

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

DEPLOYING AND ANALYZING CONTAINERIZED
HONEYPOTS IN THE CLOUD WITH T-POT

by

Alexander D. Washofsky

September 2021

Thesis Advisor: Thuy D. Nguyen
Co-Advisor: Neil C. Rowe

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions
for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington, DC, 20503.

1. AGENCY USE ONLY
(Leave blank)

2. REPORT DATE
September 2021

3. REPORT TYPE AND DATES COVERED
Master’s thesis

4. TITLE AND SUBTITLE
DEPLOYING AND ANALYZING CONTAINERIZED HONEYPOTS IN THE
CLOUD WITH T-POT

5. FUNDING NUMBERS

6. AUTHOR(S) Alexander D. Washofsky

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)
N/A

10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited.

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)
Honeypots (decoy systems) are effective tools to monitor cyberattack and intrusion attempts, but it is

challenging to deploy enough of them to catch a sufficient amount of such activity. With cyberattacks on the
rise, specifically those targeting critical infrastructure, better suspicious-traffic collection methods must be
developed. This thesis explores the deployment and use of cloud-based honeypots within an open-source
honeypot management framework, T-Pot. Instances of T-Pot ran honeypots that simulated a web server and
an electrical-power distribution system, and their traffic was compared to previous local and cloud-based
standalone honeypot deployments. The results showed that the cloud deployments received more traffic than
local deployments and that t he use of T-Pot did not discourage intrusions or attacks. T-Pot bundles
security analysis tools and services for analyzing cloud-scale data, enabling more robust cyber defense
for critical infrastructure and Department of Defense networks.

14. SUBJECT TERMS
honeypot, cloud, cloud server, T-Pot, deception, cyber defense

15. NUMBER OF
PAGES

83
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited.

DEPLOYING AND ANALYZING CONTAINERIZED HONEYPOTS IN THE
CLOUD WITH T-POT

Alexander D. Washofsky
Lieutenant Commander, United States Navy

BA, The George Washington University, 2012

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 2021

Approved by: Thuy D. Nguyen
Advisor

Neil C. Rowe
Co-Advisor

Gurminder Singh
Chair, Department of Computer Science

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

Honeypots (decoy systems) are effective tools to monitor cyberattack and

intrusion attempts, but it is challenging to deploy enough of them to catch a sufficient

amount of such activity. With cyberattacks on the rise, specifically those targeting critical

infrastructure, better suspicious-traffic collection methods must be developed. This thesis

explores the deployment and use of cloud-based honeypots within an open-source

honeypot management framework, T-Pot. Instances of T-Pot ran honeypots that

simulated a web server and an electrical-power distribution system, and their traffic was

compared to previous local and cloud-based standalone honeypot deployments. The

results showed that the cloud deployments received more traffic than local deployments

and that t h e use of T-Pot did not discourage intrusions or attacks. T-Pot bundles

security analysis tools and services for analyzing cloud-scale data, enabling more

robust cyber defense for critical infrastructure and Department of Defense networks.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. MOTIVATION ..1
B. RESEARCH PLAN ...2
C. THESIS OUTLINE ..2

II. BACKGROUND AND RELATED WORK ..3
A. CLOUD COMPUTING ...3
B. HONEYPOTS ..4
C. PREVIOUS HONEYPOT RESEARCH ..4

III. METHODOLOGY AND DESIGN ..7
A. DIGITALOCEAN CLOUD ENVIRONMENT7
B. T-POT ...7
C. HONEYPOTS USED IN THIS THESIS ...10
D. PROTOCOLS USED IN CONPOT AND GRIDPOT11
E. OTHER TOOLS USED ...12

IV. EXPERIMENT IMPLEMENTATION ...13
A. CONFIGURATION AND IMPLEMENTATION13

1. TEST ENVIRONMENT ...13
2. CUSTOM T-POT TEMPLATES ...13
3. EXPERIMENT 1: CONPOT ..14
4. EXPERIMENTS 2 AND 3: SNARE AND TANNER14
5. EXPERIMENTS 4–7: GRIDPOT ..15

B. DATA COLLECTION ..16
C. PROBLEMS ENCOUNTERED ...17

V. ANALYSIS ...21
A. EXPERIMENT 1 ...21

1. PROTOCOL DATA AND RESULTS21
2. OVERALL STATISTICS ...27

B. EXPERIMENTS 2 AND 3...29
1. HTTP Data and Results...29
2. Overall Statistics ..33

C. EXPERIMENTS 4–7 ...33
1. Session Data ..35
2. SIMILARITIES BETWEEN EXPERIMENT TRAFFIC41

viii

3. BEHAVIORAL ANALYSIS ...43
4. Shodan ...44

D. T-POT ...45

VI. CONCLUSIONS AND FUTURE WORK ...51

APPENDIX A. CUSTOM T-POT INSTALLATION...53

APPENDIX B. COSINE SIMILARITY DATA ..55

LIST OF REFERENCES ..59

INITIAL DISTRIBUTION LIST ...65

ix

LIST OF FIGURES

Figure 1. Screenshot of Cockpit Taken during Our Experiments, Showing
Running Docker Containers ...8

Figure 2. Screenshot of Tanner Attack Map from Kibana Dashboard, Taken
during Our Experiments, Showing a World Map of Geolocated
Attack Sources. ..9

Figure 3. Screenshot of Suricata Alert Signature from the Kibana Dashboard,
Taken during Our Experiments, Showing the Top 10 Alerts
Generated by Suricata. ...10

Figure 4. Experiment 1 Architecture ...14

Figure 5. Experiments 2–3 Architecture ...15

Figure 6. Experiments 4–7 Architecture ...16

Figure 7. Experiment 1 HTTP Version Distribution ...21

Figure 8. Experiment 1 HTTP Request Method Distribution22

Figure 9. Experiment 1 MODBUS Function Codes..23

Figure 10. Experiment 1 MODBUS Valid Function Codes ..24

Figure 11. MODBUS Activity by Country Count ..25

Figure 12. Experiment 1 EtherNet/IP Command Code Distribution26

Figure 13. S7Comm Activity by Country Count ..27

Figure 14. Experiment 1 Protocol Packet Count by Date ...28

Figure 15. Experiment 1 Protocol Distribution ...28

Figure 16. Experiments 2 and 3 HTTP Requests by Date (Logarithmic Scale)31

Figure 17. Experiments 4–7 IEC 104 Traffic ..38

Figure 18. Experiments 4–7 IEC 104 Session Statistics ...38

Figure 19. Example Hex Dump of IEC 104 Error Frame Showing Encapsulated
HTTP Packet ..40

Figure 20. Example of IEC104 Error Packet Containing SIP Data43

x

Figure 21. Screenshot of Elastic Database of Experiment 2, Showing Multiple
Data Fields from an HTTP Request ...46

Figure 22. Screenshot of Elastic Database of Experiment 4, Showing Entire
HTTP Request in One Data Field ..46

Figure 23. Screenshot of Kibana Dashboard of Experiment 2, Showing an
Errant HTTP Path ..46

Figure 24. Screenshot of Suricata Dashboard of Experiment 5, Showing One
CVE..47

Figure 25. Processor Use in Experiment 2 ..48

Figure 26. Processor Use in Experiment 3 ..48

Figure 27. Memory (RAM) Use in Experiment 2 ...49

Figure 28. Memory (RAM) Use in Experiment 3 ...49

Figure 29. Disk Use in Experiment 2 ..49

Figure 30. Disk Use in Experiment 3 ..50

xi

LIST OF TABLES

Table 1. Experiment Data Collection Dates...17

Table 2. Comparison of Experiment 1 S7COMM Activity to Hyun’s Data............26

Table 3. Cosine Similarity between Experiment 1 and Hyun’s Data29

Table 4. Experiments 2 and 3 HTTP Versions ..30

Table 5. Experiments 2 and 3 HTTP Methods...30

Table 6. Experiments 2 and 3 Top Countries Comparison31

Table 7. Experiment 2 and 3 Alleged Countries ..32

Table 8. Experiment 2 and 3 Top 11 Overall Count of HTTP Paths33

Table 9. Overall Traffic Statistics for Experiments 4–7 ..34

Table 10. Experiments 4–7 IP Address Session Data ..35

Table 11. Experiments 4–7 HTTP Country Data ...36

Table 12. Experiments 4–7 HTTP Path Data ...37

Table 13. Experiments 4–7 IEC 104 Methods ...39

Table 14. Experiments 4–7 Daily IEC 104 Traffic ..39

Table 15. Experiments 4–7 IEC 104 Alleged Country Data......................................40

Table 16. Experiments 4–7 Cosine Similarity for All Traffic41

Table 17. Experiments 4–5 Measure of Significance of Total Traffic
Comparisons ..42

Table 18. Experiments 4–7 Cosine Similarity for IEC 104 Traffic42

Table 19. Experiments 4–7 Measure of Significance of IEC 104 Traffic42

Table 20. Experiments 4–7 Traffic from Specific Subnet ...44

xii

THIS PAGE INTENTIONALLY LEFT BLANK

xiii

LIST OF ACRONYMS AND ABBREVIATIONS

AWS Amazon Web Services
BACnet Building Automation and Control Network
CVE Common Vulnerability and Exposure
DOD Department of Defense
FTP File Transfer Protocol
HTTP Hypertext Transfer Protocol
IaaS Infrastructure as a Service
ICS industrial control system
IDS intrusion-detection system
IEC International Electrotechnical Commission
IPMI Intelligent Platform Management Interface
IPS intrusion-prevention system
JSON JavaScript Object Notation
NIST National Institute for Standards and Technology
NPS Naval Postgraduate School
PaaS Platform as a Service
PCAP packet capture
PDU power distribution unit
PLC programmable logic controller
S7Comm S7Communications Protocol
SaaS Software as a Service
SCADA supervisory control and data acquisition
SECNAVINST Secretary of the Navy Instruction
SNMP Simple Network Management Protocol
SSH Secure Shell
TCP Transmission Control Protocol
TLS Transport Layer Security
TTP tactics, techniques, and procedures
UDP User Datagram Protocol

xiv

THIS PAGE INTENTIONALLY LEFT BLANK

xv

ACKNOWLEDGMENTS

 First, thank you to all of the professors and staff at the Naval Postgraduate School.

It was a pleasure to learn from you in person, and the efforts you went through to ensure

our remote-learning quarters during the pandemic were still valuable did not go

unappreciated. Thank you for always sharing your passion.

I would like to thank Dr. Rowe and Professor Nguyen for their guidance, assistance,

and mentorship; this definitely would not have been possible without you. Thanks for

introducing me to such an interesting research area and for giving me the room to explore

it.

 To my cohort, and especially the other two of the Three Amigos—I could not have

asked for a better team. Thanks for the memories, discussions, study sessions, and, of

course, the hilarious commentary and memes. You all kept me sane even when we could

not meet in person.

Most importantly, I would like to thank my wife, Erica. You have always been my

rock, and that was never truer than during this crazy time when we were both remote

students. Thank you for all the support you gave me and continue to give me every day. I

love you so much!

xvi

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

This thesis addresses network defense for the National Cyber Strategy (National

Security Council, 2018), specifically, the priorities to “Secure Federal Networks and

Information” and “Secure Critical Infrastructure,” and the Interim National Security

Strategic Guidance (National Security Council, 2021), which made cybersecurity a “top

priority” and “elevate [d] cybersecurity as an imperative across the government.” This

research is also guided by the “National Security Memorandum on Improving

Cybersecurity for Critical Infrastructure Control Systems” (White House, 2021), which

called for “deploying systems and technologies that can monitor control systems to detect

malicious activity and facilitate response actions.”

This thesis developed methods to identify threats to servers by operating honeypots

(decoy servers) in a cloud-computing environment, allowing later analysis of their saved

attack data. It also examined threats to industrial control systems. The work explored how

specific deployment strategies affected attacks. We analyzed data to determine whether

particular strategies could help deployment and real-time analysis by providing a different

“attack surface,” potentially encouraging more attack patterns by malicious actors.

