure 7. Proposed continuous training methodology consisting of the process
of taking unlabeled data, preprocessing, clustering, labeling,
classifying, and continuously updating the accuracy metric16

Figure 8. Data preprocessing flow from initial data capture to filtered and
sorted NetFlow data ready for input into the desired algorithm20

Figure 9. Sample of classification dataset input with 13 dimensions, including
duration, source and destination IP addresses represented as octets,
source and destination ports, input packets, and input bytes for each
flow ..20

Figure 10. Elbow method for determining number of k-clusters. The number of
clusters are optimized between the elbow values of 3 and 523

Figure 11. Secure network k-means clustering results for user defined number
of cluster inputs of 3, 4, and 5 clusters ..24

Figure 12. Secure network GMM clustering results for user defined number of
gaussian distribution inputs of 3, 4, and 5 ...25

Figure 13. Secure network DBSCAN results with user defined minimum
Euclidian distance of ε = 0.1, 0.3 and minimum samples of 3 and 526

Figure 14. Results for k-means clustering on the four most frequently used
NetIDs in the MAWI dataset with a user defined parameter of k = 3
clusters ...27

Figure 15. Graphical representations of the accuracy metric (a) and loss metric
(b) for a neural network architecture with one hidden layer30

x

Figure 16. Graphical representations of the accuracy metric (a) and loss metric
(b) for a neural network architecture with two hidden layers30

Figure 17. Graphical representations of the accuracy metric (a) and loss metric
(b) for a neural network architecture with three hidden layers31

Figure 18. Performance of grid search model with optimized hyperparameters34

Figure 19. Classification results for rounds 1, 2, and 3 of the simulated dynamic
flow of unknown network traffic by percentage of flows associated
with each security classification ..36

Figure 20. Classification results for rounds 1, 2, and 3 by network identifier on
the expanded dataset by percentage of flows associated with each
security classification ...38

Figure 21. Class imbalance between the 5 and 15-minute MAWI data captures.
“0” is secure, “1” is moderately secure, “2” is insecure38

xi

LIST OF TABLES

Table 1. Some well-known ports within the datasets...7

Table 2. Commonly used secure ports ...7

Table 3. Netflow features used in machine learning algorithms17

Table 4. One-hot encoding for Netflow data labels ...21

Table 5. Initial hyperparameters for the neural network using the Keras
machine learning library ..29

Table 6. Testing results of the first model ...31

Table 7. Testing results of 3 hidden layer model on unknown data32

Table 8. Grid search hyperparameter values ..33

Table 9. Accuracy of optimized neural network model tested on a simulated
dynamic flow of unknown network data ...36

Table 10. Accuracy of optimized neural network model tested on a simulated
dynamic flow of unknown network data in reverse order37

Table 11. Accuracy of the optimized neural network model tested on an
expanded dataset ..37

xii

THIS PAGE INTENTIONALLY LEFT BLANK

xiii

LIST OF ACRONYMS AND ABBREVIATIONS

DBSCAN Density-Based Spatial Clustering of Applications with Noise
DNN Deep Neural Network
GMM Gaussian Mixture Models
IANA Internet Assigned Numbers Authority
KNN K-Nearest Neighbors
MAWI Measurement and Analysis of the WIDE Internet
NetID Network Identifier
WCSS Within-Cluster Sum of Square
WIDE Widely Integrated Distributed Environment

xiv

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

Computer networks have become a critical component of our society, the

Department of Defense, and our daily lives. All computer network traffic can be associated

with a specific signature based on a given feature set within its metadata information.

Establishing a baseline of normal secure network characteristics provides an observer the

ability to determine any deviations from baseline operations and make an educated decision

as to the relative security status of the network at any given time. These deviations from

normalcy are considered anomalies and could identify insecure practices within a network

exposing significant vulnerabilities to potential malicious actors.

The focus of this work is to develop a machine learning approach for classifying

and analyzing metadata within network traffic to determine the characteristics of a network

and the level and degree of secure practices within. By training a machine learning

algorithm to identify specific feature sets of different network flows, the ability to classify

a network as either secure, moderately secure, or insecure with a high level of accuracy

significantly increases. By constructing a dynamic flow of information through the

proposed scheme, a determination as to the security status of the network can be made. The

data is then stored and combined with the previously known dataset and the algorithm is

retrained to establish a new baseline. It is then applied to new incoming data thereby

increasing the accuracy and providing a near real time assessment as to the security status

of the network.

A. OBJECTIVE

The objective of this thesis is to implement a machine learning algorithm in order

to classify the security status of a computer network based on metadata within its network

flows. First, the metadata must be preprocessed into a format that is acceptable for the

chosen machine learning algorithm. It is critical that all errors in collection of the data be

removed, and the remaining data be prepared for input to the respective machine learning

algorithm.

2

Flow record exports encapsulated in the NetFlow format are the primary means of

metadata collection and individual flows are used as input into the models. The prepared

flows are then first input into an unsupervised clustering model to identify and extract the

relevant classes associated with each cluster within the dataset. Following the development

of classes, labels are assigned to the respective flows, and the data is again preprocessed

for input into a deep neural network. The machine learning algorithm is then trained and

tested on the known dataset, then applied to the newly collected dataset for the purpose of

network security classification.

B. RELATED WORK

The development of neural networks and their ability to identify hidden features

within data have made them ideal for image classification problems. In their paper, Tiwari

et al. discuss the use of stacked convolutional layers used for feature extraction and a fully

connected layer for classification [1]. The convolutional layers have an added benefit of

feature reduction that is especially useful when dealing with higher resolution digital

images. When analyzing the feature space of the input images, it became apparent that this

approach could be used with computer network traffic as well. The variety of feature sets

that can be extracted from Netflow data can be modeled as feature vectors as is done in

Tiwari et al.’s paper [1] for classification. The preprocessing of the data is significantly

different, but the implementation of the classification architecture is relatively similar.

Neural networks are now a commonly used tool for network intrusion detection

systems and an effort to maximize their effectiveness has led to a great deal of research on

the topic. Mohammadpour et al. [2] discuss a novel concept for the identification of

network intrusions through the use of a convolutional neural networks for feature

extraction followed by a fully connected neural network for classification. The authors

used a pre-labeled dataset of network intrusions and thus did not require an unsupervised

learning technique. However, the results for feature set selection and the technique for

classification became the base for the proposed methodology in this thesis.

Direct capture of computer network traffic is not always feasible which necessitates

the use of more readily accessible metadata that can be found in computer network flow

3

information. Kim et al. and Farhan et al. [3], [4] demostrate the concept that access to

features available within flow-based attacks can identify, with high levels of accuracy,

network intrusions of varying types. These feature sets became the basis for the

classification of security status of computer networks for this work with respect to the

temporal, volumetric, and a myriad of other features associated with network flows.

C. ORGANIZATION

The remainder of this thesis is structured as follows. Chapter II provides a

background of computer network traffic information, deep learning in both supervised and

unsupervised implementations, and a detailed discussion of clustering and classification

algorithms. Chapter III presents the details and process for the proposed continuous

training methodology, an introduction to the datasets used in this research, and an

explanation of the specific machine learning algorithms implemented. Chapter IV details

the analysis and results of the different machine learning techniques and the levels of

accuracy associated with each. Finally, Chapter V concludes the thesis with the most

significant results and recommendations for future work.

