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ABSTRACT 

 All computer network traffic can be associated with a specific signature based on 

a feature set within its metadata. There has been a significant effort in preprocessing data 

for machine learning for the purposes of transforming raw data into features that 

represent a large dataset and improve the accuracy of predictive models. This thesis 

develops a machine learning approach that can analyze and classify network traffic to 

determine the level and degree of secure practices within specific network identifiers. We 

propose a novel continuous learning methodology in which a clustering technique was 

utilized to identify labels to a previously unlabeled dataset. A neural network algorithm 

was then trained on the labeled flows and tested on an unknown dataset to determine the 

network security classification. This previously unknown dataset was then used to retrain 

the neural network, thus continuously expanding the database of feature sets for training 

in order to increase the security classification accuracy. By implementing the proposed 

methodology on a widely known dataset, we achieved an increase in security 

classification performance as compared to traditional classification techniques. 
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I. INTRODUCTION 

Computer networks have become a critical component of our society, the 

Department of Defense, and our daily lives. All computer network traffic can be associated 

with a specific signature based on a given feature set within its metadata information. 

Establishing a baseline of normal secure network characteristics provides an observer the 

ability to determine any deviations from baseline operations and make an educated decision 

as to the relative security status of the network at any given time. These deviations from 

normalcy are considered anomalies and could identify insecure practices within a network 

exposing significant vulnerabilities to potential malicious actors.  

The focus of this work is to develop a machine learning approach for classifying 

and analyzing metadata within network traffic to determine the characteristics of a network 

and the level and degree of secure practices within. By training a machine learning 

algorithm to identify specific feature sets of different network flows, the ability to classify 

a network as either secure, moderately secure, or insecure with a high level of accuracy 

significantly increases. By constructing a dynamic flow of information through the 

proposed scheme, a determination as to the security status of the network can be made. The 

data is then stored and combined with the previously known dataset and the algorithm is 

retrained to establish a new baseline. It is then applied to new incoming data thereby 

increasing the accuracy and providing a near real time assessment as to the security status 

of the network.  

A. OBJECTIVE 

The objective of this thesis is to implement a machine learning algorithm in order 

to classify the security status of a computer network based on metadata within its network 

flows. First, the metadata must be preprocessed into a format that is acceptable for the 

chosen machine learning algorithm. It is critical that all errors in collection of the data be 

removed, and the remaining data be prepared for input to the respective machine learning 

algorithm.  
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Flow record exports encapsulated in the NetFlow format are the primary means of 

metadata collection and individual flows are used as input into the models. The prepared 

flows are then first input into an unsupervised clustering model to identify and extract the 

relevant classes associated with each cluster within the dataset. Following the development 

of classes, labels are assigned to the respective flows, and the data is again preprocessed 

for input into a deep neural network. The machine learning algorithm is then trained and 

tested on the known dataset, then applied to the newly collected dataset for the purpose of 

network security classification.  

B. RELATED WORK 

The development of neural networks and their ability to identify hidden features 

within data have made them ideal for image classification problems. In their paper, Tiwari 

et al. discuss the use of stacked convolutional layers used for feature extraction and a fully 

connected layer for classification [1]. The convolutional layers have an added benefit of 

feature reduction that is especially useful when dealing with higher resolution digital 

images. When analyzing the feature space of the input images, it became apparent that this 

approach could be used with computer network traffic as well. The variety of feature sets 

that can be extracted from Netflow data can be modeled as feature vectors as is done in 

Tiwari et al.’s paper [1] for classification. The preprocessing of the data is significantly 

different, but the implementation of the classification architecture is relatively similar.  

Neural networks are now a commonly used tool for network intrusion detection 

systems and an effort to maximize their effectiveness has led to a great deal of research on 

the topic. Mohammadpour et al. [2] discuss a novel concept for the identification of 

network intrusions through the use of a convolutional neural networks for feature 

extraction followed by a fully connected neural network for classification. The authors 

used a pre-labeled dataset of network intrusions and thus did not require an unsupervised 

learning technique. However, the results for feature set selection and the technique for 

classification became the base for the proposed methodology in this thesis.  

Direct capture of computer network traffic is not always feasible which necessitates 

the use of more readily accessible metadata that can be found in computer network flow 
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information. Kim et al. and Farhan et al. [3], [4] demostrate the concept that access to 

features available within flow-based attacks can identify, with high levels of accuracy, 

network intrusions of varying types. These feature sets became the basis for the 

classification of security status of computer networks for this work with respect to the 

temporal, volumetric, and a myriad of other features associated with network flows. 

C. ORGANIZATION 

The remainder of this thesis is structured as follows. Chapter II provides a 

background of computer network traffic information, deep learning in both supervised and 

unsupervised implementations, and a detailed discussion of clustering and classification 

algorithms. Chapter III presents the details and process for the proposed continuous 

training methodology, an introduction to the datasets used in this research, and an 

explanation of the specific machine learning algorithms implemented. Chapter IV details 

the analysis and results of the different machine learning techniques and the levels of 

accuracy associated with each. Finally, Chapter V concludes the thesis with the most 

significant results and recommendations for future work.  
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II. NETWORK TRAFFIC INFORMATION AND MACHINE 
LEARNING MODELS  

Prior to discussing the methodology used in Chapter III, it is necessary to discuss 

the basics concepts of network traffic information and deep learning methods used in this 

thesis. It is important to understand how Netflow data is used during data preprocessing 

and how the computer port information plays a vital role in the classification process. 

Additionally, a basic understanding of how different clustering and classification 

algorithms work will facilitate a clearer understanding of the results and analysis that will 

follow.  

A. NETWORK TRAFFIC INFORMATION 

A computer network is a group of computers that communicate using a common 

set of protocols over various mediums for the purpose of sharing resources and information 

between them. The information shared between these computers is referred to as network 

traffic and is composed of various amounts of data moving across the network at any given 

point in time via various computer ports. These ports serve as the interface between 

computers and play a large role in the security of a network by either permitting or blocking 

information flow. Computer network traffic can be captured and monitored several 

different ways. One of the most common and efficient ways to monitor networks is to use 

a flow record collection system incorporating a flow record protocol. The most popular 

flow record protocol is the NetFlow protocol, developed by Cisco, “that collects 

information about all the traffic running through a Netflow-enabled device, records traffic 

data, and helps discover traffic patterns” [5]. As seen in Figure 1, there are three main 

components to a flow record collection system that are critical to creating and processing 

Netflow data: The exporter, collector, and analyzer. The exporter keeps track of the packets 

moving in and out and creates records to be sent to the collector. The collector then stores 

the reports and sends them to the analyzer which is an application that can analyze the 

records for specific information such as anomaly detection [5].  
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Figure 1. Netflow collection diagram. Source: [5]. 