This thesis evaluates the feasibility, advantages, and disadvantages of deploying

honeypots in the cloud on a specific honeypot management platform, T-Pot (Telekom

Security, n.d.). This platform promises a simplified installation process as well as greater

data collection and analytical capabilities compared to using single honeypots.

A. MOTIVATION

Cyberattacks are not new. Malicious attempts to gain access, steal information, or

damage systems have a long history. Even before computers were networked, malicious

code was spread through other media (Middleton, 2017). The more systems were

interconnected, the more opportunity for malicious attempts grew, as cybercriminals began

using cyberattacks for illicit gain, and foreign governments began using cyberattacks for

espionage (Kaplan, 2017). Today, governments and businesses must defend their systems

against a rising threat of cybercrime, which cost $3 trillion in 2015 (Huang et al., 2018)

2

and should double to $6 trillion in 2021. Furthermore, the threats to industrial control

systems (ICS) are “among the most significant and growing issues confronting our Nation”

(Cybersecurity and Infrastructure Security Agency, 2021), as these systems control critical

infrastructure. For example, oil and natural gas pipelines have recently been targeted by

state-sponsored cyber actors (Cybersecurity and Infrastructure Security Agency and

Federal Bureau of Investigation, 2021). Using honeypots to detect anomalies in network

traffic is a recognized approach to reduce threats to ICS networks (Hurd & McCarty, 2017).

The U.S. Department of Defense relies heavily on Internet-facing servers for

routine and wartime operations. These systems are identified by SECNAVINST 3501.1D

(Secretary of the Navy, 2018) as critical infrastructure, and some of these are ICSs.

Increasing our threat analysis and defensive capabilities can better defend these servers and

make them more resilient to attack. By observing adversarial cyber actions against

honeypots, we can learn adversary tactics, techniques, and procedures (TTPs) to better

defend the real servers.

B. RESEARCH PLAN

Our research plan had three phases. Phase 1 tested a single honeypot deployed on

a cloud server within a T-Pot honeypot platform and compared its results to that of a similar

deployment on a local server. Phase 2 compared two instances of honeypots on cloud

servers, one in our test T-Pot platform and one as a standalone server and compared the

results. Phase 3 deployed and compared four instances of a modified honeypot previously

used by our research group (Bieker & Pilkington, 2020), two in our T-Pot platform and

two on standalone systems. Each instance in the pairs had a different location.

C. THESIS OUTLINE

Chapter II examines previous work on honeypots and cloud computing. Chapter III

describes the architecture of our experiments and the honeypots used. Chapter IV discusses

our research methodology, the specific configurations for each experiment, and the data-

analysis. Chapter V summarizes and discusses the experiment results. Chapter VI states

our conclusions and suggests future work.

3

II. BACKGROUND AND RELATED WORK

A. CLOUD COMPUTING

Cloud computing originates from time-sharing on large servers in the early days of

computing (Surbiryala & Rong, 2019). Customers would send computing jobs to a shared

computer to execute and output results, eliminating the need for each customer to have

their own machines. Today cloud computing environments are provided by Amazon Web

Services, Microsoft Azure, Google Cloud, and others (Borges et al., 2018).

The National Institute for Standards and Technology (NIST) defines three standard

cloud-computing service models: Infrastructure as a Service (IaaS), Platform as a Service

(PaaS), and Software as a Service (SaaS) (Mell & Grance, 2011). IaaS uses virtual

machines and emulation to provide a user with access to a private computing environment

on a remote server. PaaS, mainly used for application development, provides the user with

an environment including toolkits, databases, and services. SaaS provides the user with

access to programs provided by the cloud-services provider.

NIST also defines three cloud-deployment models (Simmon, 2018). A private

cloud is deployed by an organization, allowing that organization the most control over the

implementation and security. A public cloud is accessed and provides services through the

Internet. A hybrid cloud involves some elements of private and public clouds. For example,

an organization may have a private cloud hosted on-premises but use public cloud

resources through a provider when demand on the private cloud exceeds capacity.

Security is important in cloud computing (Basu et al., 2019). Depending on the

service model, a cloud services provider may have significant access to the organization’s

data. This is a greatest concern with SaaS, where the user runs the provider’s applications

and must trust their security and safeguards. However even with IaaS where a user controls

their own computing instance, the provider still controls the infrastructure behind it, which

potentially gives them access to the computing instance’s data. Also, security

vulnerabilities in the cloud provider’s system are passed to the user. For instance, a

vulnerability discovered in Amazon’s Elastic Compute Cloud (EC2) in 2009 allowed

4

attackers to intercept and modify messages that were assumed to be secure (Gruschka &

Iacono, 2009).

B. HONEYPOTS

A honeypot is a computer security tool that collects data on unauthorized access

and access attempts to a sacrificial computer or device (Campbell, Padayachee, &

Masombuka, 2015). A honeypot emulates the first steps of legitimate services as it interacts

with an attempted attacker. These interactions are logged for later analysis and can provide

the basis for security alerts.

Honeypots can be categorized by their purpose and interaction level. They can be

deployed as production honeypots or research honeypots (Zhang et al., 2003). Production

honeypots serve as tripwires, telling personnel of unauthorized access attempts. Research

honeypots collect as much information as possible from attackers to see trends, and are

used in business, government, and academia.

Honeypots can be either low-interaction or high-interaction (Alata et al., 2006).

Low-interaction honeypots emulate a few services, provide basic responses, but may not

respond to a more complex attack as a real system would. Low-interaction honeypots are

easy to deploy but can be easily identifiable as honeypots. High-interaction honeypots look

as real as possible and can even include an entire virtual system for an attacker to interact

with. While they can capture more complex attack data than low-interaction honeypots,

they are more complex and resource-intensive to deploy. Medium-interaction honeypots

have characteristics between those of low and high-interaction honeypots.

C. PREVIOUS HONEYPOT RESEARCH

One honeypot project (Kelly, Pitropakis, Mylonas, McKeown, & Buchanan, 2021)

installed a standard version of the T-Pot (Telekom Security, n.d.) honeypot platform on

multiple cloud service providers in different geographic locations. This standard version of

the platform includes the following honeypots that are relevant to this thesis: Conpot (Jicha

et al., 2016), Cowrie (Oosterhof, n.d.), Dionaea (Dionaea, 2015), and Snare and Tanner

(Rist et al., n.d.). Their results demonstrated that the market share of the cloud service

5

providers did not affect the rate of attacks received; for instance, Google Cloud, the

provider with the lowest market share, was targeted just as much as their other

deployments. The researchers also noted that the T-Pot platform provided them real-time

situational awareness into attacks with its visualization capabilities.

Bove (2018) set up multiple T-Pot instances in cloud services and analyzed the

results. He saw secure shell (SSH) attacks to the Cowrie honeypot (Oosterhof, n.d.) and

malware captured by the Dionaea honeypot (Dionaea, 2015). He concluded that no

significant differences occurred between regular servers and cloud-based systems for SSH

attacks as recorded by Cowrie, or the attempted malware executables captured by Dionaea.

Chapendama (2019) deployed a standard instance of T-Pot on the Google Cloud

Platform in Europe. Results showed that Cowrie was the most often attacked honeypot,

and most attacks targeted both the Telnet and SSH services. The most common attack

source IP country was China, followed by the United States, but he noted that attacks came

from around the world.

A honeypot project at the University of Wisconsin – Madison (Brown, Lam, Prasad,

Ramasubramanian, & Slauson, 2012) deployed multiple honeypots into the cloud, but not

as part of an overall honeypot platform such as T-Pot. Their data showed mostly attacks

from China and the United States, and that attacks received were not significantly different

between different cloud-service providers.

Another project (Sochor & Zuzcak, 2014) ran Dionaea and SSH honeypots over

three months on both a local network and a cloud deployment. Their results suggested

attacks detected with Dionaea did not differ with where the honeypot was hosted. The

largest alleged source of attacks against these honeypots was India, which had eight times

the number of attacks from China.

Serbanescu et al. (2015) deployed an ICS honeynet, a collection of honeypots, on

a cloud server. This honeynet simulated seven protocol services in different combinations.

The researchers concluded that attackers’ interest in the honeypots depended more on the

availability of certain protocols. They also noted that overall attacker interest in their

6

project was low and recommended that future work should involve “higher interaction”

ICS honeypots.

A honeypot project at the Naval Postgraduate School (NPS) (Chong & Koh, 2018)

ran HTTP and SSH honeypots in separate experiments; these honeypots were Snare &

Tanner (Rist et al., n.d.) and Cowrie (Oosterhof, n.d.) respectively. The Snare and Tanner

services cooperated to give an attacker a seemingly vulnerable HTTP server, while Cowrie

presented a vulnerable SSH server. Their results demonstrated that most attacks on these

services were automated, and changes to the honeypots to further obfuscate them seemed

to have little effect on the attacks.

Another honeypot project at NPS (Hyun, 2018) ran a low-interaction ICS honeypot

called Conpot (Jicha et al., 2016) within a virtual machine on a local internet-facing server

for four months. It serviced multiple protocols, including Hypertext Transfer Protocol

(HTTP), EtherNet/IP, MODBUS, S7Communications (S7Comm), Simple Network

Management Protocol (SNMP), Building Automation and Control Networks (BACnet),

and Intelligent Platform Management Interface (IPMI). HTTP, a non-ICS protocol,

accounted for 56% of the attack traffic to this honeypot, and the MODBUS ICS protocol,

accounted for 35% of traffic. This research demonstrated that even a low-interaction

honeypot like Conpot could provide useful data.

Another ICS honeypot project (Dougherty, 2020) at NPS that we have built upon

deployed a modified version of Conpot called GridPot that emulates an electrical

distribution system. GridPot replaced Conpot’s low-interaction handling of the

International Electrotechnical Commission (IEC) 60870-5-104 (IEC 104) communications

protocol with a more interactive version that communicated to a power-grid simulator

called GridLAB-D (Chassin et al., 2008), providing a more convincing server to attackers.

This setup was later deployed as standalone honeypots in the cloud (Bieker & Pilkington,

2020). The results demonstrated that this was a workable platform for more detailed

experiments.

7

III. METHODOLOGY AND DESIGN

This chapter discusses the design of our honeypot experiments. We also describe

the cloud hosting of our honeypots, and how we constructed, deployed, and operated them.

More specific details of our configurations and implementations are in Chapter IV. Our

experiments used both low-interaction and high-interaction research honeypots in a cloud-

computing environment. The goals were to compare the data collected by these honeypots

to previous honeypot deployments and to contrast functional differences between being

deployed as standalone honeypots and as honeypot daemons within the T-Pot honeypot

platform.

A. DIGITALOCEAN CLOUD ENVIRONMENT

We chose to use a cloud IaaS service so we could have the most control over

honeypot operation. Previous honeypot research at NPS had examined multiple providers

including Amazon Web Services (AWS). However, DigitalOcean (n.d.) was found to be

an ideal service, as it did not discourage security applications such as honeypots and was

priced well for the services we would use.

DigitalOcean enables creation of virtual servers that they call “droplets.” Droplets

can have either shared or dedicated hardware, with various options including the number

of processors and amount of memory. Other droplet installation options include a pre-

installed operating system, block storage, a datacenter region, and automatic backup. Initial

configuration of the droplets is done through DigitalOcean’s remote console, and once

firewall rules and the SSH remote-shell parameters are set up, the rest of the configuration

can be done over SSH.

B. T-POT

T-Pot (Telekom Security, n.d.) is a honeypot deployment platform. Deployers can

choose from multiple templates. For example, the “medical” template includes the

honeypots Dicompot (Keri, Lechthaler, & Ochse, n.d.) and Medpot (Schmall, Vorbach, &

Ochse, n.d.) providing attack surfaces for healthcare-related protocols, while the ICS

8

template includes Conpot and Cowrie. The templates also include tools for analysis and

real-time monitoring such as Cockpit (Red Hat, n.d.), Elastic Stack (Elasticsearch B.V.,

n.d.), and Suricata (Open Information Security Foundation (OISF), n.d.).