4

THIS PAGE INTENTIONALLY LEFT BLANK

5

II. NETWORK TRAFFIC INFORMATION AND MACHINE
LEARNING MODELS

Prior to discussing the methodology used in Chapter III, it is necessary to discuss

the basics concepts of network traffic information and deep learning methods used in this

thesis. It is important to understand how Netflow data is used during data preprocessing

and how the computer port information plays a vital role in the classification process.

Additionally, a basic understanding of how different clustering and classification

algorithms work will facilitate a clearer understanding of the results and analysis that will

follow.

A. NETWORK TRAFFIC INFORMATION

A computer network is a group of computers that communicate using a common

set of protocols over various mediums for the purpose of sharing resources and information

between them. The information shared between these computers is referred to as network

traffic and is composed of various amounts of data moving across the network at any given

point in time via various computer ports. These ports serve as the interface between

computers and play a large role in the security of a network by either permitting or blocking

information flow. Computer network traffic can be captured and monitored several

different ways. One of the most common and efficient ways to monitor networks is to use

a flow record collection system incorporating a flow record protocol. The most popular

flow record protocol is the NetFlow protocol, developed by Cisco, “that collects

information about all the traffic running through a Netflow-enabled device, records traffic

data, and helps discover traffic patterns” [5]. As seen in Figure 1, there are three main

components to a flow record collection system that are critical to creating and processing

Netflow data: The exporter, collector, and analyzer. The exporter keeps track of the packets

moving in and out and creates records to be sent to the collector. The collector then stores

the reports and sends them to the analyzer which is an application that can analyze the

records for specific information such as anomaly detection [5].

6

Figure 1. Netflow collection diagram. Source: [5].

The Internet Assigned Numbers Authority (IANA) is the recognized entity which

controls the assignment of internet protocol resources and port numbers among several

other things [6]. These standardized port assignments are used as a basis for the

determination of security status within specific network identifiers.

1. Well Known Ports

IANA assigns port numbers based on three different categories. Port numbers

between 0 and 1023 are considered “Well Known” ports. These ports are both assigned to

specific standard services and controlled by IANA. Port numbers between 1024 and 49151

are considered “Registered” ports and are not assigned or controlled but are registered. Port

numbers between 49152 and 65535 are considered “Dynamic or Private” ports and are

neither assigned, controlled, or registered [7]. With the advent of new technologies and the

increasing demand for information the range of well-known ports has started to expand

resulting in standard server network traffic using ports as high as 10000. The most

frequently accessed well-known ports within the datasets can be seen in Table 1.

7

Table 1. Some well-known ports within the datasets

Port Number Description
0 Wildcard port that tells the system to find a suitable port number
22 Secure Shell (SSH)
23 Telnet
25 Simple Mail Transfer Protocol (SMTP)
53 Domain Name Service queries (DNS)
80 Hypertext Transfer Protocol (HTTP)
443 Hypertext Transfer Protocol Secure (HTTPS)
500 Internet Key Exchange (IKE)

2. Secure Ports

The increase in sensitive information being transferred over computer networks

necessitated the creation of secure services and associated port number assignments to

protect data as it flows between devices. The assignment of these port numbers became

standard to facilitate some form of data authentication and encryption as it is transferred

across a network. Table 2 details the different secure ports that are used in this work and

the proposed service associated with each.

Table 2. Commonly used secure ports

Port Number Description
22 SSH (Secure Shell)
443 HTTPS (Hyper Transfer Protocol Secure over TLS/SSL)
465 SMTPS (Simple Mail Transfer Protocol Secure over TLS/SSL
500 ISAKMP (Internet Security Association and Key Management

Protocol)
563 NNTPS (Network News Transfer Protocol Secure over TLS/SSL)
636 LDAP (Lightweight Directory Access Protocol over TLS/SSL)
989 FTPS (File Transfer Protocol Secure)
990 FTPS Control
993 IMAPS (Internet Message Access Protocol Secure over TLS/SSL)
994 IRCS (Internet Relay Chat Secure over TLS/SSL)
995 POP3S (Post Office Protocol 3 Secure over TLS/SSL)

8

B. DEEP LEARNING: SUPERVISED VERSUS UNSUPERVISED

Within the field of machine learning there are two predominant methods for

training and testing models: supervised and unsupervised learning. Each method has its

own strengths and weaknesses but the main difference between the methods is that

supervised learning requires a labeled dataset which means it has a priori knowledge of the

classification of a sample. This allows the algorithm to determine relationships between

features of a sample associated with a given label in order to make more accurate

predictions on unlabeled data [8]. It can then be inferred that a dataset presented to a

supervised model of larger size with more robust feature set representations will inherently

lead to a more accurate prediction due to the increased amount of information it has access

to. Supervised learning is primarily used for the purposes of classification or regression

analysis.

Unsupervised learning on the other hand is a method by which an algorithm is

presented data that is unlabeled and by developing relationships between different feature

sets within the data, an estimate as to the structure of the data is made [8]. The most

common use for this method is clustering. This provides a means for dimensionality

reduction of higher dimensional data which makes it possible to accurately represent the

data with lower dimensional models. Additionally, unsupervised learning is useful for the

development of labels associated with different clusters which can be used for

classification. A detailed description of the different clustering and classification methods

used in this research is below.

1. k-means Clustering

k-means clustering is one of the most popular methods for unsupervised clustering

available mostly because of the simplicity of the method. The primary objective of the

algorithm is to group similar samples together based on identified feature sets within the

data as can be seen in Figure 2. The variable “k” is a user defined parameter that establishes

the number of centroids to be found within the dataset. The centroid is a variable

representing the center (or mean) of a cluster of data. Every point within the dataset is

assigned to the nearest centroid thereby creating the desired number of clusters [9]. A

9

noteworthy shortcoming of the k-means algorithm is that it does not account for noise in

the dataset in that every point is assigned to a cluster regardless of whether it may be an

outlier or not. The process begins by randomly assigning centroid values and works

iteratively to assign each data point to one of the “k” clusters. A new centroid is then

calculated, and all data points are reassigned to the new closest centroid. This process

works repetitively until either the centroids have stabilized, or a user defined number of

iterations has been conducted.

Figure 2. Example of k-means clustering with five clusters. Adapted from

[9].

2. Gaussian Mixture Models

Gaussian mixture models are similar to the previously discussed k-means method in

that both require the user to define a variable “k” for the number of clusters within the dataset.

The primary difference between the two is that GMM utilize a Gaussian density model to

distinguish between clusters rather than a centroid value as can be seen in Figure 3 [10]. The

probability density function of a Gaussian model is given by

 𝑓𝑓(𝑥𝑥) = 1
𝜎𝜎𝑖𝑖√2𝜋𝜋

𝑒𝑒
−12�

𝑥𝑥−𝜇𝜇𝑖𝑖
𝜎𝜎𝑖𝑖

�
2

 (1)

10

where i = 1, 2, 3. In the example, k = 3, which models the dataset to three different Gaussian

density functions and assigns each datapoint to the cluster accordingly.