The Internet Assigned Numbers Authority (IANA) is the recognized entity which 

controls the assignment of internet protocol resources and port numbers among several 

other things [6]. These standardized port assignments are used as a basis for the 

determination of security status within specific network identifiers.  

1. Well Known Ports 

IANA assigns port numbers based on three different categories. Port numbers 

between 0 and 1023 are considered “Well Known” ports. These ports are both assigned to 

specific standard services and controlled by IANA. Port numbers between 1024 and 49151 

are considered “Registered” ports and are not assigned or controlled but are registered. Port 

numbers between 49152 and 65535 are considered “Dynamic or Private” ports and are 

neither assigned, controlled, or registered [7]. With the advent of new technologies and the 

increasing demand for information the range of well-known ports has started to expand 

resulting in standard server network traffic using ports as high as 10000. The most 

frequently accessed well-known ports within the datasets can be seen in Table 1.  
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Table 1. Some well-known ports within the datasets 

Port Number Description 
0 Wildcard port that tells the system to find a suitable port number 
22 Secure Shell (SSH) 
23 Telnet 
25 Simple Mail Transfer Protocol (SMTP) 
53 Domain Name Service queries (DNS) 
80 Hypertext Transfer Protocol (HTTP) 
443 Hypertext Transfer Protocol Secure (HTTPS) 
500 Internet Key Exchange (IKE) 

 

2. Secure Ports 

The increase in sensitive information being transferred over computer networks 

necessitated the creation of secure services and associated port number assignments to 

protect data as it flows between devices. The assignment of these port numbers became 

standard to facilitate some form of data authentication and encryption as it is transferred 

across a network. Table 2 details the different secure ports that are used in this work and 

the proposed service associated with each.  

Table 2. Commonly used secure ports 

Port Number Description 
22 SSH (Secure Shell) 
443 HTTPS (Hyper Transfer Protocol Secure over TLS/SSL) 
465 SMTPS (Simple Mail Transfer Protocol Secure over TLS/SSL 
500 ISAKMP (Internet Security Association and Key Management 

Protocol) 
563 NNTPS (Network News Transfer Protocol Secure over TLS/SSL) 
636 LDAP (Lightweight Directory Access Protocol over TLS/SSL) 
989 FTPS (File Transfer Protocol Secure) 
990 FTPS Control 
993 IMAPS (Internet Message Access Protocol Secure over TLS/SSL) 
994 IRCS (Internet Relay Chat Secure over TLS/SSL) 
995 POP3S (Post Office Protocol 3 Secure over TLS/SSL) 
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B. DEEP LEARNING: SUPERVISED VERSUS UNSUPERVISED 

Within the field of machine learning there are two predominant methods for 

training and testing models: supervised and unsupervised learning. Each method has its 

own strengths and weaknesses but the main difference between the methods is that 

supervised learning requires a labeled dataset which means it has a priori knowledge of the 

classification of a sample. This allows the algorithm to determine relationships between 

features of a sample associated with a given label in order to make more accurate 

predictions on unlabeled data [8]. It can then be inferred that a dataset presented to a 

supervised model of larger size with more robust feature set representations will inherently 

lead to a more accurate prediction due to the increased amount of information it has access 

to. Supervised learning is primarily used for the purposes of classification or regression 

analysis.  

Unsupervised learning on the other hand is a method by which an algorithm is 

presented data that is unlabeled and by developing relationships between different feature 

sets within the data, an estimate as to the structure of the data is made [8]. The most 

common use for this method is clustering. This provides a means for dimensionality 

reduction of higher dimensional data which makes it possible to accurately represent the 

data with lower dimensional models. Additionally, unsupervised learning is useful for the 

development of labels associated with different clusters which can be used for 

classification. A detailed description of the different clustering and classification methods 

used in this research is below.  

1. k-means Clustering 

k-means clustering is one of the most popular methods for unsupervised clustering 

available mostly because of the simplicity of the method. The primary objective of the 

algorithm is to group similar samples together based on identified feature sets within the 

data as can be seen in Figure 2. The variable “k” is a user defined parameter that establishes 

the number of centroids to be found within the dataset. The centroid is a variable 

representing the center (or mean) of a cluster of data. Every point within the dataset is 

assigned to the nearest centroid thereby creating the desired number of clusters [9]. A 
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noteworthy shortcoming of the k-means algorithm is that it does not account for noise in 

the dataset in that every point is assigned to a cluster regardless of whether it may be an 

outlier or not. The process begins by randomly assigning centroid values and works 

iteratively to assign each data point to one of the “k” clusters. A new centroid is then 

calculated, and all data points are reassigned to the new closest centroid. This process 

works repetitively until either the centroids have stabilized, or a user defined number of 

iterations has been conducted.  

 
Figure 2. Example of k-means clustering with five clusters. Adapted from 

[9]. 

2. Gaussian Mixture Models 

Gaussian mixture models are similar to the previously discussed k-means method in 

that both require the user to define a variable “k” for the number of clusters within the dataset. 

The primary difference between the two is that GMM utilize a Gaussian density model to 

distinguish between clusters rather than a centroid value as can be seen in Figure 3 [10]. The 

probability density function of a Gaussian model is given by 

 𝑓𝑓(𝑥𝑥) =  1
𝜎𝜎𝑖𝑖√2𝜋𝜋

𝑒𝑒
−12�

𝑥𝑥−𝜇𝜇𝑖𝑖
𝜎𝜎𝑖𝑖

�
2

      (1) 
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where i = 1, 2, 3. In the example, k = 3, which models the dataset to three different Gaussian 

density functions and assigns each datapoint to the cluster accordingly.  

 
Figure 3. Example of GMM clustering methodology with three clusters. 

Adapted from [10]. 