T-Pot uses Docker (Combe, Martin, & Di Pietro, 2016), a program that can run

software in virtual operating systems in instances called containers. These containers can

easily be managed and configured on the host machine, and a single machine can run many

Docker containers. T-Pot has each honeypot and tool containerized and running in separate

Docker containers, which provides modularity as well as better safety compared to running

software directly on the machine.

Cockpit is a Web-based graphical user interface for Linux servers. It monitors and

manages the system on which T-Pot runs. Some of its information is duplicated in the

DigitalOcean dashboard including live graphs of processor use, memory, and disk I/O.

Cockpit also monitors running Docker containers (Figure 1), system services, and

applications. It can also update software, create new user accounts, and provide a Web-

based terminal session. Overall, Cockpit allows easier management of a T-Pot installation

than SSH alone.

Figure 1. Screenshot of Cockpit Taken during Our Experiments, Showing

Running Docker Containers

9

The Elastic Stack has three programs: Elasticsearch, Logstash, and Kibana.

Logstash sends data from the honeypot and tool logs to the database of Elasticsearch.

Elasticsearch searches and analyzes using JavaScript Object Notation (JSON). Kibana is a

data visualization tool for the Elasticsearch database. Kibana has predefined dashboards

that allow a user to view data from individual honeypots (Figure 2), individual tools like

Suricata, or an overall “T-Pot Dashboard” that includes data from the honeypots and tools.

Figure 2. Screenshot of Tanner Attack Map from Kibana Dashboard,

Taken during Our Experiments, Showing a World Map of
Geolocated Attack Sources.

Suricata is a threat detection engine that can act as both an intrusion-detection

system (IDS) and intrusion-prevention system (IPS). Within T-Pot, Suricata only detects

malicious activity, logging alerts with their associated CVE (Common Vulnerabilities and

Exposures) codes. Suricata provides real-time analysis of attacks, with details on their

severity, category, and signature. Suricata examines all packets received, beyond what

honeypots capture. For example, Suricata detects Transmission Control Protocol (TCP)

packets with the SYN (synchronize) and URG (urgent) flags set that do not complete the

TCP 3-way handshake and lack an HTTP payload, so they do not interact with HTTP

honeypots. Suricata identifies these packets as related to critical vulnerabilities in VxWorks

(Seri et al., 2019), a real-time operating system used in devices such as industrial control

systems. These additional data points are similarly fed into the Elastic Stack and viewable

on the Kibana dashboard (Figure 3).

10

Figure 3. Screenshot of Suricata Alert Signature from the Kibana

Dashboard, Taken during Our Experiments, Showing the Top
10 Alerts Generated by Suricata.

C. HONEYPOTS USED IN THIS THESIS

Conpot (Jicha et al., 2016) is a low-interaction honeypot that can simulate several

protocols important to us, including HTTP for a basic ICS-like Web interface, MODBUS,

EtherNet/IP, S7Comm, and IEC 104. Its templates can specify combinations of these

protocols. Conpot logs all interactions on the ports for these protocols and outputs them to

a log file.

Snare and Tanner (Rist et al., n.d.) are two components of T-Pot. Snare accepts

HTTP connections and sends HTTP requests to Tanner. Tanner analyzes Snare events and

identifies an attacker trying to exploit a vulnerability. Tanner logs events in JSON format.

Snare also includes a tool to clone (duplicate) existing websites and supply them to

attackers. The version of Snare that comes with T-Pot includes ten cloned websites, and

upon installation, one is randomly chosen to present to attackers.

GridPot (Dougherty, 2020) modifies and extends Conpot, simulating an HTTP

server that hosts an ICS electric-grid interface. Attackers see an interface showing variables

of an ICS system. Instead of the low-interaction Conpot implementation of IEC 104,

11

GridPot includes GridLAB-D (Chassin et al., 2008), an electric-grid simulator, to add

realism to the IEC 104 protocol interactions. Dougherty modified GridPot to accept

incoming IEC 104 requests, send them through the Conpot honeypot to GridLAB-D, and

return the results of the request.

D. PROTOCOLS USED IN CONPOT AND GRIDPOT

Most traffic captured by our experiments was of the Hypertext Transfer Protocol

(HTTP) (Leach, et al., 1999) for communication between clients and Web servers over

TCP port 80. Most commonly, a client will send a “GET” request to retrieve a specific

Web page. Other HTTP methods seen during our experiments were PUT, POST, HEAD,

CONNECT, PROPFIND, and OPTIONS. Snare/Tanner allowed a user to interface with a

specified copy of a Web page.

MODBUS (Swales, 1999) is an application-level protocol for industrial control

systems, designed in 1979. It allows a “client” controlling device to send function codes to

controlled “server” devices. The protocol defines function codes as between 1 and 255,

with 128 and higher being reserved for exception responses from the controlled devices.

One client device can communicate with a maximum of 247 server devices. Originally,

MODBUS was used only for direct serial connections; today, MODBUS can be done by

TCP packets, typically using port 502. Conpot can handle MODBUS in a limited capacity

that only checks for proper formatting of requests; GridPot does not support MODBUS.

EtherNet/IP (Brooks, 2001) is an adaptation of the Common Industrial Protocol

(CIP) for use with Ethernet at the link layer. EtherNet/IP is used in industrial control

systems and includes explicit and implicit messaging. Explicit messages are sent by TCP

port 44818 between a client and server and can change parameters and programs. Implicit

messages sent by User Datagram Protocol (UDP) port 2222 and are for monitoring and

basic data. The EtherNet/IP handler in Conpot only recognizes explicit messages on port

44818 and checks for their proper formatting; GridPot does not support EtherNet/IP.

S7 Communication (S7Comm) (Eigner, Kreimel, & Tavolato, 2018) is a

proprietary protocol developed by Siemens for communication between their

manufactured programmable logic controllers (PLCs) and supervisory control and data

12

acquisition (SCADA) systems. S7Comm uses TCP port 102. S7Comm is handled by

Conpot, and proper formatting is checked, including power distribution unit (PDU) type,

data length, and request ID. GridPot does not support S7Comm.

 IEC 60870-5-104 (Matousek, 2017), often shortened to simply IEC 104, is an

application-level protocol used in industrial control systems, and specifically electrical

engineering and power systems. IEC 104 uses three kind of data frames. I-format frames

transfer information, S-format frames send supervisory commands and acknowledgements,

and U-format frames send control commands. Conpot checks if IEC 104 traffic on port

2404 is properly formatted as one of the three data frame types, and whether the frames

contain valid control functions. GridPot as modified by Dougherty parses these data frames

and sends the commands to the GridLAB-D simulation, which executes them and returns

the results to the attacker through GridPot and then Conpot.

E. OTHER TOOLS USED

Shodan (n.d.) is a search engine designed to inspect Internet-connected devices and

servers. It automatically crawls (searches for) publicly accessible IP addresses, and indexes

them based on metadata provided by responses at those addresses. Shodan classifies

addresses as cloud, honeypot, server, webcam, router, and more. Honeyscore is a tool

within Shodan that judges whether an address is a honeypot. We used Shodan’s search and

scan capabilities, as well as Honeyscore, to determine how realistic our honeypots

appeared.

GeoIP (MaxMind, Inc., n.d.) is a service that provides IP geolocation data.

Depending on the geographic region, it can locate an IP address within a radius of several

kilometers or several hundred kilometers. We used GeoIP to help identify the country to

which an IP address allegedly belongs.

13

IV. EXPERIMENT IMPLEMENTATION

This chapter discusses further details of the implementation of our experiments.

The research had three sets of experiments described in Section IV.A. Data analysis

methods are described in Section IV.B, and the results are in Chapter V.

A. CONFIGURATION AND IMPLEMENTATION

We did seven experiments with three deployment methods.

1. TEST ENVIRONMENT

Our experiments used DigitalOcean virtual machines, i.e., “droplets,” with the

same configuration. The droplets were built using DigitalOcean’s pre-built Debian Linux

10 x64 image.

We used droplets with two dedicated processors, eight gigabytes of random-access

memory (RAM), and a 25-gigabyte solid-state drive (SSD) for main storage. For

comparison purposes, these hardware options were the same as the previous projects’

droplet hardware configurations. Each droplet had a single unique public IPv4 address. For

simpler analysis, we did not enable IPv6 connectivity on the droplets. During initial set-up

and installation, we remotely accessed the console of each droplet using SSH from our

local machine. DigitalOcean’s firewall allows each droplet to have individual rulesets, and

this made it easy to isolate the droplets during installation and testing, during which time

we limited access only to our local machine’s IP address. When conducting experiments,

the specific firewall ruleset for the honeypot used in the experiments was applied to the

droplets, allowing access from the outside world.

2. CUSTOM T-POT TEMPLATES

As previously mentioned, T-Pot has six built-in templates for installation. For each

experiment deployment, we modified the T-Pot installation script to use a custom template

that we named “Washofsky” to install the honeypot and tools required for each experiment

(see Appendix A). This template used a custom docker-compose.yml configuration file,

14

modified from the default T-Pot configuration file, to set up the containers, services, and

networks required

3. EXPERIMENT 1: CONPOT

Experiment 1 compared Hyun’s standalone Conpot (Hyun, 2018) with a similar

Conpot instance running within T-Pot (Figure 4). Hyun deployed a default configuration

of Conpot in a virtual machine on a server outside the Naval Postgraduate School firewall.

Our Experiment 1 used a custom T-Pot template to install a Conpot honeypot running on

a DigitalOcean droplet in the U.S., with Suricata for network management, and Cockpit,

Elasticsearch, Kibana, and Logstash for management, visualization, and analysis.

Experiment 1 acquainted us with the tools that T-Pot provided, especially understanding

the underlying code and installation scripts.

Figure 4. Experiment 1 Architecture

4. EXPERIMENTS 2 AND 3: SNARE AND TANNER

Experiments 2 and 3 compared to Chong and Koh’s work (Chong & Koh, 2018)

with the Snare and Tanner honeypots in T-Pot (Figure 5). They deployed Snare, Tanner,

and Cowrie honeypots in a virtual machine outside the Naval Postgraduate School firewall.

15

Our Experiment 2 installed Snare and Tanner on a cloud droplet, cloning the same website

that Chong and Koh used. Our Experiment 3 installed Snare and Tanner using a custom T-

Pot template and the tools listed in IV.A.3, with the same website content with minor name

changes. Experiment 3 required a new Docker container to run Snare with our cloned

website since the Snare containers that come with T-Pot are incomparable to Chong and

Koh’s previous work.

Figure 5. Experiments 2–3 Architecture

5. EXPERIMENTS 4–7: GRIDPOT

Experiments 4–7 compared our experiments to Bieker and Pilkington’s work with

GridPot (Bieker & Pilkington, 2020), as modified by Dougherty (Figure 6). Their

experiments deployed two GridPot honeypots, obfuscated to better simulate a real ICS

environment, in different locations. Our Experiments 4 and 5 installed GridPot and the

additional tools listed in IV.A.3 in T-Pot on two droplets in Asia and the U.S. Experiments

4 and 5 required some preparation since no support for GridPot was provided in T-Pot. We

first created a new Docker container to host GridPot, and then tested it to ensure correct

functionality in the containerized environment. Experiments 6 and 7 installed GridPot on

16

two additional droplets in the same two locations as Experiments 4 and 5, but without using

the T-Pot platform.

Figure 6. Experiments 4–7 Architecture

B. DATA COLLECTION

Data from each experiment was network traffic captured using packet-capture

(PCAP) software and activity logs generated by the honeypot. On each droplet, an

automated Linux service ran TShark (Wireshark Foundation, n.d.) to collect traffic on the

TCP ports. These PCAP files were then pushed to a central repository hourly. Table 1

shows the data collection dates for each experiment.

17

Table 1. Experiment Data Collection Dates

Experiment Set Date Range

Experiment 1 December 4, 2020 – January 29, 2021 (56 days)

Experiments 2 and 3 February 11, 2021 – May 12, 2021 (90 days)

Experiments 4–7 May 1, 2021 – June 1, 2021 (31 days)

Experiment 1 also collected Conpot log files to compare with Hyun’s data. These

are timestamped text files recording sessions and connections, and some details of packets

sent.