Figure 3. Example of GMM clustering methodology with three clusters.

Adapted from [10].

3. Density-Based Spatial Clustering of Applications with Noise
(DBSCAN)

DBSCAN clusters datapoints based on two different user defined parameters. First is

the minimum Euclidean distance between two points 𝜀𝜀 that, if satisfied, assigns those data

points to the same cluster. This parameter acts as a density threshold and controls how tightly

the data points need to be grouped together to constitute a cluster. The second parameter is

the minimum number of points assigned to a cluster. This parameter dictates the minimum

size of a cluster and, in contrast with k-means, makes the algorithm resilient to noise as it

does not require every point to be part of a cluster, which can be seen in Figure 4. It does not

assume regularly shaped clusters and instead by clustering via the density of neighboring

points, it will account for outliers, which makes it an ideal option for noisy datasets.

11

Figure 4. Example of DBSCAN clustering with outliers. Adapted from [11].

4. Agglomerative Hierarchical Clustering Using Dendrograms

Agglomerative hierarchical clustering is another method for determining the

number of classes associated with a given dataset in which each individual observation is

taken as a cluster, and the algorithm works backwards to form pairs of clusters based on

the Euclidean distance between them until there is a single cluster left at the end. This

creates a dendrogram that can be analyzed to determine the number of relevant clusters in

the dataset. An example of a dendrogram output can be seen in Figure 5.

12

Figure 5. Example of hierarchical clustering dendrogram. Adapted from

[12].

C. CLASSIFICATION

k-nearest neighbors (KNN) is a method of machine learning that falls within the

supervised learning category. The basic assumption of this algorithm is that similar

datapoints will reside closer to each other within a dataset [13]. The algorithm is easy to

implement as there is only a single parameter “k” that needs to be chosen. Choosing the

correct value of k, the number of nearest neighbors, is important as it is the basis for making

classification decisions. As an example, if a k value of five is chosen, the algorithm will

take the five closest datapoints to the reference datapoint and make a classification decision

based on the most frequently seen label within that set. It is then run iteratively until the

entire dataset is explored. It is now evident that although this is an extremely simple means

of classification, it is extremely sensitive to the size of data being presented and will be

much less efficient for larger datasets.

A neural network is another supervised learning technique that is primarily used for

either classification or regression problems. It is modeled after the way the neurons of the

human brain function in response to input from the five senses of the human body to

13

understand its surroundings. The basic concept of a neural network is that given an input

𝑥𝑥𝑖𝑖, hidden layers composed of a user defined number of neurons 𝑁𝑁𝑛𝑛, will decompose the

input into different feature sets that can be learned and recognized by a computer. The

output value if each individual neuron is calculated by

 𝑧𝑧 = ∑ 𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑛𝑛
𝑖𝑖=1 (2)

where 𝑤𝑤𝑖𝑖 are the weights associated with the links between neurons as seen in Figure 6,

and 𝑏𝑏 is a bias factor that is added to the sum prior to the activation phase. In order to

account for the non-linearity of the data, an activation function is implemented to perform

a non-linear transformation of the results as well as determine the accuracy of the model

and ensure the convergence of the model by finding optimal weights and biases values

[14]. This entire process is known as forward propagation and continues throughout all

layers in the model until the predicted output 𝑦𝑦� is produced. The fine tuning of the weights

and biases is then accomplished by a process called backward propagation. The initial

values of w and b were arbitrarily chosen as input parameters to the model and to fine tune

them; the total error between predicted output 𝑦𝑦� and expected output y is calculated using

a loss function is given by

 𝜆𝜆(𝑦𝑦,𝑦𝑦�) = ∑ (𝑦𝑦 − 𝑦𝑦�)2𝑛𝑛
𝑖𝑖=1 (3)

where the goal is to increase the accuracy and minimize the loss associated with the model.

This process is conducted iteratively based on the number of epochs, or number of total

passes through the model, that are defined as another input parameter by the user.

When the desired accuracy and loss metrics are achieved through training, the

algorithm can then be implemented on unknown datasets in which it will receive an input,

decompose the input into different feature sets, and make a classification decision based

on the relative similarity to the training data. As compared to the KNN classification model

this is much more resilient and can handle much larger datasets more efficiently. The model

is also much more tailorable to specific problem sets as there are a multitude of parameters

and hyperparameters that can be fine-tuned to increase accuracy based on the users desired

outcome.

14

Figure 6. Example of fully connected neural network with two hidden layers

This chapter discussed the foundational background information necessary for

understanding the basics of computer network traffic and the functionality of machine

learning algorithms. It is critical to understand the distinction between supervised and

unsupervised learning as the proposed methodology, to be discussed in the next chapter,

will take advantage of both.

15

III. CONTINUOUS TRAINING METHODOLOGY

The objective of this chapter is to present the proposed continuous training

methodology that classifies computer network security status through the implementation

of both clustering and deep neural network models. It discusses the critical data

preprocessing phase in which network flow information is gathered and network identifiers

are identified within the two datasets used for analysis. It also examines how different

machine learning algorithms were used for the development of classes and network

security classification.

A. PROPOSED METHODOLOGY

The proposed methodology takes advantage of a continuous stream of data and the

ability for a machine learning algorithm to increase its accuracy based on the amount of

data it receives. As seen in Figure 7, the initial dataset is captured and preprocessed into a

format that can be input into the clustering machine learning model. Labels are created and

appended to the preprocessed data where it is then provided as training input to the

classification model to train it on the desired feature set. Once a classification of the NetID

is made, the accuracy metric is compared to a desired threshold value and a determination

is made as to whether the model should be retrained. When the threshold is exceeded, the

new data is then incorporated into the previously available dataset, retrained, and tested on

a new unknown dataset in order to make a new classification of the network. This process

will run continuously until the user determines it is no longer required.

16

Figure 7. Proposed continuous training methodology consisting of the

process of taking unlabeled data, preprocessing, clustering, labeling,
classifying, and continuously updating the accuracy metric

B. DATA PREPROCESSING

Data preprocessing is a critical step in the process that ensures the dataset is void

of any inconsistencies and is in an appropriate format that can be input into the model. The

two datasets used in this work were both originally pcap files which are commonly used

by Wireshark and contain packet data of computer network traffic. In order to simulate the

summarized network traffic information, those pcap files were converted in to Netflow

data using the nfpcapd tool. Once converted to Netflow data, the files were manually

reformatted to csv files to be manipulated into the proper formats for the machine learning

algorithms.

Netflow data when captured provides access to a variety of different metadata

features and can be tailored to the specific needs of the user. For the purpose of this

research, the eleven different features seen in Table 3 were extracted for use in the machine

learning algorithms. In order to analyze individual network identifiers, the most frequently

used source IP addresses were identified and a WhoIs query was conducted to determine

the network identifiers. A WhoIs query is a tool that allows a user to input a single IP

address and determine a variety of different information associated with the given IP

including the network identifier it belongs to. This provided a means to then separate flows

by the most frequently used network identifiers for analysis.