3. Density-Based Spatial Clustering of Applications with Noise 
(DBSCAN) 

DBSCAN clusters datapoints based on two different user defined parameters. First is 

the minimum Euclidean distance between two points 𝜀𝜀 that, if satisfied, assigns those data 

points to the same cluster. This parameter acts as a density threshold and controls how tightly 

the data points need to be grouped together to constitute a cluster. The second parameter is 

the minimum number of points assigned to a cluster. This parameter dictates the minimum 

size of a cluster and, in contrast with k-means, makes the algorithm resilient to noise as it 

does not require every point to be part of a cluster, which can be seen in Figure 4. It does not 

assume regularly shaped clusters and instead by clustering via the density of neighboring 

points, it will account for outliers, which makes it an ideal option for noisy datasets.  
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Figure 4. Example of DBSCAN clustering with outliers. Adapted from [11]. 

4. Agglomerative Hierarchical Clustering Using Dendrograms 

Agglomerative hierarchical clustering is another method for determining the 

number of classes associated with a given dataset in which each individual observation is 

taken as a cluster, and the algorithm works backwards to form pairs of clusters based on 

the Euclidean distance between them until there is a single cluster left at the end. This 

creates a dendrogram that can be analyzed to determine the number of relevant clusters in 

the dataset. An example of a dendrogram output can be seen in Figure 5.  
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Figure 5. Example of hierarchical clustering dendrogram. Adapted from 

[12]. 

C. CLASSIFICATION  

k-nearest neighbors (KNN) is a method of machine learning that falls within the 

supervised learning category. The basic assumption of this algorithm is that similar 

datapoints will reside closer to each other within a dataset [13]. The algorithm is easy to 

implement as there is only a single parameter “k” that needs to be chosen. Choosing the 

correct value of k, the number of nearest neighbors, is important as it is the basis for making 

classification decisions. As an example, if a k value of five is chosen, the algorithm will 

take the five closest datapoints to the reference datapoint and make a classification decision 

based on the most frequently seen label within that set. It is then run iteratively until the 

entire dataset is explored. It is now evident that although this is an extremely simple means 

of classification, it is extremely sensitive to the size of data being presented and will be 

much less efficient for larger datasets.  

A neural network is another supervised learning technique that is primarily used for 

either classification or regression problems. It is modeled after the way the neurons of the 

human brain function in response to input from the five senses of the human body to 
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understand its surroundings. The basic concept of a neural network is that given an input 

𝑥𝑥𝑖𝑖, hidden layers composed of a user defined number of neurons 𝑁𝑁𝑛𝑛, will decompose the 

input into different feature sets that can be learned and recognized by a computer. The 

output value if each individual neuron is calculated by 

 𝑧𝑧 =  ∑ 𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑛𝑛
𝑖𝑖=1       (2) 

where 𝑤𝑤𝑖𝑖 are the weights associated with the links between neurons as seen in Figure 6, 

and 𝑏𝑏 is a bias factor that is added to the sum prior to the activation phase. In order to 

account for the non-linearity of the data, an activation function is implemented to perform 

a non-linear transformation of the results as well as determine the accuracy of the model 

and ensure the convergence of the model by finding optimal weights and biases values 

[14]. This entire process is known as forward propagation and continues throughout all 

layers in the model until the predicted output 𝑦𝑦� is produced. The fine tuning of the weights 

and biases is then accomplished by a process called backward propagation. The initial 

values of w and b were arbitrarily chosen as input parameters to the model and to fine tune 

them; the total error between predicted output 𝑦𝑦� and expected output y is calculated using 

a loss function is given by  

 𝜆𝜆(𝑦𝑦,𝑦𝑦�) =  ∑ (𝑦𝑦 − 𝑦𝑦�)2𝑛𝑛
𝑖𝑖=1      (3) 

where the goal is to increase the accuracy and minimize the loss associated with the model. 

This process is conducted iteratively based on the number of epochs, or number of total 

passes through the model, that are defined as another input parameter by the user.  

When the desired accuracy and loss metrics are achieved through training, the 

algorithm can then be implemented on unknown datasets in which it will receive an input, 

decompose the input into different feature sets, and make a classification decision based 

on the relative similarity to the training data. As compared to the KNN classification model 

this is much more resilient and can handle much larger datasets more efficiently. The model 

is also much more tailorable to specific problem sets as there are a multitude of parameters 

and hyperparameters that can be fine-tuned to increase accuracy based on the users desired 

outcome.  
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Figure 6. Example of fully connected neural network with two hidden layers 

This chapter discussed the foundational background information necessary for 

understanding the basics of computer network traffic and the functionality of machine 

learning algorithms. It is critical to understand the distinction between supervised and 

unsupervised learning as the proposed methodology, to be discussed in the next chapter, 

will take advantage of both.  
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III. CONTINUOUS TRAINING METHODOLOGY 

The objective of this chapter is to present the proposed continuous training 

methodology that classifies computer network security status through the implementation 

of both clustering and deep neural network models. It discusses the critical data 

preprocessing phase in which network flow information is gathered and network identifiers 

are identified within the two datasets used for analysis. It also examines how different 

machine learning algorithms were used for the development of classes and network 

security classification.  

A. PROPOSED METHODOLOGY  

The proposed methodology takes advantage of a continuous stream of data and the 

ability for a machine learning algorithm to increase its accuracy based on the amount of 

data it receives. As seen in Figure 7, the initial dataset is captured and preprocessed into a 

format that can be input into the clustering machine learning model. Labels are created and 

appended to the preprocessed data where it is then provided as training input to the 

classification model to train it on the desired feature set. Once a classification of the NetID 

is made, the accuracy metric is compared to a desired threshold value and a determination 

is made as to whether the model should be retrained. When the threshold is exceeded, the 

new data is then incorporated into the previously available dataset, retrained, and tested on 

a new unknown dataset in order to make a new classification of the network. This process 

will run continuously until the user determines it is no longer required.  
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Figure 7. Proposed continuous training methodology consisting of the 

process of taking unlabeled data, preprocessing, clustering, labeling, 
classifying, and continuously updating the accuracy metric 

B. DATA PREPROCESSING  

Data preprocessing is a critical step in the process that ensures the dataset is void 

of any inconsistencies and is in an appropriate format that can be input into the model. The 

two datasets used in this work were both originally pcap files which are commonly used 

by Wireshark and contain packet data of computer network traffic. In order to simulate the 

summarized network traffic information, those pcap files were converted in to Netflow 

data using the nfpcapd tool. Once converted to Netflow data, the files were manually 

reformatted to csv files to be manipulated into the proper formats for the machine learning 

algorithms.  