For each experiment, packet captures were merged using Mergecap (Renfro &

Guyton, 2021). Parsers were created in Python for each type of data, including statistics

about the source IP addresses, daily traffic, and the protocol-specific statistics used in each

experiment. Only Conpot logs were analyzed in Experiment 1 since the previous work did

not report captured traffic data.

C. PROBLEMS ENCOUNTERED

A packet capture script using TShark originally captured traffic in Experiment 1

from the virtual network adapter of the Conpot Docker container. However, this adapter

was not persistent, and upon system reboot (which T-Pot scheduled daily), the network

adapter had to be re-created. The packet capture script was rewritten to capture on the

persistent “eth0” adapter, filtering for the ports used for the experiment. Also, T-Pot’s

automatic maintenance removes honeypot logs older than 30 days. This caused partial loss

of Conpot logs for Experiment 1.

Initially, Conpot in Experiment 1 did not respond to packets on UDP ports 161

(SNMP), 47808 (BACnet), and 623 (IPMI). The T-Pot template configuration file did not

specifically forward that traffic to the honeypot using UDP, and Docker defaulted to

forwarding using TCP. This misconfiguration was also in the default T-Pot configuration

files, limiting any instance of Conpot to listening for these protocols using TCP. After we

18

submitted a bug report, this issue was corrected in Issue #781 of the T-Pot project.

Experiments 2–7 did not use protocols requiring UDP traffic.

A problem with the Conpot log was that it recorded malformed HTTP traffic on

port 80 as HTTP 0.9 packets. It did not check for a malformed packet before handing the

data to the “BaseHTTPRequestHandler” Python module, which defaulted to HTTP 0.9

unless a version was detected. A comparison of the packet-capture data with Conpot log

entries revealed HTTP requests recorded by TShark that were missed entirely in the Conpot

log. This incompleteness was also identified by Hyun and Dougherty. Furthermore,

timestamps for some MODBUS and FTP packets were inaccurate, as many cached ones

appeared in the log during Conpot’s shutdown, indicating they were flushed before the

program exited.

In Experiment 3, a change to the Docker configuration caused T-Pot and the Snare

and Tanner honeypots to pause for about a week. This was only noticed when we could not

view the Kibana dashboard. The droplet was still pushing packet-capture data to the

repository, so we incorrectly assumed that the droplet was healthy. After the

misconfigurations were fixed, we changed our “proof of life” procedure to routinely log

into the droplet to ensure services are running, and view running Docker containers using

Cockpit.

Experiment 3 revealed a bug in the Tanner software that logged certain HTTP

requests incorrectly, which resulted in unexpected data fields in the Elastic Search

database. This bug was also reported but is yet unresolved.

Experiment 7 received significantly more traffic than Experiments 4–6, and

analysis of the traffic captures and a reverse IP lookup revealed an IP address that appears

to be the sole address in the Domain Name Service (DNS) record for a Korean-based

website. This website’s record was created in 2017 and last updated in 2020, well before

Experiment 7 started. The registered domain is like a real website and could relate to a

typo-squatting attack (Moubayed, Injadat, Shami, & Lutifyya, 2018), where attackers

present a similar website to the one a user intended to visit but with a slightly different

domain name. In our case, visitors to this website would only see the basic ICS website

19

provided by GridPot. (It is also possible that this website previously existed, and the DNS

record has not changed though the IP address was recycled.) Bieker and Pilkington (2020)

observed similar DNS issues in their experiments.

Experiments 6 and 7 saw an unexpected error which caused the honeypots in both

experiments to stop responding to HTTP requests about seven days into data collection

within hours of each other. The problem did not affect the handling of IEC 104 requests,

and the honeypots continued to collect IEC 104 data for the entire duration of the

experiments. It is unlikely that this error was caused by the DNS issue observed in

Experiment 7, since Experiment 6 experienced the same error within hours of Experiment

7’s failure.

20

THIS PAGE INTENTIONALLY LEFT BLANK

21

V. ANALYSIS

A. EXPERIMENT 1

Conpot ran from 4 December 2020 to 28 January 2021. Its droplet captured PCAP

activity, but T-Pot’s default was to keep only 30 days of honeypot logs. The PCAP capture

showed that the Conpot log does not record every event. Hyun’s thesis used the Conpot

log only, so the comparison to Hyun’s thesis only used the Conpot log data.

1. PROTOCOL DATA AND RESULTS

a. HTTP

Conpot reported 5,656 HTTP requests and responses in Experiment 1. These

mainly used HTTP Version 1.1 and 1.0, with counts of 4,498 and 890 respectively (Figure

7). Conpot also mistakenly reported 268 activities using HTTP Version 0.9, but packet

analysis revealed these packets were malformed.

Figure 7. Experiment 1 HTTP Version Distribution

Conpot observed five HTTP methods, reporting a method of “None” for an invalid

request (Figure 8). This distribution was like Hyun’s results.

1.1
79%

0.9
5%

1.0
16%

HTTP Versions: Experiment 1

1.1 0.9 1.0

1.1
84%

0.9
9%

1.0
7%

HTTP Versions: Hyun

1.1 0.9 1.0

22

Figure 8. Experiment 1 HTTP Request Method Distribution

HTTP activity in Experiment 1 had alleged source IP addresses in 73 countries, as

reported by GeoIP (MaxMind, Inc., n.d.), and the top three countries were the United

States, Russia, and China. On average, our Conpot experiment saw 94 requests daily, with

a single day high of 133 on 4 January 2021.

b. MODBUS

Conpot reported 1,079 MODBUS attempts, 609 connections and 470 traffic

packets. A connection means a TCP connection was established on port 502, and the traffic

packets counted were MODBUS-formatted. Only 20 of these had identifiable MODBUS

function codes, 10 each of 0x2B (Read Device Identification) and 0x11 (Report Server ID)

(Figure 9).

GET
80.0%

POST
12.0%

None
4.9%

HEAD
2.6%

CONNECT
0.4%

OPTIONS
0.2%

BAD
0.0%

PROPFIND
0.0%

PUT
0.0%

Other
3.1%

HTTP REQUEST METHODS: EXPERIMENT 1

23

Figure 9. Experiment 1 MODBUS Function Codes

However, examination of the Conpot log and associated PCAP data showed that

Conpot could not always identify a function code in a properly formatted MODBUS

packet, even when correctly parsing the unit identifier and other data fields. In fact, packet

capture during the same period as the Conpot log revealed 276 counts of code 0x2B and

205 counts of 0x11, more function codes than Conpot reported (Figure 10).

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

0x03 0x2B 0x11

Pe
rc

en
ta

ge
 o

f a
ll

va
lid

 o
bs

er
ve

d
co

de
s

MODBUS Function Code

MODBUS: Valid Function Codes Proportion

Experiment 1 Hyun

24

Figure 10. Experiment 1 MODBUS Valid Function Codes

Traffic varied considerably per day. Twenty-five of 30 days in the log had traffic

counts of less than 5, but January 6th and 7th had counts of 68 and 303, respectively,

accounting for 79% of all MODBUS traffic reported by Conpot. Three IP addresses

showed a similar pattern of sending the 0x11 and 0x2B function codes to MODBUS units

in increasing order from increasing source port numbers. On January 6th, an IP address in

the Netherlands sent 46 such requests, and an IP address in the U.S. sent 21 similar requests.

On January 7th, another IP address in the U.S. sent 300 requests in this pattern. Hyun’s

experiment saw similar daily spikes.

Only five countries sent valid MODBUS traffic according to Conpot. The U.S. and

the Netherlands accounted for 376 and 88 counts respectively, nearly 99% of valid traffic

(Figure 11).

0

50

100

150

200

250

300

350

0x2B 0x11

N
um

be
r o

f v
al

id
 c

od
es

 o
bs

er
ve

d

MODBUS Function Code

MODBUS: Valid Function Codes

Appearing in Conpot Log Appearing in Packet Capture

25

Figure 11. MODBUS Activity by Country Count

c. ETHERNET/IP

Conpot reported 79 EtherNet/IP packets of which 11 were properly formatted. Nine

used the command 0x63 (List Identity), one used 0x65 (RegisterSession), and one did not

use a valid command (0x01) (Figure 12). This is like Hyun’s experiment, which found 20

valid commands in 154 packets.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

United States Seychelles Other

Pe
rc

en
ta

ge
 o

f t
ot

al
 tr

af
fic

Country

MODBUS Activity - Country Proportions

Experiment 1 Hyun

26

Figure 12. Experiment 1 EtherNet/IP Command Code Distribution

d. S7COMM

Conpot reported 651 S7Comm activities, including 286 connections, 157 sessions,

and 208 packets (Table 2). All 208 packets were of PDU type 1 or 7, a data length of 0 or

8, and had a request ID of 0 or 1. Hyun’s results showed about 150% more connections

than our data, but 25% fewer packets sent and 62% fewer sessions. Since Hyun’s

experiment ran 134 days versus our 30 days, our experiment received a significantly higher

rate of S7COMM attacks. Figure 13 shows the distribution of countries involved.

Table 2. Comparison of Experiment 1 S7COMM Activity to Hyun’s Data

S7COMM Activity Experiment 1 Hyun
Connections 286 (43.9%) 436 (67.6%)
Sessions 157 (24.1%) 60 (9.3%)
Packets Sent 208 (32%) 149 (23.1%)
Total 651 645

None
87.2%

ListIdentity
11.5%

RegisterSession
1.3%

NOP
0.0%

Other
12.8%

ETHERNET/IP COMMAND CODES: EXPERIMENT 1

27

Figure 13. S7Comm Activity by Country Count

2. OVERALL STATISTICS

Over all protocols, Conpot was attacked from 74 countries, most often the United

States. 76% of these focused on HTTP (Figure 15). Apart from the MODBUS activity

spikes on January 6 and 7, activity levels across the experiment were relatively consistent

(Figure 14).

0%
10%
20%
30%
40%
50%
60%
70%
80%

Japan US China Seychelles Netherlands Germany

Pe
rc

en
ta

ge
 o

f t
ot

al
 tr

af
fic

Country

S7Comm Activity - Country Proportion

Experiment 1 Hyun

28

Figure 14. Experiment 1 Protocol Packet Count by Date

Figure 15. Experiment 1 Protocol Distribution

We used cosine similarity (Dangeti, 2017) to compare distributions between our

experiment and Hyun’s experiment. Cosine similarity measures the cosine of the angle

between two vectors on a scale of 0 to 1. We compared six aspects of the experiment, with

vectors from 3 to 9 items (Table 3). By this metric, HTTP methods were the most similar,

0

100

200

300

400

500

600

700

N
um

be
r o

f P
ac

ke
ts

Protocol Packet Count by Date

HTTP MODBUS EtherNet/IP S7Comm

0%

10%

20%

30%

40%

50%

60%

70%

80%

Experiment 1 Hyun

Pe
rc

en
ta

ge
 o

f t
ot

al
 tr

af
fic

Overall Protocol Distribution

HTTP MODBUS S7Comm EtherNet/IP

29

while MODBUS methods were the least similar, though this could be due to the low counts.

S7Comm activity also showed some differences.

Table 3. Cosine Similarity between Experiment 1 and Hyun’s Data

Vector Cosine similarity
Activity counts of HTTP, MODBUS, EtherNet/IP, S7Comm 0.9929
HTTP Version counts of 1.1, 0.9, 1.0 0.9923
HTTP Method counts of Bad, CONNECT, GET, HEAD, None,
OPTIONS, POST, PROPFIND, PUT

0.9974

MODBUS Function Code counts of 0x03, 0x2B, 0x11 0.7985
EtherNet/IP Command counts of NOP, ListIdentity, None,
RegisterSession]

0.995

S7Comm Activity counts of Connections, Sessions, Packets 0.918

Overall, Experiment 1’s Conpot (cloud-deployed within T-Pot using standard

Conpot configuration) received more traffic than Hyun’s Conpot (locally-deployed using

standard Conpot configuration). Our experiment had 340% more HTTP traffic, 200% more

MODBUS traffic, 220% more EtherNet/IP traffic, and 450% more S7COMM traffic per

day. However, Hyun’s results showed more HTTP methods, MODBUS function codes,

and EtherNet/IP valid commands. Also, HTTP traffic was a larger proportion of our

received attacks. This suggests that a cloud-based HTTP server is a more attractive target

than a locally-deployed server.

