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ABSTRACT 

Honeypots (decoy systems) are effective tools to monitor cyberattack and 

intrusion attempts, but it is challenging to deploy enough of them to catch a sufficient 

amount of such activity. With cyberattacks on the rise, specifically those targeting critical 

infrastructure, better suspicious-traffic collection methods must be developed. This thesis 

explores the deployment and use of cloud-based honeypots within an open-source 

honeypot management framework, T-Pot. Instances of T-Pot ran honeypots that 

simulated a web server and an electrical-power distribution system, and their traffic was 

compared to previous local and cloud-based standalone honeypot deployments. The 

results showed that the cloud deployments received more traffic than local deployments 

and that t h e use of T-Pot did not discourage intrusions or attacks. T-Pot bundles 

security analysis tools and services for analyzing cloud-scale data, enabling more 

robust cyber defense for critical infrastructure and Department of Defense networks. 
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I. INTRODUCTION 

This thesis addresses network defense for the National Cyber Strategy (National 

Security Council, 2018), specifically, the priorities to “Secure Federal Networks and 

Information” and “Secure Critical Infrastructure,” and the Interim National Security 

Strategic Guidance (National Security Council, 2021), which made cybersecurity a “top 

priority” and “elevate [d] cybersecurity as an imperative across the government.” This 

research is also guided by the “National Security Memorandum on Improving 

Cybersecurity for Critical Infrastructure Control Systems” (White House, 2021), which 

called for “deploying systems and technologies that can monitor control systems to detect 

malicious activity and facilitate response actions.”  

This thesis developed methods to identify threats to servers by operating honeypots 

(decoy servers) in a cloud-computing environment, allowing later analysis of their saved 

attack data. It also examined threats to industrial control systems. The work explored how 

specific deployment strategies affected attacks. We analyzed data to determine whether 

particular strategies could help deployment and real-time analysis by providing a different 

“attack surface,” potentially encouraging more attack patterns by malicious actors.  

This thesis evaluates the feasibility, advantages, and disadvantages of deploying 

honeypots in the cloud on a specific honeypot management platform, T-Pot (Telekom 

Security, n.d.). This platform promises a simplified installation process as well as greater 

data collection and analytical capabilities compared to using single honeypots.  

A. MOTIVATION 

Cyberattacks are not new. Malicious attempts to gain access, steal information, or 

damage systems have a long history. Even before computers were networked, malicious 

code was spread through other media (Middleton, 2017). The more systems were 

interconnected, the more opportunity for malicious attempts grew, as cybercriminals began 

using cyberattacks for illicit gain, and foreign governments began using cyberattacks for 

espionage (Kaplan, 2017). Today, governments and businesses must defend their systems 

against a rising threat of cybercrime, which cost $3 trillion in 2015 (Huang et al., 2018) 
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and should double to $6 trillion in 2021. Furthermore, the threats to industrial control 

systems (ICS) are “among the most significant and growing issues confronting our Nation” 

(Cybersecurity and Infrastructure Security Agency, 2021), as these systems control critical 

infrastructure. For example, oil and natural gas pipelines have recently been targeted by 

state-sponsored cyber actors (Cybersecurity and Infrastructure Security Agency and 

Federal Bureau of Investigation, 2021). Using honeypots to detect anomalies in network 

traffic is a recognized approach to reduce threats to ICS networks (Hurd & McCarty, 2017). 

The U.S. Department of Defense relies heavily on Internet-facing servers for 

routine and wartime operations. These systems are identified by SECNAVINST 3501.1D 

(Secretary of the Navy, 2018) as critical infrastructure, and some of these are ICSs. 

Increasing our threat analysis and defensive capabilities can better defend these servers and 

make them more resilient to attack. By observing adversarial cyber actions against 

honeypots, we can learn adversary tactics, techniques, and procedures (TTPs) to better 

defend the real servers.  

B. RESEARCH PLAN 

Our research plan had three phases. Phase 1 tested a single honeypot deployed on 

a cloud server within a T-Pot honeypot platform and compared its results to that of a similar 

deployment on a local server. Phase 2 compared two instances of honeypots on cloud 

servers, one in our test T-Pot platform and one as a standalone server and compared the 

results. Phase 3 deployed and compared four instances of a modified honeypot previously 

used by our research group (Bieker & Pilkington, 2020), two in our T-Pot platform and 

two on standalone systems. Each instance in the pairs had a different location.  

C. THESIS OUTLINE 

Chapter II examines previous work on honeypots and cloud computing. Chapter III 

describes the architecture of our experiments and the honeypots used. Chapter IV discusses 

our research methodology, the specific configurations for each experiment, and the data-

analysis. Chapter V summarizes and discusses the experiment results. Chapter VI states 

our conclusions and suggests future work. 
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II. BACKGROUND AND RELATED WORK 

A. CLOUD COMPUTING 

Cloud computing originates from time-sharing on large servers in the early days of 

computing (Surbiryala & Rong, 2019). Customers would send computing jobs to a shared 

computer to execute and output results, eliminating the need for each customer to have 

their own machines. Today cloud computing environments are provided by Amazon Web 

Services, Microsoft Azure, Google Cloud, and others (Borges et al., 2018). 

The National Institute for Standards and Technology (NIST) defines three standard 

cloud-computing service models: Infrastructure as a Service (IaaS), Platform as a Service 

(PaaS), and Software as a Service (SaaS) (Mell & Grance, 2011). IaaS uses virtual 

machines and emulation to provide a user with access to a private computing environment 

on a remote server. PaaS, mainly used for application development, provides the user with 

an environment including toolkits, databases, and services. SaaS provides the user with 

access to programs provided by the cloud-services provider. 

NIST also defines three cloud-deployment models (Simmon, 2018). A private 

cloud is deployed by an organization, allowing that organization the most control over the 

implementation and security. A public cloud is accessed and provides services through the 

Internet. A hybrid cloud involves some elements of private and public clouds. For example, 

an organization may have a private cloud hosted on-premises but use public cloud 

resources through a provider when demand on the private cloud exceeds capacity.  

Security is important in cloud computing (Basu et al., 2019). Depending on the 

service model, a cloud services provider may have significant access to the organization’s 

data. This is a greatest concern with SaaS, where the user runs the provider’s applications 

and must trust their security and safeguards. However even with IaaS where a user controls 

their own computing instance, the provider still controls the infrastructure behind it, which 

potentially gives them access to the computing instance’s data. Also, security 

vulnerabilities in the cloud provider’s system are passed to the user. For instance, a 

vulnerability discovered in Amazon’s Elastic Compute Cloud (EC2) in 2009 allowed 
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attackers to intercept and modify messages that were assumed to be secure (Gruschka & 

Iacono, 2009).  

B. HONEYPOTS 

A honeypot is a computer security tool that collects data on unauthorized access 

and access attempts to a sacrificial computer or device (Campbell, Padayachee, & 

Masombuka, 2015). A honeypot emulates the first steps of legitimate services as it interacts 

with an attempted attacker. These interactions are logged for later analysis and can provide 

the basis for security alerts.  

Honeypots can be categorized by their purpose and interaction level. They can be 

deployed as production honeypots or research honeypots (Zhang et al., 2003). Production 

honeypots serve as tripwires, telling personnel of unauthorized access attempts. Research 

honeypots collect as much information as possible from attackers to see trends, and are 

used in business, government, and academia. 

Honeypots can be either low-interaction or high-interaction (Alata et al., 2006). 

Low-interaction honeypots emulate a few services, provide basic responses, but may not 

respond to a more complex attack as a real system would. Low-interaction honeypots are 

easy to deploy but can be easily identifiable as honeypots. High-interaction honeypots look 

as real as possible and can even include an entire virtual system for an attacker to interact 

with. While they can capture more complex attack data than low-interaction honeypots, 

they are more complex and resource-intensive to deploy. Medium-interaction honeypots 

have characteristics between those of low and high-interaction honeypots. 

C. PREVIOUS HONEYPOT RESEARCH 

One honeypot project (Kelly, Pitropakis, Mylonas, McKeown, & Buchanan, 2021) 

installed a standard version of the T-Pot (Telekom Security, n.d.) honeypot platform on 

multiple cloud service providers in different geographic locations. This standard version of 

the platform includes the following honeypots that are relevant to this thesis: Conpot (Jicha 

et al., 2016), Cowrie (Oosterhof, n.d.), Dionaea (Dionaea, 2015), and Snare and Tanner 

(Rist et al., n.d.). Their results demonstrated that the market share of the cloud service 
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providers did not affect the rate of attacks received; for instance, Google Cloud, the 

provider with the lowest market share, was targeted just as much as their other 

deployments. The researchers also noted that the T-Pot platform provided them real-time 

situational awareness into attacks with its visualization capabilities. 

Bove (2018) set up multiple T-Pot instances in cloud services and analyzed the 

results. He saw secure shell (SSH) attacks to the Cowrie honeypot (Oosterhof, n.d.) and 

malware captured by the Dionaea honeypot (Dionaea, 2015). He concluded that no 

significant differences occurred between regular servers and cloud-based systems for SSH 

attacks as recorded by Cowrie, or the attempted malware executables captured by Dionaea. 