Netflow data when captured provides access to a variety of different metadata 

features and can be tailored to the specific needs of the user. For the purpose of this 

research, the eleven different features seen in Table 3 were extracted for use in the machine 

learning algorithms. In order to analyze individual network identifiers, the most frequently 

used source IP addresses were identified and a WhoIs query was conducted to determine 

the network identifiers. A WhoIs query is a tool that allows a user to input a single IP 

address and determine a variety of different information associated with the given IP 

including the network identifier it belongs to. This provided a means to then separate flows 

by the most frequently used network identifiers for analysis.  
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Table 3. Netflow features used in machine learning algorithms 

Label Feature Description 
ts Start Time – Time flow began 
te End Time – Time flow ended 
td Duration – Total time elapsed in milliseconds 
sa Source Address – IP address at source 
da Destination Address – IP address at destination 
sp Source Port  
dp Destination Port 
pr Protocol 
flg Flags – TCP flags associated with a single flow 
ipkt Input Packets – Total packets in a single flow 
ibyt Input Bytes – Total bytes in a single flow 

 

There are two datasets used in this work. The first dataset is a five-minute network 

capture from a secure computer network. There are two different network identifiers within 

the dataset and approximately 403,000 flows for analysis.  

The Measurement and Analysis of the WIDE Internet (MAWI) dataset is part of an 

archive that is hosted by the MAWI working group of the Widely Integrated Distributed 

Environment (WIDE) project. The archive consists of network traffic traces that are 

intended to be used for the purpose of testing anomaly detection methods on computer 

network traffic. The database is updated daily in order to incorporate the most up-to-date 

applications and network traffic anomalies. In contrast to the secure network dataset, the 

MAWI dataset is composed of approximately 3.5 million flows with thousands of network 

identifiers all having varying degrees of security. In an effort to control the amount of 

information input into the model the top twenty most frequently used network identifiers 

were used for analysis.  

C. MACHINE LEARNING ALGORITHMS 

As discussed previously, the clustering method was used for the development of 

class labels for each network traffic flow within the dataset. It is important to note that the 

Netflow data used as input to the model is unlabeled and therefore required an unsupervised 

learning method. Several different clustering methods were used in order to best determine 
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the classes associated with the unknown dataset presented to the models. Following the 

clustering of the datasets, classes were determined, and all network flows were labeled 

accordingly. This labeled dataset then became the input into the classification model.  

The development of classes in clustering provides the ability for a determination of 

the security status of the network to be made. Two different classification techniques were 

explored in this research. The KNN model was used for its simplicity in classification and 

a fully connected neural network was used for its variety of configurable parameters and 

efficiency with respect to the larger datasets being used. The labeled datasets from the 

clustering were input into the classification models and a determination as to whether the 

network was secure, moderately secure, or insecure was made associated with different 

levels of accuracy for each. The level of accuracy associated with a classification can then 

be used as a threshold that is established for a trigger to retrain the network to establish a 

new baseline.  

With a collective understanding of the fundamentals of several different machine 

learning algorithms and the new proposed methodology for computer network security 

classification, its employment will be discussed in the following chapter. It is worth noting 

that although several different machine learning models are tested in the process, only two 

are selected for use based on their performance specific to the feature sets being used and 

the dataset being analyzed.  
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IV. SIMULATION RESULTS AND ANALYSIS 

Having now described the proposed methodology, this chapter will discuss the 

results and analysis that were produced. It begins with a brief discussion on the setup of 

the simulation environment and is followed by detailed discussions of the results of both 

clustering and classification. The chapter ends with the results of implementing the 

algorithm on a much larger dataset and the significant findings associated with its 

performance.  

A. SETUP OF THE SIMULATION ENVIRONMENT 

Two different computers were used to complete the data preprocessing and 

simulations. The primary computer used was an iMac with MacOS Big Sur, a 3.6GHz 8-

Core Intel Core i9 processor, and 32GB 2667 MHz DDR4 RAM. This computer was used 

to do part of the data pre-processing and all computer simulations. The secondary computer 

used was a Dell Precision T7610, operating on a Linux system which was used for 

conversion of pcap files to Netflow. The nfcapd tool is only compatible with Linux 

operating systems thus the requirement for an additional computer.  

Several different software tools were used for both data preprocessing and 

computer simulations throughout this research. The base platform used for coding was 

Jupyter Notebook with Python 3 as the programming language. The Keras software library 

with a TensorFlow 2.0 backbone was used for its artificial neural network tools as well as 

the Scikit-Learn library for its extensive set of classification, clustering, and regression 

tools. 

B. SECURE NETWORK AND MAWI DATA PREPROCESSING 

As mentioned in the previous chapter data preprocessing is a critical step in the 

machine learning process. Figure 8 details the step-by-step process for taking an initial data 

capture and optimizing it for input into a machine learning algorithm. Once the pcap files 

were converted to NetFlow and then to csv files, the files were further preprocessed specific 

to the machine learning algorithm being used. For the purposes of clustering a comparison 
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between the source port and destination port traffic was used in order to reduce the 

dimensionality of the data to two dimensions and provide an accurate representation of 

traffic flow in to and out of the network. Each flow was then reduced to two features and 

used as input to the clustering algorithm. The classification algorithms are more robust to 

higher dimensionality and therefore a separate dataset was used with a larger feature set 

and higher dimensionality. Both the KNN and Neural Net models used seven different 

features for classification as seen in Figure 9. The source and destination IP address 

features were then further expanded into octets creating a thirteen-dimension dataset for 

each flow. This increase in dimensionality provided for a more robust and accurate 

representation of the network traffic metadata incorporating multiple features for 

classification.  

 
Figure 8. Data preprocessing flow from initial data capture to filtered and 

sorted NetFlow data ready for input into the desired algorithm 

 
Figure 9. Sample of classification dataset input with 13 dimensions, 

including duration, source and destination IP addresses represented as 
octets, source and destination ports, input packets, and input bytes for each 

flow 
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In order to use the dataset for classification purposes it was necessary to split the 

composite dataset into several different sections in order to train, validate, and test the 

model. The training data is a significantly larger portion of the dataset and is the mechanism 

for learning the desired model parameters. A smaller validation set is further segmented 

from the training set in order to avoid overfitting the model which provides a false sense 

of accuracy. If the model is overfit, it is only learning the patterns of the provided training 

set and will not perform accurately when presented unknown data outside of the training 

set. The test set is the last section of data utilized by the model. It is critical to note that at 

no point in the training process should the testing data be introduced into the model. The 

test set is used to determine the accuracy of the model on unknown data and if the data has 

already been introduced into the algorithm, the testing results will be inaccurate.  