B. EXPERIMENTS 2 AND 3

Data was analyzed for Experiments 2 and 3 from February 11, 2021, to May 11,

2021.

1. HTTP Data and Results

a. Overall Activities

Experiment 2 received 28,042 HTTP requests and Experiment 3 received 10,619.

However, 13,199 (47%) of Experiment 2’s requests were from a single IP on February 27th,

30

making it a large outlier. A breakdown of HTTP Versions across experiments showed

similar results (Table 4).

Table 4. Experiments 2 and 3 HTTP Versions

 Experiment 2
without the outlier

Experiment 3

Total HTTP Requests 14843 10619
HTTP 1.1 14035 (94.56%) 10040 (94.55%)
HTTP 1.0 791 (5.33%) 562 (5.29%)
HTTP 0.9 3 (0.02%) 2 (0.02%)
None 14 (0.09%) 15 (0.14%)

Experiments 2 and 3 both received HTTP requests that used the CONNECT, GET,

HEAD, OPTIONS, and POST methods (Table 5), and Experiment 3 received three

PROPFIND requests.

Table 5. Experiments 2 and 3 HTTP Methods

 Experiment 2
without the outlier

Experiment 3

Total HTTP Requests 14843 10619
GET 11372 (76.62%) 8976 (84.53%)
POST 3295 (22.2%) 1436 (13.52%)
HEAD 122 (0.82%) 129 (1.21%)
CONNECT 41 (0.28%) 48 (0.45%)
OPTIONS 13 (0.09%) 27 (0.25%)
PROPFIND 0 (0%) 3 (0.03%)

Experiments 2 and 3 saw 94 and 101 alleged countries respectively. The top alleged

source for both experiments was the United States, consistent with Chong and Koh’s results

(Table 6). If the Experiment 2 outlier was kept in the data, the most common source country

would be Germany.

31

Table 6. Experiments 2 and 3 Top Countries Comparison

 Experiment 2
without the outlier

Experiment 3 Chong and Koh

United States 28% 34% 28%
China 22% 17% 7%
Russia 14% 14% -
Malta 0% 0% 19%

On average, Experiments 2 and 3 saw 167 and 119 daily requests respectively. The

daily high for Experiment 2 was 1048 requests and for Experiment 3 was 533 requests,

significantly higher than Chong and Koh’s reported daily high of 73. Traffic spikes were

similar between Experiments 2 and 3 (Figure 16).

Figure 16. Experiments 2 and 3 HTTP Requests by Date (Logarithmic

Scale)

Experiments 2 and 3 saw 2,644 and 2,615 different alleged IP addresses; 886

addresses accessed both experiments. Many addresses were on similar subnets, suggesting

the same attacking entity. We also found that a Chinese IP address was more likely to be

0

0.5

1

1.5

2

2.5

3

3.5

Lo
ga

rit
hm

 o
f H

TT
P

Re
qu

es
ts

HTTP Requests by Date

Experiment 2 Experiment 3

32

unique to an experiment than a Russian IP address (Table 7), demonstrated by the number

of unique IP addresses geolocating to China (29% and 34%) and Russia (2% and 4%).

Table 7. Experiment 2 and 3 Alleged Countries

 Exp. 2
Overall

Exp. 3
Overall

Exp. 2
Common

Exp. 3
Common

Exp. 2
Unique

Exp. 3
Unique

United States 28% 34% 38% 36% 21.3% 31.38%
China 22% 17% 2% 2% 34.9% 29.11%
Russia 14% 14% 29% 28% 4.17% 2.18%

b. Types of Activity

Experiment 2 received 2,237 unique HTTP path requests, while Experiment 3

received 1,765. The most common path requested was the root directory, or “/,” accounting

for 20.88% and 26.46% respectively in the two experiments. This is consistent with Chong

and Koh’s result of 24%. The second most common was “/.env” accounting for between

4.5% of requests in Experiment 2 and 7.5% of requests in Experiment 3.

Many HTTP path strings for both experiments contained the string “php,” 41.1%

for Experiment 2 and 24.3% for Experiment 3. PHP services appeared to be attractive to

attackers (Shiflett, 2006). Table 8 shows a breakdown of the observed paths. The “Crawler”

category is defined as requests for “robots.txt,” “favicon.ico,” and “.env.” The “Files”

category includes paths with .txt, .sh, .zip, and .tar extensions. The “Other .env” category

includes paths that contain .env, except for root-level /.env. “Other” includes paths not

easily categorized or one-off requests.

33

Table 8. Experiment 2 and 3 Top 11 Overall Count of HTTP Paths

Path Experiment 2 Experiment 3
/ 3099 (20.9%) 2810 (26.5%)
/_ignition/execution-solution 242 (1.6%) 229 (2.2%)
/manager/html 171 (1.2%) 145 (1.4%)
/config/getuser?index=0 167 (1.1%) 159 (1.5%)
/login 166 (1.1%) 134 (1.3%)
/Jenkins/login 127 (0.85%) 105 (1.0%)
index.html 2 (0.01%) 1 (0.01%)
Category: PHP 6097 (41.1%) 2578 (24.3%)
Category: SQL 182 (1.2%) 244 (2.3%)
Category: Crawler 1065 (7.2%) 1188 (11.2%)
Category: .xml 351 (2.4%) 336 (3.2%)
Category: Shell commands 209 (1.4%) 208 (2.0%)
Category: JSON 270 (4.3%) 268 (9.5%)
Category: Top-level folders 773 (5.2%) 655 (6.2%)
Category: Files 563 (3.8%) 474 (4.5%)
Category: JavaScript 211 (1.4%) 162 (1.5%)
Category: Other .env 161 (1.1%) 182 (1.7%)
Other 985 (6.6%) 740 (7.0%)

Most HTTP user-agents in Experiments 2 and 3 were some variation of

“Mozilla/5.0,” 79.4% and 78.9% of requests. Most Web browsers start their user-agent

string with Mozilla (Zhu & Desai, 2015) to receive Web pages with advanced features.

2. Overall Statistics

Overall, Experiment 3 received less traffic than Experiment 2. Experiment 3 did

receive similar traffic to Experiment 2 in attack types, HTTP commands, and source

countries. This suggests that use of T-Pot does not significantly affect the type of attacks

received.

C. EXPERIMENTS 4–7

Experiments 4–7 ran from May 1, 2021, to June 1, 2021. Experiments 6 and 7

suffered an unexpected HTTP error and only collected seven days of HTTP traffic. As

mentioned in Section IV.C, Experiment 7’s IP address was found to be registered to a

Korean-based domain name, and consequently, collected some HTTP data from users

34

attempting to access it. Table 9 shows overall statistics for the four experiments. Generally

speaking, the T-Pot deployments in Experiments 4 and 5 were accessed by more countries

than the standalone honeypots, Experiment 7 received about four times the average HTTP

traffic of the other three experiments, and IEC 104 message numbers were low throughout.

Table 9. Overall Traffic Statistics for Experiments 4–7

 Experiment 4

(US, T-Pot)

Experiment 5

(Asia, T-Pot)

Experiment 6

(US)

Experiment 7

(Asia)

Number of unique countries 75 81 44 74

Number of unique IP addresses 834 1034 305 1509

Total number of requests 5813 5951 879 8343

Total HTTP requests 5673 5830 8343 879

Mean HTTP requests per day 189.1 182.2 97.7 695.2

Min HTTP requests per day 50 66 15 1

Max HTTP requests per day 2480 1283 163 1883

Total IEC 104 messages 140 121 121 127

Total IEC 104 malformed messages 104 95 105 110

Total IEC 104 valid messages 36 26 16 17

Mean IEC 104 messages per day 10.8 8.1 7.6 7.5

Min IEC 104 messages per day 1 1 1 1

Max IEC 104 messages per day 85 88 83 91

Mean valid IEC 104 messages per day 3.6 2.2 1.3 1.7

Min valid IEC 104 messages per day 1 1 1 1

Max valid IEC 104 messages per day 9 3 2 3

35

1. Session Data

Dougherty (Dougherty, 2020) and Bieker and Pilkington (Bieker & Pilkington,

2020) defined a session as all packets exchanged by a socket pair on a day, and we follow

this definition. We counted IP addresses that established only a single HTTP session,

multiple HTTP sessions, only a single IEC 104 session, multiple IEC 104 sessions, and

both HTTP and IEC 104 sessions (Table 10). To better compare to the limited HTTP

dataset in Experiments 6 and 7, additional columns for Experiments 4 and 5 are given that

match the seven-day data length.

Table 10. Experiments 4–7 IP Address Session Data

Sessions Established with

Unique IP Addresses

Exp. 4

(U.S., T-

Pot)

Exp. 5

(Asia, T-

Pot)

Exp. 4

(Only first

7 days of

HTTP)

Exp. 5

(Only first

7 days of

HTTP)

Exp. 6

(U.S.)

Exp. 7

(Asia)

Number of unique IP

addresses

834 1034 320 353 305 1509

Established Single HTTP-

only session

516

(61.8%)

632 (61%) 192 (60%) 211 (60%) 192

(63%)

457

(30%)

Established Multiple

HTTP-only sessions

298

(35.7%)

387 (37%) 108 (34%) 127(36%) 92

(30%)

1030

(68%)

Established Single IEC

104-only session

10 (1.2%) 5 (0.5%) 10 (31%) 5 (1.5%) 7 (2%) 6

(0.4%)

Established Multiple IEC

104-only sessions

7 (0.8%) 6 (0.6%) 7 (2%) 6 (1.6%) 11 (4%) 14

(0.9%)

Established HTTP and

IEC 104 sessions

3 (0.4%) 4 (0.4%) 3 (0.9%) 4 (1.1%) 2 (.6%) 2

(0.1%)

The distribution of HTTP traffic by country was similar across the four experiments

(Table 11), although proportions of the top countries did vary. This was in contrast to

36

Bieker and Pilkington’s results, which had different top countries between their U.S. and

Asia experiments

Table 11. Experiments 4–7 HTTP Country Data

 Exp. 4 Exp. 5 Exp. 4
(7 days)

Exp. 5
(7 days)

Exp. 6 Exp. 7

1 US (31.4%) US (30.4%) US (31.6%) US (29.5%) US (30.3%) US (35%)
2 China

(11.3%)
China
(12.3%)

China (12.5%) China
(17.8%)

China
(15.8%)

China
(6.4%)

3 Germany
(5.8%)

Germany
(4.5%)

Germany
(6.6%)

Germany
(6.2%)

France
(6.6%)

Russia
(5.6%)

4 India
(4.3%)

U.K.
(4.3%)

Netherlands
(5.3%)

Netherlands
(5.4%)

Germany
(5.9%)

Netherlands
(5.2%)

5 Russia
(4.1%)

Russia
(4.0%)

India (4.4%) UK (3.7%) Russia
(4.6%)

Germany
(4.9%)

6 Netherlands
(4.1%)

India
(3.9%)

France (4.4%) France
(3.4%)

Netherlands
(4.6%)

Singapore
(4.4%)

7 U.K.
(3.6%)

Netherlands
(3.7%)

Russia (3.8%) Russia
(3.4%)

India (4.3%) Canada
(2.9%)

8 France
(3.1%)

France
(3.3%)

UK (3.8%)_ Singapore
(2.8%)

Brazil (3.0%) France
(2.7%)

9 Brazil
(2.9%)

Singapore
(2.8%)

Singapore
(2.8%)

Brazil (2.3%) U.K. (3.0%) India
(2.3%)

10 Other
(26.6%)

Other
(25.4%)

Other (19.7%) Other
(20.1%)

Other (18%) Other
(26.9%)

HTTP path requests in Experiments 4–7 followed a similar pattern as Experiments

1–3, with large shares relating to either PHP or SQL, as well as the more regular root and

index.html requests. Table 12 shows data on specific paths as well as defined categories.

The “Crawler” category was defined as requests for “robots.txt,” “favicon.ico,” and “.env.”