Chapendama (2019) deployed a standard instance of T-Pot on the Google Cloud 

Platform in Europe. Results showed that Cowrie was the most often attacked honeypot, 

and most attacks targeted both the Telnet and SSH services. The most common attack 

source IP country was China, followed by the United States, but he noted that attacks came 

from around the world. 

A honeypot project at the University of Wisconsin – Madison (Brown, Lam, Prasad, 

Ramasubramanian, & Slauson, 2012) deployed multiple honeypots into the cloud, but not 

as part of an overall honeypot platform such as T-Pot. Their data showed mostly attacks 

from China and the United States, and that attacks received were not significantly different 

between different cloud-service providers. 

Another project (Sochor & Zuzcak, 2014) ran Dionaea and SSH honeypots over 

three months on both a local network and a cloud deployment. Their results suggested 

attacks detected with Dionaea did not differ with where the honeypot was hosted. The 

largest alleged source of attacks against these honeypots was India, which had eight times 

the number of attacks from China. 

Serbanescu et al. (2015) deployed an ICS honeynet, a collection of honeypots, on 

a cloud server. This honeynet simulated seven protocol services in different combinations. 

The researchers concluded that attackers’ interest in the honeypots depended more on the 

availability of certain protocols. They also noted that overall attacker interest in their 
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project was low and recommended that future work should involve “higher interaction” 

ICS honeypots. 

A honeypot project at the Naval Postgraduate School (NPS) (Chong & Koh, 2018) 

ran HTTP and SSH honeypots in separate experiments; these honeypots were Snare & 

Tanner (Rist et al., n.d.) and Cowrie (Oosterhof, n.d.) respectively. The Snare and Tanner 

services cooperated to give an attacker a seemingly vulnerable HTTP server, while Cowrie 

presented a vulnerable SSH server. Their results demonstrated that most attacks on these 

services were automated, and changes to the honeypots to further obfuscate them seemed 

to have little effect on the attacks. 

Another honeypot project at NPS (Hyun, 2018) ran a low-interaction ICS honeypot 

called Conpot (Jicha et al., 2016) within a virtual machine on a local internet-facing server 

for four months. It serviced multiple protocols, including Hypertext Transfer Protocol 

(HTTP), EtherNet/IP, MODBUS, S7Communications (S7Comm), Simple Network 

Management Protocol (SNMP), Building Automation and Control Networks (BACnet), 

and Intelligent Platform Management Interface (IPMI). HTTP, a non-ICS protocol, 

accounted for 56% of the attack traffic to this honeypot, and the MODBUS ICS protocol, 

accounted for 35% of traffic. This research demonstrated that even a low-interaction 

honeypot like Conpot could provide useful data. 

Another ICS honeypot project (Dougherty, 2020) at NPS that we have built upon 

deployed a modified version of Conpot called GridPot that emulates an electrical 

distribution system. GridPot replaced Conpot’s low-interaction handling of the 

International Electrotechnical Commission (IEC) 60870-5-104 (IEC 104) communications 

protocol with a more interactive version that communicated to a power-grid simulator 

called GridLAB-D (Chassin et al., 2008), providing a more convincing server to attackers. 

This setup was later deployed as standalone honeypots in the cloud (Bieker & Pilkington, 

2020). The results demonstrated that this was a workable platform for more detailed 

experiments.  

  



7 

III. METHODOLOGY AND DESIGN 

This chapter discusses the design of our honeypot experiments. We also describe 

the cloud hosting of our honeypots, and how we constructed, deployed, and operated them. 

More specific details of our configurations and implementations are in Chapter IV. Our 

experiments used both low-interaction and high-interaction research honeypots in a cloud-

computing environment. The goals were to compare the data collected by these honeypots 

to previous honeypot deployments and to contrast functional differences between being 

deployed as standalone honeypots and as honeypot daemons within the T-Pot honeypot 

platform. 

A. DIGITALOCEAN CLOUD ENVIRONMENT 

We chose to use a cloud IaaS service so we could have the most control over 

honeypot operation. Previous honeypot research at NPS had examined multiple providers 

including Amazon Web Services (AWS). However, DigitalOcean (n.d.) was found to be 

an ideal service, as it did not discourage security applications such as honeypots and was 

priced well for the services we would use. 

DigitalOcean enables creation of virtual servers that they call “droplets.” Droplets 

can have either shared or dedicated hardware, with various options including the number 

of processors and amount of memory. Other droplet installation options include a pre-

installed operating system, block storage, a datacenter region, and automatic backup. Initial 

configuration of the droplets is done through DigitalOcean’s remote console, and once 

firewall rules and the SSH remote-shell parameters are set up, the rest of the configuration 

can be done over SSH. 

B. T-POT 

T-Pot (Telekom Security, n.d.) is a honeypot deployment platform. Deployers can 

choose from multiple templates. For example, the “medical” template includes the 

honeypots Dicompot (Keri, Lechthaler, & Ochse, n.d.) and Medpot (Schmall, Vorbach, & 

Ochse, n.d.) providing attack surfaces for healthcare-related protocols, while the ICS 
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template includes Conpot and Cowrie. The templates also include tools for analysis and 

real-time monitoring such as Cockpit (Red Hat, n.d.), Elastic Stack (Elasticsearch B.V., 

n.d.), and Suricata (Open Information Security Foundation (OISF), n.d.). 

T-Pot uses Docker (Combe, Martin, & Di Pietro, 2016), a program that can run 

software in virtual operating systems in instances called containers. These containers can 

easily be managed and configured on the host machine, and a single machine can run many 

Docker containers. T-Pot has each honeypot and tool containerized and running in separate 

Docker containers, which provides modularity as well as better safety compared to running 

software directly on the machine. 

Cockpit is a Web-based graphical user interface for Linux servers. It monitors and 

manages the system on which T-Pot runs. Some of its information is duplicated in the 

DigitalOcean dashboard including live graphs of processor use, memory, and disk I/O. 

Cockpit also monitors running Docker containers (Figure 1), system services, and 

applications. It can also update software, create new user accounts, and provide a Web-

based terminal session. Overall, Cockpit allows easier management of a T-Pot installation 

than SSH alone.  

 
Figure 1. Screenshot of Cockpit Taken during Our Experiments, Showing 

Running Docker Containers 
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The Elastic Stack has three programs: Elasticsearch, Logstash, and Kibana. 

Logstash sends data from the honeypot and tool logs to the database of Elasticsearch. 

Elasticsearch searches and analyzes using JavaScript Object Notation (JSON). Kibana is a 

data visualization tool for the Elasticsearch database. Kibana has predefined dashboards 

that allow a user to view data from individual honeypots (Figure 2), individual tools like 

Suricata, or an overall “T-Pot Dashboard” that includes data from the honeypots and tools.  

 
Figure 2. Screenshot of Tanner Attack Map from Kibana Dashboard, 

Taken during Our Experiments, Showing a World Map of 
Geolocated Attack Sources. 

Suricata is a threat detection engine that can act as both an intrusion-detection 

system (IDS) and intrusion-prevention system (IPS). Within T-Pot, Suricata only detects 

malicious activity, logging alerts with their associated CVE (Common Vulnerabilities and 

Exposures) codes. Suricata provides real-time analysis of attacks, with details on their 

severity, category, and signature. Suricata examines all packets received, beyond what 

honeypots capture. For example, Suricata detects Transmission Control Protocol (TCP) 

packets with the SYN (synchronize) and URG (urgent) flags set that do not complete the 

TCP 3-way handshake and lack an HTTP payload, so they do not interact with HTTP 

honeypots. Suricata identifies these packets as related to critical vulnerabilities in VxWorks 

(Seri et al., 2019), a real-time operating system used in devices such as industrial control 

systems. These additional data points are similarly fed into the Elastic Stack and viewable 

on the Kibana dashboard (Figure 3). 
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Figure 3. Screenshot of Suricata Alert Signature from the Kibana 

Dashboard, Taken during Our Experiments, Showing the Top 
10 Alerts Generated by Suricata. 

C. HONEYPOTS USED IN THIS THESIS 

Conpot (Jicha et al., 2016) is a low-interaction honeypot that can simulate several 

protocols important to us, including HTTP for a basic ICS-like Web interface, MODBUS, 

EtherNet/IP, S7Comm, and IEC 104. Its templates can specify combinations of these 

protocols. Conpot logs all interactions on the ports for these protocols and outputs them to 

a log file. 

Snare and Tanner (Rist et al., n.d.) are two components of T-Pot. Snare accepts 

HTTP connections and sends HTTP requests to Tanner. Tanner analyzes Snare events and 

identifies an attacker trying to exploit a vulnerability. Tanner logs events in JSON format. 

Snare also includes a tool to clone (duplicate) existing websites and supply them to 

attackers. The version of Snare that comes with T-Pot includes ten cloned websites, and 

upon installation, one is randomly chosen to present to attackers. 

GridPot (Dougherty, 2020) modifies and extends Conpot, simulating an HTTP 

server that hosts an ICS electric-grid interface. Attackers see an interface showing variables 

of an ICS system. Instead of the low-interaction Conpot implementation of IEC 104, 
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GridPot includes GridLAB-D (Chassin et al., 2008), an electric-grid simulator, to add 

realism to the IEC 104 protocol interactions. Dougherty modified GridPot to accept 

incoming IEC 104 requests, send them through the Conpot honeypot to GridLAB-D, and 

return the results of the request.  