17

Table 3. Netflow features used in machine learning algorithms

Label Feature Description
ts Start Time – Time flow began
te End Time – Time flow ended
td Duration – Total time elapsed in milliseconds
sa Source Address – IP address at source
da Destination Address – IP address at destination
sp Source Port
dp Destination Port
pr Protocol
flg Flags – TCP flags associated with a single flow
ipkt Input Packets – Total packets in a single flow
ibyt Input Bytes – Total bytes in a single flow

There are two datasets used in this work. The first dataset is a five-minute network

capture from a secure computer network. There are two different network identifiers within

the dataset and approximately 403,000 flows for analysis.

The Measurement and Analysis of the WIDE Internet (MAWI) dataset is part of an

archive that is hosted by the MAWI working group of the Widely Integrated Distributed

Environment (WIDE) project. The archive consists of network traffic traces that are

intended to be used for the purpose of testing anomaly detection methods on computer

network traffic. The database is updated daily in order to incorporate the most up-to-date

applications and network traffic anomalies. In contrast to the secure network dataset, the

MAWI dataset is composed of approximately 3.5 million flows with thousands of network

identifiers all having varying degrees of security. In an effort to control the amount of

information input into the model the top twenty most frequently used network identifiers

were used for analysis.

C. MACHINE LEARNING ALGORITHMS

As discussed previously, the clustering method was used for the development of

class labels for each network traffic flow within the dataset. It is important to note that the

Netflow data used as input to the model is unlabeled and therefore required an unsupervised

learning method. Several different clustering methods were used in order to best determine

18

the classes associated with the unknown dataset presented to the models. Following the

clustering of the datasets, classes were determined, and all network flows were labeled

accordingly. This labeled dataset then became the input into the classification model.

The development of classes in clustering provides the ability for a determination of

the security status of the network to be made. Two different classification techniques were

explored in this research. The KNN model was used for its simplicity in classification and

a fully connected neural network was used for its variety of configurable parameters and

efficiency with respect to the larger datasets being used. The labeled datasets from the

clustering were input into the classification models and a determination as to whether the

network was secure, moderately secure, or insecure was made associated with different

levels of accuracy for each. The level of accuracy associated with a classification can then

be used as a threshold that is established for a trigger to retrain the network to establish a

new baseline.

With a collective understanding of the fundamentals of several different machine

learning algorithms and the new proposed methodology for computer network security

classification, its employment will be discussed in the following chapter. It is worth noting

that although several different machine learning models are tested in the process, only two

are selected for use based on their performance specific to the feature sets being used and

the dataset being analyzed.

19

IV. SIMULATION RESULTS AND ANALYSIS

Having now described the proposed methodology, this chapter will discuss the

results and analysis that were produced. It begins with a brief discussion on the setup of

the simulation environment and is followed by detailed discussions of the results of both

clustering and classification. The chapter ends with the results of implementing the

algorithm on a much larger dataset and the significant findings associated with its

performance.

A. SETUP OF THE SIMULATION ENVIRONMENT

Two different computers were used to complete the data preprocessing and

simulations. The primary computer used was an iMac with MacOS Big Sur, a 3.6GHz 8-

Core Intel Core i9 processor, and 32GB 2667 MHz DDR4 RAM. This computer was used

to do part of the data pre-processing and all computer simulations. The secondary computer

used was a Dell Precision T7610, operating on a Linux system which was used for

conversion of pcap files to Netflow. The nfcapd tool is only compatible with Linux

operating systems thus the requirement for an additional computer.

Several different software tools were used for both data preprocessing and

computer simulations throughout this research. The base platform used for coding was

Jupyter Notebook with Python 3 as the programming language. The Keras software library

with a TensorFlow 2.0 backbone was used for its artificial neural network tools as well as

the Scikit-Learn library for its extensive set of classification, clustering, and regression

tools.

B. SECURE NETWORK AND MAWI DATA PREPROCESSING

As mentioned in the previous chapter data preprocessing is a critical step in the

machine learning process. Figure 8 details the step-by-step process for taking an initial data

capture and optimizing it for input into a machine learning algorithm. Once the pcap files

were converted to NetFlow and then to csv files, the files were further preprocessed specific

to the machine learning algorithm being used. For the purposes of clustering a comparison

20

between the source port and destination port traffic was used in order to reduce the

dimensionality of the data to two dimensions and provide an accurate representation of

traffic flow in to and out of the network. Each flow was then reduced to two features and

used as input to the clustering algorithm. The classification algorithms are more robust to

higher dimensionality and therefore a separate dataset was used with a larger feature set

and higher dimensionality. Both the KNN and Neural Net models used seven different

features for classification as seen in Figure 9. The source and destination IP address

features were then further expanded into octets creating a thirteen-dimension dataset for

each flow. This increase in dimensionality provided for a more robust and accurate

representation of the network traffic metadata incorporating multiple features for

classification.

Figure 8. Data preprocessing flow from initial data capture to filtered and

sorted NetFlow data ready for input into the desired algorithm

Figure 9. Sample of classification dataset input with 13 dimensions,

including duration, source and destination IP addresses represented as
octets, source and destination ports, input packets, and input bytes for each

flow

21

In order to use the dataset for classification purposes it was necessary to split the

composite dataset into several different sections in order to train, validate, and test the

model. The training data is a significantly larger portion of the dataset and is the mechanism

for learning the desired model parameters. A smaller validation set is further segmented

from the training set in order to avoid overfitting the model which provides a false sense

of accuracy. If the model is overfit, it is only learning the patterns of the provided training

set and will not perform accurately when presented unknown data outside of the training

set. The test set is the last section of data utilized by the model. It is critical to note that at

no point in the training process should the testing data be introduced into the model. The

test set is used to determine the accuracy of the model on unknown data and if the data has

already been introduced into the algorithm, the testing results will be inaccurate.

The next step in data preprocessing was to standardize the data by using the

StandardScalar tool in sklearn. The tool normalizes all data to a standard normal

distribution with mean of zero and unit variance. Machine learning algorithms are

extremely sensitive to large deviations in data and normalizing the data ensures the

algorithm performs as expected. The final step is to then transform the labels into a useable

format by the neural network model. The Netflow feature data and the labels were

separated into two different variables and the labels were converted via on-hot encoding as

seen in Table 4.

Table 4. One-hot encoding for Netflow data labels

Label Label Description One-hot Encoded Label
0 Secure [1,0,0]
1 Moderately Secure [0,1,0]
2 Insecure [0,0,1]

In an effort to both further reduce the dimensionality of the larger datasets and more

accurately model the computer networks within the dataset, network flows were combined

based on the NetID they belonged to. The source addresses were used as the distinguishing

feature and were sorted in order to determine the most frequently used source addresses.

22

Those source addresses were then inputted in to a WhoIs query which provided the NetID

associated with the IP address. From this analysis, a list of the most frequently used NetIDs

was created and the two NetIDs from the secure network dataset as well as the top twenty

NetIDs within the MAWI dataset were used for analysis.