The “Files” category includes paths with .txt, .sh, .zip, and .tar extensions. The “Other

.env” category includes paths with the string “.env” except for root-level “/.env.” “Other”

includes paths not easily categorized or one-off requests, broadly like those seen in

Experiments 2–3. For Experiment 7, “DNS redirect” meant paths including the registered

domain discussed in Section IV.C as well as all paths beginning with “content/,” which

were absent in Experiments 4–6 and were tries to reach content on the registered domain.

37

Table 12. Experiments 4–7 HTTP Path Data

 Exp. 4 Exp. 5 Exp. 6 Exp. 7
HTTP data 31 days 31 days 7 days 7 days
/ 948 (17.9%) 1028

(19.1%)
262 (32.5%) 1880

(23.3%)
/_ignition/execution-solution 46 (0.9%) 77 (1.4%) 14 (1.7%) 16 (0.2%
/manager/html 15 (0.3%) 27 (0.5%) 3 (0.4%) 5 (0.1%)
/config/getuser?index=0 31 (0.6%) 22 (0.4%) 6 (0.7%) 6 (0.1%)
/login 11 (0.2%) 21 (0.4%) 2 (0.2%) 4 (0.1%)
/Jenkins/login 8 (0.2%) 18 (0.3%) 1 (0.1%) 4 (0.1%)
Index.html 389 (7.3%) 432

(8.0%)
102 (12.6%) 1781

(22.0%)
Category: PHP 2833 (53.4%) 2474

(46%)
110 (13.6%) 1100

(13.6%)
Category: SQL 5 (0.1%) 50

(0.9%)
1 (0.1%) 20 (0.3%)

Category: Crawler 213 (4.0%) 295
(5.5%)

67 (8.3%) 268
(3.3%)

Category: .xml 177 (3.3%) 113
(2.1%)

31 (3.8%) 18
(0.22%)

Category: Shell commands 58 (1.1%) 103
(1.9%)

8 (0.99%) 36
(0.45%)

Category: JSON 71 (1.3%) 80 (3.2%) 22 (2.7%) 23 (2.0%)
Category: Top-level folders 162 (3.0%) 224

(4.2%)
100 (12.4%) 55 (0.7%)

Category: Files 77 (1.5%) 124
(2.3%)

19 (2.4%) 49 (0.6%)

Category: JavaScript 81 (1.5%) 38 (0.7%) 0 9 (0.1%)
Category: Other .env 13 (0.2%) 82 (1.5%) 6 (0.7%) 0
Other 172 (3.2%) 162

(3.0%)
54 (6.7%) 252

(1.27%)
DNS redirect 0 0 0 2615

(32.35%)
Total 5305 5370 807 8081

Across all four experiments, IEC 104 traffic was lower than HTTP traffic.

Experiments 4 and 5 running within T-Pot, received more valid IEC 104 messages than

Experiments 6 and 7 (Figure 17), while Experiments 6 and 7 attracted more attackers as

measured by IP addresses (Figure 18). Experiments 4 and 5 were more consistent with

Bieker and Pilkington’s results for reasons that were unclear.

38

Figure 17. Experiments 4–7 IEC 104 Traffic

Figure 18. Experiments 4–7 IEC 104 Session Statistics

Table 13 shows the breakdown of valid IEC 104 messages in Experiments 4–7.

Overall, Experiments 4 and 5 had more valid IEC 104 traffic and more diversity in traffic,

receiving a mix of U-Format and I-Format IEC 104 frames. In contrast, Experiments 6 and

0

20

40

60

80

100

120

140

160

Experiment 4 Experiment 5 Experiment 6 Experiment 7

M
es

sa
ge

s

IEC 104 Traffic

Total IEC 104 messages Total valid IEC 104 messages

0

2

4

6

8

10

12

14

16

Experiment 4 Experiment 5 Experiment 6 Experiment 7

IP
 A

dd
re

ss
es

IEC 104 Session Statistics per IP Address

Single IEC 104 Session Multiple IEC 104 Sessions Both HTTP and IEC 104 Sessions

39

7 mostly received U-Format frames. All experiments received similar numbers of error

frames, which were packets received on port 2404 in incorrect IEC 104 format. Erroneous

IEC 104 traffic (Table 14) was less consistent day-to-day than valid traffic. Many of its

error frames, rather than being malformed IEC 104 data, contained traffic for HTTP, FTP,

or other protocols. Figure 19 shows an example error frame from Experiment 5.

Table 13. Experiments 4–7 IEC 104 Methods

Experiment U-Format
Frames

I-Format
Frames

Error
Frames

Total IEC 104
Traffic

Experiment 4 26 10 104 140
Experiment 5 20 6 95 121
Experiment 6 16 0 105 121
Experiment 7 16 1 110 127

Table 14. Experiments 4–7 Daily IEC 104 Traffic

 Total IEC 104 Traffic Valid IEC 104 Traffic
Experiment Mean Min Max Std. Dev Mean Min Max Std. Dev
Experiment 4 10.769 1 85 21.588 3.6 1 9 2.54
Experiment 5 8.066 1 88 21.446 2.166 1 3 0.986
Experiment 6 7.5625 1 83 19.609 1.33 1 2 0.471
Experiment 7 7.47 1 91 20.915 1.7 1 3 0.781

40

Figure 19. Example Hex Dump of IEC 104 Error Frame Showing

Encapsulated HTTP Packet

Unlike HTTP traffic, the distribution of IEC 104 traffic by country was inconsistent

across the experiments (Table 15). For example, IEC traffic from the U.S. ranged from

72.7% in Experiment 6 to 8.3% in Experiment 5. This inconsistency between

geographically different experiments, however, is consistent with Bieker and Pilkington’s

results.

Table 15. Experiments 4–7 IEC 104 Alleged Country Data

 Experiment 4
(US T-Pot)

Experiment 5
(Asia T-Pot)_

Experiment 6
(US)

Experiment 7
(Asia)

1 Netherlands (34.3%) Singapore (32.2%) US (72.7%) US (36.2%)
2 India (22.1%) Germany (25.6%) Canada (9.9%) Netherlands (35.4%)
3 US (17.14%) UK (9.9%) Portugal (4.1%) China (6.3%)
4 France (8.6%) US (8.3%) China (4.1%) Vietnam (6.3%)
5 Germany (7.1%) France (8.3%) Netherlands (3.3%) Portugal (3.9%)
6 China (5.7%) China (5.0%) France (3.3%) France (3.1%)
7 Portugal (3.6%) Portugal (4.1%) UK (1.7%) Japan (3.1%)
8 Russia (1.43%) Netherlands (3.3%) Russia (0.8%) Russia (2.4%)
9 India (3.3%)

41

2. SIMILARITIES BETWEEN EXPERIMENT TRAFFIC

We used cosine similarity to compare the results of our experiments and Bieker and

Pilkington’s data. Our first comparison (Table 16) used a vector of four items: average

weekly counts of HTTP GET commands, HTTP POST commands, other HTTP methods,

and all IEC 104 traffic. The raw data for this comparison is in Appendix B. The vectors for

Experiments 6 and 7 were affected by the missing HTTP data (after the unexpected HTTP

error was seen) and DNS registration, so the more useful comparison is between

Experiment 4 and Bieker and Pilkington’s Experiment 2 (both deployed in the US), and

Experiment 5 and their Experiment 3 (both deployed in Asia). To assess how similar these

experiments were, we took the cosine similarity of the average vectors of each experiment

and divided it by the averages of the week-to-week cosine similarities. The absolute value

of the logarithm of this value is a rough measure of significance, which could be refined

using a table of the F distribution. Table 17 demonstrates the experiments are not

significantly different from each other, using two standard deviations from the mean as the

minimum for significance.

Table 16. Experiments 4–7 Cosine Similarity for All Traffic

Experiment Average cosine similarity of total traffic
Experiment 4 (with T-Pot) 0.9833
Experiment 5 (with T-Pot) 0.8047
Experiment 4 (7 days of HTTP) 0.9350
Experiment 5 (7 days of HTTP) 0.7521
Experiment 6 0.7998
Experiment 7 0.6718
Bieker & Pilkington’s Experiment 2 0.774
Bieker & Pilkington’s Experiment 3 0.994

42

Table 17. Experiments 4–5 Measure of Significance of Total Traffic
Comparisons

 Experiment 4 versus Bieker
& Pilkington’s Experiment 2

Experiment 5 versus Bieker
& Pilkington’s Experiment 3

Measure of significance
of total traffic

log(0.992431) = 0.0033 log(0.9873) = 0.0056

Our second comparison examined IEC 104 traffic only. It used a vector of the

average weekly counts of U-format frames, I-format frames, and error frames (Table 18).

The measures of significance (Table 19) again demonstrates that geographically similar

experiments have similar results.

Table 18. Experiments 4–7 Cosine Similarity for IEC 104 Traffic

Experiment Average cosine similarity of IEC 104 traffic
Experiment 4 0.8304
Experiment 5 0.5048
Experiment 6 0.7167
Experiment 7 0.6020

Table 19. Experiments 4–7 Measure of Significance of IEC 104 Traffic

 Experiment 4
versus Experiment 6

Experiment 5
versus Experiment 7

Measure of significance of
IEC 104 Traffic

log(1.2804) = 0.1073 log(1.7976) = 0.2547

Overall, the computed measures of significance do not demonstrate a significant

difference between GridPots deployed within T-Pot (Experiments 4 and 5), and

geographically-identical standalone GridPots (Experiments 6 and 7, and Bieker &

Pilkington’s experiments).

43

3. BEHAVIORAL ANALYSIS

We performed additional analysis on IP addresses that sent IEC 104 traffic. In each

experiment, two of eight IP addresses sent the same packet to port 2404, which registered

as an error frame (Figure 20). The two IP addresses in each experiment did not appear

related to each other, as they were on different subnets. Instead of properly formatted IEC

104 data, this packet held Session Initiation Protocol (SIP) traffic not intended for an IEC

104 device.

Figure 20. Example of IEC104 Error Packet Containing SIP Data

Except for one IP address in Experiment 5, all IP addresses that sent an I-Format

also sent a U-Format frame. All experiments also had IP addresses that sent U-Format

frames but no I-Format frames.

Twelve addresses of a subnet sent traffic to all four experiments in various ways

(Table 20). Eleven addresses on the subnet sent IEC 104 traffic to some but not all

experiments. One address only sent HTTP traffic but sent it to every experiment. Its HTTP

requests were “GET /” and “GET /index.html” requests, which suggests a crawler and is

not itself suspicious. Based on the GeoIP database, the IP range geolocated to mainland

France. The days of activity were Mondays, Wednesdays, and Fridays, and the hours of

activity were 0200–1800 Pacific Time, corresponding to 1100–0300 Central European

Time. Interestingly, this leaves an eight-hour gap of inactivity. If this traffic required

44

human interaction, their waking hours are 0600–2200, then the originating time zone may

actually be GMT-4 in Brazil.

Table 20. Experiments 4–7 Traffic from Specific Subnet

51.254.49.0/20 Experiment 4 Experiment 5 Experiment 6 Experiment 7
.49.96 1 U-Format
.49.97 2 U-Format,

1 I-Format

.49.98 2 U-Format,
1 I-Format

.49.99 3 U-Format,
1 I-Format

1 U-Format

.49.100 2 U-Format,
1 I-Format

.49.101 2 U-Format,
1 I-Format

.49.102 1 U-Format

.49.103 2 U-Format,
1 I-Format

 1 U-Format

.49.104 1 U-Format

.49.109 2 U-Format,
1 I-Format

 1 U-Format

.49.110 1 U-Format

.59.113 3 sets of 2
HTTP requests

3 sets of 2
HTTP requests

1 set of 2
HTTP requests

1 set of 2 HTTP
requests

TOTAL: 8 U-Format,
4 I-Format,
6 HTTP

7 U-Format,
3 I-Format,
6 HTTP

4 U-Format,
2 HTTP

4 U-Format,
2 HTTP

4. Shodan

Only one IP address, in Experiment 4, was continuously scanned by Shodan; this

scan occurred six days after the droplet was exposed to the Internet. We started a scan on

the principal honeypot addresses in all four experiments, and subsequently, a search of

these addresses showed not only the results from our scan, but also historical searches,

including one four days after being exposed to the Internet. Experiment 5 was regularly

scanned between May 5th and June 26th, and then the scanning stopped until our requested

scan started. This gap might explain why “no results found” was returned for the history

45

searches prior to our requested scan. The IP addresses for Experiments 6 and 7 still showed

“no results found” for no obvious reason, while all four experiments could be queried on

Honeyscore.