D. PROTOCOLS USED IN CONPOT AND GRIDPOT 

Most traffic captured by our experiments was of the Hypertext Transfer Protocol 

(HTTP) (Leach, et al., 1999) for communication between clients and Web servers over 

TCP port 80. Most commonly, a client will send a “GET” request to retrieve a specific 

Web page. Other HTTP methods seen during our experiments were PUT, POST, HEAD, 

CONNECT, PROPFIND, and OPTIONS. Snare/Tanner allowed a user to interface with a 

specified copy of a Web page.  

MODBUS (Swales, 1999) is an application-level protocol for industrial control 

systems, designed in 1979. It allows a “client” controlling device to send function codes to 

controlled “server” devices. The protocol defines function codes as between 1 and 255, 

with 128 and higher being reserved for exception responses from the controlled devices. 

One client device can communicate with a maximum of 247 server devices. Originally, 

MODBUS was used only for direct serial connections; today, MODBUS can be done by 

TCP packets, typically using port 502. Conpot can handle MODBUS in a limited capacity 

that only checks for proper formatting of requests; GridPot does not support MODBUS. 

EtherNet/IP (Brooks, 2001) is an adaptation of the Common Industrial Protocol 

(CIP) for use with Ethernet at the link layer. EtherNet/IP is used in industrial control 

systems and includes explicit and implicit messaging. Explicit messages are sent by TCP 

port 44818 between a client and server and can change parameters and programs. Implicit 

messages sent by User Datagram Protocol (UDP) port 2222 and are for monitoring and 

basic data. The EtherNet/IP handler in Conpot only recognizes explicit messages on port 

44818 and checks for their proper formatting; GridPot does not support EtherNet/IP.  

S7 Communication (S7Comm) (Eigner, Kreimel, & Tavolato, 2018) is a 

proprietary protocol developed by Siemens for communication between their 

manufactured programmable logic controllers (PLCs) and supervisory control and data 
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acquisition (SCADA) systems. S7Comm uses TCP port 102. S7Comm is handled by 

Conpot, and proper formatting is checked, including power distribution unit (PDU) type, 

data length, and request ID. GridPot does not support S7Comm. 

 IEC 60870-5-104 (Matousek, 2017), often shortened to simply IEC 104, is an 

application-level protocol used in industrial control systems, and specifically electrical 

engineering and power systems. IEC 104 uses three kind of data frames. I-format frames 

transfer information, S-format frames send supervisory commands and acknowledgements, 

and U-format frames send control commands. Conpot checks if IEC 104 traffic on port 

2404 is properly formatted as one of the three data frame types, and whether the frames 

contain valid control functions. GridPot as modified by Dougherty parses these data frames 

and sends the commands to the GridLAB-D simulation, which executes them and returns 

the results to the attacker through GridPot and then Conpot. 

E. OTHER TOOLS USED 

Shodan (n.d.) is a search engine designed to inspect Internet-connected devices and 

servers. It automatically crawls (searches for) publicly accessible IP addresses, and indexes 

them based on metadata provided by responses at those addresses. Shodan classifies 

addresses as cloud, honeypot, server, webcam, router, and more. Honeyscore is a tool 

within Shodan that judges whether an address is a honeypot. We used Shodan’s search and 

scan capabilities, as well as Honeyscore, to determine how realistic our honeypots 

appeared. 

GeoIP (MaxMind, Inc., n.d.) is a service that provides IP geolocation data. 

Depending on the geographic region, it can locate an IP address within a radius of several 

kilometers or several hundred kilometers. We used GeoIP to help identify the country to 

which an IP address allegedly belongs. 
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IV. EXPERIMENT IMPLEMENTATION 

This chapter discusses further details of the implementation of our experiments. 

The research had three sets of experiments described in Section IV.A. Data analysis 

methods are described in Section IV.B, and the results are in Chapter V. 

A. CONFIGURATION AND IMPLEMENTATION 

We did seven experiments with three deployment methods.  

1. TEST ENVIRONMENT 

Our experiments used DigitalOcean virtual machines, i.e., “droplets,” with the 

same configuration. The droplets were built using DigitalOcean’s pre-built Debian Linux 

10 x64 image. 

We used droplets with two dedicated processors, eight gigabytes of random-access 

memory (RAM), and a 25-gigabyte solid-state drive (SSD) for main storage. For 

comparison purposes, these hardware options were the same as the previous projects’ 

droplet hardware configurations. Each droplet had a single unique public IPv4 address. For 

simpler analysis, we did not enable IPv6 connectivity on the droplets. During initial set-up 

and installation, we remotely accessed the console of each droplet using SSH from our 

local machine. DigitalOcean’s firewall allows each droplet to have individual rulesets, and 

this made it easy to isolate the droplets during installation and testing, during which time 

we limited access only to our local machine’s IP address. When conducting experiments, 

the specific firewall ruleset for the honeypot used in the experiments was applied to the 

droplets, allowing access from the outside world. 

2. CUSTOM T-POT TEMPLATES 

As previously mentioned, T-Pot has six built-in templates for installation. For each 

experiment deployment, we modified the T-Pot installation script to use a custom template 

that we named “Washofsky” to install the honeypot and tools required for each experiment 

(see Appendix A). This template used a custom docker-compose.yml configuration file, 
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modified from the default T-Pot configuration file, to set up the containers, services, and 

networks required 

3. EXPERIMENT 1: CONPOT 

Experiment 1 compared Hyun’s standalone Conpot (Hyun, 2018) with a similar 

Conpot instance running within T-Pot (Figure 4). Hyun deployed a default configuration 

of Conpot in a virtual machine on a server outside the Naval Postgraduate School firewall. 

Our Experiment 1 used a custom T-Pot template to install a Conpot honeypot running on 

a DigitalOcean droplet in the U.S., with Suricata for network management, and Cockpit, 

Elasticsearch, Kibana, and Logstash for management, visualization, and analysis. 

Experiment 1 acquainted us with the tools that T-Pot provided, especially understanding 

the underlying code and installation scripts.  

 
Figure 4. Experiment 1 Architecture 

4. EXPERIMENTS 2 AND 3: SNARE AND TANNER 

Experiments 2 and 3 compared to Chong and Koh’s work (Chong & Koh, 2018) 

with the Snare and Tanner honeypots in T-Pot (Figure 5). They deployed Snare, Tanner, 

and Cowrie honeypots in a virtual machine outside the Naval Postgraduate School firewall. 
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Our Experiment 2 installed Snare and Tanner on a cloud droplet, cloning the same website 

that Chong and Koh used. Our Experiment 3 installed Snare and Tanner using a custom T-

Pot template and the tools listed in IV.A.3, with the same website content with minor name 

changes. Experiment 3 required a new Docker container to run Snare with our cloned 

website since the Snare containers that come with T-Pot are incomparable to Chong and 

Koh’s previous work. 

 
Figure 5. Experiments 2–3 Architecture 

5. EXPERIMENTS 4–7: GRIDPOT 

Experiments 4–7 compared our experiments to Bieker and Pilkington’s work with 

GridPot (Bieker & Pilkington, 2020), as modified by Dougherty (Figure 6). Their 

experiments deployed two GridPot honeypots, obfuscated to better simulate a real ICS 

environment, in different locations. Our Experiments 4 and 5 installed GridPot and the 

additional tools listed in IV.A.3 in T-Pot on two droplets in Asia and the U.S. Experiments 

4 and 5 required some preparation since no support for GridPot was provided in T-Pot. We 

first created a new Docker container to host GridPot, and then tested it to ensure correct 

functionality in the containerized environment. Experiments 6 and 7 installed GridPot on 
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two additional droplets in the same two locations as Experiments 4 and 5, but without using 

the T-Pot platform. 

 
Figure 6. Experiments 4–7 Architecture 

B. DATA COLLECTION 

Data from each experiment was network traffic captured using packet-capture 

(PCAP) software and activity logs generated by the honeypot. On each droplet, an 

automated Linux service ran TShark (Wireshark Foundation, n.d.) to collect traffic on the 

TCP ports. These PCAP files were then pushed to a central repository hourly. Table 1 

shows the data collection dates for each experiment. 
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Table 1. Experiment Data Collection Dates 

Experiment Set Date Range 

Experiment 1 December 4, 2020 – January 29, 2021 (56 days) 

Experiments 2 and 3 February 11, 2021 – May 12, 2021 (90 days) 

Experiments 4–7 May 1, 2021 – June 1, 2021 (31 days) 

 

Experiment 1 also collected Conpot log files to compare with Hyun’s data. These 

are timestamped text files recording sessions and connections, and some details of packets 

sent. 

For each experiment, packet captures were merged using Mergecap (Renfro & 

Guyton, 2021). Parsers were created in Python for each type of data, including statistics 

about the source IP addresses, daily traffic, and the protocol-specific statistics used in each 

experiment. Only Conpot logs were analyzed in Experiment 1 since the previous work did 

not report captured traffic data. 

C. PROBLEMS ENCOUNTERED 

A packet capture script using TShark originally captured traffic in Experiment 1 

from the virtual network adapter of the Conpot Docker container. However, this adapter 

was not persistent, and upon system reboot (which T-Pot scheduled daily), the network 

adapter had to be re-created. The packet capture script was rewritten to capture on the 

persistent “eth0” adapter, filtering for the ports used for the experiment. Also, T-Pot’s 

automatic maintenance removes honeypot logs older than 30 days. This caused partial loss 

of Conpot logs for Experiment 1. 