The next step in data preprocessing was to standardize the data by using the 

StandardScalar tool in sklearn. The tool normalizes all data to a standard normal 

distribution with mean of zero and unit variance. Machine learning algorithms are 

extremely sensitive to large deviations in data and normalizing the data ensures the 

algorithm performs as expected. The final step is to then transform the labels into a useable 

format by the neural network model. The Netflow feature data and the labels were 

separated into two different variables and the labels were converted via on-hot encoding as 

seen in Table 4.  

Table 4. One-hot encoding for Netflow data labels 

Label Label Description One-hot Encoded Label 
0 Secure [1,0,0] 
1 Moderately Secure [0,1,0] 
2 Insecure [0,0,1] 

 

In an effort to both further reduce the dimensionality of the larger datasets and more 

accurately model the computer networks within the dataset, network flows were combined 

based on the NetID they belonged to. The source addresses were used as the distinguishing 

feature and were sorted in order to determine the most frequently used source addresses. 
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Those source addresses were then inputted in to a WhoIs query which provided the NetID 

associated with the IP address. From this analysis, a list of the most frequently used NetIDs 

was created and the two NetIDs from the secure network dataset as well as the top twenty 

NetIDs within the MAWI dataset were used for analysis. 

C. CLUSTERING RESULTS 

The results of the k-means and GMM clustering methods on both the secure 

network and MAWI datasets will be discussed in the following subsections. The analysis 

of both and a discussion of how the results led to the selection of the optimum clustering 

method is presented followed by how the development of labels for implementation in 

classification was conducted.  

1. Secure Network Dataset 

As k-means clustering is the simplest model to implement it was the first model 

used for analysis. The first step was to determine the value of “k” clusters to be used in the 

algorithm. To do this the elbow method was implemented. The elbow method is a 

calculation that varies the number of k-clusters from 1-10 and for each value of k, calculates 

the within-cluster sum of square (WCSS) value [9]. The WCSS is the sum of squared 

distances between each data point and the centroid in its respective cluster represented by  

 𝑒𝑒𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 =  ∑ (𝑋𝑋𝑖𝑖 − 𝑌𝑌𝑖𝑖)2𝑖𝑖∈𝑛𝑛     (4) 

where 𝑌𝑌𝑖𝑖 is the centroid value for data point 𝑋𝑋𝑖𝑖 within n clusters. As the number of clusters 

increases, the WCSS value decreases and as can be seen in Figure 10, the point at which 

the curve most drastically changes direction (the elbow) is the optimum number of clusters. 

From the WCSS calculations, cluster values of k = 3, 4, and 5 were chosen for this dataset 

as the elbow values are clearly optimized at these locations. 
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Figure 10. Elbow method for determining number of k-clusters. The number 

of clusters are optimized between the elbow values of 3 and 5 

The secure network dataset was chosen for analysis first. It can be seen in Figure 

11 that the clusters are clearly concentrated below a threshold port value of approximately 

10,000 for both the source and destination port features. It is also worth noting that the 

traffic from lower numbered source ports predominantly flows to lower numbered 

destination ports and vice versus indicating relatively secure practices. There is minimal 

traffic in the secure network dataset from higher port numbers in both the source and 

destination port which is indicative of insecure practices, and these ports are unregistered 

and not controlled as previously mentioned. As the number of clusters increases, the only 

observed effect is the segmentation of the bottom cluster into smaller pieces. Therefore, 

based on the k-means clustering analysis, a value of k = 3 was chosen as optimum, and the 

number of clusters led to the development of three different classes for input into the 

classification models.  
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Figure 11. Secure network k-means clustering results for user defined number 

of cluster inputs of 3, 4, and 5 clusters 

As a means of comparison several other clustering methods were performed on the 

secure network dataset in order to confirm the optimum number of classes. As can be seen 

in Figure 12 the data still trends below the 10,000-port value threshold for both the source 

and destination ports. The lower cluster is again further segmented into smaller pieces as 

the number of clusters is increased indicating the increase in number of clusters provides 

no benefit for analysis.  
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Figure 12. Secure network GMM clustering results for user defined number 

of gaussian distribution inputs of 3, 4, and 5 

The DBSCAN method was also explored as an option for clustering but as can be 

seen in Figure 13, the density-based approach is not as effective in identifying clusters 

within the network traffic dataset. A visual analysis of the graphs does still show a clear 

separation along the 10,000-port value; however, this machine learning technique is not 

ideal for the given dataset and was no longer used for analysis.  
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Figure 13. Secure network DBSCAN results with user defined minimum 

Euclidian distance of 𝜀𝜀 = 0.1, 0.3 and minimum samples of 3 and 5 

Finally, agglomerative clustering using dendrograms was explored as a possible 

solution. In the process of creating the dendrogram for the secure network dataset, the 

algorithm failed five separate times during processing. It was determined that this is a result 

of the significantly large amount of data associated with the dataset and was then concluded 

that agglomerative hierarchical clustering was not a feasible method for determining labels 

within this dataset.  
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2. MAWI Dataset 

Based on the analysis of the secure network dataset and the identified 10,000 port 

value threshold, the k-means clustering algorithm was used for initial analysis of the first 

four most frequently used network identifiers within the MAWI dataset. As can be seen in 

Figure 14 there is a varying degree of secure practices as compared to the secure networks 

however, the network traffic does appear to be concentrated among certain port values 

within a given NetID which aided in the classification of the network.  

 
Figure 14. Results for k-means clustering on the four most frequently used 

NetIDs in the MAWI dataset with a user defined parameter of k = 3 
clusters  

The results from the secure network dataset clustering methods determined that k-

means was the most relevant method for clustering the data. It was then determined that 

further clustering analysis on the MAWI dataset was not required. Based on the results 

from the k-means analysis on both datasets, a threshold port value of 10,000 was chosen to 
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determine labels to be used in the follow-on neural network classification algorithms. 

These three labels would be associated with secure, moderately secure, and insecure 

classifications.  

D. KNN AND DEEP NEURAL NETWORK RESULTS 

The results of both KNN and DNN will be discussed in the following subsections. 