Shodan correctly identified the relevant data for Experiments 4 and 5, including the

cloud provider, cloud region, country, and open ports. It did not identify either as a

honeypot in the scan results. However, out of the four experiments, Honeyscore did report

Experiment 5 as a possible honeypot, while saying Experiments 4 and 6–7 “look like a real

system.” Honeyscore does not report what factors went into the decision, nor does it give

the user a score, so it is not clear why only one experiment was judged a honeypot.

D. T-POT

Initially, we tried to use the Kibana and ELK stack tools within T-Pot for our

analyses; however, this proved more challenging than anticipated. First, not all events that

Conpot handled were logged, and some of its timestamps were likely inaccurate when they

were flushed from the cache before a shutdown. This incomplete and inaccurate dataset

skewed the visualizations and activity databases of T-Pot.

Also, the ease of analyzing a honeypot depends on how it logs its data. For example:

Snare and Tanner break down an attacker’s HTTP request into individual components

(Figure 21), while Conpot leaves the entire request as one data field (Figure 22). This

limited our ability to analyze specific data points. Errors in how Kibana parses a honeypot’s

logs can also result in errant data as shown in Figure 23, where the location of the Tanner

logs is presented as the 3rd-most requested HTTP path.

46

Figure 21. Screenshot of Elastic Database of Experiment 2, Showing

Multiple Data Fields from an HTTP Request

Figure 22. Screenshot of Elastic Database of Experiment 4, Showing

Entire HTTP Request in One Data Field

Figure 23. Screenshot of Kibana Dashboard of Experiment 2, Showing an

Errant HTTP Path

47

The data that Suricata provides was more complete. Figure 24 shows one way

Suricata’s data can be visualized, as a top-10 list of generated alert signatures with potential

CVEs. This data supplements the honeypot data.

Figure 24. Screenshot of Suricata Dashboard of Experiment 5, Showing

One CVE

Experiments 2 and 3 provided us the opportunity to directly compare a standalone

honeypot to a honeypot running on T-Pot. Experiment 3 (with Snare and Tanner running

on T-Pot) was easier to manage than Experiment 2 (Snare and Tanner installed on a bare

server). The Cockpit with DigitalOcean’s tools allowed easy management of the droplet.

The Kibana dashboard, Suricata threat analysis, and the HTTP data provided by Snare and

Tanner provided a real-time monitoring capability of incoming attacks and a visual method

to ensure the honeypot is operating, a capability lacking on a standalone honeypot.

During installation, T-Pot schedules daily restarts and weekly software updates.

During these restarts, T-Pot rebuilds the Docker containers for the honeypots and tools

while preserving previously collected data, ensuring a clean start to the 24-hour data

collection period. This ensures that if an error occurs, as it did in Experiments 6 and 7,

which ceased to respond to HTTP requests after seven days, we would lose at most only

24 hours of data. The installer also automatically migrates the server’s SSH capabilities to

a different port than the default port 22, which allowed us full access to the T-Pot server

without having to expose port 22 and thus change the intended outward presentation of the

server.

48

T-Pot did use more computing resources than a standalone honeypot. Experiment

2 (standalone honeypot) used 20–25 times less processing power, six times less memory,

and four times less disk space than Experiment 3 (T-Pot installation) (Figures 25–30).

These two experiments ran on identically configured DigitalOcean droplets with 2

processors, 8 gigabytes of memory and 25 gigabytes of disk space.

Figure 25. Processor Use in Experiment 2

Figure 26. Processor Use in Experiment 3

49

Figure 27. Memory (RAM) Use in Experiment 2

Figure 28. Memory (RAM) Use in Experiment 3

Figure 29. Disk Use in Experiment 2

50

Figure 30. Disk Use in Experiment 3

51

VI. CONCLUSIONS AND FUTURE WORK

This thesis explored the cloud deployment of honeypots within the T-Pot honeypot

platform. Several kinds of implementations were compared. Our experiments did not show

a significant difference in traffic received by honeypots deployed in the cloud, honeypots

deployed in the cloud within T-Pot, and honeypots deployed on local servers. This is

encouraging as it allows flexibility for future honeypot deployment schemes.

Experiment 1 received more daily traffic across the protocols used by Conpot,

although our experiment received larger proportion of HTTP traffic compared to the other

protocols. This suggests that cloud-deployed web servers are more popular for attackers,

compared to the other ICS-related protocol handlers that Conpot provides.

Experiments 2 and 3 showed the honeypot deployed within T-Pot received less

traffic than the one installed directly onto the droplet server, though the traffic distribution

was similar. However, even though both experiments were deployed on the same cloud

provider in the same geographic region, only a third of the source IP addresses were shared

between them, although many addresses in the experiments were similar. Future work

could run identical honeypots on the same servers to analyze the similarity among the

received attacks. If those results were like ours, it would demonstrate that despite

geographic co-location or IP address similarity, honeypots are not identically attacked, and

that attackers are not uniformly crawling through and attacking IPv4 address space.

Experiments 4–7 showed some differences between the experiments, such as the

GridPots within T-Pot received slightly more IEC 104 traffic. We also observed that results

of experiments deployed in identical geographic areas were not significantly statistically

different. The increase in ICS traffic, compared to the decrease seen in Experiment 1, could

be due to GridPot showing a more realistic and high-interaction interface than Conpot.

Future work could modify Phase II of Dougherty’s GridPot to run as a Docker container

and integrate it with T-Pot. Other future work could use Snare and Tanner to handle HTTP

traffic instead of GridPot’s HTTP server, which could provide more attack data when

52

combined with a sleeker user interface, besides stability and a more robust logging

capability.

T-Pot proved a capable honeypot management platform with many built-in

capabilities and support for customization. We observed some shortcomings in its

analytical capabilities due to incomplete data from honeypot logging. We overcame this

hurdle by running packet-capture software and primarily relying on its data for offline

analysis. We recommend any future honeypot deployment, production, or research include

packet capturing, since T-Pot does not natively provide it.

Our research did not show that a T-Pot deployment could be fingerprinted as such.

Future work should analyze whether any distinctive characteristics of a server running a T-

Pot exist.

Time constraints limited how much data we could collect for each experiment.

However, these experiments are still running, and this larger collection of data could be

analyzed at different time intervals, e.g., over six months or a year, to further determine if

deployment on the cloud within T-Pot affects the rate of attacks or the honeypot data

collected. Also, machine learning can be used on this dataset for further behavioral

analysis, including determining if any penetration-testing software was used in attacks on

the honeypots.

53

APPENDIX A. CUSTOM T-POT INSTALLATION

We used the following steps to customize our T-Pot installation for use in our

experiments.

Step 1: Clone the T-Pot repository.

 git clone https://github.com/telekom-security/tpotce.git

Step 2: Copy the custom T-Pot template into the installation folder.

 cp Washofsky.yml tpotce/iso/installer

Step 3: Edit the installation script (tpotce/iso/installer/install.sh)

 Step 3a: Add the custom template as a user-selectable choice.

Insert into install.sh Line 522:

 “WASHOFSKY” “For experiments” \

 Step 3b: Copy the custom template into the installed directory.

Insert into install.sh Line 713:

 cp washofsky.yml /opt/tpot/etc/compose/

 Step 3c: Add functionality for custom template

 Insert into install.sh Line 745:

 WASHOFSKY)

 fuBANNER “WASHOFSKY”

 ln -s /opt/tpot/etc/compose/washofsky.yml $myTPOTCOMPOSE

 ;;

Step 4: Run installation script as root

 sudo ./tpotce/iso/installer/install.sh --type=user

https://github.com/telekom-security/tpotce.git
https://github.com/telekom-security/tpotce.git

54

THIS PAGE INTENTIONALLY LEFT BLANK

55

APPENDIX B. COSINE SIMILARITY DATA

The tables below show the data used for the cosine similarity analysis in Section

V.C.2. Tables B-1 through B-4 contain weekly counts of HTTP and IEC methods for all

experiments, Table B-5 contains the values used for the vector elements in cosine

similarity, and Tables B-6 through B-8 contain the calculated cosine similarity values.

Table B-1. Experiment 4 (US T-Pot) Weekly HTTP and IEC 104 Method Counts

Week CONNECT GET POST OPTIONS HEAD NONE PROPFIND Invalid

IEC104

I-

Frames

U-

Frames

1 0 602 81 0 6 43 0 6 1 2

2 13 766 88 6 4 126 0 89 4 10

3 2 2787 49 1 4 20 0 3 2 6

4 0 550 63 0 2 50 0 6 3 8

Table B-2. Experiment 5 (Asia T-Pot) Weekly HTTP and IEC 104 Method Counts

Week CONNECT GET POST OPTIONS HEAD NONE PROPFIND Invalid

IEC104

I-

Frames

U-

Frames

1 1 972 834 3 5 84 0 1 1 3

2 11 646 86 3 6 103 0 87 1 5

3 5 930 911 1 26 63 0 1 1 4

4 2 539 67 4 3 58 0 5 2 5

56

Table B-3. Experiment 6 (US) Weekly HTTP and IEC 104 Method Counts

Week CONNECT GET POST OPTIONS HEAD NONE PROPFIND Invalid

IEC104
I-

Frames
U-

Frames

1 2 593 72 0 3 51 0 5 0 1

2 6 130 16 0 0 6 0 89 0 4

3 0 0 0 0 0 0 0 1 0 3

4 0 0 0 0 0 0 0 10 0 7

Table B-4. Experiment 7 (Asia) Weekly HTTP and IEC 104 Method Counts

Week CONNECT GET POST OPTIONS HEAD NONE PROPFIND Invalid

IEC104
I-

Frames
U-

Frames

1 2 5887 793 7 114 167 0 8 0 1

2 3 1251 39 0 43 34 0 94 0 3

3 0 0 0 0 0 2 0 1 0 4

4 0 0 0 0 0 0 0 6 0 2

Table B-5. Average Counts used for HTTP and IEC 104 Cosine Similarity Comparisons

Experiment GET POST Other Methods IEC

4 1176.3 70.25 69.25 35

5 771.75 474.5 94.5 29

6 180.75 22 17 30

7 1784.5 208 93 29.75

57

Table B-6. Weekly HTTP and IEC 104 Cosine Similarity for Individual Experiments

Week Experiment 4 Experiment 5 Experiment 6 Experiment 7

2 0.9871 0.8274 0.8222 0.9917

3 0.9712 0.7909 0.5773 0.0952

4 0.9915 0.796 1.0 0.9285

Table B-7. Weekly Average HTTP and IEC 104 Cosine Similarity per Experiment

Experiment 4 Experiment 5 Experiment 6 Experiment 7

0.9833 0.8047 0.79984 0.6718

Table B-8. Weekly IEC 104 Cosine Similarity for Individual Experiments

Week Experiment 4 Experiment 5 Experiment 6 Experiment 7

2 0.9721 0.3564 0.9883 0.9957

3 0.5338 0.2921 0.3585 0.2734

4 0.9852 0.8660 0.8031 0.5370

Table B-9. Weekly Average IEC 104 Cosine Similarity per Experiment

Experiment 4 Experiment 5 Experiment 6 Experiment 7

0.8304 0.5048 0.7166 0.602

58

THIS PAGE INTENTIONALLY LEFT BLANK

59

LIST OF REFERENCES

Alata, E. et al. (2006). Lessons learned from the deployment of a high-interaction
honeypot. 2006 Sixth European Dependable Computing Conference, 39–46.
doi:10.1109/EDCC.2006.17

Basu, S. et al. (2019). Cloud computing security challenges & solutions—A survey. 2018
IEEE 8th Annual Computing and Communication Workshop and Conference
(CCWC), 347–356. doi:10.1109/CCWC.2018.8301700

Bieker, M., & Pilkington, D. (2020). Deploying an ICS Honeypot in a cloud computing
environment and comparatively Analyzing Results against Physical Network
Deployment. (Master’s thesis, Naval Postgraduate School). NPS Archive:
Calhoun. Retrieved from http://hdl.handle.net/10945/66586

Borges, L. et al. (2018). An evolutive hybrid approach to cloud computing provider
selection. 2018 IEEE Congress on Evolutionary Computation (CEC), 1–8.
doi:10.1109/CEC.2018.7477742

Bove, D. (2018). Using honeypots to detect and analyze attack patterns on cloud
infrastructures. (Master’s thesis, Friedrich-Alexander University). Bavaria,
Germany. Retrieved from https://davidebove.com/files/thesis-bove-public.pdf

Brooks, P. (2001). EtherNet/IP industrial protocol white paper. Institute of Electrical and
Electronic Engineers (IEEE).