C. CLUSTERING RESULTS

The results of the k-means and GMM clustering methods on both the secure

network and MAWI datasets will be discussed in the following subsections. The analysis

of both and a discussion of how the results led to the selection of the optimum clustering

method is presented followed by how the development of labels for implementation in

classification was conducted.

1. Secure Network Dataset

As k-means clustering is the simplest model to implement it was the first model

used for analysis. The first step was to determine the value of “k” clusters to be used in the

algorithm. To do this the elbow method was implemented. The elbow method is a

calculation that varies the number of k-clusters from 1-10 and for each value of k, calculates

the within-cluster sum of square (WCSS) value [9]. The WCSS is the sum of squared

distances between each data point and the centroid in its respective cluster represented by

 𝑒𝑒𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 = ∑ (𝑋𝑋𝑖𝑖 − 𝑌𝑌𝑖𝑖)2𝑖𝑖∈𝑛𝑛 (4)

where 𝑌𝑌𝑖𝑖 is the centroid value for data point 𝑋𝑋𝑖𝑖 within n clusters. As the number of clusters

increases, the WCSS value decreases and as can be seen in Figure 10, the point at which

the curve most drastically changes direction (the elbow) is the optimum number of clusters.

From the WCSS calculations, cluster values of k = 3, 4, and 5 were chosen for this dataset

as the elbow values are clearly optimized at these locations.

23

Figure 10. Elbow method for determining number of k-clusters. The number

of clusters are optimized between the elbow values of 3 and 5

The secure network dataset was chosen for analysis first. It can be seen in Figure

11 that the clusters are clearly concentrated below a threshold port value of approximately

10,000 for both the source and destination port features. It is also worth noting that the

traffic from lower numbered source ports predominantly flows to lower numbered

destination ports and vice versus indicating relatively secure practices. There is minimal

traffic in the secure network dataset from higher port numbers in both the source and

destination port which is indicative of insecure practices, and these ports are unregistered

and not controlled as previously mentioned. As the number of clusters increases, the only

observed effect is the segmentation of the bottom cluster into smaller pieces. Therefore,

based on the k-means clustering analysis, a value of k = 3 was chosen as optimum, and the

number of clusters led to the development of three different classes for input into the

classification models.

24

Figure 11. Secure network k-means clustering results for user defined number

of cluster inputs of 3, 4, and 5 clusters

As a means of comparison several other clustering methods were performed on the

secure network dataset in order to confirm the optimum number of classes. As can be seen

in Figure 12 the data still trends below the 10,000-port value threshold for both the source

and destination ports. The lower cluster is again further segmented into smaller pieces as

the number of clusters is increased indicating the increase in number of clusters provides

no benefit for analysis.

25

Figure 12. Secure network GMM clustering results for user defined number

of gaussian distribution inputs of 3, 4, and 5

The DBSCAN method was also explored as an option for clustering but as can be

seen in Figure 13, the density-based approach is not as effective in identifying clusters

within the network traffic dataset. A visual analysis of the graphs does still show a clear

separation along the 10,000-port value; however, this machine learning technique is not

ideal for the given dataset and was no longer used for analysis.

26

Figure 13. Secure network DBSCAN results with user defined minimum

Euclidian distance of 𝜀𝜀 = 0.1, 0.3 and minimum samples of 3 and 5

Finally, agglomerative clustering using dendrograms was explored as a possible

solution. In the process of creating the dendrogram for the secure network dataset, the

algorithm failed five separate times during processing. It was determined that this is a result

of the significantly large amount of data associated with the dataset and was then concluded

that agglomerative hierarchical clustering was not a feasible method for determining labels

within this dataset.

27

2. MAWI Dataset

Based on the analysis of the secure network dataset and the identified 10,000 port

value threshold, the k-means clustering algorithm was used for initial analysis of the first

four most frequently used network identifiers within the MAWI dataset. As can be seen in

Figure 14 there is a varying degree of secure practices as compared to the secure networks

however, the network traffic does appear to be concentrated among certain port values

within a given NetID which aided in the classification of the network.

Figure 14. Results for k-means clustering on the four most frequently used

NetIDs in the MAWI dataset with a user defined parameter of k = 3
clusters

The results from the secure network dataset clustering methods determined that k-

means was the most relevant method for clustering the data. It was then determined that

further clustering analysis on the MAWI dataset was not required. Based on the results

from the k-means analysis on both datasets, a threshold port value of 10,000 was chosen to

28

determine labels to be used in the follow-on neural network classification algorithms.

These three labels would be associated with secure, moderately secure, and insecure

classifications.

D. KNN AND DEEP NEURAL NETWORK RESULTS

The results of both KNN and DNN will be discussed in the following subsections.

The analysis of both and a discussion of how the results led to the selection of the optimum

classification method is presented. This is followed by a detailed discussion on the

accuracy metrics associated with each model and how the algorithm was fine tuned to

increase accuracy and minimize loss associated with its performance.

1. Classes of Secure Networks

In order to successfully classify the security of the network the Netflow data needed

to be labeled. Based on the chosen threshold port value of 10,000 from the k-means

clustering model, the data was filtered in to three different classes and labeled accordingly.

Port values that fall within the eleven different secure ports notated in Table 2 were all

labeled “Secure,” any port values that were between 0-10,000, exclusive of the secure

ports, were labeled “Moderately Secure,” and all other port values greater than 10,000 were

labeled “Insecure.”

2. KNN Results on Secure Network Data

The KNN model, being the simplest classifier used, only required the tuning of one

hyperparameter. The number of nearest neighbors (n_neighbors) was modeled for values

of 3, 4, and 5. The three models where then built, trained, and tested on the secure network

NetID 204 dataset with an accuracy deviation of approximately 1%. The number of nearest

neighbors’ value of three performed the best with an accuracy score of 93% and was chosen

as the model to be used with the expansion of training data and tested on unknown datasets.

3. Neural Network Results on Secure Network Data

There is an important distinguishing characteristic between parameters of a

machine learning model and the hyperparameters of the model. Model parameters are the

29

aspects that are learned by the algorithm whereas hyperparameters are the user provided

inputs to the algorithm that influence the model output and are not learned by the model.

The choice of these various hyperparameters will certainly have varying effects on the

performance of the model and maximizing their performance is key.

The neural network model utilized several different hyperparameters to take

advantage of the flexibility of the model. The initial hyperparameters chosen, their values,

and a description of each can be seen in Table 5.

Table 5. Initial hyperparameters for the neural network using the Keras
machine learning library

Hyperparameter Value Description

Batch Size 128 The number of individual flows
separated into batches where each

iteration only takes into account a single
batch when updating weight values.

Epochs 20 The number of complete passes through
all batches within the training dataset.

Activation Function relu Rectified Linear Unit – The positive part
of an argument.

𝑓𝑓(𝑥𝑥) = max (0, 𝑥𝑥)

Hidden Layers 3, 4, 5 The layers in between the input and
output layer that takes an input and
utilizes the activation function to

provide an output to the next layer.

Hidden units 256 The number of artificial neurons within
a hidden layer

Loss Function categorical cross
entropy

Computes the cross-entropy loss
between the known labels and the

predicted labels.

Optimizers adam A stochastic gradient descent method
that is based on adaptive estimation of

first and second order moments.