The analysis of both and a discussion of how the results led to the selection of the optimum 

classification method is presented. This is followed by a detailed discussion on the 

accuracy metrics associated with each model and how the algorithm was fine tuned to 

increase accuracy and minimize loss associated with its performance.  

1. Classes of Secure Networks 

In order to successfully classify the security of the network the Netflow data needed 

to be labeled. Based on the chosen threshold port value of 10,000 from the k-means 

clustering model, the data was filtered in to three different classes and labeled accordingly. 

Port values that fall within the eleven different secure ports notated in Table 2 were all 

labeled “Secure,” any port values that were between 0-10,000, exclusive of the secure 

ports, were labeled “Moderately Secure,” and all other port values greater than 10,000 were 

labeled “Insecure.”  

2. KNN Results on Secure Network Data 

The KNN model, being the simplest classifier used, only required the tuning of one 

hyperparameter. The number of nearest neighbors (n_neighbors) was modeled for values 

of 3, 4, and 5. The three models where then built, trained, and tested on the secure network 

NetID 204 dataset with an accuracy deviation of approximately 1%. The number of nearest 

neighbors’ value of three performed the best with an accuracy score of 93% and was chosen 

as the model to be used with the expansion of training data and tested on unknown datasets.  

3. Neural Network Results on Secure Network Data  

There is an important distinguishing characteristic between parameters of a 

machine learning model and the hyperparameters of the model. Model parameters are the 
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aspects that are learned by the algorithm whereas hyperparameters are the user provided 

inputs to the algorithm that influence the model output and are not learned by the model. 

The choice of these various hyperparameters will certainly have varying effects on the 

performance of the model and maximizing their performance is key.  

The neural network model utilized several different hyperparameters to take 

advantage of the flexibility of the model. The initial hyperparameters chosen, their values, 

and a description of each can be seen in Table 5. 

Table 5. Initial hyperparameters for the neural network using the Keras 
machine learning library  

Hyperparameter Value Description 

Batch Size 128 The number of individual flows 
separated into batches where each 

iteration only takes into account a single 
batch when updating weight values. 

Epochs 20 The number of complete passes through 
all batches within the training dataset. 

Activation Function relu Rectified Linear Unit – The positive part 
of an argument. 

𝑓𝑓(𝑥𝑥) = max (0, 𝑥𝑥) 

Hidden Layers 3, 4, 5 The layers in between the input and 
output layer that takes an input and 
utilizes the activation function to 

provide an output to the next layer. 

Hidden units 256 The number of artificial neurons within 
a hidden layer 

Loss Function categorical cross 
entropy 

Computes the cross-entropy loss 
between the known labels and the 

predicted labels. 

Optimizers adam A stochastic gradient descent method 
that is based on adaptive estimation of 

first and second order moments. 
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With the initial hyperparameters chosen three different architectures were created 

with varying hidden layers and first tested on the secure network NetID_204 dataset in 

order to determine the most favorable number of hidden layers with respect to model 

performance. As can be seen in Figures 15, 16, and 17 the accuracy score associated with 

the different number of hidden layers varies only slightly by approximately 2%. Increasing 

the number of hidden layers in the architecture had very little effect on the performance 

with respect to accuracy observed in part (a) of all figures as well as the loss observed in 

part (b) of all figures as they all roughly approach 0.61.  

  
Figure 15. Graphical representations of the accuracy metric (a) and loss 

metric (b) for a neural network architecture with one hidden layer 

  
Figure 16. Graphical representations of the accuracy metric (a) and loss 

metric (b) for a neural network architecture with two hidden layers 
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Figure 17. Graphical representations of the accuracy metric (a) and loss 

metric (b) for a neural network architecture with three hidden layers 

The three architectures were then tested with results seen in Table 6. Without 

changing the hyperparameters, and with an accuracy score of 78.44%, a value of three 

hidden layers was chosen for the model.  

Table 6. Testing results of the first model 

Accuracy Score of the model with 1-Hidden Layer 76.41% 
Accuracy Score of the model with 2-Hidden Layer 76.57% 
Accuracy Score of the model with 3-Hidden Layer 78.44% 

 

The architecture with three hidden layers was then tested on two additional datasets 

that were not used during training and completely unknown to the model. The secure 

network NetID 205 dataset was used for comparison as the datasets are independent but 

fairly similar and the MAWI NetID 1 dataset was used for a completely independent 

evaluation of the model on unfamiliar data. As can be seen in Table 7 the performance of 

the model on the secure network NetID 205 dropped by approximately 10% while still 

performing within an acceptable range of accuracy. The performance on the MAWI dataset 

however was extremely poor and led to the future expansion of training data to increase 

accuracy in testing and implementation.  
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Table 7. Testing results of 3 hidden layer model on unknown data 

Accuracy Score of 3-Hidden Layer Model on Secure Network NetID 205 66.28% 
Accuracy Score of 3-Hidden Layer Model on MAWI NetID 1  6.44% 

 

4. Expanded Dataset Results 

With the results of both the KNN and neural network models performances having 

been trained on the secure network NetID 204, the next step was to increase the dataset 

available for training in an effort to increase the accuracy of the model. As a result, the 

secure network NetID 204 dataset was concatenated with four other NetIDs expanding the 

total number of flows from 181,000 to approximately 1,400,000. Additionally, a larger 

unknown dataset was created for testing purposes by concatenating the next six more 

frequently used NetIDs from the MAWI dataset.  

The KNN model was first to be tested with an established number of nearest 

neighbors value of three. As expected, the model accuracy score increased in testing to 

98.5% when a larger dataset was incorporated into training which is a slight increase as 

compared to the first model. The model was then tested on the larger unknown dataset and 

although accuracy increased initially, it significantly decreased to 50.12% when introduced 

to data from unknown NetIDs. The DNN model with three hidden layers was then trained 

and tested on the expanded dataset and performed with an accuracy score of 94.89% which 

is an increase of approximately 16% from the first model.  

5. Grid Search Model Results 

With an increase in accuracy observed in both models as a result of increasing the 

training dataset, the next step to increase accuracy was to fine tune the hyperparameters of 

the model. As the KNN model only requires one hyperparameter, this method only applied 

to the DNN model. The grid search tool from Scikit-learn was used to calculate an accuracy 

score associated with every possible combination over a specific set of hyperparameters in 

order to maximize performance. This grid search method was conducted with a single 

hidden layer DNN model and searched over the values of the batch size, epochs, and 
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activation function hyperparameters seen in Table 8. Over eighty different iterations of 

possible combinations of hyperparameters, the best performing combination was 

determined to be batch size of 32, 100 epochs, and the ReLU activation function with an 

accuracy score of 99.87%.  