Initially, Conpot in Experiment 1 did not respond to packets on UDP ports 161 

(SNMP), 47808 (BACnet), and 623 (IPMI). The T-Pot template configuration file did not 

specifically forward that traffic to the honeypot using UDP, and Docker defaulted to 

forwarding using TCP. This misconfiguration was also in the default T-Pot configuration 

files, limiting any instance of Conpot to listening for these protocols using TCP. After we 
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submitted a bug report, this issue was corrected in Issue #781 of the T-Pot project. 

Experiments 2–7 did not use protocols requiring UDP traffic. 

A problem with the Conpot log was that it recorded malformed HTTP traffic on 

port 80 as HTTP 0.9 packets. It did not check for a malformed packet before handing the 

data to the “BaseHTTPRequestHandler” Python module, which defaulted to HTTP 0.9 

unless a version was detected. A comparison of the packet-capture data with Conpot log 

entries revealed HTTP requests recorded by TShark that were missed entirely in the Conpot 

log. This incompleteness was also identified by Hyun and Dougherty. Furthermore, 

timestamps for some MODBUS and FTP packets were inaccurate, as many cached ones 

appeared in the log during Conpot’s shutdown, indicating they were flushed before the 

program exited. 

In Experiment 3, a change to the Docker configuration caused T-Pot and the Snare 

and Tanner honeypots to pause for about a week. This was only noticed when we could not 

view the Kibana dashboard. The droplet was still pushing packet-capture data to the 

repository, so we incorrectly assumed that the droplet was healthy. After the 

misconfigurations were fixed, we changed our “proof of life” procedure to routinely log 

into the droplet to ensure services are running, and view running Docker containers using 

Cockpit. 

Experiment 3 revealed a bug in the Tanner software that logged certain HTTP 

requests incorrectly, which resulted in unexpected data fields in the Elastic Search 

database. This bug was also reported but is yet unresolved. 

Experiment 7 received significantly more traffic than Experiments 4–6, and 

analysis of the traffic captures and a reverse IP lookup revealed an IP address that appears 

to be the sole address in the Domain Name Service (DNS) record for a Korean-based 

website. This website’s record was created in 2017 and last updated in 2020, well before 

Experiment 7 started. The registered domain is like a real website and could relate to a 

typo-squatting attack (Moubayed, Injadat, Shami, & Lutifyya, 2018), where attackers 

present a similar website to the one a user intended to visit but with a slightly different 

domain name. In our case, visitors to this website would only see the basic ICS website 
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provided by GridPot. (It is also possible that this website previously existed, and the DNS 

record has not changed though the IP address was recycled.) Bieker and Pilkington (2020) 

observed similar DNS issues in their experiments.  

Experiments 6 and 7 saw an unexpected error which caused the honeypots in both 

experiments to stop responding to HTTP requests about seven days into data collection 

within hours of each other. The problem did not affect the handling of IEC 104 requests, 

and the honeypots continued to collect IEC 104 data for the entire duration of the 

experiments. It is unlikely that this error was caused by the DNS issue observed in 

Experiment 7, since Experiment 6 experienced the same error within hours of Experiment 

7’s failure. 
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V. ANALYSIS 

A. EXPERIMENT 1  

Conpot ran from 4 December 2020 to 28 January 2021. Its droplet captured PCAP 

activity, but T-Pot’s default was to keep only 30 days of honeypot logs. The PCAP capture 

showed that the Conpot log does not record every event. Hyun’s thesis used the Conpot 

log only, so the comparison to Hyun’s thesis only used the Conpot log data. 

1. PROTOCOL DATA AND RESULTS 

a. HTTP 

Conpot reported 5,656 HTTP requests and responses in Experiment 1. These 

mainly used HTTP Version 1.1 and 1.0, with counts of 4,498 and 890 respectively (Figure 

7). Conpot also mistakenly reported 268 activities using HTTP Version 0.9, but packet 

analysis revealed these packets were malformed.  

 
Figure 7. Experiment 1 HTTP Version Distribution 

Conpot observed five HTTP methods, reporting a method of “None” for an invalid 

request (Figure 8). This distribution was like Hyun’s results. 
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Figure 8. Experiment 1 HTTP Request Method Distribution 

HTTP activity in Experiment 1 had alleged source IP addresses in 73 countries, as 

reported by GeoIP (MaxMind, Inc., n.d.), and the top three countries were the United 

States, Russia, and China. On average, our Conpot experiment saw 94 requests daily, with 

a single day high of 133 on 4 January 2021. 

b. MODBUS 

Conpot reported 1,079 MODBUS attempts, 609 connections and 470 traffic 

packets. A connection means a TCP connection was established on port 502, and the traffic 

packets counted were MODBUS-formatted. Only 20 of these had identifiable MODBUS 

function codes, 10 each of 0x2B (Read Device Identification) and 0x11 (Report Server ID) 

(Figure 9). 
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Figure 9. Experiment 1 MODBUS Function Codes  

However, examination of the Conpot log and associated PCAP data showed that 

Conpot could not always identify a function code in a properly formatted MODBUS 

packet, even when correctly parsing the unit identifier and other data fields. In fact, packet 

capture during the same period as the Conpot log revealed 276 counts of code 0x2B and 

205 counts of 0x11, more function codes than Conpot reported (Figure 10). 
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Figure 10. Experiment 1 MODBUS Valid Function Codes  

Traffic varied considerably per day. Twenty-five of 30 days in the log had traffic 

counts of less than 5, but January 6th and 7th had counts of 68 and 303, respectively, 

accounting for 79% of all MODBUS traffic reported by Conpot. Three IP addresses 

showed a similar pattern of sending the 0x11 and 0x2B function codes to MODBUS units 

in increasing order from increasing source port numbers. On January 6th, an IP address in 

the Netherlands sent 46 such requests, and an IP address in the U.S. sent 21 similar requests. 

On January 7th, another IP address in the U.S. sent 300 requests in this pattern. Hyun’s 

experiment saw similar daily spikes. 

Only five countries sent valid MODBUS traffic according to Conpot. The U.S. and 

the Netherlands accounted for 376 and 88 counts respectively, nearly 99% of valid traffic 

(Figure 11).  
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Figure 11. MODBUS Activity by Country Count 

c. ETHERNET/IP

Conpot reported 79 EtherNet/IP packets of which 11 were properly formatted. Nine 

used the command 0x63 (List Identity), one used 0x65 (RegisterSession), and one did not 

use a valid command (0x01) (Figure 12). This is like Hyun’s experiment, which found 20 

valid commands in 154 packets.  
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Figure 12. Experiment 1 EtherNet/IP Command Code Distribution 

d. S7COMM

Conpot reported 651 S7Comm activities, including 286 connections, 157 sessions, 

and 208 packets (Table 2). All 208 packets were of PDU type 1 or 7, a data length of 0 or 

8, and had a request ID of 0 or 1. Hyun’s results showed about 150% more connections 

than our data, but 25% fewer packets sent and 62% fewer sessions. Since Hyun’s 

experiment ran 134 days versus our 30 days, our experiment received a significantly higher 

rate of S7COMM attacks. Figure 13 shows the distribution of countries involved. 

Table 2. Comparison of Experiment 1 S7COMM Activity to Hyun’s Data 

S7COMM Activity Experiment 1 Hyun 
Connections 286 (43.9%) 436 (67.6%) 
Sessions 157 (24.1%) 60 (9.3%) 
Packets Sent 208 (32%) 149 (23.1%) 
Total 651 645 
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Figure 13. S7Comm Activity by Country Count 

2. OVERALL STATISTICS 

Over all protocols, Conpot was attacked from 74 countries, most often the United 

States. 76% of these focused on HTTP (Figure 15). Apart from the MODBUS activity 

spikes on January 6 and 7, activity levels across the experiment were relatively consistent 

(Figure 14).  
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Figure 14. Experiment 1 Protocol Packet Count by Date 

 
Figure 15. Experiment 1 Protocol Distribution 

We used cosine similarity (Dangeti, 2017) to compare distributions between our 

experiment and Hyun’s experiment. Cosine similarity measures the cosine of the angle 

between two vectors on a scale of 0 to 1. We compared six aspects of the experiment, with 

vectors from 3 to 9 items (Table 3). By this metric, HTTP methods were the most similar, 
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while MODBUS methods were the least similar, though this could be due to the low counts. 

S7Comm activity also showed some differences. 

Table 3. Cosine Similarity between Experiment 1 and Hyun’s Data 

Vector Cosine similarity 
Activity counts of HTTP, MODBUS, EtherNet/IP, S7Comm 0.9929 
HTTP Version counts of 1.1, 0.9, 1.0 0.9923 
HTTP Method counts of Bad, CONNECT, GET, HEAD, None, 
OPTIONS, POST, PROPFIND, PUT 

0.9974 

MODBUS Function Code counts of 0x03, 0x2B, 0x11 0.7985 
EtherNet/IP Command counts of NOP, ListIdentity, None, 
RegisterSession] 

0.995 

S7Comm Activity counts of Connections, Sessions, Packets 0.918 

 

Overall, Experiment 1’s Conpot (cloud-deployed within T-Pot using standard 

Conpot configuration) received more traffic than Hyun’s Conpot (locally-deployed using 

standard Conpot configuration). Our experiment had 340% more HTTP traffic, 200% more 

MODBUS traffic, 220% more EtherNet/IP traffic, and 450% more S7COMM traffic per 

day. However, Hyun’s results showed more HTTP methods, MODBUS function codes, 

and EtherNet/IP valid commands. Also, HTTP traffic was a larger proportion of our 

received attacks. This suggests that a cloud-based HTTP server is a more attractive target 

than a locally-deployed server.  