30

With the initial hyperparameters chosen three different architectures were created

with varying hidden layers and first tested on the secure network NetID_204 dataset in

order to determine the most favorable number of hidden layers with respect to model

performance. As can be seen in Figures 15, 16, and 17 the accuracy score associated with

the different number of hidden layers varies only slightly by approximately 2%. Increasing

the number of hidden layers in the architecture had very little effect on the performance

with respect to accuracy observed in part (a) of all figures as well as the loss observed in

part (b) of all figures as they all roughly approach 0.61.

Figure 15. Graphical representations of the accuracy metric (a) and loss

metric (b) for a neural network architecture with one hidden layer

Figure 16. Graphical representations of the accuracy metric (a) and loss

metric (b) for a neural network architecture with two hidden layers

31

Figure 17. Graphical representations of the accuracy metric (a) and loss

metric (b) for a neural network architecture with three hidden layers

The three architectures were then tested with results seen in Table 6. Without

changing the hyperparameters, and with an accuracy score of 78.44%, a value of three

hidden layers was chosen for the model.

Table 6. Testing results of the first model

Accuracy Score of the model with 1-Hidden Layer 76.41%
Accuracy Score of the model with 2-Hidden Layer 76.57%
Accuracy Score of the model with 3-Hidden Layer 78.44%

The architecture with three hidden layers was then tested on two additional datasets

that were not used during training and completely unknown to the model. The secure

network NetID 205 dataset was used for comparison as the datasets are independent but

fairly similar and the MAWI NetID 1 dataset was used for a completely independent

evaluation of the model on unfamiliar data. As can be seen in Table 7 the performance of

the model on the secure network NetID 205 dropped by approximately 10% while still

performing within an acceptable range of accuracy. The performance on the MAWI dataset

however was extremely poor and led to the future expansion of training data to increase

accuracy in testing and implementation.

32

Table 7. Testing results of 3 hidden layer model on unknown data

Accuracy Score of 3-Hidden Layer Model on Secure Network NetID 205 66.28%
Accuracy Score of 3-Hidden Layer Model on MAWI NetID 1 6.44%

4. Expanded Dataset Results

With the results of both the KNN and neural network models performances having

been trained on the secure network NetID 204, the next step was to increase the dataset

available for training in an effort to increase the accuracy of the model. As a result, the

secure network NetID 204 dataset was concatenated with four other NetIDs expanding the

total number of flows from 181,000 to approximately 1,400,000. Additionally, a larger

unknown dataset was created for testing purposes by concatenating the next six more

frequently used NetIDs from the MAWI dataset.

The KNN model was first to be tested with an established number of nearest

neighbors value of three. As expected, the model accuracy score increased in testing to

98.5% when a larger dataset was incorporated into training which is a slight increase as

compared to the first model. The model was then tested on the larger unknown dataset and

although accuracy increased initially, it significantly decreased to 50.12% when introduced

to data from unknown NetIDs. The DNN model with three hidden layers was then trained

and tested on the expanded dataset and performed with an accuracy score of 94.89% which

is an increase of approximately 16% from the first model.

5. Grid Search Model Results

With an increase in accuracy observed in both models as a result of increasing the

training dataset, the next step to increase accuracy was to fine tune the hyperparameters of

the model. As the KNN model only requires one hyperparameter, this method only applied

to the DNN model. The grid search tool from Scikit-learn was used to calculate an accuracy

score associated with every possible combination over a specific set of hyperparameters in

order to maximize performance. This grid search method was conducted with a single

hidden layer DNN model and searched over the values of the batch size, epochs, and

33

activation function hyperparameters seen in Table 8. Over eighty different iterations of

possible combinations of hyperparameters, the best performing combination was

determined to be batch size of 32, 100 epochs, and the ReLU activation function with an

accuracy score of 99.87%.

Table 8. Grid search hyperparameter values

Hyperparameter Values to be Searched
Batch Size 16, 32, 64, 128, 256
Epoch 10, 20, 50, 100
Activation Function ReLU, tanh, sigmoid, linear

The grid search model was then retrained with the new hyperparameters on the

expanded dataset to confirm its performance and as can be seen in Figure 18, the model

accuracy metric significantly increases while the loss metric quickly approaches zero. The

grid search model was then tested on the unknown expanded dataset with MAWI NetIDs

5-10 and performed with an accuracy score of 79.56%. This is approximately a 20%

increase in accuracy over the KNN model and resulted in the DNN model being selected

as the best method for network security classification.

34

Figure 18. Performance of grid search model with optimized hyperparameters

6. Continuous Training Method Results

With the deep neural network model selected as the best model for classification,

the next step in the process was to simulate a dynamic flow of network traffic for analysis.

This was accomplished by incrementally presenting three rounds of unknown network

flows associated with the most frequently used NetIDs within the datasets. Each round of

35

data presented to the model was then further analyzed to determine which of the NetIDs

the model was classifying correctly as compared to the labeled data based on the percentage

of flows associated with each security class.

The first round of testing on unknown data resulted in an accuracy score of 79.56%.

As seen in Figure 19a, the neural network model correctly classified four out of the six

unknown NetIDs. The two NetIDs that were incorrectly classified corresponded to

networks that were moderately secure and misclassified as Insecure by approximately 20%.

By implementing the continuous training methodology to further increase accuracy, the

unknown NetIDs were then compiled with the previously known dataset, the model was

retrained, and reimplemented for a second round on five additional unknown NetIDs. The

second round of testing resulted in an accuracy score of 81.96%, increasing on the previous

round by approximately 2.5%. As seen in Figure 19b three of the five NetIDs were

correctly classified. The unknown NetIDs were then again compiled with the previously

known dataset, the model was retrained, and reimplemented for a third round on another

set of five unknown NetIDs. The third round of testing resulted in an accuracy score of

88.64% which is an increase of approximately 6.5% over the second round and a 9%

increase overall. As seen in Figure 19c all five NetIDs were correctly classified. By

implementing the proposed continuous training methodology there is a noticeable increase

in accuracy as seen in Table 9.

36

(a) First Round of Results, (b) Second Round of Results, (c) Third Round of Results

Figure 19. Classification results for rounds 1, 2, and 3 of the simulated
dynamic flow of unknown network traffic by percentage of flows

associated with each security classification

Table 9. Accuracy of optimized neural network model tested on a simulated
dynamic flow of unknown network data

 Accuracy Score
Round 1 79.56%
Round 2 81.96%
Round 3 88.64%

After an observed increase in accuracy of classification with the previously discussed

model, an additional test was conducted to further prove the continuous training

methodology results. This consisted of an additional three rounds of simulations with the

NetIDs being presented to the model in reverse order. This simulated the ability for the model

to learn from the data being presented in any order as long as the designated feature sets were

available. As can be seen in Table 10, there is still a noticeable increase in accuracy between

all three rounds with an overall increase in accuracy of approximately 23%.