Table 8. Grid search hyperparameter values 

Hyperparameter Values to be Searched 
Batch Size 16, 32, 64, 128, 256 
Epoch 10, 20, 50, 100 
Activation Function ReLU, tanh, sigmoid, linear 

 

The grid search model was then retrained with the new hyperparameters on the 

expanded dataset to confirm its performance and as can be seen in Figure 18, the model 

accuracy metric significantly increases while the loss metric quickly approaches zero. The 

grid search model was then tested on the unknown expanded dataset with MAWI NetIDs 

5-10 and performed with an accuracy score of 79.56%. This is approximately a 20% 

increase in accuracy over the KNN model and resulted in the DNN model being selected 

as the best method for network security classification.  
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Figure 18. Performance of grid search model with optimized hyperparameters 

6. Continuous Training Method Results 

With the deep neural network model selected as the best model for classification, 

the next step in the process was to simulate a dynamic flow of network traffic for analysis. 

This was accomplished by incrementally presenting three rounds of unknown network 

flows associated with the most frequently used NetIDs within the datasets. Each round of 
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data presented to the model was then further analyzed to determine which of the NetIDs 

the model was classifying correctly as compared to the labeled data based on the percentage 

of flows associated with each security class.  

The first round of testing on unknown data resulted in an accuracy score of 79.56%. 

As seen in Figure 19a, the neural network model correctly classified four out of the six 

unknown NetIDs. The two NetIDs that were incorrectly classified corresponded to 

networks that were moderately secure and misclassified as Insecure by approximately 20%. 

By implementing the continuous training methodology to further increase accuracy, the 

unknown NetIDs were then compiled with the previously known dataset, the model was 

retrained, and reimplemented for a second round on five additional unknown NetIDs. The 

second round of testing resulted in an accuracy score of 81.96%, increasing on the previous 

round by approximately 2.5%. As seen in Figure 19b three of the five NetIDs were 

correctly classified. The unknown NetIDs were then again compiled with the previously 

known dataset, the model was retrained, and reimplemented for a third round on another 

set of five unknown NetIDs. The third round of testing resulted in an accuracy score of 

88.64% which is an increase of approximately 6.5% over the second round and a 9% 

increase overall. As seen in Figure 19c all five NetIDs were correctly classified. By 

implementing the proposed continuous training methodology there is a noticeable increase 

in accuracy as seen in Table 9.  



36 

 
(a) First Round of Results, (b) Second Round of Results, (c) Third Round of Results 

Figure 19. Classification results for rounds 1, 2, and 3 of the simulated 
dynamic flow of unknown network traffic by percentage of flows 

associated with each security classification 

Table 9. Accuracy of optimized neural network model tested on a simulated 
dynamic flow of unknown network data 

 Accuracy Score 
Round 1 79.56% 
Round 2 81.96% 
Round 3 88.64% 

 

After an observed increase in accuracy of classification with the previously discussed 

model, an additional test was conducted to further prove the continuous training 

methodology results. This consisted of an additional three rounds of simulations with the 

NetIDs being presented to the model in reverse order. This simulated the ability for the model 

to learn from the data being presented in any order as long as the designated feature sets were 

available. As can be seen in Table 10, there is still a noticeable increase in accuracy between 

all three rounds with an overall increase in accuracy of approximately 23%.  
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Table 10. Accuracy of optimized neural network model tested on a simulated 
dynamic flow of unknown network data in reverse order 

 Accuracy Score 
Round 1 69.15% 
Round 2 80.77% 
Round 3 92.36% 

 

7. Expanding the Dataset 

After the proposed methodology was validated using any order of information 

presented to the algorithm, a significantly larger dataset was presented for analysis. A total 

of approximately 6.7 million flows were preprocessed, labeled, and analyzed using the 

continuous training methodology, which is three times the size used in the original test. 

Table 11 shows that although there is a slight drop in accuracy between rounds 1 and 2, the 

performance returned to 87.95% after Round 3. When looking at the classification of 

NetIDs individually as seen in Figure 20, the performance is still fairly accurate. It is worth 

noting, however, that there is a trend in misclassifying moderately secure networks as 

secure networks due to a significant imbalance of classes in the expanded dataset as seen 

in Figure 21 [15]. Although the dataset expanded by nearly three times the original size, 

the secure classes changed very little as compared to the other two classes skewing the data 

to right and causing a potential bias in classification. This could be avoided by ensuring 

that the datasets being tested have a balanced number of classes.  

Table 11. Accuracy of the optimized neural network model tested on an 
expanded dataset 

 Accuracy Score 
Round 1 84.19% 
Round 2 82.13% 
Round 3 87.95% 
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(a) First round of results, (b) Second round of results, (c) Third round of results 

Figure 20. Classification results for rounds 1, 2, and 3 by network identifier 
on the expanded dataset by percentage of flows associated with each 

security classification 

 
Figure 21. Class imbalance between the 5 and 15-minute MAWI data 

captures. “0” is secure, “1” is moderately secure, “2” is insecure 
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The analysis of results has shown that the proposed continuous learning 

methodology performs substantially well in multiple different scenarios. The unsupervised 

clustering of data provided labels for the flows to then be used in the supervised learning 

phase of the neural network. The optimization of hyperparameters and increase in data size 

both proved to increase the accuracy metric while simultaneously making the architecture 

more robust for network security classification.  
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V. CONCLUSIONS AND RECOMMENDATIONS 

Having now covered the proposed methodology and analysis of results, this chapter 

will conclude the thesis with a summary of work reported in the thesis, a discussion of the 

significant contributions from this thesis, and recommendations for future work.  

A. SUMMARY OF WORK 

This effort focused on the development of a machine learning model to accurately 

classify the security status of computer networks based on Netflow data. By focusing 

heavily on the preprocessing phase, eleven different feature sets were identified and 

extracted from each flow for analysis. This provided a means for feature space reduction 

while still maintaining a diverse set of features available for analysis. The dataset was first 

segmented by NetID and further sorted by the most frequently used NetIDs for 

classification. The k-means clustering method proved to be the most useful in identifying 

the three clusters associated with the three labels that would be used for classification. 