B. EXPERIMENTS 2 AND 3  

Data was analyzed for Experiments 2 and 3 from February 11, 2021, to May 11, 

2021. 

1. HTTP Data and Results 

a. Overall Activities 

Experiment 2 received 28,042 HTTP requests and Experiment 3 received 10,619. 

However, 13,199 (47%) of Experiment 2’s requests were from a single IP on February 27th, 
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making it a large outlier. A breakdown of HTTP Versions across experiments showed 

similar results (Table 4).  

Table 4. Experiments 2 and 3 HTTP Versions 

 Experiment 2 
without the outlier 

Experiment 3 

Total HTTP Requests 14843 10619 
HTTP 1.1 14035 (94.56%) 10040 (94.55%) 
HTTP 1.0 791 (5.33%) 562 (5.29%) 
HTTP 0.9 3 (0.02%) 2 (0.02%) 
None 14 (0.09%) 15 (0.14%) 

 

Experiments 2 and 3 both received HTTP requests that used the CONNECT, GET, 

HEAD, OPTIONS, and POST methods (Table 5), and Experiment 3 received three 

PROPFIND requests.  

Table 5. Experiments 2 and 3 HTTP Methods 

 Experiment 2 
without the outlier 

Experiment 3 

Total HTTP Requests 14843 10619 
GET 11372 (76.62%) 8976 (84.53%) 
POST 3295 (22.2%) 1436 (13.52%) 
HEAD 122 (0.82%) 129 (1.21%) 
CONNECT 41 (0.28%) 48 (0.45%) 
OPTIONS 13 (0.09%) 27 (0.25%) 
PROPFIND 0 (0%) 3 (0.03%) 

 

Experiments 2 and 3 saw 94 and 101 alleged countries respectively. The top alleged 

source for both experiments was the United States, consistent with Chong and Koh’s results 

(Table 6). If the Experiment 2 outlier was kept in the data, the most common source country 

would be Germany.  
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Table 6. Experiments 2 and 3 Top Countries Comparison 

 Experiment 2  
without the outlier 

Experiment 3 Chong and Koh 

United States 28% 34% 28% 
China 22% 17% 7% 
Russia 14% 14% - 
Malta 0% 0% 19% 

 

On average, Experiments 2 and 3 saw 167 and 119 daily requests respectively. The 

daily high for Experiment 2 was 1048 requests and for Experiment 3 was 533 requests, 

significantly higher than Chong and Koh’s reported daily high of 73. Traffic spikes were 

similar between Experiments 2 and 3 (Figure 16). 

 
Figure 16. Experiments 2 and 3 HTTP Requests by Date (Logarithmic 

Scale) 
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unique to an experiment than a Russian IP address (Table 7), demonstrated by the number 

of unique IP addresses geolocating to China (29% and 34%) and Russia (2% and 4%). 

Table 7. Experiment 2 and 3 Alleged Countries 

 Exp. 2 
Overall 

Exp. 3 
Overall 

Exp. 2 
Common 

Exp. 3 
Common 

Exp. 2 
Unique 

Exp. 3 
Unique 

United States 28% 34% 38% 36% 21.3% 31.38% 
China 22% 17% 2% 2% 34.9% 29.11% 
Russia 14% 14% 29% 28% 4.17% 2.18% 

 

b. Types of Activity 

Experiment 2 received 2,237 unique HTTP path requests, while Experiment 3 

received 1,765. The most common path requested was the root directory, or “/,” accounting 

for 20.88% and 26.46% respectively in the two experiments. This is consistent with Chong 

and Koh’s result of 24%. The second most common was “/.env” accounting for between 

4.5% of requests in Experiment 2 and 7.5% of requests in Experiment 3.  

Many HTTP path strings for both experiments contained the string “php,” 41.1% 

for Experiment 2 and 24.3% for Experiment 3. PHP services appeared to be attractive to 

attackers (Shiflett, 2006). Table 8 shows a breakdown of the observed paths. The “Crawler” 

category is defined as requests for “robots.txt,” “favicon.ico,” and “.env.” The “Files” 

category includes paths with .txt, .sh, .zip, and .tar extensions. The “Other .env” category 

includes paths that contain .env, except for root-level /.env. “Other” includes paths not 

easily categorized or one-off requests.  
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Table 8. Experiment 2 and 3 Top 11 Overall Count of HTTP Paths 

Path Experiment 2 Experiment 3 
/ 3099 (20.9%) 2810 (26.5%) 
/_ignition/execution-solution 242 (1.6%) 229 (2.2%) 
/manager/html 171 (1.2%) 145 (1.4%) 
/config/getuser?index=0 167 (1.1%) 159 (1.5%) 
/login 166 (1.1%) 134 (1.3%) 
/Jenkins/login 127 (0.85%) 105 (1.0%) 
index.html 2 (0.01%) 1 (0.01%) 
Category: PHP 6097 (41.1%) 2578 (24.3%) 
Category: SQL 182 (1.2%) 244 (2.3%) 
Category: Crawler 1065 (7.2%) 1188 (11.2%) 
Category: .xml 351 (2.4%) 336 (3.2%) 
Category: Shell commands 209 (1.4%) 208 (2.0%) 
Category: JSON 270 (4.3%) 268 (9.5%) 
Category: Top-level folders 773 (5.2%) 655 (6.2%) 
Category: Files 563 (3.8%) 474 (4.5%) 
Category: JavaScript 211 (1.4%) 162 (1.5%) 
Category: Other .env 161 (1.1%) 182 (1.7%) 
Other 985 (6.6%) 740 (7.0%) 

 

Most HTTP user-agents in Experiments 2 and 3 were some variation of 

“Mozilla/5.0,” 79.4% and 78.9% of requests. Most Web browsers start their user-agent 

string with Mozilla (Zhu & Desai, 2015) to receive Web pages with advanced features.  

2. Overall Statistics 

Overall, Experiment 3 received less traffic than Experiment 2. Experiment 3 did 

receive similar traffic to Experiment 2 in attack types, HTTP commands, and source 

countries. This suggests that use of T-Pot does not significantly affect the type of attacks 

received. 

C. EXPERIMENTS 4–7 

Experiments 4–7 ran from May 1, 2021, to June 1, 2021. Experiments 6 and 7 

suffered an unexpected HTTP error and only collected seven days of HTTP traffic. As 

mentioned in Section IV.C, Experiment 7’s IP address was found to be registered to a 

Korean-based domain name, and consequently, collected some HTTP data from users 
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attempting to access it. Table 9 shows overall statistics for the four experiments. Generally 

speaking, the T-Pot deployments in Experiments 4 and 5 were accessed by more countries 

than the standalone honeypots, Experiment 7 received about four times the average HTTP 

traffic of the other three experiments, and IEC 104 message numbers were low throughout. 

Table 9. Overall Traffic Statistics for Experiments 4–7 

 Experiment 4 

(US, T-Pot) 

Experiment 5 

(Asia, T-Pot) 

Experiment 6 

(US) 

Experiment 7 

(Asia) 

Number of unique countries 75 81 44 74 

Number of unique IP addresses 834 1034 305 1509 

Total number of requests 5813 5951 879 8343 

Total HTTP requests 5673 5830 8343 879 

Mean HTTP requests per day 189.1 182.2 97.7 695.2 

Min HTTP requests per day 50 66 15 1 

Max HTTP requests per day 2480 1283 163 1883 

Total IEC 104 messages 140 121 121 127 

Total IEC 104 malformed messages 104 95 105 110 

Total IEC 104 valid messages 36 26 16 17 

Mean IEC 104 messages per day 10.8 8.1 7.6 7.5 

Min IEC 104 messages per day 1 1 1 1 

Max IEC 104 messages per day 85 88 83 91 

Mean valid IEC 104 messages per day 3.6 2.2 1.3 1.7 

Min valid IEC 104 messages per day 1 1 1 1 

Max valid IEC 104 messages per day 9 3 2 3 
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1. Session Data 

Dougherty (Dougherty, 2020) and Bieker and Pilkington (Bieker & Pilkington, 

2020) defined a session as all packets exchanged by a socket pair on a day, and we follow 

this definition. We counted IP addresses that established only a single HTTP session, 

multiple HTTP sessions, only a single IEC 104 session, multiple IEC 104 sessions, and 

both HTTP and IEC 104 sessions (Table 10). To better compare to the limited HTTP 

dataset in Experiments 6 and 7, additional columns for Experiments 4 and 5 are given that 

match the seven-day data length.  

Table 10. Experiments 4–7 IP Address Session Data 

Sessions Established with 

Unique IP Addresses 

Exp. 4 

(U.S., T-

Pot) 

Exp. 5 

(Asia, T-

Pot) 

Exp. 4 

(Only first 

7 days of 

HTTP) 

Exp. 5 

(Only first 

7 days of 

HTTP) 

Exp. 6 

(U.S.) 