37

Table 10. Accuracy of optimized neural network model tested on a simulated
dynamic flow of unknown network data in reverse order

 Accuracy Score
Round 1 69.15%
Round 2 80.77%
Round 3 92.36%

7. Expanding the Dataset

After the proposed methodology was validated using any order of information

presented to the algorithm, a significantly larger dataset was presented for analysis. A total

of approximately 6.7 million flows were preprocessed, labeled, and analyzed using the

continuous training methodology, which is three times the size used in the original test.

Table 11 shows that although there is a slight drop in accuracy between rounds 1 and 2, the

performance returned to 87.95% after Round 3. When looking at the classification of

NetIDs individually as seen in Figure 20, the performance is still fairly accurate. It is worth

noting, however, that there is a trend in misclassifying moderately secure networks as

secure networks due to a significant imbalance of classes in the expanded dataset as seen

in Figure 21 [15]. Although the dataset expanded by nearly three times the original size,

the secure classes changed very little as compared to the other two classes skewing the data

to right and causing a potential bias in classification. This could be avoided by ensuring

that the datasets being tested have a balanced number of classes.

Table 11. Accuracy of the optimized neural network model tested on an
expanded dataset

 Accuracy Score
Round 1 84.19%
Round 2 82.13%
Round 3 87.95%

38

(a) First round of results, (b) Second round of results, (c) Third round of results

Figure 20. Classification results for rounds 1, 2, and 3 by network identifier
on the expanded dataset by percentage of flows associated with each

security classification

Figure 21. Class imbalance between the 5 and 15-minute MAWI data

captures. “0” is secure, “1” is moderately secure, “2” is insecure

39

The analysis of results has shown that the proposed continuous learning

methodology performs substantially well in multiple different scenarios. The unsupervised

clustering of data provided labels for the flows to then be used in the supervised learning

phase of the neural network. The optimization of hyperparameters and increase in data size

both proved to increase the accuracy metric while simultaneously making the architecture

more robust for network security classification.

40

THIS PAGE INTENTIONALLY LEFT BLANK

41

V. CONCLUSIONS AND RECOMMENDATIONS

Having now covered the proposed methodology and analysis of results, this chapter

will conclude the thesis with a summary of work reported in the thesis, a discussion of the

significant contributions from this thesis, and recommendations for future work.

A. SUMMARY OF WORK

This effort focused on the development of a machine learning model to accurately

classify the security status of computer networks based on Netflow data. By focusing

heavily on the preprocessing phase, eleven different feature sets were identified and

extracted from each flow for analysis. This provided a means for feature space reduction

while still maintaining a diverse set of features available for analysis. The dataset was first

segmented by NetID and further sorted by the most frequently used NetIDs for

classification. The k-means clustering method proved to be the most useful in identifying

the three clusters associated with the three labels that would be used for classification.

These labels where then appended to the network flows and became the basis for input into

the neural network model which was fine-tuned and implemented in several different

iterations resulting in the accurate classification of computer networks with the highest

observed accuracy score of 92.3%.

All results discussed in the previous chapters have demonstrated the effectiveness

of the continuous training methodology with an observed increase in accuracy of

approximately 23% over successive iterations of testing. By fine tuning the

hyperparameters with the grid search method and continuously expanding the training set

while still exposing the model to unknown network traffic during testing, the proposed

methodology proves to be significantly more effective in implementation. The use of both

supervised and unsupervised machine learning models provides the ability to implement

the model on real world computer network traffic without a priori knowledge of its

structure or the activities that take place within. The ability to identify the level and degree

of secure practices within a computer network using machine learning, based solely on

metadata, is a significant advantage to anyone interested in this area of research.

42

B. SIGNIFICANT CONTRIBUTIONS

The first significant contribution of this thesis is the method by which the raw

unlabeled data was analyzed and labeled for processing. This was accomplished by

utilizing an unsupervised method (k-means) to determine labels associated with the dataset

being analyzed. By clustering the data, it became apparent that there were two distinct

clusters of data and a third that would eventually be created as a subset of one of the original

two. These clusters became the cornerstone for labeling individual flows and made it

possible to then utilize a supervised machine learning method for classification.

The second significant contribution of this thesis is the continuous learning

methodology presented in Chapter III. By simulating a continuous flow of network traffic,

the proposed architecture took advantage of the ability to consistently train the algorithm

on the newly available data thereby constantly increasing the accuracy metric during

testing. When the accuracy metric dropped below a user defined threshold, the process was

started over by incorporating the previous testing data into the training data and retraining

the algorithm on this new but previously unavailable information. This methodology can

continue indefinitely or until the user is satisfied with the level of performance associated

with classification.

C. FUTURE WORK

The continuous training methodology discussed thus far has been proven effective

in classifying network security status based on the metadata available within the tested

datasets. Although the results for this thesis are substantial, there are several limitations to

the proposed methodology and the potential for future work exists in several different

areas.

The most notable area for improvement would be the implementation of the

proposed method on a real-world open network for true dynamic network security

classification. This would provide real time metrics for success based on the classification

of networks with a known security status that are monitored full-time by network

administrators. Being able to classify networks in real-time would provide a user extremely

valuable information to be used dynamically for their organizations’ specific purpose.

43

Although several different machine learning algorithms were tested as part of this

thesis, the list was certainly not exhaustive. The evaluation of additional machine learning

techniques would significantly benefit the research and contribute to a more comprehensive

analysis of performance. Specifically, converting unlabeled data into labeled data using an

unsupervised technique leaves plenty of room for improvement. The assumptions made in

this work were based solely on the dataset available and could be improved for a more

global solution to classification whether it is a binary or multi-class classification problem.

44

THIS PAGE INTENTIONALLY LEFT BLANK

45

APPENDIX. PYTHON CODE

A. PYTHON CODE FOR USING GRIDSEARCH TO OPTIMIZE THE
HYPERPARAMETERS OF THE NEURAL NETWORK

This code was used to grid search the hyperparameters of the neural network and

optimize the accuracy of the algorithm. The grid search was used to optimize the batch

size, number of epochs, and activation function used within the algorithm.

import numpy

from sklearn.model_selection import GridSearchCV

from keras.models import Sequential

from keras.layers import Dense

from keras.wrappers.scikit_learn import KerasClassifier

Function to create model, required for KerasClassifier

def create_model(activation='relu'):

Create model

model = Sequential()

model.add(Dense(256, input_dim=13, activation=activation))

model.add(Dense(3, activation='softmax'))

Compile model

 model.compile(loss='categorical_crossentropy',optimizer='adam',metrics=['accuracy'])

return model

fix random seed for reproducibility

seed = 7

numpy.random.seed(seed)

46

create model

model = KerasClassifier(build_fn=create_model, verbose=0)

define the grid search parameters

batch_size = [16, 32, 64, 128, 256]

epochs = [10, 20, 50, 100]

activation = ['relu', 'tanh', 'sigmoid', 'linear']

param_grid = dict(batch_size=batch_size, epochs=epochs, activation=activation)

grid = GridSearchCV(estimator=model, param_grid=param_grid, n_jobs=-1, cv=3)

grid_result = grid.fit(X_train, Y_train)

summarize results

print("Best: %f using %s" % (grid_result.best_score_, grid_result.best_params_))

means = grid_result.cv_results_['mean_test_score']

stds = grid_result.cv_results_['std_test_score']

params = grid_result.cv_results_['params']

for mean, stdev, param in zip(means, stds, params):

print("%f (%f) with: %r" % (mean, stdev, param))

B. PYTHON CODE FOR CREATING THE NEURAL NETWORK MODEL
WITH OPTIMIZED GRIDSEARCH HYPERPARAMETERS

This code was used to incorporate the optimized hyperparameters from the

GridSearch technique into the neural network algorithm. By optimizing the

hyperparameters the accuracy of the algorithm increased by approximately 10%.