These labels where then appended to the network flows and became the basis for input into 

the neural network model which was fine-tuned and implemented in several different 

iterations resulting in the accurate classification of computer networks with the highest 

observed accuracy score of 92.3%.  

All results discussed in the previous chapters have demonstrated the effectiveness 

of the continuous training methodology with an observed increase in accuracy of 

approximately 23% over successive iterations of testing. By fine tuning the 

hyperparameters with the grid search method and continuously expanding the training set 

while still exposing the model to unknown network traffic during testing, the proposed 

methodology proves to be significantly more effective in implementation. The use of both 

supervised and unsupervised machine learning models provides the ability to implement 

the model on real world computer network traffic without a priori knowledge of its 

structure or the activities that take place within. The ability to identify the level and degree 

of secure practices within a computer network using machine learning, based solely on 

metadata, is a significant advantage to anyone interested in this area of research.  
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B. SIGNIFICANT CONTRIBUTIONS 

The first significant contribution of this thesis is the method by which the raw 

unlabeled data was analyzed and labeled for processing. This was accomplished by 

utilizing an unsupervised method (k-means) to determine labels associated with the dataset 

being analyzed. By clustering the data, it became apparent that there were two distinct 

clusters of data and a third that would eventually be created as a subset of one of the original 

two. These clusters became the cornerstone for labeling individual flows and made it 

possible to then utilize a supervised machine learning method for classification.  

The second significant contribution of this thesis is the continuous learning 

methodology presented in Chapter III. By simulating a continuous flow of network traffic, 

the proposed architecture took advantage of the ability to consistently train the algorithm 

on the newly available data thereby constantly increasing the accuracy metric during 

testing. When the accuracy metric dropped below a user defined threshold, the process was 

started over by incorporating the previous testing data into the training data and retraining 

the algorithm on this new but previously unavailable information. This methodology can 

continue indefinitely or until the user is satisfied with the level of performance associated 

with classification.  

C. FUTURE WORK 

The continuous training methodology discussed thus far has been proven effective 

in classifying network security status based on the metadata available within the tested 

datasets. Although the results for this thesis are substantial, there are several limitations to 

the proposed methodology and the potential for future work exists in several different 

areas.  

The most notable area for improvement would be the implementation of the 

proposed method on a real-world open network for true dynamic network security 

classification. This would provide real time metrics for success based on the classification 

of networks with a known security status that are monitored full-time by network 

administrators. Being able to classify networks in real-time would provide a user extremely 

valuable information to be used dynamically for their organizations’ specific purpose.  
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Although several different machine learning algorithms were tested as part of this 

thesis, the list was certainly not exhaustive. The evaluation of additional machine learning 

techniques would significantly benefit the research and contribute to a more comprehensive 

analysis of performance. Specifically, converting unlabeled data into labeled data using an 

unsupervised technique leaves plenty of room for improvement. The assumptions made in 

this work were based solely on the dataset available and could be improved for a more 

global solution to classification whether it is a binary or multi-class classification problem.  
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APPENDIX.  PYTHON CODE 

A. PYTHON CODE FOR USING GRIDSEARCH TO OPTIMIZE THE 
HYPERPARAMETERS OF THE NEURAL NETWORK 

This code was used to grid search the hyperparameters of the neural network and 

optimize the accuracy of the algorithm. The grid search was used to optimize the batch 

size, number of epochs, and activation function used within the algorithm.  

import numpy 

from sklearn.model_selection import GridSearchCV 

from keras.models import Sequential 

from keras.layers import Dense 

from keras.wrappers.scikit_learn import KerasClassifier 

# Function to create model, required for KerasClassifier 

def create_model(activation='relu'): 

# Create model 

model = Sequential() 

model.add(Dense(256, input_dim=13, activation=activation)) 

model.add(Dense(3, activation='softmax')) 

# Compile model 

 model.compile(loss='categorical_crossentropy',optimizer='adam',metrics=['accuracy']) 

return model 

# fix random seed for reproducibility 

seed = 7 

numpy.random.seed(seed) 
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# create model 

model = KerasClassifier(build_fn=create_model, verbose=0) 

# define the grid search parameters 

batch_size = [16, 32, 64, 128, 256] 

epochs = [10, 20, 50, 100] 

activation = ['relu', 'tanh', 'sigmoid', 'linear'] 

param_grid = dict(batch_size=batch_size, epochs=epochs, activation=activation) 

grid = GridSearchCV(estimator=model, param_grid=param_grid, n_jobs=-1, cv=3) 

grid_result = grid.fit(X_train, Y_train) 

# summarize results 

print("Best: %f using %s" % (grid_result.best_score_, grid_result.best_params_)) 

means = grid_result.cv_results_['mean_test_score'] 

stds = grid_result.cv_results_['std_test_score'] 

params = grid_result.cv_results_['params'] 

for mean, stdev, param in zip(means, stds, params): 

print("%f (%f) with: %r" % (mean, stdev, param)) 

B. PYTHON CODE FOR CREATING THE NEURAL NETWORK MODEL 
WITH OPTIMIZED GRIDSEARCH HYPERPARAMETERS 

This code was used to incorporate the optimized hyperparameters from the 

GridSearch technique into the neural network algorithm. By optimizing the 

hyperparameters the accuracy of the algorithm increased by approximately 10%.  

#Standard Input Variables 
input_size = 13 

batch_size = 32 

hidden_units = 256 
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num_labels = 3 

#Build the New Model 
from keras.models import Sequential 

from keras.layers import Dense , Activation, Dropout 

from keras.optimizers import Adam ,RMSprop, SGD 

from keras import regularizers 

model_gs = Sequential() 

model_gs.add(Dense(units=hidden_units, activation='relu', input_dim=input_size)) 

model_gs.add(Dense(units=num_labels , activation='softmax')) 

#Compile the model with Recommended Optimizer 

model_gs.compile(loss='categorical_crossentropy',optimizer='adam',metrics=['accuracy']

) 

#Train the Model with Recommended Batch size and Epochs 

history_gs = model_gs.fit(X_train, Y_train, epochs=100, verbose=1, batch_size=32, 

validation_data=(X_valid, Y_valid)) 

#Performance of the Model on Test Data 

pred_dnn_gs = model_gs.predict_classes(X_test) 

from sklearn.metrics import accuracy_score 

print('DNN Model accuracy score with GridSearch Hyperparameters: {0:0.4f}'. 

format(accuracy_score(Y_test, pred_dnn_gs))) 
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