Exp. 7 

(Asia) 

Number of unique IP 

addresses 

834 1034 320 353 305 1509 

Established Single HTTP-

only session 

516 

(61.8%) 

632 (61%) 192 (60%) 211 (60%) 192 

(63%) 

457 

(30%) 

Established Multiple 

HTTP-only sessions 

298 

(35.7%) 

387 (37%) 108 (34%) 127( 36%) 92 

(30%) 

1030 

(68%) 

Established Single IEC 

104-only session 

10 (1.2%) 5 (0.5%) 10 (31%) 5 (1.5%) 7 (2%) 6 

(0.4%) 

Established Multiple IEC 

104-only sessions 

7 (0.8%) 6 (0.6%) 7 (2%) 6 (1.6%) 11 (4%) 14 

(0.9%) 

Established HTTP and 

IEC 104 sessions 

3 (0.4%) 4 (0.4%) 3 (0.9%) 4 (1.1%) 2 (.6%) 2 

(0.1%) 

 

The distribution of HTTP traffic by country was similar across the four experiments 

(Table 11), although proportions of the top countries did vary. This was in contrast to 
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Bieker and Pilkington’s results, which had different top countries between their U.S. and 

Asia experiments 

Table 11. Experiments 4–7 HTTP Country Data 

 Exp. 4 Exp. 5 Exp. 4  
(7 days) 

Exp. 5  
(7 days) 

Exp. 6 Exp. 7 

1 US (31.4%) US (30.4%) US (31.6%) US (29.5%) US (30.3%) US (35%) 
2 China 

(11.3%) 
China 
(12.3%) 

China (12.5%) China 
(17.8%) 

China 
(15.8%) 

China 
(6.4%) 

3 Germany 
(5.8%) 

Germany 
(4.5%) 

Germany 
(6.6%) 

Germany 
(6.2%) 

France 
(6.6%) 

Russia 
(5.6%) 

4 India 
(4.3%) 

U.K. 
(4.3%) 

Netherlands 
(5.3%) 

Netherlands 
(5.4%) 

Germany 
(5.9%) 

Netherlands 
(5.2%) 

5 Russia 
(4.1%) 

Russia 
(4.0%) 

India (4.4%) UK (3.7%) Russia 
(4.6%) 

Germany 
(4.9%) 

6 Netherlands 
(4.1%) 

India 
(3.9%) 

France (4.4%) France 
(3.4%) 

Netherlands 
(4.6%) 

Singapore 
(4.4%) 

7 U.K. 
(3.6%) 

Netherlands 
(3.7%) 

Russia (3.8%) Russia 
(3.4%) 

India (4.3%) Canada 
(2.9%) 

8 France 
(3.1%) 

France 
(3.3%) 

UK (3.8%)_ Singapore 
(2.8%) 

Brazil (3.0%) France 
(2.7%) 

9 Brazil 
(2.9%) 

Singapore 
(2.8%) 

Singapore 
(2.8%) 

Brazil (2.3%) U.K. (3.0%) India 
(2.3%) 

10 Other 
(26.6%) 

Other 
(25.4%) 

Other (19.7%) Other 
(20.1%) 

Other (18%) Other 
(26.9%) 

 

HTTP path requests in Experiments 4–7 followed a similar pattern as Experiments 

1–3, with large shares relating to either PHP or SQL, as well as the more regular root and 

index.html requests. Table 12 shows data on specific paths as well as defined categories. 

The “Crawler” category was defined as requests for “robots.txt,” “favicon.ico,” and “.env.” 

The “Files” category includes paths with .txt, .sh, .zip, and .tar extensions. The “Other 

.env” category includes paths with the string “.env” except for root-level “/.env.” “Other” 

includes paths not easily categorized or one-off requests, broadly like those seen in 

Experiments 2–3. For Experiment 7, “DNS redirect” meant paths including the registered 

domain discussed in Section IV.C as well as all paths beginning with “content/,” which 

were absent in Experiments 4–6 and were tries to reach content on the registered domain. 
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Table 12. Experiments 4–7 HTTP Path Data 

 Exp. 4 Exp. 5 Exp. 6 Exp. 7 
HTTP data 31 days 31 days 7 days 7 days 
/ 948 (17.9%) 1028 

(19.1%) 
262 (32.5%) 1880 

(23.3%) 
/_ignition/execution-solution 46 (0.9%) 77 (1.4%) 14 (1.7%) 16 (0.2% 
/manager/html 15 (0.3%) 27 (0.5%) 3 (0.4%) 5 (0.1%) 
/config/getuser?index=0 31 (0.6%) 22 (0.4%) 6 (0.7%) 6 (0.1%) 
/login 11 (0.2%) 21 (0.4%) 2 (0.2%) 4 (0.1%) 
/Jenkins/login 8 (0.2%) 18 (0.3%) 1 (0.1%) 4 (0.1%) 
Index.html 389 (7.3%) 432 

(8.0%) 
102 (12.6%) 1781 

(22.0%) 
Category: PHP 2833 (53.4%) 2474 

(46%) 
110 (13.6%) 1100 

(13.6%) 
Category: SQL 5 (0.1%)  50 

(0.9%) 
1 (0.1%) 20 (0.3%) 

Category: Crawler 213 (4.0%) 295 
(5.5%) 

67 (8.3%) 268 
(3.3%) 

Category: .xml 177 (3.3%) 113 
(2.1%) 

31 (3.8%) 18 
(0.22%) 

Category: Shell commands 58 (1.1%) 103 
(1.9%) 

8 (0.99%) 36 
(0.45%) 

Category: JSON 71 (1.3%) 80 (3.2%) 22 (2.7%) 23 (2.0%) 
Category: Top-level folders 162 (3.0%) 224 

(4.2%) 
100 (12.4%) 55 (0.7%) 

Category: Files 77 (1.5%) 124 
(2.3%) 

19 (2.4%) 49 (0.6%) 

Category: JavaScript 81 (1.5%) 38 (0.7%) 0 9 (0.1%) 
Category: Other .env 13 (0.2%) 82 (1.5%) 6 (0.7%) 0 
Other 172 (3.2%) 162 

(3.0%) 
54 (6.7%) 252 

(1.27%) 
DNS redirect 0 0 0 2615 

(32.35%) 
Total 5305 5370 807 8081 

 

Across all four experiments, IEC 104 traffic was lower than HTTP traffic. 

Experiments 4 and 5 running within T-Pot, received more valid IEC 104 messages than 

Experiments 6 and 7 (Figure 17), while Experiments 6 and 7 attracted more attackers as 

measured by IP addresses (Figure 18). Experiments 4 and 5 were more consistent with 

Bieker and Pilkington’s results for reasons that were unclear. 
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Figure 17. Experiments 4–7 IEC 104 Traffic 

 
Figure 18. Experiments 4–7 IEC 104 Session Statistics 

Table 13 shows the breakdown of valid IEC 104 messages in Experiments 4–7. 

Overall, Experiments 4 and 5 had more valid IEC 104 traffic and more diversity in traffic, 

receiving a mix of U-Format and I-Format IEC 104 frames. In contrast, Experiments 6 and 
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7 mostly received U-Format frames. All experiments received similar numbers of error 

frames, which were packets received on port 2404 in incorrect IEC 104 format. Erroneous 

IEC 104 traffic (Table 14) was less consistent day-to-day than valid traffic. Many of its 

error frames, rather than being malformed IEC 104 data, contained traffic for HTTP, FTP, 

or other protocols. Figure 19 shows an example error frame from Experiment 5. 

Table 13. Experiments 4–7 IEC 104 Methods 

Experiment U-Format 
Frames 

I-Format 
Frames 

Error 
Frames 

Total IEC 104 
Traffic 

Experiment 4 26 10 104 140 
Experiment 5 20 6 95 121 
Experiment 6 16 0 105 121 
Experiment 7 16 1 110 127 

 

Table 14. Experiments 4–7 Daily IEC 104 Traffic 

 Total IEC 104 Traffic Valid IEC 104 Traffic 
Experiment Mean Min Max Std. Dev Mean Min Max Std. Dev 
Experiment 4 10.769 1 85 21.588 3.6 1 9 2.54 
Experiment 5 8.066 1 88 21.446 2.166 1 3 0.986 
Experiment 6 7.5625 1 83 19.609 1.33 1 2 0.471 
Experiment 7 7.47 1 91 20.915 1.7 1 3 0.781 
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Figure 19. Example Hex Dump of IEC 104 Error Frame Showing 

Encapsulated HTTP Packet  

Unlike HTTP traffic, the distribution of IEC 104 traffic by country was inconsistent 

across the experiments (Table 15). For example, IEC traffic from the U.S. ranged from 

72.7% in Experiment 6 to 8.3% in Experiment 5. This inconsistency between 

geographically different experiments, however, is consistent with Bieker and Pilkington’s 

results. 