#Standard Input Variables
input_size = 13

batch_size = 32

hidden_units = 256

47

num_labels = 3

#Build the New Model
from keras.models import Sequential

from keras.layers import Dense , Activation, Dropout

from keras.optimizers import Adam ,RMSprop, SGD

from keras import regularizers

model_gs = Sequential()

model_gs.add(Dense(units=hidden_units, activation='relu', input_dim=input_size))

model_gs.add(Dense(units=num_labels , activation='softmax'))

#Compile the model with Recommended Optimizer

model_gs.compile(loss='categorical_crossentropy',optimizer='adam',metrics=['accuracy']

)

#Train the Model with Recommended Batch size and Epochs

history_gs = model_gs.fit(X_train, Y_train, epochs=100, verbose=1, batch_size=32,

validation_data=(X_valid, Y_valid))

#Performance of the Model on Test Data

pred_dnn_gs = model_gs.predict_classes(X_test)

from sklearn.metrics import accuracy_score

print('DNN Model accuracy score with GridSearch Hyperparameters: {0:0.4f}'.

format(accuracy_score(Y_test, pred_dnn_gs)))

48

THIS PAGE INTENTIONALLY LEFT BLANK

49

LIST OF REFERENCES

[1] V. Tiwari, C. Pandey, A. Dwivedi, and V. Yadav, “Image classification using
deep neural network,” in 2020 2nd International Conference on Advances in
Computing, Communication Control and Networking (ICACCCN), Greater Noida,
India, Dec. 2020, pp. 730–733. [Online]. Available: https://doi.org/10.1109/
ICACCCN51052.2020.9362804.

[2] L. Mohammadpour, T. C. Ling, C. S. Liew, and C. Y. Chong, “A convolutional
neural network for network intrusion detection system,” in Proceedings of the
Asia-Pacific Advanced Network, Auckland, Australia, Aug. 2018, pp. 50–55.

[3] J. Kim, J. Kim, H. Kim, M. Shim, and E. Choi, “CNN-based network intrusion
detection against denial-of-service attacks,” Electronics, vol. 9, no. 6, p. 916, Jun.
2020. [Online]. Available: https://doi.org/10.3390/electronics9060916.

[4] R. I. Farhan, A. T. Maolood, and N. F. Hassan, “Performance analysis of flow-
based attacks detection on CSE-CIC-IDS2018 dataset using deep learning,”
Indones. J. Electr. Eng. Comput. Sci., vol. 20, no. 3, p. 1413, Dec. 2020. [Online].
Available: https://doi.org/ 10.11591/ijeecs.v20.i3.pp1413-1418.

[5] Software Portal, “Netflow - What is it, a definition & how to collect & analyze
flow data (sflow, ipfix, jflow, etc),” Feb. 16, 2019. [Online]. Available:
https://softwareportal.com/netflow/ (accessed Jul. 19, 2021).

[6] IANA, “Internet assigned numbers authority.” [Online]. Available:
https://www.iana.org/ (accessed Jul. 19, 2021).

[7] Science Direct, “Registered port - An overview.” [Online]. Available:
https://www.sciencedirect.com/topics/computer-science/registered-port (accessed
Jul. 19, 2021).

[8] D. Soni, “Supervised vs. unsupervised learning,” Medium, Jul. 21, 2020. [Online].
Available: https://towardsdatascience.com/supervised-vs-unsupervised-learning-
14f68e32ea8d (accessed Jul. 19, 2021).

[9] Kaggle, “Step by step K-means explained in detail.” [Online]. Available:
https://kaggle.com/shrutimechlearn/step-by-step-kmeans-explained-in-detail
(accessed Jul. 19, 2021).

[10] O. C. Carrasco, “Gaussian mixture models explained,” Medium, Feb. 21, 2020.
[Online]. Available: https://towardsdatascience.com/gaussian-mixture-models-
explained-6986aaf5a95 (accessed Jul. 19, 2021).

50

[11] “DBSCAN,” Wikipedia. Jul. 12, 2021. Accessed: Jul. 19, 2021. [Online].
Available: https://en.wikipedia.org/w/
index.php?title=DBSCAN&oldid=1033188625

[12] scikit-learn, “Plot hierarchical clustering dendrogram — scikit-learn 0.24.2
documentation.” [Online]. Available: https://scikit-learn.org/stable/
auto_examples/cluster/plot_agglomerative_dendrogram.html (accessed Jul. 19,
2021).

[13] O. Harrison, “Machine learning basics with the k-nearest neighbors algorithm,”
Medium, Jul. 14, 2019. [Online]. Available: https://towardsdatascience.com/
machine-learning-basics-with-the-k-nearest-neighbors-algorithm-6a6e71d01761
(accessed Jul. 19, 2021).

[14] G. S, “An introduction to mathematics behind neural networks,” Medium, Aug.
04, 2020. [Online]. Available: https://medium.com/analytics-vidhya/an-
introduction-to-mathematics-behind-neural-networks-135df0b85fa1 (accessed Jul.
21, 2021).

[15] R. Panigrahi and S. Borah, “A detailed analysis of CICIDS2017 dataset for
designing Intrusion Detection Systems,” Int. J. Eng., p. 5.

51

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

	21Sep_Watkins_John_First8
	21Sep_Watkins_John
	I. Introduction
	A. Objective
	B. related work
	C. organization

	II. network traffic information and machine learning models
	A. Network Traffic information
	1. Well Known Ports
	2. Secure Ports

	B. deep learning: supervised versus unsupervised
	1. k-means Clustering
	2. Gaussian Mixture Models
	3. Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
	4. Agglomerative Hierarchical Clustering Using Dendrograms

	C. Classification

	III. CONtinuous training methodology
	A. proposed methodology
	B. Data Preprocessing
	C. Machine Learning ALgorithms

	IV. Simulation Results and Analysis
	A. Setup of the simulation environment
	B. Secure network and MAWI Data Preprocessing
	C. Clustering Results
	1. Secure Network Dataset
	2. MAWI Dataset

	D. KNN and Deep Neural Network results
	1. Classes of Secure Networks
	2. KNN Results on Secure Network Data
	3. Neural Network Results on Secure Network Data
	4. Expanded Dataset Results
	5. Grid Search Model Results
	6. Continuous Training Method Results
	7. Expanding the Dataset

	V. Conclusions and recommendations
	A. Summary of Work
	B. Significant Contributions
	C. Future Work

	appendix. python Code
	A. Python code for using gridsearch to optimize the hyperparameters of the neural network
	B. python code for creating the neural network model with optimized gridsearch hyperparameters

	List of References
	initial distribution list