Brown, S., Lam, R., Prasad, S., Ramasubramanian, S., & Slauson, J. (2012, December
19). Honeypots in the cloud. Madison: Unversity of Wisconsin - Madison.
http://pages.cs.wisc.edu/~sbrown/downloads/honeypots-in-the-cloud.pdf

Campbell, R., Padayachee, K., & Masombuka, T. (2015). A survey on honeypot research:
Trends and opportunities. 2015 10th International Conference for Internet
Technology and Secured Transactions (ICITST), 208–212.
doi:10.1109/ICITST.2015.7412090

Chapendama, S. (2019). Analysing honeypot data using Kibana and Elasticsearch.
Towards Data Science. https://towardsdatascience.com/analysing-honeypot-data-
using-kibana-and-elasticsearch-5e3d61eb2098

Chassin, D. et al. (2008). An open-source power systems modeling and simulation
environment. 2008 IEEE/PES Transmission and Distribution Conference and
Exposition, 1–5. doi:10.1109/TDC.2008.4517260

60

Chong, W., & Koh, C. (2018). Learning cyberattack oaatterns with active honeypots.
(Master’s thesis, Naval Postgraduate School). NPS Archive: Calhoun.
http://hdl.handle.net/10945/60377

Combe, T., Martin, A., & Di Pietro, R. (2016, November 11). To docker or not to docker:
A security perspective. IEEE Cloud Computing, 3(5), 54–62.
doi:10.1109/MCC.2016.100

Cybersecurity and Infrastructure Security Agency. (2021). Significant historical cyber-
intrusion campaigns targeting ICS. Arlington: CISA. https://us-
cert.cisa.gov/ncas/current-activity/2021/07/20/significant-historical-cyber-
intrusion-campaigns-targeting-ics

Cybersecurity and Infrastructure Security Agency and Federal Bureau of Investigation.
(2021). Joint cybersecurity advisory: Chinese gas pipeline intrusion campaign,
2011 to 2013. Arlington: Cyberstructure and Infrastructure Security Agency.
Retrieved July 21, 2021, from https://us-cert.cisa.gov/ncas/alerts/aa21-201a

Dangeti, P. (2017). Statistics for machine learning: Techniques for exploring
unsupervised, supervised, and reinforcement learning models with Python and R.
Birmingham, UK: Packt Publishing.

DigitalOcean, LLC. (n.d.). Droplets. https://docs.digitalocean.com/products/droplets

Dionaea. (2015). Dionaea documentation. https://dionaea.readthedocs.io

Dougherty, J. (2020). Evasion of honeypot detection mechanisms through improved
interactivity of ICS-Based Systems. (Master’s thesis, Naval Postgraduate School).
NPS Archive: Calhoun. Retrieved from http://hdl.handle.net/10945/66065

Eigner, O., Kreimel, P., & Tavolato, P. (2018). Identifying S7Comm protocol data
injection attacks in cyber-physical systems. 5th International Symposium for ICS
& SCADA Cyber Security Research.

Elasticsearch B.V. (n.d.). Elastic (ELK) Stack. https://www.elastic.co/elastic-stack

Gruschka, N., & Iacono, L. (2009). Vulnerable cloud: SOAP message security validation
revisited. 2009 IEEE International Conference on Web Services, 625–631.
doi:10.1109/ICWS.2009.70

Huang, K. et al. (2018, Jul). Systematically understanding the cyber attack business: A
survey. ACM Computing Surveys, 51(4), 1–36.

Hurd, C. M., & McCarty, M. V. (2017). A survey of security tools for the industrial
control system environment. Idaho Falls: Idaho National Laboratory.

61

Hyun, D. (2018). Collecting cyberattack data for industrial control systems using
honeypots. (Master’s thesis, Naval Postgraduate School). NPS Archive: Calhoun.
http://hdl.handle.net/10945/58316

Jicha, A. et al. (2016). SCADA honeypots: An in-depth analysis of Conpot. 2016 IEEE
Conference on Intelligence and Security Informatics (ISI), 196–198.
doi:10.1109/ISL.2016.7745468

Kaplan, F. (2017). Dark territory: The secret history of cyber war. New York City:
Simon & Schuster.

Kelly, C., Pitropakis, N., Mylonas, A., McKeown, S., & Buchanan, W. (2021). A
comparative analysis of honeypots on different cloud platforms. Sensors,
21(2433). doi:10.3390/s21072433

Keri, M., Lechthaler, B., & Ochse, M. (n.d.). DICOM honeypot. Retrieved July 15, 2021,
from GitHub: https://github.com/nsmfoo/dicompot

Leach, P. J., Berners-Lee, T., Mogul, J. C., Masinter, L., Fielding, R. T., & Gettys, J.
(1999). Hypertext Transfer Protocol - HTTP/1.1. Internet Engineering Task
Force. https://tools.ietf.org/html/rfc2616

Matousek, P. (2017). Description and analysis of IEC 104pProtocol. Brno University of
Technology.

MaxMind, Inc. (n.d.). GeoIPdatabases & services. Retrieved July 15, 2021, from
MaxMind: https://www.maxmind.com/en/geoip2-services-and-databases

Mell, P., & Grance, T. (2011). The NIST definition of cloud computing. Gaithersburg:
National Institute of Standards and Technology. doi:SP 800–145

Middleton, B. (2017). A history of cyber securiy attacks: 1980 to present. Boca Raton:
Auerbach Publications.

Moubayed, A., Injadat, M., Shami, A., & Lutifyya, H. (2018). DNS typo-squatting
domain detection: A data analytics & machine learning based approach. 2018
IEEE Global Communications Conference (GLOBECOM), 1–7.
doi:10.1109/GLOCOM.2018.8647679

National Security Council. (2018). National cyber strategy of the United States of
America. Washington, DC: National Security Council.

National Security Council. (2021). Interim national security strategic guidance.
Washington, DC: National Security Council.

Oosterhof, M. (n.d.). Cowrie. Retrieved July 15, 2021, from www.cowrie.org

62

Open Information Security Foundation (OISF). (n.d.). Suricata. Retrieved July 15, 2021,
from https://suricata.io

Red Hat. (n.d.). Cockpit Project. Retrieved July 15, 2021, from https://cockpit-project.org

Renfro, S., & Guyton, B. (2021, July 15). mergecap. Retrieved from Wireshark.org:
https://www.wireshark.org/docs/man-pages/mergecap.html

Rist, L. et al. (n.d.). SNARE/TANNER. Retrieved July 15, 2021, from
www.mushmush.org

Schmall, M., Vorbach, A., & Ochse, M. (n.d.). medpot. Retrieved July 2015, 2015, from
GitHub: https://github.com/schmalle/medpot

Secretary of the Navy. (2018). Department of the Navy Critical Infrastructure Protection
Program. Washington, DC: Department of the Navy. doi:SECNAVINST
3501.1D

Serbanescu, A., Obermeier, S., & Yu, D.-Y. (2015, September). ICS threat analysis using
a large-scale honeynet. 3rd International Symposium for ICS & SCADA Cyber
Security Research 2015, 20–30. doi:10.14236/ewic/ICS2015.3

Seri, B. et al. (2019). Urgent/11: Critical vulnerabilities to remotely compromise
VxWorks, the most popular RTOS. Armis, Inc. https://info.armis.com/rs/645-
PDC-047/images/Urgent11_Technical_White_Paper.pdf

Shiflett, C. (2006). Essential PHP security: A Guide to building secure web applications.
Sebastopol: O’Reilly Media, Inc.

Shodan. (n.d.). What is Shodan? Retrieved July 15, 2021, from https://help.shodan.io/the-
basics/what-is-shodan

Simmon, E. (2018). Evaluation of cloud computing services based on NIST SP 800-145.
Gaithersburg: National Institute of Standards and Technology. doi:SP 500–322

Sochor, T., & Zuzcak, M. (2014, February). Study of internet threats and attack methods
using honeypots and honeynets. International Conference on Computer Networks,
118–127. doi:10.1007/978-3-319-07941-7_12

Surbiryala, J., & Rong, C. (2019). Cloud computing: History and overview. 2019 IEEE
Cloud Summit, 1–7. doi:10.1109/CloudSummit47114.2019.00007

Swales, A. (1999). Open MODBUS/TCP Specification. Schneider Electric.

Telekom Security. (n.d.). T-Pot. Retrieved July 15, 2021, from
https://github.com/telekim-security/tpotce

63

White House. (2021). National Security Memorandum on improving cybersecurity for
critical infrastructure control Systems. Washington, DC: National Security
Memorandum. Retrieved July 28, 2021, from
https://www.whitehouse.gov/briefing-room/statements-
releases/2021/07/28/national-security-memorandum-on-improving-cybersecurity-
for-critical-infrastructure-control-systems/

Wireshark Foundation. (n.d.). tshark. Retrieved July 15, 2021, from Wireshark.org:
https://www.wireshark.org/docs/man-pages/tshark.html

Zhang, F. et al. (2003). Honeypot: A supplemented active defense system for network
security. Proceedings of the Fourth International Conference on Parallel and
Distributed Computing, Applications and Technologies, 231–235.
doi:10.1109/PDCAT.2003.1236295

Zhu, J., & Desai, B. (2015). User Agent and privacy compromise. C3S2E ‘15:
Proceedings of the Eigth International C* Conference on Computer Science &
Software Engineering, 38–45. doi:10.1145/2790798.2790803

64

THIS PAGE INTENTIONALLY LEFT BLANK

65

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

	21Sep_Washofsky_Alexander_First8
	21Sep_Washofsky_Alexander
	I. INTRODUCTION
	A. MOTIVATION
	B. RESEARCH PLAN
	C. thesis outline

	II. background and related work
	A. CLOUD COMPUTING
	B. HONEYPOTS
	C. PREVIOUS HONEYPOT Research

	III. methodology and design
	A. DigitalOcean cloud environment
	B. t-pot
	C. Honeypots Used IN THIS THESIS
	D. protocols USED IN CONPOT and Gridpot
	E. Other TOOLS Used

	IV. EXPERIMENT IMPLEMENTATION
	A. CONFIGURATION AND IMPLEMENTATION
	1. TEST ENVIRONMENT
	2. CUSTOM T-POT TEMPLATES
	3. EXPERIMENT 1: CONPOT
	4. EXPERIMENTS 2 AND 3: SNARE AND TANNER
	5. EXPERIMENTS 4–7: GRIDPOT

	B. DATA COLLECTION
	C. problems encountered

	V. analysis
	A. experiment 1
	1. PROTOCOL DATA AND RESULTS
	a. HTTP
	b. MODBUS
	c. ETHERNET/IP
	d. S7COMM

	2. OVERALL STATISTICS

	B. experiments 2 and 3
	1. HTTP Data and Results
	a. Overall Activities
	b. Types of Activity

	2. Overall Statistics

	C. experimentS 4–7
	1. Session Data
	2. SIMILARITIES BETWEEN EXPERIMENT TRAFFIC
	3. BEHAVIORAL ANALYSIS
	4. Shodan

	D. t-pot

	VI. Conclusions and Future Work
	APPENDIX A. CUSTOM T-POT INSTALLATION
	APPENDIX B. COSINE SIMILARITY DATA
	List of References
	initial distribution list