Table 15. Experiments 4–7 IEC 104 Alleged Country Data 

 Experiment 4 
(US T-Pot) 

Experiment 5 
(Asia T-Pot)_ 

Experiment 6 
(US) 

Experiment 7 
(Asia) 

1 Netherlands (34.3%) Singapore (32.2%) US (72.7%) US (36.2%) 
2 India (22.1%) Germany (25.6%) Canada (9.9%) Netherlands (35.4%) 
3 US (17.14%) UK (9.9%) Portugal (4.1%) China (6.3%) 
4 France (8.6%) US (8.3%) China (4.1%) Vietnam (6.3%) 
5 Germany (7.1%) France (8.3%) Netherlands (3.3%) Portugal (3.9%) 
6 China (5.7%) China (5.0%) France (3.3%) France (3.1%) 
7 Portugal (3.6%) Portugal (4.1%) UK (1.7%) Japan (3.1%) 
8 Russia (1.43%) Netherlands (3.3%) Russia (0.8%) Russia (2.4%) 
9  India (3.3%)   

 



41 

2. SIMILARITIES BETWEEN EXPERIMENT TRAFFIC 

We used cosine similarity to compare the results of our experiments and Bieker and 

Pilkington’s data. Our first comparison (Table 16) used a vector of four items: average 

weekly counts of HTTP GET commands, HTTP POST commands, other HTTP methods, 

and all IEC 104 traffic. The raw data for this comparison is in Appendix B. The vectors for 

Experiments 6 and 7 were affected by the missing HTTP data (after the unexpected HTTP 

error was seen) and DNS registration, so the more useful comparison is between 

Experiment 4 and Bieker and Pilkington’s Experiment 2 (both deployed in the US), and 

Experiment 5 and their Experiment 3 (both deployed in Asia). To assess how similar these 

experiments were, we took the cosine similarity of the average vectors of each experiment 

and divided it by the averages of the week-to-week cosine similarities. The absolute value 

of the logarithm of this value is a rough measure of significance, which could be refined 

using a table of the F distribution. Table 17 demonstrates the experiments are not 

significantly different from each other, using two standard deviations from the mean as the 

minimum for significance. 

Table 16. Experiments 4–7 Cosine Similarity for All Traffic 

Experiment Average cosine similarity of total traffic 
Experiment 4 (with T-Pot) 0.9833 
Experiment 5 (with T-Pot) 0.8047 
Experiment 4 (7 days of HTTP) 0.9350 
Experiment 5 (7 days of HTTP) 0.7521 
Experiment 6 0.7998 
Experiment 7 0.6718 
Bieker & Pilkington’s Experiment 2 0.774 
Bieker & Pilkington’s Experiment 3 0.994 
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Table 17. Experiments 4–5 Measure of Significance of Total Traffic 
Comparisons 

 Experiment 4 versus Bieker 
& Pilkington’s Experiment 2 

Experiment 5 versus Bieker 
& Pilkington’s Experiment 3 

Measure of significance 
of total traffic 

log(0.992431) = 0.0033 log(0.9873) = 0.0056 

 

Our second comparison examined IEC 104 traffic only. It used a vector of the 

average weekly counts of U-format frames, I-format frames, and error frames (Table 18). 

The measures of significance (Table 19) again demonstrates that geographically similar 

experiments have similar results. 

Table 18. Experiments 4–7 Cosine Similarity for IEC 104 Traffic 

Experiment Average cosine similarity of IEC 104 traffic 
Experiment 4 0.8304 
Experiment 5 0.5048 
Experiment 6 0.7167 
Experiment 7 0.6020 

 

Table 19. Experiments 4–7 Measure of Significance of IEC 104 Traffic 

 Experiment 4  
versus Experiment 6 

Experiment 5  
versus Experiment 7 

Measure of significance of 
IEC 104 Traffic 

log(1.2804) = 0.1073 log(1.7976) = 0.2547 

 

Overall, the computed measures of significance do not demonstrate a significant 

difference between GridPots deployed within T-Pot (Experiments 4 and 5), and 

geographically-identical standalone GridPots (Experiments 6 and 7, and Bieker & 

Pilkington’s experiments). 
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3. BEHAVIORAL ANALYSIS 

We performed additional analysis on IP addresses that sent IEC 104 traffic. In each 

experiment, two of eight IP addresses sent the same packet to port 2404, which registered 

as an error frame (Figure 20). The two IP addresses in each experiment did not appear 

related to each other, as they were on different subnets. Instead of properly formatted IEC 

104 data, this packet held Session Initiation Protocol (SIP) traffic not intended for an IEC 

104 device.  

 
Figure 20. Example of IEC104 Error Packet Containing SIP Data  

Except for one IP address in Experiment 5, all IP addresses that sent an I-Format 

also sent a U-Format frame. All experiments also had IP addresses that sent U-Format 

frames but no I-Format frames.  

Twelve addresses of a subnet sent traffic to all four experiments in various ways 

(Table 20). Eleven addresses on the subnet sent IEC 104 traffic to some but not all 

experiments. One address only sent HTTP traffic but sent it to every experiment. Its HTTP 

requests were “GET /” and “GET /index.html” requests, which suggests a crawler and is 

not itself suspicious. Based on the GeoIP database, the IP range geolocated to mainland 

France. The days of activity were Mondays, Wednesdays, and Fridays, and the hours of 

activity were 0200–1800 Pacific Time, corresponding to 1100–0300 Central European 

Time. Interestingly, this leaves an eight-hour gap of inactivity. If this traffic required 



44 

human interaction, their waking hours are 0600–2200, then the originating time zone may 

actually be GMT-4 in Brazil. 

Table 20. Experiments 4–7 Traffic from Specific Subnet 

51.254.49.0/20 Experiment 4 Experiment 5 Experiment 6 Experiment 7 
.49.96    1 U-Format 
.49.97 2 U-Format,  

1 I-Format 
   

.49.98  2 U-Format, 
1 I-Format 

  

.49.99  3 U-Format, 
1 I-Format 

1 U-Format  

.49.100 2 U-Format, 
1 I-Format 

   

.49.101 2 U-Format, 
1 I-Format 

   

.49.102   1 U-Format  

.49.103  2 U-Format, 
1 I-Format 

 1 U-Format 

.49.104    1 U-Format 

.49.109 2 U-Format, 
1 I-Format 

 1 U-Format  

.49.110   1 U-Format  

.59.113 3 sets of 2 
HTTP requests 

3 sets of 2 
HTTP requests 

1 set of 2 
HTTP requests 

1 set of 2 HTTP 
requests 

TOTAL: 8 U-Format, 
4 I-Format, 
6 HTTP 

7 U-Format, 
3 I-Format, 
6 HTTP 

4 U-Format, 
2 HTTP 

4 U-Format, 
2 HTTP 

  

4. Shodan 

Only one IP address, in Experiment 4, was continuously scanned by Shodan; this 

scan occurred six days after the droplet was exposed to the Internet. We started a scan on 

the principal honeypot addresses in all four experiments, and subsequently, a search of 

these addresses showed not only the results from our scan, but also historical searches, 

including one four days after being exposed to the Internet. Experiment 5 was regularly 

scanned between May 5th and June 26th, and then the scanning stopped until our requested 

scan started. This gap might explain why “no results found” was returned for the history 
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searches prior to our requested scan. The IP addresses for Experiments 6 and 7 still showed 

“no results found” for no obvious reason, while all four experiments could be queried on 

Honeyscore. 

Shodan correctly identified the relevant data for Experiments 4 and 5, including the 

cloud provider, cloud region, country, and open ports. It did not identify either as a 

honeypot in the scan results. However, out of the four experiments, Honeyscore did report 

Experiment 5 as a possible honeypot, while saying Experiments 4 and 6–7 “look like a real 

system.” Honeyscore does not report what factors went into the decision, nor does it give 

the user a score, so it is not clear why only one experiment was judged a honeypot. 

D. T-POT  

Initially, we tried to use the Kibana and ELK stack tools within T-Pot for our 

analyses; however, this proved more challenging than anticipated. First, not all events that 

Conpot handled were logged, and some of its timestamps were likely inaccurate when they 

were flushed from the cache before a shutdown. This incomplete and inaccurate dataset 

skewed the visualizations and activity databases of T-Pot.  

Also, the ease of analyzing a honeypot depends on how it logs its data. For example: 

Snare and Tanner break down an attacker’s HTTP request into individual components 

(Figure 21), while Conpot leaves the entire request as one data field (Figure 22). This 

limited our ability to analyze specific data points. Errors in how Kibana parses a honeypot’s 

logs can also result in errant data as shown in Figure 23, where the location of the Tanner 

logs is presented as the 3rd-most requested HTTP path. 
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Figure 21. Screenshot of Elastic Database of Experiment 2, Showing 

Multiple Data Fields from an HTTP Request 

 
Figure 22. Screenshot of Elastic Database of Experiment 4, Showing 

Entire HTTP Request in One Data Field 

 
Figure 23. Screenshot of Kibana Dashboard of Experiment 2, Showing an 

Errant HTTP Path  
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The data that Suricata provides was more complete. Figure 24 shows one way 

Suricata’s data can be visualized, as a top-10 list of generated alert signatures with potential 

CVEs. This data supplements the honeypot data. 

 
Figure 24. Screenshot of Suricata Dashboard of Experiment 5, Showing 

One CVE 

Experiments 2 and 3 provided us the opportunity to directly compare a standalone 

honeypot to a honeypot running on T-Pot. Experiment 3 (with Snare and Tanner running 

on T-Pot) was easier to manage than Experiment 2 (Snare and Tanner installed on a bare 

server). The Cockpit with DigitalOcean’s tools allowed easy management of the droplet. 

The Kibana dashboard, Suricata threat analysis, and the HTTP data provided by Snare and 

Tanner provided a real-time monitoring capability of incoming attacks and a visual method 

to ensure the honeypot is operating, a capability lacking on a standalone honeypot.  

During installation, T-Pot schedules daily restarts and weekly software updates. 

During these restarts, T-Pot rebuilds the Docker containers for the honeypots and tools 

while preserving previously collected data, ensuring a clean start to the 24-hour data 

collection period. This ensures that if an error occurs, as it did in Experiments 6 and 7, 

which ceased to respond to HTTP requests after seven days, we would lose at most only 

24 hours of data. The installer also automatically migrates the server’s SSH capabilities to 

a different port than the default port 22, which allowed us full access to the T-Pot server 

without having to expose port 22 and thus change the intended outward presentation of the 

server.  
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T-Pot did use more computing resources than a standalone honeypot. Experiment 

2 (standalone honeypot) used 20–25 times less processing power, six times less memory, 

and four times less disk space than Experiment 3 (T-Pot installation) (Figures 25–30). 

These two experiments ran on identically configured DigitalOcean droplets with 2 

processors, 8 gigabytes of memory and 25 gigabytes of disk space. 

 
Figure 25. Processor Use in Experiment 2 

 
Figure 26. Processor Use in Experiment 3 
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Figure 27. Memory (RAM) Use in Experiment 2 

 
Figure 28. Memory (RAM) Use in Experiment 3 

 
Figure 29. Disk Use in Experiment 2 
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Figure 30. Disk Use in Experiment 3 
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VI. CONCLUSIONS AND FUTURE WORK

This thesis explored the cloud deployment of honeypots within the T-Pot honeypot 

platform. Several kinds of implementations were compared. Our experiments did not show 

a significant difference in traffic received by honeypots deployed in the cloud, honeypots 

deployed in the cloud within T-Pot, and honeypots deployed on local servers. This is 

encouraging as it allows flexibility for future honeypot deployment schemes.  

Experiment 1 received more daily traffic across the protocols used by Conpot, 

although our experiment received larger proportion of HTTP traffic compared to the other 

protocols. This suggests that cloud-deployed web servers are more popular for attackers, 

compared to the other ICS-related protocol handlers that Conpot provides. 

Experiments 2 and 3 showed the honeypot deployed within T-Pot received less 

traffic than the one installed directly onto the droplet server, though the traffic distribution 

was similar. However, even though both experiments were deployed on the same cloud 

provider in the same geographic region, only a third of the source IP addresses were shared 

between them, although many addresses in the experiments were similar. Future work 

could run identical honeypots on the same servers to analyze the similarity among the 

received attacks. If those results were like ours, it would demonstrate that despite 

geographic co-location or IP address similarity, honeypots are not identically attacked, and 

that attackers are not uniformly crawling through and attacking IPv4 address space. 

Experiments 4–7 showed some differences between the experiments, such as the 

GridPots within T-Pot received slightly more IEC 104 traffic. We also observed that results 

of experiments deployed in identical geographic areas were not significantly statistically 

different. The increase in ICS traffic, compared to the decrease seen in Experiment 1, could 

be due to GridPot showing a more realistic and high-interaction interface than Conpot. 

Future work could modify Phase II of Dougherty’s GridPot to run as a Docker container 

and integrate it with T-Pot. Other future work could use Snare and Tanner to handle HTTP 

traffic instead of GridPot’s HTTP server, which could provide more attack data when 
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combined with a sleeker user interface, besides stability and a more robust logging 

capability. 

T-Pot proved a capable honeypot management platform with many built-in

capabilities and support for customization. We observed some shortcomings in its 

analytical capabilities due to incomplete data from honeypot logging. We overcame this 

hurdle by running packet-capture software and primarily relying on its data for offline 

analysis. We recommend any future honeypot deployment, production, or research include 

packet capturing, since T-Pot does not natively provide it.  

Our research did not show that a T-Pot deployment could be fingerprinted as such. 

Future work should analyze whether any distinctive characteristics of a server running a T-

Pot exist. 

Time constraints limited how much data we could collect for each experiment. 

However, these experiments are still running, and this larger collection of data could be 

analyzed at different time intervals, e.g., over six months or a year, to further determine if 

deployment on the cloud within T-Pot affects the rate of attacks or the honeypot data 

collected. Also, machine learning can be used on this dataset for further behavioral 

analysis, including determining if any penetration-testing software was used in attacks on 

the honeypots. 
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APPENDIX A. CUSTOM T-POT INSTALLATION 

We used the following steps to customize our T-Pot installation for use in our 

experiments. 

Step 1: Clone the T-Pot repository. 

 git clone https://github.com/telekom-security/tpotce.git 

Step 2: Copy the custom T-Pot template into the installation folder. 

 cp Washofsky.yml tpotce/iso/installer 

Step 3: Edit the installation script (tpotce/iso/installer/install.sh) 

 Step 3a: Add the custom template as a user-selectable choice. 

Insert into install.sh Line 522: 

  “WASHOFSKY” “For experiments” \ 

 Step 3b: Copy the custom template into the installed directory. 

Insert into install.sh Line 713: 

  cp washofsky.yml /opt/tpot/etc/compose/ 

 Step 3c: Add functionality for custom template 

 Insert into install.sh Line 745: 

  WASHOFSKY) 

  fuBANNER “WASHOFSKY” 

  ln -s /opt/tpot/etc/compose/washofsky.yml $myTPOTCOMPOSE 

  ;; 

Step 4: Run installation script as root 

 sudo ./tpotce/iso/installer/install.sh --type=user 

https://github.com/telekom-security/tpotce.git
https://github.com/telekom-security/tpotce.git
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APPENDIX B. COSINE SIMILARITY DATA 

The tables below show the data used for the cosine similarity analysis in Section 

V.C.2. Tables B-1 through B-4 contain weekly counts of HTTP and IEC methods for all 

experiments, Table B-5 contains the values used for the vector elements in cosine 

similarity, and Tables B-6 through B-8 contain the calculated cosine similarity values. 

 

Table B-1. Experiment 4 (US T-Pot) Weekly HTTP and IEC 104 Method Counts  

Week CONNECT GET POST OPTIONS HEAD NONE PROPFIND Invalid 

IEC104 

I-

Frames 

U-

Frames 

1 0 602 81 0 6 43 0 6 1 2 

2 13 766 88 6 4 126 0 89 4 10 

3 2 2787 49 1 4 20 0 3 2 6 

4 0 550 63 0 2 50 0 6 3 8 

 

Table B-2. Experiment 5 (Asia T-Pot) Weekly HTTP and IEC 104 Method Counts 

Week CONNECT GET POST OPTIONS HEAD NONE PROPFIND Invalid 

IEC104 

I-

Frames 

U-

Frames 

1 1 972 834 3 5 84 0 1 1 3 

2 11 646 86 3 6 103 0 87 1 5 

3 5 930 911 1 26 63 0 1 1 4 

4 2 539 67 4 3 58 0 5 2 5 
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Table B-3. Experiment 6 (US) Weekly HTTP and IEC 104 Method Counts 

Week CONNECT GET POST OPTIONS HEAD NONE PROPFIND Invalid 

IEC104 
I-

Frames 
U-

Frames 

1 2 593 72 0 3 51 0 5 0 1 

2 6 130 16 0 0 6 0 89 0 4 

3 0 0 0 0 0 0 0 1 0 3 

4 0 0 0 0 0 0 0 10 0 7 

 

Table B-4. Experiment 7 (Asia) Weekly HTTP and IEC 104 Method Counts 

Week CONNECT GET POST OPTIONS HEAD NONE PROPFIND Invalid 

IEC104 
I-

Frames 
U-

Frames 

1 2 5887 793 7 114 167 0 8 0 1 

2 3 1251 39 0 43 34 0 94 0 3 

3 0 0 0 0 0 2 0 1 0 4 

4 0 0 0 0 0 0 0 6 0 2 

 

Table B-5. Average Counts used for HTTP and IEC 104 Cosine Similarity Comparisons 

Experiment GET POST Other Methods IEC 

4 1176.3 70.25 69.25 35 

5 771.75 474.5 94.5 29 

6 180.75 22 17 30 

7 1784.5 208 93 29.75 
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Table B-6. Weekly HTTP and IEC 104 Cosine Similarity for Individual Experiments 

Week Experiment 4 Experiment 5 Experiment 6 Experiment 7 

2 0.9871 0.8274 0.8222 0.9917 

3 0.9712 0.7909 0.5773 0.0952 

4 0.9915 0.796 1.0 0.9285 

 

Table B-7. Weekly Average HTTP and IEC 104 Cosine Similarity per Experiment 

Experiment 4 Experiment 5 Experiment 6 Experiment 7 

0.9833 0.8047 0.79984 0.6718 

 

Table B-8. Weekly IEC 104 Cosine Similarity for Individual Experiments 

Week Experiment 4 Experiment 5 Experiment 6 Experiment 7 

2 0.9721 0.3564 0.9883 0.9957 

3 0.5338 0.2921 0.3585 0.2734 

4 0.9852 0.8660 0.8031 0.5370 

 

Table B-9. Weekly Average IEC 104 Cosine Similarity per Experiment 

Experiment 4 Experiment 5 Experiment 6 Experiment 7 

0.8304 0.5048 0.7166 0.602 
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